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Preface

This book provides an introduction to the basic principles @mols for the design
and analysis of feedback systems. It is intended to serveeasd audience of
scientists and engineers who are interested in understg@add utilizing feedback
in physical, biological, information and social system Néve attempted to keep
the mathematical prerequisites to a minimum while beingfcéunot to sacrifice
rigor in the process. We have also attempted to make use ofiga from a
variety of disciplines, illustrating the generality of nyaof the tools while at the
same time showing how they can be applied in specific appicatbmains.

A major goal of this book is to present a concise and insightiew of the
current knowledge in feedback and control systems. The fieltbofrol started
by teaching everything that was known at the time and, as mawledge was
acquired, additional courses were developed to cover nelanigues. A conse-
guence of this evolution is that introductory courses hameained the same for
many years, and it is often necessary to take many individoatses in order
to obtain a good perspective on the field. In developing thiskbave have at-
tempted to condense the current knowledge by emphasizimtafuoental concepts.
We believe that it is important to understand why feedbaalsiful, to know the
language and basic mathematics of control and to grasp thedmdigms that
have been developed over the past half century. It is alsoritapt to be able to
solve simple feedback problems using back-of-the-eneetephniques, to recog-
nize fundamental limitations and difficult control problearsd to have a feel for
available design methods.

This book was originally developed for use in an experimecoalse at Cal-
tech involving students from a wide set of backgrounds. Thesmwas offered to
undergraduates at the junior and senior levels in traditiengineering disciplines,
as well as first- and second-year graduate students in emgig@ad science. This
latter group included graduate students in biology, compsitience and physics.
Over the course of several years, the text has been classested at Caltech and
at Lund University, and the feedback from many students alidagues has been
incorporated to help improve the readability and accel#tyilof the material.

Because of its intended audience, this book is organizedslightly unusual
fashion compared to many other books on feedback and cohtrparticular, we
introduce a number of concepts in the text that are normabgnved for second-
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year courses on control and hence often not available testadvho are not con-
trol systems majors. This has been done at the expense ohdeatditional top-
ics, which we felt that the astute student could learn inddpatly and are often
explored through the exercises. Examples of topics that we inaluded are non-
linear dynamics, Lyapunov stability analysis, the matsip@nential, reachability
and observability, and fundamental limits of performanod eobustness. Topics
that we have deemphasized include root locus techniqued/|dg compensation
and detailed rules for generating Bode and Nyquist plotsamdh

Several features of the book are designed to facilitate asfduction as a basic
engineering text and as an introduction for researcheratural, information and
social sciences. The bulk of the material is intended to bed usgardless of the
audience and covers the core principles and tools in theysinadnd design of
feedback systems. Advanced sections, marked by the “damgdrend” symbol
shown here, contain material that requires a slightly mecérical background,
of the sort that would be expected of senior undergraduatesgineering. A few
sections are marked by two dangerous bend symbols and arelet for readers
with more specialized backgrounds, identified at the begmuwif the section. To
limit the length of the text, several standard results andrestons are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here napemion web site
has been developed and is available from the publisher'spagb:

http://www.cds.caltech.edumurray/amwiki

The web site contains a database of frequently asked questiopplemental ex-
amples and exercises, and lecture material for coursed bagdéis text. The mate-
rial is organized by chapter and includes a summary of thenpaiints in the text
as well as links to external resources. The web site also icenifae source code
for many examples in the book, as well as utilities to implatribe techniques
described in the text. Most of the code was originally writtesing MATLAB M-
files but was also tested with LabView MathScript to ensure caififity with
both packages. Many files can also be run using other scrifatiggiages such as
Octave, SciLab, SysQuake and Xmath.

The first half of the book focuses almost exclusively on stadéesgontrol sys-
tems. We begin in Chapt& with a description of modeling of physical, biolog-
ical and information systems using ordinary differentiqliations and difference
equations. Chapt& presents a number of examples in some detail, primarily as a
reference for problems that will be used throughout the tesitowing this, Chap-
ter 4 looks at the dynamic behavior of models, including defingiar stability
and more complicated nonlinear behavior. We provide ad@usections in this
chapter on Lyapunov stability analysis because we find thatiseful in a broad
array of applications and is frequently a topic that is natoduced until later in
one’s studies.
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The remaining three chapters of the first half of the book focuBreear sys-
tems, beginning with a description of input/output beheindChapters. In Chap-
ter 6, we formally introduce feedback systems by demonstratow state space
control laws can be designed. This is followed in Chajgtby material on output
feedback and estimators. Chaptérand7 introduce the key concepts of reacha-
bility and observability, which give tremendous insighbithe choice of actuators
and sensors, whether for engineered or natural systems.

The second half of the book presents material that is oftesidered to be
from the field of “classical control.” This includes the tra@msfunction, introduced
in Chapter8, which is a fundamental tool for understanding feedbaclesys.
Using transfer functions, one can begin to analyze thel#tabi feedback systems
using frequency domain analysis, including the abilitygagon about the closed
loop behavior of a system from its open loop characterisiibss is the subject of
Chapter9, which revolves around the Nyquist stability criterion.

In Chaptersl0 and 11, we again look at the design problem, focusing first
on proportional-integral-derivative (PID) controllersdaimien on the more general
process of loop shaping. PID control is by far the most commemigeh technique
in control systems and a useful tool for any student. The enapt frequency
domain design introduces many of the ideas of modern cotiteary, including
the sensitivity function. In Chaptd2, we combine the results from the second half
of the book to analyze some of the fundamental trade-offsdsent robustness and
performance. This is also a key chapter illustrating the pa@fthe techniques that
have been developed and serving as an introduction for niwamnaed studies.

The book is designed for use in a 10- to 15-week course in feédbastems
that provides many of the key concepts needed in a varietigsofjdines. For a 10-
week course, Chaptelds2, 46 and8-11 can each be covered in a week’s time,
with the omission of some topics from the final chapters. A nieisurely course,
spread out over 14-15 weeks, could cover the entire book, 2uwiteeks on mod-
eling (Chapter® and 3)—patrticularly for students without much background in
ordinary differential equations—and 2 weeks on robustgerénce (Chaptelt?2).

The mathematical prerequisites for the book are modest akddping with
our goal of providing an introduction that serves a broadienme. We assume
familiarity with the basic tools of linear algebra, incladi matrices, vectors and
eigenvalues. These are typically covered in a sophomogg-teurse on the sub-
ject, and the textbooks by ApostoApo69, Arnold [Arn87] and Strang $tr89
can serve as good references. Similarly, we assume basicldagevof differ-
ential equations, including the concepts of homogeneodgarticular solutions
for linear ordinary differential equations in one variabfgpostol [Apo69 and
Boyce and DiPrimaBDO04] cover this material well. Finally, we also make use
of complex numbers and functions and, in some of the advaseetions, more
detailed concepts in complex variables that are typicallyeced in a junior-level
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engineering or physics course in mathematical methodss#pi\po67 or Stew-
art [Ste02 can be used for the basic material, with Ahlfofh]66], Marsden and
Hoffman [MH98] or Saff and Snider$S032 being good references for the more
advanced material. We have chosen not to include appenslicesarizing these
various topics since there are a number of good books alailab

One additional choice that we felt was important was thesiecinot to rely
on a knowledge of Laplace transforms in the book. While the& is by far the
most common approach to teaching feedback systems in emgigemany stu-
dents in the natural and information sciences may lack tbessary mathematical
background. Since Laplace transforms are not required in ssgnéial way, we
have included them only in an advanced section intendecetthings together
for students with that background. Of course, we make treimes use ofrans-
fer functions which we introduce through the notion of response to exptiale
inputs, an approach we feel is more accessible to a broay affiscientists and
engineers. For classes in which students have already hdddeajpansforms, it
should be quite natural to build on this background in thereympate sections of
the text.
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback goliemsve grow, respond
to stress and challenge, and regulate factors such as body temperalooe, pressure and
cholesterol level. The mechanisms operate at every level, from thedtiteraf proteins in
cells to the interaction of organisms in complex ecologies.

M. B. Hoagland and B. Dodsoithe Way Life Works1995 HD95].

In this chapter we provide an introduction to the basic cphoéfeedbackand
the related engineering discipline adntrol. We focus on both historical and cur-
rent examples, with the intention of providing the contextdurrent tools in feed-
back and control. Much of the material in this chapter is &edfrom Mur03],
and the authors gratefully acknowledge the contributiodnRager Brockett and
Gunter Stein to portions of this chapter.

1.1 What Is Feedback?

A dynamical systeris a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The tdeadbackefers to a situation
in which two (or more) dynamical systems are connected kagetuch that each
system influences the other and their dynamics are thus $groagpled. Simple
causal reasoning about a feedback system is difficult be¢hadé@st system in-
fluences the second and the second system influences the filsigleéaa circular
argument. This makes reasoning based on cause and eff&ygt & it is neces-
sary to analyze the system as a whole. A consequence of tthistithe behavior
of feedback systems is often counterintuitive, and it isdéfage necessary to resort
to formal methods to understand them.

Figurel.lillustrates in block diagram form the idea of feedback. Wemiise
the termsopen loopand closed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are inteecbad in a cycle, as
shown in Figurel.1a If we break the interconnection, we refer to the configuratio
as an open loop system, as shown in FiglLifida

As the quote at the beginning of this chapter illustrates agonsource of ex-
amples of feedback systems is biology. Biological systerakenuse of feedback
in an extraordinary number of ways, on scales ranging frorteoubes to cells to
organisms to ecosystems. One example is the regulatioruobsgg in the blood-
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System 1——=| System 2 - —=| System 1 System 22—
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(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used aguhefin
system 2, and the output of system 2 becomes the input of system tingr@alosed loop
system. (b) The interconnection between system 2 and system 1 is iiiraodethe system
is said to be open loop.

stream through the production of insulin and glucagon byptgcreas. The body
attempts to maintain a constant concentration of glucosichnis used by the
body’s cells to produce energy. When glucose levels riger(eating a meal, for
example), the hormone insulin is released and causes tlygdatbre excess glu-
cose in the liver. When glucose levels are low, the pancrea®tes the hormone
glucagon, which has the opposite effect. Referring to Fiduitewe can view the
liver as system 1 and the pancreas as system 2. The outputfedindr is the glu-
cose concentration in the blood, and the output from theneasds the amount of
insulin or glucagon produced. The interplay between insaifid glucagon secre-
tions throughout the day helps to keep the blood-glucoseeardration constant,
at about 90 mg per 100 mL of blood.

An early engineering example of a feedback system is a ¢egaligovernor,
in which the shaft of a steam engine is connected to a flybalher@sm that is
itself connected to the throttle of the steam engine, astitited in Figurd..2 The
system is designed so that as the speed of the engine inerg@sbaps because
of a lessening of the load on the engine), the flyballs spread apd a linkage
causes the throttle on the steam engine to be closed. Thisnrslmws down the
engine, which causes the flyballs to come back together. Wecdel this system
as a closed loop system by taking system 1 as the steam engirsystem 2 as
the governor. When properly designed, the flyball governantaes a constant
speed of the engine, roughly independent of the loadingitiond. The centrifugal
governor was an enabler of the successful Watt steam engheh fueled the
industrial revolution.

Feedback has many interesting properties that can be esgblimitdesigning
systems. As in the case of glucose regulation or the flybakguayr, feedback can
make a system resilient toward external influences. It cam ladsused to create
linear behavior out of nonlinear components, a common ambrin electronics.
More generally, feedback allows a system to be insensitivk to external distur-
bances and to variations in its individual elements.

Feedback has potential disadvantages as well. It can crgasenic instabili-
ties in a system, causing oscillations or even runaway heh@nother drawback,
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugatigoven the
left consists of a set of flyballs that spread apart as the speed of gireeencreases. The
steam engine on the right uses a centrifugal governor (above andladttb&the flywheel)
to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip TEy8a8].)

especially in engineering systems, is that feedback candate unwanted sensor
noise into the system, requiring careful filtering of signétiss for these reasons
that a substantial portion of the study of feedback systerdevoted to developing
an understanding of dynamics and a mastery of techniquegismngical systems.

Feedback systems are ubiquitous in both natural and engihegstems. Con-
trol systems maintain the environment, lighting and poweour buildings and
factories; they regulate the operation of our cars, cons@feetronics and manu-
facturing processes; they enable our transportation anghemications systems;
and they are critical elements in our military and spaceesyst For the most part
they are hidden from view, buried within the code of embeduézioprocessors,
executing their functions accurately and reliably. Feellies also made it pos-
sible to increase dramatically the precision of instrureentch as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintainsrtake chemical and
biological conditions through feedback. At the other endhef size scale, global
climate dynamics depend on the feedback interactions leetwiee atmosphere,
the oceans, the land and the sun. Ecosystems are filled withpdesuof feedback
due to the complex interactions between animal and plaat Bifzen the dynam-
ics of economies are based on the feedback between indisidod corporations
through markets and the exchange of goods and services.

1.2 What Is Control?

The termcontrol has many meanings and often varies between communities. In
this book, we define control to be the use of algorithms anddfaeklin engineered
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systems. Thus, control includes such examples as feedbagkilo electronic am-
plifiers, setpoint controllers in chemical and materialscpssing, “fly-by-wire”
systems on aircraft and even router protocols that contila flow on the Inter-
net. Emerging applications include high-confidence softwgsgems, autonomous
vehicles and robots, real-time resource management systedbiologically en-
gineered systems. At its core, control isiaformationscience and includes the
use of information in both analog and digital representetio

A modern controller senses the operation of a system, caapaagainst the
desired behavior, computes corrective actions based ondelnebd the system’s
response to external inputs and actuates the system td #féeedesired change.
This basideedback loopf sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logicearsuring that the dy-
namics of the closed loop system are stable (bounded distaes give bounded
errors) and that they have additional desired behaviordghsturbance attenua-
tion, fast responsiveness to changes in operating pou)jt, Bhese properties are
established using a variety of modeling and analysis tegles that capture the
essential dynamics of the system and permit the explorafipossible behaviors
in the presence of uncertainty, noise and component failure

A typical example of a control system is shown in Figit8 The basic ele-
ments of sensing, computation and actuation are clearly. $eanodern control
systems, computation is typically implemented on a digitethputer, requiring the
use of analog-to-digital (A/D) and digital-to-analog (D/éonverters. Uncertainty
enters the system through noise in sensing and actuatieysiems, external dis-
turbances that affect the underlying system operation aeértain dynamics in
the system (parameter errors, unmodeled effects, etc). [Gogitam that com-
putes the control action as a function of the sensor valuetésa called acontrol
law. The system can be influenced externally by an operator whadintescom-
mand signalgo the system.

Control engineering relies on and shares tools from phy&lgaamics and
modeling), computer science (information and software) @perations research
(optimization, probability theory and game theory), buisitalso different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control aeddisiciplines is in
the modeling of physical systems, which is common acrogsedls of engineering
and science. One of the fundamental differences betwednota@niented model-
ing and modeling in other disciplines is the way in which rattions between
subsystems are represented. Control relies on a type afaypput modeling that
allows many new insights into the behavior of systems, ssahsiurbance attenu-
ation and stable interconnection. Model reduction, whesienpler (lower-fidelity)
description of the dynamics is derived from a high-fidelitydah is also naturally
described in an input/output framework. Perhaps most imptyt modeling in a
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external disturbances

= System -
i Clock 1
| v $ v i
| D/IA |« Computer |« AD |« Filter |« :
e I ,,,,,,,,,,,,,,,,,,,, Controller |

operator input

Figure 1.3: Components of a computer-controlled system. The upper dasheéjp@sents
the process dynamics, which include the sensors and actuators in adulitiendynamical
system being controlled. Noise and external disturbances can peréudyilamics of the
process. The controller is shown in the lower dashed box. It consiatltdr and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a compiln@rimplements
the control algorithm. A system clock controls the operation of the contysijachronizing
the A/D, D/A and computing processes. The operator input is also fed tmthputer as an
external input.

control context allows the design abustinterconnections between subsystems,
a feature that is crucial in the operation of all large engied systems.

Control is also closely associated with computer scienoeesiirtually all
modern control algorithms for engineering systems areémginted in software.
However, control algorithms and software can be very diffierfrom traditional
computer software because of the central role of the dyrsofithe system and
the real-time nature of the implementation.

1.3 Feedback Examples

Feedback has many interesting and useful properties. ItsigBessible to design

precise systems from imprecise components and to makerglguantities in a

system change in a prescribed fashion. An unstable systetmecstabilized using

feedback, and the effects of external disturbances cancdueed. Feedback also
offers new degrees of freedom to a designer by exploitingisgnactuation and

computation. In this section we survey some of the imporégglications and

trends for feedback in the world around us.
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Movement Load

opens Spring Accelerator
throttle \ Pedal
Speed-
Adjustment
Electromagnet Governor Knob
Contacts Latching
Button
: Flyball
Reversible Speed-
Motor Governor ometer
<~—— Adjustment
Spring
1T A
(a) Honeywell thermostat, 1953 (b) Chrysler cruise control, 1958

Figure 1.4: Early control devices. (a) Honeywell T87 thermostat originally intreglimn
1953. The thermostat controls whether a heater is turned on by complaeircurrent tem-
perature in a room to a desired value that is set using a dial. (b) Chrysiise control
system introduced in the 1958 Chrysler ImperRbjv5§. A centrifugal governor is used
to detect the speed of the vehicle and actuate the throttle. The refererexkisgspecified
through an adjustment spring. (Left figure courtesy of Honeywédirtrational, Inc.)

Early Technological Examples

The proliferation of control in engineered systems occupéaharily in the latter
half of the 20th century. There are some important exceptisumsh as the cen-
trifugal governor described earlier and the thermostatufeig.49, designed at
the turn of the century to regulate the temperature of lngjsli

The thermostat, in particular, is a simple example of feekllcantrol that ev-
eryone is familiar with. The device measures the temperatuacouilding, com-
pares that temperature to a desired setpoint and usdsdtiback errobetween
the two to operate the heating plant, e.g., to turn heat omvithe temperature
is too low and to turn it off when the temperature is too highisTéxplanation
captures the essence of feedback, but it is a bit too simgle f&r a basic device
such as the thermostat. Because lags and delays exist iedliadnplant and sen-
sor, a good thermostat does a bit of anticipation, turnireghtbater off before the
error actually changes sign. This avoids excessive temperatvings and cycling
of the heating plant. This interplay between the dynamichefgrocess and the
operation of the controller is a key element in modern cdslystems design.

There are many other control system examples that have gedtlover the
years with progressively increasing levels of sophisiticatAn early system with
broad public exposure was toauise controloption introduced on automobiles in
1958 (see Figuré.4b). Cruise control illustrates the dynamic behavior of ctbse
loop feedback systems in action—the slowdown error as thiesyclimbs a grade,
the gradual reduction of that error due to integral actiotécontroller, the small
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Figure 1.5: A small portion of the European power network. By 2008 Europeanepow
suppliers will operate a single interconnected network covering a regiomthe Arctic to
the Mediterranean and from the Atlantic to the Urals. In 2004 the installedmpeagmore
than 700 GW (& 101 W). (Source: UCTE [www.ucte.org])

overshoot at the top of the climb, etc. Later control systemawtomobiles such
as emission controls and fuel-metering systems have ahieajor reductions of
pollutants and increases in fuel economy.

Power Generation and Transmission

Access to electrical power has been one of the major driveteahnological
progress in modern society. Much of the early developmenbafrol was driven
by the generation and distribution of electrical power. ars mission critical
for power systems, and there are many control loops in iddai power stations.
Control is also important for the operation of the whole powetwork since it is
difficult to store energy and it is thus necessary to matchymtion to consump-
tion. Power management is a straightforward regulationlproffor a system with
one generator and one power consumer, but it is more diffinudt highly dis-
tributed system with many generators and long distanceseegt consumption
and generation. Power demand can change rapidly in an untakldi manner and
combining generators and consumers into large networkesiggossible to share
loads among many suppliers and to average consumption amaimgcustomers.
Large transcontinental and transnational power systenss thavefore been built,
such as the one show in Figutebs.

Most electricity is distributed by alternating current (AG2cause the transmis-
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sion voltage can be changed with small power losses usingfoamers. Alternat-

ing current generators can deliver power only if the gemesaare synchronized
to the voltage variations in the network. This means that ¢hers of all genera-

tors in a network must be synchronized. To achieve this vattall decentralized

controllers and a small amount of interaction is a challeggiroblem. Sporadic
low-frequency oscillations between distant regions haaenbobserved when re-
gional power grids have been interconnect€@p5].

Safety and reliability are major concerns in power systemerd imay be dis-
turbances due to trees falling down on power lines, liglgrminequipment failures.
There are sophisticated control systems that attempt to tkeegystem operating
even when there are large disturbances. The control acteonbeto reduce volt-
age, to break up the net into subnets or to switch off linespaweer users. These
safety systems are an essential element of power distibagistems, but in spite
of all precautions there are occasionally failures in lggge@er systems. The power
system is thus a nice example of a complicated distributetbsywhere control is
executed on many levels and in many different ways.

Aerospace and Transportation

In aerospace, control has been a key technological catyatbdcing back to the
beginning of the 20th century. Indeed, the Wright brotheesarrectly famous
not for demonstrating simply powered flight bzdantrolled powered flight. Their
early Wright Flyer incorporated moving control surfacegfiieal fins and canards)
and warpable wings that allowed the pilot to regulate theraft’s flight. In fact,
the aircraft itself was not stable, so continuous pilot ections were mandatory.
This early example of controlled flight was followed by a fagting success story
of continuous improvements in flight control technology,naimating in the high-
performance, highly reliable automatic flight control syssewe see in modern
commercial and military aircraft today (Figuieo).

Similar success stories for control technology have ocdumemany other
application areas. Early World War Il bombsights and fire cargervo systems
have evolved into today’s highly accurate radar-guidedsgumd precision-guided
weapons. Early failure-prone space missions have evolvedroutine launch
operations, manned landings on the moon, permanently rdaspece stations,
robotic vehicles roving Mars, orbiting vehicles at the ouyinets and a host of
commercial and military satellites serving various sutaate, communication,
navigation and earth observation needs. Cars have advéooednanually tuned
mechanical/pneumatic technology to computer-contradigdration of all major
functions, including fuel injection, emission controlugye control, braking and
cabin comfort.

Current research in aerospace and transportation systeimgestigating the
application of feedback to higher levels of decision makingluding logical reg-
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(a) F/A-18 “Hornet” (b) X-45 UCAV

Figure 1.6: Military aerospace systems. (a) The F/A-18 aircraft is one of the ficstyrtion
military fighters to use “fly-by-wire” technology. (b) The X-45 (UCAVnmanned aerial
vehicle is capable of autonomous flight, using inertial measuremenrsessd the global
positioning system (GPS) to monitor its position relative to a desired traje(Ritgtographs
courtesy of NASA Dryden Flight Research Center.)

ulation of operating modes, vehicle configurations, payloadfigurations and
health status. These have historically been performed byahwperators, but to-
day that boundary is moving and control systems are inarghsiaking on these
functions. Another dramatic trend on the horizon is the uskrge collections
of distributed entities with local computation, global amemication connections,
little regularity imposed by the laws of physics and no plifisy of imposing
centralized control actions. Examples of this trend incltige national airspace
management problem, automated highway and traffic managemeérommand
and control for future battlefields.

Materials and Processing

The chemical industry is responsible for the remarkable n@ssyin developing
new materials that are key to our modern society. In additiothe continuing
need to improve product quality, several other factors & fihocess control in-
dustry are drivers for the use of control. Environmentalusést continue to place
stricter limitations on the production of pollutants, fiog the use of sophisticated
pollution control devices. Environmental safety consitiers have led to the de-
sign of smaller storage capacities to diminish the risk ojomehemical leakage,
requiring tighter control on upstream processes and, irestases, supply chains.
And large increases in energy costs have encouraged engingesign plants that
are highly integrated, coupling many processes that usegdrate independently.
All of these trends increase the complexity of these praeeand the performance
requirements for the control systems, making control sysiesign increasingly
challenging. Some examples of materials-processing téotpypare shown in Fig-
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&

Figure 1.7: Materials processing. Modern materials are processed underloacefutrolled
conditions, using reactors such as the metal organic chemical vapositden (MOCVD)
reactor shown on the left, which was for manufacturing supercondyttin films. Using
lithography, chemical etching, vapor deposition and other techniqoamlex devices can
be built, such as the IBM cell processor shown on the right. (MOCVD incagetesy of Bob
Kee. IBM cell processor photograph courtesy Tom Way, IBM Caaifion; unauthorized use
not permitted.)

urel.?.

As in many other application areas, new sensor technologging new op-
portunities for control. Online sensors—including lasackscattering, video mi-
croscopy and ultraviolet, infrared and Raman spectroseapg becoming more
robust and less expensive and are appearing in more mamifigcprocesses.
Many of these sensors are already being used by currentgsrcoatrol systems,
but more sophisticated signal-processing and controhigales are needed to use
more effectively the real-time information provided by $besensors. Control en-
gineers also contribute to the design of even better sengbrsh are still needed,
for example, in the microelectronics industry. As elsewh#ne challenge is mak-
ing use of the large amounts of data provided by these nevoseimsan effective
manner. In addition, a control-oriented approach to modele essential physics
of the underlying processes is required to understand théafmental limits on
observability of the internal state through sensor data.

Instrumentation

The measurement of physical variables is of prime interestisnce and engineer-
ing. Consider, for example, an accelerometer, where eatyuments consisted of
a mass suspended on a spring with a deflection sensor. Thei@gnezisuch an
instrument depends critically on accurate calibratiorhefspring and the sensor.
There is also a design compromise because a weak spring ggresdnsitivity
but low bandwidth.
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Figure 1.8: The voltage clamp method for measuring ion currents in cells using fekdba
A pipet is used to place an electrode in a cell (left and middle) and maintapoteatial of
the cell at a fixed level. The internal voltage in the celjisand the voltage of the external
fluid is ve. The feedback system (right) controls the curieinto the cell so that the voltage
drop across the cell membrafe = v; — ve is equal to its reference valde . The current

is then equal to the ion current.

A different way of measuring acceleration is to Usece feedbackThe spring
is replaced by a voice coil that is controlled so that the nragsains at a con-
stant position. The acceleration is proportional to the entrthrough the voice
coil. In such an instrument, the precision depends entarlthe calibration of the
voice coil and does not depend on the sensor, which is usgdasrihe feedback
signal. The sensitivity/bandwidth compromise is also a@didrhis way of using
feedback has been applied to many different engineeringfaid has resulted in
instruments with dramatically improved performance. Edeedback is also used
in haptic devices for manual control.

Another important application of feedback is in instrunagiain for biological
systems. Feedback is widely used to measure ion currentdisruseng a device
called avoltage clampwhich is illustrated in Figurd.8 Hodgkin and Huxley
used the voltage clamp to investigate propagation of agt@iantials in the giant
axon of the squid. In 1963 they shared the Nobel Prize in Mediwiith Eccles
for “their discoveries concerning the ionic mechanism®ived in excitation and
inhibition in the peripheral and central portions of theveecell membrane.” A
refinement of the voltage clamp calleghatch clampmade it possible to measure
exactly when a single ion channel is opened or closed. Thisdessloped by
Neher and Sakmann, who received the 1991 Nobel Prize in Medtéin their
discoveries concerning the function of single ion chanimetzlls.”

There are many other interesting and useful applicationsexffack in scien-
tific instruments. The development of the mass spectrometar early example.
In a 1935 paper, Nier observed that the deflection of ions dépen both the
magnetic and the electric fieldblie35. Instead of keeping both fields constant,
Nier let the magnetic field fluctuate and the electric field wadrotied to keep the
ratio between the fields constant. Feedback was implementegl vescuum tube
amplifiers. This scheme was crucial for the development of ssstroscopy.

The Dutch engineer van der Meer invented a clever way to ustbée to
maintain a good-quality high-density beam in a particlesterator MPTvdM8(.
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The idea is to sense particle displacement at one point incitedexator and apply
a correcting signal at another point. This scheme, caltedhastic coolingwas
awarded the Nobel Prize in Physics in 1984. The method was edstentthe
successful experiments at CERN where the existence of thelparW and Z
associated with the weak force was first demonstrated.

The 1986 Nobel Prize in Physics—awarded to Binnig and Rohretheir
design of the scanning tunneling microscope—is anothanpi@of an innovative
use of feedback. The key idea is to move a narrow tip on a caeetilream across
a surface and to register the forces on the BR86. The deflection of the tip is
measured using tunneling. The tunneling current is used kgdbiack system to
control the position of the cantilever base so that the tlimgpeurrent is constant,
an example of force feedback. The accuracy is so high thatithd@il atoms can
be registered. A map of the atoms is obtained by moving the bthe cantilever
horizontally. The performance of the control system is diyereflected in the
image quality and scanning speed. This example is descnibadditional detalil
in Chapter3.

Robotics and Intelligent Machines

The goal of cybernetic engineering, already articulatethé1940s and even be-
fore, has been to implement systems capable of exhibitiglghpiflexible or “in-
telligent” responses to changing circumstances. In 1948 mathematician
Norbert Wiener gave a widely read account of cybernetidief4g. A more math-
ematical treatment of the elements of engineering cybieshetas presented by
H. S. Tsien in 1954, driven by problems related to the controhisiles [T'si54].
Together, these works and others of that time form much ofrtedlectual basis
for modern work in robotics and control.

Two accomplishments that demonstrate the successes oflthariethe Mars
Exploratory Rovers and entertainment robots such as the SB®,Ashown in
Figurel.9. The two Mars Exploratory Rovers, launched by the Jet Propulsid-
oratory (JPL), maneuvered on the surface of Mars for more tharars starting in
January 2004 and sent back pictures and measurementsraértigonment. The
Sony AIBO robot debuted in June 1999 and was the first “ententm” robot to
be mass-marketed by a major international corporationall particularly note-
worthy because of its use of artificial intelligence (Al) taologies that allowed it
to act in response to external stimulation and its own judgmEhis higher level
of feedback is a key element in robotics, where issues suohsiacle avoidance,
goal seeking, learning and autonomy are prevalent.

Despite the enormous progress in robotics over the lastcealfury, in many
ways the field is still in its infancy. Today’s robots still éklt simple behaviors
compared with humans, and their ability to locomote, intetrgomplex sensory
inputs, perform higher-level reasoning and cooperateth@gen teams is limited.
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Figure 1.9: Robotic systems. (a) Spirit, one of the two Mars Exploratory Rovers thedeth

on Mars in January 2004. (b) The Sony AIBO Entertainment Robotobmiee first enter-

tainment robots to be mass-marketed. Both robots make use of féebisaeeen sensors,
actuators and computation to function in unknown environments. (Plagtbgrcourtesy of
Jet Propulsion Laboratory and Sony Electronics, Inc.)

Indeed, much of Wiener’s vision for robotics and intellig@machines remains
unrealized. While advances are needed in many fields to aliies vision—

including advances in sensing, actuation and energy sterdige opportunity to
combine the advances of the Al community in planning, adeptand learning

with the techniques in the control community for modelingalgsis and design of
feedback systems presents a renewed path for progress.

Networks and Computing Systems

Control of networks is a large research area spanning maystancluding con-
gestion control, routing, data caching and power manager8ereral features of
these control problems make them very challenging. The damifeature is the
extremely large scale of the system; the Internet is probtia largest feedback
control system humans have ever built. Another is the deakred nature of the
control problem: decisions must be made quickly and baskboriocal informa-
tion. Stability is complicated by the presence of varyingetilags, as information
about the network state can be observed or relayed to ctemgr@nly after a de-
lay, and the effect of a local control action can be felt tlgioaut the network
only after substantial delay. Uncertainty and variatiothi&nnetwork, through net-
work topology, transmission channel characteristicficrdemand and available
resources, may change constantly and unpredictably. ©tingplicating issues are
the diverse traffic characteristics—in terms of arrivalistets at both the packet
and flow time scales—and the different requirements for guafiservice that the
network must support.

Related to the control of networks is control of the serviead sit on these net-
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Figure 1.10: A multitier system for services on the Internet. In the complete system shown
schematically in (a), users request information from a set of comgp(iter 1), which in turn
collect information from other computers (tiers 2 and 3). The individealer shown in (b)

has a set of reference parameters set by a (human) system opweititdeedback used to
maintain the operation of the system in the presence of uncertainty. (Badéellerstein et

al. [HDPTO04.)

works. Computers are key components of the systems of muteb servers and
database servers used for communication, electronic cooemadvertising and
information storage. While hardware costs for computingetdecreased dramati-
cally, the cost of operating these systems has increasedigeof the difficulty in
managing and maintaining these complex interconnectddrags The situation is
similar to the early phases of process control when feedwasKirst introduced to
control industrial processes. As in process control, theeeinteresting possibili-
ties for increasing performance and decreasing costs lyiagieedback. Several
promising uses of feedback in the operation of computeesystare described in
the book by Hellerstein et alHDPTO04.

A typical example of a multilayer system for e-commerce isvah in Fig-
ure 1.10a The system has several tiers of servers. The edge servertadacep
coming requests and routes them to the HTTP server tier wheyeatfe parsed
and distributed to the application servers. The processingifferent requests can
vary widely, and the application servers may also accessredtservers managed
by other organizations.

Control of an individual server in a layer is illustrated ilg&ie1.10b A quan-
tity representing the quality of service or cost of opematiesuch as response time,
throughput, service rate or memory usage—is measured ootheuter. The con-
trol variables might represent incoming messages acceptiexties in the oper-
ating system or memory allocation. The feedback loop thesgits to maintain
quality-of-service variables within a target range of esu

Economics

The economy is a large, dynamical system with many actorergovents, orga-
nizations, companies and individuals. Governments cbtiteoeconomy through
laws and taxes, the central banks by setting interest raig@€@mpanies by set-
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ting prices and making investments. Individuals contrelésonomy through pur-
chases, savings and investments. Many efforts have beea tmadodel the sys-
tem both at the macro level and at the micro level, but thisefing is difficult
because the system is strongly influenced by the behaviotedlifferent actors
in the system.

Keynes Key36 developed a simple model to understand relations amorgsgro
national product, investment, consumption and governggrding. One of Keynes’
observations was that under certain conditions, e.g.nduhie 1930s depression,
an increase in the investment of government spending ceald fo a larger in-
crease in the gross national product. This idea was used bya@overnments to
try to alleviate the depression. Keynes’ ideas can be cegtoy a simple model
that is discussed in Exerci@e4.

A perspective on the modeling and control of economic systeam be ob-
tained from the work of some economists who have receive®tiegiges Riks-
bank Prize in Economics in Memory of Alfred Nobel, popularlyied the Nobel
Prize in Economics. Paul A. Samuelson received the prize in 1&7Qhe sci-
entific work through which he has developed static and dynaoanomic the-
ory and actively contributed to raising the level of anadyisi economic science.”
Lawrence Klein received the prize in 1980 for the developroétdarge dynamical
models with many parameters that were fitted to historiced G55, e.g., a
model of the U.S. economy in the period 1929-1952. Other relsess have mod-
eled other countries and other periods. In 1997 Myron Sclehesed the prize
with Robert Merton for a new method to determine the value exfvdtives. A
key ingredient was a dynamic model of the variation of stadkgs that is widely
used by banks and investment companies. In 2004 Finn E. Kydiat&dward C.
Prestcott shared the economics prize “for their contrimgito dynamic macroe-
conomics: the time consistency of economic policy and theérdy forces behind
business cycles,” a topic that is clearly related to dynaraiad control.

One of the reasons why it is difficult to model economic systenikat there
are no conservation laws. A typical example is that the vafuecompany as ex-
pressed by its stock can change rapidly and erratically.€Taex, however, some
areas with conservation laws that permit accurate mode@mg example is the
flow of products from a manufacturer to a retailer as illugiléin Figurel.11 The
products are physical quantities that obey a conservationdnd the system can
be modeled by accounting for the number of products in tHergifit inventories.
There are considerable economic benefits in controlling sughalins so that prod-
ucts are available to customers while minimizing producéd are in storage. The
real problems are more complicated than indicated in thedigacause there may
be many different products, there may be different factatiat are geographically
distributed and the factories may require raw material bassemblies.

Control of supply chains was proposed by Forrester in 19&itd1 and is



1.3. FEEDBACK EXAMPLES 16

Factory Warehouse Distributors Retailers

— — - —

|
\\\
\

/
7
-

~
~

advertisement ~~ = {1 CHOHOH GG

Consumers

Figure 1.11: Supply chain dynamics (after Forrest&of61). Products flow from the pro-
ducer to the customer through distributors and retailers as indicated bylithérees. There
are typically many factories and warehouses and even more distrilundretailers. Multi-
ple feedback loops are present as each agent tries to maintain the ipuapeory level.

now growing in importance. Considerable economic benefitsbeaobtained by
using models to minimize inventories. Their use accelerdtadhatically when
information technology was applied to predict sales, keapkt of products and
enable just-in-time manufacturing. Supply chain manageimas contributed sig-
nificantly to the growing success of global distributors.

Advertising on the Internet is an emerging application aftool. With network-
based advertising it is easy to measure the effect of differerketing strategies
quickly. The response of customers can then be modeled, adtidek strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understandgyregate behavior
in complex large-scale systems. This behavior emerges finenmteraction of a

multitude of simpler systems with intricate patterns ommhation flow. Repre-

sentative examples can be found in fields ranging from embgyaio seismology.

Researchers who specialize in the study of specific compkes)s often develop
an intuitive emphasis on analyzing the role of feedbackrtarconnection) in fa-

cilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domgiarts for the
analysis of various complex systems, the development @faous methodology
that can discover and exploit common features and essemtitiematical struc-
ture is just beginning to emerge. Advances in science armhtdagy are creating
a new understanding of the underlying dynamics and the itapoe of feedback
in a wide variety of natural and technological systems. Weflgrhighlight three
application areas here.

Biological System#A major theme currently of interest to the biology commu-
nity is the science of reverse (and eventually forward) eegiing of biological
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Figure 1.12: The wiring diagram of the growth-signaling circuitry of the mammalian
cell [HWO0OQ]. The major pathways that are thought to play a role in cancer are indicate
in the diagram. Lines represent interactions between genes and priotéiescell. Lines
ending in arrowheads indicate activation of the given gene or pathwags énding in a
T-shaped head indicate repression. (Used with permission of Elsedieaid the authors.)

control networks such as the one shown in FiglwE2 There are a wide variety
of biological phenomena that provide a rich source of exaspf control, includ-

ing gene regulation and signal transduction; hormonal,umafogical and cardio-
vascular feedback mechanisms; muscular control and lotomactive sensing,
vision and proprioception; attention and consciousness p@pulation dynamics
and epidemics. Each of these (and many more) provide opptesito figure out

what works, how it works, and what we can do to affect it.

One interesting feature of biological systems is the freguse of positive
feedback to shape the dynamics of the system. Positive fekdiaa be used to
create switchlike behavior through autoregulation of aeg@md to create oscilla-
tions such as those present in the cell cycle, central pagemerators or circadian
rhythm.

Ecosystemdn contrast to individual cells and organisms, emergenp@ries
of aggregations and ecosystems inherently reflect seletigmmanisms that act on
multiple levels, and primarily on scales well below that lod tsystem as a whole.
Because ecosystems are complex, multiscale dynamicamnsgsthey provide a
broad range of new challenges for the modeling and analy$tedback systems.



1.4. FEEDBACK PROPERTIES 18

Recent experience in applying tools from control and dymaisystems to bac-
terial networks suggests that much of the complexity ofehsstworks is due to
the presence of multiple layers of feedback loops that pevobust functional-
ity to the individual cell. Yet in other instances, eventstet cell level benefit the
colony at the expense of the individual. Systems level aisatyan be applied to
ecosystems with the goal of understanding the robustnesscbfsystems and the
extent to which decisions and events affecting individya&icses contribute to the
robustness and/or fragility of the ecosystem as a whole.

Environmental Sciencé.is now indisputable that human activities have altered
the environment on a global scale. Problems of enormous @xitypthallenge re-
searchers in this area, and first among these is to understameetdback systems
that operate on the global scale. One of the challenges ielgj@ng such an un-
derstanding is the multiscale nature of the problem, withitkd understanding of
the dynamics of microscale phenomena such as microbi@bgiganisms being
a necessary component of understanding global phenomeetaas the carbon
cycle.

1.4 Feedback Properties

Feedback is a powerful idea which, as we have seen, is usatsadly in natural
and technological systems. The principle of feedback is lenigase correcting
actions on the difference between desired and actual pesfoce. In engineering,
feedback has been rediscovered and patented many timesindifferent con-
texts. The use of feedback has often resulted in vast impremenin system ca-
pability, and these improvements have sometimes beerutemoary, as discussed
above. The reason for this is that feedback has some trulyrkainle properties.
In this section we will discuss some of the properties of bemtt that can be un-
derstood intuitively. This intuition will be formalized irubsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness teriaiaty. By mea-
suring the difference between the sensed value of a regudgnal and its desired
value, we can supply a corrective action. If the system ks some change that
affects the regulated signal, then we sense this changeyatalforce the system
back to the desired operating point. This is precisely thecethat Watt exploited
in his use of the centrifugal governor on steam engines.

As an example of this principle, consider the simple feelllsgstem shown in
Figure1.13 In this system, the speed of a vehicle is controlled by ditigshe
amount of gas flowing to the engine. Simplportional-integral (P1) feedback
is used to make the amount of gas depend on both the error dretive current
and the desired speed and the integral of that error. The plthe right shows
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Figure 1.13: A feedback system for controlling the speed of a vehicle. In the blockaliag
on the left, the speed of the vehicle is measured and compared to theldgses within the
“Compute” block. Based on the difference in the actual and desiregtispéhe throttle (or
brake) is used to modify the force applied to the vehicle by the enginetdain and wheels.
The figure on the right shows the response of the control system to maonded change
in speed from 25 m/s to 30 m/s. The three different curves corresfmodiffering masses
of the vehicle, between 1000 and 3000 kg, demonstrating the robustinthesclosed loop
system to a very large change in the vehicle characteristics.

the results of this feedback for a step change in the desreeldsand a variety of
different masses for the car, which might result from haardjfferent number of
passengers or towing a trailer. Notice that independeihieofitass (which varies by
a factor of 3!), the steady-state speed of the vehicle alappsoaches the desired
speed and achieves that speed within approximately 5 s. Tibysetrformance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide rotass is the nega-
tive feedback amplifier. When telephone communications weveloped, ampli-
fiers were used to compensate for signal attenuation in loeg.liA vacuum tube
was a component that could be used to build amplifiers. Distodaused by the
nonlinear characteristics of the tube amplifier togethehaitnplifier drift were
obstacles that prevented the development of line amplifagra fong time. A ma-
jor breakthrough was the invention of the feedback amplifiet927 by Harold S.
Black, an electrical engineer at Bell Telephone Laborasoidack usedhegative
feedbackwhich reduces the gain but makes the amplifier insensitivatiations
in tube characteristics. This invention made it possibleuitdbstable amplifiers
with linear characteristics despite the nonlinearitiethefvacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a sySthrough feed-
back, we can alter the behavior of a system to meet the neeais application:
systems that are unstable can be stabilized, systems ésluggish can be made
responsive and systems that have drifting operating poerisbe held constant.
Control theory provides a rich collection of techniquesnalgize the stability and
dynamic response of complex systems and to place bounde deltavior of such
systems by analyzing the gains of linear and nonlinear egexthat describe their
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components.

An example of the use of control in the design of dynamics cfmem the
area of flight control. The following quote, from a lecture mneted by Wilbur
Wright to the Western Society of Engineers in 1980AcF53, illustrates the role
of control in the development of the airplane:

Men already know how to construct wings or airplanes, whittem
driven through the air at sufficient speed, will not only sirsthe
weight of the wings themselves, but also that of the engind, Gt
the engineer as well. Men also know how to build engines arehsc

of sufficient lightness and power to drive these planes aaBusy
speed ... Inability to balance and steer still confrontsletiis of the
flying problem ... When this one feature has been worked oet, th
age of flying will have arrived, for all other difficulties are ofinor
importance.

The Wright brothers thus realized that control was a key iss@mable flight.
They resolved the compromise between stability and maneahiigy by building
an airplane, the Wright Flyer, that was unstable but manainer The Flyer had
a rudder in the front of the airplane, which made the plang weaneuverable. A
disadvantage was the necessity for the pilot to keep adgighie rudder to fly the
plane: if the pilot let go of the stick, the plane would craétther early aviators
tried to build stable airplanes. These would have been esilyt but because of
their poor maneuverability they could not be brought up thair. By using their
insight and skillful experiments the Wright brothers mauefirst successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there sttlaong motiva-
tion to find a mechanism that would stabilize an aircraft. Sude\dce, invented
by Sperry, was based on the concept of feedback. Sperry use-astgypilized
pendulum to provide an indication of the vertical. He theraiaged a feedback
mechanism that would pull the stick to make the plane go up Wds point-
ing down, and vice versa. The Sperry autopilot was the first udeeafback in
aeronautical engineering, and Sperry won a prize in a cotigefor the safest
airplane in Paris in 1914. Figure14 shows the Curtiss seaplane and the Sperry
autopilot. The autopilot is a good example of how feedbackeamsed to stabilize
an unstable system and hence “design the dynamics” of tbetir

One of the other advantages of designing the dynamics of imelethat it
allows for increased modularity in the overall system desBy using feedback
to create a system whose response matches a desired profilenwale the com-
plexity and variability that may be present inside a sulmystThis allows us to
create more complex systems by not having to simultanedusty/the responses
of a large number of interacting components. This was oneehtlvantages of
Black’s use of negative feedback in vacuum tube amplifieles:résulting device
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Figure 1.14: Aircraft autopilot system. The Sperry autopilot (left) contained a sdbof
gyros coupled to a set of air valves that controlled the wing surfaces19h2 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able totanalevel
flight as a mechanic walked on the wing (righyg93.

had a well-defined linear input/output response that did apedd on the individ-
ual characteristics of the vacuum tubes being used.

Higher Levels of Automation

A major trend in the use of feedback is its application to biglevels of situa-
tional awareness and decision making. This includes not waditional logical
branching based on system conditions but also optimizatidaptation, learning
and even higher levels of abstract reasoning. These prolassria the domain of
the artificial intelligence community, with an increasinderof dynamics, robust-
ness and interconnection in many applications.

One of the interesting areas of research in higher levelseofsin is au-
tonomous control of cars. Early experiments with autonontivdng were per-
formed by Ernst Dickmanns, who in the 1980s equipped cars edtheras and
other sensorsic07]. In 1994 his group demonstrated autonomous driving with
human supervision on a highway near Paris and in 1995 ones@igns drove au-
tonomously (with human supervision) from Munich to Copeygraat speeds of
up to 175 km/hour. The car was able to overtake other vehicidshange lanes
automatically.

This application area has been recently explored througb&iRPA Grand
Challenge, a series of competitions sponsored by the U.&rgment to build ve-
hicles that can autonomously drive themselves in desertidyah environments.
Caltech competed in the 2005 and 2007 Grand Challenges asimagified Ford
E-350 offroad van nicknamed “Alice.” It was fully automateailuding electron-
ically controlled steering, throttle, brakes, transmdgsand ignition. Its sensing
systems included multiple video cameras scanning at 10z36dveral laser rang-
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Figure 1.15:DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the 2005 ar@720
competitions and its networked control architect @& G+064. The feedback system fuses
data from terrain sensors (cameras and laser range finders) tohetex digital elevation
map. This map is used to compute the vehicle’s potential speed over thatemnd an
optimization-based path planner then commands a trajectory for the véhitddow. A
supervisory control module performs higher-level tasks suchrdling sensor and actuator
failures.

ing units scanning at 10 Hz and an inertial navigation paekzagpable of providing
position and orientation estimates at 5 ms temporal rasoluComputational re-
sources included 12 high-speed servers connected todbtbaegh a 1-Gb/s Eth-
ernet switch. The vehicle is shown in Figutel5 along with a block diagram of
its control architecture.

The software and hardware infrastructure that was develepatled the ve-
hicle to traverse long distances at substantial speedsstimg), Alice drove itself
more than 500 km in the Mojave Desert of California, with thdity to follow
dirt roads and trails (if present) and avoid obstacles atbagath. Speeds of more
than 50 km/h were obtained in the fully autonomous mode. @uksat tuning
of the algorithms was done during desert testing, in parabge of the lack of
systems-level design tools for systems of this level of dewity. Other competi-
tors in the race (including Stanford, which won the 2005 catitipa) used algo-
rithms for adaptive control and learning, increasing theatilities of their sys-
tems in unknown environments. Together, the competitotisérGrand Challenge
demonstrated some of the capabilities of the next generaticontrol systems
and highlighted many research directions in control at éighvels of decision
making.

Drawbacks of Feedback

While feedback has many advantages, it also has some drisvi@ltsief among
these is the possibility of instability if the system is n@&sdyned properly. We
are all familiar with the effects opositive feedbackvhen the amplification on
a microphone is turned up too high in a room. This is an exampfeeamback
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instability, something that we obviously want to avoid. Tisigricky because we
must design the system not only to be stable under nominalittoms but also to
remain stable under all possible perturbations of the dycem

In addition to the potential for instability, feedback iméetly couples different
parts of a system. One common problem is that feedback affents measure-
ment noise into the system. Measurements must be carefudyefil so that the
actuation and process dynamics do not respond to them, ahilee same time
ensuring that the measurement signal from the sensor iegyagupled into the
closed loop dynamics (so that the proper levels of perfonaame achieved).

Another potential drawback of control is the complexity afleedding a con-
trol system in a product. While the cost of sensing, compartand actuation has
decreased dramatically in the past few decades, the faetimsrthat control sys-
tems are often complicated, and hence one must carefulnbalthe costs and
benefits. An early engineering example of this is the use ofopiocessor-based
feedback systems in automobiles.The use of microprocessamtomotive appli-
cations began in the early 1970s and was driven by increlgsstigct emissions
standards, which could be met only through electronic cbsitrEarly systems
were expensive and failed more often than desired, leadirfigetjuent customer
dissatisfaction. It was only through aggressive improvetsién technology that
the performance, reliability and cost of these systemsvalibthem to be used in a
transparent fashion. Even today, the complexity of thesteBysis such that it is
difficult for an individual car owner to fix problems.

Feedforward

Feedback is reactive: there must be an error before coreeatitions are taken.
However, in some circumstances it is possible to measurstarbdance before it
enters the system, and this information can then be usedécctarective action
before the disturbance has influenced the system. The effabedisturbance
is thus reduced by measuring it and generating a controhktgat counteracts it.
This way of controlling a system is callégedforward Feedforward is particularly
useful in shaping the response to command signals becaosaamd signals are
always available. Since feedforward attempts to match tgmeds, it requires good
process models; otherwise the corrections may have thegnsme or may be
badly timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward arlgoas to a market-
based economy versus a planned economy. In business, arigardf strategy
corresponds to running a company based on extensive stratagning, while a
feedback strategy corresponds to a reactive approacholiogyi feedforward has
been suggested as an essential element for motion contiahiians that is tuned
during training. Experience indicates that it is often adageous to combine feed-
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back and feedforward, and the correct balance requireghihand understanding
of their respective properties.

Positive Feedback

In most of this text, we will consider the role akgative feedbackn which we
attempt to regulate the system by reacting to disturbamcasiay that decreases
the effect of those disturbances. In some systems, paatigdiological systems,
positive feedbackan play an important role. In a system with positive fee&tbac
the increase in some variable or signal leads to a situatiariich that quantity is
further increased through its dynamics. This has a destadglieffect and is usu-
ally accompanied by a saturation that limits the growth ef gmantity. Although
often considered undesirable, this behavior is used irgiocal (and engineering)
systems to obtain a very fast response to a condition orlsigna

One example of the use of positive feedback is to create lsingcbehavior,
in which a system maintains a given state until some inpusae a threshold.
Hysteresis is often present so that noisy inputs near tiesllotd do not cause the
system to jitter. This type of behavior is callb@tability and is often associated
with memory devices.

1.5 Simple Forms of Feedback

The idea of feedback to make corrective actions based on fieeettice between
the desired and the actual values of a quantity can be impl@dén many differ-

ent ways. The benefits of feedback can be obtained by very siegiback laws
such as on-off control, proportional control and proparéibintegral-derivative
control. In this section we provide a brief preview of someha topics that will

be studied more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

:{umax ife>0 (1.1)
Unin Ife<0,
where thecontrol error e=r —y is the difference between the reference signal (or
command signal) and the output of the systeyrandu is the actuation command.
Figurel.1l6ashows the relation between error and control. This contvolhaplies
that maximum corrective action is always used.

The feedback in equatiod () is calledon-off control One of its chief advan-
tagesisthatitis simple and there are no parameters to eh@osoff control often
succeeds in keeping the process variable close to the mefersuch as the use of
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Figure 1.16: Input/output characteristics of on-off controllers. Each plot showéniet on
the horizontal axis and the corresponding output on the vertical axal toh-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (afe that for on-off
control with hysteresis, the output depends on the value of past inputs.

a simple thermostat to maintain the temperature of a rootgpitally results in
a system where the controlled variables oscillate, whidaftsn acceptable if the
oscillation is sufficiently small.

Notice that in equation1(1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing ezith dead zone or
hysteresis (see Figufel6bandl1.169.

PID Control

The reason why on-off control often gives rise to oscillasias that the system
overreacts since a small change in the error makes the edtuatiable change
over the full range. This effect is avoidedpnoportional contro] where the char-
acteristic of the controller is proportional to the contalor for small errors. This
can be achieved with the control law

Umax If €> €max
u= < kpe if emin < &< emax (1.2)
Umin  if € < €nin,

wherek,, is the controller gaingmin = Umin/Kp andeémax = Umax/Kp. The interval
(emin, €max) is called theproportional bandbecause the behavior of the controller
is linear when the error is in this interval:

u=Kp(r—y) =kpe if €min < e < enax (1.3)

While a vast improvement over on-off control, proportiocahtrol has the
drawback that the process variable often deviates fronefesence value. In par-
ticular, if some level of control signal is required for thgsteem to maintain a
desired value, then we must hawe 0 in order to generate the requisite input.

This can be avoided by making the control action proportioodhe integral
of the error:

u(t) = ki /Ot e(1)dr. (1.4)
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Figure 1.17: Action of a PID controller. At time, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedb&elsed on the integral

of the error up to time (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of changheferror. Ty
represents the approximate amount of time in which the error is projemtedrd (see text).

This control form is calledntegral control andk; is the integral gain. It can be
shown through simple arguments that a controller with irgtegction has zero
steady-state error (Exerci&eb). The catch is that there may not always be a steady
state because the system may be oscillating.

An additional refinement is to provide the controller with antieipative abil-
ity by using a prediction of the error. A simple predictiongisen by the linear
extrapolation

det)

e(t +Td) =~ e(t) +Td7dt ,

which predicts the errory time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be egpeel mathematically as

t
u(t) :kpe(t)+ka/0 e(r)dr+kddz(:). (1.5)
The control action is thus a sum of three terms: the past aggepted by the
integral of the error, the present as represented by theogiopal term and the
future as represented by a linear extrapolation of the €ther derivative term).
This form of feedback is called@oportional-integral-derivative (PI1D) controller
and its action is illustrated in Figute17.

A PID controller is very useful and is capable of solving a widege of con-
trol problems. More than 95% of all industrial control pretvis are solved by
PID control, although many of these controllers are actyathportional-integral
(PI) controllersbecause derivative action is often not includB#02]. There are
also more advanced controllers, which differ from PID coligrs by using more
sophisticated methods for prediction.
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1.6 Further Reading

The material in this section draws heavily from the reporthaf Panel on Future
Directions on Control, Dynamics and Systerivkf03]. Several additional papers
and reports have highlighted the successes of coif8Bf and new vistas in
control [Bro0O0O, Kum01, Wis07. The early development of control is described
by Mayr [May7( and in the books by BennetBgn79 Ben93, which cover the
period 1800-1955. A fascinating examination of some of #agyénistory of con-
trol in the United States has been written by Mind&lifn02]. A popular book
that describes many control concepts across a wide rangsayplthes isOut of
Control by Kelly [Kel94]. There are many textbooks available that describe con-
trol systems in the context of specific disciplines. For eagis, the textbooks by
Franklin, Powell and Emami-NaeirfrfPENOS, Dorf and Bishop PB04], Kuo and
Golnaraghi KG02] and Seborg, Edgar and MellichanfpEM04 are widely used.
More mathematically oriented treatments of control theocjude Sontag$on9g
and Lewis Lew03. The book by Hellerstein et alHDPT04 provides a descrip-
tion of the use of feedback control in computing systems. Aber of books
look at the role of dynamics and feedback in biological systeincluding Mil-
horn Mil66] (now out of print), J. D. Murray Mur04] and Ellner and Gucken-
heimer EG0Y. The book by FradkovHfra07 and the tutorial article by Bechhoe-
fer [Bec03 cover many specific topics of interest to the physics comiguni

Exercises

1.1(Eye motion) Perform the following experiment and explainy@sults: Hold-
ing your head still, move one of your hands left and right iontrof your face,
following it with your eyes. Record how quickly you can moweuy hand before
you begin to lose track of it. Now hold your hand still and shahkur head left to
right, once again recording how quickly you can move befoséng track of your
hand.

1.2 Identify five feedback systems that you encounter in youryelay environ-
ment. For each system, identify the sensing mechanismatimiumechanism and
control law. Describe the uncertainty with respect to which feedback system
provides robustness and/or the dynamics that are changmatinthe use of feed-
back.

1.3(Balance systems) Balance yourself on one foot with yous ei@sed for 15 s.
Using Figurel.3 as a guide, describe the control system responsible foiirkgep
you from falling down. Note that the “controller” will difiefrom that in the dia-
gram (unless you are an android reading this in the far fluture
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1.4(Cruise control) Download the MATLAB code used to produce satians for
the cruise control system in Figutel3from the companion web site. Using trial
and error, change the parameters of the control law so teaiwérshoot in speed
is not more than 1 m/s for a vehicle with mams= 1000 kg.

1.5 (Integral action) We say that a system with a constant inpathes steady
state if the output of the system approaches a constant ealuiene increases.
Show that a controller with integral action, such as thosergin equationsi(.4)
and (L.5), gives zero error if the closed loop system reaches stdath. s

1.6 Search the web and pick an article in the popular press abaedibéck and
control system. Describe the feedback system using thertelogy given in the
article. In particular, identify the control system and ctése (a) the underlying
process or system being controlled, along with the (b) sefspactuator and (d)
computational element. If the some of the information isawaiilable in the article,
indicate this and take a guess at what might have been used.



Chapter Two
System Modeling

... | asked Fermi whether he was not impressed by the agreemawmtdre our calculated
numbers and his measured numbers. He replied, “How many arbipargmeters did you
use for your calculations?” | thought for a moment about our cut-ofigedures and said,
“Four” He said, “l remember my friend Johnny von Neumann usedaty svith four param-
eters | can fit an elephant, and with five | can make him wiggle his trunk”

Freeman Dyson on describing the predictions of his model for mesuinspscattering to
Enrico Fermi in 1953Dys04.

A model is a precise representation of a system’s dynamied ts answer
guestions via analysis and simulation. The model we chogsendis on the ques-
tions we wish to answer, and so there may be multiple modelsa fgingle dy-
namical system, with different levels of fidelity dependingtbe phenomena of
interest. In this chapter we provide an introduction to thieaept of modeling and
present some basic material on two specific methods commealy in feedback
and control systems: differential equations and diffeeepguations.

2.1 Modeling Concepts

A modelis a mathematical representation of a physical, biologicahformation
system. Models allow us to reason about a system and make&twed about
how a system will behave. In this text, we will mainly be irgsted in models of
dynamical systems describing the input/output behavi@ystems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which thecesffef actions
do not occur immediately. For example, the velocity of a caesinot change
immediately when the gas pedal is pushed nor does the tetapeia a room
rise instantaneously when a heater is switched on. Similatheadache does not
vanish right after an aspirin is taken, requiring time fdoitake effect. In business
systems, increased funding for a development project datdaerease revenues in
the short term, although it may do so in the long term (if it wapod investment).
All of these are examples of dynamical systems, in which thleakior of the
system evolves with time.

In the remainder of this section we provide an overview of emhthe key
concepts in modeling. The mathematical details introdueed &are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring—mass system with nonlinear damping. The position of the mass is de-
noted byq, with g = O corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring conktamdl a damper with force depen-
dent on the velocity.”

The Heritage of Mechanics

The study of dynamics originated in attempts to describegiéay motion. The
basis was detailed observations of the planets by TychoeBaal the results of
Kepler, who found empirically that the orbits of the plansdsiid be well described
by ellipses. Newton embarked on an ambitious program tatexplain why the
planets move in ellipses, and he found that the motion coeldxXplained by his
law of gravitation and the formula stating that force equadss times acceleration.
In the process he also invented calculus and differentiahgons.

One of the triumphs of Newton’s mechanics was the obsenvaliat the mo-
tion of the planets could be predicted based on the curresitipos and velocities
of all planets. It was not necessary to know the past motioa stdteof a dynam-
ical system is a collection of variables that completelyrabterizes the motion of
a system for the purpose of predicting future motion. Forsiesy of planets the
state is simply the positions and the velocities of the gan&e call the set of all
possible states thstate space

A common class of mathematical models for dynamical systisnesdinary
differential equations (ODES). In mechanics, one of the &stsuch differential
equations is that of a spring—mass system with damping:

md+c(q) +kg=0. (2.1)

This system is illustrated in Figu2 1 The variableg € R represents the position
of the masam with respect to its rest position. We use the notatioio denote

the derivative ofg with respect to time (i.e., the velocity of the mass) antb ~

represent the second derivative (acceleration). The spsimgsumed to satisfy
Hooke’s law, which says that the force is proportional to digplacement. The
friction element (damper) is taken as a nonlinear functi@), which can model

effects such as stiction and viscous drag. The posiiand velocityq represent

the instantaneous state of the system. We say that thisnsystasecond-order

systensince the dynamics depend on the first two derivatives of
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Figure 2.2: lllustration of a state model. A state model gives the rate of change of ttee sta
as a function of the state. The plot on the left shows the evolution of the statéuaction

of time. The plot on the right shows the evolution of the states relative to ethehn, with

the velocity of the state denoted by arrows.

The evolution of the position and velocity can be describadgusither a time
plot or a phase portrait, both of which are shown in Fig2u2 Thetime plot on
the left, shows the values of the individual states as a fongif time. Thephase
portrait, on the right, shows theector fieldfor the system, which gives the state
velocity (represented as an arrow) at every point in the saaice. In addition, we
have superimposed the traces of some of the states frometiiffeonditions. The
phase portrait gives a strong intuitive representatiorhefd@quation as a vector
field or a flow. While systems of second order (two states) carepreesented in
this way, unfortunately it is difficult to visualize equat®of higher order using
this approach.

The differential equation?(1) is called anautonomousystem because there
are no external influences. Such a model is natural for use éstigl mechanics
because it is difficult to influence the motion of the planetanbmy examples, it
is useful to model the effects of external disturbances atrotied forces on the
system. One way to capture this is to replace equafidh) by

mG+c(q) +ka=u, (2.2)

whereu represents the effect of external inputs. The mog4) (s called aforced

or controlled differential equatianit implies that the rate of change of the state
can be influenced by the inpuft). Adding the input makes the model richer and
allows new questions to be posed. For example, we can examfatinfluence
external disturbances have on the trajectories of a sy<dgmn the case where
the input variable is something that can be modulated in &clbed way, we can
analyze whether it is possible to “steer” the system from poiat in the state
space to another through proper choice of the input.
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Figure 2.3: lllustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the onthemight is its
representation as a block diagram.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineg, where the de-
sign of electronic amplifiers led to a focus on input/outputdéor. A system was
considered a device that transforms inputs to outputs|usdriited in Figure.3.
Conceptually an input/output model can be viewed as a gaoie tof inputs and
outputs. Given an input signalt) over some interval of time, the model should
produce the resulting output).

The input/output framework is used in many engineering dis@s since it
allows us to decompose a system into individual componesrisected through
their inputs and outputs. Thus, we can take a complicate@rmsystich as a radio
or a television and break it down into manageable pieces asdine receiver,
demodulator, amplifier and speakers. Each of these piecesd®®ainputs and
outputs and, through proper design, these components cardoeonnected to
form the entire system.

The input/output view is particularly useful for the spedaikass oflinear time-
invariant systemsThis term will be defined more carefully later in this chapler,
roughly speaking a system is linear if the superpositiorlifaah) of two inputs
yields an output that is the sum of the outputs that wouldespond to individual
inputs being applied separately. A system is time-invaiiftie output response
for a given input does not depend on when that input is applied

Many electrical engineering systems can be modeled bytlitve-invariant
systems, and hence a large number of tools have been dedetpralyze them.
One such tool is thetep responsevhich describes the relationship between an
input that changes from zero to a constant value abruptlye@ isput) and the
corresponding output. As we shall see later in the text, thp gesponse is very
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Figure 2.4: Input/output response of a linear system. The step response (a3 gimautput
of the system due to an input that changes from 0 to 1 at timé& s. The frequency re-
sponse (b) shows the amplitude gain and phase change due to a sihingoitiat different

frequencies.

useful in characterizing the performance of a dynamicaksgsand it is often used
to specify the desired dynamics. A sample step responsevasim Figure2.4a

Another way to describe a linear time-invariant system igefresent it by its
response to sinusoidal input signals. This is calledfthguency responsand a
rich, powerful theory with many concepts and strong, usefallts has emerged.
The results are based on the theory of complex variables anddeapransforms.
The basic idea behind frequency response is that we can cafypdbaracterize
the behavior of a system by its steady-state response tedgédal inputs. Roughly
speaking, this is done by decomposing any arbitrary sigrtal a linear combi-
nation of sinusoids (e.g., by using the Fourier transforng tnen using linearity
to compute the output by combining the response to the iddalifrequencies. A
sample frequency response is shown in Figlivh

The input/output view lends itself naturally to experimémeatermination of
system dynamics, where a system is characterized by recpidi response to
particular inputs, e.g., a step or a set of sinusoids ovengeraf frequencies.

The Control View

When control theory emerged as a discipline in the 1940sapipgoach to dy-
namics was strongly influenced by the electrical enginediimgut/output) view.
A second wave of developments in control, starting in the 1850s, was inspired
by mechanics, where the state space perspective was usezimn€hgence of space
flight is a typical example, where precise control of the oobbid spacecraft is es-
sential. These two points of view gradually merged into wkabday the state
space representation of input/output systems.

The development of state space models involved modifyingnbdels from
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mechanics to include external actuators and sensors diingtimore general
forms of equations. In control, the model given by equatig)(was replaced by

% = f(x,u), y = h(x,u), (2.3)
wherex is a vector of state variablesjs a vector of control signals aryds a vec-
tor of measurements. The tew/dt represents the derivative pfwvith respect to
time, now considered a vector, aficandh are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimensionntachanical systems,
the state consists of the position and velocity of the sysgmthatx = (q,q) in
the case of a damped spring—mass system. Note that in theldanmulation we
model dynamics as first-order differential equations, butwilesee that this can
capture the dynamics of higher-order differential equeiby appropriate defini-
tion of the state and the mapsandh.

Adding inputs and outputs has increased the richness ofdlsical problems
and led to many new concepts. For example, it is natural tdf gslssible statex
can be reached with the proper choicaigfeachability) and if the measurement
contains enough information to reconstruct the state (ohbdity). These topics
will be addressed in greater detail in Chapt@end?.

A final development in building the control point of view wag #imergence of
disturbances and model uncertainty as critical elementsaritheory. The simple
way of modeling disturbances as deterministic signalsdtk@s and sinusoids has
the drawback that such signals cannot be predicted precisehore realistic ap-
proach is to model disturbances as random signals. This vietvgives a natural
connection between prediction and control. The dual viewamit/output repre-
sentations and state space representations are paitiausaful when modeling
uncertainty since state models are convenient to descnbeninal model but un-
certainties are easier to describe using input/output leqdéen via a frequency
response description). Uncertainty will be a constant thémoughout the text
and will be studied in particular detail in Chapti.

An interesting observation in the design of control systestisat feedback sys-
tems can often be analyzed and designed based on complgraimple models.
The reason for this is the inherent robustness of feedbat&ragsHowever, other
uses of models may require more complexity and more accutasy example is
feedforward control strategies, where one uses a modektmprpute the inputs
that cause the system to respond in a certain way. Anotharigsystem valida-
tion, where one wishes to verify that the detailed respoh#eeosystem performs
as it was designed. Because of these different uses of mdadslsommon to use
a hierarchy of models having different complexity and figelit
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Multidomain Modeling @

Modeling is an essential element of many disciplines, taditions and methods
from individual disciplines can differ from each other, Bsstrated by the previ-
ous discussion of mechanical and electrical engineerindifffculty in systems
engineering is that it is frequently necessary to deal wétefogeneous systems
from many different domains, including chemical, elecfjenechanical and in-
formation systems.

To model such multidomain systems, we start by partitiorangystem into
smaller subsystems. Each subsystem is represented by dalquations for mass,
energy and momentum, or by appropriate descriptions ofnmétion processing
in the subsystem. The behavior at the interfaces is capturetkescribing how
the variables of the subsystem behave when the subsystenistenrconnected.
These interfaces act by constraining variables within tdéesidual subsystems to
be equal (such as mass, energy or momentum fluxes). The comquded is then
obtained by combining the descriptions of the subsysterddtainterfaces.

Using this methodology it is possible to build up libraridssabsystems that
correspond to physical, chemical and informational congpds The procedure
mimics the engineering approach where systems are buitt fobsystems that
are themselves built from smaller components. As expegiéngained, the com-
ponents and their interfaces can be standardized and tealléacmodel libraries.
In practice, it takes several iterations to obtain a goagi¥pthat can be reused for
many applications.

State models or ordinary differential equations are noablétfor component-
based modeling of this form because states may disappear egdmeponents are
connected. This implies that the internal description of mponent may change
when it is connected to other components. As an illustratierconsider two ca-
pacitors in an electrical circuit. Each capacitor has a stateesponding to the
voltage across the capacitors, but one of the states wipgisar if the capacitors
are connected in parallel. A similar situation happens with rotating inertias,
each of which is individually modeled using the angle of tiotaand the angular
velocity. Two states will disappear when the inertias amegd by a rigid shaft.

This difficulty can be avoided by replacing differential edqoas bydifferential
algebraic equationswhich have the form

F(z,2) =0,
wherez € R". A simple special case is
x=f(xy), 9gxy =0, (2.4)

wherez = (x,y) andF = (x— f(x,y),9(x,y)). The key property is that the deriva-
tive zis not given explicitly and there may be pure algebraic refet between the
components of the vectar
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The model 2.4) captures the examples of the parallel capacitors andrikedi
rotating inertias. For example, when two capacitors areeoted, we simply add
the algebraic equation expressing that the voltages atihessapacitors are the
same.

Modelicais a language that has been developed to support compoasedb
modeling. Differential algebraic equations are used as#sic description, and
object-oriented programming is used to structure the nsodiébdelica is used to
model the dynamics of technical systems in domains such abaneal, electri-
cal, thermal, hydraulic, thermofluid and control subsystevisdelica is intended
to serve as a standard format so that models arising in éifteiomains can be
exchanged between tools and users. A large set of free anaheanal Modelica
component libraries are available and are used by a growimgpber of people
in industry, research and academia. For further informagibout Modelica, see
http://www.modelica.or@r Tiller [TilO1].

2.2 State Space Models

In this section we introduce the two primary forms of modéksttwe use in this
text: differential equations and difference equationghBoake use of the notions
of state, inputs, outputs and dynamics to describe the limhafva system.

Ordinary Differential Equations

The state of a system is a collection of variables that sunzmdhe past of a
system for the purpose of predicting the future. For a playsigstem the state
is composed of the variables required to account for stovAgeass, momentum
and energy. A key issue in modeling is to decide how accyraétéd storage has
to be represented. The state variables are gathered in a weetB" called the
state vectarThe control variables are represented by another vectoRP, and
the measured signal by the vecyor RY. A system can then be represented by the
differential equation

31( = f(x,u), y=h(x,u), (2.5)
wheref : R" x RP — R" andh : R" x RP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called trder of the system. The sys-
tem @.5) is calledtime-invariantbecause the functions andh do not depend
explicitly on timet; there are more general time-varying systems where the func
tions do depend on time. The model consists of two functidrestunctionf gives
the rate of change of the state vector as a function of gtatel controlu, and the
functionh gives the measured values as functions of staed controlu.
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A system is called dnear state space system if the functiohandh are linear
in x andu. A linear state space system can thus be represented by

d
d%( _ Ax+BLU, y =Cx-+ Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said {mbar and
time-invariant or LTI for short. The matrixA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influeneedhtput directly.
A different form of linear differential equations, genezalg the second-order
dynamics from mechanics, is an equation of the form
dn dnfl
de): T dt”—i/
wheret is the independent (time) variabl}) is the dependent (output) variable
and u(t) is the input. The notation¥y/dt¥ is used to denote thkth derivative
of y with respect tat, sometimes also written 38<. The controlled differential
equation 2.7) is said to be amth-order system. This system can be converted into
state space form by defining

+ofay=u, 2.7)

X1 dnfly/dtnfl
X2 dnfzy/dtnfz
X= : = . 3
Xn—1 dy/dt
Xn y
and the state space equations become
X1 —a1X1 — - —anXn u
dt . - . . Y y— n
Xn—1 Xn—2 0
Xn Xn—1 0
With the appropriate definitions &, B, C andD, this equation is in linear state
space form.

An even more general system is obtained by letting the olnuatlinear com-
bination of the states of the system, i.e.,

y = bixg + boXo + - - - + bpxny + du.
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(a) Segway (b) Saturn rocket (c) Cart—pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Satket @nd (c)
inverted pendulum on a cart. Each of these examples uses forcedattitra of the system
to keep it upright.

This system can be modeled in state space as

X1 —a; —a2 ... —apn-1 —an 1
Xo 1 0 .. 0 0 0
dlx|_| o 1 0 0 |xy|0]y
. 5 s (2.8)
X 0 0 1 0 0
y— [bl by ... bn]x+du.

This particular form of a linear state space system is cabedhable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems
An example of a type of system that can be modeled using ardutifferential
equations is the class bhalance system#\ balance system is a mechanical sys-
tem in which the center of mass is balanced above a pivot pBathe common
examples of balance systems are shown in Figuge The Segway® Personal
Transporter (Figur@.59 uses a motorized platform to stabilize a person standing
on top of it. When the rider leans forward, the transportatievice propels itself
along the ground but maintains its upright position. Anotlxeample is a rocket
(Figure 2.5b), in which a gimbaled nozzle at the bottom of the rocket isduse
stabilize the body of the rocket above it. Other examplesatddiice systems in-
clude humans or other animals standing upright or a perstamtiag a stick on
their hand.

Balance systems are a generalization of the spring—maiesisyse saw earlier.
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We can write the dynamics for a mechanical system in the géfeam

M(a)d+C(a,q) +K(a) =B(q)u,

whereM(q) is the inertia matrix for the systent(q,q) represents the Coriolis
forces as well as the damping(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into theuwycs. The spe-
cific form of the equations can be derived using Newtonian rmeicis. Note that
each of the terms depends on the configuration of the sygterd that these terms
are often nonlinear in the configuration variables.

Figure2.5cshows a simplified diagram for a balance system consisting of a
inverted pendulum on a cart. To model this system, we chdase wriables that
represent the position and velocity of the base of the syspeand p, and the an-
gle and angular rate of the structure above the b@s;d 6. We letF represent
the force applied at the base of the system, assumed to be hotizontal direc-
tion (aligned withp), and choose the position and angle of the system as outputs.
With this set of definitions, the dynamics of the system candraputed using
Newtonian mechanics and have the form

(M+m) —mlcosf) (P cp+mising62)  (F
[‘mlCOSQ (J+m|2)] [9] * [ y9—mglsin9] - [0] (29

whereM is the mass of the basm,andJ are the mass and moment of inertia of the
system to be balancedis the distance from the base to the center of mass of the
balanced body; andy are coefficients of viscous friction amgds the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space fgrdetining the
state ax=(p, 8, p, 0), the input as1 = F and the output ag= (p, 0). If we define
the total mass and total inertia as

Mi=M+m, J=J+mP,

the equations of motion then become

( p 3\
p . 6 .
d|e —Mmlsg6? + mg(ml®/J)sgce — cp— (y/I)mlcg +u
de | p| M; — m(mi2/&)c2 )
0 —ml2sgCeH2 4+ Myglsg — clcgp— y(M; /m)6 + Icgu
J(Mi/m) —m(lcg)?

_|Pp
y_ \9]7

where we have used the shorthamd= cosf andsg = sinf.
In many cases, the angiewill be very close to 0, and hence we can use the
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approximations sif ~ 6 and co$) ~ 1. Furthermore, i is small, we can ig-
nore quadratic and higher termsén Substituting these approximations into our
equations, we see that we are left witlireear state space equation

o 0o 0 1 0 0 0
d | e 0o 0 0 1 0 0
at |p| ~ |0 mA2g/u —ca/u —yim/p | | p| T a/m |
6)  \o mmgl/u —clm/u —yMy/u) 8 Im/p
(1000
Y=1o 1 0 o) *®
whereu = MyJ; — nél?, 0

Example 2.2 Inverted pendulum

A variation of the previous example is one in which the lomatf the base does

not need to be controlled. This happens, for example, if werdeeested only in
stabilizing a rocket’s upright orientation without womg about the location of
base of the rocket. The dynamics of this simplified system aengiy

d [9] _ [mgl ° ] y—0 (2.10)
dt [6) ~ | == sin6— L6+ —cosbu|’ - :
N N J
wherey is the coefficient of rotational friction} = J+ ml? andu is the force
applied at the base. This system is referred to aswarted pendulum O

Difference Equations

In some circumstances, it is more natural to describe théuten of a system
at discrete instants of time rather than continuously iretitfi we refer to each
of these times by an integé&r=0,1,2, ..., then we can ask how the state of the
system changes for eakhJust as in the case of differential equations, we define
the state to be those sets of variables that summarize thefhe system for the
purpose of predicting its future. Systems described in tlaamar are referred to
asdiscrete-time systems

The evolution of a discrete-time system can be written in ¢t f

x[k+ 1] = f(x[k],ulk]), y[K] = h(x[k],ulk]), (2.11)

wherex[k] € R" is the state of the system at tirkgan integer)u[k] € RP is the
input andy[k] € RY is the output. As beforef, andh are smooth mappings of the
appropriate dimension. We call equatidhl(]) a difference equatiosince it tells
us howx[k+ 1] differs fromx[k]. The statex[k] can be either a scalar- or a vector-
valued quantity; in the case of the latter we weifék| for the value of thgth state
at timek.
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Figure 2.6: Predator versus prey. The photograph on the left shows a Canadiaargl
a snowshoe hare, the lynx’s primary prey. The graph on the rightskize populations of
hares and lynxes between 1845 and 1935 in a section of the CanadidesIdptac37. The

data were collected on an annual basis over a period of 90 yearso@Pdyeh copyright Tom
and Pat Leeson.)

Just as in the case of differential equations, it is oftercdse that the equations
are linear in the state and input, in which case we can destirdsystem by

x[k+ 1] = AXK] + Bulk], y[K] = Cx[K] + DulK].

As before, we refer to the matricés B, C andD as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. Thatswt of a linear dif-
ference equation with initial conditioxj0] and inputu[0],...,u[T] is given by

X[k = A*X[0] 4 kz:)Akleu[ i,
J:
1 k> 0. (2.12)
y[K] = CAX(0] + ZCA"*i*lBu[ j] + Dulk],
]=

Difference equations are also useful as an approximatiatifiegirential equa-
tions, as we will show later.

Example 2.3 Predator—prey
As an example of a discrete-time system, consider a simpteehfor a predator—
prey system. The predator—prey problem refers to an ecalbgystem in which
we have two species, one of which feeds on the other. This tiggstem has
been studied for decades and is known to exhibit interesiymgmics. Figur®.6
shows a historical record taken over 90 years for a populaifdynxes versus a
population of hares\lac37. As can been seen from the graph, the annual records
of the populations of each species are oscillatory in nature

A simple model for this situation can be constructed usingsardte-time
model by keeping track of the rate of births and deaths of epelties. Letting
H represent the population of hares dndepresent the population of lynxes, we
can describe the state in terms of the populations at despexiods of time. Let-
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Figure 2.7: Discrete-time simulation of the predator—prey modL®. Using the param-
etersa = ¢ = 0.014, b, (u) = 0.6 andd = 0.7 in equation 2.13 with daily updates, the
period and magnitude of the lynx and hare population cycles approxinmatelh the data
in Figure2.6.

ting k be the discrete-time index (e.g., the day or month numbex);am write
H[k+ 1] = H[K] + by (u)H[K] — aL[k]H[k],
Lk+1] = L[K] + cL[KH[K] —dsL[K],

whereby (u) is the hare birth rate per unit period and as a function of tual f
supplyu, ds is the lynx mortality rate and andc are the interaction coefficients.
The interaction ternaL[k]H [k] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey megisahence given
by the product of the population sizes. The interaction tekfik]H [k] in the lynx
dynamics has a similar form and represents the rate of grofattie lynx popula-
tion. This model makes many simplifying assumptions—sudh@$act that hares
decrease in number only through predation by lynxes—buténds sufficient to
answer basic questions about the system.

To illustrate the use of this system, we can compute the nuofdgnxes and
hares at each time point from some initial population. Thioise by starting with
X[0] = (Ho,Lo) and then using equatio2.l3 to compute the populations in the
following period. By iterating this procedure, we can gexteithe population over
time. The output of this process for a specific choice of pararaetnd initial con-
ditions is shown in Figur@.7. While the details of the simulation are different
from the experimental data (to be expected given the sititylaf our assump-
tions), we see qualitatively similar trends and hence weusanthe model to help
explore the dynamics of the system. O

(2.13)

Example 2.4 E-mail server

The IBM Lotus server is an collaborative software system tHatiaisters users’
e-mail, documents and notes. Client machines interact evithusers to provide
access to data and applications. The server also handlegsadiih@istrative tasks.
In the early development of the system it was observed tleapénformance was
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poor when the central processing unit (CPU) was overloadeause of too many
service requests, and mechanisms to control the load weireftiie introduced.

The interaction between the client and the server is in tha fidfiremote proce-
dure calls (RPCs). The server maintains a log of statisticooifpteted requests.
The total number of requests being served, caRe& (RPCs in server), is also
measured. The load on the server is controlled by a paranedted MaxUser s,
which sets the total number of client connections to theeseivhis parameter is
controlled by the system administrator. The server can bardegl as a dynami-
cal system withvixUser s as the input an®l S as the output. The relationship
between input and output was first investigated by explottiegsteady-state per-
formance and was found to be linear.

In [HDPTO04 a dynamic model in the form of a first-order difference equmti
is used to capture the dynamic behavior of this system. Usistgm identification
techniques, they construct a model of the form

ylk+ 1] = aylk] + bulk],

whereu = MaxUser s — MaxUser s andy = RI S— RI'S. The parametera =
0.43 andb = 0.47 are parameters that describe the dynamics of the systemdar
the operating point, anifaxUser s = 165 andRI S = 135 represent the nomi-
nal operating point of the system. The number of requests warmged over a
sampling period of 60 s. O

Simulation and Analysis

State space models can be used to answer many questions. Deenudst com-
mon, as we have seen in the previous examples, involvesctiregthe evolution
of the system state from a given initial condition. While $omple models this can
be done in closed form, more often it is accomplished thracmhputer simula-
tion. One can also use state space models to analyze thdl dedravior of the
system without making direct use of simulation.

Consider again the damped spring—mass system from Se&cfidout this time
with an external force applied, as shown in Fig2:8 We wish to predict the
motion of the system for a periodic forcing function, withigem initial condition,
and determine the amplitude, frequency and decay rate oéthdting motion.

We choose to model the system with a linear ordinary diffeaérequation.
Using Hooke’s law to model the spring and assuming that thepga exerts a
force that is proportional to the velocity of the system, vagén

mdg -+ cq+ kg = u, (2.14)

wherem is the massgq is the displacement of the massjs the coefficient of
viscous friction k is the spring constant andis the applied force. In state space
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Figure 2.8: A driven spring—mass system with damping. Here we use a linear damping
element with coefficient of viscous frictiom The mass is driven with a sinusoidal force of
amplitudeA.

form, usingx = (q,q) as the state and choosigg- g as the output, we have

dx sz y—x
qJr Cc u > = A1.
dt | 2% — —xi+
m m m
We see that this is a linear second-order differential egqoatith one inputu and

one outputy.

We now wish to compute the response of the system to an inpléddrmu =
Asinawt. Although it is possible to solve for the response analiticave instead
make use of a computational approach that does not rely ospibeific form of
this system. Consider the general state space system

dx
Fri f(x,u).

Given the state at timet, we can approximate the value of the state at a short
time h > 0 later by assuming that the rate of changé ©f u) is constant over the
intervalt tot + h. This gives

X(t4h) =x(t) +hf(x(t),u(t)). (2.15)

Iterating this equation, we can thus solve fas a function of time. This approxi-
mation is known as Euler integration and is in fact a diffeesaguation if we leh
represent the time increment and wxf&] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methaasEuler
integration, they still have some of the same basic trafie-of

Returning to our specific example, Figlze® shows the results of computing
X(t) using equationq.15), along with the analytical computation. We see that as
h gets smaller, the computed solution converges to the exhaiean. The form
of the solution is also worth noticing: after an initial tei@nt, the system settles
into a periodic motion. The portion of the response after thedient is called the
steady-state response the input.
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Figure 2.9: Simulation of the forced spring—mass system with different simulation time
constants. The solid line represents the analytical solution. The dasheddpresent the
approximate solution via the method of Euler integration, using decreasipgizes.

In addition to generating simulations, models can also leel trs answer other
types of questions. Two that are central to the methods itbestcin this text con-
cern the stability of an equilibrium point and the inputfouttfrequency response.
We illustrate these two computations through the exampmsiaband return to the
general computations in later chapters.

Returning to the damped spring—mass system, the equafiomstion with no

input forcing are given by
X2
dx_ [ c K ] , (2.16)

dt | —Sxo——xg
m m

wherex; is the position of the mass (relative to the rest positiorg ®nis its
velocity. We wish to show that if the initial state of the srstis away from the
rest position, the system will return to the rest positiorrgually (we will later
define this situation to mean that the rest positioasigmptotically stable While
we could heuristically show this by simulating many, mangiah conditions, we
seek instead to prove that this is true &myinitial condition.

To do so, we construct a functidh: R" — R that maps the system state to a
positive real number. For mechanical systems, a convediwite is the energy of
the system,

V(X) = %kx%+%m><§. (2.17)
If we look at the time derivative of the energy function, we $eat

dv c k
— = kxgXg + mxexe =K MXo(——Xp — —X1) = —CX3
g = ok +moeke = kxxe + %( X2 mxl) 5,

which is always either negative or zero. Hen¢g(t)) is never increasing and,
using a bit of analysis that we will see formally later, theiindual states must
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remain bounded.

If we wish to show that the states eventually return to thgioyiwe must use
a slightly more detailed analysis. Intuitively, we can @ass follows: suppose
that for some period of time/ (x(t)) stops decreasing. Then it must be true that
V(x(t)) = 0, which in turn implies thaty(t) = O for that same period. In that case,
X2(t) = 0, and we can substitute into the second line of equafdlty to obtain

0— 5 c k
= X2 = sz mX1 = mX]_.

Thus we must have thai also equals zero, and so the only time téx(t)) can
stop decreasing is if the state is at the origin (and hensestrgtem is at its rest
position). Since we know thaf(x(t)) is never increasing (because< 0), we
therefore conclude that the origin is stable @oryinitial condition).

This type of analysis, called Lyapunov stability analyss;onsidered in detalil
in Chapte#. It shows some of the power of using models for the analyssystem
properties.

Another type of analysis that we can perform with models isdmpute the
output of a system to a sinusoidal input. We again considesfhing—mass sys-
tem, but this time keeping the input and leaving the systeits iariginal form:

mg -+ cq+kg=u. (2.18)
We wish to understand how the system responds to a sinusojmdlof the form
u(t) = Asinwt.

We will see how to do this analytically in Chapt®rbut for now we make use of
simulations to compute the answer.

We first begin with the observation thatjft) is the solution to equatior2(18
with inputu(t), then applying an inputit) will give a solution 2j(t) (this is easily
verified by substitution). Hence it suffices to look at an inpithwnit magnitude,
A= 1. A second observation, which we will prove in Chagiers that the long-
term response of the system to a sinusoidal input is itseilfigssid at the same
frequency, and so the output has the form

q(t) = g(w)sin(wt + ¢ (w)),
whereg(w) is called thegain of the system ang (w) is called thephase(or phase
offset).
To compute the frequency response numerically, we can atmthe system

at a set of frequencies,...,wy and plot the gain and phase at each of these
frequencies. An example of this type of computation is showFigure2.10
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Figure 2.10: A frequency response (gain only) computed by measuring the respain
individual sinusoids. The figure on the left shows the response ofystera as a function
of time to a number of different unit magnitude inputs (at differentdestries). The figure
on the right shows this same data in a different way, with the magnitude oktiponse
plotted as a function of the input frequency. The filled circles corredporthe particular
frequencies shown in the time responses.

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to haveeddiht representations
of the system that capture the essential features and maleviant details. In all
branches of science and engineering it is common practinosdsome graphical
description of systems, callethematic diagramslhey can range from stylistic
pictures to drastically simplified standard symbols. Thesaupes make it possi-
ble to get an overall view of the system and to identify thevilsiial components.
Examples of such diagrams are shown in FigRr&l Schematic diagrams are
useful because they give an overall picture of a system, isigogiifferent subpro-
cesses and their interconnection and indicating variahkscan be manipulated
and signals that can be measured.

Block Diagrams

A special graphical representation calletlack diagramhas been developed in
control engineering. The purpose of a block diagram is to exsigk the informa-
tion flow and to hide details of the system. In a block diagraiffiergnt process
elements are shown as boxes, and each box has inputs depditezblwith arrows
pointing toward the box and outputs denoted by lines witbvasrgoing out of the
box. The inputs denote the variables that influence a procedsha outputs de-
note the signals that we are interested in or signals thatiniel other subsystems.
Block diagrams can also be organized in hierarchies, wineligidual blocks may
themselves contain more detailed block diagrams.

Figure2.12shows some of the notation that we use for block diagramsagign
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Figure 2.11: Schematic diagrams for different disciplines. Each diagram is used toéites
the dynamics of a feedback system: (a) electrical schematics for armystem Kun93,

(b) a biological circuit diagram for a synthetic clock circlt§MNO3], (c) a process dia-
gram for a distillation columngEMO04 and (d) a Petri net description of a communication
protocol.

are represented as lines, with arrows to indicate inputsoaiyouts. The first di-
agram is the representation for a summation of two signatsinfaut/output re-
sponse is represented as a rectangle with the system nam&floematical de-
scription) in the block. Two special cases are a proportigam, which scales the
input by a multiplicative factor, and an integrator, whialtputs the integral of the
input signal.

Figure2.13illustrates the use of a block diagram, in this case for nmodehe
flight response of a fly. The flight dynamics of an insect are inbigdntricate,
involving careful coordination of the muscles within the fiymhaintain stable flight
in response to external stimuli. One known characterigtites is their ability to
fly upwind by making use of the optical flow in their compound eyes feedback
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Figure 2.12: Standard block diagram elements. The arrows indicate the the inputs &nd ou
puts of each element, with the mathematical operation corresponding tttked labeled

at the output. The system block (f) represents the full input/output nsgpof a dynamical
system.

mechanism. Roughly speaking, the fly controls its orientasio that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose #ralbdynamics
of the system into a series of interconnected subsystentddoky. Referring to
Figure2.13 we can model the insect navigation system through an ioeection
of five blocks. The sensory motor system (a) takes the infaoméitom the visual
system (e) and generates muscle commands that attempetatsdly so that the
point of contraction is centered. These muscle command®akeed into forces
through the flapping of the wings (b) and the resulting aeradyio forces that are
produced. The forces from the wings are combined with the dretipe fly (d) to
produce a net force on the body of the fly. The wind velocity enterough the
drag aerodynamics. Finally, the body dynamics (c) descrivethe fly translates
and rotates as a function of the net forces that are appligdTtoe insect position,
speed and orientation are fed back to the drag aerodynamitsision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicatédysiem. For
example, the visual system of a fruit fly consists of two coggid compound
eyes (with about 700 elements per eye), and the sensory sydtem has about
200,000 neurons that are used to process information. A oetegled block dia-
gram of the insect flight control system would show the intanstions between
these elements, but here we have used one block to represerthé motion of
the fly affects the output of the visual system, and a secorukorepresent how
the visual field is processed by the fly’s brain to generate reusminmands. The
choice of the level of detail of the blocks and what elememtseparate into differ-
ent blocks often depends on experience and the questidraihaants to answer
using the model. One of the powerful features of block diagg#s their ability to
hide information about the details of a system that may natdexled to gain an
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Figure 2.13: A block diagram representation of the flight control system for an irfggng
against the wind. The mechanical portion of the model consists of thelyaigt dynamics
of the fly, the drag due to flying through the air and the forces genergtéeehwings. The
motion of the body causes the visual environment of the fly to changethainformation
is then used to control the motion of the wings (through the sensory mattamsy, closing
the loop.

understanding of the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and ac$,dttds also possible
to obtain models of system dynamics from experiments on tbegss. The mod-
els are restricted to input/output models since only thepsats are accessible to
experiments, but modeling from experiments can also be gwdhlwith modeling
from physics through the use of feedback and interconnectio

A simple way to determine a system’s dynamics is to obsemedbponse to a
step change in the control signal. Such an experiment begisstting the control
signal to a constant value; then when steady state is estialdlithe control signal
is changed quickly to a new level and the output is observed. &tperiment
gives the step response of the system, and the shape of gmsesgives useful
information about the dynamics. Itimmediately gives anidation of the response
time, and it tells if the system is oscillatory or if the regge is monotone.

Example 2.5 Spring—mass system
Consider the spring—mass system from Sec®dnwhose dynamics are given by
md+ cq+kg=u. (2.19)

We wish to determine the constamts c andk by measuring the response of the
system to a step input of magnituBig
We will show in Chapte6 that wherc? < 4km, the step response for this system
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Figure 2.14: Step response for a spring—mass system. The magnitude of the stéfsinpu
Fo = 20 N. The period of oscillatiofT is determined by looking at the time between two
subsequent local maxima in the response. The period combined wittetty sstate value
g() and the relative decrease between local maxima can be used to estinpeeatheters

in a model of the system.

from the rest configuration is given by

a(t) = ¢ (1— LK ol s +¢>> ,

v4km—c? 4 [ V4km—c?

From the form of the solution, we see that the form of the respas determined
by the parameters of the system. Hence, by measuring céettures of the step
response we can determine the parameter values.

Figure2.14shows the response of the system to a step of magrifgee20 N,
along with some measurements. We start by noting that tlaelststate position
of the mass (after the oscillations die down) is a functiothefspring constark

q(e0) = %, (2.20)
whereFy is the magnitude of the applied forcé (= 1 for a unit step input). The
parameter Ak is called thegain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2m  v/4km—c?

Finally, the rate of decay of the oscillations is given by tlpanential factor in
the solution. Measuring the amount of decay between twogeek have

og(alts) ~ 2) ~log(q(t2) ~ ) = = (1o~ ta) (2.22)
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Using this set of three equations, we can solve for the parsiand determine
that for the step response in Figl2el4we havem ~ 250 kg,c ~ 60 N s/m and
k=40 N/m. |

Modeling from experiments can also be done using many ofgealks. Sinu-
soidal signals are commonly used (particularly for systewite fast dynamics)
and precise measurements can be obtained by exploitinglation techniques.
An indication of nonlinearities can be obtained by repeptrperiments with in-
put signals having different amplitudes.

Normalization and Scaling

Having obtained a model, it is often useful to scale the Wem by introducing
dimension-free variables. Such a procedure can often dintpk equations for a
system by reducing the number of parameters and reveabgtiieg properties of
the model. Scaling can also improve the numerical conditgmif the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose unite&eh independent
variable and introduce new variables by dividing the vddaliy the chosen nor-
malization unit. We illustrate the procedure with two exdesp

Example 2.6 Spring—mass system
Consider again the spring—mass system introduced eatkgiecting the damp-
ing, the system is described by
mg+kg=u.

The model has two parametarsandk. To normalize the model we introduce
dimension-free variables = q/I and T = wyt, wherean = y/k/m and| is the
chosen length scale. We scale forcerbl? and introducer = u/(mlag). The
scaled equation then becomes

d>x  d?q/! 1

ﬁ - d((l.bt)z - ml&)g(_kq+ U) = —X+V,
which is the normalized undamped spring—mass system. éttat the normal-
ized model has no parameters, while the original model hadpsrametersn
and k. Introducing the scaled, dimension-free state variakles x = g/l and
2, =dx/d1t = g/(lay), the model can be written as

a2 - (% o) (2)- ()

This simple linear equation describes the dynamics of anpgpmass system,
independent of the particular parameters, and hence gs/assight into the fun-
damental dynamics of this oscillatory system. To recoverghysical frequency
of oscillation or its magnitude, we must invert the scaling lvave applied. [
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Example 2.7 Balance system
Consider the balance system described in Se@idnNeglecting damping by
puttingc = 0 andy = 0 in equation 2.9), the model can be written as

2p 2

d d-6 . 2
(M+m)w—mlcosew+mlsm9(a) =F,
d2p ,.d20 .
—m|COSBW+(J—|—m| )W—mglsme =0.

Let an = \/mgl/(J+ ml?), choose the length scalelaet the time scale be/tuw,
choose the force scale &9 +m)l w? and introduce the scaled variables- wyt,
x=p/l andu= F/((M+m)lwp). The equations then become

2x d?6 . rdB\2 d>x d’6

Frehe CYCOSGW + orsm6<a) =u, -p COS@W + az sin@ =0,

wherea = m/(M +m) andf = mlI?/(J+ ml?). Notice that the original model has
five parameterm, M, J, | andg but the normalized model has only two parameters
a andB. If M > mandml? > J, we geta ~ 0 andf ~ 1 and the model can be
approximated by

d?x d’e .

ﬁfu, P—smefucose.
The model can be interpreted as a mass combined with an idveeiedulum
driven by the same input. O

Model Uncertainty

Reducing uncertainty is one of the main reasons for usingjg@ek, and it is there-
fore important to characterize uncertainty. When makingsneements, there is a
good tradition to assign both a nominal value and a measusea#rtainty. It is
useful to apply the same principle to modeling, but unfaatety it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be cteniaed by a func-
tion, uncertainty can be expressed by an uncertainty bankuasated in Fig-
ure 2.15a At low signal levels there are uncertainties due to senssolution,
friction and quantization. Some models for queuing systemsells are based
on averages that exhibit significant variations for smallyjations. At large sig-
nal levels there are saturations or even system failuressigin@l ranges where a
model is reasonably accurate vary dramatically betweehcapipns, but it is rare
to find models that are accurate for signal ranges larger té&n 1

Characterization of the uncertainty of a dynamic model isimmore difficult.
We can try to capture uncertainties by assigning uncerégind parameters of the
model, but this is often not sufficient. There may be errors dyghenomena that
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relatiorsstdpthe
dashed lines indicate the range of possible uncertainty. The uncertairip [PD59 in

(b) is one way to capture uncertainty in dynamical systems emphasizirgiadel is valid

only in some amplitude and frequency ranges. In (c) a model is repies by a nominal
modelM and another model representing the uncertainty analogous to the representation
of parameter uncertainty.

have been neglected, e.g., small time delays. In contralltmeate test is how well
a control system based on the model performs, and time detaybe important.
There is also a frequency aspect. There are slow phenomefaaswaging, that
can cause changes or drift in the systems. There are alsdregirency effects: a
resistor will no longer be a pure resistance at very highuesgies, and a beam
has stiffness and will exhibit additional dynamics whenjsabto high-frequency
excitation. Theuncertainty lemofGPD59 shown in Figure2.15bis one way to
conceptualize the uncertainty of a system. It illustrated & model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing unaietty in Chapted 2
using figures such as Figu2el5c¢c These tools make use of the concept of a trans-
fer function, which describes the frequency response ohpntioutput system.
For now, we simply note that one should always be carefuldogrize the limits
of a model and not to make use of models outside their rangppicability. For
example, one can describe the uncertainty lemon and thek thenake sure that
signals remain in this region. In early analog computingysiesm was simulated
using operational amplifiers, and it was customary to givenaawhen certain
signal levels were exceeded. Similar features can be indlundgigital simulation.

2.4 Modeling Examples

In this section we introduce additional examples that ftte some of the differ-
ent types of systems for which one can develop differentjpbéion and difference
equation models. These examples are specifically chosen framga of differ-
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ent fields to highlight the broad variety of systems to whiakdfgack and control
concepts can be applied. A more detailed set of applicatlmatsserve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation aredfack to control the
movement of a mechanical system. Motion control systemga&om nanoposi-
tioning systems (atomic force microscopes, adaptive sptio control systems
for the read/write heads in a disk drive of a CD player, to nfiacturing systems
(transfer machines and industrial robots), to automotomrol systems (antilock
brakes, suspension control, traction control), to air qguats flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model

A common problem in motion control is to control the trajegtof a vehicle

through an actuator that causes a change in the orientatsteering wheel on an
automobile and the front wheel of a bicycle are two examdassimilar dynam-
ics occur in the steering of ships or control of the pitch dyies of an aircraft.

In many cases, we can understand the basic behavior of theteens through the
use of a simple model that captures the basic kinematicseafytbtem.

Consider a vehicle with two wheels as shown in Fig2rEa For the purpose
of steering we are interested in a model that describes hewelocity of the
vehicle depends on the steering andlelTo be specific, consider the velocinyat
the center of mass, a distarecéom the rear wheel, and letbe the wheel base, as
shown in Figure2.16 Let x andy be the coordinates of the center of ma$she
heading angle and the angle between the velocity vectoand the centerline of
the vehicle. Since = rytand anda = ratana, it follows that taro = (a/b)tand
and we get the following relation betweeanand the steering angte

a(d) = arctar( atetl)né) :

(2.23)

Assume that the wheels are rolling without slip and that tblecity of the rear
wheel isvp. The vehicle speed at its center of mass is vp/ cosa, and we find
that the motion of this point is given by

31(: vcos(a + 0) :vomi(gsj;e),

g in( 6) (2.24)
y . _sin(a +

at =vsin(a +0) =Vo T oeg

To see how the angl@ is influenced by the steering angle, we observe from Fig-
ure 2.16that the vehicle rotates with the angular veloaigy'r, around the point
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead viewelfiale
with four wheels. The wheel basebsand the center of mass at a distaaderward of the
rear wheels. By approximating the motion of the front and rear pairshefelg by a single
front wheel and a single rear wheel, we obtain an abstraction calldzidyee modelshown
on the right. The steering angle dsand the velocity at the center of mass has the angle
relative the length axis of the vehicle. The position of the vehicle is givetxby and the
orientation (heading) bg.

O. Hence 48 vo Vo
it 1. Db tand. (2.25)

Equations2.23—(2.25 can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the roadhatdhe two front
wheels can be approximated by a single wheel at the centéreofdr. The as-
sumption of no slip can be relaxed by adding an extra statablar giving a more
realistic model. Such a model also describes the steeringnaigs of ships as well
as the pitch dynamics of aircraft and missiles. It is alsosjiids to choose coor-
dinates so that the reference point is at the rear wheelse§monding to setting
a = 0), a model often referred to as tBeibins car[Dub57.

Figure 2.16 represents the situation when the vehicle moves forwarchasd
front-wheel steering. The case when the vehicle reversdstésned by changing
the sign of the velocity, which is equivalent to a vehicletwi¢ar-wheel steering.

|

Example 2.9 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such asHbgier “jump jet”
shown Figure2.17a The Harrier is capable of vertical takeoff by redirecting it
thrust downward and through the use of smaller maneuveningters located on
its wings. A simplified model of the Harrier is shown in Figgd7h where we
focus on the motion of the vehicle in a vertical plane throtige wings of the
aircraft. We resolve the forces generated by the main dowahtauster and the
maneuvering thrusters as a pair of foréggndF, acting at a distancebelow the
aircraft (determined by the geometry of the thrusters).
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(a) Harrier “jump jet” (b) Simplified model

Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) reslits its
engine thrust downward so that it can “hover” above the ground.eSminfrom the engine
is diverted to the wing tips to be used for maneuvering. As shown in (byae¢héhrust on
the aircraft can be decomposed into a horizontal féicand a vertical forcé, acting at a
distancer from the center of mass.

Let (x,y,8) denote the position and orientation of the center of massief t
aircraft. Letm be the mass of the vehiclé,the moment of inertiag the gravita-
tional constant andthe damping coefficient. Then the equations of motion for the
vehicle are given by

mX = F1 cosf — F,sinf — cx,
my = F1sin@ + F,cosé —mg— cy, (2.26)
JO =rFy.

It is convenient to redefine the inputs so that the origin is @uilé®rium point

of the system with zero input. Lettinggy = F; andu, = F, —mg, the equations

become . . . .
mMX = —mgsin® — cX+ U1 cos6 — U, Sind,

my = mg(cosB — 1) — cy+ u; Sin6 + up coso, (2.27)
JO =Trujp.
These equations describe the motion of the vehicle as a $eeeftoupled second-
order differential equations. O

Information Systems

Information systems range from communication systemsthikenternet to soft-
ware systems that manipulate data or manage enterprisesgdarces. Feedback
is presentin all these systems, and designing strategiesfting, flow control and
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive ai ratel are
stored in a queue. Messages are processed and removed froretiesatjuate:. The average
size of the queue is given byc R.

buffer management is a typical problem. Many results in quetheory emerged
from design of telecommunication systems and later fronekbgment of the In-
ternet and computer communication systeBG87, Kle75, Sch87. Management
of queues to avoid congestion is a central problem and wethghefore start by
discussing the modeling of queuing systems.

Example 2.10 Queuing systems

A schematic picture of a simple queue is shown in Figaud8 Requests arrive
and are then queued and processed. There can be large variatiarrival rates
and service rates, and the queue length builds up when tivelasate is larger
than the service rate. When the queue becomes too larg&eervdenied using
an admission control policy.

The system can be modeled in many different ways. One way i®teheach
incoming request, which leads to an event-based model wihestate is an integer
that represents the queue length. The queue changes wheuestragives or a
request is serviced. The statistics of arrival and serviairgtypically modeled as
random processes. In many cases it is possible to determaitigtiss of quantities
like queue length and service time, but the computationdeayuite complicated.

A significant simplification can be obtained by usindglav model Instead
of keeping track of each request we instead view service aqdests as flows,
similar to what is done when replacing molecules by a contimwhen analyzing
fluids. Assuming that the average queue lengtha continuous variable and that
arrivals and services are flows with ratesand u, the system can be modeled by
the first-order differential equation

((ji(:)\—u:/\—umaxf(x), x>0, (2.28)

where tmax is the maximum service rate arf@x) is a number between 0 and 1
that describes the effective service rate as a functioneofjtfeue length.

It is natural to assume that the effective service rate dépem the queue
length because larger queues require more resources. ddyssgtate we have
f(X) = A /Umax, @and we assume that the queue length goes to zero WhgRax
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Figure 2.19: Queuing dynamics. (a) The steady-state queue length as a funcfioiugfy.
(b) The behavior of the queue length when there is a temporary overidaed system. The
solid line shows a realization of an event-based simulation, and the dasheshéws the
behavior of the flow modef.29).

goes to zero and that it goes to infinity whan timax goes to 1. This implies
that f(0) = 0 and thatf () = 1. In addition, if we assume that the effective ser-
vice rate deteriorates monotonically with queue lengtantthe functionf (x) is
monotone and concave. A simple function that satisfies thie baguirements is
f(x) = x/(14x), which gives the model

dx X

at A— Umaxm-
This model was proposed by Agnewdn7§. It can be shown that if arrival and
service processes are Poisson processes, the averageangthéd given by equa-
tion (2.29 and that equatior2(29 is a good approximation even for short queue
lengths; see Tippe[59Q.

To explore the properties of the mod2l29 we will first investigate the equi-
librium value of the queue length when the arrival ratés constant. Setting the
derivativedx/dt to zero in equation.29 and solving forx, we find that the queue
lengthx approaches the steady-state value

A
Xe Hmax— A~
Figure 2.19ashows the steady-state queue length as a functioh/pfnax, the
effective service rate excess. Notice that the queue lengteases rapidly as
approachegimax. To have a queue length less than 20 requirgsmax < 0.95. The
average time to service a requestds= (Xx+ 1)/ Umax and it increases dramatically
asA approachegimax.

Figure2.19billustrates the behavior of the server in a typical overlsiaghation.
The maximum service rate [$max = 1, and the arrival rate starts &t= 0.5. The
arrival rate is increased th = 4 at time 20, and it returns td = 0.5 at time 25.
The figure shows that the queue builds up quickly and clearsskewly. Since the
response time is proportional to queue length, it meanshieaguality of service

(2.29)

(2.30)
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Figure 2.20: Illustration of feedback in the virtual memory system of the IBM/370. (a¢ T
effect of feedback on execution times in a simulation, followiBggg. Results with no
feedback are shown with, and results with feedback with Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three statedbtamed based
on process measurements.

is poor for a long period after an overload. This behavior lfedathe rush-hour
effectand has been observed in web servers and many other questegisysuch
as automobile traffic.

The dashed line in Figur2.19bshows the behavior of the flow model, which
describes the average queue length. The simple model cajitehavior qualita-
tively, but there are variations from sample to sample whendueue length is
short. O

Many complex systems use discrete control actions. Sucaragstan be mod-
eled by characterizing the situations that correspond ¢b eantrol action, as il-
lustrated in the following example.

Example 2.11 Virtual memory paging control

An early example of the use of feedback in computer systenssapplied in the
operating system OS/VS for the IBM 37BG68 Cro75. The system used virtual
memory, which allows programs to address more memory thaimyisically avail-
able as fast memory. Data in current fast memory (randonmsacoemory, RAM)
is accessed directly, but data that resides in slower me(@l) is automatically
loaded into fast memory. The system is implemented in suchyahed it appears
to the programmer as a single large section of memory. Thesysérformed very
well in many situations, but very long execution times wamneaintered in over-
load situations, as shown by the open circles in Figu&®a The difficulty was
resolved with a simple discrete feedback system. The loaldeoéntral process-
ing unit (CPU) was measured together with the number of pagpswetween
fast memory and slow memory. The operating region was clagsafiebeing in
one of three states: normal, underload or overload. The n@ta is character-
ized by high CPU activity, the underload state is charaadriz/ low CPU activity
and few page replacements, the overload state has modetate CPU load but
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Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor mxetvith
five nodes. In this network, node 1 communicates with node 2 and nodenthgnicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the converg&rtbe consensus
protocol @.31) to the average value of the initial conditions.

many page replacements; see FigRr20h The boundaries between the regions
and the time for measuring the load were determined fromlaitons using typ-
ical loads. The control strategy was to do nothing in the nbtosd condition,

to exclude a process from memory in the overload conditiahtarallow a new
process or a previously excluded process in the underloaditéan. The crosses
in Figure2.20ashow the effectiveness of the simple feedback system inlateul
loads. Similar principles are used in many other situatieng.,, in fast, on-chip
cache memory. O

Example 2.12 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications whergvavé to collect
and aggregate information over a region of space using phellbiensors that are
connected together via a communications network. Exampt#sde monitoring
environmental conditions in a geographical area (or inaiailding), monitoring
the movement of animals or vehicles and monitoring the nesoloading across
a group of computers. In many sensor networks the compuotdtiesources are
distributed along with the sensors, and it can be importarthie set of distributed
agents to reach a consensus about a certain property, stiehaserage tempera-
ture in a region or the average computational load amongaf semputers.

We model the connectivity of the sensor network using a gragth nodes
corresponding to the sensors and edges corresponding ¢xittence of a direct
communications link between two nodes. We use the notafipto represent the
set of neighbors of a node For example, in the network shown in Figlze21a
N2 ={1,3,4,5} and.43 = {2,4}.

To solve the consensus problem gebe the state of thigh sensor, correspond-
ing to that sensor’s estimate of the average value that wieyéing to compute. We
initialize the state to the value of the quantity measuredhleyindividual sensor.
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The consensus protocol (algorithm) can now be realized asahupdate law

Xilk+ 1 =x[kl+y Sy (XK —xk]). (2.31)
jem
This protocol attempts to compute the average by updatintptiat state of each
agent based on the value of its neighbors. The combined dgsashiall agents
can be written in the form

X[k+ 1] = x[k] — y(D — A)x[K], (2.32)

whereA is the adjacency matrix and is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The congi@escribes the
rate at which the estimate of the average is updated basedfarmation from
neighboring nodes. The matrix.= D — A is called theLaplacianof the graph.
The equilibrium points of equatior2(32 are the set of states such tixalk +
1] = x¢[K]. It can be shown that. = (a,a,...,a) is an equilibrium state for the
system, corresponding to each sensor having an identitalags a for the av-
erage. Furthermore, we can show thais indeed the average value of the initial
states. Since there can be cycles in the graph, it is poshéti¢hie state of the sys-
tem could enter into an infinite loop and never converge to dwreld consensus
state. A formal analysis requires tools that will be introéld later in the text, but
it can be shown that for any connected graph we can always firgliah that the
states of the individual agents converge to the averagemAlation demonstrating
this property is shown in Figur2.21h O

Biological Systems

Biological systems provide perhaps the richest sourceanftiack and control ex-
amples. The basic problem of homeostasis, in which a quanidly as temperature
or blood sugar level is regulated to a fixed value, is but oné@fmany types of

complex feedback interactions that can occur in molecukrhimes, cells, organ-
isms and ecosystems.

Example 2.13 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNAgnherated from
a segment of DNA. The promoter region of a gene allows traptson to be con-
trolled by the presence of other proteins, which bind to thermwter region and
either repress or activate RNA polymerase, the enzyme tioaiupes an mRNA
transcript from DNA. The mRNA is then translated into a proeteccording to its
nucleotide sequence. This process is illustrated in FigL22

A simple model of the transcriptional regulation processhimugh the use
of a Hill function [dJ02 Mur04]. Consider the regulation of a protein A with a
concentration given by, and a corresponding mRNA concentratiog. Let B
be a second protein with concentratipgmthat represses the production of protein
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Figure 2.22:Biological circuitry. The cell on the left is a bovine pulmonary cell, stained s
that the nucleus, actin and chromatin are visible. The figure on the rigbé gin overview
of the process by which proteins in the cell are made. RNA is transcribed DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by ameltg called
aribosome.

A through transcriptional regulation. The resulting dynesrof p; andm, can be
written as

dmy Oab dpa
d 1+ kabpgab + Qa0 — YaMa, ar Bamg — OaPa, (2.33)

where ay, + 050 IS the unregulated transcription ratg, represents the rate of
degradation of MRNA@gap, Kap and ng, are parameters that describe how B re-
presses AB; represents the rate of production of the protein from itsespond-
ing MRNA andd, represents the rate of degradation of the protein A. The pa-
rametera, describes the “leakiness” of the promoter, angd is called the Hill
coefficient and relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the tamuof another
protein rather than repressing it. In this case, the egusitiave the form

dmy aabkabpﬂ""b dpa
d 1+ kabpgab + Qa0 — YaMa, ar Bamg — OaPa, (2.34)

where the variables are the same as described previoudly.thit in the case of
the activator, ifpy is zero, then the production ratedsy (versusaa,+ ayo for the
repressor). Ay gets large, the first term in the expression tigy approaches 1
and the transcription rate becomesg, + 050 (Versusago for the repressor). Thus
we see that the activator and repressor act in oppositeofagtum each other.

As an example of how these models can be used, we consideraithel of a
“repressilator,” originally due to Elowitz and LeibleELOQ]. The repressilator is
a synthetic circuit in which three proteins each repressteman a cycle. This is
shown schematically in Figur223a where the three proteins are TetRgl and
Lacl. The basic idea of the repressilator is that if TetR is@néshen it represses
the production ofA cl. If A cl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed, thencl
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Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagfahe o
repressilator, showing the layout of the genes in the plasmid that holds¢hé as well as
the circuit diagram (center). (b) A simulation of a simple model for theaggilator, showing
the oscillation of the individual protein concentrations. (Figure courtesklbwitz.)

is no longer repressed, and so on. If the dynamics of theitaoeidesigned prop-
erly, the resulting protein concentrations will oscillate

We can model this system using three copies of equafld38( with A and
B replaced by the appropriate combination of TetR, cl and Lakeé state of the
system is then given by= (Mretr, Pretr, Mel; Pels MLacl, PLact) - Figure2.23bshows
the traces of the three protein concentrations for parasete 2, a = 0.5, k =
6.25x 104 ag=5x10"% y=58x103, 3 =0.12 andd = 1.2 x 103 with
initial conditionsx(0) = (1,0,0,200,0,0) (following [ELOQ]). O

Example 2.14 Wave propagation in neuronal networks
The dynamics of the membrane potential in a cell are a fund@hemechanism
in understanding signaling in cells, particularly in news@nd muscle cells. The
Hodgkin—Huxley equations give a simple model for studyimgpagation waves
in networks of neurons. The model for a single neuron has titme fo

Cc(jj\t/ = _INa_ IK - IIeak+ Iinput,
whereV is the membrane potentidl,is the capacitancéy, andlk are the current
caused by the transport of sodium and potassium across ltheerabrane Jjeak
is a leakage current arlghyt is the external stimulation of the cell. Each current

obeys Ohm’s law, i.e.,
| = g<V - E)7

whereg is the conductance aritlis the equilibrium voltage. The equilibrium volt-
age is given by Nernst's law,
_RT

Ce
E=—log—
nF gci’
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whereR is Boltzmann’s constani] is the absolute temperatur,is Faraday’s
constantn is the charge (or valence) of the ion andndce are the ion concentra-
tions inside the cell and in the external fluid. At 20 we haveRT/F =20 mV.

The Hodgkin—Huxley model was originally developed as a meanwedict
the quantitative behavior of the squid giant axéfHbB2]. Hodgkin and Huxley
shared the 1963 Nobel Prize in Physiology (along with J. C. Bydte analysis
of the electrical and chemical events in nerve cell disabsrghe voltage clamp
described in Sectioh.3was a key element in Hodgkin and Huxley’s experiments.

U

2.5 Further Reading

Modeling is ubiquitous in engineering and science and hasgliistory in applied
mathematics. For example, the Fourier series was intratogd-ourier when he
modeled heat conduction in solidBqu07. Models of dynamics have been de-
veloped in many different fields, including mechaniésr{78, Gol53, heat con-
duction [CJ59, fluids [BRS6Q, vehicles Pbk69, Bla91, Ell94], robotics MLS94,
SVv89, circuits [Gui6d, power systemsqun93, acoustics Ber54 and microme-
chanical systemsSen0]. Control theory requires modeling from many differ-
ent domains, and most control theory texts contain sevdrapters on model-
ing using ordinary differential equations and differencpiaions (see, for ex-
ample, FPENO03Y). A classic book on the modeling of physical systems, espe-
cially mechanical, electrical and thermofluid systems, isir@a [Can03. The
book by Aris |Ari94] is highly original and has a detailed discussion of the use
of dimension-free variables. Two of the authors’ favoriteoks on modeling of
biological systems are J. D. Murraylir04] and Wilson Wil99].

Exercises

2.1 (Chain of integrators form) Consider the linear ordinarffedential equa-
tion (2.7). Show that by choosing a state space representationxithy, the
dynamics can be written as

0o 1 0 0
S 0

A=| O w0 =], C:[l .0 o].
o . 0 1 :
—8n —an-1 - 1

This canonical form is called th&hain of integratordorm.



EXERCISES 66

2.2(Inverted pendulum) Use the equations of motion for a baaystem to derive
a dynamic model for the inverted pendulum described in Exa@@and verify
that for small@ the dynamics are approximated by equatidi().

2.3 (Discrete-time dynamics) Consider the following discriiee system
x[k+ 1] = AXk] + Bulk], y[k] = CxK],

where

" X1 ’ A— a1 a2 7 B— 0 ’ c— (1 O].
X2 0 ax 1
In this problem, we will explore some of the properties o$ttliscrete-time system
as a function of the parameters, the initial conditions d&ednputs.

(a) For the case wheay, = 0 andu = 0, give a closed form expression for the
output of the system.

(b) A discrete system is iaquilibriumwhenx[k+ 1] = x[k] for all k. Letu=r be

a constant input and compute the resulting equilibrium gfointhe system. Show
that if |a;| < 1 for all i, all initial conditions give solutions that converge to the
equilibrium point.

(c) Write a computer program to plot the output of the systenesponse to a unit
step inputulk] = 1, k > 0. Plot the response of your system wild] = 0 andA
given bya;1 = 0.5, a12 = 1 anday, = 0.25.

2.4 (Keynesian economics) Keynes’ simple model for an econangyvien by
Y[K| = CIK] + I [K] + G[K],

whereY, C, | andG are gross national product (GNP), consumption, investment
and government expenditure for ydacConsumption and investment are modeled
by difference equations of the form

Ck+1]=aYk,  I[Kk+1] =b(C[k+1]—C[K),

wherea and b are parameters. The first equation implies that consumption in
creases with GNP but that the effect is delayed. The secoratiequmplies that
investment is proportional to the rate of change of consionpt
Show that the equilibrium value of the GNP is given by

1
1 a(
where the parameter/1 — a) is the Keynes multiplier (the gain froinor G to
Y). With a= 0.25 an increase of government expenditure will result in aftdd

Ye le+Ge),
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increase of GNP. Also show that the model can be written a®tlosving discrete-
time state model:

[Cl:[[ll:-r 11]]] N [aba—b ;b] [(':[['S]] + [;b] GlK],

Y[k = C[K] + [ + G[K].

2.5(Least squares system identification) Consider a nonlinéareintial equation@
that can be written in the form

dx M

a@t Z;OIi fi(x),

wheref;(x) are known nonlinear functions amqg are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estinfaties)all statex at
time instantdy, ty, ..., tn, with N > M. Show that the parameteas can be deter-
mined by finding the least squares solution to a linear equatiche form

Ha = b,

wherea € RM is the vector of all parameters ahtlc RN*M andb € RN are
appropriately defined.

2.6(Normalized oscillator dynamics) Consider a damped sprimass system with
dynamics
mg+cq+kg=F.

Let wp = y/k/mbe the natural frequency agd= c/(2v/'km) be the damping ratio.
(a) Show that by rescaling the equations, we can write therdiagsin the form

G+ 2 wod + whq = wu, (2.35)
whereu = F /k. This form of the dynamics is that of a linear oscillator witktural
frequencywy and damping ratid .

(b) Show that the system can be further normalized and wiiittéme form
dz dz

The essential dynamics of the system are governed by a siaglpidg parameter
{. TheQ-valuedefined a®) = 1/2¢ is sometimes used insteadof

2.7 (Electric generator) An electric generator connected tocangtpower grid can
be modeled by a momentum balance for the rotor of the gemerato

d?¢ EV .
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wherelJ is the effective moment of inertia of the generatprthe angle of rota-
tion, Py, the mechanical power that drives the generdgis the active electrical
power, E the generator voltagd/ the grid voltage an the reactance of the
line. Assuming that the line dynamics are much faster thanrétor dynamics,
P.=VI = (EV/X)sin¢, wherel is the current component in phase with the volt-
ageE and¢ is the phase angle between voltagesndV. Show that the dynamics
of the electric generator has a normalized form that is sintd the dynamics of a
pendulum with forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing sysiescribed in
Example2.10 The long delays created by temporary overloads can be rddhyce
rejecting requests when the queue gets large. This allowestsg|that are accepted
to be serviced quickly and requests that cannot be accontetda receive a
rejection quickly so that they can try another server. Gigrsan admission control
system described by

dx X
at Au— Ivlmaxm, U= satq1)(K(r —x)), (2.37)

where the controller is a simple proportional control witttusation (sat ) is
defined by equation3(9)) andr is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rustrteffect and explain
how the choice of affects the system dynamics.

2.9(Biological switch) A genetic switch can be formed by conimagtwo repres-
sors together in a cycle as shown below.

A m—
N
ul_|g,>._u2
~..
B

LUZ

Using the models from ExampR13—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach stetady quickly—
show that the dynamics can be written in normalized cootdsas

dz U dz H

= 71—V = 7V 2.38

dr 1420 7" dr 1474 2T (2.38)
wherez; andz, are scaled versions of the protein concentrations andrtteedcale
has also been changed. Show that 200 using the parameters in Examglé3
and use simulations to demonstrate the switch-like behavithe system.

2.10 (Motor drive) Consider a system consisting of a motor dgviwo masses
that are connected by a torsional spring, as shown in theatiagelow.
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This system can represent a motor with a flexible shaft thag¢slaMoad. Assuming
that the motor delivers a torque that is proportional to tineent, the dynamics of
the system can be described by the equations

2
JlMﬂLC(%—%)ﬂLk(%—‘Pz):km

dt? dt dt (2.39)
d?¢, dg> des B .
Poge to(Tgr gr) HHOe b =To

Similar equations are obtained for a robot with flexible armd fam the arms of
DVD and optical disk drives.
Derive a state space model for the system by introducingiber(alized) state

variablesq = @1, X = ¢2, X3 = w1/, andxs = wy/ wo, wherewn = /k(J1 + Jz)/(J1J2)
is the undamped natural frequency of the system when theataignal is zero.



Chapter Three

Examples

... Don't apply any model until you understand the simplifying assumptonwhich it is
based, and you can test their validity. Catch phrase: use only as dirdatedt limit yourself
to a single model: More than one model may be useful for understandiegedif aspects of
the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1936IFQ.

In this chapter we present a collection of examples spanmagy different
fields of science and engineering. These examples will be hsedghout the text
and in exercises to illustrate different concepts. Firsietireaders may wish to
focus on only a few examples with which they have had the mst xperience
or insight to understand the concepts of state, input, awapd dynamics in a
familiar setting.

3.1 Cruise Control

The cruise control system of a car is a common feedback systeoustered in
everyday life. The system attempts to maintain a constantitglin the presence
of disturbances primarily caused by changes in the slope@dé The controller
compensates for these unknowns by measuring the speed@idrthed adjusting
the throttle appropriately.

To model the system we start with the block diagram in Fidhife Let v be
the speed of the car angl the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type des@ibbriefly in Chapted,
receives the signalg andv, and generates a control signakhat is sent to an
actuator that controls the throttle position. The throttiéurn controls the torque
T delivered by the engine, which is transmitted through trergiand the wheels,
generating a forc& that moves the car. There are disturbance fofgedue to
variations in the slope of the road, the rolling resistanue aerodynamic forces.
The cruise controller also has a human—machine interfadeatiosvs the driver
to set and modify the desired speed. There are also functiaslisconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engaresmission,
wheels and car body—and a detailed model can be very cortgaichn spite of
this, the model required to design the cruise controllerteaguite simple.
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torquéhat is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environmettt,asiaerodynamic
drag and gravitational forces on hills, the net force causes the carue.mMbe velocity of

the carv is measured by a control system that adjusts the throttle through an aciuetibn
anism. A driver interface allows the system to be turned on and off anetéeence speed

Vr to be established.

To develop a mathematical model we start with a force baltorabe car body.
Let v be the speed of the canthe total mass (including passengeFs}the force
generated by the contact of the wheels with the road Faride disturbance force
due to gravity, friction and aerodynamic drag. The equatifanation of the car is
simply

m =F —Fa. (3.1)

The forceF is generated by the engine, whose torque is proportiondigo t
rate of fuel injection, which is itself proportional to a dosl signal 0<u <1
that controls the throttle position. The torque also dep@mdengine speed. A
simple representation of the torque at full throttle is gty the torque curve

T(w) =T (1-5(&-1)2) (3.2)

where the maximum torquR, is obtained at engine spee#,. Typical parameters
areTy, =190 Nm,wy, = 420 rad/s (about 4000 RPM) afid= 0.4. Letn be the gear
ratio andr the wheel radius. The engine speed is related to the veldeiygh the

expression n
w= V= anv,

and the driving force can be written as
nu
F= TT(w) = apuT(apv).

Typical values ofx,, for gears 1 through 5 am;, = 40,0, = 25,03 = 16,04 =12
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Figure 3.2: Torque curves for typical car engine. The graph on the left showsotigeie
generated by the engine as a function of the angular velocity of the enghile,the curve
on the right shows torque as a function of car speed for differemsgea

andas = 10. The inverse ofr, has a physical interpretation as tsféective wheel
radius Figure 3.2 shows the torque as a function of engine speed and vehicle
speed. The figure shows that the effect of the gear is to “flattemtdrque curve

so that an almost full torque can be obtained almost over ti@erspeed range.

The disturbance forc&y has three major components;, the forces due to
gravity; F, the forces due to rolling friction; arfg,, the aerodynamic drag. Letting
the slope of the road be, gravity gives the forcéy = mgsing, as illustrated in
Figure3.33 whereg = 9.8 m/$ is the gravitational constant. A simple model of
rolling friction is

Fr = mgq Sgr(V),

whereC; is the coefficient of rolling friction and sgw) is the sign ofv (+1) or
zero ifv= 0. A typical value for the coefficient of rolling friction i€, = 0.01.
Finally, the aerodynamic drag is proportional to the squétbhespeed:

1
Fa= épchvz,

wherep is the density of airCy is the shape-dependent aerodynamic drag coef-
ficient andA is the frontal area of the car. Typical parameters@re 1.3 kg/n?,
Cq = 0.32 andA = 2.4 n?.

Summarizing, we find that the car can be modeled by

m‘;‘t’ = 0nUT(aV) — MG SgN(V) - %pCdsz —mgsing,  (3.3)

where the functiorT is given by equation3.2). The model 8.3) is a dynamical
system of first order. The state is the car velogityvhich is also the output. The
input is the signall that controls the throttle position, and the disturbancdés
force Ry, which depends on the slope of the road. The system is nonleeause
of the torque curve, the gravity term and the nonlinear dtaraf rolling friction
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Figure 3.3: Car with cruise control encountering a sloping road. A schematic diaggam
shown in (a), and (b) shows the response in speed and throttle whereao§id is encoun-
tered. The hill is modeled as a net change ofrthill angle 8, with a linear change in the
angle betweeh =5 andt = 6. The PI controller has proportional gainkig= 0.5, and the
integral gain i; = 0.1.

and aerodynamic drag. There can also be variations in thengtess; e.g., the
mass of the car depends on the number of passengers anddheelog carried in
the car.

We add to this model a feedback controller that attemptsguolate the speed
of the car in the presence of disturbances. We shall use ai@pmal-integral
controller, which has the form

u(t) = kpe(t) + ki /0t e(r)dr.

This controller can itself be realized as an input/outputasyital system by defin-
ing a controller state and implementing the differential equation

dz

at
wherevV; is the desired (reference) speed. As discussed briefly indpel, the
integrator (represented by the stafensures that in steady state the error will be
driven to zero, even when there are disturbances or modeifiogs. (The design
of PI controllers is the subject of Chaptkd.) Figure3.3bshows the response of
the closed loop system, consisting of equatid@®)(@nd @.4), when it encounters
a hill. The figure shows that even if the hill is so steep that tirettle changes
from 0.17 to almost full throttle, the largest speed errdess than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the mo8&) (1t may seem

surprising that such a seemingly complicated system camsberitbed by the sim-
ple model 8.3). It is important to make sure that we restrict our use of tloeleh

—V, u=Kp(vr — V) +kiz, (3.4)



3.2. BICYCLE DYNAMICS 74

resume

Figure 3.4: Finite state machine for cruise control system. The figure on the left show
some typical buttons used to control the system. The controller can be iof dour modes,
corresponding to the nodes in the diagram on the right. Transition betweendtes is
controlled by pressing one of the five buttons on the cruise control ioterfan, off, set,
resume or cancel.

to the uncertainty lemon conceptualized in Fig@r&5h The model is not valid
for very rapid changes of the throttle because we have ighibre details of the
engine dynamics, neither is it valid for very slow changesaose the properties
of the engine will change over the years. Nevertheless thaehis very useful for
the design of a cruise control system. As we shall see in tii@pters, the reason
for this is the inherent robustness of feedback systems:iéttee model is not per-
fectly accurate, we can use it to design a controller and makeof the feedback
in the controller to manage the uncertainty in the system.

The cruise control system also has a human—machine intetfatallows the
driver to communicate with the system. There are many diffieneys to imple-
ment this system; one version is illustrated in FigBrd The system has four
buttons: on-off, set/decelerate, resume/accelerateamzet The operation of the
system is governed by a finite state machine that controls tduesof the Pl con-
troller and the reference generator. Implementation otrotiars and reference
generators will be discussed more fully in Chagtér

The use of control in automotive systems goes well beyondithple cruise
control system described here. Applications include emmsscontrol, traction
control, power control (especially in hybrid vehicles) adhptive cruise control.
Many automotive applications are discussed in detail irbiek by Kiencke and
Nielsen KNOQ] and in the survey papers by Powers et BP9G PNOQ.

3.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the fieatiiat one of its key
properties is due to a feedback mechanism that is createtiebgdsign of the
front fork. A detailed model of a bicycle is complex because dystem has many
degrees of freedom and the geometry is complicated. Howavgreat deal of
insight can be obtained from simple models.
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Figure 3.5: Schematic views of a bicycle. The steering anglé,ignd the roll angle ig.
The center of mass has heidghand distance from a vertical through the contact poiR
of the rear wheel. The wheel basévjsand the trail isc.

To derive the equations of motion we assume that the bicptie on the hori-
zontalxy plane. Introduce a coordinate system that is fixed to the l@ayith the
&-axis through the contact points of the wheels with the gdotine n-axis hor-
izontal and the{-axis vertical, as shown in Figui&5. Let vg be the velocity of
the bicycle at the rear whedd,the wheel basep the tilt angle and the steering
angle. The coordinate system rotates around the @ivith the angular veloc-
ity w = Vvpd /b, and an observer fixed to the bicycle experiences forces dile to
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pletum, as shown
in the rear view in Figur@®.5b. To model the tilt, consider the rigid body obtained
when the wheels, the rider and the front fork assembly are fizetie bicycle
frame. Letm be the total mass of the systednthe moment of inertia of this body
with respect to the€ -axis andD the product of inertia with respect to th€ axes.
Furthermore, let thé and{ coordinates of the center of mass with respect to the
rear wheel contact poinBy, bea andh, respectively. We havé ~ mt? andD =
mah The torques acting on the system are due to gravity and petsdtiaction.
Assuming that the steering anglds small, the equation of motion becomes

d? Dvp do . méh
Jdtf b dt mghsing + To
The termmghsing is the torque generated by gravity. The terms contaidiagd
its derivative are the torques generated by steering, \wetterm(Dvg/b)dd/dt
due to inertial forces and the terfmih/b) & due to centripetal forces.

The steering angle is influenced by the torque the rider apmi¢ise handle

bar. Because of the tilt of the steering axis and the shapheofront fork, the

5. (3.5)
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Figure 3.6: Block diagram of a bicycle with a front fork. The steering torque applietth¢éo
handlebars i§, the roll angle isp and the steering angle & Notice that the front fork
creates a feedback from the roll anglé¢o the steering anglé that under certain conditions
can stabilize the system.

contact point of the front wheel with the ro& is behind the axis of rotation of
the front wheel assembly, as shown in Fig@&c. The distance between the
contact point of the front whed®, and the projection of the axis of rotation of
the front fork assembl¥?; is called thetrail. The steering properties of a bicycle
depend critically on the trail. A large trail increases #iglbut makes the steering
less agile.

A consequence of the design of the front fork is that the stgeangled is
influenced both by steering torqdeand by the tilt of the frame. This means
that a bicycle with a front fork is &edback systemas illustrated by the block
diagram in Figure3.6. The steering anglé influences the tilt anglg, and the
tilt angle influences the steering angle, giving rise to theutar causality that is
characteristic of reasoning about feedback. For a froit ¥dth a positive trail,
the bicycle will steer into the lean, creating a centrifuffakte that attempts to
diminish the lean. Under certain conditions, the feedbarkactually stabilize the
bicycle. A crude empirical model is obtained by assuming tihe blockB can be
modeled as the static system

5 =kiT — k. (3.6)

This model neglects the dynamics of the front fork, the tioaerinteraction and
the fact that the parameters depend on the velocity. A mangrate model, called
theWhipple modglis obtained using the rigid-body dynamics of the front farid
the frame. Assuming small angles, this model becomes

M [g] +Cw [(g] + (Ko 4 KoV3) [g] = [?] , (3.7)

where the elements of thex22 matricedM, C, Ko andK; depend on the geometry
and the mass distribution of the bicycle. Note that this Hasra somewhat similar
to that of the spring—mass system introduced in Chapgerd the balance system
in Example2.1 Even this more complex model is inaccurate because thaater
tion between the tire and the road is neglected; takingmiisaccount requires two
additional state variables. Again, the uncertainty lenmoRigure2.15bprovides a
framework for understanding the validity of the model unithese assumptions.
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Figure 3.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all conmext{g) Only the
signal connections.

Interesting presentations on the development of the kécgob given in the
books by D. Wilson Wil04] and Herlihy Her04. The model 8.7) was presented
in a paper by Whipple in 1899/4hi99]. More details on bicycle modeling are
given in the paper/f{KLOS], which has many references.

3.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementatidslack’s feedback
amplifier. It is a universal component that is widely used fstiumentation, con-
trol and communication. It is also a key element in analogmating. Schematic
diagrams of the operational amplifier are shown in Figdiie The amplifier has
one inverting input\{_), one noninverting inputv;) and one outputvoy). There
are also connections for the supply voltages,ande,, and a zero adjustment
(offset null). A simple model is obtained by assuming that ifput currents_
andi_ are zero and that the output is given by the static relation

Vout = Salty, ;. vinay) (K(vy —vo)), (3.8)
where sat denotes the saturation function

a ifx<a
Satap(X) = ¢ x ifa<x<b (3.9)
b if x>h.

We assume that the galkis large, in the range of $61(, and the voltagesmin
andvmax satisfy

€ < Vmin < Vmax < €4
and hence are in the range of the supply voltages. More aecmadels are ob-
tained by replacing the saturation function with a smootcfion as shown in
Figure3.8. For small input signals the amplifier characteris8@) is linear:

Vout = K(v4 —Vv_) =1 —kv. (3.10)
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Figure 3.8: Input/output characteristics of an operational amplifier. The differeiniat is
given byv; —v_. The output voltage is a linear function of the input in a small range around
0, with saturation a¥nin, andvmax. In the linear regime the op amp has high gain.

Since the open loop gakis very large, the range of input signals where the system
is linear is very small.

A simple amplifier is obtained by arranging feedback aroumdhthsic opera-
tional amplifier as shown in Figurg9a To model the feedback amplifier in the
linear range, we assume that the curignt i_ +i, is zero and that the gain of
the amplifier is so large that the voltage- v_ — v, is also zero. It follows from
Ohm’s law that the currents through resistBisandR, are given by

i__ V2
RR R
and hence the closed loop gain of the amplifier is
R
V2_ kg, where ky= 2. (3.11)
Vi R

A more accurate model is obtained by continuing to negleetdirrentip but

oO—WV MW
Ry Ry
Vv
- vi | R € R v V2
Vi @ ——O — 72 1 > _—k >
Ry Ri+Re
V2
o o)
(a) Amplifier circuit (b) Block diagram

Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feledbaignd
an operational amplifier and has a corresponding block diagramigb)téBistor&k; andR,
determine the gain of the amplifier.
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assuming that the voltagds small but not negligible. The current balance is then
Vi1 —V V—\Vo
R R
Assuming that the amplifier operates in the linear range aimg) esjuation 3.10),
the gain of the closed loop system becomes
Vo - R le

== = - 3.13
kel vi RIRI+R+kR ( )

If the open loop gairk of the operational amplifier is large, the closed loop gain
ko is the same as in the simple model given by equat®hlj. Notice that the
closed loop gain depends only on the passive componenthandariations irk
have only a marginal effect on the closed loop gain. For efaiifik = 10° and
R>/R1 =100, a variation ok by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nicesthation of how feedback
can be used to make precise systems from uncertain comgoietitis particular
case, feedback is used to trade high gain and low robustoeks\f gain and high
robustness. EquatioB.L3 was the formula that inspired Black when he invented
the feedback amplifieHla34] (see the quote at the beginning of Chafit2y.

It is instructive to develop a block diagram for the feedbaahplifier in Fig-
ure 3.9a To do this we will represent the pure amplifier with inmnd output,
as one block. To complete the block diagram, we must deshdies depends on
v; andvs. Solving equation3.12 for v gives

Rz Rl Rl ( R,

2
= Vi Vo = —EVi 4V ),
R1+ Ry ! Ri+ Ry 2 Ri+R\Rg 1

and we obtain the block diagram shown in Fig8réh The diagram clearly shows
that the system has feedback and that the gain frotovis R /(Ry + Ry), which
can also be read from the circuit diagram in Fig@r@a If the loop is stable and
the gain of the amplifier is large, it follows that the ereds small, and we find that
v2 = —(Rz/R1)v1. Notice that the resistdr; appears in two blocks in the block
diagram. This situation is typical in electrical circuitsidait is one reason why
block diagrams are not always well suited for some types géjglal modeling.

The simple model of the amplifier given by equati8mlQ) provides qualitative
insight, but it neglects the fact that the amplifier is a dyr@hsystem. A more
realistic model is

(3.12)

\Y

d;";“‘ = —aVpui— bv (3.14)

The parametdr that has dimensions of frequency and is calledythia-bandwidth
productof the amplifier. Whether a more complicated model is used r#pen
the questions to be answered and the required size of thetaimtyg lemon. The
model @.14) is still not valid for very high or very low frequencies sedrift
causes deviations at low frequencies and there are adalitignamics that appear
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around aratipesal
amplifier. The capacitd is used to store charge and represents the integral of the input.

at frequencies close t@ The model is also not valid for large signals—an upper
limit is given by the voltage of the power supply, typicaltythe range of 5-10 V—
neither is it valid for very low signals because of electrizaise. These effects can
be added, if needed, but increase the complexity of the sisaly

The operational amplifier is very versatile, and many diffesystems can be
built by combining it with resistors and capacitors. In faaty linear system can
be implemented by combining operational amplifiers withstess and capacitors.
Exercise3.5shows how a second-order oscillator is implemented, and&g8yt0
shows the circuit diagram for an analog proportional-irdégontroller. To de-
velop a simple model for the circuit we assume that the ctiiges zero and that
the open loop gaik is so large that the input voltagds negligible. The currerit
through the capacitor is= Cd\/dt, whereyv; is the voltage across the capacitor.
Since the same current goes through the resitowe get

v O
- Ry T dt’
which implies that

Ve(t) = é/i(t)dt: F\)llc/otvl(r)dr.

The output voltage is thus given by

. R> 1/t
t) = —Roi —Ve=——wy(t) — =—— d
va(t) ol — Ve Rlvl() RlC/o vi(7)dT,
which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered byptkl[Lun05,
Phi4g, and their usage is described in many textbooks (eGp,75]). Good infor-
mation is also available from suppliedun02 Man03.
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3.4 Computing Systems and Networks

The application of feedback to computing systems followsstdr®e principles as
the control of physical systems, but the types of measurevaard control inputs
that can be used are somewhat different. Measurementso(sgrse typically
related to resource utilization in the computing system etsvork and can in-
clude quantities such as the processor load, memory usagsweork bandwidth.
Control variables (actuators) typically involve settiimgits on the resources avail-
able to a process. This might be done by controlling the amoiumemory, disk
space or time that a process can consume, turning on or afépsang, delaying
availability of a resource or rejecting incoming requests tserver process. Pro-
cess modeling for networked computing systems is alsoegithg, and empirical
models based on measurements are often used when a firspi@snoodel is not
available.

Web Server Control

Web servers respond to requests from the Internet and gravidrmation in the
form of web pages. Modern web servers start multiple prasess respond to
requests, with each process assigned to a single sourtaafuither requests are
received from that source for a predefined period of time. RBsEethat are idle
become part of a pool that can be used to respond to new reqiiesprovide a
fast response to web requests, it is important that the wafersprocesses do not
overload the server's computational capabilities or esh&simemory. Since other
processes may be running on the server, the amount of aegiedressing power
and memory is uncertain, and feedback can be used to prowit®gerformance
in the presence of this uncertainty.

Figure 3.11 illustrates the use of feedback to modulate the operatioanof
Apache web server. The web server operates by placing ingoooinnection re-
quests on a queue and then starting a subprocess to handéstefpr each ac-
cepted connection. This subprocess responds to requestsafgiven connection
as they come in, alternating betweeBuwsy state and &4i t state. (Keeping the
subprocess active between requests is known agdrsistencef the connection
and provides a substantial reduction in latency to requestsiultiple pieces of
information from a single site.) If no requests are receif@d sufficiently long
period of time, controlled by thBeepAl i ve parameter, then the connection is
dropped and the subprocess enterkdine state, where it can be assigned another
connection. A maximum ofaxCl i ent s simultaneous requests will be served,
with the remainder remaining on the incoming request queue.

The parameters that control the server represent a tradeetffeen perfor-
mance (how quickly requests receive a response) and resaosage (the amount
of processing power and memory used by the server). InogéstMaxCl i ent s
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Figure 3.11:Feedback control of a web server. Connection requests arriveiopat queue,
where they are sent to a server process. A finite state machine kespsfttae state of the
individual server processes and responds to requests. A colgasithm can modify the
server’s operation by controlling parameters that affect its behastich as the maximum
number of requests that can be serviced at a single fWag@ i ent s) or the amount of
time that a connection can remain idle before it is droppéepAl i ve).

parameter allows connection requests to be pulled off ofjtiteie more quickly
but increases the amount of processing power and memorg tisagis required.
Increasing th&eepAl i ve timeout means that individual connections can remain
idle for a longer period of time, which decreases the prangdsad on the ma-
chine but increases the size of the queue (and hence the aofdime required
for a user to initiate a connection). Successful operatiom lofisy server requires
a proper choice of these parameters, often based on triadramd

To model the dynamics of this system in more detail, we craaliscrete-time
model with states given by the average processor lgg¢dand the percentage
memory usage&mem The inputs to the system are taken as the maximum number
of clientsumc and the keep-alive timey,. If we assume a linear model around the
equilibrium point, the dynamics can be written as

XepulK+1 ) _ (A A2) [ XepulK] n Bi1 Bi2| [ UkalK] (3.15)
Xmem K+ 1] Az1 A2} (XmemlK] Bai Baz) |Umclk ) " ™
where the coefficients of th@andB matrices can be determined based on empiri-
cal measurements or detailed modeling of the web servertsegsing and memory

usage. Using system identification, Diao et BIGH+02 HDPTO04 identified the
linearized dynamics as

_( 054 -011 (-85 44 4
A= [—0.026 063]’ B= [—2.5 2.8] X107,

where the system was linearized about the equilibrium point
chu == 058, uka == 11 S Xmem == 055, Umc - 600.
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This model shows the basic characteristics that were destabove. Looking
first at theB matrix, we see that increasing theepAl i ve timeout (first col-
umn of theB matrix) decreases both the processor usage and the menagg us
since there is more persistence in connections and henseryer spends a longer
time waiting for a connection to close rather than taking orea active connec-
tion. TheMaxC i ent s connection increases both the processing and memory
requirements. Note that the largest effect on the procésadiis theKeepAl i ve
timeout. TheA matrix tells us how the processor and memory usage evolvesin a
gion of the state space near the equilibrium point. The diagenms describe how
the individual resources return to equilibrium after a siant increase or decrease.
The off-diagonal terms show that there is coupling betweertlo resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later exdespthat it can
be used to modify the parameters controlling the serverahtime and provide
robustness with respect to uncertainties in the load on thehime. Similar types
of mechanisms have been used for other types of serversinipigrtant to re-
member the assumptions on the model and their role in detergiwhen the
model is valid. In particular, since we have chosen to useageequantities over
a given sample time, the model will not provide an accurapeesentation for
high-frequency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decené@liefficient and ex-
pandable communication system. The system consists of e tangber of inter-
connected gateways. A message is split into several packéth are transmitted
over different paths in the network, and the packages aoénegj to recover the
message at the receiver. An acknowledgment (“ack”) messaggnt back to the
sender when a packet is received. The operation of the systgmverned by a
simple but powerful decentralized control structure ttest Bvolved over time.

The system has two control mechanisms cafieatocols the Transmission
Control Protocol (TCP) for end-to-end network communicatiod ¢he Internet
Protocol (IP) for routing packets and for host-to-gateway ategay-to-gateway
communication. The current protocols evolved after sometapalar congestion
collapses occurred in the mid 1980s, when throughput ureéegly could drop by
a factor of 1000 Jac9%. The control mechanism in TCP is based on conserving
the number of packets in the loop from the sender to the recaivd back to the
sender. The sending rate is increased exponentially whee th@o congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we motlet¢ separate
elements of the system: the rate at which packets are semidbsidual sources
(computers), the dynamics of the queues in the links (reptmnd the admission
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Figure 3.12:Internet congestion control. (a) Source computers send informati@uters,
which forward the information to other routers that eventually connecitogbeiving com-
puter. When a packet is received, an acknowledgment packet isagnthrough the routers
(not shown). The routers buffer information received from thersesi and send the data
across the outgoing link. (b) The equilibrium buffer skzefor a set ofN identical comput-
ers sending packets through a single router with drop probapility

control mechanism for the queues. Fig@r&2ais a block diagram of the system.
The current source control mechanism on the Internet is @@obknown as

TCP/Reno [PDO02. This protocol operates by sending packets to a receiver and

waiting to receive an acknowledgment from the receiverttimpacket has arrived.
If no acknowledgment is sent within a certain timeout pertbé packet is retrans-
mitted. To avoid waiting for the acknowledgment before $egdhe next packet,
Reno transmits multiple packets up to a fixeiddowaround the latest packet that
has been acknowledged. If the window length is chosen plgpaickets at the be-
ginning of the window will be acknowledged before the soure@smits packets
at the end of the window, allowing the computer to continlyppageam packets at
a high rate.

To determine the size of the window to use, TCP/Reno uses adekahech-
anism in which (roughly speaking) the window size is incezbisy 1 every time a
packet is acknowledged and the window size is cut in half wiekets are lost.
This mechanism allows a dynamic adjustment of the window isizehich each
computer acts in a greedy fashion as long as packets are telimgred but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed byrithasg the
dynamics of the window size. Suppose we h&/eomputers and lety; be the
current window size (measured in number of packets) forttheomputer. Let
gi represent the end-to-end probability that a packet will mpded someplace
between the source and the receiver. We can model the dymainibe window
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size by the differential equation

rl(twi n) +qi(—%ri(t —T)), r = T (3.16)
wherert; is the end-to-end transmission time for a packet to reackdsrthtion and
the acknowledgment to be sent back and the resulting rate at which packets
are cleared from the list of packets that have been receiael first term in the
dynamics represents the increase in window size when a packeceived, and
the second term represents the decrease in window size wpanokat is lost.
Notice thatr; is evaluated at timé— 1;, representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the rogtezue and the
admission control mechanism for the queue. Assume that welhfnks in the
network and usé to index the individual links. We model the queue in terms of
the current number of packets in the router’s bubieand assume that the router
can contain a maximum df max packets and transmits packets at a Gtequal
to the capacity of the link. The buffer dynamics can then bétenias

(j;tazs—q, s= Y nt-g). (3.17)
{i: TeLi}

dw

Wi
W_( —q) =

wherel; is the set of links that are being used by sou'razé is the time it takes a
packet from sourceto reach linkl ands is the total rate at which packets arrive
atlink|1.

The admission control mechanism determines whether a giaekep is ac-
cepted by a router. Since our model is based on the averagétmsain the net-
work and not the individual packets, one simple model is suat that the proba-
bility that a packet is dropped depends on how full the buep;, = m (by, bmax)-
For simplicity, we will assume for now thay = p/by (see Exercis8.6for a more
detailed model). The probability that a packet is dropped given link can be
used to determine the end-to-end probability that a pasKest in transmission:

G=1-1@-p)~ 5 pt—17), (3.18)

leL leL;

wheretP is the backward delay from linkto sourcei and the approximation is
valid as long as the individual drop probabilities are smak use the backward
delay since this represents the time required for the acletmyment packet to be
received by the source.

Together, equations3(16), (3.17) and 3.18 represent a model of congestion
control dynamics. We can obtain substantial insight by icterg1g a special case
in which we haveN identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be éghan which case
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the dynamics can be reduced to the form

dwi 1 pc(2+w?d) dbo Nw b
N I el BN

wherew; € R, i =1...,N, are the window sizes for the sources of ddte R

is the current buffer size of the routgy, controls the rate at which packets are
dropped ana is the capacity of the link connecting the router to the corarsu
The variabler represents the amount of time required for a packet to beepsed
by a router, based on the size of the buffer and the capadihedink. Substituting

T into the equations, we write the state space dynamics as

dw ¢ w2 db & ow
dt_b_pc<1+2), FED R (3.20)

More sophisticated models can be founditMTGO0O, LPDOZ. _
The nominal operating point for the system can be found bingaft = b =0:

c w2 CJow
Ob—pc<1+2), Ofi;T—c.

Exploiting the fact that all of the source dynamics are id=itiit follows that all
of thew; should be the same, and it can be shown that there is a unigudeagm
satisfying the equations
be cTe 1 3

The solution for the second equation is a bit messy but catydasidetermined
numerically. A plot of its solution as a function of (20°N?) is shown in Fig-
ure3.12h We also note that at equilibrium we have the following addil equal-
ities: b Nw W

e e e
=== =Npe:=Npb, re=—.

c c ) Qe pe p (S} e Te

Figure3.13shows a simulation of 60 sources communicating across desing
link, with 20 sources dropping out at= 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Notetteabuffer size and
window sizes automatically adjust to match the capacitheflink.

(3.22)

Te

A comprehensive treatment of computer networks is givehéntéxtbook by
TannenbaumTan9§. A good presentation of the ideas behind the control prin-
ciples for the Internet is given by one of its designers, \Vatobson, inJac9%.

F. Kelly [Kel85] presents an early effort on the analysis of the system. Tio& bo
by Hellerstein et al. HDPTO04 gives many examples of the use of feedback in
computer systems.
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Figure 3.13: Internet congestion control fa¥ identical sources across a single link. As
shown on the left, multiple sources attempt to communicate through a rautessaa single
link. An “ack” packet sent by the receiver acknowledges that thesags was received;
otherwise the message packet is resent and the sending rate is slowedtdbe source.
The simulation on the right is for 60 sources starting random rates, withi2@es dropping
out att = 500 ms. The buffer size is shown at the top, and the individual soates for 6
of the sources are shown at the bottom.

3.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig andigleiRohrer
for their design of thescanning tunneling microscop&he idea of the instrument
is to bring an atomically sharp tip so close to a conductingse that tunneling
occurs. Animage is obtained by traversing the tip acrossah#le and measuring
the tunneling current as a function of tip position. This imien has stimulated
the development of a family of instruments that permit visiagion of surface
structure at the nanometer scale, including dh@mic force microscopfAFM),
where a sample is probed by a tip on a cantilever. An AFM canaipen two
modes. Intapping modehe cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. loontact modehe cantilever is in contact with the
sample, and its bending is controlled by feedback. In bosesaontrol is actuated
by a piezo element that controls the vertical position ofdhetilever base (or the
sample). The control system has a direct influence on pictuaktgand scanning
rate.

A schematic picture of an atomic force microscope is showfigare3.14a A
microcantilever with a tip having a radius of the order of 10 i3 placed close to
the sample. The tip can be moved vertically and horizontalggia piezoelectric
scanner. It is clamped to the sample surface by attractivelea\Waals forces and
repulsive Pauli forces. The cantilever tilt depends on thedoaphy of the surface
and the position of the cantilever base, which is contratigdhe piezo element.
The tilt is measured by sensing the deflection of the laser bearg a photodiode.
The signal from the photodiode is amplified and sent to a cdatrtat drives



3.5. ATOMIC FORCE MICROSCOPY 88

Laser

Cantilever

Sweep Piezo

generator | x,y| drive z

Amplifier —| Controller —| Amplifier
| '3

(a) Schematic diagram (b) AFM image of DNA

Deflection reference

Figure 3.14: Atomic force microscope. (a) A schematic diagram of an atomic forceanic
scope, consisting of a piezo drive that scans the sample under the AFMI&per reflects
off of the cantilever and is used to measure the detection of the tip througgdadck con-
troller. (b) An AFM image of strands of DNA. (Image courtesy Veecstiuments.)

the amplifier for the vertical position of the cantilever. Bgntrolling the piezo
element so that the deflection of the cantilever is consthatsignal driving the
vertical deflection of the piezo element is a measure of thaiattorces between
the cantilever tip and the atoms of the sample. An image oftiniace is obtained
by scanning the cantilever along the sample. The resolutiakemit possible to
see the structure of the sample on the atomic scale, agalledtin Figure3.14h
which shows an AFM image of DNA.

The haorizontal motion of an AFM is typically modeled as a spHmgss sys-
tem with low damping. The vertical motion is more complicat&d model the
system, we start with the block diagram shown in FigBrgs Signals that are
easily accessible are the input voltag® the power amplifier that drives the piezo
element, the voltage applied to the piezo element and the output voltagéthe
signal amplifier for the photodiode. The controller is a PI colfgr implemented
by a computer, which is connected to the system by analaligital (A/D) and
digital-to-analog (D/A) converters. The deflection of thetdawer ¢ is also shown
in the figure. The desired reference value for the deflection is@ut to the com-
puter.

There are several different configurations that have diftedgnamics. Here
we will discuss a high-performance system froﬁf\p+07] where the cantilever
base is positioned vertically using a piezo stack. We bdginnbodeling with a
simple experiment on the system. Fig@ré6ashows a step response of a scanner
from the input voltage! to the power amplifier to the output voltagef the signal
amplifier for the photodiode. This experiment captures theadynos of the chain
of blocks fromu to y in the block diagram in Figur8.15 Figure3.16ashows that
the system responds quickly but that there is a poorly danogeilatory mode
with a period of about 35 us. A primary task of the modelingisibderstand the
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Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempisefo tke can-
tilever deflection equal to its reference value. Cantilever deflection isureshsamplified
and converted to a digital signal, then compared with its reference valoerrécting sig-
nal is generated by the computer, converted to analog form, ampliféedeart to the piezo
element.

origin of the oscillatory behavior. To do so we will explofeetsystem in more
detail.

The natural frequency of the clamped cantilever is typicadlyeral hundred
kilohertz, which is much higher than the observed oscillatdbf about 30 kHz.
As a first approximation we will model it as a static system. 8itiee deflections
are small, we can assume that the bendirg the cantilever is proportional to the
difference in height between the cantilever tip at the piantbthe piezo scanner. A
more accurate model can be obtained by modeling the caattide/a spring—mass
system of the type discussed in Chajer

Figure3.16aalso shows that the response of the power amplifier is fast. The
photodiode and the signal amplifier also have fast respomsesam thus be mod-
eled as static systems. The remaining block is a piezo syst#imswspension.
A schematic mechanical representation of the vertical anotif the scanner is
shown in Figure3.16h We will model the system as two masses separated by an
ideal piezo element. The mass is half of the piezo system, and the massis
the other half of the piezo system plus the mass of the support

A simple model is obtained by assuming that the piezo crgsmérates a force
F between the masses and that there is a dangimghe spring. Let the positions
of the center of the masses heandz,. A momentum balance gives the following
model for the system:

d221 d222 dz

m—— =F —— =—C——

gz~ M™ge 2 dt

Let the elongation of the piezo elemdnt z — 7, be the control variable and
the heightz; of the cantilever base be the output. Eliminating the vaei&bin

— k222 —F.
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Figure 3.16: Modeling of an atomic force microscope. (a) A measured step respdhg
top curve shows the voltageapplied to the drive amplifier (50 mV/div), the middle curve
is the outpud/, of the power amplifier (500 mV/div) and the bottom curve is the ouyput
of the signal amplifier (500 mV/div). The time scale is 25/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical postiamd the piezo
crystal.

equations above and substituting- | for z, gives the model

dZZ]_ le 2| dl
(M + mz)w ot kozy = My (o +Co gy + kol . (3.23)

Summarizing, we find that a simple model of the system is ohdaryemod-
eling the piezo by 3.23 and all the other blocks by static models. Introducing
the linear equations= kzu andy = ksz;, we now have a complete model relat-
ing the outputy to the control signal. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the powepldier. As in the
previous examples, the concept of the uncertainty lemongareR.15bprovides
a framework for describing the uncertainty: the model w#ldccurate up to the
frequencies of the fastest modeled modes and over a rangetaimin which
linearized stiffness models can be used.

The experimental results in FiguBel6acan be explained qualitatively as fol-
lows. When a voltage is applied to the piezo, it expandkbthe massm moves
up and the mass, moves down instantaneously. The system settles after aypoorl
damped oscillation.

It is highly desirable to design a control system for the igaitmotion so
that it responds quickly with little oscillation. The instnent designer has sev-
eral choices: to accept the oscillation and have a slow resptime, to design a
control system that can damp the oscillations or to redebigmechanics to give
resonances of higher frequency. The last two alternatiwesagiaster response and
faster imaging.

Since the dynamic behavior of the system changes with theepiep of the
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sample, itis necessary to tune the feedback loop. In simygtems this is currently
done manually by adjusting parameters of a Pl controller. §lage interesting
possibilities for making AFM systems easier to use by intaidg automatic tun-
ing and adaptation.

The book by Sarid$ar91] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamentalli state physics, see
Kittel [Kit95]. The model discussed in this section is based on Schi&h(].

3.6 Drug Administration

The phrase “Take two pills three times a day” is a recommeodatith which we
are all familiar. Behind this recommendation is a solutibam open loop control
problem. The key issue is to make sure that the concentrafiannoedicine in
a part of the body is sufficiently high to be effective but nothsgh that it will
cause undesirable side effects. The control action is qaeahtake two pills and
sampledgevery 8 hoursThe prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and wéitljiet patient.

Drug administration is a control problem. To solve it we mustlerstand how
a drug spreads in the body after it is administered. This tagikedpharmacoki-
netics is now a discipline of its own, and the models used are caltadpart-
ment modelsThey go back to the 1920s when Widmark modeled the propagatio
of alcohol in the body\WT24]. Compartment models are now important for the
screening of all drugs used by humans. The schematic diagr&igure3.17il-
lustrates the idea of a compartment model. The body is viewseal mumber of
compartments like blood plasma, kidney, liver and tisshes$ are separated by
membranes. It is assumed that there is perfect mixing sdhbalrug concentra-
tion is constant in each compartment. The complex transpocegses are approx-
imated by assuming that the flow rates between the comparraemproportional
to the concentration differences in the compartments.

To describe the effect of a drug it is necessary to know betlkdncentration
and how it influences the body. The relation between concémmraand its effect
eis typically nonlinear. A simple model is

C
e= . 3.24
Co—}—CemaX ( )
The effect is linear for low concentrations, and it saturatgsigh concentrations.
The relation can also be dynamic, and it is then caglledrmacodynamics

Compartment Models

The simplest dynamic model for drug administration is ol@diby assuming that
the drug is evenly distributed in a single compartment aftbas been adminis-
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Figure 3.17: Abstraction used to compartmentalize the body for the purpose of diegcrib
drug distribution (based on Teorelldo37). The body is abstracted by a number of com-
partments with perfect mixing, and the complex transport processeap@roximated by
assuming that the flow is proportional to the concentration differenceg icdimpartments.
The constant&; parameterize the rates of flow between different compartments.

tered and that the drug is removed at a rate proportionaktaedhcentration. The
compartments behave like stirred tanks with perfect mixireg c be the concen-
tration, V the volume andj the outflow rate. Converting the description of the
system into differential equations gives the model
dc

v dt
This equation has the solutiaft) = coe~ %V = cye K, which shows that the con-
centration decays exponentially with the time consfartV /q after an injection.
The input is introduced implicitly as an initial conditiontine model 8.25. More
generally, the way the input enters the model depends onlmedrug is adminis-
tered. For example, the input can be represented as a massifitotkié compart-
ment where the drug is injected. A pill that is dissolved ckso &e interpreted as
an input in terms of a mass flow rate.

The model 8.25 is called a ane-compartment modet asingle-pool model
The parameteq/V is called the elimination rate constant. This simple model
often used to model the concentration in the blood plasman8gsuring the con-
centration at a few times, the initial concentration canlitaimed by extrapolation.
If the total amount of injected substance is known, the va¥frcan then be de-
termined a8/ = m/co; this volume is called thapparent volume of distribution
This volume is larger than the real volume if the concentratiothe plasma is
lower than in other parts of the body. The mod&PRH is very simple, and there
are large individual variations in the parameters. The patargV andq are often
normalized by dividing by the weight of the person. Typicatgmeters for aspirin
areV = 0.2 L/kg andg = 0.01(L/h)/kg. These numbers can be compared with a
blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, an icetkular fluid

—qc, c>0. (3.25)

S
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Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compatrtme
model. Each compartment is labeled by its volume, and arrows indicat®wheffchemical
into, out of and between compartments. (b) A system with six compartraseatsto study
the metabolism of thyroid hormon&pd83. The notationk;; denotes the transport from
compartmenj to compartment.

volume of 0.4 L/kg and an outflow of 0.0015 L/min/kg.

The simple one-compartment model captures the gross belddoug distri-
bution, but it is based on many simplifications. Improved ni@dan be obtained
by considering the body as composed of several compartiriexamples of such
systems are shown in Figugel8 where the compartments are represented as cir-
cles and the flows by arrows.

Modeling will be illustrated using the two-compartment rebith Figure3.18a
We assume that there is perfect mixing in each compartmehthe the transport
between the compartments is driven by concentration diffegs. We further as-
sume that a drug with concentratiogis injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the outpuicLand
c2 be the concentrations of the drug in the compartments ang lehdV-, be the
volumes of the compartments. The mass balances for the cormgrds are

dc
Vi =d(c2—c1) —docr +0ol, &1 >0,
dc
Vz(T,[2 =q(c1—C2), €2>0, (3.26)
y=Ca.

Introducing the variableky = qo/Vi1, k1 = q/V1, ko = q/V2 andby = ¢p/V4 and
using matrix notation, the model can be written as

%‘3: [_kokz_kl kﬁz] c+ [%’] u, y= [0 1) C. (3.27)
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Figure 3.19: Insulin—glucose dynamics. (a) Sketch of body parts involved in the alooitr
glucose. (b) Schematic diagram of the system. (c) Responses of iasdliglucose when
glucose in injected intravenously. FrofPB84.

Comparing this model with its graphical representation iguFé 3.18a we find
that the mathematical representati@2() can be written by inspection.

It should also be emphasized that simple compartment msdelsas the one
in equation 8.27) have a limited range of validity. Low-frequency limits exime-
cause the human body changes with time, and since the camgrariodel uses
average concentrations, they will not accurately reprasgid changes. There are
also nonlinear effects that influence transportation batvilee compartments.

Compartment models are widely used in medicine, engingexnd environ-
mental science. An interesting property of these systeitiats/ariables like con-
centration and mass are always positive. An essential diffiau compartment
modeling is deciding how to divide a complex system into cartrpents. Com-
partment models can also be nonlinear, as illustrated inékéesection.

Insulin—glucose Dynamics

It is essential that the blood glucose concentration in thaykis kept within a
narrow range (0.7-1.1 g/L). Glucose concentration is infledrity many factors
like food intake, digestion and exercise. A schematic pe&uf the relevant parts
of the body is shown in Figuréx19aandb.

There is a sophisticated mechanism that regulates glucosectation. Glu-
cose concentration is maintained by the pancreas, whiaetescthe hormones
insulin and glucagon. Glucagon is released into the bloedst when the glucose
level is low. It acts on cells in the liver that release glueoisulin is secreted
when the glucose level is high, and the glucose level is ledidry causing the
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liver and other cells to take up more glucose. In diseaseguikenile diabetes the
pancreas is unable to produce insulin and the patient mjesitimsulin into the
body to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are caagdicdynamics
with time scales that range from seconds to hours have besamaa. Models of
different complexity have been developed. The models aredifp tested with
data from experiments where glucose is injected intraveiyoand insulin and
glucose concentrations are measured at regular time atserv

A relatively simple model called thainimal modelvas developed by Bergman
and coworkersBer89. This models uses two compartments, one representing the
concentration of glucose in the bloodstream and the otipeesenting the concen-
tration of insulin in the interstitial fluid. Insulin in the ddstream is considered
an input. The reaction of glucose to insulin can be modeledhbytjuations

dX1 -

dx .
ot —(Pp1+X2)X1 + P10e, (th = —pax2+ p3(u—ie), (3.28)

wherege andie represent the equilibrium values of glucose and insudinis the
concentration of glucose and is proportional to the concentration of interstitial
insulin. Notice the presence of the tepgx; in the first equation. Also notice
that the model does not capture the complete feedback locgube it does not
describe how the pancreas reacts to the glucose. FRyiBzshows a fit of the
model to a test on a normal person where glucose was injecte/énously at
timet = 0. The glucose concentration rises rapidly, and the panoespsnds with
a rapid spikelike injection of insulin. The glucose and iirsidvels then gradually
approach the equilibrium values.

Models of the type in equatior8(28 and more complicated models having
many compartments have been developed and fitted to expeaindaa. A diffi-
culty in modeling is that there are significant variations iodel parameters over
time and for different patients. For example, the parampten equation 8.28
has been reported to vary with an order of magnitude for heatidividuals. The
models have been used for diagnosis and to develop schem#geftreatment
of persons with diseases. Attempts to develop a fully autimnaatificial pancreas
have been hampered by the lack of reliable sensors.

The papers by Widmark and TandbeWyT24] and Teorell Teo37 are classics
in pharmacokinetics, which is now an established disogpliith many textbooks
[Dos68 Jac72 GP83. Because of its medical importance, pharmacokinetics is
now an essential component of drug development. The bookdysHRig63 is a
good source for the modeling of physiological systems, ambee mathematical
treatment is given inKS01]. Compartment models are discussed@ofi83. The
problem of determining rate coefficients from experimentids discussed in
[BA?O] and [God83. There are many publications on the insulin—glucose model.
The minimal model is discussed i@T84, Ber89 and more recent references are
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[MLKO6, FCF+04.

3.7 Population Dynamics

Population growth is a complex dynamic process that involliesinteraction of
one or more species with their environment and the largesyestem. The dynam-
ics of population groups are interesting and important imyngifferent areas of
social and environmental policy. There are examples whewespecies have been
introduced into new habitats, sometimes with disastroaslt® There have also
been attempts to control population growth both througlermiges and through
legislation. In this section we describe some of the modesdan be used to un-
derstand how populations evolve with time and as a functidinesr environments.

Logistic Growth Model

Let x be the population of a species at tilmé\ simple model is to assume that the
birth rates and mortality rates are proportional to thel fotgulation. This gives
the linear model

(;1(: bx—dx= (b—d)x=rx, x>0, (3.29)

where birth rateb and mortality rated are parameters. The model gives an ex-
ponential increase ib > d or an exponential decreasehif< d. A more realistic
model is to assume that the birth rate decreases when théapiopus large. The
following modification of the model3.29 has this property:

dx X

a = rx(li k)a

wherek is the carrying capacityof the environment. The mode8.30 is called
thelogistic growth model

x>0, (3.30)

Predator—Prey Models

A more sophisticated model of population dynamics incluttheseffects of com-
peting populations, where one species may feed on anothsisitumtion, referred
to as thepredator—prey problemwas introduced in Examp 3, where we devel-
oped a discrete-time model that captured some of the feaddifgistorical records
of lynx and hare populations.

In this section, we replace the difference equation mods tisere with a more
sophisticated differential equation model. Ikéft) represent the number of hares
(prey) and leL (t) represent the number of lynxes (predator). The dynamicseof th
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system are modeled as

A (1—H> it o

L @31
—=Db —dL L>0.
dt c+H ’ -

In the first equationr represents the growth rate of the haresepresents the
maximum population of the hares (in the absence of lynxespresents the in-
teraction term that describes how the hares are diminishadwnction of the lynx
population anat controls the prey consumption rate for low hare populatioithe
second equatior represents the growth coefficient of the lynxes dmdpresents
the mortality rate of the lynxes. Note that the hare dynanmichide a term that
resembles the logistic growth mod&l80).

Of particular interest are the values at which the popufataiues remain con-
stant, callecequilibrium points The equilibrium points for this system can be de-
termined by setting the right-hand side of the above eqguatio zero. Lettinde
andL. represent the equilibrium state, from the second equat®have

cd
Le= He = . .32
e=0 or Hg b (3.32)
Substituting this into the first equation, we have thatlfge= 0 eitherHe = 0 or
He = k. ForLe # 0, we obtain

L rHe(C+ He) (1_ E) _ ber(abk—cd—dk)
€ aHe k/ (ab—d)2k
Thus, we have three possible equilibrium poixgs= (Le, He):

() ) ()

whereHg andLg are given in equations3(32 and @.33. Note that the equilib-
rium populations may be negative for some parameter vabogsesponding to a
nonachievable equilibrium point.

Figure3.20shows a simulation of the dynamics starting from a set of f@pu
tion values near the nonzero equilibrium values. We seddhalis choice of pa-
rameters, the simulation predicts an oscillatory popaifatiount for each species,
reminiscent of the data shown in Figl2.

(3.33)

Volume | of the two-volume set by J. D. Murramr04] give a broad coverage
of population dynamics.
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Figure 3.20: Simulation of the predator—prey system. The figure on the left showswa sim
lation of the two populations as a function of time. The figure on the right stibe/ pop-
ulations plotted against each other, starting from different values of apelation. The
oscillation seen in both figures is an example tifrdt cycle The parameter values used for
the simulations ara=3.2,b=0.6,c=50,d = 0.56,k =125 andr = 1.6.

Exercises

3.1(Cruise control) Consider the cruise control example dieedrin Sectior8.1
Build a simulation that re-creates the response to a hillvehia Figure3.3band
show the effects of increasing and decreasing the mass céthy 25%. Redesign
the controller (using trial and error is fine) so that it reguta within 1% of the
desired speed within 3 s of encountering the beginning ohilhe

3.2 (Bicycle dynamics) Show that the dynamics of a bicycle frammemby equa-
tion (3.5 can be approximated in state space form as

i ()= (s &) ) + (i) o
y— [1 0] X,

where the inputi is the steering anglé and the outpuy is the tilt angleg. What
do the stateg; andxp represent?

3.3 (Bicycle steering) Combine the bicycle model given by etue3.5) and the
model for steering kinematics in Exam#e3to obtain a model that describes the
path of the center of mass of the bicycle.

3.4 (Operational amplifier circuit) Consider the op amp circhibwn below.
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Show that the dynamics can be written in state space form as

1 1 0 1

dx . - R1C1 B RaCl R]_C]_ _

i & 1 . 1 X+ . u, y_(O 1]x,
Ra RCo RoCo

whereu = v; andy = vs. (Hint: Usev, andvs as your state variables.)

3.5(Operational amplifier oscillator) The op amp circuit showioleis an imple-
mentation of an oscillator.

(&) Ry C
i w |

Show that the dynamics can be written in state space form as

0 R4
dx RiRsC1
dt 1 ’
T RG, 0

where the state variables represent the voltages acrosaplaeitors; = v and
Xo = Vo.

3.6 (Congestion control using RELPW+02) A number of improvements can
be made to the model for Internet congestion control presemt Section3.4.
To ensure that the router’s buffer size remains positivecaremodify the buffer
dynamics to satisfy

% _Js—q¢ b >0
dt Salpw) (s —C) b =0.

In addition, we can model the drop probability of a packeeasn how close we
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are to the buffer limits, a mechanism known as random eatiotien (RED):

0 at) < blower

b =m(a) = piri(t) — pyojower bjower < a(t) < byPPe
mri(t) — (1— 20" PP < g (t) < 20yPP
1 ay(t) > 2bPP"

da
Fri —aic(a —hy),

wherea, b'PP®, bloVer and p;'PP*" are parameters for the RED protocol.

Using the model above, write a simulation for the system andl &irset of
parameter values for which there is a stable equilibriunmipaind a set for which
the system exhibits oscillatory solutions. The followingssef parameters should
be explored:

N = 20,30,...,60, blower = 40 pkts o =0.1,
c=8,9,...,15 pktyms byPPe" =540 pkts a =104,
T =5560,...,100 ms
3.7 (Atomic force microscope with piezo tube) A schematic déagrof an AFM
where the vertical scanner is a piezo tube with preloadisgdsvn below.

T
Vr
my
kl% =L e
) =] 2

Show that the dynamics can be written as
d’z dz d?l dl
(Mg +1Mp) - + (Co+Co) g + (Kt ke)n = 5 + G2 + ol

Are there parameter values that make the dynamics parntigsianple?

3.8(Drug administration) The metabolism of alcohol in the body be modeled
by the nonlinear compartment model
C

doy dg
Vba =q(c — Cp) + v, Vi i q(ch—a) — qmaXﬁ + Qg
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whereV, = 48 L andV, = 0.6 L are the apparent volumes of distribution of body
water and liver water, andc are the concentrations of alcohol in the compart-
ments,qyy anddg are the injection rates for intravenous and gastrointaistin
take,q = 1.5 L/min is the total hepatic blood flowgmax = 2.75 mmol/min and
co = 0.1 mmol/L. Simulate the system and compute the concentritithe blood

for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9 (Population dynamics) Consider the model for logistic gtogiven by equa-
tion (3.30. Show that the maximum growth rate occurs when the size gbdipe
ulation is half of the steady-state value.

3.10 (Fisheries management) The dynamics of a commercial fisherpeate-
scribed by the following simple model:

dx

dt
wherex s the total biomasd,(x) = rx(1—x/k) is the growth rate ankl(x, u) = axu
is the harvesting rate. The outpyis the rate of revenue, and the parameteiis
andc are constants representing the price of fish and the cost aidisBhow that
there is an equilibrium where the steady-state biomasgs-sc/(ab). Compare

with the situation when the biomass is regulated to a cohstloe and find the
maximum sustainable return in that case.

f(x) —h(x,u), y = bh(x,u) —cu



Chapter Four

Dynamic Behavior

It Don't Mean a Thing If It Ain't Got That Swing.
Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behakiynmamical sys-
tems focused on systems modeled by nonlinear differergiztons. This allows
us to consider equilibrium points, stability, limit cyclead other key concepts in
understanding dynamic behavior. We also introduce somaadstfor analyzing
the global behavior of solutions.

4.1 Solving Differential Equations

In the last two chapters we saw that one of the methods of nmgpdinamical
systems is through the use of ordinary differential equat{®DES). A state space,
input/output system has the form

Zlf[( = f(x,u), y =h(x,u), (4.1)
wherex= (x1,...,%,) € R"is the statey € RP is the input ang € RYis the output.
The smooth mapé : R" x RP — R"andh: R" x RP — RY represent the dynamics
and measurements for the system. In general, they can bmeanfunctions of
their arguments. We will sometimes focus on single-inpimgls-output (SISO)
systems, for whiclp=q=1.

We begin by investigating systems in which the input has Ise¢to a function
of the statepy = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equatio this case become

dx :
4 = fxa() =Fx). (4.2)

To understand the dynamic behavior of this system, we neethatyze the
features of the solutions of equatiah2). While in some simple situations we can
write down the solutions in analytical form, often we mudyen computational
approaches. We begin by describing the class of solutiarntifproblem.

We say thatx(t) is a solution of the differential equation4(2) on the time
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intervaltg e Rtot; e R if

d)c(j(tt) =F(x(t)) foralltg <t <ts.

A given differential equation may have many solutions. Wé# wiost often be
interested in thenitial value problem wherex(t) is prescribed at a given time
to € R and we wish to find a solution valid for dlituretimet > to.
We say thak(t) is a solution of the differential equatiod.@) with initial value
Xo € R"attg e R if
dx(t)

X(to) =% and T:F(x(t)) foralltp <t <ts.

For most differential equations we will encounter, thera ismiquesolution that is
defined fortg < t < tf. The solution may be defined for all tinte> tp, in which
case we takeés = . Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to thisrgly as the solution
of an ODE.

We will typically assume thdp is equal to 0. In the case whénis independent
of time (as in equation4(.2)), we can do so without loss of generality by choosing
a new independent (time) variable=t —ty (Exercise4.1).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of thenfor
6+ 2L wo+ wfq =0,

whereq is the displacement of the oscillator from its rest positibimese dynamics
are equivalent to those of a spring—mass system, as showneirtiga2.6. We
assume thaf < 1, corresponding to a lightly damped system (the reasorhfer t
particular choice will become clear later). We can rewtilis in state space form
by settingx; = g andx; = g/, giving

dxq dx

—— = WpX —— = — X1 — 2{ WoXe.

gt — @0%e; at WoX1 — 24 woXz
In vector form, the right-hand side can be written as

(X
Fo0= [—woxl—ZzZasz] '

The solution to the initial value problem can be written in anfer of different
ways and will be explored in more detail in ChapeiHere we simply assert that
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Figure 4.1: Response of the damped oscillator to the initial condikge- (1,0). The solu-
tion is unique for the given initial conditions and consists of an oscillatorytieoldior each
state, with an exponentially decaying magnitude.

the solution can be written as

1 .
xl(t) = eszut)t (X]_OCOSO.ht + @(O.bleo—f- Xzo) SII’](.Qﬂ) ,

1 .
Xo(t) = e <ot <xzocosa)dt — @(nguﬁ- wod X20) sma)dt> ,

wherexy = (X10,%20) is the initial condition andwy = wy+/1— 2. This solution
can be verified by substituting it into the differential eqoat We see that the so-
lution is explicitly dependent on the initial condition,dait can be shown that this
solution is unique. A plot of the initial condition resporiseshown in Figuret.1
We note that this form of the solution holds only fox0{ < 1, corresponding to
an “underdamped” oscillator. O

Without imposing some mathematical conditions on the fiondE, the differ- @
ential equation4.2) may not have a solution for al| and there is no guarantee
that the solution is unique. We illustrate these possiéditvith two examples.

Example 4.2 Finite escape time
Letx € R and consider the differential equation

dx

— =X

dt
with the initial conditionx(0) = 1. By differentiation we can verify that the func-
tion 1

X(t) = ——

O =1

satisfies the differential equation and that it also satisfiedritial condition. A

graph of the solution is given in Figude2g notice that the solution goes to infinity
ast goes to 1. We say that this system limite escape timeThus the solution

(4.3)
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Figure 4.2: Existence and uniqueness of solutions. EquatiB) (has a solution only for
time t < 1, at which point the solution goes to, as shown in (a). Equatio{) is an

example of a system with many solutions, as shown in (b). For each valalene get a
different solution starting from the same initial condition.

exists only in the time interval &t < 1. O

Example 4.3 Nonunique solution
Letx € R and consider the differential equation

dx
Fri 2/ (4.4)
with initial conditionx(0) = 0. We can show that the function
0 fo<t<a
(t) = 2 .
(t—a)“ ift>a

satisfies the differential equation for all values of the patera > 0. To see this,
we differentiatex(t) to obtain

dx_ fo fo<t<a
dt  |2(t-a) ift>a,

and hencex = 2,/x for all t > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figurd.2h Notice that in this case there are many solutions
to the differential equation. O

These simple examples show that there may be difficulties eviénsimple
differential equations. Existence and uniqueness can begigeed by requiring
that the functiorF have the property that for some fixed: R,

IFO)—FW) <clx=y[ forallxy,

which is calledLipschitz continuity A sufficient condition for a function to be
Lipschitz is that the JacobiatF /dx is uniformly bounded for atk. The difficulty
in Example4.2 is that the derivativedF /dx becomes large for large and the
difficulty in Example4.3is that the derivative@F /dx is infinite at the origin.



4.2. QUALITATIVE ANALYSIS 106

1 ‘\\\\\\\ 1
SPIRRSNNNAN
o5 , T 3NNNN 0.5
rt A \i
R X2
X2 0 | o - ot
Yy .y, /l
\ AR ~ - ., j
_0'5\\\\\\\._,/ —0.5
NN
_ NS - -1 )
}1 -0.5 0 (;; 1 -1 -05 0 0.5 1
X1 X1
(a) Vector field (b) Phase portrait

Figure 4.3: Phase portraits. (a) This plot shows the vector field for a planar dya&syis-
tem. Each arrow shows the velocity at that point in the state space. (bpl®hiacludes the
solutions (sometimes called streamlines) from different initial conditiority the vector
field superimposed.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is importantriderstanding some
of the key concepts of stability in nonlinear dynamics. W# f@icus on an im-
portant class of systems known as planar dynamical sysfEmse systems have
two state variables € R?, allowing their solutions to be plotted in thgy,x,)
plane. The basic concepts that we describe hold more ggnaralican be used to
understand dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamicalesys with state
x € R? is to plot the phase portrait of the system, briefly introduice@hapter2.
We start by introducing the concept ofvactor field For a system of ordinary

differential equations q
X

dt - F(X)7

the right-hand side of the differential equation defines argx ¢ R" a velocity
F(x) € R". This velocity tells us how changes and can be represented as a vector
F(x) e R".

For planar dynamical systems, each state corresponds totarpthe plane and
F(x) is a vector representing the velocity of that state. We cahtpkse vectors
on a grid of points in the plane and obtain a visual image ofdyramics of the
system, as shown in Figuke3a The points where the velocities are zero are of
particular interest since they define stationary points efflibw: if we start at such
a state, we stay at that state.
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A phase portraitis constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a seiitidil conditions, we
plot the solution of the differential equation in the pldk& This corresponds to
following the arrows at each point in the phase plane andidgathe resulting tra-
jectory. By plotting the solutions for several differenitial conditions, we obtain
a phase portrait, as show in Figuteh Phase portraits are also sometimes called
phase plane diagrams

Phase portraits give insight into the dynamics of the systgshbwing the so-
lutions plotted in the (two-dimensional) state space oftsem. For example, we
can see whether all trajectories tend to a single point as iticreases or whether
there are more complicated behaviors. In the example in €3y corresponding
to a damped oscillator, the solutions approach the origirlidnitial conditions.
This is consistent with our simulation in Figudel, but it allows us to infer the
behavior for all initial conditions rather than a singletiai condition. However,
the phase portrait does not readily tell us the rate of chahgee states (although
this can be inferred from the lengths of the arrows in theosefatld plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a stages an equilibrium point for a dynamical system

dx

if F(xe) = 0. If a dynamical system has an initial conditi{®) = Xe, then it will

stay at the equilibrium poink(t) = Xe for all t > 0, where we have takep = 0.
Equilibrium points are one of the most important features dfmamical sys-

tem since they define the states corresponding to constaratimgeconditions. A

dynamical system can have zero, one or more equilibriumtgoin

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figurd, which is a part of the balance system
we considered in Chapt@r The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at thedaf the rocket, we
seek to keep the rocket stabilized in the upright positiore $tate variables are
the angled = x; and the angular velocitg6/dt = xo, the control variable is the
acceleratioru of the pivot and the output is the andle

For simplicity we assume thagl/J = 1 andl/J = 1, so that the dynamics
(equation 2.10) become

dx _ [ *2 ] . (4.5)

dt — | sinxg — cx +ucosqy
This is a nonlinear time-invariant system of second orders $hime set of equa-
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a iode
for a class of balance systems in which we wish to keep a system uprightasa rocket (a).
Using a simplified model of an inverted pendulum (b), we can develomagoportrait that
shows the dynamics of the system (c). The system has multiple equilibriints pmarked

by the solid dots along the = 0 line.

tions can also be obtained by appropriate normalizatiohegystem dynamics as
illustrated in Example.7.
We consider the open loop dynamics by setting 0. The equilibrium points

for the system are given by
+nm
Xe = [ 0 ] 3

wheren=0,1,2,.... The equilibrium points fon even correspond to the pendu-
lum pointing up and those farodd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inpugsdhown in Figuret.4c.
The phase portrait shows2mm < x; < 211, so five of the equilibrium points are
shown. O

Nonlinear systems can exhibit rich behavior. Apart fromikdopia they can
also exhibit stationary periodic solutions. This is of grpedctical value in gen-
erating sinusoidally varying voltages in power systemsnogenerating periodic
signals for animal locomotion. A simple example is given ireExse4.12 which
shows the circuit diagram for an electronic oscillator. Amalized model of the
oscillator is given by the equation

C:;(::x2+x1(l—x%—x§), (j(j)f[zz—x1+xz(l—x%—x§). (4.6)
The phase portrait and time domain solutions are given in Eigs The figure
shows that the solutions in the phase plane converge towdanittajectory. In the
time domain this corresponds to an oscillatory solutiontiidenatically the circle
is called dimit cycle More formally, we call an isolated solutiot) a limit cycle
of periodT > 0if x(t+T) =x(t) forallt € R.
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different witmaitions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) slaasingle solution
plotted as a function of time, with the limit cycle corresponding to a steady dswillaf
fixed amplitude.

There are methods for determining limit cycles for secortkpsystems, but
for general higher-order systems we have to resort to caatipatl analysis. Com-
puter algorithms find limit cycles by searching for periodigjéctories in state
space that satisfy the dynamics of the system. In many sinststable limit cy-
cles can be found by simulating the system with differerttahconditions.

4.3 Stability

The stability of a solution determines whether or not sohgioearby the solution
remain close, get closer or move further away. We now giveradbdefinition of
stability and describe tests for determining whether atemius stable.

Definitions

Let x(t;a) be a solution to the differential equation with initial cdtieh a. A
solution isstableif other solutions that start nearstay close tx(t;a). Formally,
we say that the solutior(t; a) is stable if for alle > 0, there exists & > 0 such

that
|b—all<d = ||x(t;b)—x(t;a)]| <& forallt>0.

Note that this definition does not imply theft; b) approaches(t;a) as time in-
creases hut just that it stays nearby. Furthermore, the wldemay depend on
€, so that if we wish to stay very close to the solution, we mayeha start very,
very close § < ¢). This type of stability, which is illustrated in Figu#e6, is also
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Figure 4.6: lllustration of Lyapunov’s concept of a stable solution. The solutionesgmted
by the solid line is stable if we can guarantee that all solutions remain within acfube
diametere by choosing initial conditions sufficiently close the solution.

calledstability in the sense of Lyapund¥a solution is stable in this sense and the
trajectories do not converge, we say that the solutioreigrally stable

An important special case is when the solutigtta) = xe is an equilibrium
solution. Instead of saying that the solution is stable, wely say that the equi-
librium point is stable. An example of a neutrally stableigqtium point is shown
in Figure4.7. From the phase portrait, we see that if we start near theilequih
point, then we stay near the equilibrium point. Indeed, lids Example, given any
¢ that defines the range of possible initial conditions, we @aply choosed = ¢
to satisfy the definition of stability since the trajectorége perfect circles.

A solutionx(t; a) isasymptotically stablé it is stable in the sense of Lyapunov
and alsox(t; b) — x(t;a) ast — o for b sufficiently close taa. This corresponds
to the case where all nearby trajectories converge to thessalution for large
time. Figure4.8 shows an example of an asymptotically stable equilibriuintpo
Note from the phase portraits that not only do all trajeeteistay near the equi-
librium point at the origin, but that they also all approakh origin ag gets large
(the directions of the arrows on the phase portrait show iiteetibn in which the
trajectories move).

A solutionx(t;a) is unstablef it is not stable. More specifically, we say that a
solutionx(t; a) is unstable if given some > 0, there doesot exist ad > 0 such
that if |b—a|| < 8, then||x(t;b) — x(t; a)|| < & for all t. An example of an unstable
equilibrium point is shown in Figur4.9.

The definitions above are given without careful descriptiothefr domain of
applicability. More formally, we define a solution to kacally stable(or locally
asymptotically stableif it is stable for all initial conditionsc € B, (a), where

Br(a) ={x:|x—a| <r}

is a ball of radiug arounda andr > 0. A system isglobally stableif it is sta-
ble for all r > 0. Systems whose equilibrium points are only locally stalale c
have interesting behavior away from equilibrium pointswasexplore in the next
section.

For planar dynamical systems, equilibrium points have essigned names
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium pointe at the origin is stable since all trajectories that
start neaxe stay neaxe.
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Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium poix{ at the origin is asymptotically stable
since the trajectories converge to this point as c.
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium pointe at the origin is unstable since not all trajectories
that start neaxe stay neae. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.
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Figure 4.10: Phase portraits for a congestion control protocol running ith 60 identical
source computers. The equilibrium values correspond to a fixed wiattive source, which
results in a steady-state buffer size and corresponding transmistgoA faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

based on their stability type. An asymptotically stableilguum point is called

a sink or sometimes amttractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, @ saddle if
some trajectories lead to the equilibrium point and othesseraway (this is the
situation pictured in Figurd.9). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such asotiein Figuret.?) is called
acenter

Example 4.5 Congestion control
The model for congestion control in a network consistinlafientical computers
connected to a single router, introduced in Sec8ahis given by

dw ¢ 1 w2 db _wec

at b P° ( 3 ) ’ -
wherew is the window size anflis the buffer size of the router. Phase portraits are
shown in Figuret. 10for two different sets of parameter values. In each case we se
that the system converges to an equilibrium point in whi@htffer is below its
full capacity of 500 packets. The equilibrium size of the bufepresents a balance
between the transmission rates for the sources and theiapithe link. We see
from the phase portraits that the equilibrium points arergsgtically stable since
all initial conditions result in trajectories that converp these points. O
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Stability of Linear Systems

A linear dynamical system has the form

31( =Ax  X(0) = Xo, 4.7)

whereA € R"™" is a square matrix, corresponding to the dynamics matrix of a
linear control system2(6). For a linear system, the stability of the equilibrium at
the origin can be determined from the eigenvalues of theixnatr

A(A) = {se C:detsl—A) =0}.

The polynomial dgsl — A) is the characteristic polynomiaénd the eigenvalues
are its roots. We use the notatidpfor the jth eigenvalue oA, so thatA; € A (A).
In generalA can be complex-valued, althoughAfis real-valued, then for any
eigenvalue), its complex conjugatd * will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stagbdita linear system
depends only on the matri we find that stability is a property of the system. For
a linear system we can therefore talk about the stabilithefdystem rather than
the stability of a particular solution or equilibrium paint
The easiest class of linear systems to analyze are those w¥&teen matrices
are in diagonal form. In this case, the dynamics have the form
A1 0
dx A2
gt = . X. (4.8)
0 An
It is easy to see that the state trajectories for this systenndependent of each
other, so that we can write the solution in termsafidividual systems = Ajx;.
Each of these scalar solutions is of the form

X;(t) = €% (0).
We see that the equilibrium point = O is stable ifA; < 0 and asymptotically

stable ifA; < 0.
Another simple case is when the dynamics are in the bloclodialgorm

o1 W 0 0
—w 01 0 0
dx _ S
dt 0 0o . : : .
0 0 Om Onm
0 0 —Wm Om

In this case, the eigenvalues can be shown tdjbe oj - iw;. We once again can
separate the state trajectories into independent sofufiimreach pair of states, and
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the solutions are of the form
Xoj—1(t) = 71" (xoj_1(0) coswjt + X2} (0) sinwjt),
X2 (t) = €71 (—X2j_1(0) sinwjt + X2j (0) coswjt) ,

wherej = 1,2,...,m. We see that this system is asymptotically stable if and only
if gj = ReAj < 0. Itis also possible to combine real and complex eigensgailue
(block) diagonal form, resulting in a mixture of solutiorfstioe two types.

Very few systems are in one of the diagonal forms above, buesystems can
be transformed into these forms via coordinate transfaomst One such class of
systems is those for which the dynamics matrix has distimmbepeating) eigen-
values. In this case there is a matfixc R"™*" such that the matriT AT 1 is
in (block) diagonal form, with the block diagonal elementsresponding to the
eigenvalues of the original matrix (see Exercisd.14). If we choose new coordi-
natesz = Tx, then dz

S —Tx=TAx=TAT 1z
dt

and the linear system has a (block) diagonal dynamics mditighermore, the
eigenvalues of the transformed system are the same as greabsystem since if
vis an eigenvector ok, thenw = Tvcan be shown to be an eigenvecto@¥T 1.
We can reason about the stability of the original system byngahat x(t) =
T~1z(t), and so if the transformed system is stable (or asymptbtistdble), then
the original system has the same type of stability.

This analysis shows that for linear systems with distincemiglues, the sta-
bility of the system can be completely determined by exangjrihe real part of
the eigenvalues of the dynamics matrix. For more gener&ss we make use
of the following theorem, proved in the next chapter:

Theorem 4.1(Stability of a linear system)The system

dx
a_Ax

is asymptotically stable if and only if all eigenvalues of IAbave a strictly neg-
ative real part and is unstable if any eigenvalue of A has &tyrpositive real
part.

Example 4.6 Compartment model

Consider the two-compartment module for drug deliveryodtrced in SectioB.6.
Using concentrations as state variables and denotingdke\stctor by, the sys-
tem dynamics are given by

dX_ —ko—ki ki bo _
dt[ ko —kz]x+[0 U y=(0 1)x

where the inpuu is the rate of injection of a drug into compartment 1 and the
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concentration of the drug in compartment 2 is the measurgzlioy We wish to
design a feedback control law that maintains a constanubgipen byy = yjq.
We choose an output feedback control law of the form

u= —K(y—Yd) + Ug,
whereuy is the rate of injection required to maintain the desiredcemtration
andk is a feedback gain that should be chosen such that the clospdystem is
stable. Substituting the control law into the system, weiabta

dX_ —ko—k1 kg —bok bo .
a_ [ ko —ko X+ 0 (ud+de) =: AX+ B,

y= [0 1) x=:Cx

The equilibrium concentratiox, € R? is given byxe = —A1Bus and

_ boks
= - CA BUe=————(ug+kyy).
Ye b= ot bokzk( a +Kya)
Choosingug such thatye = yq provides the constant rate of injection required to
maintain the desired output. We can now shift coordinatgdaice the equilibrium

point at the origin, which yields (after some algebra)
dz_ (—ko—ki ki—bok .
dt ko —ko ?

wherez = X — Xe. We can now apply the results of Theordni to determine the
stability of the system. The eigenvalues of the system aenddy the roots of the
characteristic polynomial

A(S) = S*+ (Ko + ky + ko) s+ (Koka -+ bokoK).

While the specific form of the roots is messy, it can be shownttieroots have
negative real part as long as the linear term and the corstaniare both positive
(Exercise4.16). Hence the system is stable for dny O. O

Stability Analysis via Linear Approximation

An important feature of differential equations is that ibiéen possible to deter-
mine the local stability of an equilibrium point by approting the system by a
linear system. The following example illustrates the badéai

Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dyiseamgcgiven by

de_ (0
dt  |sinxg—yx2 )’
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Figure 4.11: Comparison between the phase portraits for the full nonlinear systgrasda
its linear approximation around the origin (b). Notice that near the equilibpgaimt at the
center of the plots, the phase portraits (and hence the dynamics) ars aerdical.

where we have defined the statexas (0, 8). We first consider the equilibrium
point atx = (0, 0), corresponding to the straight-up position. If we assuraéttie
angle@ = x; remains small, then we can replacesinvith x; and cox; with 1,
which gives the approximate system

dx X 0O 1
e S

Intuitively, this system should behave similarly to the m@omplicated model
as long as¢; is small. In particular, it can be verified that the equililoniyoint
(0,0) is unstable by plotting the phase portrait or computing therealues of the
dynamics matrix in equatiors(9)

We can also approximate the system around the stable equititpoint at
x=(m,0). In this case we have to expandsirand cox; aroundx; = 71, according
to the expansions

sin(rr+6) = —sin@ ~ -0, coyr+8) = —cog0) ~ —1.

If we definez; = x; — irandz, = xo, the resulting approximate dynamics are given

by g
j_ 2 . 0 1
&z [zlyzz] _ [1 y] 7 (4.10)

Note thatz= (0,0) is the equilibrium point for this system and that it has thmea
basic form as the dynamics shown in Figdt8. Figure4.11shows the phase por-
traits for the original system and the approximate systeyarat the corresponding
equilibrium points. Note that they are very similar, altgbuot exactly the same.
It can be shown that if a linear approximation has either ggtically stable or

unstable equilibrium points, then the local stability o triginal system must be
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the same (Theored.3). O
More generally, suppose that we have a nonlinear system
dx
— =F(X

that has an equilibrium point at. Computing the Taylor series expansion of the
vector field, we can write

g'? = F (%) + dj (X—Xe) + higher-order terms iix — Xe).

OX |y,
SinceF (xe) = 0, we can approximate the system by choosing a new statélearia
Z= X— X and writing

d—Z:Az, where A= oF . (4.11)
dt OX |y,

We call the systemd(11) thelinear approximatiorof the original nonlinear system

or thelinearizationat Xe.

The fact that a linear model can be used to study the behaviarmanlin-
ear system near an equilibrium point is a powerful one. lddee can take this
even further and use a local linear approximation of a nealirsystem to design
a feedback law that keeps the system near its equilibriumtgdesign of dy-
namics). Thus, feedback can be used to make sure that salu@orain close to
the equilibrium point, which in turn ensures that the linepproximation used to
stabilize it is valid.

Linear approximations can also be used to understand thiéitgtabnonequi-
librium solutions, as illustrated by the following example

Example 4.8 Stable limit cycle
Consider the system given by equatidng],

dX]_ 2 2 dX2
. 1-%2— 2
at X2 +X1(1—X] —X5), at

whose phase portrait is shown in Figur®. The differential equation has a peri-
odic solution

=X +X(1—x —x3),

x1(t) = x1(0) cost +x2(0) sint, (4.12)

with x2(0) +x3(0) = 1.
To explore the stability of this solution, we introduce pataordinates and
@, which are related to the state variabkgsndx, by

X1 = I COS§, X2 =rsing.
Differentiation gives the following linear equations foand¢:

X1 =Fcosp —rgsing, Xo =fsing +r¢cosp.
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Solving this linear system farand¢ gives, after some calculation,

dr %_

- = _2 =
at A g

Notice that the equations are decoupled; hence we can arthlyztability of each
state separately.

The equation for has three equilibriar =0, r = 1 andr = —1 (not realiz-
able since must be positive). We can analyze the stability of theselibgiai by
linearizing the radial dynamics with(r) = r(1—r?). The corresponding linear
dynamics are given by

dr OF
Gl T (1-3r2)r, re=0,1,

e

where we have abused notation and usdd represent the deviation from the
equilibrium point. It follows from the sign ofl — 3r2) that the equilibriunt = 0

is unstable and the equilibrium= 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes to= 1 as time goes to infinity, but if the system
starts withr = 0, it will remain at the equilibrium for all times. This impBahat
all solutions to the original system that do not starkat X, = 0 will approach
the circlex? + x5 = 1 as time increases.

To show the stability of the full solutiord(12), we must investigate the be-
havior of neighboring solutions with different initial cditions. We have already
shown that the radiuswill approach that of the solutio®(12 as long as(0) > 0.
The equation for the angl¢ can be integrated analytically to giygt) = —t +
¢ (0), which shows that solutions starting at different angpewill neither con-
verge nor diverge. Thus, the unit circleagracting, but the solution4.12) is only
stable, not asymptotically stable. The behavior of the systeillustrated by the
simulation in Figuret.12 Notice that the solutions approach the circle rapidly, but

-1

that there is a constant phase shift between the solutions. O
4.4 Lyapunov Stability Analysis @
We now return to the study of the full nonlinear system

% =F(x), xeR" (4.13)

Having defined when a solution for a nonlinear dynamical systestable, we
can now ask how to prove that a given solution is stable, asytoplly stable
or unstable. For physical systems, one can often argue atalitity based on
dissipation of energy. The generalization of that techniguarbitrary dynamical
systems is based on the use of Lyapunov functions in placeerfg.
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Figure 4.12:Solution curves for a stable limit cycle. The phase portrait on the left shiost

the trajectory for the system rapidly converges to the stable limit cycle. Einéng points

for the trajectories are marked by circles in the phase portrait. The timaidgotots on

the right show that the states do not converge to the solution but insteathimairconstant
phase error.

In this section we will describe techniques for determiniing stability of so-
lutions for a nonlinear systend(13. We will generally be interested in stability
of equilibrium points, and it will be convenient to assumattk = 0 is the equi-
librium point of interest. (If not, rewrite the equationsamew set of coordinates

Z=X—Xe.)

Lyapunov Functions

A Lyapunov function V. R" — R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, itase find a nonnegative
function that always decreases along trajectories of teegery, we can conclude
that the minimum of the function is a stable equilibrium gdlocally).

To describe this more formally, we start with a few definitiovge say that a
continuous functiorV is positive definiteéf V(x) > 0 for all x # 0 andV (0) = 0.
Similarly, a function imegative definité V (x) < 0 for allx# 0 andV (0) = 0. We
say that a functiolVv is positive semidefinité V (x) > 0 for all x, butV (x) can be
zero at points other than just= 0.

To illustrate the difference between a positive definite fiomcand a positive
semidefinite function, suppose thet R? and let

Vi(X) =x3,  Vo(X) =X +x3.

Both V; andV, are always nonnegative. However, it is possibleMpto be zero
even ifx # 0. Specifically, if we sex= (0, c), wherec € R is any nonzero number,
thenVy(x) = 0. On the other hand/z(x) = 0 if and only ifx = (0,0). ThusV; is
positive semidefinite and, is positive definite.

We can now characterize the stability of an equilibrium poin= 0 for the
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Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov functx) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system vaysbaus¥® (x)

to decrease along the trajectory.

system 4.13.

Theorem 4.2(Lyapunov stability theorem)Let V be a nonnegative function on
R" and letV represent the time derivative of V along trajectories & flystem
dynamicg4.13:
ovdx oV

= xat - ox ¥
Let B = B;(0) be a ball of radius r around the origin. If there exists>r0 such
that V is positive definite and is negative semidefinite for allxB;, then x= 0
is locally stable in the sense of Lyapunov. If V is positiviinite andV is negative
definite in B, then x= 0is locally asymptotically stable.

If V satisfies one of the conditions above, we say that a (local)Lyapunov
functionfor the system. These results have a nice geometric intatjmet The
level curves for a positive definite function are the curveingd byV (x) = c,
¢ > 0, and for eactt this gives a closed contour, as shown in Figdré3 The
condition thatV (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories ntoenaller and smaller
values ofv and ifV is negative definite thexmust approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system
dx 2
dt " 14x ¢
This system has equilibrium pointsya& 1 andx = —2. We consider the equilib-
rium point atx = 1 and rewrite the dynamics usizg= x — 1:
dz 2

dt 21z 2%
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which has an equilibrium point &= 0. Now consider the candidate Lyapunov
function 1

which is globally positive definite. The derivative ¥f along trajectories of the

system is given by )
z

= m—
If we restrict our analysis to an inten}, wherer < 2, then 2+-z> 0 and we can
multiply through by 2+ zto obtain

22— (P+2) (242 =-7—-32=-7(z+3)<0, zeB,r<2

It follows thatV(z) < Oforallze B, z# 0, and hence the equilibrium poixg= 1
is locally asymptotically stable. O

V(z) =z

A slightly more complicated situation occurs\ifis negative semidefinite. In
this case it is possible thslt(x) = 0 whenx # 0, and hence& could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum
A normalized model for a hanging pendulum is
dX1 - dXz

—— =Xo, —— = —sinxy,
e~ ? dt !

wherex; is the angle between the pendulum and the vertical, withtigest;
corresponding to counterclockwise rotation. The equatasan equilibrium; =
x2 = 0, which corresponds to the pendulum hanging straight ddwexplore the
stability of this equilibrium we choose the total energy dyapunov function:

1 1 1
V(X) = 1—cosxg + Exg ~ Exf + éxg.

The Taylor series approximation shows that the function sitpe definite for
smallx. The time derivative o¥ (x) is

V = Xq SiNXy 4+ XoXo = X2 SiNX1 — Xp Sinxy = 0.
Since this function is negative semidefinite, it follows froiyabunov’s theorem
that the equilibrium is stable but not necessarily asynigatly stable. When per-
turbed, the pendulum actually moves in a trajectory thatesponds to constant
energy. O

Lyapunov functions are not always easy to find, and they arainigjue. In
many cases energy functions can be used as a starting ppingsadone in Ex-
ample4.10 It turns out that Lyapunov functions can always be foundédny
stable system (under certain conditions), and hence onetimat if a system



4.4. LYAPUNOV STABILITY ANALYSIS 122

is stable, a Lyapunov function exists (and vice versa). Riexasults using sum-
of-squares methods have provided systematic approachdmdng Lyapunov
systemsPPP02 Sum-of-squares techniques can be applied to a broad yafiet
systems, including systems whose dynamics are describgalipgomial equa-
tions, as well as hybrid systems, which can have differendigtoofor different
regions of state space.

For a linear dynamical system of the form

dx
2 A
TR

it is possible to construct Lyapunov functions in a systécmaganner. To do so, we
consider quadratic functions of the form

V(x) = X" Px,

whereP € R"™" is a symmetric matrix® = P'). The condition thaV be positive
definite is equivalent to the condition thHabe apositive definite matrix

x'Px>0, forallx#0,

which we write ad® > 0. It can be shown that P is symmetric, thet® is positive
definite if and only if all of its eigenvalues are real and psit

Given a candidate Lyapunov functid(x) = x' Px, we can now compute its
derivative along flows of the system:

. oVdx

V= oxdt —
The requirement thaf be negative definite (for asymptotic stability) becomes a
condition that the matrixQ be positive definite. Thus, to find a Lyapunov func-

tion for a linear system it is sufficient to choos®a> 0 and solve thé.yapunov
equation

X" (ATP+ PA)x =: —xTQx.

ATP+PA=—Q. (4.14)

This is a linear equation in the entries Bf and hence it can be solved using
linear algebra. It can be shown that the equation always reugion if all of
the eigenvalues of the matrix are in the left half-plane. Moreover, the solution
P is positive definite ifQ is positive definite. It is thus always possible to find
a quadratic Lyapunov function for a stable linear system.whedefer a proof
of this until Chapter5, where more tools for analysis of linear systems will be
developed.

Knowing that we have a direct method to find Lyapunov functitordinear
systems, we can now investigate the stability of nonlingatesns. Consider the
system

dx

i F(x) =: Ax+F (x), (4.15)
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Figure 4.14: Stability of a genetic switch. The circuit diagram in (a) represents two pitein
that are each repressing the production of the other. The inp@sdu, interfere with this
repression, allowing the circuit dynamics to be modified. The equilibriumtgdor this
circuit can be determined by the intersection of the two curves shown.in (b)

whereF (0) = 0 andF (x) contains terms that are second order and higher in the
elements ok. The functionAx is an approximation oF (x) near the origin, and
we can determine the Lyapunov function for the linear apipnation and investi-
gate if it is also a Lyapunov function for the full nonlinearsgem. The following
example illustrates the approach.

Example 4.11 Genetic switch
Consider the dynamics of a set of repressors connectedhtrget a cycle, as
shown in Figure4.14a The normalized dynamics for this system were given in

Exercise2.9;
dzz  u dz  u

dt 144 P dr 144 @

wherez; and z, are scaled versions of the protein concentrationand u are
parameters that describe the interconnection betweeneihesgand we have set
the external inputs; andus to zero.

The equilibrium points for the system are found by equatiregtiime deriva-
tives to zero. We define

(4.16)

_ M oy A —pnd
f(u)ilJru”’ f (u)idui (1+um?2’
and the equilibrium points are defined as the solutions of guatons
1 = f(Zz), Zn = f(Zl).

If we plot the curveqz, f(z)) and(f(z),2) on a graph, then these equations
will have a solution when the curves intersect, as shown inreig.14h Because
of the shape of the curves, it can be shown that there willydvwe three solutions:
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one atzie = e, ONe Withzye < 2 and one withege > zpe. If > 1, then we can
show that the solutions are given approximately by

1 1
Zie~ U, 2R F; Z1e = Z2e, Z1e ™ Wv Ze = . (4.17)

To check the stability of the system, we writtéu) in terms of its Taylor series
expansion aboule:

f(u) = f(Ug) + f'(Ue) - (U—Ug) + % f”(Ug) - (U— Ug)? 4 higher-order terms

where f’ represents the first derivative of the function, dfdthe second. Using
these approximations, the dynamics can then be written as

dw -1 f(ze) =
a: [f/(zle) _i ]W+F(W)7

wherew = z— 7 is the shifted state ark:-:l(w) represents quadratic and higher-order
terms.

We now use equatior(14) to search for a Lyapunov function. ChoosiQg- |
and lettingP € R?*? have elementsg;j, we search for a solution of the equation

-1 fi) (Pu P2 (Pu pr2) (-1 f) _ (-1 O

fa —1) (P2 P22 P12 P22 fi —1 o -1)°
wheref] = f’(ze) andf) = f’(z). Note that we have sgb, = p;2 to forceP to
be symmetric. Multiplying out the matrices, we obtain

—2pu+2fipre puafy—2pa+p2fi) _ (-1 0

P11fs—2p1a+ p22f]  —2p22+2f5p12 0o -1)°
which is a set ofinear equations for the unknowns;. We can solve these linear
equations to obtain

f12— 5 +2 f1 4 5 f42 — 542

Pui=——or Pr2=—F%7—"=v Poo=——"FF7—7-
4(f1f2_1) 4(flf2_1) 4(f1f2_1)
To check tha¥ (w) = w' Pwis a Lyapunov function, we must verify thetw) is
positive definite function or equivalently thBt> 0. SinceP is a 2x 2 symmetric
matrix, it has two real eigenvalu@ds andA, that satisfy
A1+ Az =traceP), A1-A2 =detP).
In order forP to be positive definite we must have tigatandA, are positive, and
we thus require that
f12-2f5f+ 5%+ 4
4—A4f1 1)

f2—215 1+ f)°+4

tracqP) =
race) 16— 1611}

> 0.

>0, defP)=
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We see that tra¢®) = 4de{(P) and the numerator of the expressions is jigt-
f2)24+4 > 0, so it suffices to check the sign of-1f; 5. In particular, forP to be
positive definite, we require that

f'(z1e) ' (z20) < 1.

We can now make use of the expressionsffodefined earlier and evaluate at
the approximate locations of the equilibrium points detdiieequation4.17). For
the equilibrium points wherey # zpe, We can show that

1 —unu™l —un —(n-1) )
f'(z1e) ' (22e) ~ f/(“)f/(unfl) = (1H+Zn)2 ’ 11:—n(n—1) LT
Usingn = 2 andu = 200 from Exercise.9, we see thaf’(ze)f'(z¢) < 1 and
henceP is a positive definite. This implies th¥tis a positive definite function and
hence a potential Lyapunov function for the system.
To determine if the systend(16) is stable, we now compuié at the equilib-
rium point. By construction,

V =w'(PA+ATP)W+ FT(w)Pw-+w'PF (w)
= —w'w+FT(w)Pw+w'PF (w).

Since all terms irF are quadratic or higher order im, it follows thatF T (w)Pw
andw'PF (w) consist of terms that are at least third ordeminTherefore ifw is
sufficiently close to zero, then the cubic and higher-ordensewill be smaller
than the quadratic terms. Hence, sufficiently close te 0,Vis negative definite,
allowing us to conclude that these equilibrium points arih stable.
Figure4.15shows the phase portrait and time traces for a systempvith,
illustrating the bistable nature of the system. When thigintondition starts with
a concentration of protein B greater than that of A, the smutonverges to the
equilibrium point at (approximately)l/u"1 u). If A is greater than B, then it
goes to(u,1/u""1). The equilibrium point withz;e = zp¢ is unstable. O

More generally, we can investigate what the linear appration tells about
the stability of a solution to a nonlinear equation. The fwilog theorem gives a
partial answer for the case of stability of an equilibriunirmo

Theorem 4.3. Consider the dynamical syste@.15 with F(0) = 0 andF such
thatlim ||F (x)|/||x|| — 0 as||x|| — O. If the real parts of all eigenvalues of A are
strictly less than zero, then.x= 0 is a locally asymptotically stable equilibrium
point of equatior(4.15).

This theorem implies that asymptotic stability of the linapproximation im-
plies local asymptotic stability of the original nonlinear system. Thedrem is
very important for control because it implies that stalilian of a linear approxi-
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Figure 4.15: Dynamics of a genetic switch. The phase portrait on the left shows that the
switch has three equilibrium points, corresponding to protein A having aecdration
greater than, equal to or less than protein B. The equilibrium point withl gujogein con-
centrations is unstable, but the other equilibrium points are stable. The sonuta the

right shows the time response of the system starting from two differentlio@raditions.

The initial portion of the curve corresponds to initial concentratz(® = (1,5) and con-
verges to the equilibrium wheme < zpe. At timet = 10, the concentrations are perturbed
by +2inz; and—2 in z,, moving the state into the region of the state space whose solutions
converge to the equilibrium point whezg, < 7.

mation of a nonlinear system results in a stable equilibrionthe nonlinear sys-
tem. The proof of this theorem follows the technique used innipla 4.11 A
formal proof can be found irKhaO1].

Krasovski—Lasalle Invariance Principle Q Q

For general nonlinear systems, especially those in symfmiin, it can be difficult
to find a positive definite functioM whose derivative is strictly negative definite.
The Krasovski—Lasalle theorem enables us to conclude thepdstimstability of
an equilibrium point under less restrictive conditionsyedy, in the case wheié
is negative semidefinite, which is often easier to constHmivever, it applies only
to time-invariant or periodic systems. This section makesafssome additional
concepts from dynamical systems; see Hata{67 or Khalil [Kha01] for a more
detailed description.
We will deal with the time-invariant case and begin by introithg a few more

definitions. We denote the solution trajectories of the tim&riant system

dx

i F (X) (4.18)
asx(t;a), which is the solution of equatiod (18 at timet starting froma atto = 0.
The w limit setof a trajectoryx(t; a) is the set of all pointg € R" such that there
exists a strictly increasing sequence of timesuch thatx(th;a) — zasn — oo.
A setM C R" is said to be amnvariant setif for all b € M, we havex(t;b) e M
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forallt > 0. It can be proved that th® limit set of every trajectory is closed and
invariant. We may now state the Krasovski—Lasalle principle

Theorem 4.4(Krasovski-Lasalle principle)Let V : R" — R be a locally positive
definite function such that on the compact@et= {x € R": V(x) < r} we have
V(x) < 0. Define

S={xeQ:V(x)=0}.

As t— oo, the trajectory tends to the largest invariant set insidé.&; its w limit
set is contained inside the largest invariant set in S. Irtipatar, if S contains no
invariant sets other than x 0, then 0 is asymptotically stable.

Proofs are given infra63 and [LaS6qQ.

Lyapunov functions can often be used to design stabilizimgrollers, as is
illustrated by the following example, which also illusgathow the Krasovski—
Lasalle principle can be applied.

Example 4.12 Inverted pendulum
Following the analysis in Examp7, an inverted pendulum can be described by
the following normalized model:

(L)il =X, (L)iz = SinXy + UCOSXy, (4.19)
wherex; is the angular deviation from the upright position and the (scaled)
acceleration of the pivot, as shown in Figytd6a The system has an equilib-
rium atx; = X2 = 0, which corresponds to the pendulum standing upright. This
equilibrium is unstable.

To find a stabilizing controller we consider the following déadate for a Lya-
punov function:

V(X) = (cosxg — 1) +a(1l—cosxg) + %xg ~ (a— %)x% + %xg
The Taylor series expansion shows that the function is pesitefinite near the
origin if a > 0.5. The time derivative 0¥ (x) is
V = —x; SinXg + 2a%; SiNX; COSXg + XpXp = X2(U+ 2asinx; ) COSXy.
Choosing the feedback law
U= —2asinX; — X2 COSXy.

gives .

V = —x5coSX;.
It follows from Lyapunov’s theorem that the equilibrium echlly stable. However,
since the function is only negative semidefinite, we cannotkme asymptotic
stability using Theorem.2 However, note that = 0 implies thatx, = 0 or x; =
/24N
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Figure 4.16: Stabilized inverted pendulum. A control law applies a foucat the bottom
of the pendulum to stabilize the inverted position (a). The phase portragh(ys that
the equilibrium point corresponding to the vertical position is stabilized. Taeed region
indicates the set of initial conditions that converge to the origin. The ellipgegmonds to a
level set of a Lyapunov functiovi(x) for whichV (x) > 0 andV (x) < 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction ofuHieragm
point. The actual dynamics of the system evolve on a manifold (c).

If we restrict our analysis to a small neighborhood of thgiorQ),, r < 11/2,

then we can define
S={(x1,%) € Q; : xp =0}

and we can compute the largest invariant set in§Side€or a trajectory to remain
in this set we must have, = 0 for all t and hence(t) = 0 as well. Using the
dynamics of the systerd (19, we see that,(t) = 0 andxx(t) = 0 impliesx, (t) =0
as well. Hence the largest invariant set inslis (x;,x2) = 0, and we can use the
Krasovski—Lasalle principle to conclude that the origindsedlly asymptotically
stable. A phase portrait of the closed loop system is shoviaigure4.16h

In the analysis and the phase portrait, we have treated tgie afthe pendulum
6 = xq as a real number. In fach, is an angle withd = 2T equivalent tof = 0.
Hence the dynamics of the system actually evolves m@aaifold(smooth surface)
as shown in Figurd.16c Analysis of nonlinear dynamical systems on manifolds
is more complicated, but uses many of the same basic idessrmesl here. [

4.5 Parametric and Nonlocal Behavior @

Most of the tools that we have explored are focused on thd luslzavior of a
fixed system near an equilibrium point. In this section weflyimtroduce some
concepts regarding the global behavior of nonlinear systend the dependence
of a system'’s behavior on parameters in the system model.
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Regions of Attraction

To get some insight into the behavior of a nonlinear systeroamestart by finding
the equilibrium points. We can then proceed to analyze tbal loehavior around
the equilibria. The behavior of a system near an equilibriwintpis called the
local behavior of the system.

The solutions of the system can be very different far away faonequilibrium
point. This is seen, for example, in the stabilized penduluiExample4.12 The
inverted equilibrium point is stable, with small oscillatis that eventually con-
verge to the origin. But far away from this equilibrium pothere are trajectories
that converge to other equilibrium points or even cases iithvthe pendulum
swings around the top multiple times, giving very long datibns that are topo-
logically different from those near the origin.

To better understand the dynamics of the system, we can agraime set of all
initial conditions that converge to a given asymptoticaligble equilibrium point.
This set is called theegion of attractionfor the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figutéh In general,
computing regions of attraction is difficult. However, evewe cannot determine
the region of attraction, we can often obtain patches ardbedtable equilibria
that are attracting. This gives partial information aboethiehavior of the system.

One method for approximating the region of attraction istigh the use of
Lyapunov functions. Suppose thdtis a local Lyapunov function for a system
around an equilibrium pointy. Let Q, be a set on whicN (x) has a value less
thanr,

Qr={xeR":V(x) <r},
and suppose that(x) < 0 for all x € Q,, with equality only at the equilibrium
point xo. ThenQ, is inside the region of attraction of the equilibrium poi&tnce
this approximation depends on the Lyapunov function andlioéce of Lyapunov
function is not unique, it can sometimes be a very conseevaistimate.

It is sometimes the case that we can find a Lyapunov fundtisoch thav is
positive definite an is negative (semi-) definite for atle R". In many instances
it can then be shown that the region of attraction for the ldariim point is the
entire state space, and the equilibrium point is said tglbleally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Exampl2 The Lya-
punov function for the system was

1
V(x) = (cosxy — 1) +a(1—cosxy) + EX%’

andV was negative semidefinite for alland nonzero wher; # +71/2. Hence
anyx such thatx;| < /2 andV (x) > 0 will be inside the invariant set defined by
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the level curves o¥ (x). One of these level sets is shown in Figdr&6h O

Bifurcations

Another important property of nonlinear systems is howrthehavior changes as
the parameters governing the dynamics change. We can stigdiyn tthe context
of models by exploring how the location of equilibrium pantheir stability, their
regions of attraction and other dynamic phenomena, suchméisdycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

dx

5=
wherex is the state angl is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x,u) =0,

and asu is varied, the corresponding solutiorsg 1) can also vary. We say that
the system4.20 has abifurcationat u = u* if the behavior of the system changes
qualitatively atu*. This can occur either because of a change in stability tye or
change in the number of solutions at a given valug of

F(x, M), xeR" peRX (4.20)

Example 4.14 Predator—prey
Consider the predator—prey system described in Se8tibrThe dynamics of the
system are given by

dH H aHL dL aHL

at — M (1 k) C+H’ at ~Pern 9k (4.21)
whereH andL are the numbers of hares (prey) and lynxes (predatorspabd
¢, d, k andr are parameters that model a given predator—prey systerorifoks
in more detail in Sectio.7). The system has an equilibrium pointtég > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behavithe system,
we choose to focus on two specific parameters of integegiie interaction coef-
ficient between the populations aoda parameter affecting the prey consumption
rate. Figure4.17ais a numerically computegarametric stability diagranshow-
ing the regions in the chosen parameter space for which thiéietqum point is
stable (leaving the other parameters at their nominal g3lW&e see from this fig-
ure that for certain combinations aindc we get a stable equilibrium point, while
at other values this equilibrium point is unstable.

Figure4.17bis a numerically computeblifurcation diagramfor the system. In
this plot, we choose one parameter to vaaygnd then plot the equilibrium value
of one of the stateH) on the vertical axis. The remaining parameters are set to
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Figure 4.17: Bifurcation analysis of the predator—prey system. (a) Parametric stadiidity
gram showing the regions in parameter space for which the system is gtgtB&urcation
diagram showing the location and stability of the equilibrium point as a functi@ ©he
solid line represents a stable equilibrium point, and the dashed line refresennstable
equilibrium point. The dashed-dotted lines indicate the upper and lowerdsdanthe limit
cycle at that parameter value (computed via simulation). The nominawalithe parame-
ters in the model ara= 3.2,b=0.6,c=50,d = 0.56,k = 125 andr = 1.6.

their nominal values. A solid line indicates that the edpiilim point is stable; a
dashed line indicates that the equilibrium point is ungtallote that the stability
in the bifurcation diagram matches that in the parametabibty diagram for

¢ = 50 (the nominal value) and varying from 1.35 to 4. For the predator—prey
system, when the equilibrium point is unstable, the sofutionverges to a stable
limit cycle. The amplitude of this limit cycle is shown by thashed-dotted line in
Figure4.17h 0

A patrticular form of bifurcation that is very common when tatling linear
systems is that the equilibrium remains fixed but the stgbiftthe equilibrium
changes as the parameters are varied. In such a case it @imgvi® plot the
eigenvalues of the system as a function of the parameter$. [Bats are called
root locus diagramdbecause they give the locus of the eigenvalues when param-
eters change. Bifurcations occur when parameter valuesuate that there are
eigenvalues with zero real part. Computing environmenté &.labVIEW, MAT-

LAB and Mathematica have tools for plotting root loci.

Example 4.15 Root locus diagram for a bicycle model

Consider the linear bicycle model given by equatidry)in Section3.2 Introduc-
ing the state variables = ¢, xo = §, x3 = ¢ andxs = & and setting the steering
torqueT = 0, the equations can be written as

dx 0 I
D X =:AX
dt | -MY(Ko+Kav3) —M-1Cw
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Figure 4.18: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle velocitye system

is stable when all eigenvalues have negative real part (shaded yeg@plot in (b) shows
the locus of eigenvalues on the complex plane as the velotyaried and gives a different
view of the stability of the system. This type of plot is calletbat locus diagram

wherel is a 2x 2 identity matrix ands is the velocity of the bicycle. Figuré.18a
shows the real parts of the eigenvalues as a function of igldegure 4.18b
shows the dependence of the eigenvalues af the velocityp. The figures show
that the bicycle is unstable for low velocities because twermvalues are in the
right half-plane. As the velocity increases, these eigemgamove into the left
half-plane, indicating that the bicycle becomes self4itahg. As the velocity is
increased further, there is an eigenvalue close to themtigit moves into the right
half-plane, making the bicycle unstable again. Howevas, ¢éigenvalue is small
and so it can easily be stabilized by a rider. FiglirBBashows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. O

Parametric stability diagrams and bifurcation diagranms pavide valuable
insights into the dynamics of a nonlinear system. It is ugudcessary to carefully
choose the parameters that one plots, including combihi@gnatural parameters
of the system to eliminate extra parameters when possildempQter programs
such asAUTO, LOCBI F andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations tcsag feedback laws
that stabilize an equilibrium point and provide a desiregtleof performance.
However, for some classes of problems the feedback comtrollist be nonlinear
to accomplish its function. By making use of Lyapunov fuans we can often
design a nonlinear control law that provides stable bemaa®owe saw in Exam-
ple4.12
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Figure 4.19: Headphones with noise cancellation. Noise is sensed by the exterior micro-
phone (a) and sent to a filter in such a way that it cancels the noise ttettgges the head
phone (b). The filter parameteasandb are adjusted by the controll@represents the input
signal to the headphones.

One way to systematically design a nonlinear controlleo isdgin with a can-
didate Lyapunov functiol (x) and a control system= f(x, u). We say thaV (x)
is a control Lyapunov functiorif for every x there exists a1 such thatV (x) =
%—\;f(x, u) < 0. In this case, it may be possible to find a functim(x) such that
u = a(x) stabilizes the system. The following example illustratesapproach.

Example 4.16 Noise cancellation
Noise cancellation is used in consumer electronics anddustnial systems to re-
duce the effects of noise and vibrations. The idea is to lpgaliiuce the effect
of noise by generating opposing signals. A pair of headphavith noise can-
cellation such as those shown in Fig4rd 9ais a typical example. A schematic
diagram of the system is shown in Figutd 9h The system has two microphones,
one outside the headphones that picks up exterior mo&®d another inside the
headphones that picks up the sigaalvhich is a combination of the desired signal
and the external noise that penetrates the headphone. Tiad Bm the exterior
microphone is filtered and sent to the headphones in such ahagif tancels the
external noise that penetrates into the headphones. Thegas of the filter are
adjusted by a feedback mechanism to make the noise sigrted internal micro-
phone as small as possible. The feedback is inherently rearllvecause it acts by
changing the parameters of the filter.

To analyze the system we assume for simplicity that the gratian of external
noise into the headphones is modeled by a first-order dyn&gyiseem described

by
dz
Fri agz+ bgn, (4.22)
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wherezis the sound level and the paramet&ys< 0 andbg are not known. Assume
that the filter is a dynamical system of the same type:

d—w— aw-+bn
dt '

We wish to find a controller that updatesand b so that they converge to the
(unknown) parameter andbg. Introducex; = e=w—2z X = a—ag andxz =
b — bg; then

dX1

Fi ag(W—2) + (a—ag)w+ (b —lg)n = agxy + XoW+ X3n. (4.23)

We will achieve noise cancellation if we can find a feedbackflamchanging the
parameterga andb so that the erroe goes to zero. To do this we choose

1
V (X1, %2,X3) = 5 (oxé + x5+ X3)

as a candidate Lyapunov function fa@r.23. The derivative oV is
V = arx1Xq + XoXo 4 XaXa = @ @gXe + Xa (X2 + QWxq ) + X3(X3 + anxy ).

Choosing
Xo = —AWXg = —OWe, X3=—anx, = —ane (4.24)

we find thatv = aaox% < 0, and it follows that the quadratic function will decrease
as long a2 = x; = w—z+# 0. The nonlinear feedbaclt.24) thus attempts to
change the parameters so that the error between the sigh#i@noise is small.
Notice that feedback lawd(24) does not use the model.2) explicitly.

A simulation of the system is shown in Figu4e2Q In the simulation we have
represented the signal as a pure sinusoid and the noisesablimnd noise. The fig-
ure shows the dramatic improvement with noise cancellalibe sinusoidal signal
is not visible without noise cancellation. The filter paramethange quickly from
their initial valuesa = b = 0. Filters of higher order with more coefficients are used
in practice. O

4.6 Further Reading

The field of dynamical systems has a rich literature that clarzes the possi-
ble features of dynamical systems and describes how paiambanges in the
dynamics can lead to topological changes in behavior. Readiatroductions to
dynamical systems are given by Stroga®trf4 and the highly illustrated text
by Abraham and ShawAlS827. More technical treatments include Andronov, Vitt
and Khaikin RQVK87], Guckenheimer and Holme&H83 and Wiggins Wig9dQ.
For students with a strong interest in mechanics, the texirbold [Arn87] and
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headpligne s
nal without noise cancellation, and the bottom left figure shows the sigttahaise cancel-
lation. The right figures show the parameta@ndb of the filter.

Marsden and RatiuMIR94] provide an elegant approach using tools from differ-
ential geometry. Finally, good treatments of dynamicalayst methods in biol-
ogy are given by WilsonWil99] and Ellner and GuckenheimeEGO0S. There

is a large literature on Lyapunov stability theory, inclglithe classic texts by
Malkin [Mal59], Hahn Hah67 and Krasovski Kra63. We highly recommend
the comprehensive treatment by Khakla01].

Exercises

4.1 (Time-invariant systems) Show that if we have a solution ef differential
equation 4.1) given byx(t) with initial conditionx(tg) = Xo, thenx{1) = X(t —to)
is a solution of the differential equation

dXx

& —F®

with initial conditionX(0) = Xp, wherer =t —to.

4.2 (Flow in a tank) A cylindrical tank has cross sectidim?, effective outlet
areaam? and inflowg, m3/s. An energy balance shows that the outlet velocity
isv=/2ghm/s, whereg m/s’ is the acceleration of gravity arids the distance

between the outlet and the water level in the tank (in met&is)w that the system
can be modeled by

dh a 1
a — —Z\\/ Zgh—l— inn, qout — a\/ ZQh
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Use the parameters= 0.2,a= 0.01. Simulate the system when the inflow is zero
and the initial level ifh= 0.2. Do you expect any difficulties in the simulation?

4.3 (Cruise control) Consider the cruise control system dbedrin Sectior8.1
Generate a phase portrait for the closed loop system on flabhgr@ = 0), in third
gear, using a PI controller (witky, = 0.5 andk; = 0.1), m= 1000 kg and desired
speed 20 m/s. Your system model should include the effeatafating the input
between 0 and 1.

4.4 (Lyapunov functions) Consider the second-order system

dxq dx
o @ ot —bxg — X,
wherea, b, c > 0. Investigate whether the functions
1 1 1 1 b
Vi(x) = éxf + Exg, Va(x) = EX% + E(XZ + axl)z

are Lyapunov functions for the system and give any condittbat must hold.

4.5 (Damped spring—mass system) Consider a damped spring-systesn with
dynamics .

mdg+cq+kqg= 0.
A natural candidate for a Lyapunov function is the total ggef the system, given
by

1 -, 1

V= Smg’ Equ'
Use the Krasovski—Lasalle theorem to show that the systesyistotically sta-
ble.

4.6 (Electric generator) The following simple model for an electrenerator con-
nected to a strong power grid was given in Exer@sé

d? EV .
The parameter b EvV
max
= "= __ 4.25
&= B, T XP, (4.25)

is the ratio between the maximum deliverable poRgsx = EV/X and the me-
chanical powePy,.

(a) Considema as a bifurcation parameter and discuss how the equilibipe rak
ona.
(b) Fora > 1, show that there is a center ¢¢ = arcsir{l/a) and a saddle at

¢ = 11— do.



EXERCISES 137

(c) Show that ifPy,/J = 1 there is a solution through the saddle that satisfies

;(%‘f)z—cjy+¢o—acos¢—\/ﬂ:0 (4.26)

Use simulation to show that the stability region is the iimieof the area enclosed
by this solution. Investigate what happens if the systemm isquilibrium with a
value ofathat is slightly larger than 1 arelsuddenly decreases, corresponding to
the reactance of the line suddenly increasing.

4.7 (Lyapunov equation) Show that Lyapunov equatidrif) always has a solu-
tion if all of the eigenvalues oA are in the left half-plane. (Hint: Use the fact that
the Lyapunov equation is linear A and start with the case whefehas distinct
eigenvalues.)

4.8 (Congestion control) Consider the congestion control lemmbdescribed in
Section3.4. Confirm that the equilibrium point for the system is given loyia-
tion (3.21) and compute the stability of this equilibrium point usindjreear ap-
proximation.

4.9 (Swinging up a pendulum) Consider the inverted penduluncudised in Ex-
ample4.4, that is described by

6 =sinf +ucosb,
wheref is the angle between the pendulum and the vertical and theotsignal
uis the acceleration of the pivot. Using the energy function
V(6,0) =cosh — 1+ %62,
show that the state feedbaak= k(Vp — V)6 cosb causes the pendulum to “swing
up” to the upright position.

4.10(Root locus diagram) Consider the linear system

dx 0 1 -1

dt—[o —3]”[4]“’ y_(l O]X’
with the feedbacki = —ky. Plot the location of the eigenvalues as a function the
parametek.

4.11(Discrete-time Lyapunov function) Consider a nonlineacdete-time sys-@
tem with dynamicx(k+ 1] = f(x[k]) and equilibrium poinke = 0. Suppose there
exists a smooth, positive definite funct®dnR" — R such thaV (f(x)) =V (x) <0

for x #£ 0 and V(0) = 0. Show thate = 0 is (locally) asymptotically stable.

4.12 (Operational amplifier oscillator) An op amp circuit for anciletor was
shown in Exercise3.5. The oscillatory solution for that linear circuit was stable
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but not asymptotically stable. A schematic of a modified dirthat has nonlinear
elements is shown in the figure below.

C C
Ry |2_ Afj\ﬁ Ry | Il
\4 \4 I I
R2 %) R3 : V3 R1 + V1
R ve R R
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S |=
5 04
Se S
wgz—:

The modification is obtained by making a feedback around eaehatipnal am-
plifier that has capacitors using multipliers. The sigaak v% +v§ —v% is the
amplitude error. Show that the system is modeled by

M_ R v,

dt T RiRCL T RuCy 't
dat R2C2V1+ R22C2V2( 0V~ V2).

Show that, under suitable conditions on parameter valueg;itbuit gives an os-
cillation with a stable limit cycle with amplitudey. (Hint: Use the results of Ex-
ample4.8)

4.13(Self-activating genetic circuit) Consider the dynamica genetic circuit that
implementsself-activationthe protein produced by the gene is an activator for the
protein, thus stimulating its own production through pwesifeedback. Using the
models presented in Exam@®el3 the dynamics for the system can be written as

dm_ _ap?
dt  1+kp?

for p,m > 0. Find the equilibrium points for the system and analyze tuall
stability of each using Lyapunov analysis.

d
+ag—ym, d—f:Bm—(Sp, (4.27)

4.14 (Diagonal systems) LeA € R™" be a square matrix with real eigenvalues
A1,...,An and corresponding eigenvectess. . ., Vi.

(a) Show that if the eigenvalues are distingt£ A;j for i # j), thenv; # v; for
i .
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(b) Show that the eigenvectors form a basis®rso that any vectok can be
written asx =Y oV for o € R.

(c) LetT = [vl Vo oL, vn] and show thaT ~1AT is a diagonal matrix of the
form (4.8).
(d) Show that if some of tha; are complex numbers, théncan be written as
N1 0
A= where N=AcR or /\i:[a w]‘
-w o
0 Nk

in an appropriate set of coordinates.
This form of the dynamics of a linear system is often refersedsmodal form

4.15(Furuta pendulum) The Furuta pendulum, an inverted penduluarotating
arm, is shown to the left in the figure below.
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Consider the situation when the pendulum arm is spinninly egnstant rate. The
system has multiple equilibrium points that depend on thgukam velocityw, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

JpB — Jpeh sin@cosh — myglsing = 0,

whereJ, is the moment of inertia of the pendulum with respect to it®pim, is
the pendulum mass,is the distance between the pivot and the center of mass of
the pendulum andy is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the conuftip for stability of
each equilibrium point (in terms @iy).

(b) Consider the angular velocity as a bifurcation parametel verify the bifur-
cation diagram given above. This is an example pitehfork bifurcation
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4.16 (Routh-Hurwitz criterion) Consider a linear differentiatjuation with the
characteristic polynomial

A= +as+a, A(S) =S +a+as+as.

Show that the system is asymptotically stable if and onlylitte coefficientss;
are positive and ifja > az. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.



Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For examplecthéon between
force on a spring and displacement of the spring is always nonlinear t@ stegree. The
relation between current through a resistor and voltage drop acrosksd deviates from a
straight-line relation. However, if in each case the relatioméasonablyinear, then it will
be found that the system behavior will be very close to that obtained bynaggan ideal,
linear physical element, and the analytical simplification is so enormousmtbahake linear
assumptions wherever we can possibly do so in good conscience.

Robert H. CannorDynamics of Physical Systeni®967 [Can03.

In Chapters2—4 we considered the construction and analysis of differentia
equation models for dynamical systems. In this chapter weeiafize our results
to the case of linear, time-invariant input/output systeiivgo central concepts
are the matrix exponential and the convolution equatiorguiph which we can
completely characterize the behavior of a linear systemalfe describe some
properties of the input/output response and show how tooxppate a nonlinear
system by a linear one.

5.1 Basic Definitions

We have seen several instances of linear differential @ngin the examples in
the previous chapters, including the spring—mass systamdd oscillator) and
the operational amplifier in the presence of small (nonsangpginput signals.
More generally, many dynamical systems can be modeledaetyby linear dif-
ferential equations. Electrical circuits are one exampla brfoad class of systems
for which linear models can be used effectively. Linear medek also broadly
applicable in mechanical engineering, for example, as fsarfesmall deviations
from equilibria in solid and fluid mechanics. Signal-procegsystems, including
digital filters of the sort used in CD and MP3 players, are anatbarce of good
examples, although these are often best modeled in didaretdas described in
more detail in the exercises).

In many cases, wereatesystems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linearviehthat led Harold
S. Black to the invention of the negative feedback amplifiem@dt all modern
signal processing systems, whether analog or digital, esafack to produce lin-
ear or near-linear input/output characteristics. Fordrsstems, it is often useful
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to represent the input/output characteristics as lingagring the internal details
required to get that linear response.

For other systems, nonlinearities cannot be ignored, &dhed one cares
about the global behavior of the system. The predator—pr@ylgm is one exam-
ple of this: to capture the oscillatory behavior of the idegendent populations
we must include the nonlinear coupling terms. Other examirlelude switch-
ing behavior and generating periodic motion for locomatidowever, if we care
about what happens near an equilibrium point, it often sidficeapproximate
the nonlinear dynamics by their local linearization, as Weaaly explored briefly
in Section4.3. The linearization is essentially an approximation of thalimear
dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systemsenformally. Con-
sider a state space system of the form

33[( = f(x,u), y=h(x,u), (5.1)
wherex € R", u € RP andy € RY. As in the previous chapters, we will usually
restrict ourselves to the single-input, single-outputdag takingp =q= 1. We
also assume that all functions are smooth and that for amaagoclass of inputs
(e.g., piecewise continuous functions of time) the sohgiof equationg.1) exist
for all time.

It will be convenient to assume that the origia= 0, u = 0 is an equilibrium
point for this systemx = 0) and thath(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose {xatue) # (0,0) is an equilibrium point
of the system with outpwle = h(Xe, Ue). Then we can define a new set of states,
inputs and outputs,

)’Z:X_X& U:U—Ue, y:y_Yea

and rewrite the equations of motion in terms of these vagtbl

dt
¥ =h(X+Xe, 0+ Ue) — Ye =: (X, ).

In the new set of variables, the origin is an equilibrium peiith output O, and
hence we can carry out our analysis in this set of variablase@e have obtained
our answers in this new set of variables, we simply “traeSlgtem back to the
original coordinates using= X+ Xe, U= 0+ Us andy = ¥+ Ve.

Returning to the original equationS.(), now assuming without loss of gen-
erality that the origin is the equilibrium point of intereste write the outpuy(t)
corresponding to the initial conditiof{0) = Xp and inputu(t) asy(t;xp, u). Using
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this notation, a system is said to bdireear input/output systerif the following
conditions are satisfied:

() y(t;oxy+ Bxz,0) = ay(t;xg,0) + By(t; x2,0),
(i) y(t;axo,0u) = ay(t; %o, 0) + dy(t; 0, u), (5.2)
(iii) - y(t;0,0u1+ yup) = SY(t; 0,ur) + yy(t; 0, u2).

Thus, we define a system to be linear if the outputs are jointlali in the initial
condition responséu = 0) and the forced respongg(0) = 0). Property (iii) is a
statement of the@rinciple of superpositionthe response of a linear system to the
sum of two inputa; anduy is the sum of the outputg andy, corresponding to
the individual inputs.

The general form of a linear state space system is

dx
dt
where A € R™" B € R™P, C € R9*" andD € RY*P. In the special case of a
single-input, single-output syster,is a column vectorC is a row vector andd
is scalar. Equationb(3) is a system of linear first-order differential equationshwit
inputu, statex and outpul. It is easy to show that given solutiorgt) andxz(t)
for this set of equations, they satisfy the linearity coiodis.

We definex,(t) to be the solution with zero input (tht@mogeneous solutipn
and the solutiorxp(t) to be the solution with zero initial condition (@articular
solution). Figure5.1illustrates how these two individual solutions can be super
imposed to form the complete solution.

It is also possible to show that if a finite-dimensional dynaahsystem is in-
put/output linear in the sense we have described, it carnyallva represented by a
state space equation of the for;3) through an appropriate choice of state vari-
ables. In Sectiorb.2 we will give an explicit solution of equatiorb(3), but we
illustrate the basic form through a simple example.

Ax+ Bu, y=Cx+Du, (5.3)

Example 5.1 Scalar system
Consider the first-order differential equation

dX_aX+U =X
dt_ ) y_ )

with x(0) = Xo. Letu; = Asinwst andu; = Bcoswt. The homogeneous solution
iS Xn(t) = €®'xo, and two particular solutions witk(0) = 0 are

—w € + wy coswt + asinagt
a2+ w? ’
ae® — acoswpt + wp sinwpt
a2+ w? '

Xpl(t) =—-A

sz(t) =B
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Figure 5.1: Superposition of homogeneous and particular solutions. The firsthrowssthe
input, state and output corresponding to the initial condition response€etioad row shows
the same variables corresponding to zero initial condition but nonzeub. ilfipe third row
is the complete solution, which is the sum of the two individual solutions.

Suppose that we now choos@) = aXp andu = u; + Uy. Then the resulting solu-
tion is the weighted sum of the individual solutions:

Awy Ba
x(t) = ™ (axo+ a2+w12+ a2+w22>

5.4
wy cosit + asint —acoswpt + wp Sinwpt ®.4)
—A > B > :
a2 4 w7 a%+ w?
To see this, substitute equatidn4) into the differential equation. Thus, the prop-
erties of a linear system are satisfied. O

Time Invariance

Time invariancds an important concept that is used to describe a systemewhos
properties do not change with time. More precisely, for aetimvariant system
if the inputu(t) gives outputy(t), then if we shift the time at which the input
is applied by a constant amouat u(t + a) gives the outpuy(t + a). Systems
that are linear and time-invariant, often called@l systemshave the interesting
property that their response to an arbitrary input is coteplecharacterized by
their response to step inputs or their response to shortulises.”

To explore the consequences of time invariance, we first ctarthe response
to a piecewise constant input. Assume that the system ialipiait rest and con-
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(a) Piecewise constant input (b) Output response

Figure 5.2: Response to piecewise constant inputs. A piecewise constant sigriz cap-
resented as a sum of step signals (a), and the resulting output is the shenidividual
outputs (b).

sider the piecewise constant input shown in Figbui2a The input has jumps at
timesty, and its values after the jumps anéty). The input can be viewed as a
combination of steps: the first step at titgehas amplitudei(tp), the second step
at timet; has amplitudei(t;) — u(to), etc.

Assuming that the system is initially at an equilibrium gddigo that the initial
condition response is zero), the response to the input cabtiaéed by superim-
posing the responses to a combination of step inputsHI(Et be the response to
a unit step applied at time 0. The response to the first step isHifie— to)u(to),

the response to the second stefig —t1) (u(t1) — u(to)), and we find that the
complete response is given by

y(t) = H(t —to)u(to) +H (t —tz) (u(t) — u(to)) + - -
= (H(t—to) —H(t—t1))u(to) + (H(t —t1) —H(t —t2))u(ty) +---

th<t

= Z (t—tn) —H(t —th1))u(tn)
tn<tH (t—tn) —H(t —thy1)

— u(tn) (tn+l - tn) .

tn+1 —1n

An example of this computation is shown in Fig&r2h

The response to a continuous input signal is obtained by datkia limit as
the1 —th — 0, which gives

_ /OtH’(tr)u(r)dT, (5.5)

whereH’ is the derivative of the step response, also calledripilse response



5.2. THE MATRIX EXPONENTIAL 146

The response of a linear time-invariant system to any inpuotleas be computed
from the step response. Notice that the output depends ortlyeninput since we
assumed the system was initially at re$6) = 0. We will derive equationd.5) in

a slightly different way in the Sectiof.3.

5.2 The Matrix Exponential

Equation B.5) shows that the output of a linear system can be written astagral
over the inputai(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial conditioWge begin by exploring

the initial condition response using the matrix exponéntia

Initial Condition Response

Although we have shown that the solution of a linear set dedétial equations
defines a linear input/output system, we have not fully comgbtihe solution of
the system. We begin by considering the homogeneous respongsponding to
the system

dx
— =A 5.6
at =% (5.6)
For thescalardifferential equation
dx
— = R,aeR
at ax, xeR,acR,

the solution is given by the exponential

x(t) = €®x(0).
We wish to generalize this to the vector case, whielbecomes a matrix. We define
the matrix exponentiafs the infinite series

1, 3
eX—I+X+2X +30 x %kl (5.7)

whereX € R™"is a square matrix anidis then x n identity matrix. We make use
of the notation

X0=1, X?=XxX, X"=Xx"1X,
which defines what we mean by the “power” of a matrix. Equatif)(is easy
to remember since it is just the Taylor series for the scadporential, applied to
the matrixX. It can be shown that the series in equatibrv) converges for any
matrix X € R™" in the same way that the normal exponential is defined for any
scalara € R.
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ReplacingX in equation $.7) by At, wheret € R, we find that

1 1 © 1
t T A2L2 33, ki k
e =+ AL+ SAT + A+ —kzzok!At,

and differentiating this expression with respect tives
d 1 =1
— M= AL A AR =AY AR = A 5.8
dt AL AT 2 i 8

Multiplying by x(0) from the right, we find thax(t) = €*'x(0) is the solution to the
differential equationg.6) with initial conditionx(0). We summarize this important
result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6) is given by
X(t) = e'x(0).

Notice that the form of the solution is exactly the same aséaiar equations,
but we must put the vectox0) on the right of the matrixl.

The form of the solution immediately allows us to see that tietson is linear
in the initial condition. In particular, ikn; (t) is the solution to equatiorb(6) with
initial condition x(0) = Xp1 andXn2(t) with initial condition x(0) = xg2, then the
solution with initial conditionx(0) = axp1 + BXo2 IS given by

X(t) = e (axo1+ Bxoz) = (0 €"%o01 + BEMX02) = A% () + BXna(t).
Similarly, we see that the corresponding output is given by
y(t) =Cx(t) = aym(t) + Byna(t),
whereyp; (t) andyn,(t) are the outputs corresponding®@ (t) andx(t).
We illustrate computation of the matrix exponential by twamples.

Example 5.2 Double integrator
A very simple linear system that is useful in understandiagidconcepts is the
second-order system given by

q=u, y=aq

This system is called double integratobecause the inputis integrated twice to
determine the outpuyt
In state space form, we write= (qg,q) and

dx_01X 0],
at o of X 1| ™
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The dynamics matrix of a double integrator is

01
o)
and we find by direct calculation thAZ = 0 and hence
¢ (1 t)
= [ 0 1)

Thus the homogeneous solutian=£ 0) for the double integrator is given by

-3 (28) - ().

y(t) = x1(0) +tx2(0).

Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring—masesysvith zero damp-
ing, is

G+ whg=u.
Putting the system into state space form, the dynamics nfatrihis system can
be written as

A 0 w and At _ co_swot sinapt '
—wy O —sSinapt  cosapt

This expression foe™ can be verified by differentiation:

gef“— —pSinat iy Ccosupt
dt = = | —apcoswpt —apSinwpt

0 wo cosupt  Sinapt t
—wp O —Sinapt  cosupt

The solution is then given by

=0 - [ o et ) (0],

If the system has damping,

G+ 2¢ wod+ whq = u,
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the solution is more complicated, but the matrix exponénta be shown to be

Zeiwut _ Ze_iwdt eiwdt +e—iogdt eiwdt _ e—iwdt
_|_ .
,szt 2\/ Zz_l 2 2\/{2—1
€ e—iwdt _ eiwdt Ze_iwdt _ Zei“’dt eiwdt + e—iwdt

2./72-1 2./72-1 - 2

wherewy = wo+/ {2 — 1. Note thaiwy and+/{? — 1 can be either real or complex,
but the combinations of terms will always yield a real valaethe entries in the
matrix exponential. O

An important class of linear systems are those that can beeded into diag-
onal form. Suppose that we are given a system

dx
a_Ax

such that all the eigenvalues Afare distinct. It can be shown (Exercidd 4 that
we can find an invertible matriX such thaff AT~1 is diagonal. If we choose a set
of coordinatez = T x, then in the new coordinates the dynamics become

dz_ X _ rpx—TAT 2
dt dt

By construction ofT, this system will be diagonal.
Now consider a diagonal matri& and the correspondinkth power of At,
which is also diagonal:

M 0 ALtk 0
A Atk
A= 2 . (Ak= S ,
0 An 0 /\rlftk
It follows from the series expansion that the matrix expdiaérs given by
eht 0
t
s |
0 et

A similar expansion can be done in the case where the eigewalre complex,
using a block diagonal matrix, similar to what was done in idect.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transformdegonal form.
They can, however, be transformed to a closely related foalted theJordan
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X1 X2 X1 X3 X2 X1

A A A A A A

Figure 5.3: Representations of linear systems where the dynamics matrices asn Jord
blocks. A first-order Jordan block can be represented as an integrihofeedbackA, as
shown on the left. Second- and third-order Jordan blocks can besepted as series con-
nections of integrators with feedback, as shown on the right.

form, in which the dynamics matrix has the eigenvalues along idgothal. When
there are equal eigenvalues, there may be 1's appearing sufierdiagonal indi-
cating that there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it denwritten
as

Jb 0 ... 0 0 A1 O 0

0 J» O 0 0 0O A 1 0
I=|: ... |, where 3=1: oo - (59)

0 O Jo1 O 0O 0 A1

0O 0 ... 0 K 0O 0 ... 0 XN

Each matrixJ; is called aJordan block andA; for that block corresponds to an
eigenvalue ofl. A first-order Jordan block can be represented as a system con-
sisting of an integrator with feedbacdk A Jordan block of higher order can be
represented as series connections of such systems, astkasin Figureb.3.

Theorem 5.2(Jordan decompositionAny matrix Ac R"™" can be transformed
into Jordan form with the eigenvalues of A determink@n the Jordan form.

Proof. See any standard text on linear algebra, such as St&ir@f]. The special
case where the eigenvalues are distinct is examined in Eedrdi4 O

Converting a matrix into Jordan form can be complicatedcalgh MATLAB
can do this conversion for numerical matrices usingjtbe dan function. The
structure of the resulting Jordan form is particularly ietting since there is no
requirement that the individual’s be unique, and hence for a given eigenvalue
we can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the mataix be computed
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in terms of the Jordan blocks:

er 0 ... O
Jo .
= |0 ¢ . (5.10)
: .0
0 ... 0 ek

This follows from the block diagonal form af. The exponentials of the Jordan
blocks can in turn be written as

/ 2 n—-1
1t 5 .. 7(;_1)!
tn72
0 1 t ... Gop
eit=1. 1 .| Mt (5.11)
.ot
L0 ... 0 1

When there are multiple eigenvalues, the invariant sulespassociated with
each eigenvalue correspond to the Jordan blocks of thexwatNote thatA may
be complex, in which case the transformatibrihat converts a matrix into Jor-
dan form will also be complex. Wheh has a honzero imaginary component, the
solutions will have oscillatory components since

0@t — o9 (coset + i sinawt).

We can now use these results to prove Theodelnwhich states that the equilib-
rium pointxe = 0 of a linear system is asymptotically stable if and only iARe O.

Proof of Theorend.1 LetT € C™" be an invertible matrix that transformdsinto
Jordan form,) = TAT—1. Using coordinatez= Tx, we can write the solutior(t)
as

z(t) = e%'Z(0).

Since any solutiom(t) can be written in terms of a solutiat) with z(0) = T x(0),

it follows that it is sufficient to prove the theorem in the tséormed coordinates.
The solutionz(t) can be written in terms of the elements of the matrix expo-

nential. From equatiorb(11) these elements all decay to zero for arbitrz\@) if

and only if ReA; < 0. Furthermore, if any\; has positive real part, then there ex-

ists an initial conditiorz(0) such that the corresponding solution increases without

bound. Since we can scale this initial condition to be arbiyramall, it follows

that the equilibrium point is unstable if any eigenvalue pasitive real part. [J

The existence of a canonical form allows us to prove many pti@geof linear
systems by changing to a set of coordinates in whichAhmeatrix is in Jordan
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form. We illustrate this in the following proposition, wiidollows along the same
lines as the proof of Theoreshl

Proposition 5.3. Suppose that the system

dx
2 A
a

has no eigenvalues with strictly positive real part and omenore eigenvalues
with zero real part. Then the system is stable if and only ifJivelan blocks cor-
responding to each eigenvalue with zero real part are scélas 1) blocks.

Proof. See Exercisé.6b. O

The following example illustrates the use of the Jordan form.

Example 5.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft sucthasdescribed in Ex-
ample2.9. Suppose that we choosg= u, = 0 so that the dynamics of the system
become

Z4
. Zs
z Zs
gz _ _ 5.12
dt —gsinzg— gz |’ (12)
g(coszs—1) — 525
\ 0 Y

wherez = (x,y, 8,X,y,8). The equilibrium points for the system are given by set-
ting the velocitiex, y andé to zero and choosing the remaining variables to satisfy
—gsinzze=0
g(coszze—1) =0
This corresponds to the upright orientation for the aircrisiftte thatxe andye
are not specified. This is because we can translate the systamew (upright)
position and still obtain an equilibrium point.

To compute the stability of the equilibrium point, we comgptite linearization
using equation4.11):

— Z37e - ee == 0

00 O 1 0 0
00 O 0 1 0
A_OF| _[oo o o 0o 1
~oz|, |00 -g -¢m 0 Of
00 O 0 -c¢/moO
00 O 0 0 0)

The eigenvalues of the system can be computed as
A(A) ={0,0,0,0,—c/m,—c/mj}.
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e _— _— -
(a) Mode 1 (b) Mode 2

Figure 5.4: Modes of vibration for a system consisting of two masses connectedingsp
In (a) the masses move left and right in synchronization in (b) they rnawvard or against
each other.

We see that the linearized system is not asymptoticallylestsibce not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense olubyapwe must
make use of the Jordan form. It can be shown that the JordandbA is given by

(0l0 0 0] O 0
00 1 0] 0 0
| oloo 1 o 0
J=10l0 0 o o 0
0/0 0 O/—¢/m| O
0(0 0 O] 0O |-c/m J

Since the second Jordan block has eigenvalue 0 and is not kesigpnvalue, the
linearization is unstable. O

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a pgesordf the types of
behavior the system can exhibit. For oscillatory systeims t¢rmmodeis often
used to describe the vibration patterns that can occur. &gudrillustrates the
modes for a system consisting of two masses connected mgsp®ne pattern is
when both masses oscillate left and right in unison, andnemas when the masses
move toward and away from each other.

The initial condition response of a linear system can be @rith terms of a
matrix exponential involving the dynamics matAxThe properties of the matrix
therefore determine the resulting behavior of the systemerG matrixA € R"™",
recall thatv is an eigenvector oA with eigenvalue if

Av=Av.

In generald andv may be complex-valued, althoughAfis real-valued, then for
any eigenvalud its complex conjugatd * will also be an eigenvalue (with* as
the corresponding eigenvector).

Suppose first thax andv are a real-valued eigenvalue/eigenvector pairXor
If we look at the solution of the differential equation #(0) = v, it follows from
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Figure 5.5: The notion of modes for a second-order system with real eigenvalbhedeft
figure shows the phase portrait and the modes corresponding to selthenstart on the
eigenvectors (bold lines). The corresponding time functions are sbowime right.

the definition of the matrix exponential that

1 A2t2
flv= (I +At+§A2t2+~-)v:v+)\tv+TV+~- =é'v.

The solution thus lies in the subspace spanned by the eigenvébe eigenvalue
A describes how the solution varies in time, and this soluaften called anode
of the system. (In the literature, the term “mode” is als@oftised to refer to the
eigenvalue rather than the solution.)
If we look at the individual elements of the vectorandy, it follows that
x(t) el v
X (t) N e)‘th N Vj’
and hence the ratios of the components of the staiee constants for a (real)
mode. The eigenvector thus gives the “shape” of the soluti@his also called
a mode shapef the system. Figuré.5 illustrates the modes for a second-order
system consisting of a fast mode and a slow mode. Notice lteattate variables
have the same sign for the slow mode and different signs &fa$t mode.
The situation is more complicated when the eigenvalueé afe complex.
SinceA has real elements, the eigenvalues and the eigenvectorsrapex con-
jugatesA = g £iw andv = u=iw, which implies that

U V+V* W V—V*
2 2
Making use of the matrix exponential, we have
v = M (u+iw) = €”*((ucoswt — wsinwt) +i(usinwt +wcoswt)),




5.2. THE MATRIX EXPONENTIAL 155

from which it follows that

Mlu= %(e‘“v+ eAt\f*) — ue” coswt — wet sinat,
eMtw = % (e/“v— eNv*) — ue’t sinwt 4+ we’t coswt.

A solution with initial conditions in the subspace spanngadhe real paru and
imaginary partv of the eigenvector will thus remain in that subspace. Thetisoiu
will be a logarithmic spiral characterized lmyand w. We again call the solution
corresponding tad a mode of the system, andhe mode shape.

If a matrix A hasn distinct eigenvaluess, ..., Ay, then the initial condition re-
sponse can be written as a linear combination of the modesed&ahis, suppose
for simplicity that we have all real eigenvalues with copesding unit eigenvec-
torsvi,...,Vh. From linear algebra, these eigenvectors are linearly iewleégnt,
and we can write the initial conditiox(0) as

X(0) = a1V + ApV + -+~ + OV,
Using linearity, the initial condition response can be teritas

Thus, the response is a linear combination of the modes ofytters, with the

amplitude of the individual modes growing or decayingeis The case for dis-
tinct complex eigenvalues follows similarly (the case fondistinct eigenvalues is
more subtle and requires making use of the Jordan form disdus the previous
section).

Example 5.5 Coupled spring—mass system
Consider the spring—mass system shown in Fidgie but with the addition of
dampers on each mass. The equations of motion of the system are

més = — 2Ky — €q1 + Kap, mMbz = kop — 2kap — Cp.

In state space form, we define the state tabe(qs, g2, 41, 2), and we can rewrite
the equations as

0 0 1 0

0 0 0 1
dx 2k k c
—=-=Z 2 _Z 0 Ix
dt m m m

k 2k

k % , ¢

m m m

We now define a transformatian= T x that puts this system into a simpler form.
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Letz; = 3(0h + ), 2 = &1, 23 = 5(0 — 02) andzs = 23, SO that

1 100
~1lo 0 1 1

z2=Tx=3511 10 o0
0O 0 1 -1
In the new coordinates, the dynamics become
(0 1 0 0
k c
iz | m m ° ©°
— = 27

dt 0 0 0 1
o o X _c
m m

and we see that the system is in block diagonahfoda) form.

In thez coordinates, the stategs andz, parameterize one mode with eigenval-
uesA ~ —c/(2m) £i,/k/m (for c small), and the states andz; another mode
with A =~ —c/(2m) £i,/3k/m. From the form of the transformatioh we see
that these modes correspond exactly to the modes in Figdrén which g, and
g2 move either toward or against each other. The real and imggpets of the
eigenvalues give the decay ratesind frequencies for each mode. O

5.3 Input/Output Response

In the previous section we saw how to compute the initial @@mresponse using
the matrix exponential. In this section we derive the couatroh equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equatiod (repeated here:
d
d%( = Ax+Bu, y = Cx+ Du. (5.13)

Using the matrix exponential, the solution to equatidril8 can be written as
follows.

Theorem 5.4. The solution to the linear differential equati¢.13 is given by

x(t) = Mx(0) + /Ot A-UBu(T)dr. (5.14)
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Proof. To prove this, we differentiate both sides and use the ptp§8r8) of the
matrix exponential. This gives

t
dx_ AX(0) + / A -DBU(T)dT + Bu(t) = Ax+ Bu,
0

dt
which proves the result. Notice that the calculation is ealy the same as for
proving the result for a first-order equation. Ol

It follows from equations§.13 and 6.14) that the input/output relation for a
linear system is given by

y(t) = CeMx(0) + /O tCé“(t*T)Bu(r)dT +Du(t). (5.15)

It is easy to see from this equation that the output is joititigar in both the
initial conditions and the input, which follows from the darity of matrix/vector
multiplication and integration.

Equation .15 is called theconvolution equatioyand it represents the general
form of the solution of a system of coupled linear differahgquations. We see
immediately that the dynamics of the system, as charaetktiy the matrixA,
play a critical role in both the stability and performancetioé system. Indeed,
the matrix exponential describésth what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can ivemgusing the concep
of theimpulse responsef a system. Consider the application of an input signél
u(t) given by the following equation:

0 t<0
ut)=pet)=¢1l/e 0<t<e (5.16)
0 t>e.

This signal is gulseof durations and amplitude 1e, as illustrated in Figuré.6a
We define anmpulsed(t) to be the limit of this signal as — O:

o(t) = Liino Pe(t). (5.17)

This signal, sometimes calleddelta function,is not physically achievable but
provides a convenient abstraction in understanding thgorese of a system. Note
that the integral of an impulse is 1:

/Oté(r)dr:/otliinopg(t)dr: lim /Ot pe(t)dr

£—0

&
=lim [ 1/edtr=1 t>0.
0

e—0



5.3. INPUT/OUTPUT RESPONSE 158

15 1
] /7Xz~ — — -Pulse responses
o ) A NN Impulse response]
Yosir N .
0.5 1 r///( \ttt\
| I/ S
0 1. 0 ‘ ‘ ‘
0 2 4 6 8 10 0 10 20 30 40
Timet t
(a) Pulse and impulse functions (b) Pulse and impulse responses

Figure 5.6: Pulse response and impulse response. (a) The rectangles shosvgfulgdth

5, 25 and 08, each with total area equal to 1. The arrow denotes an imp@\tsedefined

by equation .17). The corresponding pulse responses for a linear system with elgeava

A = {-0.08,-0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of durati8n 0

In particular, the integral of an impulse over an arbitgashort period of time is
identically 1.

We define thempulse responsef a systenh(t) to be the output corresponding
to having an impulse as its input:

h(t) — /O "Ct-TBs(r) dr = CEMB, (5.18)

where the second equality follows from the fact thét) is zero everywhere ex-
cept the origin and its integral is identically 1. We can novitevthe convolution

equation in terms of the initial condition response, thevotution of the impulse

response and the input signal, and the direct term:

y(t) = CeMx(0) + /Ot h(t — 1)u(t)dt +Du(t). (5.19)

One interpretation of this equation, explored in Exer&sz is that the response
of the linear system is the superposition of the response tofimite set of shifted
impulses whose magnitudes are given by the injut This is essentially the ar-
gument used in analyzing FiguBe2 and deriving equation5(5). Note that the
second term in equatiob (19 is identical to equation(5), and it can be shown
that the impulse response is formally equivalent to thevdévie of the step re-
sponse.

The use of pulses as approximations of the impulse functiso jatovides a
mechanism for identifying the dynamics of a system from deigure5.6bshows
the pulse responses of a system for different pulse widtbsicélthat the pulse
responses approach the impulse response as the pulse wekhazero. As a
general rule, if the fastest eigenvalue of a stable systesnda part-omay, then a
pulse of lengtre will provide a good estimate of the impulse responsaif,ax <
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1. Note that for Figuré.6, a pulse width off = 1 s givesegmax = 0.62 and the
pulse response is already close to the impulse response.

Coordinate Invariance

The components of the input vectarand the output vectoy are given by the
chosen inputs and outputs of a model, but the state varidelesnd on the coor-
dinate frame chosen to represent the state. This choice oflicates affects the
values of the matrice8, B andC that are used in the model. (The direct tebm
is not affected since it maps inputs to outputs.) We now itigate some of the
consequences of changing coordinate systems.
Introduce new coordinatesby the transformatioz = T x, whereT is an in-

vertible matrix. It follows from equatiors(3) that

d ~ ~
& = T(AX+BU) = TAT 12+ TBu=: Az+ Bu

y =Cx+Du=CT 'z4+Du=:Cz+Du.

The transformed system has the same form as equ&i8nlfut the matrices, B
andC are different:

A=TAT B=TB, C=cCcT . (5.20)

There are often special choices of coordinate systems tbat a to see a partic-
ular property of the system, hence coordinate transfoonattan be used to gain
new insight into the dynamics.

We can also compare the solution of the system in transfooeddinates to
that in the original state coordinates. We make use of anitapbproperty of the

exponential map, .
ST _TeT L,

which can be verified by substitution in the definition of the rixagxponential.
Using this property, it is easy to show that

X(t) =T 2z(t) = T 2eMTx(0) + T * /O {ADBy(r) dr.

From this form of the equation, we see that if it is possibler&ms$formA into

a form A for which the matrix exponential is easy to compute, we canthat
computation to solve the general convolution equationHeruntransformed state
x by simple matrix multiplications. This technique is illestied in the following
example.

Example 5.6 Coupled spring—mass system
Consider the coupled spring—mass system shown in Figidré he input to this
system is the sinusoidal motion of the end of the rightmoshgpand the output
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— 41

= N
b k . % u(t) = sin wt

k k

Figure 5.7: Coupled spring mass system. Each mass is connected to two springs Wth stif
nessk and a viscous damper with damping coefficienThe mass on the right is driven
through a spring connected to a sinusoidally varying attachment.

is the position of each masg, andg. The equations of motion are given by
mds = —2kay — cdp + Kap, mép = kaq — 2kgp — cd2 + Ku.

In state space form, we define the state tabe(qs, 02,41, 02), and we can rewrite
the equations as

.

0 0 1 0 0

0 0 0 1 0
dx 2k k c
—=]1-= = _Z 0o |lx+lo0o]lu
dt m m m

ko cf (X

m m m m

This is a coupled set of four differential equations and isegodomplicated to solve

in analytical form.

The dynamics matrix is the same as in Exanfple and we can use the coor-

dinate transformation defined there to put the system in nfodail:

(0 1 0 0) 0
k
ke 5 k
dz_ m m 2m
&= ]lo o o 1|*| o %
0o o Xk _c Kk
m m m

Note that the resulting matrix equations are block diaganal hence decoupled.
We can solve for the solutions by computing the solutionsvaf $ets of second-
order systems represented by the stétes,) and(zs3,z4). Indeed, the functional
form of each set of equations is identical to that of a singling—mass system.
(The explicit solution is derived in Sectidh3)
Once we have solved the two sets of independent second-@egdations, we

can recover the dynamics in the original coordinates byrting the state trans-
formation and writingc = T 1z We can also determine the stability of the system
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Figure 5.8: Transient versus steady-state response. The input to a linear sysieows in
(a), and the corresponding output wikfD) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

by looking at the stability of the independent second-osystems. O

Steady-State Response
Given a linear input/output system

31( = Ax+BuU, y =Cx+Du, (5.21)

the general form of the solution to equatidhdl) is given by the convolution

equation: .

y(t) = CeMx(0) +/ Cce"TBy(1)dT 4 Du(t).
0

We see from the form of this equation that the solution cassisan initial condi-
tion response and an input response.

The input response, corresponding to the last two terms iedhation above,
itself consists of two components—tlransient responsand thesteady-state re-
sponse The transient response occurs in the first period of time #fieinput
is applied and reflects the mismatch between the initial ¢mmdand the steady-
state solution. The steady-state response is the portidreadutput response that
reflects the long-term behavior of the system under the gimpats. For inputs
that are periodic the steady-state response will often bHegie, and for constant
inputs the response will often be constant. An example ofttduesient and the
steady-state response for a periodic input is shown in Fig@e

A particularly common form of input is step inputwhich represents an abrupt
change in input from one value to anothemAit step(sometimes called the Heav-
iside step function) is defined as
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and stasely-s
value give the key performance properties of the signal.

The step responsef the system&.21) is defined as the outpytt) starting from
zero initial condition (or the appropriate equilibrium ptiand given a step input.
We note that the step input is discontinuous and hence is nagtipally imple-
mentable. However, it is a convenient abstraction that @elyiused in studying
input/output systems.

We can compute the step response to a linear system usingmirelation
equation. Settingk(0) = 0 and using the definition of the step input above, we
have

t t
y(t):/ Ce“(t‘T)Bu(T)errDu(t):C/ f-TBdr +D
0 0
t —
:c/ ¢“Bdo + D =C (A 1eB)|7_ +D
0 -

—CAl&M"B-_CcA 1B+ D.

If A has eigenvalues with negative real part (implying that thgimis a stable
equilibrium point in the absence of any input), then we cawrite the solution as

y(t)=CA e"B+D-CA B, t>0. (5.22)
~ N
transient steady-state

The first term is the transient response and decays to zdresa®. The second
term is the steady-state response and represents the ¥ahe @utput for large
time.

A sample step response is shown in Figbr@ Several terms are used when
referring to a step response. Theady-state valuesyof a step response is the
final level of the output, assuming it converges. Tise time T is the amount of
time required for the signal to go from 10% of its final value @@ of its final
value. Itis possible to define other limits as well, but in thi®k we shall use these
percentages unless otherwise indicated. dvershoot M is the percentage of the
final value by which the signal initially rises above the finaluea This usually
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Figure 5.10: Response of a compartment model to a constant drug infusion. A sdigsle
gram of the system is shown in (a). The step response (b) shows thef @racentration
buildup in compartment 2. In (c) a pulse of initial concentration is used ¢éedpp the
response.

assumes that future values of the signal do not overshodirthlevalue by more
than this initial transient, otherwise the term can be ambig. Finally, thesettling
time T is the amount of time required for the signal to stay within @Pits final
value for all future times. The settling time is also somesrdefined as reaching
1% or 5% of the final value (see Exercg). In general these performance mea-
sures can depend on the amplitude of the input step, butfealisystems the last
three quantities defined above are independent of the sibe sctép.

Example 5.7 Compartment model

Consider the compartment model illustrated in FigbwE)and described in more
detail in SectiorB.6. Assume that a drug is administered by constant infusion in
compartmenY; and that the drug has its effect in compartméntTo assess how
quickly the concentration in the compartment reaches gtetate we compute
the step response, which is shown in Figbire(h. The step response is quite slow,
with a settling time of 39 min. It is possible to obtain theastg-state concentration
much faster by having a faster injection rate initially, aswn in Figure5.1Cc.
The response of the system in this case can be computed by rambivo step
responses (Exercige3). O

Another common input signal to a linear system is a sinuswid combination
of sinusoids). Thérequency respons® an input/output system measures the way
in which the system responds to a sinusoidal excitation @odiits inputs. As we
have already seen for scalar systems, the particular snlagisociated with a sinu-
soidal excitation is itself a sinusoid at the same frequeHeyce we can compare
the magnitude and phase of the output sinusoid to the inpatelgenerally, if a
system has a sinusoidal output response at the same frgoagtie input forcing,
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we can speak of the frequency response of the system.

To see this in more detail, we must evaluate the convolutipragon 6.15) for
u = coswt. This turns out to be a very messy calculation, but we can makef
the fact that the system is linear to simplify the derivationparticular, we note
that 1

coswt = 5 (é“’t + ef”‘").

Since the system is linear, it suffices to compute the respdrbe gystem to the
complex inputu(t) = € and we can then reconstruct the input to a sinusoid by
averaging the responses correspondingtow ands= —iw.

Applying the convolution equation to the inpuit= €% we have

1
y(t) = Cx(0) + /O CA-UBETdr + Det

t
_ Cex(0) + CeM / els-ATBdr + De.
0

If we assume that none of the eigenvaluesfddre equal tas = +iw, then the
matrix sl — Ais invertible, and we can write

y(t) = CEx(0) + CeM ((sl - A)*1e<3'*A)TB) ‘to + De®
— CEx(0) + Ce(sl — A) 2 (e(S'*‘Vt 1 ) B+ De't
=Ceé'x(0)+C(sl—A)leB—Ce'(sl— A) "B+ De*,
and we obtain
y(t) = CeMt (x(O) —(sl— A)—ls) + (C(sl A B+ D) et (5.23)

transient steady-state

Notice that once again the solution consists of both a temtgiomponent and a
steady-state component. The transient component decagsdaf zhe system is
asymptotically stable and the steady-state componenboptional to the (com-
plex) inputu = e*.
We can simplify the form of the solution slightly further bgwriting the steady-
state response as _ _
YSs(t) _ Meleest _ Me(st+|9)7

where _
Me® =C(sl—-A)"1B+D (5.24)

andM and 0 represent the magnitude and phase of the complex nu@(s¢r
A)~'B+D. Whens = iw, we say thaiM is thegain and 8 is the phaseof the
system at a given forcing frequenay Using linearity and combining the solutions
for s= +iw ands= —iw, we can show that if we have an input A, sin(wt + ()
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Figure 5.11:Response of a linear system to a sinusoid. (a) A sinusoidal input ofitnegn
Ay (dashed) gives a sinusoidal output of magnitégesolid), delayed byAT seconds. (b)
Frequency response, showing gain and phase. The gain is giver Iogtit of the output
amplitude to the input amplitud®) = Ay/A,. The phase lag is given b= —2nAT /T it
is negative for the case shown because the output lags the input.

and an outpuy = Aysin(wt + ¢ ), then
. A
gain(w) = Ey =M, phaséw)=¢—=86.
The steady-state solution for a sinusaig- coswt is now given by

Yss(t) = Mcogq wt + 6).

If the phasef is positive, we say that the outplgadsthe input, otherwise we say
it lagsthe input.

A sample sinusoidal response is illustrated in FigbrEla The dashed line
shows the input sinusoid, which has amplitude 1. The outputssid is shown
as a solid line and has a different amplitude plus a shiftets@hThe gain is the
ratio of the amplitudes of the sinusoids, which can be daterchby measuring
the height of the peaks. The phase is determined by compdrgatio of the
time between zero crossings of the input and output to theatygeriod of the
sinusoid:

6 =-2m: E
T

A convenient way to view the frequency response is to plot Hmvgain and
phase in equatiornb(24) depend orw (throughs = iw). Figure5.11bshows an
example of this type of representation.

Example 5.8 Active band-pass filter
Consider the op amp circuit shown in Figlird.2a We can derive the dynamics of
the system by writing theodal equationswhich state that the sum of the currents
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp wittR@o
filters arranged to provide a band-pass filter. The plot in (b) showsdaimeamd phase of the
filter as a function of frequency. Note that the phase starts atd96 to the negative gain of

the operational amplifier.

at any node must be zero. Assuming that= v, = 0, as we did in SectioB3.3,
we have

V] — Vi dv. dw v dv:
0= 1R12—C1d—t2, O:C1<Tt2+ﬁz+ zd—f.
Choosingv, andvs as our states and using these equations, we obtain
dV2 Vi —\V2 dV3 —V3 Vi —\V2
dt - RCG ' dt RC; RGC;
Rewriting these in linear state space form, we obtain
oy 1
31( = Rfcl 1 X+ Ri(il u, y= (O l) X, (5.25)
RC; RGC RiC,

wherex = (v2,v3), u= vy andy = vs.

The frequency response for the system can be computed usiatj@yb.24):
& RiCis
Ry (1+ R]_C]_S)(l—l- RZCZS) ’
The magnitude and phase are plotted in Figudbfor Ry = 100Q, R, =5 kQ
andC; = C, = 100 pF. We see that the circuit passes through signals wihére
cies at about 10 rad/s, but attenuates frequencies belod$aad above 50 rad/s.
At 0.1 rad/s the input signal is attenuated byx2®.05). This type of circuit is
called aband-pass filtesince it passes through signals in the band of frequencies
between 5 and 50 rad/s. O

sS=iw.

Mel® =C(sl—A)"1B+D=—
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As in the case of the step response, a number of standardrpespe defined
for frequency responses. The gain of a system at0 is called thezero frequency
gainand corresponds to the ratio between a constant input arsiehdy output:

Mo = —CA 1B+D.

The zero frequency gain is well defined onhAifs invertible (and, in particular, if

it does not have eigenvalues at 0). Itis also important te tiwit the zero frequency
gain is a relevant quantity only when a system is stable atheutorresponding
equilibrium point. So, if we apply a constant input= r, then the correspond-
ing equilibrium pointxe = —A~!Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero fesguy gain is often called
the DC gain DC stands for direct current and reflects the common separefi
signals in electrical engineering into a direct currentdZeequency) term and an
alternating current (AC) term.)

The bandwidthw, of a system is the frequency range over which the gain has
decreased by no more than a factor ¢f/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the bandwidth isftequency where
the gain has decreased by\12 from the zero frequency gain. For systems that
attenuate low frequencies but pass through high frequentie reference gain
is taken as the high-frequency gain. For a system such asatikfass filter in
Example5.8, bandwidth is defined as the range of frequencies where tineigjai
larger than 1+/2 of the gain at the center of the band. (For Exangp&this would
give a bandwidth of approximately 50 rad/s.)

Another important property of the frequency response is¢henant peak M
the largest value of the frequency response, angéak frequencyoy, the fre-
guency where the maximum occurs. These two properties destre frequency
of the sinusoidal input that produces the largest possilieud and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomicdamicroscope in
contact mode, discussed in Secti®®. The basic dynamics are given by equa-
tion (3.23. The piezo stack can be modeled by a second-order systenmum4th
damped natural frequenay; and damping ratids. The dynamics are then de-
scribed by the linear system

0 1 0 0 0
dx [ —ka/(Mm+mp) —cp/(M+mp) 1/mp 0 -t o,
dt 0 0 0 w3 ol
0 0 -3 —2{303 w3

y— mp [m1k2 mCz

1 0] X,
M+mM \mMm+my m+mp
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dyioarof an
atomic force microscope in contact mode. The plot in (b) shows the gaiphase for the
piezo stack. The response contains two frequency peaks at ressnafrthe system, along
with an antiresonance ab = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

where the input signal is the drive signal to the amplifier dredautput is the elon-
gation of the piezo. The frequency response of the systenoversim Figure5.13h
The zero frequency gain of the systenvis= 1. There are two resonant poles with
peakdVl;1 = 2.12 atwinrr = 238 krad's andM,2 = 4.29 atwmr, = 746 krad's. The
bandwidth of the system, defined as the lowest frequency whemgain isy/2 less
than the zero frequency gain,ds = 292 krad's. There is also a dip in the gain
Mg = 0.556 for wng = 268 krad's. This dip, called aantiresonancgis associated
with a dip in the phase and limits the performance when theesyss controlled
by simple controllers, as we will see in Chapi€x O

Sampling

It is often convenient to use both differential and diffevrerequations in modeling
and control. For linear systems it is straightforward tonéfarm from one to the
other. Consider the general linear system described bytiegu.13 and assume
that the control signal is constant over a sampling inteo¥aonstant lengtfn. It
follows from equation%.14) of Theoremb.4that
t+h
X(t+h) = ex(t) + / AUN-DBY(T) T = DX(t) 4 TUt),  (5.26)
t

where we have assumed that the discontinuous control sgjeahtinuous from
the right. The behavior of the system at the sampling titnekh is described by
the difference equation

X[k+ 1] = dx[K] 4 u[k], y[K] = Cxk] 4 Dulk]. (5.27)
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Notice that the difference equatiob.27) is an exact representation of the behavior
of the system at the sampling instants. Similar expressiansalso be obtained if
the control signal is linear over the sampling interval.

The transformation from5(26) to (5.27) is calledsampling The relations be-
tween the system matrices in the continuous and sampledsemiations are as
follows:

® = e r:(/oheASds)B; A:%Iogcb, B:(/OheAsds)_lr. (5.28)

Notice that ifA is invertible, we have
r=A1e"-1)B.

All continuous-time systems can be sampled to obtain aelisdime version,
but there are discrete-time systems that do not have a coniitime equivalent.
The precise condition is that the matidx cannot have real eigenvalues on the
negative real axis.

Example 5.10 IBM Lotus server
In Example2.4 we described how the dynamics of an IBM Lotus server were
obtained as the discrete-time system

ylk+1] = ay[k] + bulk],

wherea = 0.43, b = 0.47 and the sampling period ts= 60s. A differential
equation model is needed if we would like to design contrateyns based on
continuous-time theory. Such a model is obtained by applgiggation $.28);
hence

loga

h -1
A=92_ 00141 B= (/ eAtdt> b=0.0116
h 0

and we find that the difference equation can be interpretecsamaled version of
the ordinary differential equation

%‘ — _0.0141x+ 0.0116..

U
5.4 Linearization

As described at the beginning of the chapter, a common saidriieear system
models is through the approximation of a nonlinear systera layear one. These
approximations are aimed at studying the local behavior ®fsdem, where the
nonlinear effects are expected to be small. In this sectierdiscuss how to lo-
cally approximate a system by its linearization and what lsarsaid about the
approximation in terms of stability. We begin with an illcegion of the basic con-
cept using the cruise control example from Chagter
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Example 5.11 Cruise control
The dynamics for the cruise control system were derived ini@e8t1 and have
the form

mg\t/ = opuT(anv) —mgG sgnv) — %pCVsz —mgsiné, (5.29)

where the first term on the right-hand side of the equationeéddihce generated
by the engine and the remaining three terms are the rollinidn, aerodynamic
drag and gravitational disturbance force. There is an dxititin (ve, Ue) when the
force applied by the engine balances the disturbance forces

To explore the behavior of the system near the equilibriumwildinearize the
system. A Taylor series expansion of equatibr29 around the equilibrium gives

d(Vd—tVe) = a(V—Ve) —bg(0 — Be) +b(u—Le) +higher order terms,  (5.30)
where
2T/ —
L UealT (an\r/g) PCAE  gcos, b "”T(m%"e) (5.31)

Notice that the term corresponding to rolling friction gipaars ifv = 0. For a
car in fourth gear with/e = 25 m/s,6, = 0 and the numerical values for the car
from Section3.1, the equilibrium value for the throttle ige = 0.1687 and the
parameters ara= —0.0101,b = 1.32 andc = 9.8. This linear model describes
how small perturbations in the velocity about the nomin&espevolve in time.
Figure5.14shows a simulation of a cruise controller with linear and|imaar
models; the differences between the linear and nonlineateiscare small, and
hence the linearized model provides a reasonable approgima O

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, sirgiéput nonlinear system

dx n
aff(x,u), xeR"ueR,
y =h(x,u), yeR,

(5.32)

with an equilibrium point ax = X, U = Ue. Without loss of generality we can
assume thate = 0 andue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thdocal behavior of the system around the equilibrium pdiqt ue),
we suppose that— xe andu — ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with(tower-order) lin-
ear terms. This is roughly the same type of argument that id wéen we do
small-angle approximations, replacing 8invith 8 and co® with 1 for 6 near
zero.
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controltes geekp = 0.5

andk; = 0.1.

As we did in Chapted, we define a new set of state variabiess well as
inputsv and outputsv:

Z=X—Xe, V=U-—Ug, W=y —h(Xe,Ug).
These variables are all close to zero when we are near thébemum point, and so
in these variables the nonlinear terms can be thought ofeakitiiner-order terms
in a Taylor series expansion of the relevant vector fieldsufassg for now that

these exist).
Formally, theJacobian linearizatiorof the nonlinear systenb(32 is

dz

G Az+ By, w = Cz+ Dy, (5.33)
where
A:ﬂ , B:ﬂ , C:@ , D:@ (5.34)
ox (Xe,le) Ju (Xe,le) ox (XeU) Ju (Xe,le)

The system%.33 approximates the original syste.82 when we are near the
equilibrium point about which the system was linearizedingsrheorend.3, if
the linearization is asymptotically stable, then the efydilm pointxe is locally
asymptotically stable for the full nonlinear system.

It is important to note that we can define the linearization fstem only near
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an equilibrium point. To see this, consider a polynomiateys

dx 2
gt = 021X+ agx +ag+ U,

whereag # 0. A set of equilibrium points for this system is given by, ue) =

(Xe, —80 — A1Xe — azxg - asxg), and we can linearize around any of them. Suppose
that we try to linearize around the origin of the system 0, u = 0. If we drop the
higher-order terms i, then we get

%_ +aiX+u
dt_ao 1 )

which isnotthe Jacobian linearization & # 0. The constant term must be kept,
and itis not present irb(33. Furthermore, even if we kept the constant term in the
approximate model, the system would quickly move away frioismpoint (since it

is “driven” by the constant terrag), and hence the approximation could soon fail
to hold.

Software for modeling and simulation frequently has faetitfor performing
linearization symbolically or numerically. The MATLAB comman r i mfinds
the equilibrium, andl i nnod extracts linear state space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering

Consider the vehicle steering system introduced in Exar@@eThe nonlinear
equations of motion for the system are given by equati@a3—(2.25 and can
be written as

4 (X vcos(a(d) +6) tans

) atan
— |yl =[vsin@@®)+8)| a5 =arcta ;
dt [9] Y0 tans ’( b )

b

wherex, y and 6 are the position and orientation of the center of mass of the
vehicle,vp is the velocity of the rear whedj,is the distance between the front and
rear wheels and is the angle of the front wheel. The functior{d) is the angle
between the velocity vector and the vehicle’s length axis.

We are interested in the motion of the vehicle about a sttdigé path @ = 6)
with fixed velocityvgp # 0. To find the relevant equilibrium point, we first €&t 0
and we see that we must hade= 0, corresponding to the steering wheel being
straight. This also yieldg = 0. Looking at the first two equations in the dynamics,
we see that the motion in the direction is by definitiomot at equilibrium since
X% 4+ y? = V2 # 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral aeviztthe vehicle
from a straight line. For simplicity, we leé, = 0, which corresponds to driving
along thex axis. We can then focus on the equations of motion inytlzed 6
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directions. With some abuse of notation we introduce the sta (y, ) andu= 9.
The system is then in standard form with

vsin(a(u) +x2)
i ] , o a(u) = arctar(atanu>, h(x,u) = x;.

f(x,u) = [ b

Vo
—tanu
b

The equilibrium point of interest is given by= (0,0) andu = 0. To compute
the linearized model around this equilibrium point, we malke of the formu-
las 6.34). A straightforward calculation yields

A9t _ (0w g 9f|  _ [aw/b
~ Ox|x=0 (0 0} - dufx=0  (Vo/b )’
u=0 u=0
Jch oh
= — = 1 _ — —
c OX | x=0 [ 0) ’ D Ju|x=0 ’
u=0 u=0
and the linearized system
dx = Ax+ BuU, y=Cx+Du (5.35)

dt
thus provides an approximation to the original nonlinearadyics.

The linearized model can be simplified further by introduciogmalized vari-
ables, as discussed in Sect®3. For this system, we choose the wheel bass
the length unit and the unit as the time required to travel aekbase. The nor-
malized state is thus= (x1/b,x2), and the new time variable is= vot/b. The
model 6.35 then becomes

dz_ (z+yw) (0 1 y -

dr_[ y =10 ol 7zt [1|w y= (1 O] z (5.36)
wherey = a/b. The normalized linear model for vehicle steering with ngpshg
wheels is thus a linear system with only one parameter. 0

Feedback Linearization

Another type of linearization is the use of feedback to contree dynamics of a
nonlinear system into those of a linear one. We illustragelihsic idea with an
example.

Example 5.13 Cruise control
Consider again the cruise control system from Exarbpld, whose dynamics are
given in equation§.29:

m(;\t/ = apuT(anv) — mgG sgr(v) — %pCdA\/2 — mgsiné.
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Linearized dynamics

Nonlinear|

I

Linear |
Process| |
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Figure 5.15: Feedback linearization. A nonlinear feedback of the form a(x,v) is used
to modify the dynamics of a nonlinear process so that the responsettimmputv to the
outputy is linear. A linear controller can then be used to regulate the system’s dysiam

If we chooseu as a feedback law of the form

, 1
u= anT () (u +mgG sgnv) + 2pC\,A\/2> , (5.37)

then the resulting dynamics become

dv_
ma =u +d, (5.38)

whered = —mgsin@ is the disturbance force due the slope of the road. If we
now define a feedback law faf (such as a proportional-integral-derivative [PID]
controller), we can use equatioB.87) to compute the final input that should be
commanded.

Equation 6.38 is a linear differential equation. We have essentiallyéiried”
the nonlinearity through the use of the feedback 18v87). This requires that we
have an accurate measurement of the vehicle velacig well as an accurate
model of the torque characteristics of the engine, geansatirag and friction
characteristics and mass of the car. While such a model igemarally available
(remembering that the parameter values can change), if sigrda good feedback
law for U, then we can achieve robustness to these uncertainties. O

More generally, we say that a system of the form

dx

dt - f(x7u)7 y_ h(X),
is feedback linearizablé we can find a control lawu = a(x,v) such that the
resulting closed loop system is input/output linear withutv and outputy, as
shown in Figures.15 To fully characterize such systems is beyond the scope of
this text, but we note that in addition to changes in the inihietgeneral theory also
allows for (nonlinear) changes in the states that are usel@goribe the system,
keeping only the input and output variables fixed. More de@ilthis process can
be found in the textbooks by Isidoiisj95] and Khalil [KhaO1].

One case that comes up relatively frequently, and is henctspecial mention,@
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is the set of mechanical systems of the form

M(q)§+C(a,q) = B(q)u.

Hereq € R" is the configuration of the mechanical systavh(g) € R"*" is the
configuration-dependent inertia matr(q, q) € R" represents the Coriolis forces
and additional nonlinear forces (such as stiffness antddrizandB(q) € R™P is

the input matrix. Ifp = n, then we have the same number of inputs and config-
uration variables, and if we further have th&{g) is an invertible matrix for all
configurationgy, then we can choose

u=B"Y(q)(M(aq)v+C(q,q)). (5.39)
The resulting dynamics become
M@d=M(@v = 4=V,

which is a linear system. We can now use the tools of lineateaysheory to
analyze and design control laws for the linearized systemembering to apply
equation .39 to obtain the actual input that will be applied to the system

This type of control is common in robotics, where it goes byrthme ofcom-
puted torqueand in aircraft flight control, where it is calledi/namic inversion
Some modeling tools like Modelica can generate the code ®inverse model
automatically. One caution is that feedback linearizatian often cancel out ben-
eficial terms in the natural dynamics, and hence it must be wibdcare. Exten-
sions that do not require complete cancellation of nontitiea are discussed in
Khalil [Kha0] and Krstit et al. KKK95].

5.5 Further Reading

The majority of the material in this chapter is classical aad be found in most
books on dynamics and control theory, including early warkscontrol such as
James, Nichols and PhillipdiiP47 and more recent textbooks such as Dorf and
Bishop [DB04], Franklin, Powell and Emami-NaeirffPENOJ and Ogata@ga0].

An excellent presentation of linear systems based on theb&tponential is
given in the book by Brocketgro7(, a more comprehensive treatment is given by
Rugh [Rug93 and an elegant mathematical treatment is given in Sorf8ag3§.
Material on feedback linearization can be found in booksamlinear control the-
ory such as Isidorilgi95] and Khalil [KhaOJ. The idea of characterizing dynamics
by considering the responses to step inputs is due to Hdayise also introduced
an operator calculus to analyze linear systems. The unitsthprefore also called
theHeaviside step functiodnalysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of latkathematical rigor,
as described in the biography by Nahiah88. The difficulties were cleared up
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later by the mathematician Laurent Schwartz who develajdbution theoryin
the late 1940s. In engineering, linear systems have toadiiy been analyzed us-
ing Laplace transforms as described in Gardner and Ba@®43. Use of the ma-
trix exponential started with developments of control tlydn the 1960s, strongly
stimulated by a textbook by Zadeh and Des@$3]. Use of matrix techniques
expanded rapidly when the powerful methods of numeric linégebra were pack-
aged in programs like LabVIEW, MATLAB and Mathematica.

Exercises

5.1(Response to the derivative of a signal) Show thgttif is the output of a linear
system corresponding to inputt), then the output corresponding to an inp(tt) -
is given byyit). (Hint: Use the definition of the derivativg(t) = limg_o(y(t +

£)—y(t))/€)

5.2(Impulse response and convolution) Show that a sigftalcan be decompose@
in terms of the impulse functiod(t)

/6t—r

and use this decomposition plus the principle of superiposio show that the
response of a linear system to an inp(t) (assuming a zero initial condition) can

be written as ‘
= / h(t—T1)u(r)dr
0

whereh(t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the ctommgratr model
given in Example5.7. Compute the step response for the system and compare
it with Figure 5.10b Use the principle of superposition to compute the response
to the 5 s pulse input shown in FiguselOc Use the parameter valukg= 0.1,

kl =01, kz =05 andbo =15.

5.4 (Matrix exponential for second-order system) Assume ghatl and letwy =

wo+/1— 2. Show that

lon oy ]t— [ez‘*btcoswdt ez“b‘sinwdt]

exp[ -y —(wy —e {@isingyt e 4@t cosuyt

5.5 (Lyapunov function for a linear system) Consider a lineatesnx = Ax with
ReA; < O for all eigenvalued j of the matrixA. Show that the matrix

P:/OmeATTQe”dT
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defines a Lyapunov function of the for(x) = x" Px

5.6 (Nondiagonal Jordan form) Consider a linear system withrdaloform that
is non-diagonal.

(a) Prove PropositioB.3by showing that if the system contains a real eigenvalue
A = 0 with a nontrivial Jordan block, then there exists an ihitiandition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvalugs ReéA = 0 by @
using the block Jordan form

0 w 1 O
P 0O 0 1
' 10 0 0 w
0 0 —-w O
5.7 (Rise time for a first-order system) Consider a first-orderesystf the form
T dx _ X+u =X
dt ’ y=x

We say that the parameteis thetime constantor the system since the zero input
system approaches the origined/”. For a first-order system of this form, show
that the rise time for a step response of the system is appedgly 2r, and that
1%, 2%, and 5% settling times approximately correspondsan, 4t and 3.

5.8 (Discrete-time systems) Consider a linear discrete-tiyséesn of the form
x[k+ 1] = AXK] + Bulk], y[K] = Cx[k] 4 Dulk].

(@) Show that the general form of the output of a discrete-fimear system is
given by the discrete-time convolution equation:

y[k] = CAX[0] + kZl]CAkleu[ j]+ DulK.
=

(b) Show that a discrete-time linear system is asymptotica#ible if and only if
all the eigenvalues o4 have a magnitude strictly less than 1.

(c) Letu[k] = sin(wk) represent an oscillatory input with frequenay< 1 (to
avoid “aliasing”). Show that the steady-state componenhefresponse has gain
M and phasé, where

Me® =C(é®l —A)B+D.
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(d) Show that if we have a nonlinear discrete-time system
x[k+1] = f(x[kl,ulk]), xkl€R" ueR,
ylk =h(x[kl,ulk]), YyeR,

then we can linearize the system around an equilibrium gainte) by defining
the matrices, B, C andD as in equation3.34).

5.9 (Keynesian economics) Consider the following simple Keyae macroeco-
nomic model in the form of a linear discrete-time systemulised in Exercisg.8

[CI:[[tt:—rll]]] = [aba—b ;b] [CI:[[tt]]] * [;b] Gltl
Y[t] = Clt] +1[t] + Glt]

Determine the eigenvalues of the dynamics matrix. Wherharenagnitudes of the
eigenvalues less than 1? Assume that the system is in equititwith constant
values capital spending, investment and government expenditu@ Explore
what happens when government expenditure increases by W8&sthe values
a=0.25andb=0.5.

5.10 Consider a scalar system

Compute the equilibrium points for the unforced systers-(0) and use a Taylor
series expansion around the equilibrium point to compugditiearization. \Verify
that this agrees with the linearization in equati6r8@).

5.11 (Transcriptional regulation) Consider the dynamics of aegie circuit that
implementsself-repressionthe protein produced by a gene is a repressor for that
gene, thus restricting its own production. Using the mogetsented in Exam-
ple 2.13 the dynamics for the system can be written as

dm a dp

dt ~ 1jkp TP ym-u dt = Pm-op, (5.40)

whereu is a disturbance term that affects RNA transcription amg > 0. Find
the equilibrium points for the system and use the lineartdygthmics around each
equilibrium point to determine the local stability of theuddprium point and the
step response of the system to a disturbance.



Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage orameor ac-
cumulation of past causes. We must, of course, demand that theistdrofl states> be
sufficiently rich to carry all information about the past history2ofo predict the effect of the
past upon the future. We do not insist, however, that the state igdlsésuch information
although this is often a convenient assumption.

R. E. Kalman, P. L. Falb and M. A. Arbifippics in Mathematical System Theat969 KFA69].

This chapter describes how the feedback of a system’s statbeaised to
shape the local behavior of a system. The concept of readlabihtroduced and
used to investigate how to design the dynamics of a systeoughrassignment
of its eigenvalues. In particular, it will be shown that undertain conditions it
is possible to assign the system eigenvalues arbitrarilgdpyopriate feedback of
the system state.

6.1 Reachability

One of the fundamental properties of a control system is \whiabf points in the
state space can be reached through the choice of a contud! infurns out that the
property of reachability is also fundamental in understagdhe extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of therayaihd focusing on
the evolution of the state, given by
dx

i Ax+ Bu, (6.1)

wherex € R", u € R, Ais ann x n matrix andB a column vector. A fundamental
question is whether it is possible to find control signals sb &my point in the state
space can be reached through some choice of input. To stigjywh define the
reachable setZ(Xp, < T) as the set of all points; such that there exists an input
u(t), 0<t <T that steers the system frax(0) = xo to x(T) = X¢, as illustrated in
Figure6.1a
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4

i
4 *ﬁ Ei/

X0 3 i
A (%0, <T) :

(a) Reachable set (b) Reachability through control

Figure 6.1: The reachable set for a control system. TheZgty, < T) shown in (a) is the set
of points reachable fromy in time less thaf. The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontakarand the control
inputs drawn as vertical arrows. The set of achievable equilibrium pi@rite x axis. By
setting the control inputs as a function of the state, it is possible to steer teensicsthe
origin, as shown on the sample path.

Definition 6.1 (Reachability) A linear system iseachableif for any xp,x; € R"
there exists & > 0 andu: [0, T] — R such that the corresponding solution satisfies
X(0) = xo andx(T) = Xs.

The definition of reachability addresses whether it is possibteach all points
in the state space inteansientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrieintp of the system
(since we can remain at those points once we get there). Ttaf aéitpossible
equilibria for constant controls is given by

& = {Xe : A%+ Bue = 0 for someue € R}.

This means that possible equilibria lie in a one- (or posditijjrer) dimensional
subspace. If the matrif is invertible, this subspace is spannedfoy B.
The following example provides some insight into the poditigs.

Example 6.1 Double integrator
Consider a linear system consisting of a double integratovse dynamics are
given by

dxg dxe

at @ dt
Figure6.1bshows a phase portrait of the system. The open loop dynamie®}
are shown as horizontal arrows pointed to the rightdor- O and to the left for
X2 < 0. The control input is represented by a double-headed arrdtei vertical
direction, corresponding to our ability to set the valugofThe set of equilibrium
points& corresponds to the, axis, withug = 0.

Suppose first that we wish to reach the origin from an initialditon (a, 0).

We can directly move the state up and down in the phase plah&dmust rely
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on the natural dynamics to control the motion to the left agttr If a > 0, we
can move the origin by first setting< 0, which will causex; to become negative.
Oncex; < 0, the value of; will begin to decrease and we will move to the left.
After awhile, we can setf, to be positive, moving, back toward zero and slowing
the motion in thex; direction. If we bringx, > 0, we can move the system state in
the opposite direction.

Figure6.1bshows a sample trajectory bringing the system to the orlgate
that if we steer the system to an equilibrium point, it is ploiesto remain there
indefinitely (sincex; = 0 whenx, = 0), but if we go to any other point in the state
space, we can pass through the point only in a transieniashi O

To find general conditions under which a linear system is raileh we will
first give a heuristic argument based on formal calculatiatfs wpulse functions.
We note that if we can reach all points in the state space ¢tresome choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system toputu(t) is given
by
t
X(t) = / A-IBY(T)dT. (6.2)
0

If we choose the input to be a impulse functidft) as defined in Sectioh.3, the

state becomes i dx
X5 = / SRS (1) dT = dits =e'B.
0

(Note that the state changes instantaneously in resporike tmpulse.) We can
find the response to the derivative of an impulse function kintathe derivative
of the impulse response (ExercBd):

dxs

Continuing this process and using the linearity of the systée input
U(t) = a18(t) + a28(t) + asd(t) + - + and ™Y (1)
gives the state
X(t) = a1MB+ a2 A€M B+ asA?eN B+ - - - 4 a, AT 1B
Taking the limit ag goes to zero through positive values, we get

Jim x(t) = a1B+ azAB+ azA’B+ -+ apA" 1B,
—0+
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On the right is a linear combination of the columns of the atr
W — [B AB .. A”—ls] . (6.3)

To reach an arbitrary point in the state space, we thus rethet there ara linear
independent columns of the matii%. The matrixW; is called thereachability
matrix.

An input consisting of a sum of impulse functions and themddives is a very
violent signal. To see that an arbitrary point can be reaghitdsmoother signals
we can make use of the convolution equation. Assuming theeinikial condition
is zero, the state of a linear system is given by

:/teA(‘T)Bu(r)drz/teATBu(t—r)dr.
0 0

It follows from the theory of matrix functions, specificalljg Cayley—Hamilton
theorem (see Exercig10, that

& =lag(1) +Aay(T) + -+ A" Loy 1 (1),
whereaq;(1) are scalar functions, and we find that

B/ ao(T)u(t — 1) dr+AB/ a1 (T)u(t—1)dr

+-- +A”‘1B/ On-1(T)u(t — 7)dT.
0

Again we observe that the right-hand side is a linear contisinaf the columns
of the reachability matri¥\; given by equationg.3). This basic approach leads to
the following theorem.

Theorem 6.1 (Reachability rank condition)A linear system is reachable if and
only if the reachability matrix Wis invertible.

The formal proof of this theorem is beyond the scope of this lbex follows
along the lines of the sketch above and can be found in modtsboo linear
control theory, such as Callier and DescgbP]] or Lewis [Lew03. We illustrate
the concept of reachability with the following example.

Example 6.2 Balance system

Consider the balance system introduced in Exar@dend shown in Figuré.2
Recall that this system is a model for a class of examples iiciwtine center

of mass is balanced above a pivot point. One example is the é8egersonal
Transporter shown in Figu& 23 about which a natural question to ask is whether
we can move from one stationary point to another by apprtgpaaplication of
forces through the wheels.
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(a) Segway (b) Cart-pendulum system

Figure 6.2: Balance system. The Segway Personal Transporter shown in (exsuaple of
a balance system that uses torque applied to the wheels to keep the riget. dpsimplified
diagram for a balance system is shown in (b). The system consists cdsamue a rod of
lengthl connected by a pivot to a cart with mads

The nonlinear equations of motion for the system are givergumagon @.9)
and repeated here:

(M+m)p—mlcosd 6 = —cp—mlsind 62 +F,
J+ml?)8 —mlcosh p = —yb + mglsiné.
)6 — mlcosh 6 Isin@

For simplicity, we takec = y = 0. Linearizing around the equilibrium poirg =
(p,0,0,0), the dynamics matrix and the control matrix are

(6.4)

0 0 1 0 0
0 0 01 0
A= 1o mizgiu 0 o BT |am |
0 Mimgl/u 0 O Im/u
whereu = MyJ; — 12, My = M +mandJ; = J+ ml2. The reachability matrix is
0 J/u 0 gi*m?/u?
0 [ 0 12m? M 2
d/u 0 gi*m?/ 0
Im/u 0 glPm?(m+M)/u? 0
The determinant of this matrix is
g?l4m?
detW) = =~ £,
W) =" 7

and we can conclude that the system is reachable. This inthkésve can move
the system from any initial state to any final state and, ini@aer, that we can
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Figure 6.3: An unreachable system. The cart—-pendulum system shown on the $e# ha
single input that affects two pendula of equal length and mass. Sincertiesfaffecting the
two pendula are the same and their dynamics are identical, it is not possnleiti@rily
control the state of the system. The figure on the right is a block diagrarasentation of
this situation.

always find an input to bring the system from an initial stateoequilibrium
point. O

It is useful to have an intuitive understanding of the medras that make a
system unreachable. An example of such a system is given urd=6g3. The
system consists of two identical systems with the same ir@learly, we cannot
separately cause the first and the second systems to do sognditfierent since
they have the same input. Hence we cannot reach arbitraegstand so the system
is not reachable (Exercige3).

More subtle mechanisms for nonreachability can also odeurexample, if
there is a linear combination of states that always remainstant, then the system
is not reachable. To see this, suppose that there exists eeiarH such that

0= %Hx: H(Ax+Bu), forallu.
ThenH is in the left null space of botA andB and it follows that
HW = H [B AB .. A“—ls] =0.

Hence the reachability matrix is not full rank. In this cageye have an initial
conditionXy and we wish to reach a staxe for which Hxy # HX;, then since
Hx(t) is constant, no input can move fronxg to X;.

Reachable Canonical Form

As we have already seen in previous chapters, it is oftenesvent to change
coordinates and write the dynamics of the system in the fmamgd coordinates
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d bl bz bnfl bn
Z Z _
u /zj f 1 f 2 . f Zn-1 f Zn
-1 a ap an_1 an
o :

Figure 6.4: Block diagram for a system in reachable canonical form. The indiViskazes
of the system are represented by a chain of integrators whose ingaridtepn the weighted
values of the states. The output is given by an appropriate combinatibe sf/stem input
and other states.

z= Tx One application of a change of coordinates is to conversgesyinto a
canonical form in which it is easy to perform certain typesioélysis.

A linear state space system isreachable canonical fornf its dynamics are
given by

—a; —a —asg ... —an 1

g 1 0 0 .. 0 0

2_1o 1 0 .. 0|z]|0fy

dt : e : (6.6)
0 1 0 0

y— [bl by by ... bn]z+du.

A block diagram for a system in reachable canonical form ashin Figure6.4.
We see that the coefficients that appear inAhendB matrices show up directly
in the block diagram. Furthermore, the output of the system &mple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable w@abform is given

by
As)="+as" 1+ +an_15+an. (6.7)

The reachability matrix also has a relatively simple strrestu

1 —a &—a
0 1 —a1
W= (B AB .. A™IB) = |: - ]

* %

o
o
o
[
*
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wherex indicates a possibly nonzero term. This matrix is full ramcsino col-
umn can be written as a linear combination of the others Isecatithe triangular
structure of the matrix.

We now consider the problem of changing coordinates sudttitibalynamics
of a system can be written in reachable canonical form.A,& represent the
dynamics of a given system aAdB be the dynamics in reachable canonical form.
Suppose that we wish to transform the original system intohalale canonical
form using a coordinate transformatiar= T x. As shown in the last chapter, the
dynamics matrix and the control matrix for the transformgstem are

A=TAT 1, B=TB.
The reachability matrix for the transformed system then e
W= (8 A8 - A1)
Transforming each element individually, we have
AB=TAT TB=TAB
A’B = (TAT 1)2TB=TAT ITAT 1TB=TAB,

A'B = TA"B,
and hence the reachability matrix for the transformed sys$se
W4:1'[B AB - AmiB):szL (6.8)

SinceW; is invertible, we can thus solve for the transformatibrthat takes the
system into reachable canonical form:

T=ww L.
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

(@ o), (0,
dt |—-w «a 1]

We wish to find the transformation that converts the systemrieachable canon-

ical form: L
x| —a 5
(8 0
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The coefficientsa; anday, can be determined from the characteristic polynomial
for the original system:
a;=—2a,

A(s) =detsl—A) = —2as+ (a’ + w?) = R
=0 "+ w".

The reachability matrix for each system is

[0 w =~ (1 —&
L 9 R P
The transformatio becomes

—(ay+a)/w 1] _ [a/w 1] 7

—Www1l_
T =W [ 1/w 0 1/w 0

and hence the coordinates

[21] Txe [axl/erxz]

2 X1/ W
put the system in reachable canonical form. O
We summarize the results of this section in the followingtieen.

Theorem 6.2(Reachable canonical form).et A and B be the dynamics and con-
trol matrices for a reachable system. Then there exists asfmmation z= Tx
such that in the transformed coordinates the dynamics antt@anatrices are in
reachable canonical forr(6.6) and the characteristic polynomial for A is given by

detfsl—A) ="+ ay8" 1+ +a, 15+ an.

One important implication of this theorem is that for anyategble system, we
can assume without loss of generality that the coordinatestesen such that the
system is in reachable canonical form. This is particulaskgful for proofs, as we
shall see later in this chapter. However, for high-ordetesys, small changes in
the coefficients; can give large changes in the eigenvalues. Hence, the fg@acha
canonical form is not always well conditioned and must balwgigh some care.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variablasghrmits prediction
of the future development of a system. We now explore the adekesigning the
dynamics of a system through feedback of the state. We vgillrag that the system
to be controlled is described by a linear state model and reasgie input (for
simplicity). The feedback control law will be developed shgystep using a single
idea: the positioning of closed loop eigenvalues in dedwedtions.
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Controller Process

X=Ax+Bu
y=Cx+Du

Figure 6.5: A feedback control system with state feedback. The controller useystens
statex and the reference inputto command the process through its inputWe model
disturbances via the additive inpait

State Space Controller Structure

Figure6.5is a diagram of a typical control system using state feedbak& full
system consists of the process dynamics, which we take iader| the controller
elementsK andk;, the reference input (or command signaland process dis-
turbancedd. The goal of the feedback controller is to regulate the ougifuhe
systemy such that it tracks the reference input in the presence tifrtances and
also uncertainty in the process dynamics.

An important element of the control design is the perforneasecification.
The simplest performance specification is that of stabilitythe absence of any
disturbances, we would like the equilibrium point of theteys to be asymptoti-
cally stable. More sophisticated performance specificattgpically involve giv-
ing desired properties of the step or frequency responsheosystem, such as
specifying the desired rise time, overshoot and settlimg tof the step response.
Finally, we are often concerned with the disturbance atteémug@roperties of the
system: to what extent can we experience disturbance impaisl still hold the
outputy near the desired value?

Consider a system described by the linear differential gopia

31( = Ax+Bu, y = Cx+ Du, (6.9)

where we have ignored the disturbance sigh&r now. Our goal is to drive the
outputy to a given reference valueand hold it there. Notice that it may not be
possible to maintain all equilibria; see Exerct8.

We begin by assuming that all components of the state vectomaasured.
Since the state at tintecontains all the information necessary to predict the &itur
behavior of the system, the most general time-invariantrobtaw is a function
of the state and the reference input:

u=a(x,r).



6.2. STABILIZATION BY STATE FEEDBACK 189

If the feedback is restricted to be linear, it can be written a
u=—Kx+kr, (6.10)

wherer is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figuse The nega-
tive sign is a convention to indicate that negative feedligtie normal situation.
The closed loop system obtained when the feedb&d{\is applied to the sys-
tem 6.9) is given by dx

Fri (A—BK)x+Bkr. (6.11)

We attempt to determine the feedback giiiso that the closed loop system has
the characteristic polynomial

p(s) ="+ pas" 4+ + pro1S+ Pn. (6.12)

This control problem is called theigenvalue assignment problampole place-
ment problenmwe will define poles more formally in Chapt8y.

Note thatk; does not affect the stability of the system (which is detasdiby
the eigenvalues oA — BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the aldsep system are given
by

Xe=—(A—BK) 1Bkr,  Ye=Cxe+ Due,

hencek, should be chosen such that=r (the desired output value). Sinkeis a
scalar, we can easily solve to show thaDiE= 0 (the most common case),

k- =—1/(C(A-BK)'B). (6.13)

Notice thatk, is exactly the inverse of the zero frequency gain of the cdsep
system. The solution fdD # 0 is left as an exercise.

Using the gainK andk;, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to condtauch a state feedback
control law, we begin with a few examples that provide sormsdmtuition and
insights.

Example 6.4 Vehicle steering
In Example5.12we derived a normalized linear model for vehicle steeringe Th
dynamics describing the lateral deviation were given by

Y [0

C:(l 0], D=0
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The reachability matrix for the system is thus

w = (B AB]:[{ é]

The system is reachable since\dgt= —1 = 0.

We now want to design a controller that stabilizes the dycarand tracks a
given reference valueof the lateral position of the vehicle. To do this we introduc
the feedback

U= —Kx+kr=—kixg —koXo + K,

and the closed loop system becomes

(:ﬁ(_(A—BK)erkar_ [__‘Lkll 1:kV2kz] X+ [‘ﬁf] r,

(6.14)
y=Cx+Du= (1 0] X.

The closed loop system has the characteristic polynomial

_ S+yki yke—1) _
det(sI—A+BK)_det[ K S+k2]_32+(yk1+k2)s+k1.

Suppose that we would like to use feedback to design the dysashithe system
to have the characteristic polynomial

p(s) = & + 2{c S+ W2

Comparing this polynomial with the characteristic polynahof the closed loop
system, we see that the feedback gains should be chosen as

k=g, ko =20cx— yaf.
Equation 6.13) givesk; = k; = w?, and the control law can be written as
u= k]_(l' — Xl) — k2X2 = wcz(r — Xl) — (ZZCOQ; — Vwcz)Xz.

The step responses for the closed loop system for differdnesaf the de-
sign parameters are shown in Figé:é. The effect ofwy is shown in Figuré.6a
which shows that the response speed increases with incgaasi The responses
for . = 0.5 and 1 have reasonable overshoot. The settling time is aldocarl
lengths fora, = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths fora, = 1. The control signad is large initially and goes to zero as time
increases because the closed loop dynamics have an itiedriag initial value
of the control signal isi(0) = k; = w?r, and thus the achievable response time is
limited by the available actuator signal. Notice in parécuhe dramatic increase
in control signal wherw, changes from 1 to 2. The effect ¢f is shown in Fig-
ure6.6h The response speed and the overshoot increase with degrdasnping.
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Figure 6.6: State feedback control of a steering system. Step responses obtétinedmy
trollers designed witl{; = 0.7 andaw, = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasigout that largew also give large initial control

actions. Step responses obtained with a controller designedawith 1 and{; = 0.5, 0.7
and 1 are shown in (b).

Using these plots, we conclude that reasonable values design parameters are
to havewy in the range of 0.5to 1 an¢l ~ 0.7. O

The example of the vehicle steering system illustrates hate $eedback can
be used to set the eigenvalues of a closed loop system toeaybialues.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the paeasnef the system

are the coefficients of the characteristic polynomial. Ihisrefore natural to con-

sider systems in this form when solving the eigenvalue assgnt problem.
Consider a system in reachable canonical form, i.e,

—-a; —a —az ... —an 1

q 1 0 o ... 0 0

9 soiBu=| 0 1 0 . 0|zl

dt : SR 0 (6.15)
0 1 0 0

y=Cz= [bl by - bn] ya

It follows from(6.7) that the open loop system has the characteristic polyriomia

det(sl—A)=s"+a;s" 1+ ... +a,_15+an.
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Before making a formal analysis we can gain some insight bgstigating the
block diagram of the system shown in Figel The characteristic polynomial
is given by the parameteg in the figure. Notice that the parametgr can be
changed by feedback from statgto the inputu. It is thus straightforward to
change the coefficients of the characteristic polynomialtaiedeedback.

Returning to equations, introducing the control law

U= —Kz+kr =—kz1 —kozp — -+ — Knzn + ki, (6.16)
the closed loop system becomes
—ay -k —ap—ky —az—ks ... —an—ky K
1 0 0 0 0
z_| o 1 0 .. 0 |z|o|r

dt : : : (6.17)

0 1 0 0

y— [lo1 by - bn] z

The feedback changes the elements of the first row oAthmeatrix, which corre-
sponds to the parameters of the characteristic polynoiiti@.closed loop system
thus has the characteristic polynomial

't (@ +k)S 4 (@ ko) 2 (@1 +Kno1)S+ @n + k.
Requiring this polynomial to be equal to the desired closeg lpolynomial
p(s) ="+ p1s" 4+ Pr_1S+ P,
we find that the controller gains should be chosen as

ki = p1—ay, ko= p2—ay, Kn = Pn—an.

This feedback simply replaces the parameggris the system@&.15 by p;. The
feedback gain for a system in reachable canonical form is thu

K:(pl—al pp—ay - pn—an]. (6.18)

To have zero frequency gain equal to unity, the paranietshould be chosen
as

K — an+kn  pn
b by
Notice that it is essential to know the precise values of ppatarsa, andby, in
order to obtain the correct zero frequency gain. The zerau@egy gain is thus
obtained by precise calibration. This is very different froitaining the correct
steady-state value by integral action, which we shall sést@n sections.

(6.19)



6.2. STABILIZATION BY STATE FEEDBACK 193

Eigenvalue Assignment

We have seen through the examples how feedback can be usesdign the dy-

namics of a system through assignment of its eigenvaluesolVe the problem in
the g