Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For examplesthtéon between
force on a spring and displacement of the spring is always nonlinear te stegree. The
relation between current through a resistor and voltage drop acrosksd deviates from a
straight-line relation. However, if in each case the relatioméasonablylinear, then it will
be found that the system behavior will be very close to that obtained bynaggan ideal,
linear physical element, and the analytical simplification is so enormousitbahake linear
assumptions wherever we can possibly do so in good conscience.

Robert H. CannorDynamics of Physical Systeyi®67 [Can03].

In Chapters 2—4 we considered the construction and anaty<sigferential
equation models for dynamical systems. In this chapter weiafize our results to
the case of linear, time-invariant input/output systemag €entral concepts are the
matrix exponential and the convolution equation, througicivwe can completely
characterize the behavior of a linear system. We also dessdme properties of
the input/output response and show how to approximate areamlsystem by a
linear one.

5.1 Basic Definitions

We have seen several instances of linear differential @sin the examples in the
previous chapters, including the spring—mass system (ddrogcillator) and the
operational amplifier in the presence of small (nonsatugaiimput signals. More
generally, many dynamical systems can be modeled accybgtihear differential
equations. Electrical circuits are one example of a broabsaésystems for which
linear models can be used effectively. Linear models aretatsadly applicable in
mechanical engineering, for example, as models of smaihtiems from equilibria
in solid and fluid mechanics. Signal-processing systemajdiirady digital filters of
the sortused in CD and MP3 players, are another source of gaogxes, although
these are often best modeled in discrete time (as describenbie detail in the
exercises).

In many cases, wereatesystems with a linear input/output response through
the use of feedback. Indeed, it was the desire for lineariehthat led Harold
S. Black to the invention of the negative feedback amplifiem@édgt all modern
signal processing systems, whether analog or digital @ex#idfack to produce linear
or near-linear input/output characteristics. For thestesys, it is often useful to
represent the input/output characteristics as lineagrigg the internal details
required to get that linear response.
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For other systems nonlinearities cannot be ignored, eslbeitione cares about
the global behavior of the system. The predator—prey prolidepme example of
this: to capture the oscillatory behavior of the interdefstt populations we must
include the nonlinear coupling terms. Other examples ohelswitching behavior
and generating periodic motion for locomotion. Howeveryd care about what
happens near an equilibrium point, it often suffices to appraie the nonlinear
dynamics by their local linearization, as we already exgdidsriefly in Section 4.3.
The linearization is essentially an approximation of thelmear dynamics around
the desired operating point.

Linearity

We now proceed to define linearity of input/output systemsafanmally. Consider
a state space system of the form

d_x = f(x,u), y = h(x, u), (5.1)
dt

wherex € R", u € RP andy € RY. As in the previous chapters, we will usually
restrict ourselves to the single-input, single-outpuedagtakingp = q = 1. We
also assume that all functions are smooth and that for amabf®class of inputs
(e.g., piecewise continuous functions of time) the sohgiof equation (5.1) exist
for all time.

It will be convenient to assume that the origin= 0, u = 0 is an equilibrium
point for this systemX = 0) and thath(0, 0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose txatue) #= (0, 0) is an equilibrium point
of the system with outpwe = h(Xe, Ue). Then we can define a new set of states,
inputs and outputs,

X=X—=Xe, UO=U—Ue, Y=Y—VYe

and rewrite the equations of motion in terms of these vagbl

d .
af(: f(X 4+ Xe, G+ Ug) =: (X, 0),
¥ =X+ Xe, 0+ Ue) — Ye =t h(X, 0).

In the new set of variables, the origin is an equilibrium pauith output 0, and
hence we can carry out our analysis in this set of variablase@e have obtained
our answers in this new set of variables, we simply “traesl#tem back to the
original coordinates using = X + Xe, U = 0 + Ug andy = y + Ve.

Returning to the original equations (5.1), now assumindpeuit loss of gener-
ality that the origin is the equilibrium point of interestewvrite the outputy(t)
corresponding to the initial conditiof(0) = Xg and inputu(t) asy(t; Xo, u). Using
this notation, a system is said to bdirgear input/output systeni the following
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Figure 5.1: Superposition of homogeneous and particular solutions. The firstirowssthe
input, state and output corresponding to the initial condition responsesetioad row shows
the same variables corresponding to zero initial condition but nonzeub. ipe third row
is the complete solution, which is the sum of the two individual solutions.

conditions are satisfied:
() Yyt axi+ Xz, 0) = ay(t; X1, 0) + By(t; X2, 0),
(i) y(t; axo, ou) = ay(t; Xo, 0) + Jy(t; O, u), (5.2)
(i) y(t; 0,dus + yuz) = dy(t; 0,us) + y y(t; 0, uz).

Thus, we define a system to be linear if the outputs are joinibali in the initial
condition responsé@i = 0) and the forced responge(0) = 0). Property (iii) is a
statement of therinciple of superpositionthe response of a linear system to the
sum of two inputau; andus, is the sum of the outputg andy, corresponding to
the individual inputs.

The general form of a linear state space system is

%:Ax+ Bu, y =Cx+ Du, (5.3)
whereA € R™", B € R™P, C € R*"andD e RY*P. In the special case of a
single-input, single-output systerB,is a column vectorC is a row vector and

is scalar. Equation (5.3) is a system of linear first-ordeeddhtial equations with
inputu, statex and outpuly. It is easy to show that given solutiorg(t) andx,(t)
for this set of equations, they satisfy the linearity coiodis.

We definexy (1) to be the solution with zero input (the@mogeneous solutipn
and the solutiorx,(t) to be the solution with zero initial condition (@articular
solution). Figure 5.1 illustrates how these two individual soluticas be superim-
posed to form the complete solution.



134 CHAPTER 5. LINEAR SYSTEMS

It is also possible to show that if a finite-dimensional dynaahisystem is
input/output linear in the sense we have described, it canys be represented
by a state space equation of the form (5.3) through an appteprhoice of state
variables. In Section 5.2 we will give an explicit solutionegfuation (5.3), but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first-order differential equation

% =ax+u y =X

dt ’ ’

with x(0) = Xq. Letu; = Asinwit andu, = B cosw,t. The homogeneous solution
is xp(t) = e*'xg, and two particular solutions witk(0) = 0 are
—1€* + w1 coswit + asinwat

a2+ of
!l — acoswot + wy Sinwot
a2 + w3 )

Xpl(t) =-A

b

a
Xp2(t) =B

Suppose that we now choog€0) = aXg andu = u; + U,. Then the resulting
solution is the weighted sum of the individual solutions:

Awq Ba

a2+ w? + a2+a)§)

w1 COSw1t + asinwit 5 —acoswot + wy Sinwot
a2+ w? + a2 + w3 ’

X(t) = e™ (axo +
(5.4)

To see this, substitute equation (5.4) into the differéeation. Thus, the prop-
erties of a linear system are satisfied. \%

Time Invariance

Time invariancds an important concept that is used to describe a systemewhos
properties do not change with time. More precisely, for aetimvariant system if
the inputu(t) gives outpuy(t), then if we shift the time at which the inputis applied
by a constant amout u(t + a) gives the outpuy(t + a). Systems that are linear
and time-invariant, often callddr'| systemshave the interesting property that their
response to an arbitrary input is completely charactergettheir response to step
inputs or their response to short “impulses.”

To explore the consequences of time invariance, we first ctertpe response
to a piecewise constant input. Assume that the systemiilinit rest and consider
the piecewise constant input shown in Figure 5.2a. The inmijLmaps at time;,
and its values after the jumps aréy). The input can be viewed as a combination
of steps: the first step at tinighas amplitudei(ty), the second step at tintehas
amplitudeu(t;) — u(tp), etc.

Assuming that the system is initially at an equilibrium gddigo that the initial
condition response is zero), the response to the input cabta@ed by superim-
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant sigrize cap-
resented as a sum of step signals (a), and the resulting output is the soenindividual
outputs (b).

posing the responses to a combination of step inputsHL(et be the response to
a unit step applied at time 0. The response to the first steprsHite — to)u(to),

the response to the second stepig — tl)(u(tl) - u(to)), and we find that the
complete response is given by

y(t) = H(t — to)u(to) + H(t — t) (u(tz) — u(to)) + - - -
= (H(t —t)) — H(t —t))u(to) + (H(t —t1) — H(t —tp))u(ty) + - - -
=D oo(H(t —ty) — H(t — thy1)u(t)
S H(E = t) = H(t — ths1)

thy1 — Iy

U(tn) (tn+1 - tn)-

=
Il
o

An example of this computation is shown in Figure 5.2b.

The response to a continuous input signal is obtained by datkia limit as
thy1 — th — 0, which gives

y(t) = /Ot H'(t — 7)u(zr)dr, (5.5)

whereH’ is the derivative of the step response, also calledrtipilse response
The response of a linear time-invariant system to any inputicas be computed
from the step response. Notice that the output depends ortlyeoinput since we
assumed the system was initially at redqt)) = 0. We will derive equation (5.5)
in a slightly different way in the Section 5.3.
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5.2 The Matrix Exponential

Equation (5.5) shows that the output of a linear system carritewas an integral
over the inputsu(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial conditioWge begin by exploring

the initial condition response using the matrix exponéntia

Initial Condition Response

Although we have shown that the solution of a linear set ded#htial equations
defines a linear input/output system, we have not fully comgbthie solution of the
system. We begin by considering the homogeneous responssjponding to the
system

dx
at (5.6)
For thescalardifferential equation
dx
— = ax, xeR, aeR,
dt

the solution is given by the exponential
x(t) = €?'x(0).

We wish to generalize this to the vector case, whebecomes a matrix. We define
thematrix exponentiahs the infinite series

1 2 3
—|+x+2x+ 1y Zk. (5.7)

whereX € R™" is a square matrix antis then x n identity matrix. We make
use of the notation

XO=1, X?=XX, X"=Xx"1x,

which defines what we mean by the “power” of a matrix. Equatioi)(& easy to
remember since it is just the Taylor series for the scalaoegptial, applied to the
matrix X. It can be shown that the series in equation (5.7) conveayesy matrix
X € R™" in the same way that the normal exponential is defined for aalasc
aeR.

ReplacingX in equation (5.7) byAt, wheret € R, we find that

At _ | +At+}A2t2+£A3t3+-~: i:iA"tk
2 3! k! ’

and differentiating this expression with respect gives

1 1
At 2 3:2 k4 k t
—eM = A+ A%+ A+ = A Atk = At 5.8
It + AT+ + E_ k! (5.8)
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Multiplying by x(0) from the right, we find thak(t) = eA'x(0) is the solution
to the differential equation (5.6) with initial condition(0). We summarize this
important result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6)is given by
x(t) = e*x(0).

Notice that the form of the solution is exactly the same asatar equations,
but we must put the vectot(0) on the right of the matrixAt.

The form of the solution immediately allows us to see that thetson is linear
in the initial condition. In particular, ikn1 (1) is the solution to equation (5.6) with
initial conditionx(0) = Xp1 andxp2(t) with initial condition x(0) = Xg, then the
solution with initial conditionx(0) = aXo1 + SXoz IS given by

x(t) = el (OCX01 + ﬂon) = (aeAtxm + ﬂeAtxog) = aXn(t) + Sxn2(t).
Similarly, we see that the corresponding output is given by

y(t) = CxX(t) = ayni(t) + Syn2(1),

whereyn (t) andyh,(t) are the outputs corresponding®q (t) andxpa(t).
We illustrate computation of the matrix exponential by twamples.

Example 5.2 Double integrator
A very simple linear system that is useful in understandiagi®concepts is the
second-order system given by

4=u, y=4q.

This system is called double integratobecause the inputis integrated twice to
determine the output.
In state space form, we write= (q, ) and

dx [0 1 X + 0 y
dt |0 O 1]
The dynamics matrix of a double integrator is
01
210 9]
and we find by direct calculation th&f = 0 and hence

1t
At
© —[o 1

Thus the homogeneous solutian=£ 0) for the double integrator is given by
X(t) = 1 t] [x(0)] _ [x(0) + tx2(0)
10 1) | O] X2(0) ’
y(t) = x1(0) + tx2(0).




138 CHAPTER 5. LINEAR SYSTEMS

Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring—magssywith zero damping,
is

4+ wig =u.

Putting the system into state space form, the dynamics nfatrikis system can
be written as

A 0 wo and  eAt — CO§cuot Sinwgt ‘
—wg O —Sinwpt  coSwgt

This expression foe*! can be verified by differentiation:

d _ [—wosinwot o COSwot ]

_e .
dt —mo COSwot  —wg SINwgt

_ 0 o co§th Sinwot _ A
—wg O —Sinwot  coSwot

The solution is then given by

x(t) = e*x(0) = [

cosmot  Sinawgt x1(0)
—Sinwgt  coswopt x2(0) | -

If the system has damping,
G + 20 woq + w5d = U,
the solution is more complicated, but the matrix exponénta be shown to be

Ceiwdt _ Ce_iwdt eiwdt + e—i(udt eiwdt _ e—iwdt
+ e
oonct 2/2-1 2 2/2-1
e—iwdt _ eiwdt Ce_iwdt _ Ceiwdt eia)dt + e—i(/)dt

— -
2/2 -1 2/2 -1 2

wherewq = wp/(2 — 1. Note thatwg and,/¢2 — 1 can be either real or complex,
but the combinations of terms will always yield a real valaethe entries in the
matrix exponential. \%

Animportant class of linear systems are those that can heeciea into diagonal
form. Suppose that we are given a system

dx
A
at - X

such that all the eigenvalues éfare distinct. It can be shown (Exercise 40) that
we can find an invertible matriX such thafl AT~ is diagonal. If we choose a set
of coordinateg = T X, then in the new coordinates the dynamics become

dz dx
=T =TAx=TAT 12
dt dt

By construction ofT, this system will be diagonal.
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Now consider a diagonal matriA and the correspondinith power of At,
which is also diagonal:

1 0 2Ktk 0
A A2 (A= 2Kt | ’
0 e 0 ' Ktk
It follows from the series expansion that the matrix expaia¢is given by
gt 0
eAt — e)»Zt '
0 et

A similar expansion can be done in the case where the eigewalre complex,
using a block diagonal matrix, similar to what was done in Bect.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transfomtkalgonal form. They
can, however, be transformed to a closely related formeddheJordan form in
which the dynamics matrix has the eigenvalues along theodelg\When there are
equal eigenvalues, there may be 1's appearing in the s@genial indicating that
there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it cenwritten
as

b O 0 O A1 0 0
0O » 0O 0 O 0 4 1 0
J=|: ... |, where J =
0 O J-1 O 0 0 A1
0 O 0 K 0 0 0
(5.9)

Each matrixJ; is called aJordan block and ; for that block corresponds to an
eigenvalue ofl. Afirst-order Jordan block can be represented as a systenstngs

of an integrator with feedback A Jordan block of higher order can be represented
as series connections of such systems, as illustrated ime=g8.

Theorem 5.2(Jordan decompositionAny matrix Ae R"™" can be transformed
into Jordan form with the eigenvalues of A determiningn the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Ski&8%pecial
case where the eigenvalues are distinct is examined in Eeet6. O

Converting a matrix into Jordan form can be complicatedicalgh MATLAB
can do this conversion for numerical matrices usingjtbe dan function. The
structure of the resulting Jordan form is particularly resging since there is no
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Figure 5.3:Representations of linear systems where the dynamics matrices aaa Btocks.
A first-order Jordan block can be represented as an integrator withdek4, as shown on
the left. Second- and third-order Jordan blocks can be representatias connections of
integrators with feedback, as shown on the right.

requirement that the individua|’s be unique, and hence for a given eigenvalue we
can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the mataix be computed
in terms of the Jordan blocks:

e 0 ... O
J .
= |0 ©” e (5.10)
: .0
0O ... 0 ek

This follows from the block diagonal form aof. The exponentials of the Jordan
blocks can in turn be written as

2 n—1 5
1t 5 ... —(;_1)!
n-2
0 1 t ... g «
elt=1. 1 - | et (5.11)
0 ... 0 1

When there are multiple eigenvalues, the invariant sulespassociated with
each eigenvalue correspond to the Jordan blocks of thexwatiNote that may be
complex, in which case the transformatibthat converts a matrix into Jordan form
will also be complex. Wheri has a nonzero imaginary component, the solutions
will have oscillatory components since

ettt — 7! (coswt + i sinwt).

We can now use these results to prove Theorem 4.1, which gtateise equilibrium
pointxe = 0 of a linear system is asymptotically stable if and only if Re< 0.

Proof of Theorem 4.1LetT € C"™" be an invertible matrix that transformsinto
Jordan formJ = T AT~. Using coordinateg = T x, we can write the solution
z(t) as

z(t) = e’'z(0).



5.2. THE MATRIX EXPONENTIAL 141

Since any solutior(t) can be written in terms of a solutialt) with z(0) = T x(0),
it follows that it is sufficient to prove the theorem in the tséormed coordinates.
The solutiorz(t) can be written in terms of the elements of the matrix exponen-
tial. From equation (5.11) these elements all decay to zerartwtraryz(0) if and
only if Re; < 0. Furthermore, if any,; has positive real part, then there exists an
initial conditionz(0) such that the corresponding solution increases withoutdou
Since we can scale this initial condition to be arbitrarilyadiit follows that the
equilibrium point is unstable if any eigenvalue has positeal part. 0

The existence of a canonical form allows us to prove many ptigseof linear
systems by changing to a set of coordinates in whichAthsatrix is in Jordan form.
We illustrate this in the following proposition, which follvs along the same lines
as the proof of Theorem 4.1.

Proposition 5.3. Suppose that the system

dx

— = AX

dt
has no eigenvalues with strictly positive real part and omenomre eigenvalues
with zero real part. Then the system is stable if and only if Joelan blocks

corresponding to each eigenvalue with zero real part ardasdd x 1) blocks.

Proof. See Exercise 48b. O

The following example illustrates the use of the Jordan form.

Example 5.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft suchatsiescribed in Exam-
ple 2.9. Suppose that we choase= u, = 0 so that the dynamics of the system
become

24 h
Z5
dz Zs
— = . 5.12
dt —gsinzz— gz |’ (12)
—g(coszz—1) — = 25
O P

wherez = (x,, 6, X, ¥, 8). The equilibrium points for the system are given by
setting the velocities, y andé to zero and choosing the remaining variables to
satisfy

—gsinzze =0

— Z =0,=0.
—g(coszze—1) =0 Se— Ve

This corresponds to the upright orientation for the aircidéite thatx. andy, are
not specified. This is because we can translate the systemwo(ameght) position
and still obtain an equilibrium point.
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Figure 5.4: Modes of vibration for a system consisting of two masses connectedingsp
In (a) the masses move left and right in synchronization in (b) they rnawvard or against
each other.

To compute the stability of the equilibrium point, we comgptlie linearization
using equation (4.11):

(0 O O 1 0 )
00 O 0 1 0
A—ﬁ 10 0 O 0 0 1
T oz 2 0 0 —g —-c¢/m 0 ol
0 0 O 0O —-c¢/m O
00 O 0 0 0

The eigenvalues of the system can be computed as
A(A) =1{0,0,0,0, —c/m, —c/m}.

We see that the linearized system is not asymptoticallylestsibce not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense olgapwe must
make use of the Jordan form. It can be shown that the JordandbA is given by

0lo 0 o] o 0
0[0 1 0 0 0
olo o 1 o 0
J=10l0 0 0o o 0
0/0 0 O|—-c/m| O
| 0|0 0 Of O |—-c/m |

Since the second Jordan block has eigenvalue 0 and is not egigpnvalue, the
linearization is unstable. \%

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a pescrof the types of
behavior the system can exhibit. For oscillatory systeims t¢rmmodeis often
used to describe the vibration patterns that can occur. €igut illustrates the
modes for a system consisting of two masses connected mgspfdne pattern is
when both masses oscillate left and right in unison, andremas when the masses
move toward and away from each other.

The initial condition response of a linear system can be @mrith terms of a
matrix exponential involving the dynamics matéx The properties of the matrii
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Figure 5.5: The notion of modes for a second-order system with real eigenvalhedeft
figure shows the phase portrait and the modes corresponding to selthianstart on the
eigenvectors (bold lines). The corresponding time functions are sbhawvime right.

therefore determine the resulting behavior of the systawerGa matrixA e R"™",
recall thatv is an eigenvector of with eigenvaluel if

Av = iv.

In generall ando may be complex-valued, althoughA¥fis real-valued, then for
any eigenvalué. its complex conjugate* will also be an eigenvalue (with* as
the corresponding eigenvector).

Suppose first that andv are a real-valued eigenvalue/eigenvector pair&or
If we look at the solution of the differential equation fof0) = v, it follows from
the definition of the matrix exponential that

1 2t2 :
ey = (I +At+§A2t2+---)v =U+MU+TU+--- = e'ly.

The solution thus lies in the subspace spanned by the eigenv€be eigenvalue
A describes how the solution varies in time, and this solusaften called anode
of the system. (In the literature, the term “mode” is als@pftised to refer to the
eigenvalue rather than the solution.)

If we look at the individual elements of the vectorando, it follows that

X € o
X; (t) N e’ul)j N j ’

and hence the ratios of the components of the gtate constants for a (real) mode.
The eigenvector thus gives the “shape” of the solution andsis @alled amode
shapeof the system. Figure 5.5 illustrates the modes for a secodersystem
consisting of a fast mode and a slow mode. Notice that the statables have the
same sign for the slow mode and different signs for the fastano

The situation is more complicated when the eigenvaludsare complex. Since
A has real elements, the eigenvalues and the eigenvectarsrapex conjugates
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A =0 iwando = u=iw, which implies that

v+0* v —0*
= , w = . .
2 2
Making use of the matrix exponential, we have
ey = e (u+iw) = &' ((ucosat — w sinwt) + i (Usinwt + w coswt)),

from which it follows that

1 .

e’u = —(eAtu + eAtv*) = u€' coswt — we’t sinwt,
2
1 .

ey = E(eAtD — eAto*) = u€"' sinwt + we! coswt.

A solution with initial conditions in the subspace spanngdhe real paru and
imaginary parto of the eigenvector will thus remain in that subspace. Thetsoiu
will be a logarithmic spiral characterized lbyandw. We again call the solution
corresponding td a mode of the system, amdthe mode shape.

If a matrix A hasn distinct eigenvalueg,, ..., 4,, then the initial condition
response can be written as a linear combination of the mddesee this, suppose
for simplicity that we have all real eigenvalues with cop@sding unit eigenvectors
v1, ..., 0n. From linear algebra, these eigenvectors are linearly imdaent, and
we can write the initial conditior (0) as

X(0) = a101 + a2v2 + - - - + anvn.
Using linearity, the initial condition response can be teritas
X(t) = @161 + 026/ vy + - - - + an€ oy,

Thus, the response is a linear combination of the modes ofytera, with the

amplitude of the individual modes growing or decaying's The case for distinct
complex eigenvalues follows similarly (the case for notidet eigenvalues is more
subtle and requires making use of the Jordan form discuss$lee previous section).

Example 5.5 Coupled spring—mass system
Consider the spring—mass system shown in Figure 5.4, buttivittaddition of
dampers on each mass. The equations of motion of the system are

My = —2Kaqy — cd1 + Kap, mMalz = Kop — 2k — CQp.

In state space form, we define the state t& be (g1, 02, d1, G2), and we can rewrite
the equations as

0 0 1 0 ]

0 0 0 1
dx | 2k k c 5 |«
dd | m m m '

k& 5 _C

m m m ]
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We now define a transformatian= T x that puts this system into a simpler form.
Letz; = 2(th + %), 2o = 21, 25 = 3(01 — Gp) andz, = 73, so that

1 1 0 0
1o 0 1 1

Z=Tx= 511 -1 0 o X.
0O 0 1 -1
In the new coordinates, the dynamics become
0 1 0 0]
k
dz |™m m 2 0©
- = Z,
dt 0 0 0 1
k
o o -X_¢
L m mA

and we see that the system is in block diagonahfoda) form.

In the z coordinates, the states andz, parameterize one mode with eigen-
valuesi =~ c/(2vkm) + i /k/m, and the stategsz and z, another mode with
A~ ¢/(2+/3km) £ i ./3k/m. From the form of the transformatioh we see that
these modes correspond exactly to the modes in Figure 5.4jdang;, andg, move
either toward or against each other. The real and imaginaty p&the eigenvalues
give the decay rates and frequencie& for each mode. \%

5.3 Input/Output Response

In the previous section we saw how to compute the initial domdresponse using
the matrix exponential. In this section we derive the coattoh equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (&epeated here:
d
d—’t( — AX+Bu,  y=Cx+Du. (5.13)

Using the matrix exponential, the solution to equation $p.dan be written as
follows.

Theorem 5.4. The solution to the linear differential equati¢®.13)is given by
t
x(t) = e*x(0) +/ A= Bu(r)dr. (5.14)
0

Proof. To prove this, we differentiate both sides and use the ptp§&r8) of the
matrix exponential. This gives
dx

t
e A x(0) +/ A9 Bu(r)dr + Bu(t) = Ax + Bu,
0
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Figure 5.6: Pulse response and impulse response. (a) The rectangles shosvgfulgdth

5, 25 and 08, each with total area equal to 1. The arrow denotes an imp@$elefined

by equation (5.17). The corresponding pulse responses for a fgstmm with eigenvalues

A = {—0.08,—0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of durati8n 0

which proves the result. Notice that the calculation is esaky the same as for
proving the result for a first-order equation. O

It follows from equations (5.13) and (5.14) that the inputfut relation for a
linear system is given by
t
y(t) = Ce*x(0) +/ CerBu(r)dr + Du(t). (5.15)
0
It is easy to see from this equation that the output is joititiear in both the
initial conditions and the input, which follows from the darity of matrix/vector
multiplication and integration.

Equation (5.15) is called trmnvolution equatiorand it represents the general
form of the solution of a system of coupled linear differahquations. We see
immediately that the dynamics of the system, as charaetkhy the matrixA, play
a critical role in both the stability and performance of tiistem. Indeed, the matrix
exponential describdsthwhat happens when we perturb the initial condition and
how the system responds to inputs.

Another interpretation of the convolution equation can lvergusing the concept
of theimpulse responsef a system. Consider the application of an input signal
u(t) given by the following equation:

0 t<O
ut) =pt)y=11/e 0<t<e (5.16)
0 t>e

This signal is goulseof duratione and amplitude e, as illustrated in Figure 5.6a.
We define anmpulsed(t) to be the limit of this signal as — 0:

3(t) = lim pe(t). (5.17)
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This signal, sometimes calleddelta function,is not physically achievable but
provides a convenient abstraction in understanding theorese of a system. Note
that the integral of an impulse is 1:

t t t
/5(‘[)dr=/ lim pg(t)drzlim/ pe(t) dz
0 0 e—0 e¢—>0 0
:Iim/l/edrzl t>0.
0

e—0
In particular, the integral of an impulse over an arbitgashort period of time is
identically 1.
We define thémpulse responsef a systenh(t) to be the output corresponding
to having an impulse as its input:

t
h(t) :/0 Ce=IBs(r)dr = CEMB, (5.18)

where the second equality follows from the fact ) is zero everywhere except
the origin and its integral is identically 1. We can now wtfte convolution equation
in terms of the initial condition response, the convolutidrthe impulse response
and the input signal, and the direct term:

t
y(t) = CeMx(0) +/ h(t — 7)u(z) dz + Du(t). (5.19)
0

One interpretation of this equation, explored in Exercisdgthat the response of
the linear system is the superposition of the response tofanité set of shifted
impulses whose magnitudes are given by the inpi. This is essentially the
argument used in analyzing Figure 5.2 and deriving equabds).(Note that the
second termin equation (5.19) is identical to equation)(asid it can be shown that
the impulse response is formally equivalent to the dereadif the step response.

The use of pulses as approximations of the impulse functiso pitovides a
mechanism for identifying the dynamics of a system from daigure 5.6b shows
the pulse responses of a system for different pulse widtbhsicl that the pulse
responses approach the impulse response as the pulse wikhazero. As a
general rule, if the fastest eigenvalue of a stable systemndsd part—omax, then a
pulse of lengttr will provide a good estimate of the impulse respongeifax < 1.
Note that for Figure 5.6, a pulse widthof= 1 s givesomax = 0.62 and the pulse
response is already close to the impulse response.

Coordinate Invariance

The components of the input vectoand the output vectorare given by the chosen
inputs and outputs of amodel, but the state variables depetiek coordinate frame
chosen to represent the state. This choice of coordinatestafhe values of the
matricesA, B andC that are used in the model. (The direct tebms not affected
since it maps inputs to outputs.) We now investigate somhetbnsequences of
changing coordinate systems.
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Figure 5.7: Coupled spring mass system. Each mass is connected to two springs Witsstif
k and a viscous damper with damping coefficienThe mass on the right is drive through a
spring connected to a sinusoidally varying attachment.

Introduce new coordinates by the transformatiorz = Tx, whereT is an
invertible matrix. It follows from equation (5.3) that

dz ~ =
g; = T(Ax+ Bu) = TAT 'z4+ TBu=: Az+ By,

y=Cx+Du=CT'z+ Du=:Cz+ Du.

The transformed system has the same form as equation (5t3hebmatricesA,
B andC are different:

A=TAT! B=TB, C=cCTL (5.20)

There are often special choices of coordinate systems thatad to see a particular
property of the system, hence coordinate transformatiande used to gain new
insight into the dynamics.

We can also compare the solution of the system in transfoguedlinates to
that in the original state coordinates. We make use of aniitapoproperty of the
exponential map,

eT ST1! — TeST_l,

which can be verified by substitution in the definition of the mnxagéxponential.
Using this property, it is easy to show that

_ t 3
x(t) =T~ 'z(t) = TeMTx(0) + T‘l/ eAt=0 Bu(r) dr.
0

From this form of the equation, we see that if it is possibleramsformA into

a form A for which the matrix exponential is easy to compute, we canthat
computation to solve the general convolution equationHentntransformed state
x by simple matrix multiplications. This technique is illestied in the following
example.

Example 5.6 Coupled spring—mass system

Consider the coupled spring—mass system shown in Figurd Be7input to this
system is the sinusoidal motion of the end of the rightmoshgpand the output
is the position of each masg, andg,. The equations of motion are given by

My = —2Kagy — cds + Kap, maGz = kap — 2k — ¢4z + ku.
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In state space form, we define the state ta be (g1, 02, 41, ¢2), and we can rewrite
the equations as

(0 0 1 0 0
0 0 0 1 0
dx 2k k c
—=]-— - ——= 0 |X+[0]u
dt m m m K
k 2k 0 c =
L' m m m m

This is a coupled set of four differential equations and iseqcdmplicated to solve
in analytical form.

The dynamics matrix is the same as in Example 5.5, and we cameis®or-
dinate transformation defined there to put the system in nfodal:

[0 1 0 0 ) 0 ]
k C
ke 0 k
dz_ m m 2m
- lo o o 1|*F| o Y™
3k
0 o = _° _L
m m ] L 2m}

Note that the resulting matrix equations are block diaganal hence decoupled.
We can solve for the solutions by computing the solutionswaf $ets of second-
order systems represented by the stétesz,) and(zs, z4). Indeed, the functional
form of each set of equations is identical to that of a singléeng—mass system.
(The explicit solution is derived in Section 6.3.)

Once we have solved the two sets of independent second-egdations, we
can recover the dynamics in the original coordinates byrtmgthe state transfor-
mation and writingx = T~'z. We can also determine the stability of the system
by looking at the stability of the independent second-orystems. \Y%

Steady-State Response

Given a linear input/output system
dx

— = AX+ Bu,
at = F

the general form of the solution to equation (5.21) is givgnthe convolution
equation:

y =Cx+ Du, (5.21)

t
y(t) = Ce’x(0) +/ CceM'=9Bu(r)dz + Du(t).
0

We see from the form of this equation that the solution casisisan initial condition
response and an input response.

The input response, corresponding to the last two terms iedhation above,
itself consists of two components—thiansient responsand thesteady-state
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Figure 5.8: Transient versus steady-state response. The input to a linear sysieows in
(a), and the corresponding output wikk0) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

responseThe transient response occurs in the first period of time #iteinput
is applied and reflects the mismatch between the initial ¢mmdand the steady-
state solution. The steady-state response is the portidreafutput response that
reflects the long-term behavior of the system under the giveuts. For inputs that
are periodic the steady-state response will often be pieriadd for constant inputs
the response will often be constant. An example of the tesnisind the steady-state
response for a periodic input is shown in Figure 5.8.

A particularly common form of input is step inputwhich represents an abrupt
change in input from one value to anothemAit step(sometimes called the Heav-
iside step function) is defined as

0t=0
U_S(t)_[l t> 0.
Thestep responsef the system (5.21) is defined as the outy(j starting from zero
initial condition (or the appropriate equilibrium pointy@given a step input. We
note that the step inputis discontinuous and hence is nctigaily implementable.
However, it is a convenient abstraction that is widely usestudying input/output
systems.

We can compute the step response to a linear system usingmirelation

equation. Settingk(0) = 0 and using the definition of the step input above, we
have

t t
y(t) :/ ceM=IBu(r)dr + Du(t) = C/ eAt-IBdr + D
0 0

t

= C/ e~ Bdo + D =C (A 'eVB)[’, + D
0

=CAe"B-CA B+ D.

If A has eigenvalues with negative real part (implying that thegim is a stable
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and stasaly-s
value give the key performance properties of the signal.

equilibrium point in the absence of any input), then we cavrite the solution as

yt)=CA'e"B+D-CA™'B, t>0. (5.22)

transient steady-state

The first term is the transient response and decays to zéresasc. The second
term is the steady-state response and represents the V¥ahe @utput for large
time.

A sample step response is shown in Figure 5.9. Several termssatewhen
referring to a step response. Theady-state valuegyof a step response is the
final level of the output, assuming it converges. Tise time T is the amount of
time required for the signal to go from 10% of its final value @® of its final
value. Itis possible to define other limits as well, but in tho®k we shall use these
percentages unless otherwise indicated. Glershoot M is the percentage of the
final value by which the signal initially rises above the finaluea This usually
assumes that future values of the signal do not overshodirthlevalue by more
than this initial transient, otherwise the term can be amdig. Finally, thesettling
time T is the amount of time required for the signal to stay within @®ts final
value for all future times. The settling time is also somesmiefined as reaching 1%
or 5% of the final value (see Exercise 49). In general these ipeaftce measures
can depend on the amplitude of the input step, but for lingstems the last three
guantities defined above are independent of the size of the ste

Example 5.7 Compartment model

Consider the compartment model illustrated in Figure 5.XDdescribed in more
detail in Section 3.6. Assume that a drug is administered Ingtemt infusion in
compartmen¥; and that the drug has its effect in compartméntTo assess how
quickly the concentration in the compartment reaches gtstate we compute the
step response, which is shown in Figure 5.10b. The step respemglite slow,
with a settling time of 39 min. Itis possible to obtain thesgte-state concentration
much faster by having a faster injection rate initially, &aswn in Figure 5.10c.
The response of the system in this case can be computed byrmombivo step
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Figure 5.10:Response of acompartment model to a constant drug infusion. A Sifiagleam
of the system is shown in (a). The step response (b) shows the rateagfrtoation buildup
in compartment 2. In (c) a pulse of initial concentration is used to spedteugsponse.

responses (Exercise 45). \Y%

Another common input signal to a linear system is a sinuswid Combination
of sinusoids). Thé&requency responssd an input/output system measures the way in
which the system responds to a sinusoidal excitation onfiteioputs. As we have
already seen for scalar systems, the particular solutieocésted with a sinusoidal
excitation is itself a sinusoid at the same frequency. Hemeean compare the
magnitude and phase of the output sinusoid to the input. generally, if a system
has a sinusoidal output response at the same frequencyiaptiiéorcing, we can
speak of the frequency response of the system.

To see this in more detail, we must evaluate the convolutipmton (5.15) for
u = coswt. This turns out to be a very messy calculation, but we can msg®t
the fact that the system is linear to simplify the derivatibmparticular, we note
that

coswt = %(ei‘"t + e‘“”t).

Since the system is linear, it suffices to compute the respdribe gystem to the
complex inputu(t) = €' and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding1oi wt ands = —iwt.

Applying the convolution equation to the input= €% we have

t
y(t) = CeMx(0) + / CeAt-DBeTdr 1 Det
0
t
= CeMx(0) + CeAt/ eS'=A"Bdr + De’,
0

If we assume that none of the eigenvaluesfAc@re equal ts = =+iw, then the



5.3. INPUT/OUTPUT RESPONSE 153
matrixs| — Ais invertible, and we can write
y(t) = CeMx(0) + CeM ((sl — A)leI=Ar B) ‘; + De®
— CeMx(0) + Cer(sl — A)‘l(e(s"A)t _ I)B + Det
= CeMx(0) + C(sl — A)~te'B — CeM(sl — A)IB + De™,
and we obtain

y(®) =Ce"(x(0) - (s1 - A'B) + (C(sI - A'B+ D). (5.23)

transient steady-state

Notice that once again the solution consists of both a tesmigiomponent and a
steady-state component. The transient component decagsdadf zhe system is
asymptotically stable and the steady-state componenbgoptional to the (com-
plex) inputu = €3,
We can simplify the form of the solution slightly further lgwriting the steady-
state response as
ySS(t) — Meiﬁest — Me(st—i—i@),

where _
Me? =C(sl — AB+D (5.24)

andM and@ represent the magnitude and phase of the complex nu@ysdr—
A)"1B + D. Whens = iw, we say thaitM is thegain andé is the phaseof the
system at a given forcing frequeney Using linearity and combining the solutions
fors = +iwands = —iw, we can show that if we have aninpu A, sin(wt+ )
and an outpuy = Ay sin(wt + ¢), then

A
gain(w) = = =M,  phaséw) =g -y =0.

u

The steady-state solution for a sinusaie= coswt is now given by
Vss(t) = M coqwt + 9).

If the phasé is positive, we say that the outplgiadsthe input, otherwise we say
it lagsthe input.

A sample sinusoidal response is illustrated in Figure 5.Tha. dashed line
shows the input sinusoid, which has amplitude 1. The outpussiid is shown as a
solid line and has a different amplitude plus a shifted ph&ke gain is the ratio of
the amplitudes of the sinusoids, which can be determinedédsnsnring the height
of the peaks. The phase is determined by comparing the ratieedgime between
zero crossings of the input and output to the overall perfdd@sinusoid:

0=—27 .20
T
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Figure 5.11: Response of a linear system to a sinusoid. (a) A sinusoidal input ofitndgn
A, (dashed) gives a sinusoidal output of magnitéggsolid), delayed byA T seconds. (b)
Frequency response, showing gain and phase. The gain is giver Iogtit of the output
amplitude to the input amplitud®) = A,/A,. The phase lag is given ly= -2z AT/T,
it is negative for the case shown because the output lags the input.

A convenient way to view the frequency response is to plot Hmvgain and
phase in equation (5.24) depend @r(throughs = i®). Figure 5.11b shows an
example of this type of representation.

Example 5.8 Active band-pass filter

Consider the op amp circuit shown in Figure 5.12a. We can eéhnie dynamics of
the system by writing theodal equationswhich state that the sum of the currents
at any node must be zero. Assuming that= v, = 0, as we did in Section 3.3,

we have

D1 — do do ) do
0= 1R12_Cld_t2’ 0=cld—t2+é+czd—t3.
Choosingv, andos as our states and using these equations, we obtain
dl)2 D1 — D2 d1)3 —03 D1 — L2
dt ~ RC;’ dt RC, RGC;’
Rewriting these in linear state space form, we obtain
1 1
dx " RiCy 0 RiCy
Tl 1 1 X+ 1 | W y= [O 1] X, (5.25)
RC, RC, R,C,

wherex = (v, v3), U = v andy = vs.
The frequency response for the system can be computed usiag@y(5.24):

R, R1C13
Ry (1+ RiC1S)(1 + R,Cy8)’

The magnitude and phase are plotted in Figure 5.12Rfoe 100Q, R, = 5 kQ
andC; = C, = 100 uF. We see that the circuit passes through signals with

S=iw.

Mel’ =C(sl — A)'B+ D =
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp witiR@o
filters arranged to provide a band-pass filter. The plot in (b) showsaimeemd phase of the
filter as a function of frequency. Note that the phase starts ath9@to the negative gain of
the operational amplifier.

frequencies at about 10 rad/s, but attenuates frequeneiew b rad/s and above
50 rad/s. At 0.1 rad/s the input signal is attenuated by 20.05). This type of
circuit is called aband-pass filtessince it passes through signals in the band of
frequencies between 5 and 50 rad/s. \%

As in the case of the step response, a number of standardiesfe defined
for frequency responses. The gain of a system &t 0 is called thezero frequency
gainand corresponds to the ratio between a constant input arsieady output:

Mo = —-CA™ B+ D.

The zero frequency gain is well defined onlyAfs invertible (and, in particular, if

it does not have eigenvalues at 0). Itis also important te tiwt the zero frequency
gain is a relevant quantity only when a system is stable ath@utorresponding
equilibrium point. So, if we apply a constant input= r, then the corresponding
equilibrium pointxe = —A~!Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero fegly gain is often called
the DC gain DC stands for direct current and reflects the common separafi
signals in electrical engineering into a direct currentdZfeequency) term and an
alternating current (AC) term.)

The bandwidthwy, of a system is the frequency range over which the gain has
decreased by no more than a factor p{/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the bandwidth isftequency where
the gain has decreased by\12 from the zero frequency gain. For systems that
attenuate low frequencies but pass through high frequenttie reference gain
is taken as the high-frequency gain. For a system such asathafass filter in
Example 5.8, bandwidth is defined as the range of frequencieseithe gain is
larger than 1./2 of the gain at the center of the band. (For Example 5.8 thidavou
give a bandwidth of approximately 50 rad/s.)
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dyioarof an
atomic force microscope in contact mode. The plot in (b) shows the gaiphase for the
piezo stack. The response contains two frequency peaks at ressnafrthe system, along
with an antiresonance at = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

Another important property of the frequency response isrés®nant peak
M, the largest value of the frequency response, anghétad frequency,,, the
frequency where the maximum occurs. These two propertiesideshe frequency
of the sinusoidal input that produces the largest possiltieud and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomicdamicroscope in
contact mode, discussed in Section 3.5. The basic dynamiagiveme by equa-
tion (3.23). The piezo stack can be modeled by a second-oyders with un-
damped natural frequeneys and damping ratigs. The dynamics are then de-
scribed by the linear system

0 1 0 0 0
dx | =ko/(Mi+mp) —Co/(Mi+mp) 1/my 0 4+ 0 u
dt 0 0 0 w3 0 ’
0 0 —w3 —2{36&)3 w3
y= mp m1ka m;C; 1 0] X,
Mp+m; LMy +my mp+mp

where the input signal is the drive signal to the amplifier dreddutput is the elon-
gation of the piezo. The frequency response of the systenoigrsim Figure 5.13b.
The zero frequency gain of the systenMg = 1. There are two resonant poles with
peaksM;; = 2.12 atwmr1 = 238 krad's andM;, = 4.29 atom, = 746 krad's.
The bandwidth of the system, defined as the lowest frequencyewthe gain is
V2 less than the zero frequency gaingis = 292 krad's. There is also a dip in
the gainMy = 0.556 forwmg = 268 krad's. This dip, called aantiresonancgis
associated with a dip in the phase and limits the performareEn the system is
controlled by simple controllers, as we will see in Chapt@r 1 \%
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Sampling

It is often convenient to use both differential and differerequations in modeling
and control. For linear systems it is straightforward to$&farm from one to the
other. Consider the general linear system described bytiegua.13) and assume
that the control signal is constant over a sampling inteo¥aonstant lengtin. It
follows from equation (5.14) of Theorem 5.4 that

t+h
x(t 4+ h) = eA'x(t) +/ ! A= By((k) dr = dx(t) + Tu(t),  (5.26)
t

where we have assumed that the discontinuous control sgyeahtinuous from
the right. The behavior of the system at the sampling timeskh is described by
the difference equation

X[k + 1] = Ox[K] + Tu[k],  y[K] = CX[K] + DuK]. (5.27)

Notice that the difference equation (5.27) is an exact sspr&tion of the behavior
of the system at the sampling instants. Similar expressiansalso be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.26) to (5.27) is callsampling The relations be-
tween the system matrices in the continuous and sampledsemiations are as
follows:

h 1 h -1
o=e" I = /eASds B, A=-log®d, B= /eAtdt T.
(), &*ds) 700 (/, ¢
(5.28)
Notice that if A is invertible, we have

r=A"e"-1).

All continuous-time systems can be sampled to obtain aelisg¢ime version,
but there are discrete-time systems that do not have a canfatime equivalent.
The precise condition is that the matrdx cannot have real eigenvalues on the
negative real axis.

Example 5.10 IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotusesewere
obtained as the discrete-time system

ylk + 1] = ay[K] + bu[k],

wherea = 0.43,b = 0.47 and the sampling period s = 60 s. A differential

equation model is needed if we would like to design contratems based on
continuous-time theory. Such a model is obtained by applgqgation (5.28);
hence

h
and we find that the difference equation can be interpretecdamaled version of

h -1
A='992 _ 50141 B= (/ eAtdt) b= 00116
0
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the ordinary differential equation

d
d_>t‘ — —0.0141X + 0.0114.

5.4 Linearization

As described at the beginning of the chapter, a common sadrieear system

models is through the approximation of a nonlinear systera liyear one. These
approximations are aimed at studying the local behavior ®fsdem, where the
nonlinear effects are expected to be small. In this sect®digcuss how to locally
approximate a system by its linearization and what can lwead@ut the approxi-
mation in terms of stability. We begin with an illustratioftbe basic concept using
the cruise control example from Chapter 3.

Example 5.11 Cruise control
The dynamics for the cruise control system were derived ini@eét1 and have
the form

m% = anuT (anv) — MgG sgn) — %pCU Av? — mgsind, (5.29)
where the first term on the right-hand side of the equationaésahce generated
by the engine and the remaining three terms are the rollinidn, aerodynamic
drag and gravitational disturbance force. There is an dxitilin (ve, Ug) When the
force applied by the engine balances the disturbance forces

To explore the behavior of the system near the equilibriumwildinearize the
system. A Taylor series expansion of equation (5.29) ard@equilibrium gives

d(v — ve)

T = a(v — ve) — by(@ — b¢) + b(u — ue) + higher order terms, (5.30)

where

a— ue(er]T’(anve) — pC, Ave
N m

anT(anUe)

, by = gcosbe, b= (5.31)
Notice that the term corresponding to rolling friction gppaars ifv # 0. For a car
in fourth gear withoe = 25 m/s,f. = 0 and the numerical values for the car from
Section 3.1, the equilibrium value for the throttleiis= 0.1687 and the parameters
area = —0.0101,b = 1.32 andc = 9.8. This linear model describes how small
perturbations in the velocity about the nominal speed eviitime.

Figure 5.14 shows a simulation of a cruise controller witkedinand nonlinear
models; the differences between the linear and nonlineateiscare small, and
hence the linearized model provides a reasonable appragima \%
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controltes geek, = 0.5

andk; = 0.1.

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, sirgiéput nonlinear system

dx
a:f(x,u), xeR", ueR,

y=hxu), yeR,

(5.32)

with an equilibrium point ak = Xe, U = Ue. Without loss of generality we can
assume that, = 0 andue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thdocal behavior of the system around the equilibrium pdiat ue),
we suppose that — x. andu — ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared wigh(tower-order) linear
terms. This is roughly the same type of argument that is useshwie do small-
angle approximations, replacing gitwith & and co® with 1 for 0 near zero.

As we did in Chapter 4, we define a new set of state varighl@swell as inputs
v and outputso:

Z=X— Xe, D =U-— U, w =Y — h(Xe, Ug).

These variables are all close to zero when we are near théemum point, and so
in these variables the nonlinear terms can be thought otdsigimer-order terms in
a Taylor series expansion of the relevant vector fields (asgufor now that these
exist).
Formally, theJacobian linearizatiorof the nonlinear system (5.32) is
dz

rri Az+ Bo, w = Cz+ Do, (5.33)



160 CHAPTER 5. LINEAR SYSTEMS

where

of of oh oh
oX ou

8X a u (Xe, ue)

(Xe,Ue) (Xe,Ue) (Xe,Ue)

The system (5.33) approximates the original system (5.32nwte are near the
equilibrium point about which the system was linearizedingsrheorem 4.3, if
the linearization is asymptotically stable, then the abriim point X, is locally
asymptotically stable for the full nonlinear system.

It is important to note that we can define the linearization fgtem only near
an equilibrium point. To see this, consider a polynomiateys

dx
dt —ao+611X+<':12X +613X + U,

whereag # 0. A set of equilibrium points for this system is given 0§, Ue) =
(Xe, —80 — a1Xe — apX2 — a3x2), and we can linearize around any of them. Suppose
that we try to linearize around the origin of the systera- 0, u = 0. If we drop
the higher-order terms ir, then we get
dx

= aix + u,
at =ay+ X+

which isnotthe Jacobian linearization & # 0. The constant term must be kept,
and itis not presentin (5.33). Furthermore, even if we kepttimstant term in the
approximate model, the system would quickly move away frioisippoint (since it

is “driven” by the constant terrag), and hence the approximation could soon fail
to hold.

Software for modeling and simulation frequently has faetitfor performing
linearization symbolically or numerically. The MATLAB commenr i mfinds the
equilibrium, and i nnod extracts linear state space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering

Consider the vehicle steering system introduced in Examjle The nonlinear
equations of motion for the system are given by equatior3}2(2.25) and can
be written as

v cos(a(d) + 0) atans
D) sm(a @O+, 4@ =arcta ;
dt [ ] 2 tané r( b )

wherex, y and @ are the position and orientation of the center of mass of the
vehicle,og is the velocity of the rear wheds,is the distance between the front and
rear wheels and is the angle of the front wheel. The functierio) is the angle
between the velocity vector and the vehicle’s length axis.

We are interested in the motion of the vehicle about a sttdigl path ¢ = 6)
with fixed velocityog # 0. To find the relevant equilibrium point, we first et 0
and we see that we must hae= 0, corresponding to the steering wheel being
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straight. This also yieldg = 0. Looking at the first two equations in the dynamics,
we see that the motion in they direction is by definitiomot at equilibrium since
E2 4 2 = v¢ # 0. Therefore we cannot formally linearize the full model.
Suppose instead that we are concerned with the lateral aeviatthe vehicle
from a straight line. For simplicity, we l& = 0, which corresponds to driving
along thex axis. We can then focus on the equations of motion inyttend
directions. With some abuse of notation we introduce theesta= (y, ) and
u = J. The system is then in standard form with

v Sin(a(U) + X2) anu

b

f(x,u) = , a(u) = arctar(at ) h(x, u) = X.

Vo
— tanu
b
The equilibrium point of interest is given by= (0, 0) andu = 0. To compute the

linearized model around this equilibrium point, we makeafdbe formulas (5.34).
A straightforward calculation yields

A— ﬁ _ 0 oo B — ﬁ . al)()/b
- OX | x=0 ~ 10 0} o ou | x=0 - l)o/b ’
u=0 u=0
oh oh
c=2| =[10, ©bp=%] =o
OX | x=0 ou | x=0
u=0 u=0
and the linearized system
dx
i AXx + Bu, y =Cx+ Du (5.35)

thus provides an approximation to the original nonlinearaiyics.

The linearized model can be simplified further by introduciogmalized vari-
ables, as discussed in Section 2.3. For this system, we chio@seheel basé
as the length unit and the unit as the time required to trawgheel base. The
normalized state is thus= (x1/b, X»), and the new time variable is = vot/b.
The model (5.35) then becomes

dz [z +yu] [0 1 y _

a_[ U =10 ol 2+ |71 Y y_[l O]z, (5.36)
wherey = a/b. The normalized linear model for vehicle steering with ngoshg
wheels is thus a linear system with only one parameter. \%

Feedback Linearization

Another type of linearization is the use of feedback to contree dynamics of a
nonlinear system into those of a linear one. We illustragelhsic idea with an
example.

Example 5.13 Cruise control
Consider again the cruise control system from Example 5.hbser dynamics are
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Linearized dynamics
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Figure 5.15: Feedback linearization. A nonlinear feedback of the fore o (x, v) is used
to modify the dynamics of a nonlinear process so that the responsehmimputo to the
outputy is linear. A linear controller can then be used to regulate the system’s dy:iam

given in equation (5.29):
do 1 2 .
ma = opuT (anv) — MgG sgnv) — EpCdAD — mgsing.
If we chooseu as a feedback law of the form

u u’ +mgG sgnv) + %pCD Al)z) , (5.37)

B 1
~ onT (anv) (

then the resulting dynamics become

do
m— =u+d 5.38
gt - ute (5-38)
whered = —mgsind is the disturbance force due the slope of the road. If we

now define a feedback law for (such as a proportional-integral-derivative [PID]
controller), we can use equation (5.37) to compute the finaltithat should be
commanded.

Equation (5.38) is a linear differential equation. We hawseasally “inverted”
the nonlinearity through the use of the feedback law (5.8fjs requires that we
have an accurate measurement of the vehicle velacig well as an accurate
model of the torque characteristics of the engine, geansatirag and friction
characteristics and mass of the car. While such a model igemarally available
(remembering that the parameter values can change), if sigrda good feedback
law for u’, then we can achieve robustness to these uncertainties. \%

More generally, we say that a system of the form

dx

dt - f(X, U), y_ h(X)a
is feedback linearizabld@ we can find a control lawu = « (X, ») such that the
resulting closed loop system is input/output linear witputw and outputy, as
shown in Figure 5.15. To fully characterize such systems yste the scope of
this text, but we note that in addition to changes in the iniietgeneral theory also
allows for (nonlinear) changes in the states that are useggoribe the system,
keeping only the input and output variables fixed. More deilthis process can
be found in the textbooks by Isidori [Isi95] and Khalil [KhEO
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One case that comes up relatively frequently, and is hencehwspecial mention,@
is the set of mechanical systems of the form

M(@)4 + C(q, q) = B(Q)u.

Hereq € R" is the configuration of the mechanical systelh(q) € R™" is

the configuration-dependent inertia mati®(q, g) € R" represents the Coriolis
forces and additional nonlinear forces (such as stiffnassfiaction) andB(q) <
R"P is the input matrix. Ifp = n, then we have the same number of inputs and
configuration variables, and if we further have tB4t|) is an invertible matrix for

all configurationgy, then we can choose

u=B"Yq)(M(@v - C(q,q). (5.39)
The resulting dynamics become

M@4=M@» = (=vo,

which is a linear system. We can now use the tools of linearesygheory to
analyze and design control laws for the linearized systemgembering to apply
equation (5.39) to obtain the actual input that will be aggblio the system.

This type of control is common in robotics, where it goes by tiaene of
computed torqueand in aircraft flight control, where it is calletiynamic inver-
sion Some modeling tools like Modelica can generate the codehririverse
model automatically. One caution is that feedback linedion can often cancel
out beneficial terms in the natural dynamics, and hence it beisised with care.
Extensions that do not require complete cancellation ofineatities are discussed
in Khalil [Kha01] and Krsti¢ et al. [KKK95].

5.5 Further Reading

The majority of the material in this chapter is classical aad be found in most
books on dynamics and control theory, including early warkscontrol such as
James, Nichols and Phillips [JNP47] and more recent textbso&is as Dorf and
Bishop [DB04], Franklin, Powell and Emami-Naeini [FPENO5] and tag@ga01].
An excellent presentation of linear systems based on theixr@tponential is
given in the book by Brockett [Bro70], a more comprehengigatiment is given by
Rugh [Rug95] and an elegant mathematical treatment is giv8ontag [Son98].
Material on feedback linearization can be found in booksaniinear control theory
such as Isidori [Isi95] and Khalil [Kha01]. The idea of chdeaizing dynamics by
considering the responses to step inputs is due to Heayiwmdaso introduced an
operator calculus to analyze linear systems. The unit stdperefore also called
theHeaviside step functiodnalysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of latknathematical rigor,
as described in the biography by Nahin [Nah88]. The difficaliieere cleared up
later by the mathematician Laurent Schwartz who develapsibution theory
in the late 1940s. In engineering, linear systems havettoadily been analyzed
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using Laplace transforms as described in Gardner and Ba@iR42]. Use of
the matrix exponential started with developments of cdritreory in the 1960s,
strongly stimulated by a textbook by Zadeh and Desoer [ZD63F bf matrix
technigues expanded rapidly when the powerful methodsroknmie linear algebra
were packaged in programs like LabVIEW, MATLAB and Mathematica.

Exercises

43 (Response to the derivative of a signal) Show tha(if) is the output of a
linear system corresponding to input), then the output corresponding to an
input u(t) is given byy(t). (Hint: Use the definition of the derivativei(t) =
limeo(y(t +€) — y()/e)

44 (Impulse response and convolution) Show that a sigftalcan be decomposed
in terms of the impulse functiod(t) as

ut) = /Ot ot —7)u(r)dr

and use this decomposition plus the principle of superiposio show that the
response of a linear system to an inpdt) (assuming a zero initial condition) can
be written as

t
y© = [ ht = ouedr,
0
whereh(t) is the impulse response of the system.

45 (Pulse response for a compartment model) Consider the ctmgrar model
given in Example 5.7. Compute the step response for the symtelhcompare it
with Figure 5.10b. Use the principle of superposition to categhe response to
the 5 s pulse input shown in Figure 5.10c. Use the parametaesk = 0.1,
ki =0.1,k, = 0.5 andbg = 1.5.

46 (Matrix exponential for second-order system) Assume ¢hat1 and letwy =

woy/1 — 2. Show that
—é’a)o d ] t =

—qg —( o

[ e ¢@t cospgt €@t sinpgt

ex . )
P —e @t sinpgt e ¢t coswqt

47 (Lyapunov function for a linear system) Consider a lineatesnx = Ax with
Rek; < O for all eigenvalued; of the matrixA. Show that the matrix

P=/ AT QeM dr
0

defines a Lyapunov function of the forsh(x) = x' Px.

48 (Nondiagonal Jordan form) Consider a linear system withrdaloform that is
non-diagonal.
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() Prove Proposition 5.3 by showing that if the system coataireal eigenvalue
A = 0 with a nontrivial Jordan block, then there exists an ihitizndition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvaludsRél = 0 by
using the block Jordan form

3=

oo o’
ocoor
o8 R, O

0
—Q
0
0

49 (Rise time for a first-order system) Consider a first-orderesystf the form
dx _ X+u =X
fdt T ’ y=>x
We say that the parameters thetime constantor the system since the zero input
system approaches the originexd/*. For a first-order system of this form, show

that the rise time for a step response of the system is appat&ly 2, and that
1%, 2%, and 5% settling times approximately correspondsén, 4z and & .

50 (Discrete-time systems) Consider a linear discrete-tipséesn of the form
X[k + 1] = Ax[k] + Bu[K], y[k] = Cx[Kk] + Du[k].

(a) Show that the general form of the output of a discrete-limear system is
given by the discrete-time convolution equation:

k—1
y[k] = CAX[0] + > CA<I'BU[j] + Dulk].
j=0

(b) Show that a discrete-time linear system is asymptoticaéible if and only if
all the eigenvalues oA have a magnitude strictly less than 1.

(c) Letu[k] = sin(wk) represent an oscillatory input with frequenoy< =z (to
avoid “aliasing”). Show that the steady-state componenhefresponse has gain
M and phasé, where

Me? = C(e”l — A)"'B + D.

(d) Show that if we have a nonlinear discrete-time system
x[K] = f(x[k],ulkD), X[kl €eR" ueR,
y[kl = h(x[K], u[k]), yeR,

then we can linearize the system around an equilibrium gainue) by defining
the matricesA, B, C andD as in equation (5.34).
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51 (Keynesian economics) Consider the following simple Keyaie macroeco-
nomic model in the form of a linear discrete-time systemulsed in Exercise 50:

Clt +1] C[t
[lu-+1]] [ab b ab] [IH]] [ab]cﬂq
YIt] = CIt] + 1 [t] + GIt].

Determine the eigenvalues of the dynamics matrix. Whenteartagnitudes of
the eigenvalues less than 1? Assume that the system is iibeigun with constant
values capital spendin@, investment and government expenditu. Explore

what happens when government expenditure increases by W6éothe values
a=0.25andb =0.5.

52 Consider a scalar system

dx
=1-x3+u.
at +

Compute the equilibrium points for the unforced systen=(0) and use a Taylor
series expansion around the equilibrium point to compugditiearization. \Verify
that this agrees with the linearization in equation (5.33).

53 (Transcriptional regulation) Consider the dynamics of mggie circuit that im-
plementsself-repressiorthe protein produced by a gene is arepressor for that gene,
thus restricting its own production. Using the models pnése in Example 2.13,

the dynamics for the system can be written as

dm a dp
—_— = = ) 4

dt ~ 14 kp? at ~ Pm=op. (5.40)
whereu is a disturbance term that affects RNA transcription em¢ > 0. Find
the equilibrium points for the system and use the lineardggthmics around each
equilibrium point to determine the local stability of theuddprium point and the
step response of the system to a disturbance.
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