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Preface

This book provides an introduction to the basic principles and tools for the design
and analysis of feedback systems. It is intended to serve a diverse audience of
scientists and engineers who are interested in understanding and utilizing feedback
in physical, biological, information and social systems. We have attempted to keep
the mathematical prerequisites to a minimum while being careful not to sacrifice
rigor in the process. We have also attempted to make use of examples from a
variety of disciplines, illustrating the generality of many of the tools while at the
same time showing how they can be applied in specific application domains.

A major goal of this book is to present a concise and insightful view of the
current knowledge in feedback and control systems. The field ofcontrol started
by teaching everything that was known at the time and, as new knowledge was
acquired, additional courses were developed to cover new techniques. A conse-
quence of this evolution is that introductory courses have remained the same for
many years, and it is often necessary to take many individualcourses in order
to obtain a good perspective on the field. In developing this book, we have at-
tempted to condense the current knowledge by emphasizing fundamental concepts.
We believe that it is important to understand why feedback isuseful, to know the
language and basic mathematics of control and to grasp the key paradigms that
have been developed over the past half century. It is also important to be able to
solve simple feedback problems using back-of-the-envelope techniques, to recog-
nize fundamental limitations and difficult control problemsand to have a feel for
available design methods.

This book was originally developed for use in an experimentalcourse at Cal-
tech involving students from a wide set of backgrounds. The course was offered to
undergraduates at the junior and senior levels in traditional engineering disciplines,
as well as first- and second-year graduate students in engineering and science. This
latter group included graduate students in biology, computer science and physics.
Over the course of several years, the text has been classroomtested at Caltech and
at Lund University, and the feedback from many students and colleagues has been
incorporated to help improve the readability and accessibility of the material.

Because of its intended audience, this book is organized in aslightly unusual
fashion compared to many other books on feedback and control. In particular, we
introduce a number of concepts in the text that are normally reserved for second-
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year courses on control and hence often not available to students who are not con-
trol systems majors. This has been done at the expense of certain traditional top-
ics, which we felt that the astute student could learn independently and are often
explored through the exercises. Examples of topics that we have included are non-
linear dynamics, Lyapunov stability analysis, the matrix exponential, reachability
and observability, and fundamental limits of performance and robustness. Topics
that we have deemphasized include root locus techniques, lead/lag compensation
and detailed rules for generating Bode and Nyquist plots by hand.

Several features of the book are designed to facilitate its dual function as a basic
engineering text and as an introduction for researchers in natural, information and
social sciences. The bulk of the material is intended to be used regardless of the
audience and covers the core principles and tools in the analysis and design of
feedback systems. Advanced sections, marked by the “dangerous bend” symbol�
shown here, contain material that requires a slightly more technical background,
of the sort that would be expected of senior undergraduates in engineering. A few
sections are marked by two dangerous bend symbols and are intended for readers
with more specialized backgrounds, identified at the beginning of the section. To
limit the length of the text, several standard results and extensions are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here, a companion web site
has been developed and is available from the publisher’s webpage:

http://www.cds.caltech.edu/∼murray/amwiki

The web site contains a database of frequently asked questions, supplemental ex-
amples and exercises, and lecture material for courses based on this text. The mate-
rial is organized by chapter and includes a summary of the major points in the text
as well as links to external resources. The web site also contains the source code
for many examples in the book, as well as utilities to implement the techniques
described in the text. Most of the code was originally written using MATLAB M-
files but was also tested with LabView MathScript to ensure compatibility with
both packages. Many files can also be run using other scriptinglanguages such as
Octave, SciLab, SysQuake and Xmath.

The first half of the book focuses almost exclusively on state space control sys-
tems. We begin in Chapter2 with a description of modeling of physical, biolog-
ical and information systems using ordinary differential equations and difference
equations. Chapter3 presents a number of examples in some detail, primarily as a
reference for problems that will be used throughout the text. Following this, Chap-
ter 4 looks at the dynamic behavior of models, including definitions of stability
and more complicated nonlinear behavior. We provide advanced sections in this
chapter on Lyapunov stability analysis because we find that itis useful in a broad
array of applications and is frequently a topic that is not introduced until later in
one’s studies.
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The remaining three chapters of the first half of the book focus on linear sys-
tems, beginning with a description of input/output behavior in Chapter5. In Chap-
ter 6, we formally introduce feedback systems by demonstrating how state space
control laws can be designed. This is followed in Chapter7 by material on output
feedback and estimators. Chapters6 and7 introduce the key concepts of reacha-
bility and observability, which give tremendous insight into the choice of actuators
and sensors, whether for engineered or natural systems.

The second half of the book presents material that is often considered to be
from the field of “classical control.” This includes the transfer function, introduced
in Chapter8, which is a fundamental tool for understanding feedback systems.
Using transfer functions, one can begin to analyze the stability of feedback systems
using frequency domain analysis, including the ability to reason about the closed
loop behavior of a system from its open loop characteristics. This is the subject of
Chapter9, which revolves around the Nyquist stability criterion.

In Chapters10 and 11, we again look at the design problem, focusing first
on proportional-integral-derivative (PID) controllers and then on the more general
process of loop shaping. PID control is by far the most common design technique
in control systems and a useful tool for any student. The chapter on frequency
domain design introduces many of the ideas of modern controltheory, including
the sensitivity function. In Chapter12, we combine the results from the second half
of the book to analyze some of the fundamental trade-offs between robustness and
performance. This is also a key chapter illustrating the power of the techniques that
have been developed and serving as an introduction for more advanced studies.

The book is designed for use in a 10- to 15-week course in feedback systems
that provides many of the key concepts needed in a variety of disciplines. For a 10-
week course, Chapters1–2, 4–6 and8–11 can each be covered in a week’s time,
with the omission of some topics from the final chapters. A moreleisurely course,
spread out over 14–15 weeks, could cover the entire book, with 2 weeks on mod-
eling (Chapters2 and3)—particularly for students without much background in
ordinary differential equations—and 2 weeks on robust performance (Chapter12).

The mathematical prerequisites for the book are modest and inkeeping with
our goal of providing an introduction that serves a broad audience. We assume
familiarity with the basic tools of linear algebra, including matrices, vectors and
eigenvalues. These are typically covered in a sophomore-level course on the sub-
ject, and the textbooks by Apostol [Apo69], Arnold [Arn87] and Strang [Str88]
can serve as good references. Similarly, we assume basic knowledge of differ-
ential equations, including the concepts of homogeneous and particular solutions
for linear ordinary differential equations in one variable. Apostol [Apo69] and
Boyce and DiPrima [BD04] cover this material well. Finally, we also make use
of complex numbers and functions and, in some of the advancedsections, more
detailed concepts in complex variables that are typically covered in a junior-level
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engineering or physics course in mathematical methods. Apostol [Apo67] or Stew-
art [Ste02] can be used for the basic material, with Ahlfors [Ahl66], Marsden and
Hoffman [MH98] or Saff and Snider [SS02] being good references for the more
advanced material. We have chosen not to include appendicessummarizing these
various topics since there are a number of good books available.

One additional choice that we felt was important was the decision not to rely
on a knowledge of Laplace transforms in the book. While their use is by far the
most common approach to teaching feedback systems in engineering, many stu-
dents in the natural and information sciences may lack the necessary mathematical
background. Since Laplace transforms are not required in any essential way, we
have included them only in an advanced section intended to tie things together
for students with that background. Of course, we make tremendous use oftrans-
fer functions, which we introduce through the notion of response to exponential
inputs, an approach we feel is more accessible to a broad array of scientists and
engineers. For classes in which students have already had Laplace transforms, it
should be quite natural to build on this background in the appropriate sections of
the text.
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Chapter One
Introduction

Feedback is a central feature of life. The process of feedback governshow we grow, respond
to stress and challenge, and regulate factors such as body temperature,blood pressure and
cholesterol level. The mechanisms operate at every level, from the interaction of proteins in
cells to the interaction of organisms in complex ecologies.

M. B. Hoagland and B. Dodson,The Way Life Works, 1995 [HD95].

In this chapter we provide an introduction to the basic concept of feedbackand
the related engineering discipline ofcontrol. We focus on both historical and cur-
rent examples, with the intention of providing the context for current tools in feed-
back and control. Much of the material in this chapter is adapted from [Mur03],
and the authors gratefully acknowledge the contributions of Roger Brockett and
Gunter Stein to portions of this chapter.

1.1 What Is Feedback?

A dynamical systemis a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The termfeedbackrefers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult becausethe first system in-
fluences the second and the second system influences the first, leading to a circular
argument. This makes reasoning based on cause and effect tricky, and it is neces-
sary to analyze the system as a whole. A consequence of this isthat the behavior
of feedback systems is often counterintuitive, and it is therefore necessary to resort
to formal methods to understand them.

Figure1.1illustrates in block diagram form the idea of feedback. We often use
the termsopen loopandclosed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
shown in Figure1.1a. If we break the interconnection, we refer to the configuration
as an open loop system, as shown in Figure1.1b.

As the quote at the beginning of this chapter illustrates, a major source of ex-
amples of feedback systems is biology. Biological systems make use of feedback
in an extraordinary number of ways, on scales ranging from molecules to cells to
organisms to ecosystems. One example is the regulation of glucose in the blood-
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Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used as the input of
system 2, and the output of system 2 becomes the input of system 1, creating a closed loop
system. (b) The interconnection between system 2 and system 1 is removed, and the system
is said to be open loop.

stream through the production of insulin and glucagon by thepancreas. The body
attempts to maintain a constant concentration of glucose, which is used by the
body’s cells to produce energy. When glucose levels rise (after eating a meal, for
example), the hormone insulin is released and causes the body to store excess glu-
cose in the liver. When glucose levels are low, the pancreas secretes the hormone
glucagon, which has the opposite effect. Referring to Figure1.1, we can view the
liver as system 1 and the pancreas as system 2. The output from the liver is the glu-
cose concentration in the blood, and the output from the pancreas is the amount of
insulin or glucagon produced. The interplay between insulinand glucagon secre-
tions throughout the day helps to keep the blood-glucose concentration constant,
at about 90 mg per 100 mL of blood.

An early engineering example of a feedback system is a centrifugal governor,
in which the shaft of a steam engine is connected to a flyball mechanism that is
itself connected to the throttle of the steam engine, as illustrated in Figure1.2. The
system is designed so that as the speed of the engine increases (perhaps because
of a lessening of the load on the engine), the flyballs spread apart and a linkage
causes the throttle on the steam engine to be closed. This in turn slows down the
engine, which causes the flyballs to come back together. We canmodel this system
as a closed loop system by taking system 1 as the steam engine and system 2 as
the governor. When properly designed, the flyball governor maintains a constant
speed of the engine, roughly independent of the loading conditions. The centrifugal
governor was an enabler of the successful Watt steam engine,which fueled the
industrial revolution.

Feedback has many interesting properties that can be exploited in designing
systems. As in the case of glucose regulation or the flyball governor, feedback can
make a system resilient toward external influences. It can also be used to create
linear behavior out of nonlinear components, a common approach in electronics.
More generally, feedback allows a system to be insensitive both to external distur-
bances and to variations in its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabili-
ties in a system, causing oscillations or even runaway behavior. Another drawback,
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugal governor on the
left consists of a set of flyballs that spread apart as the speed of the engine increases. The
steam engine on the right uses a centrifugal governor (above and to theleft of the flywheel)
to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip Taylor[1828].)

especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

Feedback systems are ubiquitous in both natural and engineered systems. Con-
trol systems maintain the environment, lighting and power in our buildings and
factories; they regulate the operation of our cars, consumer electronics and manu-
facturing processes; they enable our transportation and communications systems;
and they are critical elements in our military and space systems. For the most part
they are hidden from view, buried within the code of embeddedmicroprocessors,
executing their functions accurately and reliably. Feedback has also made it pos-
sible to increase dramatically the precision of instruments such as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintains thermal, chemical and
biological conditions through feedback. At the other end ofthe size scale, global
climate dynamics depend on the feedback interactions between the atmosphere,
the oceans, the land and the sun. Ecosystems are filled with examples of feedback
due to the complex interactions between animal and plant life. Even the dynam-
ics of economies are based on the feedback between individuals and corporations
through markets and the exchange of goods and services.

1.2 What Is Control?

The termcontrol has many meanings and often varies between communities. In
this book, we define control to be the use of algorithms and feedback in engineered
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systems. Thus, control includes such examples as feedback loops in electronic am-
plifiers, setpoint controllers in chemical and materials processing, “fly-by-wire”
systems on aircraft and even router protocols that control traffic flow on the Inter-
net. Emerging applications include high-confidence softwaresystems, autonomous
vehicles and robots, real-time resource management systems and biologically en-
gineered systems. At its core, control is aninformationscience and includes the
use of information in both analog and digital representations.

A modern controller senses the operation of a system, compares it against the
desired behavior, computes corrective actions based on a model of the system’s
response to external inputs and actuates the system to effect the desired change.
This basicfeedback loopof sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logic areensuring that the dy-
namics of the closed loop system are stable (bounded disturbances give bounded
errors) and that they have additional desired behavior (good disturbance attenua-
tion, fast responsiveness to changes in operating point, etc). These properties are
established using a variety of modeling and analysis techniques that capture the
essential dynamics of the system and permit the explorationof possible behaviors
in the presence of uncertainty, noise and component failure.

A typical example of a control system is shown in Figure1.3. The basic ele-
ments of sensing, computation and actuation are clearly seen. In modern control
systems, computation is typically implemented on a digitalcomputer, requiring the
use of analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty
enters the system through noise in sensing and actuation subsystems, external dis-
turbances that affect the underlying system operation and uncertain dynamics in
the system (parameter errors, unmodeled effects, etc). The algorithm that com-
putes the control action as a function of the sensor values isoften called acontrol
law. The system can be influenced externally by an operator who introducescom-
mand signalsto the system.

Control engineering relies on and shares tools from physics(dynamics and
modeling), computer science (information and software) and operations research
(optimization, probability theory and game theory), but itis also different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control and other disciplines is in
the modeling of physical systems, which is common across allareas of engineering
and science. One of the fundamental differences between control-oriented model-
ing and modeling in other disciplines is the way in which interactions between
subsystems are represented. Control relies on a type of input/output modeling that
allows many new insights into the behavior of systems, such as disturbance attenu-
ation and stable interconnection. Model reduction, where asimpler (lower-fidelity)
description of the dynamics is derived from a high-fidelity model, is also naturally
described in an input/output framework. Perhaps most importantly, modeling in a
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Controller
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Filter

Clock

operator input

D/A Computer A/D

noiseexternal disturbancesnoise

ΣΣ
Output

Process

Actuators

Figure 1.3: Components of a computer-controlled system. The upper dashed box represents
the process dynamics, which include the sensors and actuators in additionto the dynamical
system being controlled. Noise and external disturbances can perturb the dynamics of the
process. The controller is shown in the lower dashed box. It consists ofa filter and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a computerthat implements
the control algorithm. A system clock controls the operation of the controller, synchronizing
the A/D, D/A and computing processes. The operator input is also fed to thecomputer as an
external input.

control context allows the design ofrobustinterconnections between subsystems,
a feature that is crucial in the operation of all large engineered systems.

Control is also closely associated with computer science since virtually all
modern control algorithms for engineering systems are implemented in software.
However, control algorithms and software can be very different from traditional
computer software because of the central role of the dynamics of the system and
the real-time nature of the implementation.

1.3 Feedback Examples

Feedback has many interesting and useful properties. It makes it possible to design
precise systems from imprecise components and to make relevant quantities in a
system change in a prescribed fashion. An unstable system can be stabilized using
feedback, and the effects of external disturbances can be reduced. Feedback also
offers new degrees of freedom to a designer by exploiting sensing, actuation and
computation. In this section we survey some of the importantapplications and
trends for feedback in the world around us.
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(a) Honeywell thermostat, 1953

Movement
opens
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Electromagnet
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(b) Chrysler cruise control, 1958

Figure 1.4: Early control devices. (a) Honeywell T87 thermostat originally introduced in
1953. The thermostat controls whether a heater is turned on by comparing the current tem-
perature in a room to a desired value that is set using a dial. (b) Chrysler cruise control
system introduced in the 1958 Chrysler Imperial [Row58]. A centrifugal governor is used
to detect the speed of the vehicle and actuate the throttle. The reference speed is specified
through an adjustment spring. (Left figure courtesy of Honeywell International, Inc.)

Early Technological Examples

The proliferation of control in engineered systems occurredprimarily in the latter
half of the 20th century. There are some important exceptions, such as the cen-
trifugal governor described earlier and the thermostat (Figure 1.4a), designed at
the turn of the century to regulate the temperature of buildings.

The thermostat, in particular, is a simple example of feedback control that ev-
eryone is familiar with. The device measures the temperaturein a building, com-
pares that temperature to a desired setpoint and uses thefeedback errorbetween
the two to operate the heating plant, e.g., to turn heat on when the temperature
is too low and to turn it off when the temperature is too high. This explanation
captures the essence of feedback, but it is a bit too simple even for a basic device
such as the thermostat. Because lags and delays exist in the heating plant and sen-
sor, a good thermostat does a bit of anticipation, turning the heater off before the
error actually changes sign. This avoids excessive temperature swings and cycling
of the heating plant. This interplay between the dynamics of the process and the
operation of the controller is a key element in modern control systems design.

There are many other control system examples that have developed over the
years with progressively increasing levels of sophistication. An early system with
broad public exposure was thecruise controloption introduced on automobiles in
1958 (see Figure1.4b). Cruise control illustrates the dynamic behavior of closed
loop feedback systems in action—the slowdown error as the system climbs a grade,
the gradual reduction of that error due to integral action inthe controller, the small
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Figure 1.5: A small portion of the European power network. By 2008 European power
suppliers will operate a single interconnected network covering a region from the Arctic to
the Mediterranean and from the Atlantic to the Urals. In 2004 the installed power was more
than 700 GW (7×1011 W). (Source: UCTE [www.ucte.org])

overshoot at the top of the climb, etc. Later control systems on automobiles such
as emission controls and fuel-metering systems have achieved major reductions of
pollutants and increases in fuel economy.

Power Generation and Transmission

Access to electrical power has been one of the major drivers of technological
progress in modern society. Much of the early development ofcontrol was driven
by the generation and distribution of electrical power. Control is mission critical
for power systems, and there are many control loops in individual power stations.
Control is also important for the operation of the whole power network since it is
difficult to store energy and it is thus necessary to match production to consump-
tion. Power management is a straightforward regulation problem for a system with
one generator and one power consumer, but it is more difficult in a highly dis-
tributed system with many generators and long distances between consumption
and generation. Power demand can change rapidly in an unpredictable manner and
combining generators and consumers into large networks makes it possible to share
loads among many suppliers and to average consumption amongmany customers.
Large transcontinental and transnational power systems have therefore been built,
such as the one show in Figure1.5.

Most electricity is distributed by alternating current (AC) because the transmis-
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sion voltage can be changed with small power losses using transformers. Alternat-
ing current generators can deliver power only if the generators are synchronized
to the voltage variations in the network. This means that the rotors of all genera-
tors in a network must be synchronized. To achieve this with local decentralized
controllers and a small amount of interaction is a challenging problem. Sporadic
low-frequency oscillations between distant regions have been observed when re-
gional power grids have been interconnected [KW05].

Safety and reliability are major concerns in power systems. There may be dis-
turbances due to trees falling down on power lines, lightning or equipment failures.
There are sophisticated control systems that attempt to keepthe system operating
even when there are large disturbances. The control actions can be to reduce volt-
age, to break up the net into subnets or to switch off lines andpower users. These
safety systems are an essential element of power distribution systems, but in spite
of all precautions there are occasionally failures in largepower systems. The power
system is thus a nice example of a complicated distributed system where control is
executed on many levels and in many different ways.

Aerospace and Transportation

In aerospace, control has been a key technological capability tracing back to the
beginning of the 20th century. Indeed, the Wright brothers are correctly famous
not for demonstrating simply powered flight butcontrolledpowered flight. Their
early Wright Flyer incorporated moving control surfaces (vertical fins and canards)
and warpable wings that allowed the pilot to regulate the aircraft’s flight. In fact,
the aircraft itself was not stable, so continuous pilot corrections were mandatory.
This early example of controlled flight was followed by a fascinating success story
of continuous improvements in flight control technology, culminating in the high-
performance, highly reliable automatic flight control systems we see in modern
commercial and military aircraft today (Figure1.6).

Similar success stories for control technology have occurred in many other
application areas. Early World War II bombsights and fire control servo systems
have evolved into today’s highly accurate radar-guided guns and precision-guided
weapons. Early failure-prone space missions have evolved into routine launch
operations, manned landings on the moon, permanently manned space stations,
robotic vehicles roving Mars, orbiting vehicles at the outer planets and a host of
commercial and military satellites serving various surveillance, communication,
navigation and earth observation needs. Cars have advancedfrom manually tuned
mechanical/pneumatic technology to computer-controlledoperation of all major
functions, including fuel injection, emission control, cruise control, braking and
cabin comfort.

Current research in aerospace and transportation systems is investigating the
application of feedback to higher levels of decision making, including logical reg-



1.3. FEEDBACK EXAMPLES 9

(a) F/A-18 “Hornet” (b) X-45 UCAV

Figure 1.6:Military aerospace systems. (a) The F/A-18 aircraft is one of the first production
military fighters to use “fly-by-wire” technology. (b) The X-45 (UCAV) unmanned aerial
vehicle is capable of autonomous flight, using inertial measurement sensors and the global
positioning system (GPS) to monitor its position relative to a desired trajectory.(Photographs
courtesy of NASA Dryden Flight Research Center.)

ulation of operating modes, vehicle configurations, payloadconfigurations and
health status. These have historically been performed by human operators, but to-
day that boundary is moving and control systems are increasingly taking on these
functions. Another dramatic trend on the horizon is the use of large collections
of distributed entities with local computation, global communication connections,
little regularity imposed by the laws of physics and no possibility of imposing
centralized control actions. Examples of this trend includethe national airspace
management problem, automated highway and traffic management and command
and control for future battlefields.

Materials and Processing

The chemical industry is responsible for the remarkable progress in developing
new materials that are key to our modern society. In additionto the continuing
need to improve product quality, several other factors in the process control in-
dustry are drivers for the use of control. Environmental statutes continue to place
stricter limitations on the production of pollutants, forcing the use of sophisticated
pollution control devices. Environmental safety considerations have led to the de-
sign of smaller storage capacities to diminish the risk of major chemical leakage,
requiring tighter control on upstream processes and, in some cases, supply chains.
And large increases in energy costs have encouraged engineers to design plants that
are highly integrated, coupling many processes that used tooperate independently.
All of these trends increase the complexity of these processes and the performance
requirements for the control systems, making control system design increasingly
challenging. Some examples of materials-processing technology are shown in Fig-



1.3. FEEDBACK EXAMPLES 10

Figure 1.7:Materials processing. Modern materials are processed under carefully controlled
conditions, using reactors such as the metal organic chemical vapor deposition (MOCVD)
reactor shown on the left, which was for manufacturing superconducting thin films. Using
lithography, chemical etching, vapor deposition and other techniques, complex devices can
be built, such as the IBM cell processor shown on the right. (MOCVD imagecourtesy of Bob
Kee. IBM cell processor photograph courtesy Tom Way, IBM Corporation; unauthorized use
not permitted.)

ure1.7.
As in many other application areas, new sensor technology iscreating new op-

portunities for control. Online sensors—including laser backscattering, video mi-
croscopy and ultraviolet, infrared and Raman spectroscopy—are becoming more
robust and less expensive and are appearing in more manufacturing processes.
Many of these sensors are already being used by current process control systems,
but more sophisticated signal-processing and control techniques are needed to use
more effectively the real-time information provided by these sensors. Control en-
gineers also contribute to the design of even better sensors, which are still needed,
for example, in the microelectronics industry. As elsewhere, the challenge is mak-
ing use of the large amounts of data provided by these new sensors in an effective
manner. In addition, a control-oriented approach to modeling the essential physics
of the underlying processes is required to understand the fundamental limits on
observability of the internal state through sensor data.

Instrumentation

The measurement of physical variables is of prime interest inscience and engineer-
ing. Consider, for example, an accelerometer, where early instruments consisted of
a mass suspended on a spring with a deflection sensor. The precision of such an
instrument depends critically on accurate calibration of the spring and the sensor.
There is also a design compromise because a weak spring gives high sensitivity
but low bandwidth.
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Figure 1.8: The voltage clamp method for measuring ion currents in cells using feedback.
A pipet is used to place an electrode in a cell (left and middle) and maintain thepotential of
the cell at a fixed level. The internal voltage in the cell isvi , and the voltage of the external
fluid is ve. The feedback system (right) controls the currentI into the cell so that the voltage
drop across the cell membrane∆v= vi −ve is equal to its reference value∆vr . The currentI
is then equal to the ion current.

A different way of measuring acceleration is to useforce feedback. The spring
is replaced by a voice coil that is controlled so that the massremains at a con-
stant position. The acceleration is proportional to the current through the voice
coil. In such an instrument, the precision depends entirelyon the calibration of the
voice coil and does not depend on the sensor, which is used only as the feedback
signal. The sensitivity/bandwidth compromise is also avoided. This way of using
feedback has been applied to many different engineering fields and has resulted in
instruments with dramatically improved performance. Force feedback is also used
in haptic devices for manual control.

Another important application of feedback is in instrumentation for biological
systems. Feedback is widely used to measure ion currents in cells using a device
called avoltage clamp, which is illustrated in Figure1.8. Hodgkin and Huxley
used the voltage clamp to investigate propagation of actionpotentials in the giant
axon of the squid. In 1963 they shared the Nobel Prize in Medicine with Eccles
for “their discoveries concerning the ionic mechanisms involved in excitation and
inhibition in the peripheral and central portions of the nerve cell membrane.” A
refinement of the voltage clamp called apatch clampmade it possible to measure
exactly when a single ion channel is opened or closed. This wasdeveloped by
Neher and Sakmann, who received the 1991 Nobel Prize in Medicine “for their
discoveries concerning the function of single ion channelsin cells.”

There are many other interesting and useful applications of feedback in scien-
tific instruments. The development of the mass spectrometer isan early example.
In a 1935 paper, Nier observed that the deflection of ions depends on both the
magnetic and the electric fields [Nie35]. Instead of keeping both fields constant,
Nier let the magnetic field fluctuate and the electric field was controlled to keep the
ratio between the fields constant. Feedback was implemented using vacuum tube
amplifiers. This scheme was crucial for the development of massspectroscopy.

The Dutch engineer van der Meer invented a clever way to use feedback to
maintain a good-quality high-density beam in a particle accelerator [MPTvdM80].
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The idea is to sense particle displacement at one point in the accelerator and apply
a correcting signal at another point. This scheme, calledstochastic cooling, was
awarded the Nobel Prize in Physics in 1984. The method was essential for the
successful experiments at CERN where the existence of the particles W and Z
associated with the weak force was first demonstrated.

The 1986 Nobel Prize in Physics—awarded to Binnig and Rohrer fortheir
design of the scanning tunneling microscope—is another example of an innovative
use of feedback. The key idea is to move a narrow tip on a cantilever beam across
a surface and to register the forces on the tip [BR86]. The deflection of the tip is
measured using tunneling. The tunneling current is used by a feedback system to
control the position of the cantilever base so that the tunneling current is constant,
an example of force feedback. The accuracy is so high that individual atoms can
be registered. A map of the atoms is obtained by moving the base of the cantilever
horizontally. The performance of the control system is directly reflected in the
image quality and scanning speed. This example is described in additional detail
in Chapter3.

Robotics and Intelligent Machines

The goal of cybernetic engineering, already articulated in the 1940s and even be-
fore, has been to implement systems capable of exhibiting highly flexible or “in-
telligent” responses to changing circumstances. In 1948 the MIT mathematician
Norbert Wiener gave a widely read account of cybernetics [Wie48]. A more math-
ematical treatment of the elements of engineering cybernetics was presented by
H. S. Tsien in 1954, driven by problems related to the control ofmissiles [Tsi54].
Together, these works and others of that time form much of theintellectual basis
for modern work in robotics and control.

Two accomplishments that demonstrate the successes of the field are the Mars
Exploratory Rovers and entertainment robots such as the Sony AIBO, shown in
Figure1.9. The two Mars Exploratory Rovers, launched by the Jet Propulsion Lab-
oratory (JPL), maneuvered on the surface of Mars for more than 4years starting in
January 2004 and sent back pictures and measurements of their environment. The
Sony AIBO robot debuted in June 1999 and was the first “entertainment” robot to
be mass-marketed by a major international corporation. It was particularly note-
worthy because of its use of artificial intelligence (AI) technologies that allowed it
to act in response to external stimulation and its own judgment. This higher level
of feedback is a key element in robotics, where issues such asobstacle avoidance,
goal seeking, learning and autonomy are prevalent.

Despite the enormous progress in robotics over the last half-century, in many
ways the field is still in its infancy. Today’s robots still exhibit simple behaviors
compared with humans, and their ability to locomote, interpret complex sensory
inputs, perform higher-level reasoning and cooperate together in teams is limited.
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Figure 1.9: Robotic systems. (a) Spirit, one of the two Mars Exploratory Rovers that landed
on Mars in January 2004. (b) The Sony AIBO Entertainment Robot, oneof the first enter-
tainment robots to be mass-marketed. Both robots make use of feedback between sensors,
actuators and computation to function in unknown environments. (Photographs courtesy of
Jet Propulsion Laboratory and Sony Electronics, Inc.)

Indeed, much of Wiener’s vision for robotics and intelligent machines remains
unrealized. While advances are needed in many fields to achieve this vision—
including advances in sensing, actuation and energy storage—the opportunity to
combine the advances of the AI community in planning, adaptation and learning
with the techniques in the control community for modeling, analysis and design of
feedback systems presents a renewed path for progress.

Networks and Computing Systems

Control of networks is a large research area spanning many topics, including con-
gestion control, routing, data caching and power management. Several features of
these control problems make them very challenging. The dominant feature is the
extremely large scale of the system; the Internet is probably the largest feedback
control system humans have ever built. Another is the decentralized nature of the
control problem: decisions must be made quickly and based only on local informa-
tion. Stability is complicated by the presence of varying time lags, as information
about the network state can be observed or relayed to controllers only after a de-
lay, and the effect of a local control action can be felt throughout the network
only after substantial delay. Uncertainty and variation inthe network, through net-
work topology, transmission channel characteristics, traffic demand and available
resources, may change constantly and unpredictably. Othercomplicating issues are
the diverse traffic characteristics—in terms of arrival statistics at both the packet
and flow time scales—and the different requirements for quality of service that the
network must support.

Related to the control of networks is control of the servers that sit on these net-
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Figure 1.10:A multitier system for services on the Internet. In the complete system shown
schematically in (a), users request information from a set of computers (tier 1), which in turn
collect information from other computers (tiers 2 and 3). The individualserver shown in (b)
has a set of reference parameters set by a (human) system operator, with feedback used to
maintain the operation of the system in the presence of uncertainty. (Basedon Hellerstein et
al. [HDPT04].)

works. Computers are key components of the systems of routers, web servers and
database servers used for communication, electronic commerce, advertising and
information storage. While hardware costs for computing have decreased dramati-
cally, the cost of operating these systems has increased because of the difficulty in
managing and maintaining these complex interconnected systems. The situation is
similar to the early phases of process control when feedbackwas first introduced to
control industrial processes. As in process control, thereare interesting possibili-
ties for increasing performance and decreasing costs by applying feedback. Several
promising uses of feedback in the operation of computer systems are described in
the book by Hellerstein et al. [HDPT04].

A typical example of a multilayer system for e-commerce is shown in Fig-
ure 1.10a. The system has several tiers of servers. The edge server accepts in-
coming requests and routes them to the HTTP server tier where they are parsed
and distributed to the application servers. The processing for different requests can
vary widely, and the application servers may also access external servers managed
by other organizations.

Control of an individual server in a layer is illustrated in Figure1.10b. A quan-
tity representing the quality of service or cost of operation—such as response time,
throughput, service rate or memory usage—is measured in thecomputer. The con-
trol variables might represent incoming messages accepted, priorities in the oper-
ating system or memory allocation. The feedback loop then attempts to maintain
quality-of-service variables within a target range of values.

Economics

The economy is a large, dynamical system with many actors: governments, orga-
nizations, companies and individuals. Governments control the economy through
laws and taxes, the central banks by setting interest rates and companies by set-
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ting prices and making investments. Individuals control the economy through pur-
chases, savings and investments. Many efforts have been made to model the sys-
tem both at the macro level and at the micro level, but this modeling is difficult
because the system is strongly influenced by the behaviors of the different actors
in the system.

Keynes [Key36] developed a simple model to understand relations among gross
national product, investment, consumption and governmentspending. One of Keynes’
observations was that under certain conditions, e.g., during the 1930s depression,
an increase in the investment of government spending could lead to a larger in-
crease in the gross national product. This idea was used by several governments to
try to alleviate the depression. Keynes’ ideas can be captured by a simple model
that is discussed in Exercise2.4.

A perspective on the modeling and control of economic systems can be ob-
tained from the work of some economists who have received theSveriges Riks-
bank Prize in Economics in Memory of Alfred Nobel, popularly called the Nobel
Prize in Economics. Paul A. Samuelson received the prize in 1970for “the sci-
entific work through which he has developed static and dynamiceconomic the-
ory and actively contributed to raising the level of analysis in economic science.”
Lawrence Klein received the prize in 1980 for the developmentof large dynamical
models with many parameters that were fitted to historical data [KG55], e.g., a
model of the U.S. economy in the period 1929–1952. Other researchers have mod-
eled other countries and other periods. In 1997 Myron Scholesshared the prize
with Robert Merton for a new method to determine the value of derivatives. A
key ingredient was a dynamic model of the variation of stock prices that is widely
used by banks and investment companies. In 2004 Finn E. Kydlandand Edward C.
Prestcott shared the economics prize “for their contributions to dynamic macroe-
conomics: the time consistency of economic policy and the driving forces behind
business cycles,” a topic that is clearly related to dynamics and control.

One of the reasons why it is difficult to model economic systemsis that there
are no conservation laws. A typical example is that the valueof a company as ex-
pressed by its stock can change rapidly and erratically. There are, however, some
areas with conservation laws that permit accurate modeling. One example is the
flow of products from a manufacturer to a retailer as illustrated in Figure1.11. The
products are physical quantities that obey a conservation law, and the system can
be modeled by accounting for the number of products in the different inventories.
There are considerable economic benefits in controlling supply chains so that prod-
ucts are available to customers while minimizing products that are in storage. The
real problems are more complicated than indicated in the figure because there may
be many different products, there may be different factories that are geographically
distributed and the factories may require raw material or subassemblies.

Control of supply chains was proposed by Forrester in 1961 [For61] and is
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Figure 1.11: Supply chain dynamics (after Forrester [For61]). Products flow from the pro-
ducer to the customer through distributors and retailers as indicated by the solid lines. There
are typically many factories and warehouses and even more distributorsand retailers. Multi-
ple feedback loops are present as each agent tries to maintain the proper inventory level.

now growing in importance. Considerable economic benefits can be obtained by
using models to minimize inventories. Their use accelerateddramatically when
information technology was applied to predict sales, keep track of products and
enable just-in-time manufacturing. Supply chain management has contributed sig-
nificantly to the growing success of global distributors.

Advertising on the Internet is an emerging application of control. With network-
based advertising it is easy to measure the effect of different marketing strategies
quickly. The response of customers can then be modeled, and feedback strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understanding aggregate behavior
in complex large-scale systems. This behavior emerges from the interaction of a
multitude of simpler systems with intricate patterns of information flow. Repre-
sentative examples can be found in fields ranging from embryology to seismology.
Researchers who specialize in the study of specific complex systems often develop
an intuitive emphasis on analyzing the role of feedback (or interconnection) in fa-
cilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domainexperts for the
analysis of various complex systems, the development of a rigorous methodology
that can discover and exploit common features and essentialmathematical struc-
ture is just beginning to emerge. Advances in science and technology are creating
a new understanding of the underlying dynamics and the importance of feedback
in a wide variety of natural and technological systems. We briefly highlight three
application areas here.

Biological Systems.A major theme currently of interest to the biology commu-
nity is the science of reverse (and eventually forward) engineering of biological
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Figure 1.12: The wiring diagram of the growth-signaling circuitry of the mammalian
cell [HW00]. The major pathways that are thought to play a role in cancer are indicated
in the diagram. Lines represent interactions between genes and proteinsin the cell. Lines
ending in arrowheads indicate activation of the given gene or pathway; lines ending in a
T-shaped head indicate repression. (Used with permission of Elsevier Ltd. and the authors.)

control networks such as the one shown in Figure1.12. There are a wide variety
of biological phenomena that provide a rich source of examples of control, includ-
ing gene regulation and signal transduction; hormonal, immunological and cardio-
vascular feedback mechanisms; muscular control and locomotion; active sensing,
vision and proprioception; attention and consciousness; and population dynamics
and epidemics. Each of these (and many more) provide opportunities to figure out
what works, how it works, and what we can do to affect it.

One interesting feature of biological systems is the frequent use of positive
feedback to shape the dynamics of the system. Positive feedback can be used to
create switchlike behavior through autoregulation of a gene, and to create oscilla-
tions such as those present in the cell cycle, central pattern generators or circadian
rhythm.

Ecosystems.In contrast to individual cells and organisms, emergent properties
of aggregations and ecosystems inherently reflect selectionmechanisms that act on
multiple levels, and primarily on scales well below that of the system as a whole.
Because ecosystems are complex, multiscale dynamical systems, they provide a
broad range of new challenges for the modeling and analysis of feedback systems.
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Recent experience in applying tools from control and dynamical systems to bac-
terial networks suggests that much of the complexity of these networks is due to
the presence of multiple layers of feedback loops that provide robust functional-
ity to the individual cell. Yet in other instances, events atthe cell level benefit the
colony at the expense of the individual. Systems level analysis can be applied to
ecosystems with the goal of understanding the robustness ofsuch systems and the
extent to which decisions and events affecting individual species contribute to the
robustness and/or fragility of the ecosystem as a whole.

Environmental Science.It is now indisputable that human activities have altered
the environment on a global scale. Problems of enormous complexity challenge re-
searchers in this area, and first among these is to understand the feedback systems
that operate on the global scale. One of the challenges in developing such an un-
derstanding is the multiscale nature of the problem, with detailed understanding of
the dynamics of microscale phenomena such as microbiological organisms being
a necessary component of understanding global phenomena, such as the carbon
cycle.

1.4 Feedback Properties

Feedback is a powerful idea which, as we have seen, is used extensively in natural
and technological systems. The principle of feedback is simple: base correcting
actions on the difference between desired and actual performance. In engineering,
feedback has been rediscovered and patented many times in many different con-
texts. The use of feedback has often resulted in vast improvements in system ca-
pability, and these improvements have sometimes been revolutionary, as discussed
above. The reason for this is that feedback has some truly remarkable properties.
In this section we will discuss some of the properties of feedback that can be un-
derstood intuitively. This intuition will be formalized in subsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness to uncertainty. By mea-
suring the difference between the sensed value of a regulated signal and its desired
value, we can supply a corrective action. If the system undergoes some change that
affects the regulated signal, then we sense this change and try to force the system
back to the desired operating point. This is precisely the effect that Watt exploited
in his use of the centrifugal governor on steam engines.

As an example of this principle, consider the simple feedback system shown in
Figure1.13. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simpleproportional-integral(PI) feedback
is used to make the amount of gas depend on both the error between the current
and the desired speed and the integral of that error. The plot on the right shows
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Figure 1.13:A feedback system for controlling the speed of a vehicle. In the block diagram
on the left, the speed of the vehicle is measured and compared to the desired speed within the
“Compute” block. Based on the difference in the actual and desired speeds, the throttle (or
brake) is used to modify the force applied to the vehicle by the engine, drivetrain and wheels.
The figure on the right shows the response of the control system to a commanded change
in speed from 25 m/s to 30 m/s. The three different curves correspond to differing masses
of the vehicle, between 1000 and 3000 kg, demonstrating the robustnessof the closed loop
system to a very large change in the vehicle characteristics.

the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from havinga different number of
passengers or towing a trailer. Notice that independent of the mass (which varies by
a factor of 3!), the steady-state speed of the vehicle alwaysapproaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustness is the nega-
tive feedback amplifier. When telephone communications weredeveloped, ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuum tube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black usednegative
feedback, which reduces the gain but makes the amplifier insensitive tovariations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities ofthe vacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a system.Through feed-
back, we can alter the behavior of a system to meet the needs ofan application:
systems that are unstable can be stabilized, systems that are sluggish can be made
responsive and systems that have drifting operating pointscan be held constant.
Control theory provides a rich collection of techniques to analyze the stability and
dynamic response of complex systems and to place bounds on the behavior of such
systems by analyzing the gains of linear and nonlinear operators that describe their
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components.
An example of the use of control in the design of dynamics comes from the

area of flight control. The following quote, from a lecture presented by Wilbur
Wright to the Western Society of Engineers in 1901 [McF53], illustrates the role
of control in the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the
age of flying will have arrived, for all other difficulties are ofminor
importance.

The Wright brothers thus realized that control was a key issueto enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash.Other early aviators
tried to build stable airplanes. These would have been easierto fly, but because of
their poor maneuverability they could not be brought up intothe air. By using their
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such adevice, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was point-
ing down, and vice versa. The Sperry autopilot was the first use offeedback in
aeronautical engineering, and Sperry won a prize in a competition for the safest
airplane in Paris in 1914. Figure1.14shows the Curtiss seaplane and the Sperry
autopilot. The autopilot is a good example of how feedback canbe used to stabilize
an unstable system and hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By using feedback
to create a system whose response matches a desired profile, wecan hide the com-
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneouslytune the responses
of a large number of interacting components. This was one of the advantages of
Black’s use of negative feedback in vacuum tube amplifiers: the resulting device
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Figure 1.14: Aircraft autopilot system. The Sperry autopilot (left) contained a set offour
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [Hug93].

had a well-defined linear input/output response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Higher Levels of Automation

A major trend in the use of feedback is its application to higher levels of situa-
tional awareness and decision making. This includes not onlytraditional logical
branching based on system conditions but also optimization, adaptation, learning
and even higher levels of abstract reasoning. These problemsare in the domain of
the artificial intelligence community, with an increasing role of dynamics, robust-
ness and interconnection in many applications.

One of the interesting areas of research in higher levels of decision is au-
tonomous control of cars. Early experiments with autonomousdriving were per-
formed by Ernst Dickmanns, who in the 1980s equipped cars withcameras and
other sensors [Dic07]. In 1994 his group demonstrated autonomous driving with
human supervision on a highway near Paris and in 1995 one of his cars drove au-
tonomously (with human supervision) from Munich to Copenhagen at speeds of
up to 175 km/hour. The car was able to overtake other vehicles and change lanes
automatically.

This application area has been recently explored through theDARPA Grand
Challenge, a series of competitions sponsored by the U.S. government to build ve-
hicles that can autonomously drive themselves in desert andurban environments.
Caltech competed in the 2005 and 2007 Grand Challenges usinga modified Ford
E-350 offroad van nicknamed “Alice.” It was fully automated,including electron-
ically controlled steering, throttle, brakes, transmission and ignition. Its sensing
systems included multiple video cameras scanning at 10–30 Hz, several laser rang-



1.4. FEEDBACK PROPERTIES 22

Road

Sensors
Terrain

Follower
Path

State
Estimator

Planner
Path

Supervisory Control

Map
Elevation

Map
Cost

Vehicle

Vehicle
Actuation

Finding

Figure 1.15:DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the 2005 and 2007
competitions and its networked control architecture [CFG+06]. The feedback system fuses
data from terrain sensors (cameras and laser range finders) to determine a digital elevation
map. This map is used to compute the vehicle’s potential speed over the terrain, and an
optimization-based path planner then commands a trajectory for the vehicleto follow. A
supervisory control module performs higher-level tasks such as handling sensor and actuator
failures.

ing units scanning at 10 Hz and an inertial navigation package capable of providing
position and orientation estimates at 5 ms temporal resolution. Computational re-
sources included 12 high-speed servers connected togetherthrough a 1-Gb/s Eth-
ernet switch. The vehicle is shown in Figure1.15, along with a block diagram of
its control architecture.

The software and hardware infrastructure that was developedenabled the ve-
hicle to traverse long distances at substantial speeds. In testing, Alice drove itself
more than 500 km in the Mojave Desert of California, with the ability to follow
dirt roads and trails (if present) and avoid obstacles alongthe path. Speeds of more
than 50 km/h were obtained in the fully autonomous mode. Substantial tuning
of the algorithms was done during desert testing, in part because of the lack of
systems-level design tools for systems of this level of complexity. Other competi-
tors in the race (including Stanford, which won the 2005 competition) used algo-
rithms for adaptive control and learning, increasing the capabilities of their sys-
tems in unknown environments. Together, the competitors inthe Grand Challenge
demonstrated some of the capabilities of the next generation of control systems
and highlighted many research directions in control at higher levels of decision
making.

Drawbacks of Feedback

While feedback has many advantages, it also has some drawbacks. Chief among
these is the possibility of instability if the system is not designed properly. We
are all familiar with the effects ofpositive feedbackwhen the amplification on
a microphone is turned up too high in a room. This is an example of feedback
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instability, something that we obviously want to avoid. Thisis tricky because we
must design the system not only to be stable under nominal conditions but also to
remain stable under all possible perturbations of the dynamics.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects measure-
ment noise into the system. Measurements must be carefully filtered so that the
actuation and process dynamics do not respond to them, whileat the same time
ensuring that the measurement signal from the sensor is properly coupled into the
closed loop dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding a con-
trol system in a product. While the cost of sensing, computation and actuation has
decreased dramatically in the past few decades, the fact remains that control sys-
tems are often complicated, and hence one must carefully balance the costs and
benefits. An early engineering example of this is the use of microprocessor-based
feedback systems in automobiles.The use of microprocessorsin automotive appli-
cations began in the early 1970s and was driven by increasingly strict emissions
standards, which could be met only through electronic controls. Early systems
were expensive and failed more often than desired, leading to frequent customer
dissatisfaction. It was only through aggressive improvements in technology that
the performance, reliability and cost of these systems allowed them to be used in a
transparent fashion. Even today, the complexity of these systems is such that it is
difficult for an individual car owner to fix problems.

Feedforward

Feedback is reactive: there must be an error before corrective actions are taken.
However, in some circumstances it is possible to measure a disturbance before it
enters the system, and this information can then be used to take corrective action
before the disturbance has influenced the system. The effect ofthe disturbance
is thus reduced by measuring it and generating a control signal that counteracts it.
This way of controlling a system is calledfeedforward. Feedforward is particularly
useful in shaping the response to command signals because command signals are
always available. Since feedforward attempts to match two signals, it requires good
process models; otherwise the corrections may have the wrong size or may be
badly timed.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control inhumans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
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back and feedforward, and the correct balance requires insight and understanding
of their respective properties.

Positive Feedback

In most of this text, we will consider the role ofnegative feedback, in which we
attempt to regulate the system by reacting to disturbances in a way that decreases
the effect of those disturbances. In some systems, particularly biological systems,
positive feedbackcan play an important role. In a system with positive feedback,
the increase in some variable or signal leads to a situation in which that quantity is
further increased through its dynamics. This has a destabilizing effect and is usu-
ally accompanied by a saturation that limits the growth of the quantity. Although
often considered undesirable, this behavior is used in biological (and engineering)
systems to obtain a very fast response to a condition or signal.

One example of the use of positive feedback is to create switching behavior,
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do not cause the
system to jitter. This type of behavior is calledbistability and is often associated
with memory devices.

1.5 Simple Forms of Feedback

The idea of feedback to make corrective actions based on the difference between
the desired and the actual values of a quantity can be implemented in many differ-
ent ways. The benefits of feedback can be obtained by very simplefeedback laws
such as on-off control, proportional control and proportional-integral-derivative
control. In this section we provide a brief preview of some ofthe topics that will
be studied more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

u=

{
umax if e> 0

umin if e< 0,
(1.1)

where thecontrol error e= r −y is the difference between the reference signal (or
command signal)r and the output of the systemy andu is the actuation command.
Figure1.16ashows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equation (1.1) is calledon-off control. One of its chief advan-
tages is that it is simple and there are no parameters to choose. On-off control often
succeeds in keeping the process variable close to the reference, such as the use of
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Figure 1.16: Input/output characteristics of on-off controllers. Each plot shows theinput on
the horizontal axis and the corresponding output on the vertical axis. Ideal on-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (c). Note that for on-off
control with hysteresis, the output depends on the value of past inputs.

a simple thermostat to maintain the temperature of a room. Ittypically results in
a system where the controlled variables oscillate, which isoften acceptable if the
oscillation is sufficiently small.

Notice that in equation (1.1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figure1.16band1.16c).

PID Control

The reason why on-off control often gives rise to oscillations is that the system
overreacts since a small change in the error makes the actuated variable change
over the full range. This effect is avoided inproportional control, where the char-
acteristic of the controller is proportional to the controlerror for small errors. This
can be achieved with the control law

u=





umax if e≥ emax

kpe if emin < e< emax

umin if e≤ emin,

(1.2)

wherekp is the controller gain,emin = umin/kp andemax= umax/kp. The interval
(emin,emax) is called theproportional bandbecause the behavior of the controller
is linear when the error is in this interval:

u= kp(r −y) = kpe if emin ≤ e≤ emax. (1.3)

While a vast improvement over on-off control, proportionalcontrol has the
drawback that the process variable often deviates from its reference value. In par-
ticular, if some level of control signal is required for the system to maintain a
desired value, then we must havee 6= 0 in order to generate the requisite input.

This can be avoided by making the control action proportionalto the integral
of the error:

u(t) = ki

∫ t

0
e(τ)dτ . (1.4)
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Figure 1.17: Action of a PID controller. At timet, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedback isbased on the integral
of the error up to timet (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of change ofthe error.Td
represents the approximate amount of time in which the error is projected forward (see text).

This control form is calledintegral control, andki is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error (Exercise1.5). The catch is that there may not always be a steady
state because the system may be oscillating.

An additional refinement is to provide the controller with an anticipative abil-
ity by using a prediction of the error. A simple prediction isgiven by the linear
extrapolation

e(t +Td)≈ e(t)+Td
de(t)

dt
,

which predicts the errorTd time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be expressed mathematically as

u(t) = kpe(t)+ki

∫ t

0
e(τ)dτ +kd

de(t)
dt

. (1.5)

The control action is thus a sum of three terms: the past as represented by the
integral of the error, the present as represented by the proportional term and the
future as represented by a linear extrapolation of the error(the derivative term).
This form of feedback is called aproportional-integral-derivative (PID) controller
and its action is illustrated in Figure1.17.

A PID controller is very useful and is capable of solving a widerange of con-
trol problems. More than 95% of all industrial control problems are solved by
PID control, although many of these controllers are actuallyproportional-integral
(PI) controllersbecause derivative action is often not included [DM02]. There are
also more advanced controllers, which differ from PID controllers by using more
sophisticated methods for prediction.
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1.6 Further Reading

The material in this section draws heavily from the report of the Panel on Future
Directions on Control, Dynamics and Systems [Mur03]. Several additional papers
and reports have highlighted the successes of control [NS99] and new vistas in
control [Bro00, Kum01, Wis07]. The early development of control is described
by Mayr [May70] and in the books by Bennett [Ben79, Ben93], which cover the
period 1800–1955. A fascinating examination of some of the early history of con-
trol in the United States has been written by Mindell [Min02]. A popular book
that describes many control concepts across a wide range of disciplines isOut of
Control by Kelly [Kel94]. There are many textbooks available that describe con-
trol systems in the context of specific disciplines. For engineers, the textbooks by
Franklin, Powell and Emami-Naeini [FPEN05], Dorf and Bishop [DB04], Kuo and
Golnaraghi [KG02] and Seborg, Edgar and Mellichamp [SEM04] are widely used.
More mathematically oriented treatments of control theoryinclude Sontag [Son98]
and Lewis [Lew03]. The book by Hellerstein et al. [HDPT04] provides a descrip-
tion of the use of feedback control in computing systems. A number of books
look at the role of dynamics and feedback in biological systems, including Mil-
horn [Mil66] (now out of print), J. D. Murray [Mur04] and Ellner and Gucken-
heimer [EG05]. The book by Fradkov [Fra07] and the tutorial article by Bechhoe-
fer [Bec05] cover many specific topics of interest to the physics community.

Exercises

1.1(Eye motion) Perform the following experiment and explain your results: Hold-
ing your head still, move one of your hands left and right in front of your face,
following it with your eyes. Record how quickly you can move your hand before
you begin to lose track of it. Now hold your hand still and shake your head left to
right, once again recording how quickly you can move before losing track of your
hand.

1.2 Identify five feedback systems that you encounter in your everyday environ-
ment. For each system, identify the sensing mechanism, actuation mechanism and
control law. Describe the uncertainty with respect to whichthe feedback system
provides robustness and/or the dynamics that are changed through the use of feed-
back.

1.3(Balance systems) Balance yourself on one foot with your eyes closed for 15 s.
Using Figure1.3 as a guide, describe the control system responsible for keeping
you from falling down. Note that the “controller” will differ from that in the dia-
gram (unless you are an android reading this in the far future).
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1.4(Cruise control) Download the MATLAB code used to produce simulations for
the cruise control system in Figure1.13from the companion web site. Using trial
and error, change the parameters of the control law so that the overshoot in speed
is not more than 1 m/s for a vehicle with massm= 1000 kg.

1.5 (Integral action) We say that a system with a constant input reaches steady
state if the output of the system approaches a constant valueas time increases.
Show that a controller with integral action, such as those given in equations (1.4)
and (1.5), gives zero error if the closed loop system reaches steady state.

1.6 Search the web and pick an article in the popular press about a feedback and
control system. Describe the feedback system using the terminology given in the
article. In particular, identify the control system and describe (a) the underlying
process or system being controlled, along with the (b) sensor, (c) actuator and (d)
computational element. If the some of the information is notavailable in the article,
indicate this and take a guess at what might have been used.



Chapter Two
System Modeling

... I asked Fermi whether he was not impressed by the agreement between our calculated
numbers and his measured numbers. He replied, “How many arbitraryparameters did you
use for your calculations?” I thought for a moment about our cut-off procedures and said,
“Four.” He said, “I remember my friend Johnny von Neumann used to say, with four param-
eters I can fit an elephant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for meson-proton scattering to
Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamics used to answer
questions via analysis and simulation. The model we choose depends on the ques-
tions we wish to answer, and so there may be multiple models for a single dy-
namical system, with different levels of fidelity depending on the phenomena of
interest. In this chapter we provide an introduction to the concept of modeling and
present some basic material on two specific methods commonly used in feedback
and control systems: differential equations and difference equations.

2.1 Modeling Concepts

A modelis a mathematical representation of a physical, biologicalor information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior ofsystems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which the effects of actions
do not occur immediately. For example, the velocity of a car does not change
immediately when the gas pedal is pushed nor does the temperature in a room
rise instantaneously when a heater is switched on. Similarly, a headache does not
vanish right after an aspirin is taken, requiring time for itto take effect. In business
systems, increased funding for a development project does not increase revenues in
the short term, although it may do so in the long term (if it wasa good investment).
All of these are examples of dynamical systems, in which the behavior of the
system evolves with time.

In the remainder of this section we provide an overview of some of the key
concepts in modeling. The mathematical details introduced here are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring–mass system with nonlinear damping. The position of the mass is de-
noted byq, with q = 0 corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring constantk and a damper with force depen-
dent on the velocity ˙q.

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary motion. The
basis was detailed observations of the planets by Tycho Brahe and the results of
Kepler, who found empirically that the orbits of the planetscould be well described
by ellipses. Newton embarked on an ambitious program to try to explain why the
planets move in ellipses, and he found that the motion could be explained by his
law of gravitation and the formula stating that force equalsmass times acceleration.
In the process he also invented calculus and differential equations.

One of the triumphs of Newton’s mechanics was the observation that the mo-
tion of the planets could be predicted based on the current positions and velocities
of all planets. It was not necessary to know the past motion. Thestateof a dynam-
ical system is a collection of variables that completely characterizes the motion of
a system for the purpose of predicting future motion. For a system of planets the
state is simply the positions and the velocities of the planets. We call the set of all
possible states thestate space.

A common class of mathematical models for dynamical systemsis ordinary
differential equations (ODEs). In mechanics, one of the simplest such differential
equations is that of a spring–mass system with damping:

mq̈+c(q̇)+kq= 0. (2.1)

This system is illustrated in Figure2.1. The variableq∈ R represents the position
of the massm with respect to its rest position. We use the notation ˙q to denote
the derivative ofq with respect to time (i.e., the velocity of the mass) and ¨q to
represent the second derivative (acceleration). The springis assumed to satisfy
Hooke’s law, which says that the force is proportional to thedisplacement. The
friction element (damper) is taken as a nonlinear functionc(q̇), which can model
effects such as stiction and viscous drag. The positionq and velocity ˙q represent
the instantaneous state of the system. We say that this system is asecond-order
systemsince the dynamics depend on the first two derivatives ofq.
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Figure 2.2: Illustration of a state model. A state model gives the rate of change of the state
as a function of the state. The plot on the left shows the evolution of the state as a function
of time. The plot on the right shows the evolution of the states relative to eachother, with
the velocity of the state denoted by arrows.

The evolution of the position and velocity can be described using either a time
plot or a phase portrait, both of which are shown in Figure2.2. The time plot, on
the left, shows the values of the individual states as a function of time. Thephase
portrait, on the right, shows thevector fieldfor the system, which gives the state
velocity (represented as an arrow) at every point in the state space. In addition, we
have superimposed the traces of some of the states from different conditions. The
phase portrait gives a strong intuitive representation of the equation as a vector
field or a flow. While systems of second order (two states) can be represented in
this way, unfortunately it is difficult to visualize equations of higher order using
this approach.

The differential equation (2.1) is called anautonomoussystem because there
are no external influences. Such a model is natural for use in celestial mechanics
because it is difficult to influence the motion of the planets. Inmany examples, it
is useful to model the effects of external disturbances or controlled forces on the
system. One way to capture this is to replace equation (2.1) by

mq̈+c(q̇)+kq= u, (2.2)

whereu represents the effect of external inputs. The model (2.2) is called aforced
or controlled differential equation. It implies that the rate of change of the state
can be influenced by the inputu(t). Adding the input makes the model richer and
allows new questions to be posed. For example, we can examinewhat influence
external disturbances have on the trajectories of a system.Or, in the case where
the input variable is something that can be modulated in a controlled way, we can
analyze whether it is possible to “steer” the system from onepoint in the state
space to another through proper choice of the input.
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Figure 2.3: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one onthe right is its
representation as a block diagram.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where the de-
sign of electronic amplifiers led to a focus on input/output behavior. A system was
considered a device that transforms inputs to outputs, as illustrated in Figure2.3.
Conceptually an input/output model can be viewed as a giant table of inputs and
outputs. Given an input signalu(t) over some interval of time, the model should
produce the resulting outputy(t).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio
or a television and break it down into manageable pieces suchas the receiver,
demodulator, amplifier and speakers. Each of these pieces has aset of inputs and
outputs and, through proper design, these components can beinterconnected to
form the entire system.

The input/output view is particularly useful for the specialclass oflinear time-
invariant systems. This term will be defined more carefully later in this chapter,but
roughly speaking a system is linear if the superposition (addition) of two inputs
yields an output that is the sum of the outputs that would correspond to individual
inputs being applied separately. A system is time-invariant if the output response
for a given input does not depend on when that input is applied.

Many electrical engineering systems can be modeled by linear time-invariant
systems, and hence a large number of tools have been developed to analyze them.
One such tool is thestep response, which describes the relationship between an
input that changes from zero to a constant value abruptly (a step input) and the
corresponding output. As we shall see later in the text, the step response is very
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Figure 2.4: Input/output response of a linear system. The step response (a) shows the output
of the system due to an input that changes from 0 to 1 at timet = 5 s. The frequency re-
sponse (b) shows the amplitude gain and phase change due to a sinusoidal input at different
frequencies.

useful in characterizing the performance of a dynamical system, and it is often used
to specify the desired dynamics. A sample step response is shown in Figure2.4a.

Another way to describe a linear time-invariant system is torepresent it by its
response to sinusoidal input signals. This is called thefrequency response, and a
rich, powerful theory with many concepts and strong, usefulresults has emerged.
The results are based on the theory of complex variables and Laplace transforms.
The basic idea behind frequency response is that we can completely characterize
the behavior of a system by its steady-state response to sinusoidal inputs. Roughly
speaking, this is done by decomposing any arbitrary signal into a linear combi-
nation of sinusoids (e.g., by using the Fourier transform) and then using linearity
to compute the output by combining the response to the individual frequencies. A
sample frequency response is shown in Figure2.4b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, theapproach to dy-
namics was strongly influenced by the electrical engineering(input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. Theemergence of space
flight is a typical example, where precise control of the orbitof a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems.

The development of state space models involved modifying themodels from
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mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, the model given by equation (2.2) was replaced by

dx
dt

= f (x,u), y= h(x,u), (2.3)

wherex is a vector of state variables,u is a vector of control signals andy is a vec-
tor of measurements. The termdx/dt represents the derivative ofx with respect to
time, now considered a vector, andf andh are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimension. For mechanical systems,
the state consists of the position and velocity of the system, so thatx = (q, q̇) in
the case of a damped spring–mass system. Note that in the control formulation we
model dynamics as first-order differential equations, but wewill see that this can
capture the dynamics of higher-order differential equations by appropriate defini-
tion of the state and the mapsf andh.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to askif possible statesx
can be reached with the proper choice ofu (reachability) and if the measurementy
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters6 and7.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements inthe theory. The simple
way of modeling disturbances as deterministic signals likesteps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views ofinput/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe anominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description). Uncertainty will be a constant theme throughout the text
and will be studied in particular detail in Chapter12.

An interesting observation in the design of control systemsis that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.



2.1. MODELING CONCEPTS 35

Multidomain Modeling
�

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previ-
ous discussion of mechanical and electrical engineering. Adifficulty in systems
engineering is that it is frequently necessary to deal with heterogeneous systems
from many different domains, including chemical, electrical, mechanical and in-
formation systems.

To model such multidomain systems, we start by partitioninga system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how
the variables of the subsystem behave when the subsystems are interconnected.
These interfaces act by constraining variables within the individual subsystems to
be equal (such as mass, energy or momentum fluxes). The completemodel is then
obtained by combining the descriptions of the subsystems and the interfaces.

Using this methodology it is possible to build up libraries of subsystems that
correspond to physical, chemical and informational components. The procedure
mimics the engineering approach where systems are built from subsystems that
are themselves built from smaller components. As experience is gained, the com-
ponents and their interfaces can be standardized and collected in model libraries.
In practice, it takes several iterations to obtain a good library that can be reused for
many applications.

State models or ordinary differential equations are not suitable for component-
based modeling of this form because states may disappear when components are
connected. This implies that the internal description of a component may change
when it is connected to other components. As an illustrationwe consider two ca-
pacitors in an electrical circuit. Each capacitor has a statecorresponding to the
voltage across the capacitors, but one of the states will disappear if the capacitors
are connected in parallel. A similar situation happens withtwo rotating inertias,
each of which is individually modeled using the angle of rotation and the angular
velocity. Two states will disappear when the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations bydifferential
algebraic equations, which have the form

F(z, ż) = 0,

wherez∈ R
n. A simple special case is

ẋ= f (x,y), g(x,y) = 0, (2.4)

wherez= (x,y) andF = (ẋ− f (x,y),g(x,y)). The key property is that the deriva-
tive ż is not given explicitly and there may be pure algebraic relations between the
components of the vectorz.
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The model (2.4) captures the examples of the parallel capacitors and the linked
rotating inertias. For example, when two capacitors are connected, we simply add
the algebraic equation expressing that the voltages acrossthe capacitors are the
same.

Modelica is a language that has been developed to support component-based
modeling. Differential algebraic equations are used as thebasic description, and
object-oriented programming is used to structure the models. Modelica is used to
model the dynamics of technical systems in domains such as mechanical, electri-
cal, thermal, hydraulic, thermofluid and control subsystems. Modelica is intended
to serve as a standard format so that models arising in different domains can be
exchanged between tools and users. A large set of free and commercial Modelica
component libraries are available and are used by a growing number of people
in industry, research and academia. For further information about Modelica, see
http://www.modelica.orgor Tiller [Til01].

2.2 State Space Models

In this section we introduce the two primary forms of models that we use in this
text: differential equations and difference equations. Both make use of the notions
of state, inputs, outputs and dynamics to describe the behavior of a system.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a physical system the state
is composed of the variables required to account for storageof mass, momentum
and energy. A key issue in modeling is to decide how accurately this storage has
to be represented. The state variables are gathered in a vector x ∈ R

n called the
state vector. The control variables are represented by another vectoru∈ R

p, and
the measured signal by the vectory∈R

q. A system can then be represented by the
differential equation

dx
dt

= f (x,u), y= h(x,u), (2.5)

where f : Rn×R
p → R

n andh : Rn×R
p → R

q are smooth mappings. We call a
model of this form astate space model.

The dimension of the state vector is called theorder of the system. The sys-
tem (2.5) is called time-invariantbecause the functionsf and h do not depend
explicitly on timet; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the functionf gives
the rate of change of the state vector as a function of statex and controlu, and the
functionh gives the measured values as functions of statex and controlu.

http://www.modelica.org
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A system is called alinear state space system if the functionsf andh are linear
in x andu. A linear state space system can thus be represented by

dx
dt

= Ax+Bu, y=Cx+Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said to belinear and
time-invariant, or LTI for short. The matrixA is called thedynamics matrix, the
matrix B is called thecontrol matrix, the matrixC is called thesensor matrixand
the matrixD is called thedirect term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

A different form of linear differential equations, generalizing the second-order
dynamics from mechanics, is an equation of the form

dny
dtn

+a1
dn−1y
dtn−1 + · · ·+any= u, (2.7)

wheret is the independent (time) variable,y(t) is the dependent (output) variable
and u(t) is the input. The notationdky/dtk is used to denote thekth derivative
of y with respect tot, sometimes also written asy(k). The controlled differential
equation (2.7) is said to be annth-order system. This system can be converted into
state space form by defining

x=




x1

x2
...

xn−1
xn




=




dn−1y/dtn−1

dn−2y/dtn−2

...
dy/dt

y




,

and the state space equations become

d
dt




x1
x2
...

xn−1
xn




=




−a1x1−·· ·−anxn

x1
...

xn−2
xn−1




+




u
0
...
0
0




, y= xn.

With the appropriate definitions ofA, B, C andD, this equation is in linear state
space form.

An even more general system is obtained by letting the outputbe a linear com-
bination of the states of the system, i.e.,

y= b1x1+b2x2+ · · ·+bnxn+du.
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(a) Segway (b) Saturn rocket
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(c) Cart–pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Saturn rocket and (c)
inverted pendulum on a cart. Each of these examples uses forces at thebottom of the system
to keep it upright.

This system can be modeled in state space as

d
dt




x1
x2
x3
...

xn




=




−a1 −a2 . . . −an−1 −an

1 0 . . . 0 0
0 1 0 0
...

...
...

0 0 1 0




x+




1
0
0
...
0




u,

y=

b1 b2 . . . bn


x+du.

(2.8)

This particular form of a linear state space system is calledreachable canonical
form and will be studied in more detail in later chapters.

Example 2.1 Balance systems
An example of a type of system that can be modeled using ordinary differential
equations is the class ofbalance systems. A balance system is a mechanical sys-
tem in which the center of mass is balanced above a pivot point. Some common
examples of balance systems are shown in Figure2.5. The Segway® Personal
Transporter (Figure2.5a) uses a motorized platform to stabilize a person standing
on top of it. When the rider leans forward, the transportation device propels itself
along the ground but maintains its upright position. Another example is a rocket
(Figure2.5b), in which a gimbaled nozzle at the bottom of the rocket is used to
stabilize the body of the rocket above it. Other examples of balance systems in-
clude humans or other animals standing upright or a person balancing a stick on
their hand.

Balance systems are a generalization of the spring–mass system we saw earlier.
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We can write the dynamics for a mechanical system in the general form

M(q)q̈+C(q, q̇)+K(q) = B(q)u,

whereM(q) is the inertia matrix for the system,C(q, q̇) represents the Coriolis
forces as well as the damping,K(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into the dynamics. The spe-
cific form of the equations can be derived using Newtonian mechanics. Note that
each of the terms depends on the configuration of the systemq and that these terms
are often nonlinear in the configuration variables.

Figure2.5cshows a simplified diagram for a balance system consisting of an
inverted pendulum on a cart. To model this system, we choose state variables that
represent the position and velocity of the base of the system, p and ṗ, and the an-
gle and angular rate of the structure above the base,θ andθ̇ . We letF represent
the force applied at the base of the system, assumed to be in the horizontal direc-
tion (aligned withp), and choose the position and angle of the system as outputs.
With this set of definitions, the dynamics of the system can be computed using
Newtonian mechanics and have the form

 (M+m) −mlcosθ
−mlcosθ (J+ml2)




 p̈

θ̈


+


cṗ+mlsinθ θ̇ 2

γθ̇ −mglsinθ


=


F

0


 , (2.9)

whereM is the mass of the base,mandJ are the mass and moment of inertia of the
system to be balanced,l is the distance from the base to the center of mass of the
balanced body,c andγ are coefficients of viscous friction andg is the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space form by defining the
state asx= (p,θ , ṗ, θ̇), the input asu=F and the output asy= (p,θ). If we define
the total mass and total inertia as

Mt = M+m, Jt = J+ml2,

the equations of motion then become

d
dt




p
θ
ṗ
θ̇




=




ṗ
θ̇

−mlsθ θ̇ 2+mg(ml2/Jt)sθ cθ −cṗ− (γ/Jt)mlcθ θ̇ +u

Mt −m(ml2/Jt)c2
θ

−ml2sθ cθ θ̇ 2+Mtglsθ −clcθ ṗ− γ(Mt/m)θ̇ + lcθ u
Jt(Mt/m)−m(lcθ )2




,

y=


p

θ


 ,

where we have used the shorthandcθ = cosθ andsθ = sinθ .
In many cases, the angleθ will be very close to 0, and hence we can use the
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approximations sinθ ≈ θ and cosθ ≈ 1. Furthermore, ifθ̇ is small, we can ig-
nore quadratic and higher terms inθ̇ . Substituting these approximations into our
equations, we see that we are left with alinear state space equation

d
dt




p
θ
ṗ
θ̇




=




0 0 1 0
0 0 0 1

0 m2l2g/µ −cJt/µ −γ lm/µ
0 Mtmgl/µ −clm/µ −γMt/µ







p
θ
ṗ
θ̇




+




0
0

Jt/µ
lm/µ




u,

y=


1 0 0 0

0 1 0 0


x,

whereµ = MtJt −m2l2. ∇
Example 2.2 Inverted pendulum
A variation of the previous example is one in which the location of the basep does
not need to be controlled. This happens, for example, if we areinterested only in
stabilizing a rocket’s upright orientation without worrying about the location of
base of the rocket. The dynamics of this simplified system are given by

d
dt


θ

θ̇


=




θ̇
mgl
Jt

sinθ − γ
Jt

θ̇ +
l
Jt

cosθ u


 , y= θ , (2.10)

whereγ is the coefficient of rotational friction,Jt = J+ml2 and u is the force
applied at the base. This system is referred to as aninverted pendulum. ∇

Difference Equations

In some circumstances, it is more natural to describe the evolution of a system
at discrete instants of time rather than continuously in time. If we refer to each
of these times by an integerk = 0,1,2, . . . , then we can ask how the state of the
system changes for eachk. Just as in the case of differential equations, we define
the state to be those sets of variables that summarize the past of the system for the
purpose of predicting its future. Systems described in this manner are referred to
asdiscrete-time systems.

The evolution of a discrete-time system can be written in the form

x[k+1] = f (x[k],u[k]), y[k] = h(x[k],u[k]), (2.11)

wherex[k] ∈ R
n is the state of the system at timek (an integer),u[k] ∈ R

p is the
input andy[k] ∈ R

q is the output. As before,f andh are smooth mappings of the
appropriate dimension. We call equation (2.11) a difference equationsince it tells
us howx[k+1] differs fromx[k]. The statex[k] can be either a scalar- or a vector-
valued quantity; in the case of the latter we writex j [k] for the value of thejth state
at timek.
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Figure 2.6: Predator versus prey. The photograph on the left shows a Canadian lynx and
a snowshoe hare, the lynx’s primary prey. The graph on the right shows the populations of
hares and lynxes between 1845 and 1935 in a section of the Canadian Rockies [Mac37]. The
data were collected on an annual basis over a period of 90 years. (Photograph copyright Tom
and Pat Leeson.)

Just as in the case of differential equations, it is often thecase that the equations
are linear in the state and input, in which case we can describe the system by

x[k+1] = Ax[k]+Bu[k], y[k] =Cx[k]+Du[k].

As before, we refer to the matricesA, B, C and D as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. The solution of a linear dif-
ference equation with initial conditionx[0] and inputu[0], . . . ,u[T] is given by

x[k] = Akx[0]+
k−1

∑
j=0

Ak− j−1Bu[ j],

y[k] =CAkx[0]+
k−1

∑
j=0

CAk− j−1Bu[ j]+Du[k],

k> 0. (2.12)

Difference equations are also useful as an approximation ofdifferential equa-
tions, as we will show later.

Example 2.3 Predator–prey
As an example of a discrete-time system, consider a simple model for a predator–
prey system. The predator–prey problem refers to an ecological system in which
we have two species, one of which feeds on the other. This type of system has
been studied for decades and is known to exhibit interestingdynamics. Figure2.6
shows a historical record taken over 90 years for a population of lynxes versus a
population of hares [Mac37]. As can been seen from the graph, the annual records
of the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-time
model by keeping track of the rate of births and deaths of eachspecies. Letting
H represent the population of hares andL represent the population of lynxes, we
can describe the state in terms of the populations at discrete periods of time. Let-
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Figure 2.7: Discrete-time simulation of the predator–prey model (2.13). Using the param-
etersa = c = 0.014, br(u) = 0.6 andd = 0.7 in equation (2.13) with daily updates, the
period and magnitude of the lynx and hare population cycles approximatelymatch the data
in Figure2.6.

ting k be the discrete-time index (e.g., the day or month number), we can write

H[k+1] = H[k]+br(u)H[k]−aL[k]H[k],

L[k+1] = L[k]+cL[k]H[k]−df L[k],
(2.13)

wherebr(u) is the hare birth rate per unit period and as a function of the food
supplyu, df is the lynx mortality rate anda andc are the interaction coefficients.
The interaction termaL[k]H[k] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey meet and is hence given
by the product of the population sizes. The interaction termcL[k]H[k] in the lynx
dynamics has a similar form and represents the rate of growthof the lynx popula-
tion. This model makes many simplifying assumptions—such asthe fact that hares
decrease in number only through predation by lynxes—but it often is sufficient to
answer basic questions about the system.

To illustrate the use of this system, we can compute the number of lynxes and
hares at each time point from some initial population. This isdone by starting with
x[0] = (H0,L0) and then using equation (2.13) to compute the populations in the
following period. By iterating this procedure, we can generate the population over
time. The output of this process for a specific choice of parameters and initial con-
ditions is shown in Figure2.7. While the details of the simulation are different
from the experimental data (to be expected given the simplicity of our assump-
tions), we see qualitatively similar trends and hence we canuse the model to help
explore the dynamics of the system. ∇

Example 2.4 E-mail server
The IBM Lotus server is an collaborative software system that administers users’
e-mail, documents and notes. Client machines interact withend users to provide
access to data and applications. The server also handles other administrative tasks.
In the early development of the system it was observed that the performance was
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poor when the central processing unit (CPU) was overloaded because of too many
service requests, and mechanisms to control the load were therefore introduced.

The interaction between the client and the server is in the form of remote proce-
dure calls (RPCs). The server maintains a log of statistics of completed requests.
The total number of requests being served, calledRIS (RPCs in server), is also
measured. The load on the server is controlled by a parameter calledMaxUsers,
which sets the total number of client connections to the server. This parameter is
controlled by the system administrator. The server can be regarded as a dynami-
cal system withMaxUsers as the input andRIS as the output. The relationship
between input and output was first investigated by exploring the steady-state per-
formance and was found to be linear.

In [HDPT04] a dynamic model in the form of a first-order difference equation
is used to capture the dynamic behavior of this system. Usingsystem identification
techniques, they construct a model of the form

y[k+1] = ay[k]+bu[k],

whereu = MaxUsers−MaxUsers andy = RIS−RIS. The parametersa =
0.43 andb= 0.47 are parameters that describe the dynamics of the system around
the operating point, andMaxUsers = 165 andRIS = 135 represent the nomi-
nal operating point of the system. The number of requests was averaged over a
sampling period of 60 s. ∇

Simulation and Analysis

State space models can be used to answer many questions. One ofthe most com-
mon, as we have seen in the previous examples, involves predicting the evolution
of the system state from a given initial condition. While forsimple models this can
be done in closed form, more often it is accomplished throughcomputer simula-
tion. One can also use state space models to analyze the overall behavior of the
system without making direct use of simulation.

Consider again the damped spring–mass system from Section2.1, but this time
with an external force applied, as shown in Figure2.8. We wish to predict the
motion of the system for a periodic forcing function, with a given initial condition,
and determine the amplitude, frequency and decay rate of theresulting motion.

We choose to model the system with a linear ordinary differential equation.
Using Hooke’s law to model the spring and assuming that the damper exerts a
force that is proportional to the velocity of the system, we have

mq̈+cq̇+kq= u, (2.14)

wherem is the mass,q is the displacement of the mass,c is the coefficient of
viscous friction,k is the spring constant andu is the applied force. In state space
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Figure 2.8: A driven spring–mass system with damping. Here we use a linear damping
element with coefficient of viscous frictionc. The mass is driven with a sinusoidal force of
amplitudeA.

form, usingx= (q, q̇) as the state and choosingy= q as the output, we have

dx
dt

=




x2

− c
m

x2−
k
m

x1+
u
m


 , y= x1.

We see that this is a linear second-order differential equation with one inputu and
one outputy.

We now wish to compute the response of the system to an input ofthe formu=
Asinωt. Although it is possible to solve for the response analytically, we instead
make use of a computational approach that does not rely on thespecific form of
this system. Consider the general state space system

dx
dt

= f (x,u).

Given the statex at time t, we can approximate the value of the state at a short
time h> 0 later by assuming that the rate of change off (x,u) is constant over the
intervalt to t +h. This gives

x(t +h) = x(t)+h f(x(t),u(t)). (2.15)

Iterating this equation, we can thus solve forx as a function of time. This approxi-
mation is known as Euler integration and is in fact a difference equation if we leth
represent the time increment and writex[k] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methodsthan Euler
integration, they still have some of the same basic trade-offs.

Returning to our specific example, Figure2.9 shows the results of computing
x(t) using equation (2.15), along with the analytical computation. We see that as
h gets smaller, the computed solution converges to the exact solution. The form
of the solution is also worth noticing: after an initial transient, the system settles
into a periodic motion. The portion of the response after the transient is called the
steady-state responseto the input.
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Figure 2.9: Simulation of the forced spring–mass system with different simulation time
constants. The solid line represents the analytical solution. The dashed lines represent the
approximate solution via the method of Euler integration, using decreasing step sizes.

In addition to generating simulations, models can also be used to answer other
types of questions. Two that are central to the methods described in this text con-
cern the stability of an equilibrium point and the input/output frequency response.
We illustrate these two computations through the examples below and return to the
general computations in later chapters.

Returning to the damped spring–mass system, the equations of motion with no
input forcing are given by

dx
dt

=




x2

− c
m

x2−
k
m

x1


 , (2.16)

wherex1 is the position of the mass (relative to the rest position) and x2 is its
velocity. We wish to show that if the initial state of the system is away from the
rest position, the system will return to the rest position eventually (we will later
define this situation to mean that the rest position isasymptotically stable). While
we could heuristically show this by simulating many, many initial conditions, we
seek instead to prove that this is true forany initial condition.

To do so, we construct a functionV : Rn → R that maps the system state to a
positive real number. For mechanical systems, a convenientchoice is the energy of
the system,

V(x) =
1
2

kx2
1+

1
2

mx2
2. (2.17)

If we look at the time derivative of the energy function, we see that

dV
dt

= kx1ẋ1+mx2ẋ2 = kx1x2+mx2(−
c
m

x2−
k
m

x1) =−cx2
2,

which is always either negative or zero. HenceV(x(t)) is never increasing and,
using a bit of analysis that we will see formally later, the individual states must
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remain bounded.
If we wish to show that the states eventually return to the origin, we must use

a slightly more detailed analysis. Intuitively, we can reason as follows: suppose
that for some period of time,V(x(t)) stops decreasing. Then it must be true that
V̇(x(t)) = 0, which in turn implies thatx2(t) = 0 for that same period. In that case,
ẋ2(t) = 0, and we can substitute into the second line of equation (2.16) to obtain

0= ẋ2 =− c
m

x2−
k
m

x1 =− k
m

x1.

Thus we must have thatx1 also equals zero, and so the only time thatV(x(t)) can
stop decreasing is if the state is at the origin (and hence this system is at its rest
position). Since we know thatV(x(t)) is never increasing (becauseV̇ ≤ 0), we
therefore conclude that the origin is stable (forany initial condition).

This type of analysis, called Lyapunov stability analysis, is considered in detail
in Chapter4. It shows some of the power of using models for the analysis ofsystem
properties.

Another type of analysis that we can perform with models is tocompute the
output of a system to a sinusoidal input. We again consider the spring–mass sys-
tem, but this time keeping the input and leaving the system inits original form:

mq̈+cq̇+kq= u. (2.18)

We wish to understand how the system responds to a sinusoidalinput of the form

u(t) = Asinωt.

We will see how to do this analytically in Chapter6, but for now we make use of
simulations to compute the answer.

We first begin with the observation that ifq(t) is the solution to equation (2.18)
with inputu(t), then applying an input 2u(t) will give a solution 2q(t) (this is easily
verified by substitution). Hence it suffices to look at an input with unit magnitude,
A= 1. A second observation, which we will prove in Chapter5, is that the long-
term response of the system to a sinusoidal input is itself a sinusoid at the same
frequency, and so the output has the form

q(t) = g(ω)sin(ωt +ϕ(ω)),

whereg(ω) is called thegainof the system andϕ(ω) is called thephase(or phase
offset).

To compute the frequency response numerically, we can simulate the system
at a set of frequenciesω1, . . . ,ωN and plot the gain and phase at each of these
frequencies. An example of this type of computation is shownin Figure2.10.
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Figure 2.10: A frequency response (gain only) computed by measuring the response of
individual sinusoids. The figure on the left shows the response of the system as a function
of time to a number of different unit magnitude inputs (at different frequencies). The figure
on the right shows this same data in a different way, with the magnitude of theresponse
plotted as a function of the input frequency. The filled circles correspond to the particular
frequencies shown in the time responses.

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to have different representations
of the system that capture the essential features and hide irrelevant details. In all
branches of science and engineering it is common practice touse some graphical
description of systems, calledschematic diagrams. They can range from stylistic
pictures to drastically simplified standard symbols. These pictures make it possi-
ble to get an overall view of the system and to identify the individual components.
Examples of such diagrams are shown in Figure2.11. Schematic diagrams are
useful because they give an overall picture of a system, showing different subpro-
cesses and their interconnection and indicating variablesthat can be manipulated
and signals that can be measured.

Block Diagrams

A special graphical representation called ablock diagramhas been developed in
control engineering. The purpose of a block diagram is to emphasize the informa-
tion flow and to hide details of the system. In a block diagram, different process
elements are shown as boxes, and each box has inputs denoted by lines with arrows
pointing toward the box and outputs denoted by lines with arrows going out of the
box. The inputs denote the variables that influence a process, and the outputs de-
note the signals that we are interested in or signals that influence other subsystems.
Block diagrams can also be organized in hierarchies, where individual blocks may
themselves contain more detailed block diagrams.

Figure2.12shows some of the notation that we use for block diagrams. Signals
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Figure 2.11:Schematic diagrams for different disciplines. Each diagram is used to illustrate
the dynamics of a feedback system: (a) electrical schematics for a power system [Kun93],
(b) a biological circuit diagram for a synthetic clock circuit [ASMN03], (c) a process dia-
gram for a distillation column [SEM04] and (d) a Petri net description of a communication
protocol.

are represented as lines, with arrows to indicate inputs andoutputs. The first di-
agram is the representation for a summation of two signals. An input/output re-
sponse is represented as a rectangle with the system name (ormathematical de-
scription) in the block. Two special cases are a proportional gain, which scales the
input by a multiplicative factor, and an integrator, which outputs the integral of the
input signal.

Figure2.13illustrates the use of a block diagram, in this case for modeling the
flight response of a fly. The flight dynamics of an insect are incredibly intricate,
involving careful coordination of the muscles within the fly to maintain stable flight
in response to external stimuli. One known characteristic of flies is their ability to
fly upwind by making use of the optical flow in their compound eyesas a feedback
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Figure 2.12:Standard block diagram elements. The arrows indicate the the inputs and out-
puts of each element, with the mathematical operation corresponding to the blocked labeled
at the output. The system block (f) represents the full input/output response of a dynamical
system.

mechanism. Roughly speaking, the fly controls its orientation so that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose the overall dynamics
of the system into a series of interconnected subsystems (orblocks). Referring to
Figure2.13, we can model the insect navigation system through an interconnection
of five blocks. The sensory motor system (a) takes the information from the visual
system (e) and generates muscle commands that attempt to steer the fly so that the
point of contraction is centered. These muscle commands are converted into forces
through the flapping of the wings (b) and the resulting aerodynamic forces that are
produced. The forces from the wings are combined with the dragon the fly (d) to
produce a net force on the body of the fly. The wind velocity enters through the
drag aerodynamics. Finally, the body dynamics (c) describe how the fly translates
and rotates as a function of the net forces that are applied toit. The insect position,
speed and orientation are fed back to the drag aerodynamics and vision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicated subsystem. For
example, the visual system of a fruit fly consists of two complicated compound
eyes (with about 700 elements per eye), and the sensory motorsystem has about
200,000 neurons that are used to process information. A moredetailed block dia-
gram of the insect flight control system would show the interconnections between
these elements, but here we have used one block to represent how the motion of
the fly affects the output of the visual system, and a second block to represent how
the visual field is processed by the fly’s brain to generate muscle commands. The
choice of the level of detail of the blocks and what elements to separate into differ-
ent blocks often depends on experience and the questions that one wants to answer
using the model. One of the powerful features of block diagrams is their ability to
hide information about the details of a system that may not beneeded to gain an
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Figure 2.13:A block diagram representation of the flight control system for an insectflying
against the wind. The mechanical portion of the model consists of the rigid-body dynamics
of the fly, the drag due to flying through the air and the forces generated by the wings. The
motion of the body causes the visual environment of the fly to change, and this information
is then used to control the motion of the wings (through the sensory motor system), closing
the loop.

understanding of the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and actuators, it is also possible
to obtain models of system dynamics from experiments on the process. The mod-
els are restricted to input/output models since only these signals are accessible to
experiments, but modeling from experiments can also be combined with modeling
from physics through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the response to a
step change in the control signal. Such an experiment begins by setting the control
signal to a constant value; then when steady state is established, the control signal
is changed quickly to a new level and the output is observed. The experiment
gives the step response of the system, and the shape of the response gives useful
information about the dynamics. It immediately gives an indication of the response
time, and it tells if the system is oscillatory or if the response is monotone.

Example 2.5 Spring–mass system
Consider the spring–mass system from Section2.1, whose dynamics are given by

mq̈+cq̇+kq= u. (2.19)

We wish to determine the constantsm, c andk by measuring the response of the
system to a step input of magnitudeF0.

We will show in Chapter6 that whenc2< 4km, the step response for this system
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Figure 2.14: Step response for a spring–mass system. The magnitude of the step input is
F0 = 20 N. The period of oscillationT is determined by looking at the time between two
subsequent local maxima in the response. The period combined with the steady-state value
q(∞) and the relative decrease between local maxima can be used to estimate theparameters
in a model of the system.

from the rest configuration is given by

q(t) =
F0

k

(
1− 1

ωd

√
k
m

exp
(
− ct

2m

)
sin(ωdt +ϕ)

)
,

ωd =

√
4km−c2

2m
, ϕ = tan−1

(√
4km−c2

c

)
.

From the form of the solution, we see that the form of the response is determined
by the parameters of the system. Hence, by measuring certainfeatures of the step
response we can determine the parameter values.

Figure2.14shows the response of the system to a step of magnitudeF0 = 20 N,
along with some measurements. We start by noting that the steady-state position
of the mass (after the oscillations die down) is a function ofthe spring constantk:

q(∞) =
F0

k
, (2.20)

whereF0 is the magnitude of the applied force (F0 = 1 for a unit step input). The
parameter 1/k is called thegainof the system. The period of the oscillation can be
measured between two peaks and must satisfy

2π
T

=

√
4km−c2

2m
. (2.21)

Finally, the rate of decay of the oscillations is given by the exponential factor in
the solution. Measuring the amount of decay between two peaks, we have

log
(

q(t1)−
F0

k

)
− log

(
q(t2)−

F0

k

)
=

c
2m

(t2− t1). (2.22)
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Using this set of three equations, we can solve for the parameters and determine
that for the step response in Figure2.14we havem≈ 250 kg,c ≈ 60 N s/m and
k≈ 40 N/m. ∇

Modeling from experiments can also be done using many other signals. Sinu-
soidal signals are commonly used (particularly for systemswith fast dynamics)
and precise measurements can be obtained by exploiting correlation techniques.
An indication of nonlinearities can be obtained by repeating experiments with in-
put signals having different amplitudes.

Normalization and Scaling

Having obtained a model, it is often useful to scale the variables by introducing
dimension-free variables. Such a procedure can often simplify the equations for a
system by reducing the number of parameters and reveal interesting properties of
the model. Scaling can also improve the numerical conditioning of the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose units for each independent
variable and introduce new variables by dividing the variables by the chosen nor-
malization unit. We illustrate the procedure with two examples.

Example 2.6 Spring–mass system
Consider again the spring–mass system introduced earlier.Neglecting the damp-
ing, the system is described by

mq̈+kq= u.

The model has two parametersm andk. To normalize the model we introduce
dimension-free variablesx = q/l and τ = ω0t, whereω0 =

√
k/m and l is the

chosen length scale. We scale force bymlω2
0 and introducev = u/(mlω2

0). The
scaled equation then becomes

d2x
dτ2 =

d2q/l
d(ω0t)2 =

1

mlω2
0

(−kq+u) =−x+v,

which is the normalized undamped spring–mass system. Notice that the normal-
ized model has no parameters, while the original model had two parametersm
and k. Introducing the scaled, dimension-free state variablesz1 = x = q/l and
z2 = dx/dτ = q̇/(lω0), the model can be written as

d
dt


z1

z2


=


 0 1
−1 0




z1

z2


+


0

v


 .

This simple linear equation describes the dynamics of any spring–mass system,
independent of the particular parameters, and hence gives us insight into the fun-
damental dynamics of this oscillatory system. To recover the physical frequency
of oscillation or its magnitude, we must invert the scaling we have applied. ∇
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Example 2.7 Balance system
Consider the balance system described in Section2.1. Neglecting damping by
puttingc= 0 andγ = 0 in equation (2.9), the model can be written as

(M+m)
d2p
dt2

−mlcosθ
d2θ
dt2

+mlsinθ
(dθ

dt

)2
= F,

−mlcosθ
d2p
dt2

+(J+ml2)
d2θ
dt2

−mglsinθ = 0.

Let ω0 =
√

mgl/(J+ml2), choose the length scale asl , let the time scale be 1/ω0,
choose the force scale as(M+m)lω2

0 and introduce the scaled variablesτ = ω0t,
x= p/l andu= F/((M+m)lω2

0). The equations then become

d2x
dτ2 −α cosθ

d2θ
dτ2 +α sinθ

(dθ
dτ

)2
= u, −β cosθ

d2x
dτ2 +

d2θ
dτ2 −sinθ = 0,

whereα = m/(M+m) andβ = ml2/(J+ml2). Notice that the original model has
five parametersm, M, J, l andg but the normalized model has only two parameters
α andβ . If M ≫ m andml2 ≫ J, we getα ≈ 0 andβ ≈ 1 and the model can be
approximated by

d2x
dτ2 = u,

d2θ
dτ2 −sinθ = ucosθ .

The model can be interpreted as a mass combined with an inverted pendulum
driven by the same input. ∇

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback, and it is there-
fore important to characterize uncertainty. When making measurements, there is a
good tradition to assign both a nominal value and a measure ofuncertainty. It is
useful to apply the same principle to modeling, but unfortunately it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be characterized by a func-
tion, uncertainty can be expressed by an uncertainty band asillustrated in Fig-
ure 2.15a. At low signal levels there are uncertainties due to sensor resolution,
friction and quantization. Some models for queuing systems or cells are based
on averages that exhibit significant variations for small populations. At large sig-
nal levels there are saturations or even system failures. Thesignal ranges where a
model is reasonably accurate vary dramatically between applications, but it is rare
to find models that are accurate for signal ranges larger than 104.

Characterization of the uncertainty of a dynamic model is much more difficult.
We can try to capture uncertainties by assigning uncertainties to parameters of the
model, but this is often not sufficient. There may be errors due to phenomena that
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relationshipand the
dashed lines indicate the range of possible uncertainty. The uncertainty lemon [GPD59] in
(b) is one way to capture uncertainty in dynamical systems emphasizing that a model is valid
only in some amplitude and frequency ranges. In (c) a model is represented by a nominal
modelM and another model∆ representing the uncertainty analogous to the representation
of parameter uncertainty.

have been neglected, e.g., small time delays. In control theultimate test is how well
a control system based on the model performs, and time delayscan be important.
There is also a frequency aspect. There are slow phenomena, such as aging, that
can cause changes or drift in the systems. There are also high-frequency effects: a
resistor will no longer be a pure resistance at very high frequencies, and a beam
has stiffness and will exhibit additional dynamics when subject to high-frequency
excitation. Theuncertainty lemon[GPD59] shown in Figure2.15bis one way to
conceptualize the uncertainty of a system. It illustrates that a model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in Chapter12
using figures such as Figure2.15c. These tools make use of the concept of a trans-
fer function, which describes the frequency response of an input/output system.
For now, we simply note that one should always be careful to recognize the limits
of a model and not to make use of models outside their range of applicability. For
example, one can describe the uncertainty lemon and then check to make sure that
signals remain in this region. In early analog computing, a system was simulated
using operational amplifiers, and it was customary to give alarms when certain
signal levels were exceeded. Similar features can be included in digital simulation.

2.4 Modeling Examples

In this section we introduce additional examples that illustrate some of the differ-
ent types of systems for which one can develop differential equation and difference
equation models. These examples are specifically chosen from arange of differ-



2.4. MODELING EXAMPLES 55

ent fields to highlight the broad variety of systems to which feedback and control
concepts can be applied. A more detailed set of applicationsthat serve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation and feedback to control the
movement of a mechanical system. Motion control systems range from nanoposi-
tioning systems (atomic force microscopes, adaptive optics), to control systems
for the read/write heads in a disk drive of a CD player, to manufacturing systems
(transfer machines and industrial robots), to automotive control systems (antilock
brakes, suspension control, traction control), to air and space flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model
A common problem in motion control is to control the trajectory of a vehicle
through an actuator that causes a change in the orientation.A steering wheel on an
automobile and the front wheel of a bicycle are two examples,but similar dynam-
ics occur in the steering of ships or control of the pitch dynamics of an aircraft.
In many cases, we can understand the basic behavior of these systems through the
use of a simple model that captures the basic kinematics of the system.

Consider a vehicle with two wheels as shown in Figure2.16. For the purpose
of steering we are interested in a model that describes how the velocity of the
vehicle depends on the steering angleδ . To be specific, consider the velocityv at
the center of mass, a distancea from the rear wheel, and letb be the wheel base, as
shown in Figure2.16. Let x andy be the coordinates of the center of mass,θ the
heading angle andα the angle between the velocity vectorv and the centerline of
the vehicle. Sinceb= ra tanδ anda= ra tanα, it follows that tanα = (a/b) tanδ
and we get the following relation betweenα and the steering angleδ :

α(δ ) = arctan
(atanδ

b

)
. (2.23)

Assume that the wheels are rolling without slip and that the velocity of the rear
wheel isv0. The vehicle speed at its center of mass isv= v0/cosα, and we find
that the motion of this point is given by

dx
dt

= vcos(α +θ) = v0
cos(α +θ)

cosα
,

dy
dt

= vsin(α +θ) = v0
sin(α +θ)

cosα
.

(2.24)

To see how the angleθ is influenced by the steering angle, we observe from Fig-
ure 2.16that the vehicle rotates with the angular velocityv0/ra around the point
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Figure 2.16:Vehicle steering dynamics. The left figure shows an overhead view of avehicle
with four wheels. The wheel base isb and the center of mass at a distancea forward of the
rear wheels. By approximating the motion of the front and rear pairs of wheels by a single
front wheel and a single rear wheel, we obtain an abstraction called thebicycle model, shown
on the right. The steering angle isδ and the velocity at the center of mass has the angleα
relative the length axis of the vehicle. The position of the vehicle is given by(x,y) and the
orientation (heading) byθ .

O. Hence
dθ
dt

=
v0

ra
=

v0

b
tanδ . (2.25)

Equations (2.23)–(2.25) can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the road andthat the two front
wheels can be approximated by a single wheel at the center of the car. The as-
sumption of no slip can be relaxed by adding an extra state variable, giving a more
realistic model. Such a model also describes the steering dynamics of ships as well
as the pitch dynamics of aircraft and missiles. It is also possible to choose coor-
dinates so that the reference point is at the rear wheels (corresponding to setting
α = 0), a model often referred to as theDubins car[Dub57].

Figure2.16represents the situation when the vehicle moves forward andhas
front-wheel steering. The case when the vehicle reverses is obtained by changing
the sign of the velocity, which is equivalent to a vehicle with rear-wheel steering.

∇

Example 2.9 Vectored thrust aircraft
Consider the motion of vectored thrust aircraft, such as theHarrier “jump jet”
shown Figure2.17a. The Harrier is capable of vertical takeoff by redirecting its
thrust downward and through the use of smaller maneuvering thrusters located on
its wings. A simplified model of the Harrier is shown in Figure2.17b, where we
focus on the motion of the vehicle in a vertical plane throughthe wings of the
aircraft. We resolve the forces generated by the main downward thruster and the
maneuvering thrusters as a pair of forcesF1 andF2 acting at a distancer below the
aircraft (determined by the geometry of the thrusters).
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Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) redirects its
engine thrust downward so that it can “hover” above the ground. Some air from the engine
is diverted to the wing tips to be used for maneuvering. As shown in (b), thenet thrust on
the aircraft can be decomposed into a horizontal forceF1 and a vertical forceF2 acting at a
distancer from the center of mass.

Let (x,y,θ) denote the position and orientation of the center of mass of the
aircraft. Letm be the mass of the vehicle,J the moment of inertia,g the gravita-
tional constant andc the damping coefficient. Then the equations of motion for the
vehicle are given by

mẍ= F1cosθ −F2sinθ −cẋ,

mÿ= F1sinθ +F2cosθ −mg−cẏ,

Jθ̈ = rF1.

(2.26)

It is convenient to redefine the inputs so that the origin is an equilibrium point
of the system with zero input. Lettingu1 = F1 andu2 = F2 −mg, the equations
become

mẍ=−mgsinθ −cẋ+u1cosθ −u2sinθ ,
mÿ= mg(cosθ −1)−cẏ+u1sinθ +u2cosθ ,
Jθ̈ = ru1.

(2.27)

These equations describe the motion of the vehicle as a set of three coupled second-
order differential equations. ∇

Information Systems

Information systems range from communication systems likethe Internet to soft-
ware systems that manipulate data or manage enterprisewideresources. Feedback
is present in all these systems, and designing strategies for routing, flow control and
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive at rateλ and are
stored in a queue. Messages are processed and removed from the queue at rateµ . The average
size of the queue is given byx∈ R.

buffer management is a typical problem. Many results in queuing theory emerged
from design of telecommunication systems and later from development of the In-
ternet and computer communication systems [BG87, Kle75, Sch87]. Management
of queues to avoid congestion is a central problem and we willtherefore start by
discussing the modeling of queuing systems.

Example 2.10 Queuing systems
A schematic picture of a simple queue is shown in Figure2.18. Requests arrive
and are then queued and processed. There can be large variations in arrival rates
and service rates, and the queue length builds up when the arrival rate is larger
than the service rate. When the queue becomes too large, service is denied using
an admission control policy.

The system can be modeled in many different ways. One way is to model each
incoming request, which leads to an event-based model wherethe state is an integer
that represents the queue length. The queue changes when a request arrives or a
request is serviced. The statistics of arrival and servicingare typically modeled as
random processes. In many cases it is possible to determine statistics of quantities
like queue length and service time, but the computations canbe quite complicated.

A significant simplification can be obtained by using aflow model. Instead
of keeping track of each request we instead view service and requests as flows,
similar to what is done when replacing molecules by a continuum when analyzing
fluids. Assuming that the average queue lengthx is a continuous variable and that
arrivals and services are flows with ratesλ andµ, the system can be modeled by
the first-order differential equation

dx
dt

= λ −µ = λ −µmaxf (x), x≥ 0, (2.28)

whereµmax is the maximum service rate andf (x) is a number between 0 and 1
that describes the effective service rate as a function of the queue length.

It is natural to assume that the effective service rate depends on the queue
length because larger queues require more resources. In steady state we have
f (x) = λ/µmax, and we assume that the queue length goes to zero whenλ/µmax
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Figure 2.19:Queuing dynamics. (a) The steady-state queue length as a function ofλ/µmax.
(b) The behavior of the queue length when there is a temporary overloadin the system. The
solid line shows a realization of an event-based simulation, and the dashed line shows the
behavior of the flow model (2.29).

goes to zero and that it goes to infinity whenλ/µmax goes to 1. This implies
that f (0) = 0 and thatf (∞) = 1. In addition, if we assume that the effective ser-
vice rate deteriorates monotonically with queue length, then the functionf (x) is
monotone and concave. A simple function that satisfies the basic requirements is
f (x) = x/(1+x), which gives the model

dx
dt

= λ −µmax
x

x+1
. (2.29)

This model was proposed by Agnew [Agn76]. It can be shown that if arrival and
service processes are Poisson processes, the average queue length is given by equa-
tion (2.29) and that equation (2.29) is a good approximation even for short queue
lengths; see Tipper [TS90].

To explore the properties of the model (2.29) we will first investigate the equi-
librium value of the queue length when the arrival rateλ is constant. Setting the
derivativedx/dt to zero in equation (2.29) and solving forx, we find that the queue
lengthx approaches the steady-state value

xe =
λ

µmax−λ
. (2.30)

Figure 2.19ashows the steady-state queue length as a function ofλ/µmax, the
effective service rate excess. Notice that the queue lengthincreases rapidly asλ
approachesµmax. To have a queue length less than 20 requiresλ/µmax< 0.95. The
average time to service a request isTs= (x+1)/µmax, and it increases dramatically
asλ approachesµmax.

Figure2.19billustrates the behavior of the server in a typical overloadsituation.
The maximum service rate isµmax= 1, and the arrival rate starts atλ = 0.5. The
arrival rate is increased toλ = 4 at time 20, and it returns toλ = 0.5 at time 25.
The figure shows that the queue builds up quickly and clears veryslowly. Since the
response time is proportional to queue length, it means thatthe quality of service
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Figure 2.20: Illustration of feedback in the virtual memory system of the IBM/370. (a) The
effect of feedback on execution times in a simulation, following [BG68]. Results with no
feedback are shown witho, and results with feedback withx. Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three states are obtained based
on process measurements.

is poor for a long period after an overload. This behavior is called therush-hour
effectand has been observed in web servers and many other queuing systems such
as automobile traffic.

The dashed line in Figure2.19bshows the behavior of the flow model, which
describes the average queue length. The simple model captures behavior qualita-
tively, but there are variations from sample to sample when the queue length is
short. ∇

Many complex systems use discrete control actions. Such systems can be mod-
eled by characterizing the situations that correspond to each control action, as il-
lustrated in the following example.

Example 2.11 Virtual memory paging control
An early example of the use of feedback in computer systems was applied in the
operating system OS/VS for the IBM 370 [BG68, Cro75]. The system used virtual
memory, which allows programs to address more memory than isphysically avail-
able as fast memory. Data in current fast memory (random access memory, RAM)
is accessed directly, but data that resides in slower memory(disk) is automatically
loaded into fast memory. The system is implemented in such a way that it appears
to the programmer as a single large section of memory. The system performed very
well in many situations, but very long execution times were encountered in over-
load situations, as shown by the open circles in Figure2.20a. The difficulty was
resolved with a simple discrete feedback system. The load of the central process-
ing unit (CPU) was measured together with the number of page swaps between
fast memory and slow memory. The operating region was classified as being in
one of three states: normal, underload or overload. The normal state is character-
ized by high CPU activity, the underload state is characterized by low CPU activity
and few page replacements, the overload state has moderate to low CPU load but
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Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor network with
five nodes. In this network, node 1 communicates with node 2 and node 2 communicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the convergenceof the consensus
protocol (2.31) to the average value of the initial conditions.

many page replacements; see Figure2.20b. The boundaries between the regions
and the time for measuring the load were determined from simulations using typ-
ical loads. The control strategy was to do nothing in the normal load condition,
to exclude a process from memory in the overload condition and to allow a new
process or a previously excluded process in the underload condition. The crosses
in Figure2.20ashow the effectiveness of the simple feedback system in simulated
loads. Similar principles are used in many other situations,e.g., in fast, on-chip
cache memory. ∇

Example 2.12 Consensus protocols in sensor networks
Sensor networks are used in a variety of applications where wewant to collect
and aggregate information over a region of space using multiple sensors that are
connected together via a communications network. Examples include monitoring
environmental conditions in a geographical area (or insidea building), monitoring
the movement of animals or vehicles and monitoring the resource loading across
a group of computers. In many sensor networks the computational resources are
distributed along with the sensors, and it can be important for the set of distributed
agents to reach a consensus about a certain property, such asthe average tempera-
ture in a region or the average computational load among a setof computers.

We model the connectivity of the sensor network using a graph, with nodes
corresponding to the sensors and edges corresponding to theexistence of a direct
communications link between two nodes. We use the notationNi to represent the
set of neighbors of a nodei. For example, in the network shown in Figure2.21a
N2 = {1,3,4,5} andN3 = {2,4}.

To solve the consensus problem, letxi be the state of theith sensor, correspond-
ing to that sensor’s estimate of the average value that we aretrying to compute. We
initialize the state to the value of the quantity measured bythe individual sensor.
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The consensus protocol (algorithm) can now be realized as a local update law

xi [k+1] = xi [k]+ γ ∑
j∈Ni

(x j [k]−xi [k]). (2.31)

This protocol attempts to compute the average by updating thelocal state of each
agent based on the value of its neighbors. The combined dynamics of all agents
can be written in the form

x[k+1] = x[k]− γ(D−A)x[k], (2.32)

whereA is the adjacency matrix andD is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constantγ describes the
rate at which the estimate of the average is updated based on information from
neighboring nodes. The matrixL := D−A is called theLaplacianof the graph.

The equilibrium points of equation (2.32) are the set of states such thatxe[k+
1] = xe[k]. It can be shown thatxe = (α,α, . . . ,α) is an equilibrium state for the
system, corresponding to each sensor having an identical estimateα for the av-
erage. Furthermore, we can show thatα is indeed the average value of the initial
states. Since there can be cycles in the graph, it is possible that the state of the sys-
tem could enter into an infinite loop and never converge to the desired consensus
state. A formal analysis requires tools that will be introduced later in the text, but
it can be shown that for any connected graph we can always find aγ such that the
states of the individual agents converge to the average. A simulation demonstrating
this property is shown in Figure2.21b. ∇

Biological Systems

Biological systems provide perhaps the richest source of feedback and control ex-
amples. The basic problem of homeostasis, in which a quantitysuch as temperature
or blood sugar level is regulated to a fixed value, is but one of the many types of
complex feedback interactions that can occur in molecular machines, cells, organ-
isms and ecosystems.

Example 2.13 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNA) is generated from
a segment of DNA. The promoter region of a gene allows transcription to be con-
trolled by the presence of other proteins, which bind to the promoter region and
either repress or activate RNA polymerase, the enzyme that produces an mRNA
transcript from DNA. The mRNA is then translated into a protein according to its
nucleotide sequence. This process is illustrated in Figure2.22.

A simple model of the transcriptional regulation process isthrough the use
of a Hill function [dJ02, Mur04]. Consider the regulation of a protein A with a
concentration given bypa and a corresponding mRNA concentrationma. Let B
be a second protein with concentrationpb that represses the production of protein
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Figure 2.22:Biological circuitry. The cell on the left is a bovine pulmonary cell, stained so
that the nucleus, actin and chromatin are visible. The figure on the right gives an overview
of the process by which proteins in the cell are made. RNA is transcribed from DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by an organelle called
a ribosome.

A through transcriptional regulation. The resulting dynamics of pa andma can be
written as

dma

dt
=

αab

1+kabpnab
b

+αa0− γama,
dpa

dt
= βama−δapa, (2.33)

whereαab+ αa0 is the unregulated transcription rate,γa represents the rate of
degradation of mRNA,αab, kab andnab are parameters that describe how B re-
presses A,βa represents the rate of production of the protein from its correspond-
ing mRNA andδa represents the rate of degradation of the protein A. The pa-
rameterαa0 describes the “leakiness” of the promoter, andnab is called the Hill
coefficient and relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the production of another
protein rather than repressing it. In this case, the equations have the form

dma

dt
=

αabkabpnab
b

1+kabpnab
b

+αa0− γama,
dpa

dt
= βama−δapa, (2.34)

where the variables are the same as described previously. Note that in the case of
the activator, ifpb is zero, then the production rate isαa0 (versusαab+αa0 for the
repressor). Aspb gets large, the first term in the expression for ˙ma approaches 1
and the transcription rate becomesαab+αa0 (versusαa0 for the repressor). Thus
we see that the activator and repressor act in opposite fashion from each other.

As an example of how these models can be used, we consider the model of a
“repressilator,” originally due to Elowitz and Leibler [EL00]. The repressilator is
a synthetic circuit in which three proteins each repress another in a cycle. This is
shown schematically in Figure2.23a, where the three proteins are TetR,λ cI and
LacI. The basic idea of the repressilator is that if TetR is present, then it represses
the production ofλ cI. If λ cI is absent, then LacI is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, thenλ cI
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(b) Repressilator simulation

Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, showing
the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

is no longer repressed, and so on. If the dynamics of the circuit are designed prop-
erly, the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (2.33), with A and
B replaced by the appropriate combination of TetR, cI and LacI. The state of the
system is then given byx= (mTetR, pTetR,mcI, pcI,mLacI, pLacI). Figure2.23bshows
the traces of the three protein concentrations for parameters n = 2, α = 0.5, k =
6.25×10−4, α0 = 5×10−4, γ = 5.8×10−3, β = 0.12 andδ = 1.2×10−3 with
initial conditionsx(0) = (1,0,0,200,0,0) (following [EL00]). ∇

Example 2.14 Wave propagation in neuronal networks
The dynamics of the membrane potential in a cell are a fundamental mechanism
in understanding signaling in cells, particularly in neurons and muscle cells. The
Hodgkin–Huxley equations give a simple model for studying propagation waves
in networks of neurons. The model for a single neuron has the form

C
dV
dt

=−INa− IK − Ileak+ Iinput,

whereV is the membrane potential,C is the capacitance,INa andIK are the current
caused by the transport of sodium and potassium across the cell membrane,Ileak
is a leakage current andIinput is the external stimulation of the cell. Each current
obeys Ohm’s law, i.e.,

I = g(V −E),

whereg is the conductance andE is the equilibrium voltage. The equilibrium volt-
age is given by Nernst’s law,

E =
RT
nF

log
ce

ci
,
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whereR is Boltzmann’s constant,T is the absolute temperature,F is Faraday’s
constant,n is the charge (or valence) of the ion andci andce are the ion concentra-
tions inside the cell and in the external fluid. At 20◦C we haveRT/F = 20 mV.

The Hodgkin–Huxley model was originally developed as a meansto predict
the quantitative behavior of the squid giant axon [HH52]. Hodgkin and Huxley
shared the 1963 Nobel Prize in Physiology (along with J. C. Eccles) for analysis
of the electrical and chemical events in nerve cell discharges. The voltage clamp
described in Section1.3was a key element in Hodgkin and Huxley’s experiments.

∇

2.5 Further Reading

Modeling is ubiquitous in engineering and science and has a long history in applied
mathematics. For example, the Fourier series was introduced by Fourier when he
modeled heat conduction in solids [Fou07]. Models of dynamics have been de-
veloped in many different fields, including mechanics [Arn78, Gol53], heat con-
duction [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, Ell94], robotics [MLS94,
SV89], circuits [Gui63], power systems [Kun93], acoustics [Ber54] and microme-
chanical systems [Sen01]. Control theory requires modeling from many differ-
ent domains, and most control theory texts contain several chapters on model-
ing using ordinary differential equations and difference equations (see, for ex-
ample, [FPEN05]). A classic book on the modeling of physical systems, espe-
cially mechanical, electrical and thermofluid systems, is Cannon [Can03]. The
book by Aris [Ari94] is highly original and has a detailed discussion of the use
of dimension-free variables. Two of the authors’ favorite books on modeling of
biological systems are J. D. Murray [Mur04] and Wilson [Wil99].

Exercises

2.1 (Chain of integrators form) Consider the linear ordinary differential equa-
tion (2.7). Show that by choosing a state space representation withx1 = y, the
dynamics can be written as

A=




0 1 0

0
... ... 0

0 · · · 0 1
−an −an−1 −a1



, B=




0
0
...
1



, C=


1 . . . 0 0


 .

This canonical form is called thechain of integratorsform.
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2.2(Inverted pendulum) Use the equations of motion for a balance system to derive
a dynamic model for the inverted pendulum described in Example 2.2 and verify
that for smallθ the dynamics are approximated by equation (2.10).

2.3 (Discrete-time dynamics) Consider the following discrete-time system

x[k+1] = Ax[k]+Bu[k], y[k] =Cx[k],

where

x=


x1

x2


 , A=


a11 a12

0 a22


 , B=


0

1


 , C=


1 0


 .

In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions and the inputs.

(a) For the case whena12 = 0 andu = 0, give a closed form expression for the
output of the system.

(b) A discrete system is inequilibriumwhenx[k+1] = x[k] for all k. Let u= r be
a constant input and compute the resulting equilibrium point for the system. Show
that if |aii | < 1 for all i, all initial conditions give solutions that converge to the
equilibrium point.

(c) Write a computer program to plot the output of the system in response to a unit
step input,u[k] = 1, k ≥ 0. Plot the response of your system withx[0] = 0 andA
given bya11 = 0.5, a12 = 1 anda22 = 0.25.

2.4 (Keynesian economics) Keynes’ simple model for an economy is given by

Y[k] =C[k]+ I [k]+G[k],

whereY, C, I andG are gross national product (GNP), consumption, investment
and government expenditure for yeark. Consumption and investment are modeled
by difference equations of the form

C[k+1] = aY[k], I [k+1] = b(C[k+1]−C[k]),

wherea and b are parameters. The first equation implies that consumption in-
creases with GNP but that the effect is delayed. The second equation implies that
investment is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

Ye =
1

1−a
(Ie+Ge),

where the parameter 1/(1−a) is the Keynes multiplier (the gain fromI or G to
Y). With a= 0.25 an increase of government expenditure will result in a fourfold
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increase of GNP. Also show that the model can be written as thefollowing discrete-
time state model:

C[k+1]
I [k+1]


=


 a a

ab−b ab




C[k]

I [k]


+


 a

ab


G[k],

Y[k] =C[k]+ I [k]+G[k].

2.5(Least squares system identification) Consider a nonlinear differential equation�
that can be written in the form

dx
dt

=
M

∑
i=1

αi fi(x),

where fi(x) are known nonlinear functions andαi are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estimates) of the full statex at
time instantst1, t2, . . . , tN, with N > M. Show that the parametersαi can be deter-
mined by finding the least squares solution to a linear equation of the form

Hα = b,

whereα ∈ R
M is the vector of all parameters andH ∈ R

N×M and b ∈ R
N are

appropriately defined.

2.6(Normalized oscillator dynamics) Consider a damped spring–mass system with
dynamics

mq̈+cq̇+kq= F.

Let ω0 =
√

k/mbe the natural frequency andζ = c/(2
√

km) be the damping ratio.

(a) Show that by rescaling the equations, we can write the dynamics in the form

q̈+2ζ ω0q̇+ω2
0q= ω2

0u, (2.35)

whereu= F/k. This form of the dynamics is that of a linear oscillator with natural
frequencyω0 and damping ratioζ .

(b) Show that the system can be further normalized and writtenin the form

dz1

dτ
= z2,

dz2

dτ
=−z1−2ζz2+v. (2.36)

The essential dynamics of the system are governed by a single damping parameter
ζ . TheQ-valuedefined asQ= 1/2ζ is sometimes used instead ofζ .

2.7(Electric generator) An electric generator connected to a strong power grid can
be modeled by a momentum balance for the rotor of the generator:

J
d2ϕ
dt2

= Pm−Pe = Pm− EV
X

sinϕ,
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whereJ is the effective moment of inertia of the generator,ϕ the angle of rota-
tion, Pm the mechanical power that drives the generator,Pe is the active electrical
power, E the generator voltage,V the grid voltage andX the reactance of the
line. Assuming that the line dynamics are much faster than the rotor dynamics,
Pe =VI = (EV/X)sinϕ, whereI is the current component in phase with the volt-
ageE andϕ is the phase angle between voltagesE andV. Show that the dynamics
of the electric generator has a normalized form that is similar to the dynamics of a
pendulum with forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing systemdescribed in
Example2.10. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx
dt

= λu−µmax
x

x+1
, u= sat(0,1)(k(r −x)), (2.37)

where the controller is a simple proportional control with saturation (sat(a,b) is
defined by equation (3.9)) and r is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rush-hour effect and explain
how the choice ofr affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A

B

u2
B

u2

u1

A

Using the models from Example2.13—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steadystate quickly—
show that the dynamics can be written in normalized coordinates as

dz1

dτ
=

µ
1+zn

2
−z1−v1,

dz2

dτ
=

µ
1+zn

1
−z2−v2, (2.38)

wherez1 andz2 are scaled versions of the protein concentrations and the time scale
has also been changed. Show thatµ ≈ 200 using the parameters in Example2.13,
and use simulations to demonstrate the switch-like behavior of the system.

2.10 (Motor drive) Consider a system consisting of a motor driving two masses
that are connected by a torsional spring, as shown in the diagram below.
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This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current, the dynamics of
the system can be described by the equations

J1
d2ϕ1

dt2
+c
(dϕ1

dt
− dϕ2

dt

)
+k(ϕ1−ϕ2) = kI I ,

J2
d2ϕ2

dt2
+c
(dϕ2

dt
− dϕ1

dt

)
+k(ϕ2−ϕ1) = Td.

(2.39)

Similar equations are obtained for a robot with flexible arms and for the arms of
DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized) state
variablesx1=ϕ1, x2=ϕ2, x3=ω1/ω0, andx4=ω2/ω0, whereω0=

√
k(J1+J2)/(J1J2)

is the undamped natural frequency of the system when the control signal is zero.



Chapter Three
Examples

... Don’t apply any model until you understand the simplifying assumptions on which it is
based, and you can test their validity. Catch phrase: use only as directed. Don’t limit yourself
to a single model: More than one model may be useful for understanding different aspects of
the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70].

In this chapter we present a collection of examples spanningmany different
fields of science and engineering. These examples will be used throughout the text
and in exercises to illustrate different concepts. First-time readers may wish to
focus on only a few examples with which they have had the most prior experience
or insight to understand the concepts of state, input, output and dynamics in a
familiar setting.

3.1 Cruise Control

The cruise control system of a car is a common feedback system encountered in
everyday life. The system attempts to maintain a constant velocity in the presence
of disturbances primarily caused by changes in the slope of aroad. The controller
compensates for these unknowns by measuring the speed of thecar and adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figure3.1. Let v be
the speed of the car andvr the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type described briefly in Chapter1,
receives the signalsv and vr and generates a control signalu that is sent to an
actuator that controls the throttle position. The throttle in turn controls the torque
T delivered by the engine, which is transmitted through the gears and the wheels,
generating a forceF that moves the car. There are disturbance forcesFd due to
variations in the slope of the road, the rolling resistance and aerodynamic forces.
The cruise controller also has a human–machine interface that allows the driver
to set and modify the desired speed. There are also functions that disconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engine, transmission,
wheels and car body—and a detailed model can be very complicated. In spite of
this, the model required to design the cruise controller canbe quite simple.
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torqueT that is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environment, such as aerodynamic
drag and gravitational forces on hills, the net force causes the car to move. The velocity of
the carv is measured by a control system that adjusts the throttle through an actuationmech-
anism. A driver interface allows the system to be turned on and off and thereference speed
vr to be established.

To develop a mathematical model we start with a force balancefor the car body.
Let v be the speed of the car,m the total mass (including passengers),F the force
generated by the contact of the wheels with the road, andFd the disturbance force
due to gravity, friction and aerodynamic drag. The equation of motion of the car is
simply

m
dv
dt

= F −Fd. (3.1)

The forceF is generated by the engine, whose torque is proportional to the
rate of fuel injection, which is itself proportional to a control signal 0≤ u ≤ 1
that controls the throttle position. The torque also dependson engine speedω. A
simple representation of the torque at full throttle is given by the torque curve

T(ω) = Tm

(
1−β

(
ω
ωm

−1

)2
)
, (3.2)

where the maximum torqueTm is obtained at engine speedωm. Typical parameters
areTm= 190 Nm,ωm= 420 rad/s (about 4000 RPM) andβ = 0.4. Letn be the gear
ratio andr the wheel radius. The engine speed is related to the velocity through the
expression

ω =
n
r

v=: αnv,

and the driving force can be written as

F =
nu
r

T(ω) = αnuT(αnv).

Typical values ofαn for gears 1 through 5 areα1 = 40,α2 = 25,α3 = 16,α4 = 12
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Figure 3.2: Torque curves for typical car engine. The graph on the left shows thetorque
generated by the engine as a function of the angular velocity of the engine,while the curve
on the right shows torque as a function of car speed for different gears.

andα5 = 10. The inverse ofαn has a physical interpretation as theeffective wheel
radius. Figure 3.2 shows the torque as a function of engine speed and vehicle
speed. The figure shows that the effect of the gear is to “flatten” the torque curve
so that an almost full torque can be obtained almost over the whole speed range.

The disturbance forceFd has three major components:Fg, the forces due to
gravity;Fr , the forces due to rolling friction; andFa, the aerodynamic drag. Letting
the slope of the road beθ , gravity gives the forceFg = mgsinθ , as illustrated in
Figure3.3a, whereg = 9.8 m/s2 is the gravitational constant. A simple model of
rolling friction is

Fr = mgCr sgn(v),

whereCr is the coefficient of rolling friction and sgn(v) is the sign ofv (±1) or
zero if v = 0. A typical value for the coefficient of rolling friction isCr = 0.01.
Finally, the aerodynamic drag is proportional to the square of the speed:

Fa =
1
2

ρCdAv2,

whereρ is the density of air,Cd is the shape-dependent aerodynamic drag coef-
ficient andA is the frontal area of the car. Typical parameters areρ = 1.3 kg/m3,
Cd = 0.32 andA= 2.4 m2.

Summarizing, we find that the car can be modeled by

m
dv
dt

= αnuT(αnv)−mgCr sgn(v)− 1
2

ρCdAv2−mgsinθ , (3.3)

where the functionT is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velocityv, which is also the output. The
input is the signalu that controls the throttle position, and the disturbance isthe
forceFd, which depends on the slope of the road. The system is nonlinear because
of the torque curve, the gravity term and the nonlinear character of rolling friction
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Figure 3.3: Car with cruise control encountering a sloping road. A schematic diagramis
shown in (a), and (b) shows the response in speed and throttle when a slope of 4◦ is encoun-
tered. The hill is modeled as a net change of 4◦ in hill angleθ , with a linear change in the
angle betweent = 5 andt = 6. The PI controller has proportional gain iskp = 0.5, and the
integral gain iski = 0.1.

and aerodynamic drag. There can also be variations in the parameters; e.g., the
mass of the car depends on the number of passengers and the load being carried in
the car.

We add to this model a feedback controller that attempts to regulate the speed
of the car in the presence of disturbances. We shall use a proportional-integral
controller, which has the form

u(t) = kpe(t)+ki

∫ t

0
e(τ)dτ .

This controller can itself be realized as an input/output dynamical system by defin-
ing a controller statez and implementing the differential equation

dz
dt

= vr −v, u= kp(vr −v)+kiz, (3.4)

wherevr is the desired (reference) speed. As discussed briefly in Section 1.5, the
integrator (represented by the statez) ensures that in steady state the error will be
driven to zero, even when there are disturbances or modelingerrors. (The design
of PI controllers is the subject of Chapter10.) Figure3.3bshows the response of
the closed loop system, consisting of equations (3.3) and (3.4), when it encounters
a hill. The figure shows that even if the hill is so steep that the throttle changes
from 0.17 to almost full throttle, the largest speed error isless than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (3.3). It may seem
surprising that such a seemingly complicated system can be described by the sim-
ple model (3.3). It is important to make sure that we restrict our use of the model
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Figure 3.4: Finite state machine for cruise control system. The figure on the left shows
some typical buttons used to control the system. The controller can be in one of four modes,
corresponding to the nodes in the diagram on the right. Transition between the modes is
controlled by pressing one of the five buttons on the cruise control interface: on, off, set,
resume or cancel.

to the uncertainty lemon conceptualized in Figure2.15b. The model is not valid
for very rapid changes of the throttle because we have ignored the details of the
engine dynamics, neither is it valid for very slow changes because the properties
of the engine will change over the years. Nevertheless the model is very useful for
the design of a cruise control system. As we shall see in laterchapters, the reason
for this is the inherent robustness of feedback systems: even if the model is not per-
fectly accurate, we can use it to design a controller and makeuse of the feedback
in the controller to manage the uncertainty in the system.

The cruise control system also has a human–machine interfacethat allows the
driver to communicate with the system. There are many different ways to imple-
ment this system; one version is illustrated in Figure3.4. The system has four
buttons: on-off, set/decelerate, resume/accelerate and cancel. The operation of the
system is governed by a finite state machine that controls the modes of the PI con-
troller and the reference generator. Implementation of controllers and reference
generators will be discussed more fully in Chapter10.

The use of control in automotive systems goes well beyond the simple cruise
control system described here. Applications include emissions control, traction
control, power control (especially in hybrid vehicles) andadaptive cruise control.
Many automotive applications are discussed in detail in thebook by Kiencke and
Nielsen [KN00] and in the survey papers by Powers et al. [BP96, PN00].

3.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the feature that one of its key
properties is due to a feedback mechanism that is created by the design of the
front fork. A detailed model of a bicycle is complex because the system has many
degrees of freedom and the geometry is complicated. However, a great deal of
insight can be obtained from simple models.
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Figure 3.5: Schematic views of a bicycle. The steering angle isδ , and the roll angle isϕ .
The center of mass has heighth and distancea from a vertical through the contact pointP1
of the rear wheel. The wheel base isb, and the trail isc.

To derive the equations of motion we assume that the bicycle rolls on the hori-
zontalxy plane. Introduce a coordinate system that is fixed to the bicycle with the
ξ -axis through the contact points of the wheels with the ground, theη-axis hor-
izontal and theζ -axis vertical, as shown in Figure3.5. Let v0 be the velocity of
the bicycle at the rear wheel,b the wheel base,ϕ the tilt angle andδ the steering
angle. The coordinate system rotates around the pointO with the angular veloc-
ity ω = v0δ/b, and an observer fixed to the bicycle experiences forces due tothe
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pendulum, as shown
in the rear view in Figure3.5b. To model the tilt, consider the rigid body obtained
when the wheels, the rider and the front fork assembly are fixedto the bicycle
frame. Letm be the total mass of the system,J the moment of inertia of this body
with respect to theξ -axis andD the product of inertia with respect to theξ ζ axes.
Furthermore, let theξ andζ coordinates of the center of mass with respect to the
rear wheel contact point,P1, bea andh, respectively. We haveJ ≈ mh2 andD =
mah. The torques acting on the system are due to gravity and centripetal action.
Assuming that the steering angleδ is small, the equation of motion becomes

J
d2ϕ
dt2

− Dv0

b
dδ
dt

= mghsinϕ +
mv2

0h

b
δ . (3.5)

The termmghsinϕ is the torque generated by gravity. The terms containingδ and
its derivative are the torques generated by steering, with the term(Dv0/b)dδ/dt
due to inertial forces and the term(mv2

0h/b)δ due to centripetal forces.
The steering angle is influenced by the torque the rider appliesto the handle

bar. Because of the tilt of the steering axis and the shape of the front fork, the
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Figure 3.6: Block diagram of a bicycle with a front fork. The steering torque applied tothe
handlebars isT, the roll angle isϕ and the steering angle isδ . Notice that the front fork
creates a feedback from the roll angleϕ to the steering angleδ that under certain conditions
can stabilize the system.

contact point of the front wheel with the roadP2 is behind the axis of rotation of
the front wheel assembly, as shown in Figure3.5c. The distancec between the
contact point of the front wheelP2 and the projection of the axis of rotation of
the front fork assemblyP3 is called thetrail . The steering properties of a bicycle
depend critically on the trail. A large trail increases stability but makes the steering
less agile.

A consequence of the design of the front fork is that the steering angleδ is
influenced both by steering torqueT and by the tilt of the frameϕ. This means
that a bicycle with a front fork is afeedback systemas illustrated by the block
diagram in Figure3.6. The steering angleδ influences the tilt angleϕ, and the
tilt angle influences the steering angle, giving rise to the circular causality that is
characteristic of reasoning about feedback. For a front fork with a positive trail,
the bicycle will steer into the lean, creating a centrifugalforce that attempts to
diminish the lean. Under certain conditions, the feedback can actually stabilize the
bicycle. A crude empirical model is obtained by assuming that the blockB can be
modeled as the static system

δ = k1T −k2ϕ. (3.6)

This model neglects the dynamics of the front fork, the tire–road interaction and
the fact that the parameters depend on the velocity. A more accurate model, called
theWhipple model, is obtained using the rigid-body dynamics of the front forkand
the frame. Assuming small angles, this model becomes

M


ϕ̈

δ̈


+Cv0


ϕ̇

δ̇


+(K0+K2v2

0)


ϕ

δ


=


0

T


 , (3.7)

where the elements of the 2×2 matricesM, C, K0 andK2 depend on the geometry
and the mass distribution of the bicycle. Note that this has aform somewhat similar
to that of the spring–mass system introduced in Chapter2 and the balance system
in Example2.1. Even this more complex model is inaccurate because the interac-
tion between the tire and the road is neglected; taking this into account requires two
additional state variables. Again, the uncertainty lemon in Figure2.15bprovides a
framework for understanding the validity of the model underthese assumptions.
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Figure 3.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all connections. (c) Only the
signal connections.

Interesting presentations on the development of the bicycle are given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (3.7) was presented
in a paper by Whipple in 1899 [Whi99]. More details on bicycle modeling are
given in the paper [̊AKL05], which has many references.

3.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementation of Black’s feedback
amplifier. It is a universal component that is widely used for instrumentation, con-
trol and communication. It is also a key element in analog computing. Schematic
diagrams of the operational amplifier are shown in Figure3.7. The amplifier has
one inverting input (v−), one noninverting input (v+) and one output (vout). There
are also connections for the supply voltages,e− ande+, and a zero adjustment
(offset null). A simple model is obtained by assuming that the input currentsi−
andi+ are zero and that the output is given by the static relation

vout = sat(vmin,vmax)

(
k(v+−v−)

)
, (3.8)

where sat denotes the saturation function

sat(a,b)(x) =





a if x< a

x if a≤ x≤ b

b if x> b.

(3.9)

We assume that the gaink is large, in the range of 106–108, and the voltagesvmin
andvmax satisfy

e− ≤ vmin < vmax≤ e+

and hence are in the range of the supply voltages. More accurate models are ob-
tained by replacing the saturation function with a smooth function as shown in
Figure3.8. For small input signals the amplifier characteristic (3.8) is linear:

vout = k(v+−v−) =: −kv. (3.10)
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Figure 3.8: Input/output characteristics of an operational amplifier. The differential input is
given byv+−v−. The output voltage is a linear function of the input in a small range around
0, with saturation atvmin andvmax. In the linear regime the op amp has high gain.

Since the open loop gaink is very large, the range of input signals where the system
is linear is very small.

A simple amplifier is obtained by arranging feedback around the basic opera-
tional amplifier as shown in Figure3.9a. To model the feedback amplifier in the
linear range, we assume that the currenti0 = i−+ i+ is zero and that the gain of
the amplifier is so large that the voltagev= v−− v+ is also zero. It follows from
Ohm’s law that the currents through resistorsR1 andR2 are given by

v1

R1
=− v2

R2
,

and hence the closed loop gain of the amplifier is

v2

v1
=−kcl, where kcl =

R2

R1
. (3.11)

A more accurate model is obtained by continuing to neglect the currenti0 but

v −

+
v1

v2

R1 R2

i0

(a) Amplifier circuit

v2R1

R1+R2

e vR2

R1

v1 −kΣ

(b) Block diagram

Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feedback around
an operational amplifier and has a corresponding block diagram (b). The resistorsR1 andR2
determine the gain of the amplifier.
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assuming that the voltagev is small but not negligible. The current balance is then

v1−v
R1

=
v−v2

R2
. (3.12)

Assuming that the amplifier operates in the linear range and using equation (3.10),
the gain of the closed loop system becomes

kcl =−v2

v1
=

R2

R1

kR1

R1+R2+kR1
(3.13)

If the open loop gaink of the operational amplifier is large, the closed loop gain
kcl is the same as in the simple model given by equation (3.11). Notice that the
closed loop gain depends only on the passive components and that variations ink
have only a marginal effect on the closed loop gain. For example if k = 106 and
R2/R1= 100, a variation ofk by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nice illustration of how feedback
can be used to make precise systems from uncertain components. In this particular
case, feedback is used to trade high gain and low robustness for low gain and high
robustness. Equation (3.13) was the formula that inspired Black when he invented
the feedback amplifier [Bla34] (see the quote at the beginning of Chapter12).

It is instructive to develop a block diagram for the feedbackamplifier in Fig-
ure3.9a. To do this we will represent the pure amplifier with inputv and outputv2
as one block. To complete the block diagram, we must describehowv depends on
v1 andv2. Solving equation (3.12) for v gives

v=
R2

R1+R2
v1+

R1

R1+R2
v2 =

R1

R1+R2

(R2

R1
v1+v2

)
,

and we obtain the block diagram shown in Figure3.9b. The diagram clearly shows
that the system has feedback and that the gain fromv2 to v is R1/(R1+R2), which
can also be read from the circuit diagram in Figure3.9a. If the loop is stable and
the gain of the amplifier is large, it follows that the errore is small, and we find that
v2 = −(R2/R1)v1. Notice that the resistorR1 appears in two blocks in the block
diagram. This situation is typical in electrical circuits, and it is one reason why
block diagrams are not always well suited for some types of physical modeling.

The simple model of the amplifier given by equation (3.10) provides qualitative
insight, but it neglects the fact that the amplifier is a dynamical system. A more
realistic model is

dvout

dt
=−avout−bv. (3.14)

The parameterb that has dimensions of frequency and is called thegain-bandwidth
productof the amplifier. Whether a more complicated model is used depends on
the questions to be answered and the required size of the uncertainty lemon. The
model (3.14) is still not valid for very high or very low frequencies since drift
causes deviations at low frequencies and there are additional dynamics that appear
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Figure 3.10:Circuit diagram of a PI controller obtained by feedback around an operational
amplifier. The capacitorC is used to store charge and represents the integral of the input.

at frequencies close tob. The model is also not valid for large signals—an upper
limit is given by the voltage of the power supply, typically in the range of 5–10 V—
neither is it valid for very low signals because of electrical noise. These effects can
be added, if needed, but increase the complexity of the analysis.

The operational amplifier is very versatile, and many different systems can be
built by combining it with resistors and capacitors. In fact, any linear system can
be implemented by combining operational amplifiers with resistors and capacitors.
Exercise3.5shows how a second-order oscillator is implemented, and Figure3.10
shows the circuit diagram for an analog proportional-integral controller. To de-
velop a simple model for the circuit we assume that the current i0 is zero and that
the open loop gaink is so large that the input voltagev is negligible. The currenti
through the capacitor isi =Cdvc/dt, wherevc is the voltage across the capacitor.
Since the same current goes through the resistorR1, we get

i =
v1

R1
=C

dvc

dt
,

which implies that

vc(t) =
1
C

∫
i(t)dt =

1
R1C

∫ t

0
v1(τ)dτ .

The output voltage is thus given by

v2(t) =−R2i−vc =−R2

R1
v1(t)−

1
R1C

∫ t

0
v1(τ)dτ ,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [Lun05,
Phi48], and their usage is described in many textbooks (e.g., [CD75]). Good infor-
mation is also available from suppliers [Jun02, Man02].
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3.4 Computing Systems and Networks

The application of feedback to computing systems follows thesame principles as
the control of physical systems, but the types of measurements and control inputs
that can be used are somewhat different. Measurements (sensors) are typically
related to resource utilization in the computing system or network and can in-
clude quantities such as the processor load, memory usage ornetwork bandwidth.
Control variables (actuators) typically involve setting limits on the resources avail-
able to a process. This might be done by controlling the amountof memory, disk
space or time that a process can consume, turning on or off processing, delaying
availability of a resource or rejecting incoming requests to a server process. Pro-
cess modeling for networked computing systems is also challenging, and empirical
models based on measurements are often used when a first-principles model is not
available.

Web Server Control

Web servers respond to requests from the Internet and provide information in the
form of web pages. Modern web servers start multiple processes to respond to
requests, with each process assigned to a single source until no further requests are
received from that source for a predefined period of time. Processes that are idle
become part of a pool that can be used to respond to new requests. To provide a
fast response to web requests, it is important that the web server processes do not
overload the server’s computational capabilities or exhaust its memory. Since other
processes may be running on the server, the amount of available processing power
and memory is uncertain, and feedback can be used to provide good performance
in the presence of this uncertainty.

Figure 3.11 illustrates the use of feedback to modulate the operation ofan
Apache web server. The web server operates by placing incoming connection re-
quests on a queue and then starting a subprocess to handle requests for each ac-
cepted connection. This subprocess responds to requests from a given connection
as they come in, alternating between aBusy state and aWait state. (Keeping the
subprocess active between requests is known as thepersistenceof the connection
and provides a substantial reduction in latency to requestsfor multiple pieces of
information from a single site.) If no requests are receivedfor a sufficiently long
period of time, controlled by theKeepAlive parameter, then the connection is
dropped and the subprocess enters anIdle state, where it can be assigned another
connection. A maximum ofMaxClients simultaneous requests will be served,
with the remainder remaining on the incoming request queue.

The parameters that control the server represent a trade-offbetween perfor-
mance (how quickly requests receive a response) and resource usage (the amount
of processing power and memory used by the server). Increasing theMaxClients



3.4. COMPUTING SYSTEMS AND NETWORKS 82

Idle

Busy

Client Servers

data
outgoing

queue
accept

requests
incoming

−1

Wait

Memory usage

KeepAlive

MaxClients

Processor load

Control

R
ef

−1

Figure 3.11:Feedback control of a web server. Connection requests arrive on an input queue,
where they are sent to a server process. A finite state machine keeps track of the state of the
individual server processes and responds to requests. A control algorithm can modify the
server’s operation by controlling parameters that affect its behavior,such as the maximum
number of requests that can be serviced at a single time (MaxClients) or the amount of
time that a connection can remain idle before it is dropped (KeepAlive).

parameter allows connection requests to be pulled off of thequeue more quickly
but increases the amount of processing power and memory usage that is required.
Increasing theKeepAlive timeout means that individual connections can remain
idle for a longer period of time, which decreases the processing load on the ma-
chine but increases the size of the queue (and hence the amount of time required
for a user to initiate a connection). Successful operation ofa busy server requires
a proper choice of these parameters, often based on trial anderror.

To model the dynamics of this system in more detail, we createa discrete-time
model with states given by the average processor loadxcpu and the percentage
memory usagexmem. The inputs to the system are taken as the maximum number
of clientsumc and the keep-alive timeuka. If we assume a linear model around the
equilibrium point, the dynamics can be written as

 xcpu[k+1]

xmem[k+1]


=


A11 A12

A21 A22




 xcpu[k]

xmem[k]


+


B11 B12

B21 B22




uka[k]

umc[k]


 , (3.15)

where the coefficients of theA andB matrices can be determined based on empiri-
cal measurements or detailed modeling of the web server’s processing and memory
usage. Using system identification, Diao et al. [DGH+02, HDPT04] identified the
linearized dynamics as

A=


 0.54 −0.11
−0.026 0.63


 , B=


−85 4.4
−2.5 2.8


×10−4,

where the system was linearized about the equilibrium point

xcpu= 0.58, uka = 11 s, xmem= 0.55, umc = 600.
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This model shows the basic characteristics that were described above. Looking
first at theB matrix, we see that increasing theKeepAlive timeout (first col-
umn of theB matrix) decreases both the processor usage and the memory usage
since there is more persistence in connections and hence theserver spends a longer
time waiting for a connection to close rather than taking on anew active connec-
tion. TheMaxClients connection increases both the processing and memory
requirements. Note that the largest effect on the processorload is theKeepAlive
timeout. TheA matrix tells us how the processor and memory usage evolve in are-
gion of the state space near the equilibrium point. The diagonal terms describe how
the individual resources return to equilibrium after a transient increase or decrease.
The off-diagonal terms show that there is coupling between the two resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later examples that it can
be used to modify the parameters controlling the server in real time and provide
robustness with respect to uncertainties in the load on the machine. Similar types
of mechanisms have been used for other types of servers. It isimportant to re-
member the assumptions on the model and their role in determining when the
model is valid. In particular, since we have chosen to use average quantities over
a given sample time, the model will not provide an accurate representation for
high-frequency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decentralized, efficient and ex-
pandable communication system. The system consists of a large number of inter-
connected gateways. A message is split into several packetswhich are transmitted
over different paths in the network, and the packages are rejoined to recover the
message at the receiver. An acknowledgment (“ack”) messageis sent back to the
sender when a packet is received. The operation of the system is governed by a
simple but powerful decentralized control structure that has evolved over time.

The system has two control mechanisms calledprotocols: the Transmission
Control Protocol (TCP) for end-to-end network communication and the Internet
Protocol (IP) for routing packets and for host-to-gateway or gateway-to-gateway
communication. The current protocols evolved after some spectacular congestion
collapses occurred in the mid 1980s, when throughput unexpectedly could drop by
a factor of 1000 [Jac95]. The control mechanism in TCP is based on conserving
the number of packets in the loop from the sender to the receiver and back to the
sender. The sending rate is increased exponentially when there is no congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we model three separate
elements of the system: the rate at which packets are sent by individual sources
(computers), the dynamics of the queues in the links (routers) and the admission
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Figure 3.12: Internet congestion control. (a) Source computers send information torouters,
which forward the information to other routers that eventually connect to the receiving com-
puter. When a packet is received, an acknowledgment packet is sent back through the routers
(not shown). The routers buffer information received from the sources and send the data
across the outgoing link. (b) The equilibrium buffer sizebe for a set ofN identical comput-
ers sending packets through a single router with drop probabilityρ .

control mechanism for the queues. Figure3.12ais a block diagram of the system.
The current source control mechanism on the Internet is a protocol known as

TCP/Reno [LPD02]. This protocol operates by sending packets to a receiver and
waiting to receive an acknowledgment from the receiver thatthe packet has arrived.
If no acknowledgment is sent within a certain timeout period, the packet is retrans-
mitted. To avoid waiting for the acknowledgment before sending the next packet,
Reno transmits multiple packets up to a fixedwindowaround the latest packet that
has been acknowledged. If the window length is chosen properly, packets at the be-
ginning of the window will be acknowledged before the sourcetransmits packets
at the end of the window, allowing the computer to continuously stream packets at
a high rate.

To determine the size of the window to use, TCP/Reno uses a feedback mech-
anism in which (roughly speaking) the window size is increased by 1 every time a
packet is acknowledged and the window size is cut in half whenpackets are lost.
This mechanism allows a dynamic adjustment of the window sizein which each
computer acts in a greedy fashion as long as packets are beingdelivered but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed by describing the
dynamics of the window size. Suppose we haveN computers and letwi be the
current window size (measured in number of packets) for theith computer. Let
qi represent the end-to-end probability that a packet will be dropped someplace
between the source and the receiver. We can model the dynamics of the window
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size by the differential equation

dwi

dt
= (1−qi)

r i(t − τi)

wi
+qi(−

wi

2
r i(t − τi)), r i =

wi

τi
, (3.16)

whereτi is the end-to-end transmission time for a packet to reach is destination and
the acknowledgment to be sent back andr i is the resulting rate at which packets
are cleared from the list of packets that have been received.The first term in the
dynamics represents the increase in window size when a packet is received, and
the second term represents the decrease in window size when apacket is lost.
Notice thatr i is evaluated at timet − τi , representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the routerqueue and the
admission control mechanism for the queue. Assume that we have L links in the
network and usel to index the individual links. We model the queue in terms of
the current number of packets in the router’s bufferbl and assume that the router
can contain a maximum ofbl ,max packets and transmits packets at a ratecl , equal
to the capacity of the link. The buffer dynamics can then be written as

dbl

dt
= sl −cl , sl = ∑

{i: l∈Li}
r i(t − τ f

li ), (3.17)

whereLi is the set of links that are being used by sourcei, τ f
li is the time it takes a

packet from sourcei to reach linkl andsl is the total rate at which packets arrive
at link l .

The admission control mechanism determines whether a given packet is ac-
cepted by a router. Since our model is based on the average quantities in the net-
work and not the individual packets, one simple model is to assume that the proba-
bility that a packet is dropped depends on how full the bufferis: pl = ml (bl ,bmax).
For simplicity, we will assume for now thatpl = ρl bl (see Exercise3.6for a more
detailed model). The probability that a packet is dropped at agiven link can be
used to determine the end-to-end probability that a packet is lost in transmission:

qi = 1− ∏
l∈Li

(1− pl )≈ ∑
l∈Li

pl (t − τb
li ), (3.18)

whereτb
li is the backward delay from linkl to sourcei and the approximation is

valid as long as the individual drop probabilities are small. We use the backward
delay since this represents the time required for the acknowledgment packet to be
received by the source.

Together, equations (3.16), (3.17) and (3.18) represent a model of congestion
control dynamics. We can obtain substantial insight by considering a special case
in which we haveN identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be ignored, in which case
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the dynamics can be reduced to the form

dwi

dt
=

1
τ
− ρc(2+w2

i )

2
,

db
dt

=
N

∑
i=1

wi

τ
−c, τ =

b
c
, (3.19)

wherewi ∈ R, i = 1, . . . ,N, are the window sizes for the sources of data,b ∈ R

is the current buffer size of the router,ρ controls the rate at which packets are
dropped andc is the capacity of the link connecting the router to the computers.
The variableτ represents the amount of time required for a packet to be processed
by a router, based on the size of the buffer and the capacity ofthe link. Substituting
τ into the equations, we write the state space dynamics as

dwi

dt
=

c
b
−ρc

(
1+

w2
i

2

)
,

db
dt

=
N

∑
i=1

cwi

b
−c. (3.20)

More sophisticated models can be found in [HMTG00, LPD02].
The nominal operating point for the system can be found by setting ẇi = ḃ= 0:

0=
c
b
−ρc

(
1+

w2
i

2

)
, 0=

N

∑
i=1

cwi

b
−c.

Exploiting the fact that all of the source dynamics are identical, it follows that all
of thewi should be the same, and it can be shown that there is a unique equilibrium
satisfying the equations

wi,e =
be

N
=

cτe

N
,

1
2ρ2N2(ρbe)

3+(ρbe)−1= 0. (3.21)

The solution for the second equation is a bit messy but can easily be determined
numerically. A plot of its solution as a function of 1/(2ρ2N2) is shown in Fig-
ure3.12b. We also note that at equilibrium we have the following additional equal-
ities:

τe =
be

c
=

Nwe

c
, qe = Npe = Nρbe, re =

we

τe
. (3.22)

Figure3.13shows a simulation of 60 sources communicating across a single
link, with 20 sources dropping out att = 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Note that the buffer size and
window sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [Tan96]. A good presentation of the ideas behind the control prin-
ciples for the Internet is given by one of its designers, Van Jacobson, in [Jac95].
F. Kelly [Kel85] presents an early effort on the analysis of the system. The book
by Hellerstein et al. [HDPT04] gives many examples of the use of feedback in
computer systems.
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Figure 3.13: Internet congestion control forN identical sources across a single link. As
shown on the left, multiple sources attempt to communicate through a router across a single
link. An “ack” packet sent by the receiver acknowledges that the message was received;
otherwise the message packet is resent and the sending rate is slowed down at the source.
The simulation on the right is for 60 sources starting random rates, with 20 sources dropping
out att = 500 ms. The buffer size is shown at the top, and the individual source rates for 6
of the sources are shown at the bottom.

3.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Heinrich Rohrer
for their design of thescanning tunneling microscope. The idea of the instrument
is to bring an atomically sharp tip so close to a conducting surface that tunneling
occurs. An image is obtained by traversing the tip across thesample and measuring
the tunneling current as a function of tip position. This invention has stimulated
the development of a family of instruments that permit visualization of surface
structure at the nanometer scale, including theatomic force microscope(AFM),
where a sample is probed by a tip on a cantilever. An AFM can operate in two
modes. Intapping modethe cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. Incontact modethe cantilever is in contact with the
sample, and its bending is controlled by feedback. In both cases control is actuated
by a piezo element that controls the vertical position of thecantilever base (or the
sample). The control system has a direct influence on picture quality and scanning
rate.

A schematic picture of an atomic force microscope is shown inFigure3.14a. A
microcantilever with a tip having a radius of the order of 10 nm is placed close to
the sample. The tip can be moved vertically and horizontally using a piezoelectric
scanner. It is clamped to the sample surface by attractive van der Waals forces and
repulsive Pauli forces. The cantilever tilt depends on the topography of the surface
and the position of the cantilever base, which is controlledby the piezo element.
The tilt is measured by sensing the deflection of the laser beam using a photodiode.
The signal from the photodiode is amplified and sent to a controller that drives
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Figure 3.14:Atomic force microscope. (a) A schematic diagram of an atomic force micro-
scope, consisting of a piezo drive that scans the sample under the AFM tip. A laser reflects
off of the cantilever and is used to measure the detection of the tip through a feedback con-
troller. (b) An AFM image of strands of DNA. (Image courtesy Veeco Instruments.)

the amplifier for the vertical position of the cantilever. By controlling the piezo
element so that the deflection of the cantilever is constant, the signal driving the
vertical deflection of the piezo element is a measure of the atomic forces between
the cantilever tip and the atoms of the sample. An image of thesurface is obtained
by scanning the cantilever along the sample. The resolution makes it possible to
see the structure of the sample on the atomic scale, as illustrated in Figure3.14b,
which shows an AFM image of DNA.

The horizontal motion of an AFM is typically modeled as a spring–mass sys-
tem with low damping. The vertical motion is more complicated. To model the
system, we start with the block diagram shown in Figure3.15. Signals that are
easily accessible are the input voltageu to the power amplifier that drives the piezo
element, the voltagev applied to the piezo element and the output voltagey of the
signal amplifier for the photodiode. The controller is a PI controller implemented
by a computer, which is connected to the system by analog-to-digital (A/D) and
digital-to-analog (D/A) converters. The deflection of the cantileverϕ is also shown
in the figure. The desired reference value for the deflection is aninput to the com-
puter.

There are several different configurations that have different dynamics. Here
we will discuss a high-performance system from [SÅD+07] where the cantilever
base is positioned vertically using a piezo stack. We begin the modeling with a
simple experiment on the system. Figure3.16ashows a step response of a scanner
from the input voltageu to the power amplifier to the output voltagey of the signal
amplifier for the photodiode. This experiment captures the dynamics of the chain
of blocks fromu to y in the block diagram in Figure3.15. Figure3.16ashows that
the system responds quickly but that there is a poorly dampedoscillatory mode
with a period of about 35 µs. A primary task of the modeling is to understand the
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Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempts to keep the can-
tilever deflection equal to its reference value. Cantilever deflection is measured, amplified
and converted to a digital signal, then compared with its reference value. Acorrecting sig-
nal is generated by the computer, converted to analog form, amplified and sent to the piezo
element.

origin of the oscillatory behavior. To do so we will explore the system in more
detail.

The natural frequency of the clamped cantilever is typicallyseveral hundred
kilohertz, which is much higher than the observed oscillation of about 30 kHz.
As a first approximation we will model it as a static system. Since the deflections
are small, we can assume that the bendingϕ of the cantilever is proportional to the
difference in height between the cantilever tip at the probeand the piezo scanner. A
more accurate model can be obtained by modeling the cantilever as a spring–mass
system of the type discussed in Chapter2.

Figure3.16aalso shows that the response of the power amplifier is fast. The
photodiode and the signal amplifier also have fast responses and can thus be mod-
eled as static systems. The remaining block is a piezo system with suspension.
A schematic mechanical representation of the vertical motion of the scanner is
shown in Figure3.16b. We will model the system as two masses separated by an
ideal piezo element. The massm1 is half of the piezo system, and the massm2 is
the other half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crystalgenerates a force
F between the masses and that there is a dampingc in the spring. Let the positions
of the center of the masses bez1 andz2. A momentum balance gives the following
model for the system:

m1
d2z1

dt2
= F, m2

d2z2

dt2
=−c2

dz2

dt
−k2z2−F.

Let the elongation of the piezo elementl = z1 − z2 be the control variable and
the heightz1 of the cantilever base be the output. Eliminating the variable F in
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Figure 3.16: Modeling of an atomic force microscope. (a) A measured step response. The
top curve shows the voltageu applied to the drive amplifier (50 mV/div), the middle curve
is the outputVp of the power amplifier (500 mV/div) and the bottom curve is the outputy
of the signal amplifier (500 mV/div). The time scale is 25µs/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical positioner and the piezo
crystal.

equations above and substitutingz1− l for z2 gives the model

(m1+m2)
d2z1

dt2
+c2

dz1

dt
+k2z1 = m2

d2l
dt2

+c2
dl
dt

+k2l . (3.23)

Summarizing, we find that a simple model of the system is obtained by mod-
eling the piezo by (3.23) and all the other blocks by static models. Introducing
the linear equationsl = k3u andy = k4z1, we now have a complete model relat-
ing the outputy to the control signalu. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the power amplifier. As in the
previous examples, the concept of the uncertainty lemon in Figure2.15bprovides
a framework for describing the uncertainty: the model will be accurate up to the
frequencies of the fastest modeled modes and over a range of motion in which
linearized stiffness models can be used.

The experimental results in Figure3.16acan be explained qualitatively as fol-
lows. When a voltage is applied to the piezo, it expands byl0, the massm1 moves
up and the massm2 moves down instantaneously. The system settles after a poorly
damped oscillation.

It is highly desirable to design a control system for the vertical motion so
that it responds quickly with little oscillation. The instrument designer has sev-
eral choices: to accept the oscillation and have a slow response time, to design a
control system that can damp the oscillations or to redesignthe mechanics to give
resonances of higher frequency. The last two alternatives give a faster response and
faster imaging.

Since the dynamic behavior of the system changes with the properties of the
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sample, it is necessary to tune the feedback loop. In simple systems this is currently
done manually by adjusting parameters of a PI controller. There are interesting
possibilities for making AFM systems easier to use by introducing automatic tun-
ing and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamental to solid state physics, see
Kittel [Kit95]. The model discussed in this section is based on Schitter [Sch01].

3.6 Drug Administration

The phrase “Take two pills three times a day” is a recommendation with which we
are all familiar. Behind this recommendation is a solution of an open loop control
problem. The key issue is to make sure that the concentration of a medicine in
a part of the body is sufficiently high to be effective but not sohigh that it will
cause undesirable side effects. The control action is quantized,take two pills, and
sampled,every 8 hours. The prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and weight of the patient.

Drug administration is a control problem. To solve it we mustunderstand how
a drug spreads in the body after it is administered. This topic, calledpharmacoki-
netics, is now a discipline of its own, and the models used are calledcompart-
ment models. They go back to the 1920s when Widmark modeled the propagation
of alcohol in the body [WT24]. Compartment models are now important for the
screening of all drugs used by humans. The schematic diagram in Figure3.17il-
lustrates the idea of a compartment model. The body is viewed as a number of
compartments like blood plasma, kidney, liver and tissues that are separated by
membranes. It is assumed that there is perfect mixing so thatthe drug concentra-
tion is constant in each compartment. The complex transport processes are approx-
imated by assuming that the flow rates between the compartments are proportional
to the concentration differences in the compartments.

To describe the effect of a drug it is necessary to know both its concentration
and how it influences the body. The relation between concentration c and its effect
e is typically nonlinear. A simple model is

e=
c

c0+c
emax. (3.24)

The effect is linear for low concentrations, and it saturatesat high concentrations.
The relation can also be dynamic, and it is then calledpharmacodynamics.

Compartment Models

The simplest dynamic model for drug administration is obtained by assuming that
the drug is evenly distributed in a single compartment afterit has been adminis-
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Figure 3.17: Abstraction used to compartmentalize the body for the purpose of describing
drug distribution (based on Teorell [Teo37]). The body is abstracted by a number of com-
partments with perfect mixing, and the complex transport processes are approximated by
assuming that the flow is proportional to the concentration differences in the compartments.
The constantski parameterize the rates of flow between different compartments.

tered and that the drug is removed at a rate proportional to the concentration. The
compartments behave like stirred tanks with perfect mixing. Let c be the concen-
tration,V the volume andq the outflow rate. Converting the description of the
system into differential equations gives the model

V
dc
dt

=−qc, c≥ 0. (3.25)

This equation has the solutionc(t) = c0e−qt/V = c0e−kt, which shows that the con-
centration decays exponentially with the time constantT =V/q after an injection.
The input is introduced implicitly as an initial condition inthe model (3.25). More
generally, the way the input enters the model depends on how the drug is adminis-
tered. For example, the input can be represented as a mass flow into the compart-
ment where the drug is injected. A pill that is dissolved can also be interpreted as
an input in terms of a mass flow rate.

The model (3.25) is called a aone-compartment modelor asingle-pool model.
The parameterq/V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasma. Bymeasuring the con-
centration at a few times, the initial concentration can be obtained by extrapolation.
If the total amount of injected substance is known, the volumeV can then be de-
termined asV = m/c0; this volume is called theapparent volume of distribution.
This volume is larger than the real volume if the concentration in the plasma is
lower than in other parts of the body. The model (3.25) is very simple, and there
are large individual variations in the parameters. The parametersV andq are often
normalized by dividing by the weight of the person. Typical parameters for aspirin
areV = 0.2 L/kg andq= 0.01(L/h)/kg. These numbers can be compared with a
blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, an intracellular fluid
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Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compartment
model. Each compartment is labeled by its volume, and arrows indicate the flow of chemical
into, out of and between compartments. (b) A system with six compartmentsused to study
the metabolism of thyroid hormone [God83]. The notationki j denotes the transport from
compartmentj to compartmenti.

volume of 0.4 L/kg and an outflow of 0.0015 L/min/kg.
The simple one-compartment model captures the gross behavior of drug distri-

bution, but it is based on many simplifications. Improved models can be obtained
by considering the body as composed of several compartments. Examples of such
systems are shown in Figure3.18, where the compartments are represented as cir-
cles and the flows by arrows.

Modeling will be illustrated using the two-compartment model in Figure3.18a.
We assume that there is perfect mixing in each compartment and that the transport
between the compartments is driven by concentration differences. We further as-
sume that a drug with concentrationc0 is injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the output. Letc1 and
c2 be the concentrations of the drug in the compartments and letV1 andV2 be the
volumes of the compartments. The mass balances for the compartments are

V1
dc1

dt
= q(c2−c1)−q0c1+c0u, c1 ≥ 0,

V2
dc2

dt
= q(c1−c2), c2 ≥ 0,

y= c2.

(3.26)

Introducing the variablesk0 = q0/V1, k1 = q/V1, k2 = q/V2 andb0 = c0/V1 and
using matrix notation, the model can be written as

dc
dt

=


−k0−k1 k1

k2 −k2


c+


b0

0


u, y=


0 1


c. (3.27)
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Figure 3.19: Insulin–glucose dynamics. (a) Sketch of body parts involved in the control of
glucose. (b) Schematic diagram of the system. (c) Responses of insulinand glucose when
glucose in injected intravenously. From [PB86].

Comparing this model with its graphical representation in Figure3.18a, we find
that the mathematical representation (3.27) can be written by inspection.

It should also be emphasized that simple compartment modelssuch as the one
in equation (3.27) have a limited range of validity. Low-frequency limits exist be-
cause the human body changes with time, and since the compartment model uses
average concentrations, they will not accurately represent rapid changes. There are
also nonlinear effects that influence transportation between the compartments.

Compartment models are widely used in medicine, engineering and environ-
mental science. An interesting property of these systems isthat variables like con-
centration and mass are always positive. An essential difficulty in compartment
modeling is deciding how to divide a complex system into compartments. Com-
partment models can also be nonlinear, as illustrated in thenext section.

Insulin–glucose Dynamics

It is essential that the blood glucose concentration in the body is kept within a
narrow range (0.7–1.1 g/L). Glucose concentration is influenced by many factors
like food intake, digestion and exercise. A schematic picture of the relevant parts
of the body is shown in Figures3.19aandb.

There is a sophisticated mechanism that regulates glucose concentration. Glu-
cose concentration is maintained by the pancreas, which secretes the hormones
insulin and glucagon. Glucagon is released into the bloodstream when the glucose
level is low. It acts on cells in the liver that release glucose. Insulin is secreted
when the glucose level is high, and the glucose level is lowered by causing the
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liver and other cells to take up more glucose. In diseases like juvenile diabetes the
pancreas is unable to produce insulin and the patient must inject insulin into the
body to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are complicated; dynamics
with time scales that range from seconds to hours have been observed. Models of
different complexity have been developed. The models are typically tested with
data from experiments where glucose is injected intravenously and insulin and
glucose concentrations are measured at regular time intervals.

A relatively simple model called theminimal modelwas developed by Bergman
and coworkers [Ber89]. This models uses two compartments, one representing the
concentration of glucose in the bloodstream and the other representing the concen-
tration of insulin in the interstitial fluid. Insulin in the bloodstream is considered
an input. The reaction of glucose to insulin can be modeled by the equations

dx1

dt
=−(p1+x2)x1+ p1ge,

dx2

dt
=−p2x2+ p3(u− ie), (3.28)

wherege and ie represent the equilibrium values of glucose and insulin,x1 is the
concentration of glucose andx2 is proportional to the concentration of interstitial
insulin. Notice the presence of the termx2x1 in the first equation. Also notice
that the model does not capture the complete feedback loop because it does not
describe how the pancreas reacts to the glucose. Figure3.19cshows a fit of the
model to a test on a normal person where glucose was injected intravenously at
timet = 0. The glucose concentration rises rapidly, and the pancreasresponds with
a rapid spikelike injection of insulin. The glucose and insulin levels then gradually
approach the equilibrium values.

Models of the type in equation (3.28) and more complicated models having
many compartments have been developed and fitted to experimental data. A diffi-
culty in modeling is that there are significant variations in model parameters over
time and for different patients. For example, the parameterp1 in equation (3.28)
has been reported to vary with an order of magnitude for healthy individuals. The
models have been used for diagnosis and to develop schemes for the treatment
of persons with diseases. Attempts to develop a fully automatic artificial pancreas
have been hampered by the lack of reliable sensors.

The papers by Widmark and Tandberg [WT24] and Teorell [Teo37] are classics
in pharmacokinetics, which is now an established discipline with many textbooks
[Dos68, Jac72, GP82]. Because of its medical importance, pharmacokinetics is
now an essential component of drug development. The book by Riggs [Rig63] is a
good source for the modeling of physiological systems, and amore mathematical
treatment is given in [KS01]. Compartment models are discussed in [God83]. The
problem of determining rate coefficients from experimental data is discussed in
[BÅ70] and [God83]. There are many publications on the insulin–glucose model.
The minimal model is discussed in [CT84, Ber89] and more recent references are
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[MLK06, FCF+06].

3.7 Population Dynamics

Population growth is a complex dynamic process that involvesthe interaction of
one or more species with their environment and the larger ecosystem. The dynam-
ics of population groups are interesting and important in many different areas of
social and environmental policy. There are examples where new species have been
introduced into new habitats, sometimes with disastrous results. There have also
been attempts to control population growth both through incentives and through
legislation. In this section we describe some of the models that can be used to un-
derstand how populations evolve with time and as a function of their environments.

Logistic Growth Model

Let x be the population of a species at timet. A simple model is to assume that the
birth rates and mortality rates are proportional to the total population. This gives
the linear model

dx
dt

= bx−dx= (b−d)x= rx, x≥ 0, (3.29)

where birth rateb and mortality rated are parameters. The model gives an ex-
ponential increase ifb > d or an exponential decrease ifb < d. A more realistic
model is to assume that the birth rate decreases when the population is large. The
following modification of the model (3.29) has this property:

dx
dt

= rx(1− x
k
), x≥ 0, (3.30)

wherek is thecarrying capacityof the environment. The model (3.30) is called
the logistic growth model.

Predator–Prey Models

A more sophisticated model of population dynamics includesthe effects of com-
peting populations, where one species may feed on another. This situation, referred
to as thepredator–prey problem, was introduced in Example2.3, where we devel-
oped a discrete-time model that captured some of the features of historical records
of lynx and hare populations.

In this section, we replace the difference equation model used there with a more
sophisticated differential equation model. LetH(t) represent the number of hares
(prey) and letL(t) represent the number of lynxes (predator). The dynamics of the
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system are modeled as

dH
dt

= rH

(
1− H

k

)
− aHL

c+H
, H ≥ 0,

dL
dt

= b
aHL
c+H

−dL, L ≥ 0.

(3.31)

In the first equation,r represents the growth rate of the hares,k represents the
maximum population of the hares (in the absence of lynxes),a represents the in-
teraction term that describes how the hares are diminished as a function of the lynx
population andc controls the prey consumption rate for low hare population.In the
second equation,b represents the growth coefficient of the lynxes andd represents
the mortality rate of the lynxes. Note that the hare dynamicsinclude a term that
resembles the logistic growth model (3.30).

Of particular interest are the values at which the population values remain con-
stant, calledequilibrium points. The equilibrium points for this system can be de-
termined by setting the right-hand side of the above equations to zero. LettingHe

andLe represent the equilibrium state, from the second equation we have

Le = 0 or H∗
e =

cd
ab−d

. (3.32)

Substituting this into the first equation, we have that forLe = 0 eitherHe = 0 or
He = k. ForLe 6= 0, we obtain

L∗
e =

rHe(c+He)

aHe

(
1− He

k

)
=

bcr(abk−cd−dk)
(ab−d)2k

. (3.33)

Thus, we have three possible equilibrium pointsxe = (Le,He):

xe =


0

0


 , xe =


k

0


 , xe =


H∗

e
L∗

e


 ,

whereH∗
e andL∗

e are given in equations (3.32) and (3.33). Note that the equilib-
rium populations may be negative for some parameter values,corresponding to a
nonachievable equilibrium point.

Figure3.20shows a simulation of the dynamics starting from a set of popula-
tion values near the nonzero equilibrium values. We see thatfor this choice of pa-
rameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure2.6.

Volume I of the two-volume set by J. D. Murray [Mur04] give a broad coverage
of population dynamics.
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Figure 3.20: Simulation of the predator–prey system. The figure on the left shows a simu-
lation of the two populations as a function of time. The figure on the right shows the pop-
ulations plotted against each other, starting from different values of the population. The
oscillation seen in both figures is an example of alimit cycle. The parameter values used for
the simulations area= 3.2, b= 0.6, c= 50,d = 0.56,k= 125 andr = 1.6.

Exercises

3.1 (Cruise control) Consider the cruise control example described in Section3.1.
Build a simulation that re-creates the response to a hill shown in Figure3.3band
show the effects of increasing and decreasing the mass of thecar by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of thehill.

3.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
tion (3.5) can be approximated in state space form as

d
dt


x1

x2


=


 0 1

mgh/J 0




x1

x2


+


 Dv0/(bJ)

mv2
0h/(bJ)


u,

y=

1 0


x,

where the inputu is the steering angleδ and the outputy is the tilt angleϕ. What
do the statesx1 andx2 represent?

3.3 (Bicycle steering) Combine the bicycle model given by equation (3.5) and the
model for steering kinematics in Example2.8 to obtain a model that describes the
path of the center of mass of the bicycle.

3.4 (Operational amplifier circuit) Consider the op amp circuit shown below.
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Show that the dynamics can be written in state space form as

dx
dt

=




− 1
R1C1

− 1
RaC1

0

Rb

Ra

1
R2C2

− 1
R2C2




x+




1
R1C1

0




u, y =

0 1


x,

whereu= v1 andy= v3. (Hint: Usev2 andv3 as your state variables.)

3.5(Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

−

+

−

+

−

+ v1v3v2

R1R3R2

R4C2 C1

Show that the dynamics can be written in state space form as

dx
dt

=




0
R4

R1R3C1

− 1
R2C2

0




x,

where the state variables represent the voltages across thecapacitorsx1 = v1 and
x2 = v2.

3.6 (Congestion control using RED [LPW+02]) A number of improvements can
be made to the model for Internet congestion control presented in Section3.4.
To ensure that the router’s buffer size remains positive, wecan modify the buffer
dynamics to satisfy

dbl

dt
=

{
sl −cl bl > 0

sat(0,∞)(sl −cl ) bl = 0.

In addition, we can model the drop probability of a packet based on how close we
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are to the buffer limits, a mechanism known as random early detection (RED):

pl = ml (al ) =





0 al (t)≤ blower
l

ρl r i(t)−ρl blower
l blower

l < al (t)< bupper
l

ηl r i(t)− (1−2bupper
l ) bupper

l ≤ al (t)< 2bupper
l

1 al (t)≥ 2bupper
l ,

dal

dt
=−αl cl (al −bl ),

whereαl , bupper
l , blower

l andpupper
l are parameters for the RED protocol.

Using the model above, write a simulation for the system and find a set of
parameter values for which there is a stable equilibrium point and a set for which
the system exhibits oscillatory solutions. The following sets of parameters should
be explored:

N = 20,30, . . . ,60, blower
l = 40 pkts, ρl = 0.1,

c= 8,9, . . . ,15 pkts/ms, bupper
l = 540 pkts, αl = 10−4,

τ = 55,60, . . . ,100 ms.

3.7 (Atomic force microscope with piezo tube) A schematic diagram of an AFM
where the vertical scanner is a piezo tube with preloading isshown below.

m1

k1

m2

c1

k2 c2

F

F

Show that the dynamics can be written as

(m1+m2)
d2z1

dt2
+(c1+c2)

dz1

dt
+(k1+k2)z1 = m2

d2l
dt2

+c2
dl
dt

+k2l .

Are there parameter values that make the dynamics particularly simple?

3.8 (Drug administration) The metabolism of alcohol in the body can be modeled
by the nonlinear compartment model

Vb
dcb

dt
= q(cl −cb)+qiv, Vl

dcl

dt
= q(cb−cl )−qmax

cl

c0+cl
+qgi,
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whereVb = 48 L andVl = 0.6 L are the apparent volumes of distribution of body
water and liver water,cb andcl are the concentrations of alcohol in the compart-
ments,qiv andqgi are the injection rates for intravenous and gastrointestinal in-
take,q = 1.5 L/min is the total hepatic blood flow,qmax = 2.75 mmol/min and
c0 = 0.1 mmol/L. Simulate the system and compute the concentrationin the blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9 (Population dynamics) Consider the model for logistic growth given by equa-
tion (3.30). Show that the maximum growth rate occurs when the size of thepop-
ulation is half of the steady-state value.

3.10 (Fisheries management) The dynamics of a commercial fishery canbe de-
scribed by the following simple model:

dx
dt

= f (x)−h(x,u), y= bh(x,u)−cu

wherex is the total biomass,f (x) = rx(1−x/k) is the growth rate andh(x,u)= axu
is the harvesting rate. The outputy is the rate of revenue, and the parametersa, b
andc are constants representing the price of fish and the cost of fishing. Show that
there is an equilibrium where the steady-state biomass isxe = c/(ab). Compare
with the situation when the biomass is regulated to a constant value and find the
maximum sustainable return in that case.



Chapter Four
Dynamic Behavior

It Don’t Mean a Thing If It Ain’t Got That Swing.

Duke Ellington (1899–1974)

In this chapter we present a broad discussion of the behaviorof dynamical sys-
tems focused on systems modeled by nonlinear differential equations. This allows
us to consider equilibrium points, stability, limit cyclesand other key concepts in
understanding dynamic behavior. We also introduce some methods for analyzing
the global behavior of solutions.

4.1 Solving Differential Equations

In the last two chapters we saw that one of the methods of modeling dynamical
systems is through the use of ordinary differential equations (ODEs). A state space,
input/output system has the form

dx
dt

= f (x,u), y= h(x,u), (4.1)

wherex= (x1, . . . ,xn)∈R
n is the state,u∈R

p is the input andy∈R
q is the output.

The smooth mapsf : Rn×R
p →R

n andh : Rn×R
p →R

q represent the dynamics
and measurements for the system. In general, they can be nonlinear functions of
their arguments. We will sometimes focus on single-input, single-output (SISO)
systems, for whichp= q= 1.

We begin by investigating systems in which the input has beenset to a function
of the state,u= α(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equations in this case become

dx
dt

= f (x,α(x)) =: F(x). (4.2)

To understand the dynamic behavior of this system, we need toanalyze the
features of the solutions of equation (4.2). While in some simple situations we can
write down the solutions in analytical form, often we must rely on computational
approaches. We begin by describing the class of solutions for this problem.

We say thatx(t) is a solution of the differential equation (4.2) on the time
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intervalt0 ∈ R to t f ∈ R if

dx(t)
dt

= F(x(t)) for all t0 < t < t f .

A given differential equation may have many solutions. We will most often be
interested in theinitial value problem, wherex(t) is prescribed at a given time
t0 ∈ R and we wish to find a solution valid for allfuturetime t > t0.

We say thatx(t) is a solution of the differential equation (4.2) with initial value
x0 ∈ R

n at t0 ∈ R if

x(t0) = x0 and
dx(t)

dt
= F(x(t)) for all t0 < t < t f .

For most differential equations we will encounter, there isauniquesolution that is
defined fort0 < t < t f . The solution may be defined for all timet > t0, in which
case we taket f = ∞. Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to this simply as the solution
of an ODE.

We will typically assume thatt0 is equal to 0. In the case whenF is independent
of time (as in equation (4.2)), we can do so without loss of generality by choosing
a new independent (time) variable,τ = t − t0 (Exercise4.1).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of the form

q̈+2ζ ω0q̇+ω2
0q= 0,

whereq is the displacement of the oscillator from its rest position. These dynamics
are equivalent to those of a spring–mass system, as shown in Exercise2.6. We
assume thatζ < 1, corresponding to a lightly damped system (the reason for this
particular choice will become clear later). We can rewrite this in state space form
by settingx1 = q andx2 = q̇/ω0, giving

dx1

dt
= ω0x2,

dx2

dt
=−ω0x1−2ζ ω0x2.

In vector form, the right-hand side can be written as

F(x) =


 ω0x2
−ω0x1−2ζ ω0x2


 .

The solution to the initial value problem can be written in a number of different
ways and will be explored in more detail in Chapter5. Here we simply assert that
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Figure 4.1: Response of the damped oscillator to the initial conditionx0 = (1,0). The solu-
tion is unique for the given initial conditions and consists of an oscillatory solution for each
state, with an exponentially decaying magnitude.

the solution can be written as

x1(t) = e−ζ ω0t
(

x10cosωdt +
1

ωd
(ω0ζx10+x20)sinωdt

)
,

x2(t) = e−ζ ω0t
(

x20cosωdt − 1
ωd

(ω2
0x10+ω0ζx20)sinωdt

)
,

wherex0 = (x10,x20) is the initial condition andωd = ω0

√
1−ζ 2. This solution

can be verified by substituting it into the differential equation. We see that the so-
lution is explicitly dependent on the initial condition, and it can be shown that this
solution is unique. A plot of the initial condition responseis shown in Figure4.1.
We note that this form of the solution holds only for 0< ζ < 1, corresponding to
an “underdamped” oscillator. ∇

�
Without imposing some mathematical conditions on the function F , the differ-

ential equation (4.2) may not have a solution for allt, and there is no guarantee
that the solution is unique. We illustrate these possibilities with two examples.

Example 4.2 Finite escape time
Let x∈ R and consider the differential equation

dx
dt

= x2 (4.3)

with the initial conditionx(0) = 1. By differentiation we can verify that the func-
tion

x(t) =
1

1− t

satisfies the differential equation and that it also satisfies the initial condition. A
graph of the solution is given in Figure4.2a; notice that the solution goes to infinity
as t goes to 1. We say that this system hasfinite escape time. Thus the solution
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Figure 4.2: Existence and uniqueness of solutions. Equation (4.3) has a solution only for
time t < 1, at which point the solution goes to∞, as shown in (a). Equation (4.4) is an
example of a system with many solutions, as shown in (b). For each value of a, we get a
different solution starting from the same initial condition.

exists only in the time interval 0≤ t < 1. ∇

Example 4.3 Nonunique solution
Let x∈ R and consider the differential equation

dx
dt

= 2
√

x (4.4)

with initial conditionx(0) = 0. We can show that the function

x(t) =

{
0 if 0 ≤ t ≤ a

(t −a)2 if t > a

satisfies the differential equation for all values of the parametera≥ 0. To see this,
we differentiatex(t) to obtain

dx
dt

=

{
0 if 0 ≤ t ≤ a

2(t −a) if t > a,

and hence ˙x = 2
√

x for all t ≥ 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure4.2b. Notice that in this case there are many solutions
to the differential equation. ∇

These simple examples show that there may be difficulties even with simple
differential equations. Existence and uniqueness can be guaranteed by requiring
that the functionF have the property that for some fixedc∈ R,

‖F(x)−F(y)‖< c‖x−y‖ for all x,y,

which is calledLipschitz continuity. A sufficient condition for a function to be
Lipschitz is that the Jacobian∂F/∂x is uniformly bounded for allx. The difficulty
in Example4.2 is that the derivative∂F/∂x becomes large for largex, and the
difficulty in Example4.3 is that the derivative∂F/∂x is infinite at the origin.
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Figure 4.3: Phase portraits. (a) This plot shows the vector field for a planar dynamical sys-
tem. Each arrow shows the velocity at that point in the state space. (b) Thisplot includes the
solutions (sometimes called streamlines) from different initial conditions, with the vector
field superimposed.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is important in understanding some
of the key concepts of stability in nonlinear dynamics. We will focus on an im-
portant class of systems known as planar dynamical systems.These systems have
two state variablesx ∈ R

2, allowing their solutions to be plotted in the(x1,x2)
plane. The basic concepts that we describe hold more generally and can be used to
understand dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems with state
x∈ R

2 is to plot the phase portrait of the system, briefly introducedin Chapter2.
We start by introducing the concept of avector field. For a system of ordinary
differential equations

dx
dt

= F(x),

the right-hand side of the differential equation defines at every x ∈ R
n a velocity

F(x) ∈R
n. This velocity tells us howx changes and can be represented as a vector

F(x) ∈ R
n.

For planar dynamical systems, each state corresponds to a point in the plane and
F(x) is a vector representing the velocity of that state. We can plot these vectors
on a grid of points in the plane and obtain a visual image of thedynamics of the
system, as shown in Figure4.3a. The points where the velocities are zero are of
particular interest since they define stationary points of the flow: if we start at such
a state, we stay at that state.
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A phase portraitis constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a set of initial conditions, we
plot the solution of the differential equation in the planeR

2. This corresponds to
following the arrows at each point in the phase plane and drawing the resulting tra-
jectory. By plotting the solutions for several different initial conditions, we obtain
a phase portrait, as show in Figure4.3b. Phase portraits are also sometimes called
phase plane diagrams.

Phase portraits give insight into the dynamics of the system by showing the so-
lutions plotted in the (two-dimensional) state space of thesystem. For example, we
can see whether all trajectories tend to a single point as time increases or whether
there are more complicated behaviors. In the example in Figure4.3, corresponding
to a damped oscillator, the solutions approach the origin for all initial conditions.
This is consistent with our simulation in Figure4.1, but it allows us to infer the
behavior for all initial conditions rather than a single initial condition. However,
the phase portrait does not readily tell us the rate of changeof the states (although
this can be inferred from the lengths of the arrows in the vector field plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a statexe is an equilibrium point for a dynamical system

dx
dt

= F(x)

if F(xe) = 0. If a dynamical system has an initial conditionx(0) = xe, then it will
stay at the equilibrium point:x(t) = xe for all t ≥ 0, where we have takent0 = 0.

Equilibrium points are one of the most important features of adynamical sys-
tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figure4.4, which is a part of the balance system
we considered in Chapter2. The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at the base of the rocket, we
seek to keep the rocket stabilized in the upright position. The state variables are
the angleθ = x1 and the angular velocitydθ/dt = x2, the control variable is the
accelerationu of the pivot and the output is the angleθ .

For simplicity we assume thatmgl/Jt = 1 andl/Jt = 1, so that the dynamics
(equation (2.10)) become

dx
dt

=


 x2

sinx1−cx2+ucosx1


 . (4.5)

This is a nonlinear time-invariant system of second order. This same set of equa-
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a model
for a class of balance systems in which we wish to keep a system upright, such as a rocket (a).
Using a simplified model of an inverted pendulum (b), we can develop a phase portrait that
shows the dynamics of the system (c). The system has multiple equilibrium points, marked
by the solid dots along thex2 = 0 line.

tions can also be obtained by appropriate normalization of the system dynamics as
illustrated in Example2.7.

We consider the open loop dynamics by settingu= 0. The equilibrium points
for the system are given by

xe =


±nπ

0


 ,

wheren= 0,1,2, . . . . The equilibrium points forn even correspond to the pendu-
lum pointing up and those forn odd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inputs)is shown in Figure4.4c.
The phase portrait shows−2π ≤ x1 ≤ 2π, so five of the equilibrium points are
shown. ∇

Nonlinear systems can exhibit rich behavior. Apart from equilibria they can
also exhibit stationary periodic solutions. This is of greatpractical value in gen-
erating sinusoidally varying voltages in power systems or in generating periodic
signals for animal locomotion. A simple example is given in Exercise4.12, which
shows the circuit diagram for an electronic oscillator. A normalized model of the
oscillator is given by the equation

dx1

dt
= x2+x1(1−x2

1−x2
2),

dx2

dt
=−x1+x2(1−x2

1−x2
2). (4.6)

The phase portrait and time domain solutions are given in Figure 4.5. The figure
shows that the solutions in the phase plane converge to a circular trajectory. In the
time domain this corresponds to an oscillatory solution. Mathematically the circle
is called alimit cycle. More formally, we call an isolated solutionx(t) a limit cycle
of periodT > 0 if x(t +T) = x(t) for all t ∈ R.



4.3. STABILITY 109

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x
2

(a)

0 10 20 30
−2

−1

0

1

2

Time t

x 1, x
2

 

 
x

1
x

2

(b)

Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different initial conditions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) shows a single solution
plotted as a function of time, with the limit cycle corresponding to a steady oscillation of
fixed amplitude.

There are methods for determining limit cycles for second-order systems, but
for general higher-order systems we have to resort to computational analysis. Com-
puter algorithms find limit cycles by searching for periodic trajectories in state
space that satisfy the dynamics of the system. In many situations, stable limit cy-
cles can be found by simulating the system with different initial conditions.

4.3 Stability

The stability of a solution determines whether or not solutions nearby the solution
remain close, get closer or move further away. We now give a formal definition of
stability and describe tests for determining whether a solution is stable.

Definitions

Let x(t;a) be a solution to the differential equation with initial condition a. A
solution isstableif other solutions that start neara stay close tox(t;a). Formally,
we say that the solutionx(t;a) is stable if for allε > 0, there exists aδ > 0 such
that

‖b−a‖< δ =⇒ ‖x(t;b)−x(t;a)‖< ε for all t > 0.

Note that this definition does not imply thatx(t;b) approachesx(t;a) as time in-
creases but just that it stays nearby. Furthermore, the valueof δ may depend on
ε, so that if we wish to stay very close to the solution, we may have to start very,
very close (δ ≪ ε). This type of stability, which is illustrated in Figure4.6, is also
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Figure 4.6: Illustration of Lyapunov’s concept of a stable solution. The solution represented
by the solid line is stable if we can guarantee that all solutions remain within a tubeof
diameterε by choosing initial conditions sufficiently close the solution.

calledstability in the sense of Lyapunov. If a solution is stable in this sense and the
trajectories do not converge, we say that the solution isneutrally stable.

An important special case is when the solutionx(t;a) = xe is an equilibrium
solution. Instead of saying that the solution is stable, we simply say that the equi-
librium point is stable. An example of a neutrally stable equilibrium point is shown
in Figure4.7. From the phase portrait, we see that if we start near the equilibrium
point, then we stay near the equilibrium point. Indeed, for this example, given any
ε that defines the range of possible initial conditions, we can simply chooseδ = ε
to satisfy the definition of stability since the trajectoriesare perfect circles.

A solutionx(t;a) is asymptotically stableif it is stable in the sense of Lyapunov
and alsox(t;b) → x(t;a) ast → ∞ for b sufficiently close toa. This corresponds
to the case where all nearby trajectories converge to the stable solution for large
time. Figure4.8 shows an example of an asymptotically stable equilibrium point.
Note from the phase portraits that not only do all trajectories stay near the equi-
librium point at the origin, but that they also all approach the origin ast gets large
(the directions of the arrows on the phase portrait show the direction in which the
trajectories move).

A solutionx(t;a) is unstableif it is not stable. More specifically, we say that a
solutionx(t;a) is unstable if given someε > 0, there doesnot exist aδ > 0 such
that if ‖b−a‖< δ , then‖x(t;b)−x(t;a)‖< ε for all t. An example of an unstable
equilibrium point is shown in Figure4.9.

The definitions above are given without careful description oftheir domain of
applicability. More formally, we define a solution to belocally stable(or locally
asymptotically stable) if it is stable for all initial conditionsx∈ Br(a), where

Br(a) = {x : ‖x−a‖< r}
is a ball of radiusr arounda and r > 0. A system isglobally stableif it is sta-
ble for all r > 0. Systems whose equilibrium points are only locally stable can
have interesting behavior away from equilibrium points, aswe explore in the next
section.

For planar dynamical systems, equilibrium points have beenassigned names
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium pointxe at the origin is stable since all trajectories that
start nearxe stay nearxe.
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Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium pointxe at the origin is asymptotically stable
since the trajectories converge to this point ast → ∞.
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium pointxe at the origin is unstable since not all trajectories
that start nearxe stay nearxe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.
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(a) ρ = 2×10−4, c= 10 pkts/ms
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(b) ρ = 4×10−4, c= 20 pkts/ms

Figure 4.10:Phase portraits for a congestion control protocol running withN = 60 identical
source computers. The equilibrium values correspond to a fixed windowat the source, which
results in a steady-state buffer size and corresponding transmission rate. A faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes anattractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if
some trajectories lead to the equilibrium point and others move away (this is the
situation pictured in Figure4.9). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as theone in Figure4.7) is called
acenter.

Example 4.5 Congestion control
The model for congestion control in a network consisting ofN identical computers
connected to a single router, introduced in Section3.4, is given by

dw
dt

=
c
b
−ρc

(
1+

w2

2

)
,

db
dt

= N
wc
b

−c,

wherew is the window size andb is the buffer size of the router. Phase portraits are
shown in Figure4.10for two different sets of parameter values. In each case we see
that the system converges to an equilibrium point in which the buffer is below its
full capacity of 500 packets. The equilibrium size of the buffer represents a balance
between the transmission rates for the sources and the capacity of the link. We see
from the phase portraits that the equilibrium points are asymptotically stable since
all initial conditions result in trajectories that converge to these points. ∇
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Stability of Linear Systems

A linear dynamical system has the form

dx
dt

= Ax, x(0) = x0, (4.7)

whereA ∈ R
n×n is a square matrix, corresponding to the dynamics matrix of a

linear control system (2.6). For a linear system, the stability of the equilibrium at
the origin can be determined from the eigenvalues of the matrix A:

λ (A) = {s∈ C : det(sI−A) = 0}.
The polynomial det(sI−A) is thecharacteristic polynomialand the eigenvalues
are its roots. We use the notationλ j for the jth eigenvalue ofA, so thatλ j ∈ λ (A).
In generalλ can be complex-valued, although ifA is real-valued, then for any
eigenvalueλ , its complex conjugateλ ∗ will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stability of a linear system
depends only on the matrixA, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whosesystem matrices
are in diagonal form. In this case, the dynamics have the form

dx
dt

=




λ1 0
λ2

. . .
0 λn




x. (4.8)

It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms ofn individual systems ˙x j = λ jx j .
Each of these scalar solutions is of the form

x j(t) = eλ j tx j(0).

We see that the equilibrium pointxe = 0 is stable ifλ j ≤ 0 and asymptotically
stable ifλ j < 0.

Another simple case is when the dynamics are in the block diagonal form

dx
dt

=




σ1 ω1 0 0
−ω1 σ1 0 0

0 0
...

...
...

0 0 σm ωm

0 0 −ωm σm




x.

In this case, the eigenvalues can be shown to beλ j = σ j ± iω j . We once again can
separate the state trajectories into independent solutions for each pair of states, and
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the solutions are of the form

x2 j−1(t) = eσ j t
(
x2 j−1(0)cosω jt +x2 j(0)sinω jt

)
,

x2 j(t) = eσ j t
(
−x2 j−1(0)sinω jt +x2 j(0)cosω jt

)
,

where j = 1,2, . . . ,m. We see that this system is asymptotically stable if and only
if σ j = Reλ j < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems can
be transformed into these forms via coordinate transformations. One such class of
systems is those for which the dynamics matrix has distinct (nonrepeating) eigen-
values. In this case there is a matrixT ∈ R

n×n such that the matrixTAT−1 is
in (block) diagonal form, with the block diagonal elements corresponding to the
eigenvalues of the original matrixA (see Exercise4.14). If we choose new coordi-
natesz= Tx, then

dz
dt

= Tẋ= TAx= TAT−1z

and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as the original system since if
v is an eigenvector ofA, thenw= Tvcan be shown to be an eigenvector ofTAT−1.
We can reason about the stability of the original system by noting that x(t) =
T−1z(t), and so if the transformed system is stable (or asymptotically stable), then
the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the sta-
bility of the system can be completely determined by examining the real part of
the eigenvalues of the dynamics matrix. For more general systems, we make use
of the following theorem, proved in the next chapter:

Theorem 4.1(Stability of a linear system). The system

dx
dt

= Ax

is asymptotically stable if and only if all eigenvalues of A all have a strictly neg-
ative real part and is unstable if any eigenvalue of A has a strictly positive real
part.

Example 4.6 Compartment model
Consider the two-compartment module for drug delivery introduced in Section3.6.
Using concentrations as state variables and denoting the state vector byx, the sys-
tem dynamics are given by

dx
dt

=


−k0−k1 k1

k2 −k2


x+


b0

0


u, y=


0 1


x,

where the inputu is the rate of injection of a drug into compartment 1 and the
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concentration of the drug in compartment 2 is the measured output y. We wish to
design a feedback control law that maintains a constant output given byy= yd.

We choose an output feedback control law of the form

u=−k(y−yd)+ud,

whereud is the rate of injection required to maintain the desired concentration
andk is a feedback gain that should be chosen such that the closed loop system is
stable. Substituting the control law into the system, we obtain

dx
dt

=


−k0−k1 k1−b0k

k2 −k2


x+


b0

0


(ud +kyd) =: Ax+Bue,

y=

0 1


x=: Cx.

The equilibrium concentrationxe ∈ R
2 is given byxe =−A−1Bue and

ye =−CA−1Bue =
b0k2

k0k2+b0k2k
(ud +kyd).

Choosingud such thatye = yd provides the constant rate of injection required to
maintain the desired output. We can now shift coordinates toplace the equilibrium
point at the origin, which yields (after some algebra)

dz
dt

=


−k0−k1 k1−b0k

k2 −k2


z,

wherez= x− xe. We can now apply the results of Theorem4.1 to determine the
stability of the system. The eigenvalues of the system are given by the roots of the
characteristic polynomial

λ (s) = s2+(k0+k1+k2)s+(k0k2+b0k2k).

While the specific form of the roots is messy, it can be shown that the roots have
negative real part as long as the linear term and the constantterm are both positive
(Exercise4.16). Hence the system is stable for anyk> 0. ∇

Stability Analysis via Linear Approximation

An important feature of differential equations is that it isoften possible to deter-
mine the local stability of an equilibrium point by approximating the system by a
linear system. The following example illustrates the basic idea.

Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dx
dt

=


 x2

sinx1− γx2


 ,
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Figure 4.11:Comparison between the phase portraits for the full nonlinear systems (a) and
its linear approximation around the origin (b). Notice that near the equilibriumpoint at the
center of the plots, the phase portraits (and hence the dynamics) are almost identical.

where we have defined the state asx = (θ , θ̇). We first consider the equilibrium
point atx= (0,0), corresponding to the straight-up position. If we assume that the
angleθ = x1 remains small, then we can replace sinx1 with x1 and cosx1 with 1,
which gives the approximate system

dx
dt

=


 x2

x1− γx2


=


0 1

1 −γ


x. (4.9)

Intuitively, this system should behave similarly to the more complicated model
as long asx1 is small. In particular, it can be verified that the equilibrium point
(0,0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable equilibrium point at
x=(π,0). In this case we have to expand sinx1 and cosx1 aroundx1= π, according
to the expansions

sin(π +θ) =−sinθ ≈−θ , cos(π +θ) =−cos(θ)≈−1.

If we definez1 = x1−π andz2 = x2, the resulting approximate dynamics are given
by

dz
dt

=


 z2
−z1− γ z2


=


 0 1
−1 −γ


z. (4.10)

Note thatz= (0,0) is the equilibrium point for this system and that it has the same
basic form as the dynamics shown in Figure4.8. Figure4.11shows the phase por-
traits for the original system and the approximate system around the corresponding
equilibrium points. Note that they are very similar, although not exactly the same.
It can be shown that if a linear approximation has either asymptotically stable or
unstable equilibrium points, then the local stability of the original system must be
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the same (Theorem4.3). ∇
More generally, suppose that we have a nonlinear system

dx
dt

= F(x)

that has an equilibrium point atxe. Computing the Taylor series expansion of the
vector field, we can write

dx
dt

= F(xe)+
∂F
∂x

∣∣∣∣
xe

(x−xe)+higher-order terms in(x−xe).

SinceF(xe) = 0, we can approximate the system by choosing a new state variable
z= x−xe and writing

dz
dt

= Az, where A=
∂F
∂x

∣∣∣∣
xe

. (4.11)

We call the system (4.11) thelinear approximationof the original nonlinear system
or thelinearizationatxe.

The fact that a linear model can be used to study the behavior ofa nonlin-
ear system near an equilibrium point is a powerful one. Indeed, we can take this
even further and use a local linear approximation of a nonlinear system to design
a feedback law that keeps the system near its equilibrium point (design of dy-
namics). Thus, feedback can be used to make sure that solutions remain close to
the equilibrium point, which in turn ensures that the linearapproximation used to
stabilize it is valid.

Linear approximations can also be used to understand the stability of nonequi-
librium solutions, as illustrated by the following example.

Example 4.8 Stable limit cycle
Consider the system given by equation (4.6),

dx1

dt
= x2+x1(1−x2

1−x2
2),

dx2

dt
=−x1+x2(1−x2

1−x2
2),

whose phase portrait is shown in Figure4.5. The differential equation has a peri-
odic solution

x1(t) = x1(0)cost +x2(0)sint, (4.12)

with x2
1(0)+x2

2(0) = 1.
To explore the stability of this solution, we introduce polar coordinatesr and

ϕ, which are related to the state variablesx1 andx2 by

x1 = r cosϕ, x2 = r sinϕ.

Differentiation gives the following linear equations for ˙r andϕ̇:

ẋ1 = ṙ cosϕ − rϕ̇ sinϕ, ẋ2 = ṙ sinϕ + rϕ̇ cosϕ.
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Solving this linear system for ˙r andϕ̇ gives, after some calculation,

dr
dt

= r(1− r2),
dϕ
dt

=−1.

Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation forr has three equilibria:r = 0, r = 1 andr = −1 (not realiz-
able sincer must be positive). We can analyze the stability of these equilibria by
linearizing the radial dynamics withF(r) = r(1− r2). The corresponding linear
dynamics are given by

dr
dt

=
∂F
∂ r

∣∣∣∣
re

r = (1−3r2
e)r, re = 0, 1,

where we have abused notation and usedr to represent the deviation from the
equilibrium point. It follows from the sign of(1−3r2

e) that the equilibriumr = 0
is unstable and the equilibriumr = 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes tor = 1 as time goes to infinity, but if the system
starts withr = 0, it will remain at the equilibrium for all times. This implies that
all solutions to the original system that do not start atx1 = x2 = 0 will approach
the circlex2

1+x2
2 = 1 as time increases.

To show the stability of the full solution (4.12), we must investigate the be-
havior of neighboring solutions with different initial conditions. We have already
shown that the radiusr will approach that of the solution (4.12) as long asr(0)> 0.
The equation for the angleϕ can be integrated analytically to giveϕ(t) = −t +
ϕ(0), which shows that solutions starting at different anglesϕ will neither con-
verge nor diverge. Thus, the unit circle isattracting, but the solution (4.12) is only
stable, not asymptotically stable. The behavior of the system is illustrated by the
simulation in Figure4.12. Notice that the solutions approach the circle rapidly, but
that there is a constant phase shift between the solutions. ∇

4.4 Lyapunov Stability Analysis
�

We now return to the study of the full nonlinear system

dx
dt

= F(x), x∈ R
n. (4.13)

Having defined when a solution for a nonlinear dynamical system is stable, we
can now ask how to prove that a given solution is stable, asymptotically stable
or unstable. For physical systems, one can often argue aboutstability based on
dissipation of energy. The generalization of that techniqueto arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.
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Figure 4.12:Solution curves for a stable limit cycle. The phase portrait on the left shows that
the trajectory for the system rapidly converges to the stable limit cycle. The starting points
for the trajectories are marked by circles in the phase portrait. The time domain plots on
the right show that the states do not converge to the solution but instead maintain a constant
phase error.

In this section we will describe techniques for determiningthe stability of so-
lutions for a nonlinear system (4.13). We will generally be interested in stability
of equilibrium points, and it will be convenient to assume that xe = 0 is the equi-
librium point of interest. (If not, rewrite the equations ina new set of coordinates
z= x−xe.)

Lyapunov Functions

A Lyapunov function V: Rn → R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, if wecan find a nonnegative
function that always decreases along trajectories of the system, we can conclude
that the minimum of the function is a stable equilibrium point (locally).

To describe this more formally, we start with a few definitions. We say that a
continuous functionV is positive definiteif V(x) > 0 for all x 6= 0 andV(0) = 0.
Similarly, a function isnegative definiteif V(x)< 0 for all x 6= 0 andV(0) = 0. We
say that a functionV is positive semidefiniteif V(x)≥ 0 for all x, butV(x) can be
zero at points other than justx= 0.

To illustrate the difference between a positive definite function and a positive
semidefinite function, suppose thatx∈ R

2 and let

V1(x) = x2
1, V2(x) = x2

1+x2
2.

Both V1 andV2 are always nonnegative. However, it is possible forV1 to be zero
even ifx 6= 0. Specifically, if we setx= (0,c), wherec∈R is any nonzero number,
thenV1(x) = 0. On the other hand,V2(x) = 0 if and only if x= (0,0). ThusV1 is
positive semidefinite andV2 is positive definite.

We can now characterize the stability of an equilibrium point xe = 0 for the
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dx
dt

∂V
∂x

V(x) = c2
V(x) = c1 < c2

Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov functionV(x) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system will always causeV(x)
to decrease along the trajectory.

system (4.13).

Theorem 4.2(Lyapunov stability theorem). Let V be a nonnegative function on
R

n and letV̇ represent the time derivative of V along trajectories of the system
dynamics(4.13):

V̇ =
∂V
∂x

dx
dt

=
∂V
∂x

F(x).

Let Br = Br(0) be a ball of radius r around the origin. If there exists r> 0 such
that V is positive definite anḋV is negative semidefinite for all x∈ Br , then x= 0
is locally stable in the sense of Lyapunov. If V is positive definite andV̇ is negative
definite in Br , then x= 0 is locally asymptotically stable.

If V satisfies one of the conditions above, we say thatV is a (local)Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined byV(x) = c,
c > 0, and for eachc this gives a closed contour, as shown in Figure4.13. The
condition thatV̇(x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories moveto smaller and smaller
values ofV and ifV̇ is negative definite thenx must approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system

dx
dt

=
2

1+x
−x.

This system has equilibrium points atx= 1 andx=−2. We consider the equilib-
rium point atx= 1 and rewrite the dynamics usingz= x−1:

dz
dt

=
2

2+z
−z−1,
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which has an equilibrium point atz= 0. Now consider the candidate Lyapunov
function

V(z) =
1
2

z2,

which is globally positive definite. The derivative ofV along trajectories of the
system is given by

V̇(z) = zż=
2z

2+z
−z2−z.

If we restrict our analysis to an intervalBr , wherer < 2, then 2+z> 0 and we can
multiply through by 2+z to obtain

2z− (z2+z)(2+z) =−z3−3z2 =−z2(z+3)< 0, z∈ Br , r < 2.

It follows thatV̇(z)< 0 for all z∈Br , z 6= 0, and hence the equilibrium pointxe= 1
is locally asymptotically stable. ∇

A slightly more complicated situation occurs ifV̇ is negative semidefinite. In
this case it is possible thatV̇(x) = 0 whenx 6= 0, and hencex could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum
A normalized model for a hanging pendulum is

dx1

dt
= x2,

dx2

dt
=−sinx1,

wherex1 is the angle between the pendulum and the vertical, with positive x1
corresponding to counterclockwise rotation. The equation has an equilibriumx1 =
x2 = 0, which corresponds to the pendulum hanging straight down.To explore the
stability of this equilibrium we choose the total energy as aLyapunov function:

V(x) = 1−cosx1+
1
2

x2
2 ≈

1
2

x2
1+

1
2

x2
2.

The Taylor series approximation shows that the function is positive definite for
smallx. The time derivative ofV(x) is

V̇ = ẋ1sinx1+ ẋ2x2 = x2sinx1−x2sinx1 = 0.

Since this function is negative semidefinite, it follows from Lyapunov’s theorem
that the equilibrium is stable but not necessarily asymptotically stable. When per-
turbed, the pendulum actually moves in a trajectory that corresponds to constant
energy. ∇

Lyapunov functions are not always easy to find, and they are notunique. In
many cases energy functions can be used as a starting point, as was done in Ex-
ample4.10. It turns out that Lyapunov functions can always be found forany
stable system (under certain conditions), and hence one knows that if a system
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is stable, a Lyapunov function exists (and vice versa). Recent results using sum-
of-squares methods have provided systematic approaches for finding Lyapunov
systems [PPP02]. Sum-of-squares techniques can be applied to a broad variety of
systems, including systems whose dynamics are described bypolynomial equa-
tions, as well as hybrid systems, which can have different models for different
regions of state space.

For a linear dynamical system of the form

dx
dt

= Ax,

it is possible to construct Lyapunov functions in a systematic manner. To do so, we
consider quadratic functions of the form

V(x) = xTPx,

whereP∈ R
n×n is a symmetric matrix (P= PT). The condition thatV be positive

definite is equivalent to the condition thatP be apositive definite matrix:

xTPx> 0, for all x 6= 0,

which we write asP> 0. It can be shown that ifP is symmetric, thenP is positive
definite if and only if all of its eigenvalues are real and positive.

Given a candidate Lyapunov functionV(x) = xTPx, we can now compute its
derivative along flows of the system:

V̇ =
∂V
∂x

dx
dt

= xT(ATP+PA)x=: −xTQx.

The requirement thaṫV be negative definite (for asymptotic stability) becomes a
condition that the matrixQ be positive definite. Thus, to find a Lyapunov func-
tion for a linear system it is sufficient to choose aQ> 0 and solve theLyapunov
equation:

ATP+PA=−Q. (4.14)

This is a linear equation in the entries ofP, and hence it can be solved using
linear algebra. It can be shown that the equation always has asolution if all of
the eigenvalues of the matrixA are in the left half-plane. Moreover, the solution
P is positive definite ifQ is positive definite. It is thus always possible to find
a quadratic Lyapunov function for a stable linear system. Wewill defer a proof
of this until Chapter5, where more tools for analysis of linear systems will be
developed.

Knowing that we have a direct method to find Lyapunov functionsfor linear
systems, we can now investigate the stability of nonlinear systems. Consider the
system

dx
dt

= F(x) =: Ax+ F̃(x), (4.15)
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Figure 4.14:Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputsu1 andu2 interfere with this
repression, allowing the circuit dynamics to be modified. The equilibrium points for this
circuit can be determined by the intersection of the two curves shown in (b).

whereF(0) = 0 andF̃(x) contains terms that are second order and higher in the
elements ofx. The functionAx is an approximation ofF(x) near the origin, and
we can determine the Lyapunov function for the linear approximation and investi-
gate if it is also a Lyapunov function for the full nonlinear system. The following
example illustrates the approach.

Example 4.11 Genetic switch
Consider the dynamics of a set of repressors connected together in a cycle, as
shown in Figure4.14a. The normalized dynamics for this system were given in
Exercise2.9:

dz1

dτ
=

µ
1+zn

2
−z1,

dz2

dτ
=

µ
1+zn

1
−z2, (4.16)

wherez1 and z2 are scaled versions of the protein concentrations,n and µ are
parameters that describe the interconnection between the genes and we have set
the external inputsu1 andu2 to zero.

The equilibrium points for the system are found by equating the time deriva-
tives to zero. We define

f (u) =
µ

1+un , f ′(u) =
d f
du

=
−µnun−1

(1+un)2 ,

and the equilibrium points are defined as the solutions of the equations

z1 = f (z2), z2 = f (z1).

If we plot the curves(z1, f (z1)) and( f (z2),z2) on a graph, then these equations
will have a solution when the curves intersect, as shown in Figure4.14b. Because
of the shape of the curves, it can be shown that there will always be three solutions:
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one atz1e = z2e, one withz1e < z2e and one withz1e > z2e. If µ ≫ 1, then we can
show that the solutions are given approximately by

z1e ≈ µ, z2e ≈
1

µn−1 ; z1e = z2e; z1e ≈
1

µn−1 , z2e ≈ µ. (4.17)

To check the stability of the system, we writef (u) in terms of its Taylor series
expansion aboutue:

f (u) = f (ue)+ f ′(ue) ·(u−ue)+
1
2

f ′′(ue) ·(u−ue)
2+higher-order terms,

where f ′ represents the first derivative of the function, andf ′′ the second. Using
these approximations, the dynamics can then be written as

dw
dt

=


 −1 f ′(z2e)

f ′(z1e) −1


w+ F̃(w),

wherew= z−ze is the shifted state and̃F(w) represents quadratic and higher-order
terms.

We now use equation (4.14) to search for a Lyapunov function. ChoosingQ= I
and lettingP∈ R

2×2 have elementspi j , we search for a solution of the equation

−1 f ′1

f ′2 −1




p11 p12

p12 p22


+


p11 p12

p12 p22




−1 f ′2

f ′1 −1


=


−1 0

0 −1


 ,

where f ′1 = f ′(z1e) and f ′2 = f ′(z2e). Note that we have setp21 = p12 to forceP to
be symmetric. Multiplying out the matrices, we obtain


 −2p11+2 f ′1p12 p11 f ′2−2p12+ p22 f ′1

p11 f ′2−2p12+ p22 f ′1 −2p22+2 f ′2p12


=


−1 0

0 −1


 ,

which is a set oflinear equations for the unknownspi j . We can solve these linear
equations to obtain

p11 =− f ′1
2− f ′2 f ′1+2

4( f ′1 f ′2−1)
, p12 =− f ′1+ f ′2

4( f ′1 f ′2−1)
, p22 =− f ′2

2− f ′1 f ′2+2
4( f ′1 f ′2−1)

.

To check thatV(w) = wTPw is a Lyapunov function, we must verify thatV(w) is
positive definite function or equivalently thatP> 0. SinceP is a 2×2 symmetric
matrix, it has two real eigenvaluesλ1 andλ2 that satisfy

λ1+λ2 = trace(P), λ1 ·λ2 = det(P).

In order forP to be positive definite we must have thatλ1 andλ2 are positive, and
we thus require that

trace(P) =
f ′1

2−2 f ′2 f ′1+ f ′2
2+4

4−4 f ′1 f ′2
> 0, det(P) =

f ′1
2−2 f ′2 f ′1+ f ′2

2+4
16−16f ′1 f ′2

> 0.
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We see that trace(P) = 4det(P) and the numerator of the expressions is just( f1−
f2)2+4> 0, so it suffices to check the sign of 1− f ′1 f ′2. In particular, forP to be
positive definite, we require that

f ′(z1e) f ′(z2e)< 1.

We can now make use of the expressions forf ′ defined earlier and evaluate at
the approximate locations of the equilibrium points derived in equation (4.17). For
the equilibrium points wherez1e 6= z2e, we can show that

f ′(z1e) f ′(z2e)≈ f ′(µ) f ′(
1

µn−1) =
−µnµn−1

(1+µn)2 ·
−µnµ−(n−1)2

1+µ−n(n−1)
≈ n2µ−n2+n.

Using n = 2 andµ ≈ 200 from Exercise2.9, we see thatf ′(z1e) f ′(z2e) ≪ 1 and
henceP is a positive definite. This implies thatV is a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the system (4.16) is stable, we now computėV at the equilib-
rium point. By construction,

V̇ = wT(PA+ATP)w+ F̃T(w)Pw+wTPF̃(w)

=−wTw+ F̃T(w)Pw+wTPF̃(w).

Since all terms inF̃ are quadratic or higher order inw, it follows that F̃T(w)Pw
andwTPF̃(w) consist of terms that are at least third order inw. Therefore ifw is
sufficiently close to zero, then the cubic and higher-order terms will be smaller
than the quadratic terms. Hence, sufficiently close tow= 0, V̇ is negative definite,
allowing us to conclude that these equilibrium points are both stable.

Figure4.15shows the phase portrait and time traces for a system withµ = 4,
illustrating the bistable nature of the system. When the initial condition starts with
a concentration of protein B greater than that of A, the solution converges to the
equilibrium point at (approximately)(1/µn−1,µ). If A is greater than B, then it
goes to(µ,1/µn−1). The equilibrium point withz1e = z2e is unstable. ∇

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.

Theorem 4.3. Consider the dynamical system(4.15) with F(0) = 0 and F̃ such
that lim ‖F̃(x)‖/‖x‖ → 0 as‖x‖ → 0. If the real parts of all eigenvalues of A are
strictly less than zero, then xe = 0 is a locally asymptotically stable equilibrium
point of equation(4.15).

This theorem implies that asymptotic stability of the linearapproximation im-
plies local asymptotic stability of the original nonlinear system. The theorem is
very important for control because it implies that stabilization of a linear approxi-
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Figure 4.15: Dynamics of a genetic switch. The phase portrait on the left shows that the
switch has three equilibrium points, corresponding to protein A having a concentration
greater than, equal to or less than protein B. The equilibrium point with equal protein con-
centrations is unstable, but the other equilibrium points are stable. The simulation on the
right shows the time response of the system starting from two different initial conditions.
The initial portion of the curve corresponds to initial concentrationsz(0) = (1,5) and con-
verges to the equilibrium wherez1e < z2e. At time t = 10, the concentrations are perturbed
by+2 in z1 and−2 in z2, moving the state into the region of the state space whose solutions
converge to the equilibrium point wherez2e < z1e.

mation of a nonlinear system results in a stable equilibriumfor the nonlinear sys-
tem. The proof of this theorem follows the technique used in Example 4.11. A
formal proof can be found in [Kha01].

Krasovski–Lasalle Invariance Principle
��

For general nonlinear systems, especially those in symbolic form, it can be difficult
to find a positive definite functionV whose derivative is strictly negative definite.
The Krasovski–Lasalle theorem enables us to conclude the asymptotic stability of
an equilibrium point under less restrictive conditions, namely, in the case wherėV
is negative semidefinite, which is often easier to construct.However, it applies only
to time-invariant or periodic systems. This section makes use of some additional
concepts from dynamical systems; see Hahn [Hah67] or Khalil [Kha01] for a more
detailed description.

We will deal with the time-invariant case and begin by introducing a few more
definitions. We denote the solution trajectories of the time-invariant system

dx
dt

= F(x) (4.18)

asx(t;a), which is the solution of equation (4.18) at timet starting froma att0 = 0.
Theω limit setof a trajectoryx(t;a) is the set of all pointsz∈ R

n such that there
exists a strictly increasing sequence of timestn such thatx(tn;a) → z asn → ∞.
A setM ⊂ R

n is said to be aninvariant setif for all b ∈ M, we havex(t;b) ∈ M
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for all t ≥ 0. It can be proved that theω limit set of every trajectory is closed and
invariant. We may now state the Krasovski–Lasalle principle.

Theorem 4.4(Krasovski–Lasalle principle). Let V : Rn → R be a locally positive
definite function such that on the compact setΩr = {x∈ R

n : V(x) ≤ r} we have
V̇(x)≤ 0. Define

S= {x∈ Ωr : V̇(x) = 0}.
As t→ ∞, the trajectory tends to the largest invariant set inside S;i.e., itsω limit
set is contained inside the largest invariant set in S. In particular, if S contains no
invariant sets other than x= 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].
Lyapunov functions can often be used to design stabilizing controllers, as is

illustrated by the following example, which also illustrates how the Krasovski–
Lasalle principle can be applied.

Example 4.12 Inverted pendulum
Following the analysis in Example2.7, an inverted pendulum can be described by
the following normalized model:

dx1

dt
= x2,

dx2

dt
= sinx1+ucosx1, (4.19)

wherex1 is the angular deviation from the upright position andu is the (scaled)
acceleration of the pivot, as shown in Figure4.16a. The system has an equilib-
rium at x1 = x2 = 0, which corresponds to the pendulum standing upright. This
equilibrium is unstable.

To find a stabilizing controller we consider the following candidate for a Lya-
punov function:

V(x) = (cosx1−1)+a(1−cos2x1)+
1
2

x2
2 ≈

(
a− 1

2

)
x2

1+
1
2

x2
2.

The Taylor series expansion shows that the function is positive definite near the
origin if a> 0.5. The time derivative ofV(x) is

V̇ =−ẋ1sinx1+2aẋ1sinx1cosx1+ ẋ2x2 = x2(u+2asinx1)cosx1.

Choosing the feedback law

u=−2asinx1−x2cosx1

gives
V̇ =−x2

2cos2x1.

It follows from Lyapunov’s theorem that the equilibrium is locally stable. However,
since the function is only negative semidefinite, we cannot conclude asymptotic
stability using Theorem4.2. However, note thaṫV = 0 implies thatx2 = 0 or x1 =
π/2±nπ.
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Figure 4.16: Stabilized inverted pendulum. A control law applies a forceu at the bottom
of the pendulum to stabilize the inverted position (a). The phase portrait (b)shows that
the equilibrium point corresponding to the vertical position is stabilized. The shaded region
indicates the set of initial conditions that converge to the origin. The ellipse corresponds to a
level set of a Lyapunov functionV(x) for whichV(x)> 0 andV̇(x)< 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction of the equilibrium
point. The actual dynamics of the system evolve on a manifold (c).

If we restrict our analysis to a small neighborhood of the origin Ωr , r ≪ π/2,
then we can define

S= {(x1,x2) ∈ Ωr : x2 = 0}
and we can compute the largest invariant set insideS. For a trajectory to remain
in this set we must havex2 = 0 for all t and hence ˙x2(t) = 0 as well. Using the
dynamics of the system (4.19), we see thatx2(t)= 0 andẋ2(t)= 0 impliesx1(t)= 0
as well. Hence the largest invariant set insideS is (x1,x2) = 0, and we can use the
Krasovski–Lasalle principle to conclude that the origin is locally asymptotically
stable. A phase portrait of the closed loop system is shown inFigure4.16b.

In the analysis and the phase portrait, we have treated the angle of the pendulum
θ = x1 as a real number. In fact,θ is an angle withθ = 2π equivalent toθ = 0.
Hence the dynamics of the system actually evolves on amanifold(smooth surface)
as shown in Figure4.16c. Analysis of nonlinear dynamical systems on manifolds
is more complicated, but uses many of the same basic ideas presented here. ∇

4.5 Parametric and Nonlocal Behavior
�

Most of the tools that we have explored are focused on the local behavior of a
fixed system near an equilibrium point. In this section we briefly introduce some
concepts regarding the global behavior of nonlinear systems and the dependence
of a system’s behavior on parameters in the system model.
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Regions of Attraction

To get some insight into the behavior of a nonlinear system wecan start by finding
the equilibrium points. We can then proceed to analyze the local behavior around
the equilibria. The behavior of a system near an equilibrium point is called the
local behavior of the system.

The solutions of the system can be very different far away froman equilibrium
point. This is seen, for example, in the stabilized pendulum in Example4.12. The
inverted equilibrium point is stable, with small oscillations that eventually con-
verge to the origin. But far away from this equilibrium pointthere are trajectories
that converge to other equilibrium points or even cases in which the pendulum
swings around the top multiple times, giving very long oscillations that are topo-
logically different from those near the origin.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptoticallystable equilibrium point.
This set is called theregion of attractionfor the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figure4.16b. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches aroundthe stable equilibria
that are attracting. This gives partial information about the behavior of the system.

One method for approximating the region of attraction is through the use of
Lyapunov functions. Suppose thatV is a local Lyapunov function for a system
around an equilibrium pointx0. Let Ωr be a set on whichV(x) has a value less
thanr,

Ωr = {x∈ R
n : V(x)≤ r},

and suppose thaṫV(x) ≤ 0 for all x ∈ Ωr , with equality only at the equilibrium
point x0. ThenΩr is inside the region of attraction of the equilibrium point.Since
this approximation depends on the Lyapunov function and thechoice of Lyapunov
function is not unique, it can sometimes be a very conservative estimate.

It is sometimes the case that we can find a Lyapunov functionV such thatV is
positive definite anḋV is negative (semi-) definite for allx∈R

n. In many instances
it can then be shown that the region of attraction for the equilibrium point is the
entire state space, and the equilibrium point is said to begloballystable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Example 4.12. The Lya-
punov function for the system was

V(x) = (cosx1−1)+a(1−cos2x1)+
1
2

x2
2,

andV̇ was negative semidefinite for allx and nonzero whenx1 6= ±π/2. Hence
anyx such that|x1|< π/2 andV(x)> 0 will be inside the invariant set defined by
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the level curves ofV(x). One of these level sets is shown in Figure4.16b. ∇

Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context
of models by exploring how the location of equilibrium points, their stability, their
regions of attraction and other dynamic phenomena, such as limit cycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

dx
dt

= F(x,µ), x∈ R
n, µ ∈ R

k, (4.20)

wherex is the state andµ is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x,µ) = 0,

and asµ is varied, the corresponding solutionsxe(µ) can also vary. We say that
the system (4.20) has abifurcationat µ = µ∗ if the behavior of the system changes
qualitatively atµ∗. This can occur either because of a change in stability type ora
change in the number of solutions at a given value ofµ.

Example 4.14 Predator–prey
Consider the predator–prey system described in Section3.7. The dynamics of the
system are given by

dH
dt

= rH

(
1− H

k

)
− aHL

c+H
,

dL
dt

= b
aHL
c+H

−dL, (4.21)

whereH andL are the numbers of hares (prey) and lynxes (predators) anda, b,
c, d, k andr are parameters that model a given predator–prey system (described
in more detail in Section3.7). The system has an equilibrium point atHe > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behavior of the system,
we choose to focus on two specific parameters of interest:a, the interaction coef-
ficient between the populations andc, a parameter affecting the prey consumption
rate. Figure4.17ais a numerically computedparametric stability diagramshow-
ing the regions in the chosen parameter space for which the equilibrium point is
stable (leaving the other parameters at their nominal values). We see from this fig-
ure that for certain combinations ofa andc we get a stable equilibrium point, while
at other values this equilibrium point is unstable.

Figure4.17bis a numerically computedbifurcation diagramfor the system. In
this plot, we choose one parameter to vary (a) and then plot the equilibrium value
of one of the states (H) on the vertical axis. The remaining parameters are set to
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Figure 4.17: Bifurcation analysis of the predator–prey system. (a) Parametric stabilitydia-
gram showing the regions in parameter space for which the system is stable. (b) Bifurcation
diagram showing the location and stability of the equilibrium point as a function of a. The
solid line represents a stable equilibrium point, and the dashed line represents an unstable
equilibrium point. The dashed-dotted lines indicate the upper and lower bounds for the limit
cycle at that parameter value (computed via simulation). The nominal values of the parame-
ters in the model area= 3.2, b= 0.6, c= 50,d = 0.56,k= 125 andr = 1.6.

their nominal values. A solid line indicates that the equilibrium point is stable; a
dashed line indicates that the equilibrium point is unstable. Note that the stability
in the bifurcation diagram matches that in the parametric stability diagram for
c = 50 (the nominal value) anda varying from 1.35 to 4. For the predator–prey
system, when the equilibrium point is unstable, the solution converges to a stable
limit cycle. The amplitude of this limit cycle is shown by the dashed-dotted line in
Figure4.17b. ∇

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
changes as the parameters are varied. In such a case it is revealing to plot the
eigenvalues of the system as a function of the parameters. Such plots are called
root locus diagramsbecause they give the locus of the eigenvalues when param-
eters change. Bifurcations occur when parameter values aresuch that there are
eigenvalues with zero real part. Computing environments such LabVIEW, MAT-
LAB and Mathematica have tools for plotting root loci.

Example 4.15 Root locus diagram for a bicycle model
Consider the linear bicycle model given by equation (3.7) in Section3.2. Introduc-
ing the state variablesx1 = ϕ, x2 = δ , x3 = ϕ̇ andx4 = δ̇ and setting the steering
torqueT = 0, the equations can be written as

dx
dt

=




0 I

−M−1(K0+K2v2
0) −M−1Cv0


x=: Ax,
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Figure 4.18:Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle velocityv. The system
is stable when all eigenvalues have negative real part (shaded region). The plot in (b) shows
the locus of eigenvalues on the complex plane as the velocityv is varied and gives a different
view of the stability of the system. This type of plot is called aroot locus diagram.

whereI is a 2×2 identity matrix andv0 is the velocity of the bicycle. Figure4.18a
shows the real parts of the eigenvalues as a function of velocity. Figure 4.18b
shows the dependence of the eigenvalues ofA on the velocityv0. The figures show
that the bicycle is unstable for low velocities because two eigenvalues are in the
right half-plane. As the velocity increases, these eigenvalues move into the left
half-plane, indicating that the bicycle becomes self-stabilizing. As the velocity is
increased further, there is an eigenvalue close to the origin that moves into the right
half-plane, making the bicycle unstable again. However, this eigenvalue is small
and so it can easily be stabilized by a rider. Figure4.18ashows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. ∇

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters
of the system to eliminate extra parameters when possible. Computer programs
such asAUTO, LOCBIF andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations to design feedback laws
that stabilize an equilibrium point and provide a desired level of performance.
However, for some classes of problems the feedback controller must be nonlinear
to accomplish its function. By making use of Lyapunov functions we can often
design a nonlinear control law that provides stable behavior, as we saw in Exam-
ple4.12.
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Figure 4.19: Headphones with noise cancellation. Noise is sensed by the exterior micro-
phone (a) and sent to a filter in such a way that it cancels the noise that penetrates the head
phone (b). The filter parametersa andb are adjusted by the controller.Srepresents the input
signal to the headphones.

One way to systematically design a nonlinear controller is to begin with a can-
didate Lyapunov functionV(x) and a control system ˙x= f (x,u). We say thatV(x)
is a control Lyapunov functionif for every x there exists au such thatV̇(x) =
∂V
∂x f (x,u) < 0. In this case, it may be possible to find a functionα(x) such that
u= α(x) stabilizes the system. The following example illustrates the approach.

Example 4.16 Noise cancellation
Noise cancellation is used in consumer electronics and in industrial systems to re-
duce the effects of noise and vibrations. The idea is to locally reduce the effect
of noise by generating opposing signals. A pair of headphones with noise can-
cellation such as those shown in Figure4.19ais a typical example. A schematic
diagram of the system is shown in Figure4.19b. The system has two microphones,
one outside the headphones that picks up exterior noisen and another inside the
headphones that picks up the signale, which is a combination of the desired signal
and the external noise that penetrates the headphone. The signal from the exterior
microphone is filtered and sent to the headphones in such a way that it cancels the
external noise that penetrates into the headphones. The parameters of the filter are
adjusted by a feedback mechanism to make the noise signal in the internal micro-
phone as small as possible. The feedback is inherently nonlinear because it acts by
changing the parameters of the filter.

To analyze the system we assume for simplicity that the propagation of external
noise into the headphones is modeled by a first-order dynamical system described
by

dz
dt

= a0z+b0n, (4.22)
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wherez is the sound level and the parametersa0 < 0 andb0 are not known. Assume
that the filter is a dynamical system of the same type:

dw
dt

= aw+bn.

We wish to find a controller that updatesa and b so that they converge to the
(unknown) parametersa0 andb0. Introducex1 = e= w− z, x2 = a−a0 andx3 =
b−b0; then

dx1

dt
= a0(w−z)+(a−a0)w+(b−b0)n= a0x1+x2w+x3n. (4.23)

We will achieve noise cancellation if we can find a feedback lawfor changing the
parametersa andb so that the erroregoes to zero. To do this we choose

V(x1,x2,x3) =
1
2

(
αx2

1+x2
2+x2

3

)

as a candidate Lyapunov function for (4.23). The derivative ofV is

V̇ = αx1ẋ1+x2ẋ2+x3ẋ3 = αa0x2
1+x2(ẋ2+αwx1)+x3(ẋ3+αnx1).

Choosing
ẋ2 =−αwx1 =−αwe, ẋ3 =−αnx1 =−αne, (4.24)

we find thatV̇ =αa0x2
1 < 0, and it follows that the quadratic function will decrease

as long ase= x1 = w− z 6= 0. The nonlinear feedback (4.24) thus attempts to
change the parameters so that the error between the signal and the noise is small.
Notice that feedback law (4.24) does not use the model (4.22) explicitly.

A simulation of the system is shown in Figure4.20. In the simulation we have
represented the signal as a pure sinusoid and the noise as broad band noise. The fig-
ure shows the dramatic improvement with noise cancellation. The sinusoidal signal
is not visible without noise cancellation. The filter parameters change quickly from
their initial valuesa= b= 0. Filters of higher order with more coefficients are used
in practice. ∇

4.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [Str94] and the highly illustrated text
by Abraham and Shaw [AS82]. More technical treatments include Andronov, Vitt
and Khaikin [AVK87], Guckenheimer and Holmes [GH83] and Wiggins [Wig90].
For students with a strong interest in mechanics, the texts by Arnold [Arn87] and
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Figure 4.20:Simulation of noise cancellation. The top left figure shows the headphone sig-
nal without noise cancellation, and the bottom left figure shows the signal with noise cancel-
lation. The right figures show the parametersa andb of the filter.

Marsden and Ratiu [MR94] provide an elegant approach using tools from differ-
ential geometry. Finally, good treatments of dynamical systems methods in biol-
ogy are given by Wilson [Wil99] and Ellner and Guckenheimer [EG05]. There
is a large literature on Lyapunov stability theory, including the classic texts by
Malkin [Mal59], Hahn [Hah67] and Krasovski [Kra63]. We highly recommend
the comprehensive treatment by Khalil [Kha01].

Exercises

4.1 (Time-invariant systems) Show that if we have a solution of the differential
equation (4.1) given byx(t) with initial conditionx(t0) = x0, thenx̃(τ) = x(t − t0)
is a solution of the differential equation

dx̃
dτ

= F(x̃)

with initial condition x̃(0) = x0, whereτ = t − t0.

4.2 (Flow in a tank) A cylindrical tank has cross sectionA m2, effective outlet
areaa m2 and inflowqin m3/s. An energy balance shows that the outlet velocity
is v=

√
2ghm/s, whereg m/s2 is the acceleration of gravity andh is the distance

between the outlet and the water level in the tank (in meters). Show that the system
can be modeled by

dh
dt

=−a
A

√
2gh+

1
A

qin, qout = a
√

2gh.
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Use the parametersA= 0.2, a= 0.01. Simulate the system when the inflow is zero
and the initial level ish= 0.2. Do you expect any difficulties in the simulation?

4.3 (Cruise control) Consider the cruise control system described in Section3.1.
Generate a phase portrait for the closed loop system on flat ground (θ = 0), in third
gear, using a PI controller (withkp = 0.5 andki = 0.1), m= 1000 kg and desired
speed 20 m/s. Your system model should include the effects ofsaturating the input
between 0 and 1.

4.4 (Lyapunov functions) Consider the second-order system

dx1

dt
=−ax1,

dx2

dt
=−bx1−cx2,

wherea,b,c> 0. Investigate whether the functions

V1(x) =
1
2

x2
1+

1
2

x2
2, V2(x) =

1
2

x2
1+

1
2
(x2+

b
c−a

x1)
2

are Lyapunov functions for the system and give any conditions that must hold.

4.5 (Damped spring–mass system) Consider a damped spring–masssystem with �
dynamics

mq̈+cq̇+kq= 0.

A natural candidate for a Lyapunov function is the total energy of the system, given
by

V =
1
2

mq̇2+
1
2

kq2.

Use the Krasovski–Lasalle theorem to show that the system is asymptotically sta-
ble.

4.6 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise2.7:

J
d2ϕ
dt2

= Pm−Pe = Pm− EV
X

sinϕ.

The parameter

a=
Pmax

Pm
=

EV
XPm

(4.25)

is the ratio between the maximum deliverable powerPmax = EV/X and the me-
chanical powerPm.

(a) Considera as a bifurcation parameter and discuss how the equilibria depend
ona.

(b) For a > 1, show that there is a center atϕ0 = arcsin(1/a) and a saddle at
ϕ = π −ϕ0.
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(c) Show that ifPm/J = 1 there is a solution through the saddle that satisfies

1
2

(dϕ
dt

)2
−ϕ +ϕ0−acosϕ −

√
a2−1= 0. (4.26)

Use simulation to show that the stability region is the interior of the area enclosed
by this solution. Investigate what happens if the system is in equilibrium with a
value ofa that is slightly larger than 1 anda suddenly decreases, corresponding to
the reactance of the line suddenly increasing.

4.7 (Lyapunov equation) Show that Lyapunov equation (4.14) always has a solu-
tion if all of the eigenvalues ofA are in the left half-plane. (Hint: Use the fact that
the Lyapunov equation is linear inP and start with the case whereA has distinct
eigenvalues.)

4.8 (Congestion control) Consider the congestion control problem described in
Section3.4. Confirm that the equilibrium point for the system is given by equa-
tion (3.21) and compute the stability of this equilibrium point using alinear ap-
proximation.

4.9 (Swinging up a pendulum) Consider the inverted pendulum, discussed in Ex-
ample4.4, that is described by

θ̈ = sinθ +ucosθ ,

whereθ is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function

V(θ , θ̇) = cosθ −1+
1
2

θ̇ 2,

show that the state feedbacku= k(V0−V)θ̇ cosθ causes the pendulum to “swing
up” to the upright position.

4.10(Root locus diagram) Consider the linear system

dx
dt

=


0 1

0 −3


x+


−1

4


u, y=


1 0


x,

with the feedbacku= −ky. Plot the location of the eigenvalues as a function the
parameterk.

4.11(Discrete-time Lyapunov function) Consider a nonlinear discrete-time sys-�
tem with dynamicsx[k+1] = f (x[k]) and equilibrium pointxe = 0. Suppose there
exists a smooth, positive definite functionV :Rn →R such thatV( f (x))−V(x)< 0
for x 6= 0 and V(0) = 0. Show thatxe = 0 is (locally) asymptotically stable.

4.12 (Operational amplifier oscillator) An op amp circuit for an oscillator was
shown in Exercise3.5. The oscillatory solution for that linear circuit was stable
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but not asymptotically stable. A schematic of a modified circuit that has nonlinear
elements is shown in the figure below.

v1

v3v2 v1

v2

v1

v2

2
v0

2

2
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R R
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a e

C1
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+

The modification is obtained by making a feedback around each operational am-
plifier that has capacitors using multipliers. The signalae = v2

1 + v2
2 − v2

0 is the
amplitude error. Show that the system is modeled by

dv1

dt
=

R4

R1R3C1
v2+

1
R11C1

v1(v
2
0−v2

1−v2
2),

dv2

dt
=− 1

R2C2
v1+

1
R22C2

v2(v
2
0−v2

1−v2
2).

Show that, under suitable conditions on parameter values, the circuit gives an os-
cillation with a stable limit cycle with amplitudev0. (Hint: Use the results of Ex-
ample4.8.)

4.13(Self-activating genetic circuit) Consider the dynamics ofa genetic circuit that
implementsself-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example2.13, the dynamics for the system can be written as

dm
dt

=
α p2

1+kp2 +α0− γm,
dp
dt

= βm−δ p, (4.27)

for p,m≥ 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

4.14 (Diagonal systems) LetA ∈ R
n×n be a square matrix with real eigenvalues

λ1, . . . ,λn and corresponding eigenvectorsv1, . . . ,vn.

(a) Show that if the eigenvalues are distinct (λi 6= λ j for i 6= j), thenvi 6= v j for
i 6= j.
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(b) Show that the eigenvectors form a basis forR
n so that any vectorx can be

written asx= ∑αivi for αi ∈ R.

(c) LetT =

v1 v2 . . . vn


 and show thatT−1AT is a diagonal matrix of the

form (4.8).

(d) Show that if some of theλi are complex numbers, thenA can be written as

A=




Λ1 0
...

0 Λk




where Λi = λ ∈ R or Λi =


 σ ω
−ω σ


 .

in an appropriate set of coordinates.

This form of the dynamics of a linear system is often referred to asmodal form.

4.15(Furuta pendulum) The Furuta pendulum, an inverted pendulum ona rotating
arm, is shown to the left in the figure below.
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Consider the situation when the pendulum arm is spinning with constant rate. The
system has multiple equilibrium points that depend on the angular velocityω, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

Jpθ̈ −Jpω2
0 sinθ cosθ −mpgl sinθ = 0,

whereJp is the moment of inertia of the pendulum with respect to its pivot, mp is
the pendulum mass,l is the distance between the pivot and the center of mass of
the pendulum andω0 is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the condition(s) for stability of
each equilibrium point (in terms ofω0).

(b) Consider the angular velocity as a bifurcation parameter and verify the bifur-
cation diagram given above. This is an example of apitchfork bifurcation.
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4.16 (Routh-Hurwitz criterion) Consider a linear differentialequation with the
characteristic polynomial

λ (s) = s2+a1s+a2, λ (s) = s3+a1s2+a2s+a3.

Show that the system is asymptotically stable if and only if all the coefficientsai

are positive and ifa1a2 > a3. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.



Chapter Five
Linear Systems

Few physical elements display truly linear characteristics. For example therelation between
force on a spring and displacement of the spring is always nonlinear to some degree. The
relation between current through a resistor and voltage drop across it also deviates from a
straight-line relation. However, if in each case the relation isreasonablylinear, then it will
be found that the system behavior will be very close to that obtained by assuming an ideal,
linear physical element, and the analytical simplification is so enormous thatwe make linear
assumptions wherever we can possibly do so in good conscience.

Robert H. Cannon,Dynamics of Physical Systems, 1967 [Can03].

In Chapters2–4 we considered the construction and analysis of differential
equation models for dynamical systems. In this chapter we specialize our results
to the case of linear, time-invariant input/output systems. Two central concepts
are the matrix exponential and the convolution equation, through which we can
completely characterize the behavior of a linear system. Wealso describe some
properties of the input/output response and show how to approximate a nonlinear
system by a linear one.

5.1 Basic Definitions

We have seen several instances of linear differential equations in the examples in
the previous chapters, including the spring–mass system (damped oscillator) and
the operational amplifier in the presence of small (nonsaturating) input signals.
More generally, many dynamical systems can be modeled accurately by linear dif-
ferential equations. Electrical circuits are one example ofa broad class of systems
for which linear models can be used effectively. Linear models are also broadly
applicable in mechanical engineering, for example, as models of small deviations
from equilibria in solid and fluid mechanics. Signal-processing systems, including
digital filters of the sort used in CD and MP3 players, are another source of good
examples, although these are often best modeled in discretetime (as described in
more detail in the exercises).

In many cases, wecreatesystems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linear behavior that led Harold
S. Black to the invention of the negative feedback amplifier. Almost all modern
signal processing systems, whether analog or digital, use feedback to produce lin-
ear or near-linear input/output characteristics. For these systems, it is often useful
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to represent the input/output characteristics as linear, ignoring the internal details
required to get that linear response.

For other systems, nonlinearities cannot be ignored, especially if one cares
about the global behavior of the system. The predator–prey problem is one exam-
ple of this: to capture the oscillatory behavior of the interdependent populations
we must include the nonlinear coupling terms. Other examples include switch-
ing behavior and generating periodic motion for locomotion. However, if we care
about what happens near an equilibrium point, it often suffices to approximate
the nonlinear dynamics by their local linearization, as we already explored briefly
in Section4.3. The linearization is essentially an approximation of the nonlinear
dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systems more formally. Con-
sider a state space system of the form

dx
dt

= f (x,u), y= h(x,u), (5.1)

wherex ∈ R
n, u ∈ R

p andy ∈ R
q. As in the previous chapters, we will usually

restrict ourselves to the single-input, single-output case by takingp= q= 1. We
also assume that all functions are smooth and that for a reasonable class of inputs
(e.g., piecewise continuous functions of time) the solutions of equation (5.1) exist
for all time.

It will be convenient to assume that the originx = 0, u = 0 is an equilibrium
point for this system ( ˙x = 0) and thath(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose that(xe,ue) 6= (0,0) is an equilibrium point
of the system with outputye = h(xe,ue). Then we can define a new set of states,
inputs and outputs,

x̃= x−xe, ũ= u−ue, ỹ= y−ye,

and rewrite the equations of motion in terms of these variables:

d
dt

x̃= f (x̃+xe, ũ+ue) =: f̃ (x̃, ũ),

ỹ= h(x̃+xe, ũ+ue)−ye =: h̃(x̃, ũ).

In the new set of variables, the origin is an equilibrium point with output 0, and
hence we can carry out our analysis in this set of variables. Once we have obtained
our answers in this new set of variables, we simply “translate” them back to the
original coordinates usingx= x̃+xe, u= ũ+ue andy= ỹ+ye.

Returning to the original equations (5.1), now assuming without loss of gen-
erality that the origin is the equilibrium point of interest, we write the outputy(t)
corresponding to the initial conditionx(0) = x0 and inputu(t) asy(t;x0,u). Using



5.1. BASIC DEFINITIONS 143

this notation, a system is said to be alinear input/output systemif the following
conditions are satisfied:

(i) y(t;αx1+βx2,0) = αy(t;x1,0)+βy(t;x2,0),

(ii) y(t;αx0,δu) = αy(t;x0,0)+δy(t;0,u),

(iii) y(t;0,δu1+ γu2) = δy(t;0,u1)+ γy(t;0,u2).

(5.2)

Thus, we define a system to be linear if the outputs are jointly linear in the initial
condition response(u= 0) and the forced response(x(0) = 0). Property (iii) is a
statement of theprinciple of superposition: the response of a linear system to the
sum of two inputsu1 andu2 is the sum of the outputsy1 andy2 corresponding to
the individual inputs.

The general form of a linear state space system is

dx
dt

= Ax+Bu, y=Cx+Du, (5.3)

whereA ∈ R
n×n, B ∈ R

n×p, C ∈ R
q×n and D ∈ R

q×p. In the special case of a
single-input, single-output system,B is a column vector,C is a row vector andD
is scalar. Equation (5.3) is a system of linear first-order differential equations with
input u, statex and outputy. It is easy to show that given solutionsx1(t) andx2(t)
for this set of equations, they satisfy the linearity conditions.

We definexh(t) to be the solution with zero input (thehomogeneous solution)
and the solutionxp(t) to be the solution with zero initial condition (aparticular
solution). Figure5.1 illustrates how these two individual solutions can be super-
imposed to form the complete solution.

It is also possible to show that if a finite-dimensional dynamical system is in-
put/output linear in the sense we have described, it can always be represented by a
state space equation of the form (5.3) through an appropriate choice of state vari-
ables. In Section5.2 we will give an explicit solution of equation (5.3), but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first-order differential equation

dx
dt

= ax+u, y= x,

with x(0) = x0. Let u1 = Asinω1t andu2 = Bcosω2t. The homogeneous solution
is xh(t) = eatx0, and two particular solutions withx(0) = 0 are

xp1(t) =−A
−ω1eat +ω1cosω1t +asinω1t

a2+ω2
1

,

xp2(t) = B
aeat −acosω2t +ω2sinω2t

a2+ω2
2

.
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Figure 5.1: Superposition of homogeneous and particular solutions. The first row shows the
input, state and output corresponding to the initial condition response. Thesecond row shows
the same variables corresponding to zero initial condition but nonzero input. The third row
is the complete solution, which is the sum of the two individual solutions.

Suppose that we now choosex(0) = αx0 andu= u1+u2. Then the resulting solu-
tion is the weighted sum of the individual solutions:

x(t) = eat
(

αx0+
Aω1

a2+ω2
1

+
Ba

a2+ω2
2

)

−A
ω1cosω1t +asinω1t

a2+ω2
1

+B
−acosω2t +ω2sinω2t

a2+ω2
2

.

(5.4)

To see this, substitute equation (5.4) into the differential equation. Thus, the prop-
erties of a linear system are satisfied. ∇

Time Invariance

Time invarianceis an important concept that is used to describe a system whose
properties do not change with time. More precisely, for a time-invariant system
if the input u(t) gives outputy(t), then if we shift the time at which the input
is applied by a constant amounta, u(t + a) gives the outputy(t + a). Systems
that are linear and time-invariant, often calledLTI systems, have the interesting
property that their response to an arbitrary input is completely characterized by
their response to step inputs or their response to short “impulses.”

To explore the consequences of time invariance, we first compute the response
to a piecewise constant input. Assume that the system is initially at rest and con-
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resented as a sum of step signals (a), and the resulting output is the sum ofthe individual
outputs (b).

sider the piecewise constant input shown in Figure5.2a. The input has jumps at
times tk, and its values after the jumps areu(tk). The input can be viewed as a
combination of steps: the first step at timet0 has amplitudeu(t0), the second step
at timet1 has amplitudeu(t1)−u(t0), etc.

Assuming that the system is initially at an equilibrium point (so that the initial
condition response is zero), the response to the input can beobtained by superim-
posing the responses to a combination of step inputs. LetH(t) be the response to
a unit step applied at time 0. The response to the first step is then H(t − t0)u(t0),
the response to the second step isH(t − t1)

(
u(t1)− u(t0)

)
, and we find that the

complete response is given by

y(t) = H(t − t0)u(t0)+H(t − t1)
(
u(t1)−u(t0)

)
+ · · ·

=
(
H(t − t0)−H(t − t1)

)
u(t0)+

(
H(t − t1)−H(t − t2)

)
u(t1)+ · · ·

=
tn<t

∑
n=0

(
H(t − tn)−H(t − tn+1)

)
u(tn)

=
tn<t

∑
n=0

H(t − tn)−H(t − tn+1)

tn+1− tn
u(tn)

(
tn+1− tn

)
.

An example of this computation is shown in Figure5.2b.
The response to a continuous input signal is obtained by taking the limit as

tn+1− tn → 0, which gives

y(t) =
∫ t

0
H ′(t − τ)u(τ)dτ , (5.5)

whereH ′ is the derivative of the step response, also called theimpulse response.
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The response of a linear time-invariant system to any input can thus be computed
from the step response. Notice that the output depends only on the input since we
assumed the system was initially at rest,x(0) = 0. We will derive equation (5.5) in
a slightly different way in the Section5.3.

5.2 The Matrix Exponential

Equation (5.5) shows that the output of a linear system can be written as an integral
over the inputsu(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial conditions. We begin by exploring
the initial condition response using the matrix exponential.

Initial Condition Response

Although we have shown that the solution of a linear set of differential equations
defines a linear input/output system, we have not fully computed the solution of
the system. We begin by considering the homogeneous response corresponding to
the system

dx
dt

= Ax. (5.6)

For thescalardifferential equation

dx
dt

= ax, x∈ R, a∈ R,

the solution is given by the exponential

x(t) = eatx(0).

We wish to generalize this to the vector case, whereA becomes a matrix. We define
thematrix exponentialas the infinite series

eX = I +X+
1
2

X2+
1
3!

X3+ · · ·=
∞

∑
k=0

1
k!

Xk, (5.7)

whereX ∈R
n×n is a square matrix andI is then×n identity matrix. We make use

of the notation
X0 = I , X2 = XX, Xn = Xn−1X,

which defines what we mean by the “power” of a matrix. Equation (5.7) is easy
to remember since it is just the Taylor series for the scalar exponential, applied to
the matrixX. It can be shown that the series in equation (5.7) converges for any
matrix X ∈ R

n×n in the same way that the normal exponential is defined for any
scalara∈ R.
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ReplacingX in equation (5.7) by At, wheret ∈ R, we find that

eAt = I +At+
1
2

A2t2+
1
3!

A3t3+ · · ·=
∞

∑
k=0

1
k!

Aktk,

and differentiating this expression with respect tot gives

d
dt

eAt = A+A2t +
1
2

A3t2+ · · ·= A
∞

∑
k=0

1
k!

Aktk = AeAt. (5.8)

Multiplying by x(0) from the right, we find thatx(t) = eAtx(0) is the solution to the
differential equation (5.6) with initial conditionx(0). We summarize this important
result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6) is given by

x(t) = eAtx(0).

Notice that the form of the solution is exactly the same as forscalar equations,
but we must put the vectorx(0) on the right of the matrixeAt.

The form of the solution immediately allows us to see that the solution is linear
in the initial condition. In particular, ifxh1(t) is the solution to equation (5.6) with
initial condition x(0) = x01 andxh2(t) with initial condition x(0) = x02, then the
solution with initial conditionx(0) = αx01+βx02 is given by

x(t) = eAt(αx01+βx02
)
=
(
αeAtx01+βeAtx02) = αxh1(t)+βxh2(t).

Similarly, we see that the corresponding output is given by

y(t) =Cx(t) = αyh1(t)+βyh2(t),

whereyh1(t) andyh2(t) are the outputs corresponding toxh1(t) andxh2(t).
We illustrate computation of the matrix exponential by two examples.

Example 5.2 Double integrator
A very simple linear system that is useful in understanding basic concepts is the
second-order system given by

q̈= u, y= q.

This system is called adouble integratorbecause the inputu is integrated twice to
determine the outputy.

In state space form, we writex= (q, q̇) and

dx
dt

=


0 1

0 0


x+


0

1


u.
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The dynamics matrix of a double integrator is

A=


0 1

0 0


 ,

and we find by direct calculation thatA2 = 0 and hence

eAt =


1 t

0 1


 .

Thus the homogeneous solution (u= 0) for the double integrator is given by

x(t) =


1 t

0 1




x1(0)

x2(0)


=


x1(0)+ tx2(0)

x2(0)


 ,

y(t) = x1(0)+ tx2(0).
∇

Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring–mass system with zero damp-
ing, is

q̈+ω2
0q= u.

Putting the system into state space form, the dynamics matrixfor this system can
be written as

A=


 0 ω0
−ω0 0


 and eAt =


 cosω0t sinω0t
−sinω0t cosω0t


 .

This expression foreAt can be verified by differentiation:

d
dt

eAt =


−ω0sinω0t ω0cosω0t
−ω0cosω0t −ω0sinω0t




=


 0 ω0
−ω0 0




 cosω0t sinω0t
−sinω0t cosω0t


= AeAt.

The solution is then given by

x(t) = eAtx(0) =


 cosω0t sinω0t
−sinω0t cosω0t




x1(0)

x2(0)


 .

If the system has damping,

q̈+2ζ ω0q̇+ω2
0q= u,
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the solution is more complicated, but the matrix exponential can be shown to be

e−ω0ζ t




ζeiωdt −ζe−iωdt

2
√

ζ 2−1
+

eiωdt +e−iωdt

2
eiωdt −e−iωdt

2
√

ζ 2−1

e−iωdt −eiωdt

2
√

ζ 2−1

ζe−iωdt −ζeiωdt

2
√

ζ 2−1
+

eiωdt +e−iωdt

2



,

whereωd = ω0

√
ζ 2−1. Note thatωd and

√
ζ 2−1 can be either real or complex,

but the combinations of terms will always yield a real value for the entries in the
matrix exponential. ∇

An important class of linear systems are those that can be converted into diag-
onal form. Suppose that we are given a system

dx
dt

= Ax

such that all the eigenvalues ofA are distinct. It can be shown (Exercise4.14) that
we can find an invertible matrixT such thatTAT−1 is diagonal. If we choose a set
of coordinatesz= Tx, then in the new coordinates the dynamics become

dz
dt

= T
dx
dt

= TAx= TAT−1z.

By construction ofT, this system will be diagonal.
Now consider a diagonal matrixA and the correspondingkth power ofAt,

which is also diagonal:

A=




λ1 0
λ2

. ..
0 λn



, (At)k =




λ k
1tk 0

λ k
2tk

. ..
0 λ k

ntk



,

It follows from the series expansion that the matrix exponential is given by

eAt =




eλ1t 0
eλ2t

.. .
0 eλnt



.

A similar expansion can be done in the case where the eigenvalues are complex,
using a block diagonal matrix, similar to what was done in Section 4.3.

Jordan Form
�

Some matrices with equal eigenvalues cannot be transformed to diagonal form.
They can, however, be transformed to a closely related form, called theJordan
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Figure 5.3: Representations of linear systems where the dynamics matrices are Jordan
blocks. A first-order Jordan block can be represented as an integrator with feedbackλ , as
shown on the left. Second- and third-order Jordan blocks can be represented as series con-
nections of integrators with feedback, as shown on the right.

form, in which the dynamics matrix has the eigenvalues along the diagonal. When
there are equal eigenvalues, there may be 1’s appearing in the superdiagonal indi-
cating that there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it canbe written
as

J =




J1 0 . . . 0 0
0 J2 0 0 0
...

... .. .
...

0 0 Jk−1 0
0 0 . . . 0 Jk




, where Ji =




λi 1 0 . . . 0
0 λi 1 0
...

... ...
...

0 0 λi 1
0 0 . . . 0 λi




. (5.9)

Each matrixJi is called aJordan block, andλi for that block corresponds to an
eigenvalue ofJ. A first-order Jordan block can be represented as a system con-
sisting of an integrator with feedbackλ . A Jordan block of higher order can be
represented as series connections of such systems, as illustrated in Figure5.3.

Theorem 5.2(Jordan decomposition). Any matrix A∈ R
n×n can be transformed

into Jordan form with the eigenvalues of A determiningλi in the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Str88]. The special
case where the eigenvalues are distinct is examined in Exercise4.14.

Converting a matrix into Jordan form can be complicated, although MATLAB
can do this conversion for numerical matrices using thejordan function. The
structure of the resulting Jordan form is particularly interesting since there is no
requirement that the individualλi ’s be unique, and hence for a given eigenvalue
we can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the matrixcan be computed
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in terms of the Jordan blocks:

eJ =




eJ1 0 . . . 0

0 eJ2
...

...
. . . 0

0 . . . 0 eJk.



. (5.10)

This follows from the block diagonal form ofJ. The exponentials of the Jordan
blocks can in turn be written as

eJit =




1 t t2
2! . . . tn−1

(n−1)!

0 1 t . . . tn−2

(n−2)!
... 1

...
...

.. . t
0 . . . 0 1




eλit . (5.11)

When there are multiple eigenvalues, the invariant subspaces associated with
each eigenvalue correspond to the Jordan blocks of the matrix A. Note thatλ may
be complex, in which case the transformationT that converts a matrix into Jor-
dan form will also be complex. Whenλ has a nonzero imaginary component, the
solutions will have oscillatory components since

e(σ+iω)t = eσt(cosωt + i sinωt).

We can now use these results to prove Theorem4.1, which states that the equilib-
rium pointxe= 0 of a linear system is asymptotically stable if and only if Reλi < 0.

Proof of Theorem4.1. Let T ∈C
n×n be an invertible matrix that transformsA into

Jordan form,J = TAT−1. Using coordinatesz= Tx, we can write the solutionz(t)
as

z(t) = eJtz(0).

Since any solutionx(t) can be written in terms of a solutionz(t) with z(0) = Tx(0),
it follows that it is sufficient to prove the theorem in the transformed coordinates.

The solutionz(t) can be written in terms of the elements of the matrix expo-
nential. From equation (5.11) these elements all decay to zero for arbitraryz(0) if
and only if Reλi < 0. Furthermore, if anyλi has positive real part, then there ex-
ists an initial conditionz(0) such that the corresponding solution increases without
bound. Since we can scale this initial condition to be arbitrarily small, it follows
that the equilibrium point is unstable if any eigenvalue haspositive real part.

The existence of a canonical form allows us to prove many properties of linear
systems by changing to a set of coordinates in which theA matrix is in Jordan
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form. We illustrate this in the following proposition, which follows along the same
lines as the proof of Theorem4.1.

Proposition 5.3. Suppose that the system

dx
dt

= Ax

has no eigenvalues with strictly positive real part and one or more eigenvalues
with zero real part. Then the system is stable if and only if theJordan blocks cor-
responding to each eigenvalue with zero real part are scalar(1×1) blocks.

Proof. See Exercise5.6b.

The following example illustrates the use of the Jordan form.

Example 5.4 Linear model of a vectored thrust aircraft
Consider the dynamics of a vectored thrust aircraft such as that described in Ex-
ample2.9. Suppose that we chooseu1 = u2 = 0 so that the dynamics of the system
become

dz
dt

=




z4
z5
z6

−gsinz3− c
m z4

g(cosz3−1)− c
m z5

0




, (5.12)

wherez= (x,y,θ , ẋ, ẏ, θ̇). The equilibrium points for the system are given by set-
ting the velocities ˙x, ẏ andθ̇ to zero and choosing the remaining variables to satisfy

−gsinz3,e = 0

g(cosz3,e−1) = 0
=⇒ z3,e = θe = 0.

This corresponds to the upright orientation for the aircraft. Note thatxe and ye

are not specified. This is because we can translate the system toa new (upright)
position and still obtain an equilibrium point.

To compute the stability of the equilibrium point, we compute the linearization
using equation (4.11):

A=
∂F
∂z

∣∣∣∣
ze

=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g −c/m 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 0




.

The eigenvalues of the system can be computed as

λ (A) = {0,0,0,0,−c/m,−c/m}.
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(a) Mode 1 (b) Mode 2

Figure 5.4: Modes of vibration for a system consisting of two masses connected by springs.
In (a) the masses move left and right in synchronization in (b) they movetoward or against
each other.

We see that the linearized system is not asymptotically stable since not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense of Lyapunov, we must
make use of the Jordan form. It can be shown that the Jordan form of A is given by

J =




0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 −c/m




.

Since the second Jordan block has eigenvalue 0 and is not a simple eigenvalue, the
linearization is unstable. ∇

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a description of the types of
behavior the system can exhibit. For oscillatory systems, the termmodeis often
used to describe the vibration patterns that can occur. Figure 5.4 illustrates the
modes for a system consisting of two masses connected by springs. One pattern is
when both masses oscillate left and right in unison, and another is when the masses
move toward and away from each other.

The initial condition response of a linear system can be written in terms of a
matrix exponential involving the dynamics matrixA. The properties of the matrixA
therefore determine the resulting behavior of the system. Given a matrixA∈R

n×n,
recall thatv is an eigenvector ofA with eigenvalueλ if

Av= λv.

In generalλ andv may be complex-valued, although ifA is real-valued, then for
any eigenvalueλ its complex conjugateλ ∗ will also be an eigenvalue (withv∗ as
the corresponding eigenvector).

Suppose first thatλ andv are a real-valued eigenvalue/eigenvector pair forA.
If we look at the solution of the differential equation forx(0) = v, it follows from
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Figure 5.5: The notion of modes for a second-order system with real eigenvalues.The left
figure shows the phase portrait and the modes corresponding to solutions that start on the
eigenvectors (bold lines). The corresponding time functions are shownon the right.

the definition of the matrix exponential that

eAtv=
(
I +At+

1
2

A2t2+ · · ·
)
v= v+λ tv+

λ 2t2

2
v+ · · ·= eλ tv.

The solution thus lies in the subspace spanned by the eigenvector. The eigenvalue
λ describes how the solution varies in time, and this solutionis often called amode
of the system. (In the literature, the term “mode” is also often used to refer to the
eigenvalue rather than the solution.)

If we look at the individual elements of the vectorsx andv, it follows that

xi(t)
x j(t)

=
eλ tvi

eλ tv j
=

vi

v j
,

and hence the ratios of the components of the statex are constants for a (real)
mode. The eigenvector thus gives the “shape” of the solution and is also called
a mode shapeof the system. Figure5.5 illustrates the modes for a second-order
system consisting of a fast mode and a slow mode. Notice that the state variables
have the same sign for the slow mode and different signs for the fast mode.

The situation is more complicated when the eigenvalues ofA are complex.
SinceA has real elements, the eigenvalues and the eigenvectors arecomplex con-
jugatesλ = σ ± iω andv= u± iw, which implies that

u=
v+v∗

2
, w=

v−v∗

2i
.

Making use of the matrix exponential, we have

eAtv= eλ t(u+ iw) = eσt((ucosωt −wsinωt)+ i(usinωt +wcosωt)
)
,
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from which it follows that

eAtu=
1
2

(
eAtv+eAtv∗

)
= ueσt cosωt −weσt sinωt,

eAtw=
1
2i

(
eAtv−eAtv∗

)
= ueσt sinωt +weσt cosωt.

A solution with initial conditions in the subspace spanned by the real partu and
imaginary partw of the eigenvector will thus remain in that subspace. The solution
will be a logarithmic spiral characterized byσ andω. We again call the solution
corresponding toλ a mode of the system, andv the mode shape.

If a matrix A hasn distinct eigenvaluesλ1, . . . ,λn, then the initial condition re-
sponse can be written as a linear combination of the modes. Tosee this, suppose
for simplicity that we have all real eigenvalues with corresponding unit eigenvec-
tors v1, . . . ,vn. From linear algebra, these eigenvectors are linearly independent,
and we can write the initial conditionx(0) as

x(0) = α1v1+α2v2+ · · ·+αnvn.

Using linearity, the initial condition response can be written as

x(t) = α1eλ1tv1+α2eλ2tv2+ · · ·+αneλntvn.

Thus, the response is a linear combination of the modes of the system, with the
amplitude of the individual modes growing or decaying aseλit . The case for dis-
tinct complex eigenvalues follows similarly (the case for nondistinct eigenvalues is
more subtle and requires making use of the Jordan form discussed in the previous
section).

Example 5.5 Coupled spring–mass system
Consider the spring–mass system shown in Figure5.4, but with the addition of
dampers on each mass. The equations of motion of the system are

mq̈1 =−2kq1−cq̇1+kq2, mq̈2 = kq1−2kq2−cq̇2.

In state space form, we define the state to bex= (q1,q2, q̇1, q̇2), and we can rewrite
the equations as

dx
dt

=




0 0 1 0
0 0 0 1

−2k
m

k
m

− c
m

0

k
m

−2k
m

0 − c
m




x.

We now define a transformationz= Tx that puts this system into a simpler form.
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Let z1 =
1
2(q1+q2), z2 = ż1, z3 =

1
2(q1−q2) andz4 = ż3, so that

z= Tx=
1
2




1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1




x.

In the new coordinates, the dynamics become

dz
dt

=




0 1 0 0

− k
m

− c
m

0 0

0 0 0 1

0 0 −3k
m

− c
m




z,

and we see that the system is in block diagonal (ormodal) form.
In thez coordinates, the statesz1 andz2 parameterize one mode with eigenval-

uesλ ≈ −c/(2m)± i
√

k/m (for c small), and the statesz3 andz4 another mode
with λ ≈ −c/(2m)± i

√
3k/m. From the form of the transformationT we see

that these modes correspond exactly to the modes in Figure5.4, in which q1 and
q2 move either toward or against each other. The real and imaginary parts of the
eigenvalues give the decay ratesσ and frequenciesω for each mode. ∇

5.3 Input/Output Response

In the previous section we saw how to compute the initial condition response using
the matrix exponential. In this section we derive the convolution equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (5.3), repeated here:

dx
dt

= Ax+Bu, y=Cx+Du. (5.13)

Using the matrix exponential, the solution to equation (5.13) can be written as
follows.

Theorem 5.4. The solution to the linear differential equation(5.13) is given by

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Bu(τ)dτ . (5.14)
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Proof. To prove this, we differentiate both sides and use the property (5.8) of the
matrix exponential. This gives

dx
dt

= AeAtx(0)+
∫ t

0
AeA(t−τ)Bu(τ)dτ +Bu(t) = Ax+Bu,

which proves the result. Notice that the calculation is essentially the same as for
proving the result for a first-order equation.

It follows from equations (5.13) and (5.14) that the input/output relation for a
linear system is given by

y(t) =CeAtx(0)+
∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t). (5.15)

It is easy to see from this equation that the output is jointlylinear in both the
initial conditions and the input, which follows from the linearity of matrix/vector
multiplication and integration.

Equation (5.15) is called theconvolution equation, and it represents the general
form of the solution of a system of coupled linear differential equations. We see
immediately that the dynamics of the system, as characterized by the matrixA,
play a critical role in both the stability and performance ofthe system. Indeed,
the matrix exponential describesboth what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can be given using the concept�
of the impulse responseof a system. Consider the application of an input signal
u(t) given by the following equation:

u(t) = pε(t) =





0 t < 0

1/ε 0≤ t < ε
0 t ≥ ε .

(5.16)

This signal is apulseof durationε and amplitude 1/ε, as illustrated in Figure5.6a.
We define animpulseδ (t) to be the limit of this signal asε → 0:

δ (t) = lim
ε→0

pε(t). (5.17)

This signal, sometimes called adelta function,is not physically achievable but
provides a convenient abstraction in understanding the response of a system. Note
that the integral of an impulse is 1:

∫ t

0
δ (τ)dτ =

∫ t

0
lim
ε→0

pε(t)dτ = lim
ε→0

∫ t

0
pε(t)dτ

= lim
ε→0

∫ ε

0
1/ε dτ = 1 t > 0.
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Figure 5.6: Pulse response and impulse response. (a) The rectangles show pulses of width
5, 2.5 and 0.8, each with total area equal to 1. The arrow denotes an impulseδ (t) defined
by equation (5.17). The corresponding pulse responses for a linear system with eigenvalues
λ = {−0.08,−0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of duration 0.8.

In particular, the integral of an impulse over an arbitrarily short period of time is
identically 1.

We define theimpulse responseof a systemh(t) to be the output corresponding
to having an impulse as its input:

h(t) =
∫ t

0
CeA(t−τ)Bδ (τ)dτ =CeAtB, (5.18)

where the second equality follows from the fact thatδ (t) is zero everywhere ex-
cept the origin and its integral is identically 1. We can now write the convolution
equation in terms of the initial condition response, the convolution of the impulse
response and the input signal, and the direct term:

y(t) =CeAtx(0)+
∫ t

0
h(t − τ)u(τ)dτ +Du(t). (5.19)

One interpretation of this equation, explored in Exercise5.2, is that the response
of the linear system is the superposition of the response to an infinite set of shifted
impulses whose magnitudes are given by the inputu(t). This is essentially the ar-
gument used in analyzing Figure5.2 and deriving equation (5.5). Note that the
second term in equation (5.19) is identical to equation (5.5), and it can be shown
that the impulse response is formally equivalent to the derivative of the step re-
sponse.

The use of pulses as approximations of the impulse function also provides a
mechanism for identifying the dynamics of a system from data. Figure5.6bshows
the pulse responses of a system for different pulse widths. Notice that the pulse
responses approach the impulse response as the pulse width goes to zero. As a
general rule, if the fastest eigenvalue of a stable system has real part−σmax, then a
pulse of lengthε will provide a good estimate of the impulse response ifεσmax≪
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1. Note that for Figure5.6, a pulse width ofε = 1 s givesεσmax = 0.62 and the
pulse response is already close to the impulse response.

Coordinate Invariance

The components of the input vectoru and the output vectory are given by the
chosen inputs and outputs of a model, but the state variablesdepend on the coor-
dinate frame chosen to represent the state. This choice of coordinates affects the
values of the matricesA, B andC that are used in the model. (The direct termD
is not affected since it maps inputs to outputs.) We now investigate some of the
consequences of changing coordinate systems.

Introduce new coordinatesz by the transformationz= Tx, whereT is an in-
vertible matrix. It follows from equation (5.3) that

dz
dt

= T(Ax+Bu) = TAT−1z+TBu=: Ãz+ B̃u,

y=Cx+Du=CT−1z+Du=: C̃z+Du.

The transformed system has the same form as equation (5.3), but the matricesA, B
andC are different:

Ã= TAT−1, B̃= TB, C̃=CT−1. (5.20)

There are often special choices of coordinate systems that allow us to see a partic-
ular property of the system, hence coordinate transformations can be used to gain
new insight into the dynamics.

We can also compare the solution of the system in transformedcoordinates to
that in the original state coordinates. We make use of an important property of the
exponential map,

eTST−1
= TeST−1,

which can be verified by substitution in the definition of the matrix exponential.
Using this property, it is easy to show that

x(t) = T−1z(t) = T−1eÃtTx(0)+T−1
∫ t

0
eÃ(t−τ)B̃u(τ)dτ .

From this form of the equation, we see that if it is possible to transformA into
a form Ã for which the matrix exponential is easy to compute, we can use that
computation to solve the general convolution equation for the untransformed state
x by simple matrix multiplications. This technique is illustrated in the following
example.

Example 5.6 Coupled spring–mass system
Consider the coupled spring–mass system shown in Figure5.7. The input to this
system is the sinusoidal motion of the end of the rightmost spring, and the output
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Figure 5.7: Coupled spring mass system. Each mass is connected to two springs with stiff-
nessk and a viscous damper with damping coefficientc. The mass on the right is driven
through a spring connected to a sinusoidally varying attachment.

is the position of each mass,q1 andq2. The equations of motion are given by

mq̈1 =−2kq1−cq̇1+kq2, mq̈2 = kq1−2kq2−cq̇2+ku.

In state space form, we define the state to bex= (q1,q2, q̇1, q̇2), and we can rewrite
the equations as

dx
dt

=




0 0 1 0
0 0 0 1

−2k
m

k
m

− c
m

0

k
m

−2k
m

0 − c
m




x+




0
0

0

k
m




u.

This is a coupled set of four differential equations and is quite complicated to solve
in analytical form.

The dynamics matrix is the same as in Example5.5, and we can use the coor-
dinate transformation defined there to put the system in modalform:

dz
dt

=




0 1 0 0

− k
m

− c
m

0 0

0 0 0 1

0 0 −3k
m

− c
m




z+




0
k

2m

0

− k
2m




u.

Note that the resulting matrix equations are block diagonaland hence decoupled.
We can solve for the solutions by computing the solutions of two sets of second-
order systems represented by the states(z1,z2) and(z3,z4). Indeed, the functional
form of each set of equations is identical to that of a single spring–mass system.
(The explicit solution is derived in Section6.3.)

Once we have solved the two sets of independent second-orderequations, we
can recover the dynamics in the original coordinates by inverting the state trans-
formation and writingx= T−1z. We can also determine the stability of the system
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Figure 5.8: Transient versus steady-state response. The input to a linear system isshown in
(a), and the corresponding output withx(0) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

by looking at the stability of the independent second-ordersystems. ∇

Steady-State Response

Given a linear input/output system

dx
dt

= Ax+Bu, y=Cx+Du, (5.21)

the general form of the solution to equation (5.21) is given by the convolution
equation:

y(t) =CeAtx(0)+
∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t).

We see from the form of this equation that the solution consists of an initial condi-
tion response and an input response.

The input response, corresponding to the last two terms in theequation above,
itself consists of two components—thetransient responseand thesteady-state re-
sponse. The transient response occurs in the first period of time afterthe input
is applied and reflects the mismatch between the initial condition and the steady-
state solution. The steady-state response is the portion of the output response that
reflects the long-term behavior of the system under the given inputs. For inputs
that are periodic the steady-state response will often be periodic, and for constant
inputs the response will often be constant. An example of thetransient and the
steady-state response for a periodic input is shown in Figure5.8.

A particularly common form of input is astep input, which represents an abrupt
change in input from one value to another. Aunit step(sometimes called the Heav-
iside step function) is defined as

u= S(t) =

{
0 t = 0

1 t > 0.
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and steady-state
value give the key performance properties of the signal.

Thestep responseof the system (5.21) is defined as the outputy(t) starting from
zero initial condition (or the appropriate equilibrium point) and given a step input.
We note that the step input is discontinuous and hence is not practically imple-
mentable. However, it is a convenient abstraction that is widely used in studying
input/output systems.

We can compute the step response to a linear system using the convolution
equation. Settingx(0) = 0 and using the definition of the step input above, we
have

y(t) =
∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t) =C

∫ t

0
eA(t−τ)Bdτ +D

=C
∫ t

0
eAσ Bdσ +D =C

(
A−1eAσ B

)∣∣σ=t
σ=0+D

=CA−1eAtB−CA−1B+D.

If A has eigenvalues with negative real part (implying that the origin is a stable
equilibrium point in the absence of any input), then we can rewrite the solution as

y(t) =CA−1eAtB︸ ︷︷ ︸
transient

+D−CA−1B︸ ︷︷ ︸
steady-state

, t > 0. (5.22)

The first term is the transient response and decays to zero ast → ∞. The second
term is the steady-state response and represents the value of the output for large
time.

A sample step response is shown in Figure5.9. Several terms are used when
referring to a step response. Thesteady-state value yss of a step response is the
final level of the output, assuming it converges. Therise time Tr is the amount of
time required for the signal to go from 10% of its final value to 90% of its final
value. It is possible to define other limits as well, but in thisbook we shall use these
percentages unless otherwise indicated. Theovershoot Mp is the percentage of the
final value by which the signal initially rises above the final value. This usually
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Figure 5.10: Response of a compartment model to a constant drug infusion. A simpledia-
gram of the system is shown in (a). The step response (b) shows the rateof concentration
buildup in compartment 2. In (c) a pulse of initial concentration is used to speed up the
response.

assumes that future values of the signal do not overshoot thefinal value by more
than this initial transient, otherwise the term can be ambiguous. Finally, thesettling
time Ts is the amount of time required for the signal to stay within 2%of its final
value for all future times. The settling time is also sometimes defined as reaching
1% or 5% of the final value (see Exercise5.7). In general these performance mea-
sures can depend on the amplitude of the input step, but for linear systems the last
three quantities defined above are independent of the size of the step.

Example 5.7 Compartment model
Consider the compartment model illustrated in Figure5.10and described in more
detail in Section3.6. Assume that a drug is administered by constant infusion in
compartmentV1 and that the drug has its effect in compartmentV2. To assess how
quickly the concentration in the compartment reaches steady state we compute
the step response, which is shown in Figure5.10b. The step response is quite slow,
with a settling time of 39 min. It is possible to obtain the steady-state concentration
much faster by having a faster injection rate initially, as shown in Figure5.10c.
The response of the system in this case can be computed by combining two step
responses (Exercise5.3). ∇

Another common input signal to a linear system is a sinusoid (or a combination
of sinusoids). Thefrequency responseof an input/output system measures the way
in which the system responds to a sinusoidal excitation on one of its inputs. As we
have already seen for scalar systems, the particular solution associated with a sinu-
soidal excitation is itself a sinusoid at the same frequency. Hence we can compare
the magnitude and phase of the output sinusoid to the input. More generally, if a
system has a sinusoidal output response at the same frequency as the input forcing,
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we can speak of the frequency response of the system.
To see this in more detail, we must evaluate the convolution equation (5.15) for

u= cosωt. This turns out to be a very messy calculation, but we can make use of
the fact that the system is linear to simplify the derivation. In particular, we note
that

cosωt =
1
2

(
eiωt +e−iωt

)
.

Since the system is linear, it suffices to compute the response of the system to the
complex inputu(t) = est and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding tos= iω ands=−iω.

Applying the convolution equation to the inputu= est we have

y(t) =CeAtx(0)+
∫ t

0
CeA(t−τ)Besτdτ +Dest

=CeAtx(0)+CeAt
∫ t

0
e(sI−A)τBdτ +Dest.

If we assume that none of the eigenvalues ofA are equal tos= ±iω, then the
matrix sI−A is invertible, and we can write

y(t) =CeAtx(0)+CeAt
(
(sI−A)−1e(sI−A)τB

)∣∣∣
t

0
+Dest

=CeAtx(0)+CeAt(sI−A)−1
(

e(sI−A)t − I
)

B+Dest

=CeAtx(0)+C(sI−A)−1estB−CeAt(sI−A)−1B+Dest,

and we obtain

y(t) =CeAt
(

x(0)− (sI−A)−1B
)

︸ ︷︷ ︸
transient

+
(
C(sI−A)−1B+D

)
est

︸ ︷︷ ︸
steady-state

. (5.23)

Notice that once again the solution consists of both a transient component and a
steady-state component. The transient component decays to zero if the system is
asymptotically stable and the steady-state component is proportional to the (com-
plex) inputu= est.

We can simplify the form of the solution slightly further by rewriting the steady-
state response as

yss(t) = Meiθ est = Me(st+iθ),

where
Meiθ =C(sI−A)−1B+D (5.24)

andM andθ represent the magnitude and phase of the complex numberC(sI−
A)−1B+D. Whens= iω, we say thatM is thegain and θ is thephaseof the
system at a given forcing frequencyω. Using linearity and combining the solutions
for s=+iω ands=−iω, we can show that if we have an inputu=Ausin(ωt+ψ)
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Figure 5.11:Response of a linear system to a sinusoid. (a) A sinusoidal input of magnitude
Au (dashed) gives a sinusoidal output of magnitudeAy (solid), delayed by∆T seconds. (b)
Frequency response, showing gain and phase. The gain is given by the ratio of the output
amplitude to the input amplitude,M = Ay/Au. The phase lag is given byθ =−2π∆T/T; it
is negative for the case shown because the output lags the input.

and an outputy= Aysin(ωt +ϕ), then

gain(ω) =
Ay

Au
= M, phase(ω) = ϕ −ψ = θ .

The steady-state solution for a sinusoidu= cosωt is now given by

yss(t) = M cos(ωt +θ).

If the phaseθ is positive, we say that the outputleadsthe input, otherwise we say
it lagsthe input.

A sample sinusoidal response is illustrated in Figure5.11a. The dashed line
shows the input sinusoid, which has amplitude 1. The output sinusoid is shown
as a solid line and has a different amplitude plus a shifted phase. The gain is the
ratio of the amplitudes of the sinusoids, which can be determined by measuring
the height of the peaks. The phase is determined by comparing the ratio of the
time between zero crossings of the input and output to the overall period of the
sinusoid:

θ =−2π ·
∆T
T

.

A convenient way to view the frequency response is to plot howthe gain and
phase in equation (5.24) depend onω (throughs= iω). Figure5.11bshows an
example of this type of representation.

Example 5.8 Active band-pass filter
Consider the op amp circuit shown in Figure5.12a. We can derive the dynamics of
the system by writing thenodal equations, which state that the sum of the currents
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Figure 5.12:Active band-pass filter. The circuit diagram (a) shows an op amp with twoRC
filters arranged to provide a band-pass filter. The plot in (b) shows the gain and phase of the
filter as a function of frequency. Note that the phase starts at -90◦ due to the negative gain of
the operational amplifier.

at any node must be zero. Assuming thatv− = v+ = 0, as we did in Section3.3,
we have

0=
v1−v2

R1
−C1

dv2

dt
, 0=C1

dv2

dt
+

v3

R2
+C2

dv3

dt
.

Choosingv2 andv3 as our states and using these equations, we obtain

dv2

dt
=

v1−v2

R1C1
,

dv3

dt
=

−v3

R2C2
− v1−v2

R1C2
.

Rewriting these in linear state space form, we obtain

dx
dt

=




− 1
R1C1

0

1
R1C2

− 1
R2C2




x+




1
R1C1

−1
R1C2




u, y=

0 1


x, (5.25)

wherex= (v2,v3), u= v1 andy= v3.
The frequency response for the system can be computed using equation (5.24):

Mejθ =C(sI−A)−1B+D =−R2

R1

R1C1s
(1+R1C1s)(1+R2C2s)

, s= iω.

The magnitude and phase are plotted in Figure5.12bfor R1 = 100Ω, R2 = 5 kΩ
andC1 =C2 = 100 µF. We see that the circuit passes through signals with frequen-
cies at about 10 rad/s, but attenuates frequencies below 5 rad/s and above 50 rad/s.
At 0.1 rad/s the input signal is attenuated by 20× (0.05). This type of circuit is
called aband-pass filtersince it passes through signals in the band of frequencies
between 5 and 50 rad/s. ∇
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As in the case of the step response, a number of standard properties are defined
for frequency responses. The gain of a system atω = 0 is called thezero frequency
gainand corresponds to the ratio between a constant input and thesteady output:

M0 =−CA−1B+D.

The zero frequency gain is well defined only ifA is invertible (and, in particular, if
it does not have eigenvalues at 0). It is also important to note that the zero frequency
gain is a relevant quantity only when a system is stable aboutthe corresponding
equilibrium point. So, if we apply a constant inputu = r, then the correspond-
ing equilibrium pointxe = −A−1Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero frequency gain is often called
theDC gain. DC stands for direct current and reflects the common separation of
signals in electrical engineering into a direct current (zero frequency) term and an
alternating current (AC) term.)

Thebandwidthωb of a system is the frequency range over which the gain has
decreased by no more than a factor of 1/

√
2 from its reference value. For systems

with nonzero, finite zero frequency gain, the bandwidth is thefrequency where
the gain has decreased by 1/

√
2 from the zero frequency gain. For systems that

attenuate low frequencies but pass through high frequencies, the reference gain
is taken as the high-frequency gain. For a system such as the band-pass filter in
Example5.8, bandwidth is defined as the range of frequencies where the gain is
larger than 1/

√
2 of the gain at the center of the band. (For Example5.8this would

give a bandwidth of approximately 50 rad/s.)
Another important property of the frequency response is theresonant peak Mr ,

the largest value of the frequency response, and thepeak frequencyωmr, the fre-
quency where the maximum occurs. These two properties describe the frequency
of the sinusoidal input that produces the largest possible output and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode
Consider the model for the vertical dynamics of the atomic force microscope in
contact mode, discussed in Section3.5. The basic dynamics are given by equa-
tion (3.23). The piezo stack can be modeled by a second-order system withun-
damped natural frequencyω3 and damping ratioζ3. The dynamics are then de-
scribed by the linear system

dx
dt

=




0 1 0 0
−k2/(m1+m2) −c2/(m1+m2) 1/m2 0

0 0 0 ω3
0 0 −ω3 −2ζ3ω3




x+




0
0
0

ω3




u,

y=
m2

m1+m2


 m1k2

m1+m2

m1c2

m1+m2
1 0


x,
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Figure 5.13:AFM frequency response. (a) A block diagram for the vertical dynamics of an
atomic force microscope in contact mode. The plot in (b) shows the gain and phase for the
piezo stack. The response contains two frequency peaks at resonances of the system, along
with an antiresonance atω = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

where the input signal is the drive signal to the amplifier and the output is the elon-
gation of the piezo. The frequency response of the system is shown in Figure5.13b.
The zero frequency gain of the system isM0 = 1. There are two resonant poles with
peaksMr1 = 2.12 atωmr1 = 238 krad/s andMr2 = 4.29 atωmr2 = 746 krad/s. The
bandwidth of the system, defined as the lowest frequency wherethe gain is

√
2 less

than the zero frequency gain, isωb = 292 krad/s. There is also a dip in the gain
Md = 0.556 forωmd= 268 krad/s. This dip, called anantiresonance, is associated
with a dip in the phase and limits the performance when the system is controlled
by simple controllers, as we will see in Chapter10. ∇

Sampling

It is often convenient to use both differential and difference equations in modeling
and control. For linear systems it is straightforward to transform from one to the
other. Consider the general linear system described by equation (5.13) and assume
that the control signal is constant over a sampling intervalof constant lengthh. It
follows from equation (5.14) of Theorem5.4that

x(t +h) = eAhx(t)+
∫ t+h

t
eA(t+h−τ)Bu(τ)dτ = Φx(t)+Γu(t), (5.26)

where we have assumed that the discontinuous control signalis continuous from
the right. The behavior of the system at the sampling timest = kh is described by
the difference equation

x[k+1] = Φx[k]+Γu[k], y[k] =Cx[k]+Du[k]. (5.27)
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Notice that the difference equation (5.27) is an exact representation of the behavior
of the system at the sampling instants. Similar expressions can also be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.26) to (5.27) is calledsampling. The relations be-
tween the system matrices in the continuous and sampled representations are as
follows:

Φ = eAh, Γ =
(∫ h

0
eAsds

)
B; A=

1
h

logΦ, B=
(∫ h

0
eAsds

)−1
Γ. (5.28)

Notice that ifA is invertible, we have

Γ = A−1(eAh− I
)
B.

All continuous-time systems can be sampled to obtain a discrete-time version,
but there are discrete-time systems that do not have a continuous-time equivalent.
The precise condition is that the matrixΦ cannot have real eigenvalues on the
negative real axis.

Example 5.10 IBM Lotus server
In Example2.4 we described how the dynamics of an IBM Lotus server were
obtained as the discrete-time system

y[k+1] = ay[k]+bu[k],

where a = 0.43, b = 0.47 and the sampling period ish = 60 s. A differential
equation model is needed if we would like to design control systems based on
continuous-time theory. Such a model is obtained by applyingequation (5.28);
hence

A=
loga

h
=−0.0141, B=

(∫ h

0
eAt dt

)−1
b= 0.0116,

and we find that the difference equation can be interpreted as asampled version of
the ordinary differential equation

dx
dt

=−0.0141x+0.0116u.

∇
5.4 Linearization

As described at the beginning of the chapter, a common sourceof linear system
models is through the approximation of a nonlinear system bya linear one. These
approximations are aimed at studying the local behavior of asystem, where the
nonlinear effects are expected to be small. In this section we discuss how to lo-
cally approximate a system by its linearization and what canbe said about the
approximation in terms of stability. We begin with an illustration of the basic con-
cept using the cruise control example from Chapter3.
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Example 5.11 Cruise control
The dynamics for the cruise control system were derived in Section 3.1 and have
the form

m
dv
dt

= αnuT(αnv)−mgCr sgn(v)− 1
2

ρCvAv2−mgsinθ , (5.29)

where the first term on the right-hand side of the equation is the force generated
by the engine and the remaining three terms are the rolling friction, aerodynamic
drag and gravitational disturbance force. There is an equilibrium (ve,ue) when the
force applied by the engine balances the disturbance forces.

To explore the behavior of the system near the equilibrium wewill linearize the
system. A Taylor series expansion of equation (5.29) around the equilibrium gives

d(v−ve)

dt
= a(v−ve)−bg(θ −θe)+b(u−ue)+higher order terms, (5.30)

where

a=
ueα2

nT ′(αnve)−ρCvAve

m
, bg = gcosθe, b=

αnT(αnve)

m
. (5.31)

Notice that the term corresponding to rolling friction disappears ifv = 0. For a
car in fourth gear withve = 25 m/s,θe = 0 and the numerical values for the car
from Section3.1, the equilibrium value for the throttle isue = 0.1687 and the
parameters area = −0.0101,b = 1.32 andc = 9.8. This linear model describes
how small perturbations in the velocity about the nominal speed evolve in time.

Figure5.14shows a simulation of a cruise controller with linear and nonlinear
models; the differences between the linear and nonlinear models are small, and
hence the linearized model provides a reasonable approximation. ∇

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, single-output nonlinear system

dx
dt

= f (x,u), x∈ R
n,u∈ R,

y= h(x,u), y∈ R,
(5.32)

with an equilibrium point atx = xe, u = ue. Without loss of generality we can
assume thatxe= 0 andue= 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thelocal behavior of the system around the equilibrium point(xe,ue),
we suppose thatx− xe andu−ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with the (lower-order) lin-
ear terms. This is roughly the same type of argument that is used when we do
small-angle approximations, replacing sinθ with θ and cosθ with 1 for θ near
zero.
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Figure 5.14:Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4◦. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controller gains arekp = 0.5
andki = 0.1.

As we did in Chapter4, we define a new set of state variablesz, as well as
inputsv and outputsw:

z= x−xe, v= u−ue, w= y−h(xe,ue).

These variables are all close to zero when we are near the equilibrium point, and so
in these variables the nonlinear terms can be thought of as the higher-order terms
in a Taylor series expansion of the relevant vector fields (assuming for now that
these exist).

Formally, theJacobian linearizationof the nonlinear system (5.32) is

dz
dt

= Az+Bv, w=Cz+Dv, (5.33)

where

A=
∂ f
∂x

∣∣∣∣
(xe,ue)

, B=
∂ f
∂u

∣∣∣∣
(xe,ue)

, C=
∂h
∂x

∣∣∣∣
(xe,ue)

, D =
∂h
∂u

∣∣∣∣
(xe,ue)

. (5.34)

The system (5.33) approximates the original system (5.32) when we are near the
equilibrium point about which the system was linearized. Using Theorem4.3, if
the linearization is asymptotically stable, then the equilibrium point xe is locally
asymptotically stable for the full nonlinear system.

It is important to note that we can define the linearization of asystem only near
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an equilibrium point. To see this, consider a polynomial system

dx
dt

= a0+a1x+a2x2+a3x3+u,

wherea0 6= 0. A set of equilibrium points for this system is given by(xe,ue) =
(xe,−a0−a1xe−a2x2

e−a3x3
e), and we can linearize around any of them. Suppose

that we try to linearize around the origin of the systemx= 0, u= 0. If we drop the
higher-order terms inx, then we get

dx
dt

= a0+a1x+u,

which isnot the Jacobian linearization ifa0 6= 0. The constant term must be kept,
and it is not present in (5.33). Furthermore, even if we kept the constant term in the
approximate model, the system would quickly move away from this point (since it
is “driven” by the constant terma0), and hence the approximation could soon fail
to hold.

Software for modeling and simulation frequently has facilities for performing
linearization symbolically or numerically. The MATLAB command trim finds
the equilibrium, andlinmod extracts linear state space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering
Consider the vehicle steering system introduced in Example2.8. The nonlinear
equations of motion for the system are given by equations (2.23)–(2.25) and can
be written as

d
dt




x
y
θ


=




vcos(α(δ )+θ)
vsin(α(δ )+θ)

v0

b
tanδ



, α(δ ) = arctan

(atanδ
b

)
,

wherex, y and θ are the position and orientation of the center of mass of the
vehicle,v0 is the velocity of the rear wheel,b is the distance between the front and
rear wheels andδ is the angle of the front wheel. The functionα(δ ) is the angle
between the velocity vector and the vehicle’s length axis.

We are interested in the motion of the vehicle about a straight-line path (θ = θ0)
with fixed velocityv0 6= 0. To find the relevant equilibrium point, we first setθ̇ = 0
and we see that we must haveδ = 0, corresponding to the steering wheel being
straight. This also yieldsα = 0. Looking at the first two equations in the dynamics,
we see that the motion in thexy direction is by definitionnot at equilibrium since
ẋ2+ ẏ2 = v2 6= 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral deviation of the vehicle
from a straight line. For simplicity, we letθe = 0, which corresponds to driving
along thex axis. We can then focus on the equations of motion in they and θ
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directions. With some abuse of notation we introduce the statex= (y,θ) andu= δ .
The system is then in standard form with

f (x,u) =




vsin(α(u)+x2)

v0

b
tanu


 , α(u) = arctan

(atanu
b

)
, h(x,u) = x1.

The equilibrium point of interest is given byx = (0,0) andu = 0. To compute
the linearized model around this equilibrium point, we makeuse of the formu-
las (5.34). A straightforward calculation yields

A=
∂ f
∂x

∣∣∣∣x=0
u=0

=


0 v0

0 0


 , B=

∂ f
∂u

∣∣∣∣x=0
u=0

=


av0/b

v0/b


 ,

C=
∂h
∂x

∣∣∣∣x=0
u=0

=

1 0


 , D =

∂h
∂u

∣∣∣∣x=0
u=0

= 0,

and the linearized system

dx
dt

= Ax+Bu, y=Cx+Du (5.35)

thus provides an approximation to the original nonlinear dynamics.
The linearized model can be simplified further by introducing normalized vari-

ables, as discussed in Section2.3. For this system, we choose the wheel baseb as
the length unit and the unit as the time required to travel a wheel base. The nor-
malized state is thusz= (x1/b,x2), and the new time variable isτ = v0t/b. The
model (5.35) then becomes

dz
dτ

=


z2+ γu

u


=


0 1

0 0


z+


γ

1


u, y=


1 0


z, (5.36)

whereγ = a/b. The normalized linear model for vehicle steering with nonslipping
wheels is thus a linear system with only one parameter. ∇

Feedback Linearization

Another type of linearization is the use of feedback to convert the dynamics of a
nonlinear system into those of a linear one. We illustrate the basic idea with an
example.

Example 5.13 Cruise control
Consider again the cruise control system from Example5.11, whose dynamics are
given in equation (5.29):

m
dv
dt

= αnuT(αnv)−mgCr sgn(v)− 1
2

ρCdAv2−mgsinθ .
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Figure 5.15: Feedback linearization. A nonlinear feedback of the formu= α(x,v) is used
to modify the dynamics of a nonlinear process so that the response fromthe inputv to the
outputy is linear. A linear controller can then be used to regulate the system’s dynamics.

If we chooseu as a feedback law of the form

u=
1

αnT(αnv)

(
u′+mgCr sgn(v)+

1
2

ρCvAv2
)
, (5.37)

then the resulting dynamics become

m
dv
dt

= u′+d, (5.38)

whered = −mgsinθ is the disturbance force due the slope of the road. If we
now define a feedback law foru′ (such as a proportional-integral-derivative [PID]
controller), we can use equation (5.37) to compute the final input that should be
commanded.

Equation (5.38) is a linear differential equation. We have essentially “inverted”
the nonlinearity through the use of the feedback law (5.37). This requires that we
have an accurate measurement of the vehicle velocityv as well as an accurate
model of the torque characteristics of the engine, gear ratios, drag and friction
characteristics and mass of the car. While such a model is notgenerally available
(remembering that the parameter values can change), if we design a good feedback
law for u′, then we can achieve robustness to these uncertainties. ∇

More generally, we say that a system of the form

dx
dt

= f (x,u), y= h(x),

is feedback linearizableif we can find a control lawu = α(x,v) such that the
resulting closed loop system is input/output linear with input v and outputy, as
shown in Figure5.15. To fully characterize such systems is beyond the scope of
this text, but we note that in addition to changes in the input, the general theory also
allows for (nonlinear) changes in the states that are used todescribe the system,
keeping only the input and output variables fixed. More details of this process can
be found in the textbooks by Isidori [Isi95] and Khalil [Kha01].

One case that comes up relatively frequently, and is hence worth special mention,�
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is the set of mechanical systems of the form

M(q)q̈+C(q, q̇) = B(q)u.

Hereq ∈ R
n is the configuration of the mechanical system,M(q) ∈ R

n×n is the
configuration-dependent inertia matrix,C(q, q̇) ∈R

n represents the Coriolis forces
and additional nonlinear forces (such as stiffness and friction) andB(q) ∈ R

n×p is
the input matrix. Ifp = n, then we have the same number of inputs and config-
uration variables, and if we further have thatB(q) is an invertible matrix for all
configurationsq, then we can choose

u= B−1(q)
(
M(q)v+C(q, q̇)

)
. (5.39)

The resulting dynamics become

M(q)q̈= M(q)v =⇒ q̈= v,

which is a linear system. We can now use the tools of linear system theory to
analyze and design control laws for the linearized system, remembering to apply
equation (5.39) to obtain the actual input that will be applied to the system.

This type of control is common in robotics, where it goes by thename ofcom-
puted torque, and in aircraft flight control, where it is calleddynamic inversion.
Some modeling tools like Modelica can generate the code for the inverse model
automatically. One caution is that feedback linearizationcan often cancel out ben-
eficial terms in the natural dynamics, and hence it must be usedwith care. Exten-
sions that do not require complete cancellation of nonlinearities are discussed in
Khalil [Kha01] and Krstíc et al. [KKK95].

5.5 Further Reading

The majority of the material in this chapter is classical and can be found in most
books on dynamics and control theory, including early workson control such as
James, Nichols and Phillips [JNP47] and more recent textbooks such as Dorf and
Bishop [DB04], Franklin, Powell and Emami-Naeini [FPEN05] and Ogata [Oga01].
An excellent presentation of linear systems based on the matrix exponential is
given in the book by Brockett [Bro70], a more comprehensive treatment is given by
Rugh [Rug95] and an elegant mathematical treatment is given in Sontag [Son98].
Material on feedback linearization can be found in books on nonlinear control the-
ory such as Isidori [Isi95] and Khalil [Kha01]. The idea of characterizing dynamics
by considering the responses to step inputs is due to Heaviside, he also introduced
an operator calculus to analyze linear systems. The unit stepis therefore also called
theHeaviside step function. Analysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of lackof mathematical rigor,
as described in the biography by Nahin [Nah88]. The difficulties were cleared up
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later by the mathematician Laurent Schwartz who developeddistribution theoryin
the late 1940s. In engineering, linear systems have traditionally been analyzed us-
ing Laplace transforms as described in Gardner and Barnes [GB42]. Use of the ma-
trix exponential started with developments of control theory in the 1960s, strongly
stimulated by a textbook by Zadeh and Desoer [ZD63]. Use of matrix techniques
expanded rapidly when the powerful methods of numeric linear algebra were pack-
aged in programs like LabVIEW, MATLAB and Mathematica.

Exercises

5.1(Response to the derivative of a signal) Show that ify(t) is the output of a linear
system corresponding to inputu(t), then the output corresponding to an input ˙u(t)
is given byẏ(t). (Hint: Use the definition of the derivative: ˙y(t) = limε→0

(
y(t +

ε)−y(t)
)
/ε .)

5.2(Impulse response and convolution) Show that a signalu(t) can be decomposed�
in terms of the impulse functionδ (t) as

u(t) =
∫ t

0
δ (t − τ)u(τ)dτ

and use this decomposition plus the principle of superposition to show that the
response of a linear system to an inputu(t) (assuming a zero initial condition) can
be written as

y(t) =
∫ t

0
h(t − τ)u(τ)dτ ,

whereh(t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the compartment model
given in Example5.7. Compute the step response for the system and compare
it with Figure 5.10b. Use the principle of superposition to compute the response
to the 5 s pulse input shown in Figure5.10c. Use the parameter valuesk0 = 0.1,
k1 = 0.1, k2 = 0.5 andb0 = 1.5.

5.4 (Matrix exponential for second-order system) Assume thatζ < 1 and letωd =

ω0

√
1−ζ 2. Show that

exp


−ζ ω0 ωd

−ωd −ζ ω0


 t =


 e−ζ ω0t cosωdt e−ζ ω0t sinωdt
−e−ζ ω0t sinωdt e−ζ ω0t cosωdt


 .

5.5 (Lyapunov function for a linear system) Consider a linear systemẋ= Ax with
Reλ j < 0 for all eigenvaluesλ j of the matrixA. Show that the matrix

P=
∫ ∞

0
eAT τQeAτ dτ
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defines a Lyapunov function of the formV(x) = xTPx.

5.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan form that
is non-diagonal.

(a) Prove Proposition5.3by showing that if the system contains a real eigenvalue
λ = 0 with a nontrivial Jordan block, then there exists an initial condition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvalues with Reλ = 0 by �
using the block Jordan form

Ji =




0 ω 1 0
−ω 0 0 1
0 0 0 ω
0 0 −ω 0



.

5.7 (Rise time for a first-order system) Consider a first-order system of the form

τ
dx
dt

=−x+u, y= x.

We say that the parameterτ is thetime constantfor the system since the zero input
system approaches the origin ase−t/τ . For a first-order system of this form, show
that the rise time for a step response of the system is approximately 2τ, and that
1%, 2%, and 5% settling times approximately corresponds to 4.6τ, 4τ and 3τ.

5.8 (Discrete-time systems) Consider a linear discrete-time system of the form

x[k+1] = Ax[k]+Bu[k], y[k] =Cx[k]+Du[k].

(a) Show that the general form of the output of a discrete-timelinear system is
given by the discrete-time convolution equation:

y[k] =CAkx[0]+
k−1

∑
j=0

CAk− j−1Bu[ j]+Du[k].

(b) Show that a discrete-time linear system is asymptotically stable if and only if
all the eigenvalues ofA have a magnitude strictly less than 1.

(c) Let u[k] = sin(ωk) represent an oscillatory input with frequencyω < π (to
avoid “aliasing”). Show that the steady-state component of the response has gain
M and phaseθ , where

Meiθ =C(eiω I −A)−1B+D.
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(d) Show that if we have a nonlinear discrete-time system

x[k+1] = f (x[k],u[k]), x[k] ∈ R
n, u∈ R,

y[k] = h(x[k],u[k]), y∈ R,

then we can linearize the system around an equilibrium point(xe,ue) by defining
the matricesA, B, C andD as in equation (5.34).

5.9 (Keynesian economics) Consider the following simple Keynesian macroeco-
nomic model in the form of a linear discrete-time system discussed in Exercise5.8:


C[t +1]

I [t +1]


=


 a a

ab−b ab




C[t]

I [t]


+


 a

ab


G[t],

Y[t] =C[t]+ I [t]+G[t].

Determine the eigenvalues of the dynamics matrix. When are the magnitudes of the
eigenvalues less than 1? Assume that the system is in equilibrium with constant
values capital spendingC, investmentI and government expenditureG. Explore
what happens when government expenditure increases by 10%.Use the values
a= 0.25 andb= 0.5.

5.10 Consider a scalar system

dx
dt

= 1−x3+u.

Compute the equilibrium points for the unforced system (u= 0) and use a Taylor
series expansion around the equilibrium point to compute the linearization. Verify
that this agrees with the linearization in equation (5.33).

5.11 (Transcriptional regulation) Consider the dynamics of a genetic circuit that
implementsself-repression: the protein produced by a gene is a repressor for that
gene, thus restricting its own production. Using the modelspresented in Exam-
ple2.13, the dynamics for the system can be written as

dm
dt

=
α

1+kp2 +α0− γm−u,
dp
dt

= βm−δ p, (5.40)

whereu is a disturbance term that affects RNA transcription andm, p ≥ 0. Find
the equilibrium points for the system and use the linearizeddynamics around each
equilibrium point to determine the local stability of the equilibrium point and the
step response of the system to a disturbance.



Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage or memory or ac-
cumulation of past causes. We must, of course, demand that the set ofinternal statesΣ be
sufficiently rich to carry all information about the past history ofΣ to predict the effect of the
past upon the future. We do not insist, however, that the state is theleastsuch information
although this is often a convenient assumption.

R. E. Kalman, P. L. Falb and M. A. Arbib,Topics in Mathematical System Theory, 1969 [KFA69].

This chapter describes how the feedback of a system’s state can be used to
shape the local behavior of a system. The concept of reachability is introduced and
used to investigate how to design the dynamics of a system through assignment
of its eigenvalues. In particular, it will be shown that under certain conditions it
is possible to assign the system eigenvalues arbitrarily byappropriate feedback of
the system state.

6.1 Reachability

One of the fundamental properties of a control system is whatset of points in the
state space can be reached through the choice of a control input. It turns out that the
property of reachability is also fundamental in understanding the extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of the system and focusing on
the evolution of the state, given by

dx
dt

= Ax+Bu, (6.1)

wherex∈ R
n, u∈ R, A is ann×n matrix andB a column vector. A fundamental

question is whether it is possible to find control signals so that any point in the state
space can be reached through some choice of input. To study this, we define the
reachable setR(x0,≤ T) as the set of all pointsxf such that there exists an input
u(t), 0≤ t ≤ T that steers the system fromx(0) = x0 to x(T) = xf , as illustrated in
Figure6.1a.
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R(x0,≤ T)

(a) Reachable set

E

(b) Reachability through control

Figure 6.1:The reachable set for a control system. The setR(x0,≤T) shown in (a) is the set
of points reachable fromx0 in time less thanT. The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontal arrows and the control
inputs drawn as vertical arrows. The set of achievable equilibrium pointsis thex axis. By
setting the control inputs as a function of the state, it is possible to steer the system to the
origin, as shown on the sample path.

Definition 6.1 (Reachability). A linear system isreachableif for any x0,xf ∈ R
n

there exists aT > 0 andu: [0,T]→R such that the corresponding solution satisfies
x(0) = x0 andx(T) = xf .

The definition of reachability addresses whether it is possible to reach all points
in the state space in atransientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrium points of the system
(since we can remain at those points once we get there). The setof all possible
equilibria for constant controls is given by

E = {xe : Axe+Bue = 0 for someue ∈ R}.
This means that possible equilibria lie in a one- (or possiblyhigher) dimensional
subspace. If the matrixA is invertible, this subspace is spanned byA−1B.

The following example provides some insight into the possibilities.

Example 6.1 Double integrator
Consider a linear system consisting of a double integrator whose dynamics are
given by

dx1

dt
= x2,

dx2

dt
= u.

Figure6.1bshows a phase portrait of the system. The open loop dynamics (u= 0)
are shown as horizontal arrows pointed to the right forx2 > 0 and to the left for
x2 < 0. The control input is represented by a double-headed arrow in the vertical
direction, corresponding to our ability to set the value of ˙x2. The set of equilibrium
pointsE corresponds to thex1 axis, withue = 0.

Suppose first that we wish to reach the origin from an initial condition (a,0).
We can directly move the state up and down in the phase plane, but we must rely
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on the natural dynamics to control the motion to the left and right. If a > 0, we
can move the origin by first settingu< 0, which will causex2 to become negative.
Oncex2 < 0, the value ofx1 will begin to decrease and we will move to the left.
After a while, we can setu2 to be positive, movingx2 back toward zero and slowing
the motion in thex1 direction. If we bringx2 > 0, we can move the system state in
the opposite direction.

Figure6.1bshows a sample trajectory bringing the system to the origin.Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since ˙x1 = 0 whenx2 = 0), but if we go to any other point in the state
space, we can pass through the point only in a transient fashion. ∇

To find general conditions under which a linear system is reachable, we will
first give a heuristic argument based on formal calculations with impulse functions.
We note that if we can reach all points in the state space through some choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system to an inputu(t) is given
by

x(t) =
∫ t

0
eA(t−τ)Bu(τ)dτ . (6.2)

If we choose the input to be a impulse functionδ (t) as defined in Section5.3, the
state becomes

xδ =
∫ t

0
eA(t−τ)Bδ (τ)dτ =

dxS

dt
= eAtB.

(Note that the state changes instantaneously in response tothe impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise5.1):

xδ̇ =
dxδ
dt

= AeAtB.

Continuing this process and using the linearity of the system, the input

u(t) = α1δ (t)+α2δ̇ (t)+α3δ̈ (t)+ · · ·+αnδ (n−1)(t)

gives the state

x(t) = α1eAtB+α2AeAtB+α3A2eAtB+ · · ·+αnAn−1eAtB.

Taking the limit ast goes to zero through positive values, we get

lim
t→0+

x(t) = α1B+α2AB+α3A2B+ · · ·+αnAn−1B.
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On the right is a linear combination of the columns of the matrix

Wr =

B AB · · · An−1B


 . (6.3)

To reach an arbitrary point in the state space, we thus require that there aren linear
independent columns of the matrixWr . The matrixWr is called thereachability
matrix.

An input consisting of a sum of impulse functions and their derivatives is a very
violent signal. To see that an arbitrary point can be reachedwith smoother signals
we can make use of the convolution equation. Assuming that the initial condition
is zero, the state of a linear system is given by

x(t) =
∫ t

0
eA(t−τ)Bu(τ)dτ =

∫ t

0
eAτBu(t − τ)dτ .

It follows from the theory of matrix functions, specifically the Cayley–Hamilton
theorem (see Exercise6.10), that

eAτ = Iα0(τ)+Aα1(τ)+ · · ·+An−1αn−1(τ),

whereαi(τ) are scalar functions, and we find that

x(t) = B
∫ t

0
α0(τ)u(t − τ)dτ +AB

∫ t

0
α1(τ)u(t − τ)dτ

+ · · ·+An−1B
∫ t

0
αn−1(τ)u(t − τ)dτ .

Again we observe that the right-hand side is a linear combination of the columns
of the reachability matrixWr given by equation (6.3). This basic approach leads to
the following theorem.

Theorem 6.1(Reachability rank condition). A linear system is reachable if and
only if the reachability matrix Wr is invertible.

The formal proof of this theorem is beyond the scope of this text but follows
along the lines of the sketch above and can be found in most books on linear
control theory, such as Callier and Desoer [CD91] or Lewis [Lew03]. We illustrate
the concept of reachability with the following example.

Example 6.2 Balance system
Consider the balance system introduced in Example2.1and shown in Figure6.2.
Recall that this system is a model for a class of examples in which the center
of mass is balanced above a pivot point. One example is the Segway Personal
Transporter shown in Figure6.2a, about which a natural question to ask is whether
we can move from one stationary point to another by appropriate application of
forces through the wheels.
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(a) Segway

M
F

p

θ
m

l

(b) Cart-pendulum system

Figure 6.2:Balance system. The Segway Personal Transporter shown in (a) is anexample of
a balance system that uses torque applied to the wheels to keep the rider upright. A simplified
diagram for a balance system is shown in (b). The system consists of a massm on a rod of
lengthl connected by a pivot to a cart with massM.

The nonlinear equations of motion for the system are given in equation (2.9)
and repeated here:

(M+m)p̈−mlcosθ θ̈ =−cṗ−mlsinθ θ̇ 2+F,

(J+ml2)θ̈ −mlcosθ p̈=−γθ̇ +mglsinθ .
(6.4)

For simplicity, we takec= γ = 0. Linearizing around the equilibrium pointxe =
(p,0,0,0), the dynamics matrix and the control matrix are

A=




0 0 1 0
0 0 0 1

0 m2l2g/µ 0 0

0 Mtmgl/µ 0 0



, B=




0
0

Jt/µ
lm/µ



,

whereµ = MtJt −m2l2, Mt = M+mandJt = J+ml2. The reachability matrix is

Wr =




0 Jt/µ 0 gl3m3/µ2

0 lm/µ 0 gl2m2(m+M)/µ2

Jt/µ 0 gl3m3/µ2 0

lm/µ 0 gl2m2(m+M)/µ2 0



. (6.5)

The determinant of this matrix is

det(Wr) =
g2l4m4

(µ)4 6= 0,

and we can conclude that the system is reachable. This impliesthat we can move
the system from any initial state to any final state and, in particular, that we can
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θ 2θ
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Figure 6.3: An unreachable system. The cart–pendulum system shown on the left has a
single input that affects two pendula of equal length and mass. Since the forces affecting the
two pendula are the same and their dynamics are identical, it is not possible toarbitrarily
control the state of the system. The figure on the right is a block diagram representation of
this situation.

always find an input to bring the system from an initial state toan equilibrium
point. ∇

It is useful to have an intuitive understanding of the mechanisms that make a
system unreachable. An example of such a system is given in Figure 6.3. The
system consists of two identical systems with the same input. Clearly, we cannot
separately cause the first and the second systems to do something different since
they have the same input. Hence we cannot reach arbitrary states, and so the system
is not reachable (Exercise6.3).

More subtle mechanisms for nonreachability can also occur.For example, if
there is a linear combination of states that always remains constant, then the system
is not reachable. To see this, suppose that there exists a rowvectorH such that

0=
d
dt

Hx= H(Ax+Bu), for all u.

ThenH is in the left null space of bothA andB and it follows that

HWr = H

B AB · · · An−1B


= 0.

Hence the reachability matrix is not full rank. In this case,if we have an initial
condition x0 and we wish to reach a statexf for which Hx0 6= Hxf , then since
Hx(t) is constant, no inputu can move fromx0 to xf .

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient to change
coordinates and write the dynamics of the system in the transformed coordinates
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. . .
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bnbn−1

∫

yΣ
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Figure 6.4: Block diagram for a system in reachable canonical form. The individual states
of the system are represented by a chain of integrators whose input depends on the weighted
values of the states. The output is given by an appropriate combination ofthe system input
and other states.

z= Tx. One application of a change of coordinates is to convert a system into a
canonical form in which it is easy to perform certain types ofanalysis.

A linear state space system is inreachable canonical formif its dynamics are
given by

dz
dt

=




−a1 −a2 −a3 . . . −an

1 0 0 . . . 0
0 1 0 . . . 0
...

... .. .
...

0 1 0




z+




1
0
0
...
0




u,

y=

b1 b2 b3 . . . bn


z+du.

(6.6)

A block diagram for a system in reachable canonical form is shown in Figure6.4.
We see that the coefficients that appear in theA andB matrices show up directly
in the block diagram. Furthermore, the output of the system isa simple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable canonical form is given
by

λ (s) = sn+a1sn−1+ · · ·+an−1s+an. (6.7)

The reachability matrix also has a relatively simple structure:

Wr =

B AB . . . An−1B


=




1 −a1 a2
1−a2 · · · ∗

0 1 −a1 · · · ∗
...

...
. . . . . .

...
0 0 0 1 ∗
0 0 0 · · · 1




,
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where∗ indicates a possibly nonzero term. This matrix is full rank since no col-
umn can be written as a linear combination of the others because of the triangular
structure of the matrix.

We now consider the problem of changing coordinates such that the dynamics
of a system can be written in reachable canonical form. LetA,B represent the
dynamics of a given system andÃ, B̃ be the dynamics in reachable canonical form.
Suppose that we wish to transform the original system into reachable canonical
form using a coordinate transformationz= Tx. As shown in the last chapter, the
dynamics matrix and the control matrix for the transformed system are

Ã= TAT−1, B̃= TB.

The reachability matrix for the transformed system then becomes

W̃r =

B̃ ÃB̃ · · · Ãn−1B̃


 .

Transforming each element individually, we have

ÃB̃= TAT−1TB= TAB,

Ã2B̃= (TAT−1)2TB= TAT−1TAT−1TB= TA2B,
...

ÃnB̃= TAnB,

and hence the reachability matrix for the transformed system is

W̃r = T

B AB · · · An−1B


= TWr . (6.8)

SinceWr is invertible, we can thus solve for the transformationT that takes the
system into reachable canonical form:

T = W̃rW
−1
r .

The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx
dt

=


 α ω
−ω α


x+


0

1


u.

We wish to find the transformation that converts the system into reachable canon-
ical form:

Ã=


−a1 −a2

1 0


 , B̃=


1

0


 .
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The coefficientsa1 anda2 can be determined from the characteristic polynomial
for the original system:

λ (s) = det(sI−A) = s2−2αs+(α2+ω2) =⇒
a1 =−2α,

a2 = α2+ω2.

The reachability matrix for each system is

Wr =


0 ω

1 α


 , W̃r =


1 −a1

0 1


 .

The transformationT becomes

T = W̃rW
−1
r =



−(a1+α)/ω 1

1/ω 0


=




α/ω 1

1/ω 0


 ,

and hence the coordinates
z1

z2


= Tx=


αx1/ω +x2

x1/ω




put the system in reachable canonical form. ∇

We summarize the results of this section in the following theorem.

Theorem 6.2(Reachable canonical form). Let A and B be the dynamics and con-
trol matrices for a reachable system. Then there exists a transformation z= Tx
such that in the transformed coordinates the dynamics and control matrices are in
reachable canonical form(6.6) and the characteristic polynomial for A is given by

det(sI−A) = sn+a1sn−1+ · · ·+an−1s+an.

One important implication of this theorem is that for any reachable system, we
can assume without loss of generality that the coordinates are chosen such that the
system is in reachable canonical form. This is particularly useful for proofs, as we
shall see later in this chapter. However, for high-order systems, small changes in
the coefficientsai can give large changes in the eigenvalues. Hence, the reachable
canonical form is not always well conditioned and must be used with some care.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variables that permits prediction
of the future development of a system. We now explore the ideaof designing the
dynamics of a system through feedback of the state. We will assume that the system
to be controlled is described by a linear state model and has asingle input (for
simplicity). The feedback control law will be developed stepby step using a single
idea: the positioning of closed loop eigenvalues in desiredlocations.
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Controller
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Σ Σkrr
ẋ= Ax+Bu

y=Cx+Du
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−K
x

Figure 6.5: A feedback control system with state feedback. The controller uses the system
statex and the reference inputr to command the process through its inputu. We model
disturbances via the additive inputd.

State Space Controller Structure

Figure6.5 is a diagram of a typical control system using state feedback. The full
system consists of the process dynamics, which we take to be linear, the controller
elementsK and kr , the reference input (or command signal)r and process dis-
turbancesd. The goal of the feedback controller is to regulate the outputof the
systemy such that it tracks the reference input in the presence of disturbances and
also uncertainty in the process dynamics.

An important element of the control design is the performance specification.
The simplest performance specification is that of stability: in the absence of any
disturbances, we would like the equilibrium point of the system to be asymptoti-
cally stable. More sophisticated performance specifications typically involve giv-
ing desired properties of the step or frequency response of the system, such as
specifying the desired rise time, overshoot and settling time of the step response.
Finally, we are often concerned with the disturbance attenuation properties of the
system: to what extent can we experience disturbance inputsd and still hold the
outputy near the desired value?

Consider a system described by the linear differential equation

dx
dt

= Ax+Bu, y=Cx+Du, (6.9)

where we have ignored the disturbance signald for now. Our goal is to drive the
outputy to a given reference valuer and hold it there. Notice that it may not be
possible to maintain all equilibria; see Exercise6.8.

We begin by assuming that all components of the state vector are measured.
Since the state at timet contains all the information necessary to predict the future
behavior of the system, the most general time-invariant control law is a function
of the state and the reference input:

u= α(x, r).
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If the feedback is restricted to be linear, it can be written as

u=−Kx+kr r, (6.10)

wherer is the reference value, assumed for now to be a constant.
This control law corresponds to the structure shown in Figure6.5. The nega-

tive sign is a convention to indicate that negative feedbackis the normal situation.
The closed loop system obtained when the feedback (6.10) is applied to the sys-
tem (6.9) is given by

dx
dt

= (A−BK)x+Bkr r. (6.11)

We attempt to determine the feedback gainK so that the closed loop system has
the characteristic polynomial

p(s) = sn+ p1sn−1+ · · ·+ pn−1s+ pn. (6.12)

This control problem is called theeigenvalue assignment problemor pole place-
ment problem(we will define poles more formally in Chapter8).

Note thatkr does not affect the stability of the system (which is determined by
the eigenvalues ofA−BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the closed loop system are given
by

xe =−(A−BK)−1Bkr r, ye =Cxe+Due,

hencekr should be chosen such thatye= r (the desired output value). Sincekr is a
scalar, we can easily solve to show that ifD = 0 (the most common case),

kr =−1/
(
C(A−BK)−1B

)
. (6.13)

Notice thatkr is exactly the inverse of the zero frequency gain of the closed loop
system. The solution forD 6= 0 is left as an exercise.

Using the gainsK andkr , we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to construct such a state feedback
control law, we begin with a few examples that provide some basic intuition and
insights.

Example 6.4 Vehicle steering
In Example5.12we derived a normalized linear model for vehicle steering. The
dynamics describing the lateral deviation were given by

A=


0 1

0 0


 , B=


γ

1


 ,

C=

1 0


 , D = 0.
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The reachability matrix for the system is thus

Wr =

B AB


=


γ 1

1 0


 .

The system is reachable since detWr =−1 6= 0.
We now want to design a controller that stabilizes the dynamics and tracks a

given reference valuer of the lateral position of the vehicle. To do this we introduce
the feedback

u=−Kx+kr r =−k1x1−k2x2+kr r,

and the closed loop system becomes

dx
dt

= (A−BK)x+Bkr r =


−γk1 1− γk2

−k1 −k2


x+


γkr

kr


 r,

y=Cx+Du=

1 0


x.

(6.14)

The closed loop system has the characteristic polynomial

det(sI−A+BK) = det


s+ γk1 γk2−1

k1 s+k2


= s2+(γk1+k2)s+k1.

Suppose that we would like to use feedback to design the dynamics of the system
to have the characteristic polynomial

p(s) = s2+2ζcωcs+ω2
c .

Comparing this polynomial with the characteristic polynomial of the closed loop
system, we see that the feedback gains should be chosen as

k1 = ω2
c , k2 = 2ζcωc− γω2

c .

Equation (6.13) giveskr = k1 = ω2
c , and the control law can be written as

u= k1(r −x1)−k2x2 = ω2
c (r −x1)− (2ζcωc− γω2

c )x2.

The step responses for the closed loop system for different values of the de-
sign parameters are shown in Figure6.6. The effect ofωc is shown in Figure6.6a,
which shows that the response speed increases with increasing ωc. The responses
for ωc = 0.5 and 1 have reasonable overshoot. The settling time is about 15 car
lengths forωc = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths forωc = 1. The control signalδ is large initially and goes to zero as time
increases because the closed loop dynamics have an integrator. The initial value
of the control signal isu(0) = kr = ω2

c r, and thus the achievable response time is
limited by the available actuator signal. Notice in particular the dramatic increase
in control signal whenωc changes from 1 to 2. The effect ofζc is shown in Fig-
ure6.6b. The response speed and the overshoot increase with decreasing damping.
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Figure 6.6: State feedback control of a steering system. Step responses obtained with con-
trollers designed withζc = 0.7 andωc = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasingωc, but that largeωc also give large initial control
actions. Step responses obtained with a controller designed withωc = 1 andζc = 0.5, 0.7
and 1 are shown in (b).

Using these plots, we conclude that reasonable values of thedesign parameters are
to haveωc in the range of 0.5 to 1 andζc ≈ 0.7. ∇

The example of the vehicle steering system illustrates how state feedback can
be used to set the eigenvalues of a closed loop system to arbitrary values.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system
are the coefficients of the characteristic polynomial. It is therefore natural to con-
sider systems in this form when solving the eigenvalue assignment problem.

Consider a system in reachable canonical form, i.e,

dz
dt

= Ãz+ B̃u=




−a1 −a2 −a3 . . . −an

1 0 0 . . . 0
0 1 0 . . . 0
...

... ...
...

0 1 0




z+




1
0
...
0
0




u

y= C̃z=

b1 b2 · · · bn


z.

(6.15)

It follows from(6.7) that the open loop system has the characteristic polynomial

det(sI−A) = sn+a1sn−1+ · · ·+an−1s+an.
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Before making a formal analysis we can gain some insight by investigating the
block diagram of the system shown in Figure6.4. The characteristic polynomial
is given by the parametersak in the figure. Notice that the parameterak can be
changed by feedback from statezk to the inputu. It is thus straightforward to
change the coefficients of the characteristic polynomial by state feedback.

Returning to equations, introducing the control law

u=−K̃z+kr r =−k̃1z1− k̃2z2−·· ·− k̃nzn+kr r, (6.16)

the closed loop system becomes

dz
dt

=




−a1− k̃1 −a2− k̃2 −a3− k̃3 . . . −an− k̃n

1 0 0 . . . 0
0 1 0 . . . 0
...

... .. .
...

0 1 0




z+




kr

0
0
...
0




r,

y=

b1 b2 · · · bn


z.

(6.17)

The feedback changes the elements of the first row of theA matrix, which corre-
sponds to the parameters of the characteristic polynomial.The closed loop system
thus has the characteristic polynomial

sn+(a1+ k̃1)s
n−1+(a2+ k̃2)s

n−2+ · · ·+(an−1+ k̃n−1)s+an+ k̃n.

Requiring this polynomial to be equal to the desired closed loop polynomial

p(s) = sn+ p1sn−1+ · · ·+ pn−1s+ pn,

we find that the controller gains should be chosen as

k̃1 = p1−a1, k̃2 = p2−a2, . . . k̃n = pn−an.

This feedback simply replaces the parametersai in the system (6.15) by pi . The
feedback gain for a system in reachable canonical form is thus

K̃ =

p1−a1 p2−a2 · · · pn−an


 . (6.18)

To have zero frequency gain equal to unity, the parameterkr should be chosen
as

kr =
an+ k̃n

bn
=

pn

bn
. (6.19)

Notice that it is essential to know the precise values of parametersan andbn in
order to obtain the correct zero frequency gain. The zero frequency gain is thus
obtained by precise calibration. This is very different fromobtaining the correct
steady-state value by integral action, which we shall see inlater sections.
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Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. Tosolve the problem in
the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

dx
dt

= Ax+Bu, y=Cx+Du. (6.20)

We can change the coordinates by a linear transformationz = Tx so that the
transformed system is in reachable canonical form (6.15). For such a system the
feedback is given by equation (6.16), where the coefficients are given by equa-
tion (6.18). Transforming back to the original coordinates gives the feedback

u=−K̃z+kr r =−K̃Tx+kr r.

The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation(6.20), with one input and one output. Letλ (s) = sn+a1sn−1+
· · ·+an−1s+an be the characteristic polynomial of A. If the system is reachable,
then there exists a feedback

u=−Kx+kr r

that gives a closed loop system with the characteristic polynomial

p(s) = sn+ p1sn−1+ · · ·+ pn−1s+ pn

and unity zero frequency gain between r and y. The feedback gain is given by

K = K̃T =

p1−a1 p2−a2 · · · pn−an


W̃rW

−1
r , (6.21)

where ai are the coefficients of the characteristic polynomial of thematrix A and
the matrices Wr andW̃r are given by
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Wr =

B AB · · · An−1B


 , W̃r =




1 a1 a2 · · · an−1
0 1 a1 · · · an−2
...

. . . . ..
...

0 0 · · · 1 a1
0 0 0 · · · 1




−1

.

The reference gain is given by

kr =−1/
(
C(A−BK)−1B

)
.

For simple problems, the eigenvalue assignment problem canbe solved by in-
troducing the elementski of K as unknown variables. We then compute the char-
acteristic polynomial

λ (s) = det(sI−A+BK)

and equate coefficients of equal powers ofs to the coefficients of the desired char-
acteristic polynomial

p(s) = sn+ p1sn−1+ · · ·+ pn−1s+ pn.

This gives a system of linear equations to determineki . The equations can always
be solved if the system is reachable, exactly as we did in Example 6.4.

Equation (6.21), which is called Ackermann’s formula [Ack72, Ack85], can
be used for numeric computations. It is implemented in the MATLAB function
acker. The MATLAB function place is preferable for systems of high order
because it is better conditioned numerically.

Example 6.5 Predator–prey
Consider the problem of regulating the population of an ecosystem by modulating
the food supply. We use the predator–prey model introduced in Section3.7. The
dynamics for the system are given by

dH
dt

= (r +u)H

(
1− H

k

)
− aHL

c+H
, H ≥ 0,

dL
dt

= b
aHL
c+H

−dL, L ≥ 0.

We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a= 3.2, b= 0.6, c= 50,

d = 0.56, k= 125 r = 1.6.

We take the parameterr, corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term(r +u) in the first equation. We choose
the number of lynxes as the output of our system.
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To control this system, we first linearize the system around the equilibrium
point of the system(He,Le), which can be determined numerically to bexe ≈
(20.6,29.5). This yields a linear dynamical system

d
dt


z1

z2


=


0.13 −0.93

0.57 0




z1

z2


+


17.2

0


v, w=


0 1




z1

z2


 ,

wherez1 = L− Le, z2 = H −He and v = u. It is easy to check that the system
is reachable around the equilibrium(z,v) = (0,0), and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system requires balancing the
ability to modulate the input against the natural dynamics of the system. This can
be done by the process of trial and error or by using some of themore systematic
techniques discussed in the remainder of the text. For now, we simply choose the
desired closed loop eigenvalues to be atλ = {−0.1,−0.2}. We can then solve for
the feedback gains using the techniques described earlier,which results in

K =

0.025 −0.052


 .

Finally, we solve for the reference gainkr , using equation (6.13) to obtainkr =
0.002.

Putting these steps together, our control law becomes

v=−Kz+krLd,

whereLd is the desired number of lynxes. In order to implement the control law,
we must rewrite it using the original coordinates for the system, yielding

u= ue−K(x−xe)+kr(Ld −ye)

=−

0.025 −0.052




H −20.6

L−29.5


+0.002(Ld −29.5).

This rule tells us how much we should modulateu as a function of the current
number of lynxes and hares in the ecosystem. Figure6.7ashows a simulation of
the resulting closed loop system using the parameters definedabove and starting
with an initial population of 15 hares and 20 lynxes. Note that the system quickly
stabilizes the population of lynxes at the reference value (Ld = 30). A phase por-
trait of the system is given in Figure6.7b, showing how other initial conditions
converge to the stabilized equilibrium population. Noticethat the dynamics are
very different from the natural dynamics (shown in Figure3.20). ∇

The results of this section show that we can use state feedbackto design the
dynamics of a system, under the strong assumption that we canmeasure all of the
states. We shall address the availability of the states in the next chapter, when we
consider output feedback and state estimation. In addition, Theorem6.3, which
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Figure 6.7: Simulation results for the controlled predator–prey system. The populationof
lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled
system is shown in (b). Feedback is used to make the population stable atHe = 20.6 and
Le = 20.

states that the eigenvalues can be assigned to arbitrary locations, is also highly ide-
alized and assumes that the dynamics of the process are knownto high precision.
The robustness of state feedback combined with state estimators is considered in
Chapter12after we have developed the requisite tools.

6.3 State Feedback Design

The location of the eigenvalues determines the behavior of the closed loop dynam-
ics, and hence where we place the eigenvalues is the main design decision to be
made. As with all other feedback design problems, there are trade-offs among the
magnitude of the control inputs, the robustness of the system to perturbations and
the closed loop performance of the system. In this section weexamine some of
these trade-offs starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class of
systems and build more intuition about the relationship between stability and per-
formance.

The canonical second-order system is a differential equation of the form

q̈+2ζ ω0q̇+ω2
0q= kω2

0u, y= q. (6.22)
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In state space form, this system can be represented as

dx
dt

=


 0 ω0
−ω0 −2ζ ω0


x+


 0

kω0


u, y=


1 0


x. (6.23)

The eigenvalues of this system are given by

λ =−ζ ω0±
√

ω2
0(ζ 2−1),

and we see that the origin is a stable equilibrium point ifω0 > 0 andζ > 0. Note
that the eigenvalues are complex ifζ < 1 and real otherwise. Equations (6.22)
and (6.23) can be used to describe many second-order systems, including damped
oscillators, active filters and flexible structures, as shown in the examples below.

The form of the solution depends on the value ofζ , which is referred to as the
damping ratiofor the system. Ifζ > 1, we say that the system isoverdamped, and
the natural response (u= 0) of the system is given by

y(t) =
βx10+x20

β −α
e−αt − αx10+x20

β −α
e−β t ,

whereα = ω0(ζ +
√

ζ 2−1) andβ = ω0(ζ −
√

ζ 2−1). We see that the response
consists of the sum of two exponentially decaying signals. If ζ = 1, then the system
is critically dampedand solution becomes

y(t) = e−ζ ω0t(x10+(x20+ζ ω0x10)t
)
.

Note that this is still asymptotically stable as long asω0 > 0, although the second
term in the solution is increasing with time (but more slowlythan the decaying
exponential that is multiplying it).

Finally, if 0< ζ < 1, then the solution is oscillatory and equation (6.22) is said
to beunderdamped. The parameterω0 is referred to as thenatural frequencyof the
system, stemming from the fact that for smallζ , the eigenvalues of the system are
λ =−ζ ω0± iω0

√
1−ζ 2. The natural response of the system is given by

y(t) = e−ζ ω0t
(

x10cosωdt +
(ζ ω0

ωd
x10+

1
ωd

x20

)
sinωdt

)
,

whereωd = ω0

√
1−ζ 2 is called thedamped frequency. Forζ ≪ 1, ωd ≈ ω0 de-

fines the oscillation frequency of the solution andζ gives the damping rate relative
to ω0.

Because of the simple form of a second-order system, it is possible to solve
for the step and frequency responses in analytical form. The solution for the step
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Figure 6.8: Step response for a second-order system. Normalized step responsesh for the
system (6.23) for ζ = 0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizontal axis is in scaled units
ω0t; higher values ofω0 result in a faster response (rise time and settling time).

response depends on the magnitude ofζ :

y(t) = k

(
1−e−ζ ω0t cosωdt − ζ√

1−ζ 2
e−ζ ω0t sinωdt

)
, ζ < 1;

y(t) = k
(
1−e−ω0t(1+ω0t)

)
, ζ = 1;

y(t) = k

(
1− 1

2

(
ζ√

ζ 2−1
+1
)

e−ω0t(ζ−
√

ζ 2−1)

+
1
2

(
ζ√

ζ 2−1
−1
)

e−ω0t(ζ+
√

ζ 2−1)
)
, ζ > 1,

(6.24)

where we have takenx(0) = 0. Note that for the lightly damped case (ζ < 1) we
have an oscillatory solution at frequencyωd.

Step responses of systems withk = 1 and different values ofζ are shown in
Figure6.8. The shape of the response is determined byζ , and the speed of the
response is determined byω0 (included in the time axis scaling): the response is
faster ifω0 is larger.

In addition to the explicit form of the solution, we can also compute the proper-
ties of the step response that were defined in Section5.3. For example, to compute
the maximum overshoot for an underdamped system, we rewritethe output as

y(t) = k

(
1− 1√

1−ζ 2
e−ζ ω0t sin(ωdt +ϕ)

)
, (6.25)

whereϕ = arccosζ . The maximum overshoot will occur at the first time in which
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Table 6.1:Properties of the step response for a second-order system with 0< ζ < 1.

Property Value ζ = 0.5 ζ = 1/
√

2 ζ = 1

Steady-state value k k k k

Rise time Tr = 1/ω0 ·eϕ/ tanϕ 1.8/ω0 2.2/ω0 2.7/ω0

Overshoot Mp = e−πζ/
√

1−ζ 2
16% 4% 0%

Settling time (2%) Ts ≈ 4/ζ ω0 8.0/ω0 5.9/ω0 5.8/ω0

the derivative ofy is zero, which can be shown to be

Mp = e−πζ/
√

1−ζ 2
.

Similar computations can be done for the other characteristics of a step response.
Table6.1summarizes the calculations.

The frequency response for a second-order system can also be computed ex-
plicitly and is given by

Mejθ =
kω2

0

(iω)2+2ζ ω0(iω)+ω2
0

=
kω2

0

ω2
0 −ω2+2iζ ω0ω

.

A graphical illustration of the frequency response is givenin Figure6.9. Notice the
resonant peak that increases with decreasingζ . The peak is often characterized by
its Q-value, defined asQ= 1/2ζ . The properties of the frequency response for a
second-order system are summarized in Table6.2.

Example 6.6 Drug administration
To illustrate the use of these formulas, consider the two-compartment model for

Table 6.2:Properties of the frequency response for a second-order system with 0< ζ < 1.

Property Value ζ = 0.1 ζ = 0.5 ζ = 1/
√

2

Zero frequency gain M0 k k k

Bandwidth ωb 1.54ω0 1.27ω0 ω0

Resonant peak gain Mr 1.54k 1.27k k

Resonant frequency ωmr ω0 0.707ω0 0



6.3. STATE FEEDBACK DESIGN 200

Re

Im ζ ≈ 0
ζ = 0.08

ζ = 0.2
ζ = 0.5

ζ = 1

(a) Eigenvalues

10
−2

10
0

10
2

G
ai

n

10
−1

10
0

10
1

−180

−90

0

P
ha

se
 [d

eg
]

Normalized frequencyω/ω0

ζ

ζ

(b) Frequency responses

Figure 6.9: Frequency response of a second-order system (6.23). (a) Eigenvalues as a func-
tion of ζ . (b) Frequency response as a function ofζ . The upper curve shows the gain ratio
M, and the lower curve shows the phase shiftθ . For smallζ there is a large peak in the
magnitude of the frequency response and a rapid change in phase centered atω = ω0. As ζ
is increased, the magnitude of the peak drops and the phase changes more smoothly between
0◦ and -180◦.

drug administration, described in Section3.6. The dynamics of the system are

dc
dt

=


−k0−k1 k1

k2 −k2


c+


b0

0


u, y=


0 1


c,

wherec1 andc2 are the concentrations of the drug in each compartment,ki , i =
0, . . . ,2 andb0 are parameters of the system,u is the flow rate of the drug into
compartment 1 andy is the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in each compartment, and we
would like to design a feedback law to maintain the output at agiven reference
valuer.

We chooseζ = 0.9 to minimize the overshoot and choose the rise time to be
Tr = 10 min. Using the formulas in Table6.1, this gives a value forω0 = 0.22.
We can now compute the gain to place the eigenvalues at this location. Setting
u=−Kx+kr r, the closed loop eigenvalues for the system satisfy

λ (s) =−0.198±0.0959i.

Choosingk1 = −0.2027 andk2 = 0.2005 gives the desired closed loop behavior.
Equation (6.13) gives the reference gainkr = 0.0645. The response of the con-
troller is shown in Figure6.10and compared with an open loop strategy involving
administering periodic doses of the drug. ∇
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Figure 6.10:Open loop versus closed loop drug administration. Comparison between drug
administration using a sequence of doses versus continuously monitoringthe concentrations
and adjusting the dosage continuously. In each case, the concentration is(approximately)
maintained at the desired level, but the closed loop system has substantially less variability
in drug concentration.

Higher-Order Systems

Our emphasis so far has considered only second-order systems. For higher-order
systems, eigenvalue assignment is considerably more difficult, especially when
trying to account for the many trade-offs that are present ina feedback design.

One of the other reasons why second-order systems play such an important
role in feedback systems is that even for more complicated systems the response is
often characterized by thedominant eigenvalues. To define these more precisely,
consider a system with eigenvaluesλ j , j = 1, . . . ,n. We define thedamping ratio
for a complex eigenvalueλ to be

ζ =
−Reλ
|λ | .

We say that a complex conjugate pair of eigenvaluesλ , λ ∗ is adominant pairif it
has the lowest damping ratio compared with all other eigenvalues of the system.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be
the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
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pair of eigenvalues:

dz
dt

=




λ
λ ∗

J2
.. .

Jk




z+Bu, y=Cz.

(Note that the statez may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of the responses from each
of the individual Jordan subsystems. As we see from Figure6.8, for ζ < 1 the
subsystem with the slowest response is precisely the one with the smallest damping
ratio. Hence, when we add the responses from each of the individual subsystems,
it is the dominant pair of eigenvalues that will be the primary factor after the initial
transients due to the other terms in the solution die out. While this simple analysis
does not always hold (e.g., if some nondominant terms have larger coefficients
because of the particular form of the system), it is often thecase that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment is that the system be
reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will
be discussed in depth in Chapters11and12.

We illustrate some of the main ideas using the balance systemas an example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whosedynamics were given
in Example6.2. The dynamics are given by

A=




0 0 1 0
0 0 0 1

0 m2l2g/µ −cJt/µ −γJt lm/µ
0 Mtmgl/µ −clm/µ −γMt/µ



, B=




0
0

Jt/µ
lm/µ



,

whereMt =M+m, Jt = J+ml2, µ =MtJt −m2l2 and we have leftc andγ nonzero.
We use the following parameters for the system (corresponding roughly to a human
being balanced on a stabilizing cart):

M = 10 kg, m= 80 kg, c= 0.1 Ns/m,

J = 100 kgm2/s2, l = 1 m, γ = 0.01 N ms,
g= 9.8 m/s2.

The eigenvalues of the open loop dynamics are given byλ ≈ 0,4.7,−1.9±2.7i.
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We have verified already in Example6.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and providea desired level of
performance.

To decide where to place the closed loop eigenvalues, we notethat the closed
loop dynamics will roughly consist of two components: a set of fast dynamics
that stabilize the pendulum in the inverted position and a set of slower dynamics
that control the position of the cart. For the fast dynamics,we look to the natural
period of the pendulum (in the hanging-down position), which is given byω0 =√

mgl/(J+ml2)≈ 2.1 rad/s. To provide a fast response we choose a damping ratio
of ζ = 0.5 and try to place the first pair of eigenvalues atλ1,2 ≈ −ζ ω0± iω0 ≈
−1±2i, where we have used the approximation that

√
1−ζ 2 ≈ 1. For the slow

dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s.
This gives eigenvaluesλ3,4 =−0.35±0.35i.

The controller consists of a feedback on the state and a feedforward gain for
the reference input. The feedback gain is given by

K =

−15.6 1730 −50.1 443


 ,

which can be computed using Theorem6.3 or using the MATLABplace com-
mand. The feedforward gain iskr = −1/(C(A−BK)−1B) = −15.5. The step re-
sponse for the resulting controller (applied to the linearized system) is given in
Figure6.11a. While the step response gives the desired characteristics, the input
required (bottom left) is excessively large, almost three times the force of gravity
at its peak.

To provide a more realistic response, we can redesign the controller to have
slower dynamics. We see that the peak of the input force occurs on the fast time
scale, and hence we choose to slow this down by a factor of 3, leaving the damp-
ing ratio unchanged. We also slow down the second set of eigenvalues, with the
intuition that we should move the position of the cart more slowly than we sta-
bilize the pendulum dynamics. Leaving the damping ratio for the slow dynamics
unchanged at 0.7 and changing the frequency to 1 (corresponding to a rise time of
approximately 10 s), the desired eigenvalues become

λ = {−0.33±0.66i,−0.18±0.18i}.
The performance of the resulting controller is shown in Figure6.11b. ∇

As we see from this example, it can be difficult to determine where to place
the eigenvalues using state feedback. This is one of the principal limitations of this
approach, especially for systems of higher dimension. Optimal control techniques,
such as the linear quadratic regulator problem discussed next, are one approach
that is available. One can also focus on the frequency response for performing the
design, which is the subject of Chapters8–12.
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Figure 6.11: State feedback control of a balance system. The step response of a controller
designed to give fast performance is shown in (a). Although the response characteristics
(top left) look very good, the input magnitude (bottom left) is very large. A less aggressive
controller is shown in (b). Here the response time is slowed down, but the input magnitude
is much more reasonable. Both step responses are applied to the linearized dynamics.

Linear Quadratic Regulators
�

As an alternative to selecting the closed loop eigenvalue locations to accomplish a
certain objective, the gains for a state feedback controller can instead be chosen is
by attempting to optimize a cost function. This can be particularly useful in helping
balance the performance of the system with the magnitude of the inputs required
to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problemis one of the
most common optimal control problems. Given a multi-input linear system

dx
dt

= Ax+Bu, x∈ R
n, u∈ R

p,

we attempt to minimize the quadratic cost function

J̃ =
∫ ∞

0

(
xTQxx+uTQuu

)
dt, (6.26)

whereQx ≥ 0 andQu > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimensions. This cost function represents atrade-off between the
distance of the state from the origin and the cost of the control input. By choosing
the matricesQx andQu, we can balance the rate of convergence of the solutions
with the cost of the control.
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The solution to the LQR problem is given by a linear control law of the form

u=−Q−1
u BTPx,

whereP∈ R
n×n is a positive definite, symmetric matrix that satisfies the equation

PA+ATP−PBQ−1
u BTP+Qx = 0. (6.27)

Equation (6.27) is called thealgebraic Riccati equationand can be solved numer-
ically (e.g., using thelqr command in MATLAB).

One of the key questions in LQR design is how to choose the weights Qx and
Qu. To guarantee that a solution exists, we must haveQx ≥ 0 andQu > 0. In addi-
tion, there are certain “observability” conditions onQx that limit its choice. Here
we assumeQx > 0 to ensure that solutions to the algebraic Riccati equationalways
exist.

To choose specific values for the cost function weightsQx andQu, we must use
our knowledge of the system we are trying to control. A particularly simple choice
is to use diagonal weights

Qx =




q1 0
...

0 qn



, Qu =




ρ1 0
...

0 ρn



.

For this choice ofQx andQu, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we can
take states that should remain small and attach higher weight values to them. Sim-
ilarly, we can penalize an input versus the states and other inputs through choice
of the corresponding input weightρ.

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the system (2.26), written in state space form as

dz
dt

=




z4
z5
z6

− c
m z4

−g− c
m z5

0




+




0
0
0

1
m cosθ F1− 1

m sinθ F2

1
m sinθ F1+

1
m cosθ F2

r
J F1




(see also Example5.4). The system parameters arem= 4 kg, J = 0.0475 kgm2,
r = 0.25 m,g= 9.8 m/s2, c= 0.05 Ns/m, which corresponds to a scaled model of
the system. The equilibrium point for the system is given byF1 = 0, F2 = mgand
ze= (xe,ye,0,0,0,0). To derive the linearized model near an equilibrium point, we
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compute the linearization according to equation (5.34):

A=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g −c/m 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 0




, B=




0 0
0 0
0 0

1/m 0
0 1/m

r/J 0




,

C=


1 0 0 0 0 0

0 1 0 0 0 0


 , D =


0 0

0 0


 .

Letting ξ = z−ze andv= F −Fe, the linearized system is given by

dξ
dt

= Aξ +Bv, y=Cξ .

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, we write the cost func-

tion as
J =

∫ ∞

0
(ξ TQξ ξ +vTQvv)dt,

whereξ = z− ze andv= F −Fe again represent the local coordinates around the
desired equilibrium point(ze,Fe). We begin with diagonal matrices for the state
and input costs:

Qξ =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, Qv =


ρ 0

0 ρ


 .

This gives a control law of the formv = −Kξ , which can then be used to derive
the control law in terms of the original variables:

F = v+Fe =−K(z−ze)+Fe.

As computed in Example5.4, the equilibrium points haveFe = (0,mg) andze =
(xe,ye,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure6.12afor ρ = 1. The response can be tuned by adjusting
the weights in the LQR cost. Figure6.12bshows the response in thex direction
for different choices of the weightρ. ∇

Linear quadratic regulators can also be designed for discrete-time systems, as
illustrated by the following example.
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Figure 6.12: Step response for a vectored thrust aircraft. The plot in (a) shows thex andy
positions of the aircraft when it is commanded to move 1 m in each direction.In (b) thex
motion is shown for control weightsρ = 1, 102, 104. A higher weight of the input term in
the cost function causes a more sluggish response.

Example 6.9 Web server control
Consider the web server example given in Section3.4, where a discrete-time model
for the system was given. We wish to design a control law that sets the server
parameters so that the average server processor load is maintained at a desired
level. Since other processes may be running on the server, theweb server must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure6.13. We focus
on the special case where we wish to control only the processor load using both
theKeepAlive andMaxClients parameters. We also include a “disturbance”
on the measured load that represents the use of the processing cycles by other
processes running on the server. The system has the same basicstructure as the
generic control system in Figure6.5, with the variation that the disturbance enters
after the process dynamics.

The dynamics of the system are given by a set of difference equations of the

Feedback

Σ
rcpu u

Σ

d

yη
Precompensation Controller

kr

e
C

−1

Server

P

Figure 6.13: Feedback control of a web server. The controller sets the values of theweb
server parameters based on the difference between the nominal parameters (determined by
kr r) and the current loadycpu. The disturbanced represents the load due to other processes
running on the server. Note that the measurement is taken after the disturbance so that we
measure the total load on the server.
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form
x[k+1] = Ax[k]+Bu[k], ycpu[k] =Ccpux[k]+dcpu[k],

wherex= (xcpu,xmem) is the state,u= (uka,umc) is the input,dcpu is the processing
load from other processes on the computer andycpu is the total processor load.

We choose our controller to be a state feedback controller ofthe form

u=−K


 ycpu

xmem


+kr rcpu,

wherercpu is the desired processor load. Note that we have used the measured pro-
cessor loadycpu instead of the state to ensure that we adjust the system operation
based on the actual load. (This modification is necessary because of the nonstan-
dard way in which the disturbance enters the process dynamics.)

The feedback gain matrixK can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, withthe cost function given
by

Qx =


5 0

0 1


 , Qu =


1/502 0

0 1/10002


 .

The cost function for the stateQx is chosen so that we place more emphasis on
the processor load versus the memory use. The cost function for the inputsQu is
chosen so as to normalize the two inputs, with aKeepAlive timeout of 50 s hav-
ing the same weight as aMaxClients value of 1000. These values are squared
since the cost associated with the inputs is given byuTQuu. Using the dynamics in
Section3.4and thedlqr command in MATLAB, the resulting gains become

K =


−22.3 10.1

382.7 77.7


 .

As in the case of a continuous-time control system, the reference gainkr is
chosen to yield the desired equilibrium point for the system. Settingx[k+ 1] =
x[k] = xe, the steady-state equilibrium point and output for a given reference input
r are given by

xe = (A−BK)xe+Bkr r, ye =Cxe.

This is a matrix differential equation in whichkr is a column vector that sets the
two inputs values based on the desired reference. If we take the desired output to
be of the formye = (r,0), then we must solve


1

0


=C(A−BK− I)−1Bkr .

Solving this equation forkr , we obtain

kr =
((

C(A−BK− I)−1B
))−1


1

0


=


 49.3

539.5


 .
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Figure 6.14:Web server with LQR control. The plot in (a) shows the state of the system un-
der a change in external load applied atk= 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce the effect of the disturbance
by approximately 40%.

The dynamics of the closed loop system are illustrated in Figure6.14. We apply
a change in load ofdcpu= 0.3 at timet = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desired load at 0.57. Note that
both theKeepAlive andMaxClients parameters are adjusted. Although the
load is decreased, it remains approximately 0.2 above the desired steady state.
(Better results can be obtained using the techniques of the next section.) ∇

6.4 Integral Action

Controllers based on state feedback achieve the correct steady-state response to
command signals by careful calibration of the gainkr . However, one of the primary
uses of feedback is to allow good performance in the presenceof uncertainty, and
hence requiring that we have anexactmodel of the process is undesirable. An
alternative to calibration is to make use of integral feedback, in which the controller
uses an integrator to provide zero steady-state error. The basic concept of integral
feedback was given in Section1.5 and in Section3.1; here we provide a more
complete description and analysis.

The basic approach in integral feedback is to create a state within the controller
that computes the integral of the error signal, which is thenused as a feedback
term. We do this by augmenting the description of the system with a new statez:

d
dt


x

z


=


Ax+Bu

y− r


=


Ax+Bu

Cx− r


 . (6.28)

The statez is seen to be the integral of the difference between the the actual output
y and desired outputr. Note that if we find a compensator that stabilizes the system,
then we will necessarily have ˙z= 0 in steady state and hencey= r in steady state.

Given the augmented system, we design a state space controller in the usual
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fashion, with a control law of the form

u=−Kx−kiz+kr r, (6.29)

whereK is the usual state feedback term,ki is the integral term andkr is used to
set the nominal input for the desired steady state. The resulting equilibrium point
for the system is given as

xe =−(A−BK)−1B(kr r −kize).

Note that the value ofze is not specified but rather will automatically settle to the
value that makes ˙z= y− r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of the specific values ofA,
B andK as long as the system is stable (which can be done through appropriate
choice ofK andki).

The final compensator is given by

u=−Kx−kiz+kr r,
dz
dt

= y− r,

where we have now included the dynamics of the integrator as part of the specifi-
cation of the controller. This type of compensator is known asadynamic compen-
satorsince it has its own internal dynamics. The following exampleillustrates the
basic approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in Section3.1and considered fur-
ther in Example5.11. The linearized dynamics of the process around an equilib-
rium pointve, ue are given by

dx
dt

= ax−bgθ +bw, y= v= x+ve,

wherex= v−ve, w= u−ue, m is the mass of the car andθ is the angle of the road.
The constanta depends on the throttle characteristic and is given in Example5.11.

If we augment the system with an integrator, the process dynamics become

dx
dt

= ax−bgθ +bw,
dz
dt

= y−vr = ve+x−vr ,

or, in state space form,

d
dt


x

z


=


a 0

1 0




x

z


+


b

0


u+


−bg

0


θ +


 0

ve−vr


 .

Note that when the system is at equilibrium, we have that ˙z= 0, which implies that
the vehicle speedv= ve+x should be equal to the desired reference speedvr . Our
controller will be of the form

dz
dt

= y−vr , u=−kpx−kiz+krvr ,
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Figure 6.15: Velocity and throttle for a car with cruise control based on proportional
(dashed) and PI control (solid). The PI controller is able to adjust the throttle to compen-
sate for the effect of the hill and maintain the speed at the reference value ofvr = 20 m/s.

and the gainskp, ki andkr will be chosen to stabilize the system and provide the
correct input for the reference speed.

Assume that we wish to design the closed loop system to have the characteristic
polynomial

λ (s) = s2+a1s+a2.

Setting the disturbanceθ = 0, the characteristic polynomial of the closed loop
system is given by

det
(
sI− (A−BK)

)
= s2+(bkp−a)s+bki ,

and hence we set

kp =
a1+a

b
, ki =

a2

b
, kr =−1/

(
C(A−BK)−1B

)
=

a
b
.

The resulting controller stabilizes the system and hence bringsż= y− vr to zero,
resulting in perfect tracking. Notice that even if we have a small error in the values
of the parameters defining the system, as long as the closed loop eigenvalues are
still stable, then the tracking error will approach zero. Thus the exact calibration
required in our previous approach (usingkr ) is not needed here. Indeed, we can
even choosekr = 0 and let the feedback controller do all of the work.

Integral feedback can also be used to compensate for constant disturbances.
Figure6.15 shows the results of a simulation in which the car encountersa hill
with angleθ = 4◦ at t = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that the car’svelocity converges
to the reference speed. This ability to handle constant disturbances is a general
property of controllers with integral feedback (see Exercise6.4). ∇

6.5 Further Reading

The importance of state models and state feedback was discussed in the seminal
paper by Kalman [Kal60], where the state feedback gain was obtained by solving



EXERCISES 212

an optimization problem that minimized a quadratic loss function. The notions
of reachability and observability (Chapter7) are also due to Kalman [Kal61b]
(see also [Gil63, KHN63]). Kalman defines controllability and reachability as the
ability to reach the origin and an arbitrary state, respectively [KFA69]. We note that
in most textbooks the term “controllability” is used instead of “reachability,” but
we prefer the latter term because it is more descriptive of the fundamental property
of being able to reach arbitrary states. Most undergraduatetextbooks on control
contain material on state space systems, including, for example, Franklin, Powell
and Emami-Naeini [FPEN05] and Ogata [Oga01]. Friedland’s textbook [Fri04]
covers the material in the previous, current and next chapter in considerable detail,
including the topic of optimal control.

Exercises

6.1 (Double integrator) Consider the double integrator. Find a piecewise constant
control strategy that drives the system from the origin to the statex= (1,1).

6.2(Reachability from nonzero initial state) Extend the argument in Section6.1to
show that if a system is reachable from an initial state of zero, it is reachable from
a nonzero initial state.

6.3 (Unreachable systems) Consider the system shown in Figure6.3. Write the
dynamics of the two systems as

dx
dt

= Ax+Bu,
dz
dt

= Az+Bu.

If x andz have the same initial condition, they will always have the same state
regardless of the input that is applied. Show that this violates the definition of
reachability and further show that the reachability matrixWr is not full rank.

6.4(Integral feedback for rejecting constant disturbances) Consider a linear system
of the form

dx
dt

= Ax+Bu+Fd, y=Cx

whereu is a scalar andd is a disturbance that enters the system through a distur-
bance vectorF ∈R

n. Assume that the matrixA is invertible and the zero frequency
gainCA−1B is nonzero. Show that integral feedback can be used to compensate for
a constant disturbance by giving zero steady-state output error even whend 6= 0.

6.5(Rear-steered bicycle) A simple model for a bicycle was given by equation (3.5)
in Section3.2. A model for a bicycle with rear-wheel steering is obtained by revers-
ing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.
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6.6 (Characteristic polynomial for reachable canonical form)Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (6.7) and that

dnzk

dtn
+a1

dn−1zk

dtn−1 + · · ·+an−1
dzk

dt
+anzk =

dn−ku
dtn−k ,

wherezk is thekth state.

6.7(Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

W̃−1
r =




1 a1 a2 · · · an

0 1 a1 · · · an−1

0 0 1
...

...
...

. .. a1
0 0 0 · · · 1




.

6.8 (Non-maintainable equilibria) Consider the normalized model of a pendulum
on a cart

d2x
dt2

= u,
d2θ
dt2

=−θ +u,

wherex is cart position andθ is pendulum angle. Can the angleθ = θ0 for θ0 6= 0
be maintained?

6.9 (Eigenvalue assignment for unreachable system) Consider the system

dx
dt

=


0 1

0 0


x+


1

0


u, y=


1 0


x,

with the control law
u=−k1x1−k2x2+kr r.

Show that eigenvalues of the system cannot be assigned to arbitrary values.

6.10 (Cayley–Hamilton theorem) LetA ∈ R
n×n be a matrix with characteristic

polynomialλ (s) = det(sI−A) = sn+a1sn−1+ · · ·+an−1s+an. Assume that the
matrix A can be diagonalized and show that it satisfies

λ (A) = An+a1An−1+ · · ·+an−1A+anI = 0,

Use the result to show thatAk, k ≥ n, can be rewritten in terms of powers ofA of
order less thann.

6.11 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise2.10. Using the following normalized parameters,

J1 = 10/9, J2 = 10, c= 0.1, k= 1, kI = 1,
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verify that the eigenvalues of the open loop system are 0,0,−0.05± i. Design a
state feedback that gives a closed loop system with eigenvalues−2,−1 and−1± i.
This choice implies that the oscillatory eigenvalues will bewell damped and that
the eigenvalues at the origin are replaced by eigenvalues onthe negative real axis.
Simulate the responses of the closed loop system to step changes in the command
signal forθ2 and a step change in a disturbance torque on the second rotor.

6.12(Whipple bicycle model) Consider the Whipple bicycle modelgiven by equa-
tion (3.7) in Section3.2. Using the parameters from the companion web site, the
model is unstable at the velocityv= 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 1.30±4.60i. Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 and−1± i. Simulate the response of
the system to a step change in the steering reference of 0.002rad.

6.13(Atomic force microscope) Consider the model of an AFM in contact mode
given in Example5.9:

dx
dt

=




0 1 0 0
−k2/(m1+m2) −c2/(m1+m2) 1/m2 0

0 0 0 ω3
0 0 −ω3 −2ζ3ω3




x+




0
0
0

ω3




u,

y=
m2

m1+m2


 m1k2

m1+m2

m1c2

m1+m2
1 0


x.

Use the MATLAB scriptafm_data.m from the companion web site to generate the
system matrices.

(a) Compute the reachability matrix of the system and numerically determine its
rank. Scale the model by using milliseconds instead of seconds as time units. Re-
peat the calculation of the reachability matrix and its rank.

(b) Find a state feedback controller that gives a closed loop system with complex
poles having damping ratio 0.707. Use the scaled model for the computations.

(c) Compute state feedback gains using linear quadratic control. Experiment by
using different weights. Compute the gains forq1 = q2 = 0,q3 = q4 = 1 andρ1 =
0.1 and explain the result. Chooseq1 = q2 = q3 = q4 = 1 and explore what happens
to the feedback gains and closed loop eigenvalues when you changeρ1. Use the
scaled system for this computation.

6.14 Consider the second-order system

d2y
dt2

+0.5
dy
dt

+y= a
du
dt

+u.

Let the initial conditions be zero.
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(a) Show that the initial slope of the unit step response isa. Discuss what it means
whena< 0.

(b) Show that there are points on the unit step response that are invariant witha.
Discuss qualitatively the effect of the parametera on the solution.

(c) Simulate the system and explore the effect ofa on the rise time and overshoot.

6.15(Bryson’s rule) Bryson and Ho [BH75] have suggested the following method
for choosing the matricesQx and Qu in equation (6.26). Start by choosingQx

and Qu as diagonal matrices whose elements are the inverses of the squares of
the maxima of the corresponding variables. Then modify the elements to obtain a
compromise among response time, damping and control effort. Apply this method
to the motor drive in Exercise6.11. Assume that the largest values of theϕ1 and
ϕ2 are 1, the largest values ofϕ̇1 andϕ̇2 are 2 and the largest control signal is 10.
Simulate the closed loop system forϕ2(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonal elements forQx andQu.



Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages: computation of the
“best approximation”x̂(t1) of the state from knowledge of y(t) for t ≤ t1 and computation of
u(t1) givenx̂(t1).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 1960 [Kal60].

In this chapter we show how to use output feedback to modify the dynamics
of the system through the use of observers. We introduce the concept of observ-
ability and show that if a system is observable, it is possible to recover the state
from measurements of the inputs and outputs to the system. Wethen show how to
design a controller with feedback from the observer state. An important concept is
the separation principle quoted above, which is also proved. The structure of the
controllers derived in this chapter is quite general and is obtained by many other
design methods.

7.1 Observability

In Section6.2 of the previous chapter it was shown that it is possible to find a
state feedback law that gives desired closed loop eigenvalues provided that the
system is reachable and that all the states are measured. Formany situations, it
is highly unrealistic to assume that all the states are measured. In this section we
investigate how the state can be estimated by using a mathematical model and a
few measurements. It will be shown that computation of the states can be carried
out by a dynamical system called anobserver.

Definition of Observability

Consider a system described by a set of differential equations

dx
dt

= Ax+Bu, y=Cx+Du, (7.1)

wherex ∈ R
n is the state,u ∈ R

p the input andy ∈ R
q the measured output. We

wish to estimate the state of the system from its inputs and outputs, as illustrated
in Figure7.1. In some situations we will assume that there is only one measured
signal, i.e., that the signaly is a scalar and thatC is a (row) vector. This signal may
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u
Σ

n

Observer
x̂

Process

ẋ= Ax+Bu

y=Cx+Du

y

Figure 7.1: Block diagram for an observer. The observer uses the process measurementy
(possibly corrupted by noisen) and the inputu to estimate the current state of the process,
denoted ˆx.

be corrupted by noisen, although we shall start by considering the noise-free case.
We write x̂ for the state estimate given by the observer.

Definition 7.1 (Observability). A linear system isobservableif for any T > 0 it is
possible to determine the state of the systemx(T) through measurements ofy(t)
andu(t) on the interval[0,T].

The definition above holds for nonlinear systems as well, and the results dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many important applications, even
outside feedback systems. If a system is observable, then there are no “hidden”
dynamics inside it; we can understand everything that is going on through ob-
servation (over time) of the inputs and outputs. As we shall see, the problem of
observability is of significant practical interest because it will determine if a set of
sensors is sufficient for controlling a system. Sensors combined with a mathemat-
ical model can also be viewed as a “virtual sensor” that givesinformation about
variables that are not measured directly. The process of reconciling signals from
many sensors with mathematical models is also calledsensor fusion.

Testing for Observability

When discussing reachability in the last chapter, we neglected the output and fo-
cused on the state. Similarly, it is convenient here to initially neglect the input and
focus on the autonomous system

dx
dt

= Ax, y=Cx. (7.2)

We wish to understand when it is possible to determine the state from observations
of the output.

The output itself gives the projection of the state on vectorsthat are rows of the
matrixC. The observability problem can immediately be solved if the matrix C is
invertible. If the matrix is not invertible, we can take derivatives of the output to
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obtain
dy
dt

=C
dx
dt

=CAx.

From the derivative of the output we thus get the projection ofthe state on vectors
that are rows of the matrixCA. Proceeding in this way, we get




y

ẏ

ÿ
...

y(n−1)




=




C
CA
CA2

...
CAn−1




x. (7.3)

We thus find that the state can be determined if theobservability matrix

Wo =




C
CA
CA2

...
CAn−1




(7.4)

hasn independent rows. It turns out that we need not consider any derivatives
higher thann−1 (this is an application of the Cayley–Hamilton theorem [Exer-
cise6.10]).

The calculation can easily be extended to systems with inputs. The state is then
given by a linear combination of inputs and outputs and theirhigher derivatives.
The observability criterion is unchanged. We leave this caseas an exercise for the
reader.

In practice, differentiation of the output can give large errors when there is
measurement noise, and therefore the method sketched aboveis not particularly
practical. We will address this issue in more detail in the next section, but for now
we have the following basic result.

Theorem 7.1(Observability rank condition). A linear system of the form(7.1) is
observable if and only if the observability matrix Wo is full rank.

Proof. The sufficiency of the observability rank condition follows from the analy-�
sis above. To prove necessity, suppose that the system is observable butWo is not
full rank. Let v∈ R

n, v 6= 0, be a vector in the null space ofWo, so thatWov= 0.
If we let x(0) = v be the initial condition for the system and chooseu = 0, then
the output is given byy(t) =CeAtv. SinceeAt can be written as a power series inA
and sinceAn and higher powers can be rewritten in terms of lower powers ofA (by
the Cayley–Hamilton theorem), it follows that the output will be identically zero
(the reader should fill in the missing steps if this is not clear). However, if both the



7.1. OBSERVABILITY 219

S

Σ

S

−

+
v1 v2

R2

−

+

R1

R2R1

C2

C2

R3

R3

Figure 7.2: An unobservable system. Two identical subsystems have outputs that add to-
gether to form the overall system output. The individual states of the subsystem cannot be
determined since the contributions of each to the output are not distinguishable. The circuit
diagram on the right is an example of such a system.

input and output of the system are 0, then a valid estimate of the state is ˆx= 0 for
all time, which is clearly incorrect sincex(0) = v 6= 0. Hence by contradiction we
must have thatWo is full rank if the system is observable.

Example 7.1 Compartment model
Consider the two-compartment model in Figure3.18a, but assume that the concen-
tration in the first compartment can be measured. The system is described by the
linear system

dc
dt

=


−k0−k1 k1

k2 −k2


c+


b0

0


u, y=


1 0


c.

The first compartment represents the drug concentration in theblood plasma, and
the second compartment the drug concentration in the tissuewhere it is active. To
determine if it is possible to find the concentration in the tissue compartment from
a measurement of blood plasma, we investigate the observability of the system by
forming the observability matrix

Wo =


 C

CA


=


 1 0
−k0−k1 k1


 .

The rows are linearly independent ifk1 6= 0, and under this condition it is thus
possible to determine the concentration of the drug in the active compartment from
measurements of the drug concentration in the blood. ∇

It is useful to have an understanding of the mechanisms that make a system
unobservable. Such a system is shown in Figure7.2. The system is composed
of two identical systems whose outputs are added. It seems intuitively clear that
it is not possible to deduce the states from the output since we cannot deduce
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Figure 7.3: Block diagram of a system in observable canonical form. The states of the
system are represented by individual integrators whose inputs are a weighted combination
of the next integrator in the chain, the first state (rightmost integrator) andthe system input.
The output is a combination of the first state and the input.

the individual output contributions from the sum. This can also be seen formally
(Exercise7.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms willbe useful in studying
observability. A linear single-input, single-output state space system is inobserv-
able canonical formif its dynamics are given by

dz
dt

=




−a1 1 0 · · · 0
−a2 0 1 0

...
...

−an−1 0 0 1
−an 0 0 · · · 0




z+




b1
b2
...

bn−1
bn




u,

y=

1 0 0 · · · 0


z+Du.

The definition can be extended to systems with many inputs; the only difference is
that the vector multiplyingu is replaced by a matrix.

Figure7.3 is a block diagram for a system in observable canonical form.As
in the case of reachable canonical form, we see that the coefficients in the system
description appear directly in the block diagram. The characteristic polynomial for
a system in observable canonical form is

λ (s) = sn+a1sn−1+ · · ·+an−1s+an. (7.5)

It is possible to reason about the observability of a system in observable canonical
form by studying the block diagram. If the inputu and the outputy are available,
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the statez1 can clearly be computed. Differentiatingz1, we obtain the input to the
integrator that generatesz1, and we can now obtainz2 = ż1+a1z1−b1u. Proceed-
ing in this way, we can compute all states. The computation will, however, require
that the signals be differentiated.

To check observability more formally, we compute the observability matrix for
a system in observable canonical form, which is given by

Wo =




1 0 0 . . . 0
−a1 1 0 . . . 0

−a2
1−a2 −a1 1 0
...

...
.. .

...
∗ ∗ . . . 1




,

where * represents an entry whose exact value is not important. The rows of this
matrix are linearly independent (since it is lower triangular), and henceWo is full
rank. A straightforward but tedious calculation shows thatthe inverse of the ob-
servability matrix has a simple form given by

W−1
o =




1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
...

...
an−1 an−2 an−3 · · · 1




.

As in the case of reachability, it turns out that if a system isobservable then
there always exists a transformationT that converts the system into observable
canonical form. This is useful for proofs since it lets us assume that a system
is in observable canonical form without any loss of generality. The observable
canonical form may be poorly conditioned numerically.

7.2 State Estimation

Having defined the concept of observability, we now return to the question of how
to construct an observer for a system. We will look for observers that can be repre-
sented as a linear dynamical system that takes the inputs andoutputs of the system
we are observing and produces an estimate of the system’s state. That is, we wish
to construct a dynamical system of the form

dx̂
dt

= Fx̂+Gu+Hy,

whereu andy are the input and output of the original system and ˆx ∈ R
n is an

estimate of the state with the property that ˆx(t)→ x(t) ast → ∞.
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The Observer

We consider the system in equation (7.1) with D set to zero to simplify the expo-
sition:

dx
dt

= Ax+Bu, y=Cx. (7.6)

We can attempt to determine the state simply by simulating the equations with the
correct input. An estimate of the state is then given by

dx̂
dt

= Ax̂+Bu. (7.7)

To find the properties of this estimate, introduce the estimation errorx̃= x− x̂. It
follows from equations (7.6) and (7.7) that

dx̃
dt

= Ax̃.

If matrix A has all its eigenvalues in the left half-plane, the error ˜x will go to zero,
and hence equation (7.7) is a dynamical system whose output converges to the
state of the system (7.6).

The observer given by equation (7.7) uses only the process inputu; the mea-
sured signal does not appear in the equation. We must also require that the system
be stable, and essentially our estimator converges becausethe state of both the ob-
server and estimator are going to zero. This is not very usefulin a control design
context since we want to have our estimate converge quickly to a nonzero state so
that we can make use of it in our controller. We will thereforeattempt to modify
the observer so that the output is used and its convergence properties can be de-
signed to be fast relative to the system’s dynamics. This version will also work for
unstable systems.

Consider the observer
dx̂
dt

= Ax̂+Bu+L(y−Cx̂). (7.8)

This can be considered as a generalization of equation (7.7). Feedback from the
measured output is provided by adding the termL(y−Cx̂), which is proportional
to the difference between the observed output and the outputpredicted by the ob-
server. It follows from equations (7.6) and (7.8) that

dx̃
dt

= (A−LC)x̃.

If the matrixL can be chosen in such a way that the matrixA−LC has eigenval-
ues with negative real parts, the error ˜x will go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a state feedback and
finding the observer. State feedback design by eigenvalue assignment is equivalent



7.2. STATE ESTIMATION 223

to finding a matrixK so thatA−BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrixL so thatA−LC has
given eigenvalues. Since the eigenvalues of a matrix and its transpose are the same
we can establish the following equivalences:

A↔ AT , B↔CT , K ↔ LT , Wr ↔WT
o .

The observer design problem is thedual of the state feedback design problem.
Using the results of Theorem6.3, we get the following theorem on observer design.

Theorem 7.2(Observer design by eigenvalue assignment). Consider the system
given by

dx
dt

= Ax+Bu, y=Cx, (7.9)

with one input and one output. Letλ (s) = sn+ a1sn−1+ · · ·+ an−1s+ an be the
characteristic polynomial for A. If the system is observable, then the dynamical
system

dx̂
dt

= Ax̂+Bu+L(y−Cx̂) (7.10)

is an observer for the system, with L chosen as

L =W−1
o W̃o




p1−a1
p2−a2

...
pn−an




(7.11)

and the matrices Wo andW̃o given by

Wo =




C
CA
...

CAn−1



, W̃o =




1 0 0 · · · 0 0
a1 1 0 · · · 0 0
a2 a1 1 0 0
...

...
. ..

...
an−2 an−3 an−4 1 0
an−1 an−2 an−3 . . . a1 1




−1

.

The resulting observer error̃x= x− x̂ is governed by a differential equation having
the characteristic polynomial

p(s) = sn+ p1sn−1+ · · ·+ pn.

The dynamical system (7.10) is called anobserverfor (the states of) the sys-
tem (7.9) because it will generate an approximation of the states of the system
from its inputs and outputs. This form of an observer is a much more useful form
than the one given by pure differentiation in equation (7.3).
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Figure 7.4: Observer for a two compartment system. A two compartment model is shown
on the left. The observer measures the input concentrationu and output concentrationy= c1
to determine the compartment concentrations, shown on the right. The trueconcentrations
are shown by solid lines and the estimates generated by the observer by dashed lines.

Example 7.2 Compartment model
Consider the compartment model in Example7.1, which is characterized by the
matrices

A=


−k0−k1 k1

k2 −k2


 , B=


b0

0


 , C=


1 0


 .

The observability matrix was computed in Example7.1, where we concluded that
the system was observable ifk1 6= 0. The dynamics matrix has the characteristic
polynomial

λ (s) = det


s+k0+k1 −k1

−k2 s+k2


= s2+(k0+k1+k2)s+k0k2.

Let the desired characteristic polynomial of the observer bes2 + p1s+ p2, and
equation (7.11) gives the observer gain

L =


 1 0
−k0−k1 k1




−1 1 0
k0+k1+k2 1




−1p1−k0−k1−k2
p2−k0k2




=


 p1−k0−k1−k2

(p2− p1k2+k1k2+k2
2)/k1


 .

Notice that the observability conditionk1 6= 0 is essential. The behavior of the
observer is illustrated by the simulation in Figure7.4b. Notice how the observed
concentrations approach the true concentrations. ∇

The observer is a dynamical system whose inputs are the process inputuand the
process outputy. The rate of change of the estimate is composed of two terms. One
term,Ax̂+Bu, is the rate of change computed from the model with ˆx substituted
for x. The other term,L(y− ŷ), is proportional to the differencee= y− ŷ between
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Figure 7.5: Block diagram of the observer. The observer takes the signalsy andu as inputs
and produces an estimatex. Notice that the observer contains a copy of the process model
that is driven byy− ŷ through the observer gainL.

measured outputy and its estimate ˆy=Cx̂. The observer gainL is a matrix that tells
how the errore is weighted and distributed among the states. The observer thus
combines measurements with a dynamical model of the system.A block diagram
of the observer is shown in Figure7.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introducethe elements of the
observer gainL as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.

Example 7.3 Vehicle steering
The normalized linear model for vehicle steering derived in Examples5.12and6.4
gives the following state space model dynamics relating lateral path deviationy to
steering angleu:

dx
dt

=


0 1

0 0


x+


γ

1


u, y=


1 0


x. (7.12)

Recall that the statex1 represents the lateral path deviation and thatx2 represents
the turning rate. We will now derive an observer that uses thesystem model to
determine the turning rate from the measured path deviation.

The observability matrix is

Wo =


1 0

0 1


 ,

i.e., the identity matrix. The system is thus observable, andthe eigenvalue assign-
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Figure 7.6: Simulation of an observer for a vehicle driving on a curvy road (left). The ob-
server has an initial velocity error. The plots on the middle show the lateral deviationx1, the
lateral velocityx2 by solid lines and their estimates ˆx1 andx̂2 by dashed lines. The plots on
the right show the estimation errors.

ment problem can be solved. We have

A−LC=


−l1 1
−l2 0


 ,

which has the characteristic polynomial

det(sI−A+LC) = det


s+ l1 −1

l2 s


= s2+ l1s+ l2.

Assuming that we want to have an observer with the characteristic polynomial

s2+ p1s+ p2 = s2+2ζoωos+ω2
o ,

the observer gains should be chosen as

l1 = p1 = 2ζoωo, l2 = p2 = ω2
o .

The observer is then

dx̂
dt

= Ax̂+Bu+L(y−Cx̂) =


0 1

0 0


 x̂+


γ

1


u+


l1

l2


(y− x̂1).

A simulation of the observer for a vehicle driving on a curvy road is simulated
in Figure7.6. The vehicle length is the time unit in the normalized model. The
figure shows that the observer error settles in about 3 vehiclelengths. ∇

For systems of high order we have to use numerical calculations. The duality
between the design of a state feedback and the design of an observer means that the
computer algorithms for state feedback can also be used for the observer design;
we simply use the transpose of the dynamics matrix and the output matrix. The
MATLAB commandacker, which essentially is a direct implementation of the
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calculations given in Theorem7.2, can be used for systems with one output. The
MATLAB commandplace can be used for systems with many outputs. It is also
better conditioned numerically.

7.3 Control Using Estimated State

In this section we will consider a state space system of the form

dx
dt

= Ax+Bu, y=Cx. (7.13)

Notice that we have assumed that there is no direct term in thesystem (D = 0).
This is often a realistic assumption. The presence of a direct term in combination
with a controller having proportional action creates an algebraic loop, which will
be discussed in Section8.3. The problem can be solved even if there is a direct
term, but the calculations are more complicated.

We wish to design a feedback controller for the system where only the output
is measured. As before, we will assume thatu andy are scalars. We also assume
that the system is reachable and observable. In Chapter6 we found a feedback of
the form

u=−Kx+kr r

for the case that all states could be measured, and in Section7.2 we developed
an observer that can generate estimates of the state ˆx based on inputs and outputs.
In this section we will combine the ideas of these sections tofind a feedback that
gives desired closed loop eigenvalues for systems where only outputs are available
for feedback.

If all states are not measurable, it seems reasonable to try the feedback

u=−Kx̂+kr r, (7.14)

wherex̂ is the output of an observer of the state, i.e.,

dx̂
dt

= Ax̂+Bu+L(y−Cx̂). (7.15)

Since the system (7.13) and the observer (7.15) are both of state dimensionn, the
closed loop system has state dimension 2n with state (x, x̂). The evolution of the
states is described by equations (7.13)–(7.15). To analyze the closed loop system,
the state variable ˆx is replaced by

x̃= x− x̂. (7.16)

Subtraction of equation (7.15) from equation (7.13) gives

dx̃
dt

= Ax−Ax̂−L(Cx−Cx̂) = Ax̃−LCx̃= (A−LC)x̃.
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Returning to the process dynamics, introducingu from equation (7.14) into
equation (7.13) and using equation (7.16) to eliminate ˆx gives

dx
dt

= Ax+Bu= Ax−BKx̂+Bkr r = Ax−BK(x− x̃)+Bkr r

= (A−BK)x+BKx̃+Bkr r.

The closed loop system is thus governed by

d
dt


x

x̃


=


A−BK BK

0 A−LC




x

x̃


+


Bkr

0


 r. (7.17)

Notice that the state ˜x, representing the observer error, is not affected by the ref-
erence signalr. This is desirable since we do not want the reference signal to
generate observer errors.

Since the dynamics matrix is block diagonal, we find that the characteristic
polynomial of the closed loop system is

λ (s) = det(sI−A+BK)det(sI−A+LC).

This polynomial is a product of two terms: the characteristicpolynomial of the
closed loop system obtained with state feedback and the characteristic polynomial
of the observer error. The feedback (7.14) that was motivated heuristically thus
provides a neat solution to the eigenvalue assignment problem. The result is sum-
marized as follows.

Theorem 7.3(Eigenvalue assignment by output feedback). Consider the system

dx
dt

= Ax+Bu, y=Cx.

The controller described by

dx̂
dt

= Ax̂+Bu+L(y−Cx̂) = (A−BK−LC)x̂+Bkr r +Ly,

u=−Kx̂+kr r

gives a closed loop system with the characteristic polynomial

λ (s) = det(sI−A+BK)det(sI−A+LC).

This polynomial can be assigned arbitrary roots if the systemis reachable and
observable.

The controller has a strong intuitive appeal: it can be thought of as being com-
posed of two parts, one state feedback and one observer. The dynamics of the
controller are generated by the observer. The feedback gainK can be computed
as if all state variables can be measured, and it depends on only A and B. The
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Figure 7.7: Block diagram of an observer-based control system. The observeruses the mea-
sured outputy and the inputu to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. The controller consists of the
observer and the state feedback; the observer is identical to that in Figure7.5.

observer gainL depends on onlyA andC. The property that the eigenvalue as-
signment for output feedback can be separated into an eigenvalue assignment for
a state feedback and an observer is called theseparation principle.

A block diagram of the controller is shown in Figure7.7. Notice that the con-
troller contains a dynamical model of the plant. This is called the internal model
principle: the controller contains a model of the process being controlled.

Example 7.4 Vehicle steering
Consider again the normalized linear model for vehicle steering in Example6.4.
The dynamics relating the steering angleu to the lateral path deviationy is given by
the state space model (7.12). Combining the state feedback derived in Example6.4
with the observer determined in Example7.3, we find that the controller is given
by

dx̂
dt

= Ax̂+Bu+L(y−Cx̂) =


0 1

0 0


 x̂+


γ

1


u+


l1

l2


(y− x̂1),

u=−Kx̂+kr r = k1(r − x̂1)−k2x̂2.
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane boundaries (dotted), the vehicle
position (solid) and its estimate (dashed), the upper right plot shows the velocity (solid) and
its estimate (dashed), and the lower right plot shows the control signal using state feedback
(solid) and the control signal using the estimated state (dashed).

Elimination of the variableu gives

dx̂
dt

= (A−BK−LC)x̂+Ly+Bkr r

=


−l1− γk1 1− γk2

−k1− l2 −k2


 x̂+


l1

l2


y+


γ

1


k1r.

The controller is a dynamical system of second order, with twoinputs y and r
and one outputu. Figure7.8 shows a simulation of the system when the vehicle
is driven along a curvy road. Since we are using a normalized model, the length
unit is the vehicle length and the time unit is the time it takes to travel one vehicle
length. The estimator is initialized with all states equal tozero but the real system
has an initial velocity of 0.5. The figures show that the estimates converge quickly
to their true values. The vehicle tracks the desired path, which is in the middle of
the road, but there are errors because the road is irregular.The tracking error can
be improved by introducing feedforward (Section7.5). ∇

7.4 Kalman Filtering
��

One of the principal uses of observers in practice is to estimate the state of a sys-
tem in the presence ofnoisymeasurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamical systems is beyond the scope
of this text. In this section, we present a brief introduction to the use of stochastic
systems analysis for constructing observers. We work primarily in discrete time
to avoid some of the complications associated with continuous-time random pro-
cesses and to keep the mathematical prerequisites to a minimum. This section as-
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sumes basic knowledge of random variables and stochastic processes; see Kumar
and Varaiya [KV86] or Åström [Åst06] for the required material.

Consider a discrete-time linear system with dynamics

x[k+1] = Ax[k]+Bu[k]+Fv[k], y[k] =Cx[k]+w[k], (7.18)

wherev[k] andw[k] are Gaussian white noise processes satisfying

E{v[k]}= 0, E{w[k]}= 0,

E{v[k]vT [ j]}=
{

0 k 6= j

Rv k= j,
E{w[k]wT [ j]}=

{
0 k 6= j

Rw k= j,

E{v[k]wT [ j]}= 0.

(7.19)

E{v[k]} represents the expected value ofv[k] andE{v[k]vT [ j]} the correlation ma-
trix. The matricesRv andRw are the covariance matrices for the process distur-
bancev and measurement noisew. We assume that the initial condition is also
modeled as a Gaussian random variable with

E{x[0]}= x0, E{x[0]xT [0]}= P0. (7.20)

We would like to find an estimate ˆx[k] that minimizes the mean square error
E{(x[k]− x̂[k])(x[k]− x̂[k])T} given the measurements{y(τ) : 0≤ τ ≤ t}. We con-
sider an observer in the same basic form as derived previously:

x̂[k+1] = Ax̂[k]+Bu[k]+L[k](y[k]−Cx̂[k]). (7.21)

The following theorem summarizes the main result.

Theorem 7.4 (Kalman, 1961). Consider a random process x[k] with dynamics
given by equation(7.18) and noise processes and initial conditions described by
equations(7.19) and (7.20). The observer gain L that minimizes the mean square
error is given by

L[k] = AP[k]CT(Rw+CP[k]CT)−1,

where
P[k+1] = (A−LC)P[k](A−LC)T +FRvF

T +LRwLT

P0 = E{x[0]xT [0]}.
(7.22)

Before we prove this result, we reflect on its form and function. First, note
that the Kalman filter has the form of arecursivefilter: given mean square error
P[k] = E{(x[k]− x̂[k])(x[k]− x̂[k])T} at timek, we can compute how the estimate
and errorchange. Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate ˆx[k] and the error covariance
P[k], so we can see how reliable the estimate is. It can also be shown that the
Kalman filter extracts the maximum possible information about output data. If we
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form the residual between the measured output and the estimated output,

e[k] = y[k]−Cx̂[k],

we can show that for the Kalman filter the correlation matrix is

Re( j,k) = E{e[ j]eT [k]}=W[k]δ jk, δ jk =

{
1 j = k

0 j 6= k.

In other words, the error is a white noise process, so there isno remaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used even if the process,
noise or disturbances are nonstationary. When the system isstationary andif P[k]
converges, then the observer gain is constant:

L = APCT(Rw+CPCT),

whereP satisfies

P= APAT +FRvF
T −APCT(Rw+CPCT)−1

CPAT .

We see that the optimal gain depends on both the process noiseand the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choosestate feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is
solved by thedlqe command in MATLAB.

Proof of theorem.We wish to minimize the mean square of the errorE{(x[k]−
x̂[k])(x[k]− x̂[k])T}. We will define this quantity asP[k] and then show that it sat-
isfies the recursion given in equation (7.22). By definition,

P[k+1] = E{(x[k+1]− x̂[k+1])(x[k+1]− x̂[k+1])T}
= (A−LC)P[k](A−LC)T +FRvF

T +LRwLT

= AP[k]AT +FRvF
T −AP[k]CTLT −LCP[k]AT

+L(Rw+CP[k]CT)LT .

LettingRε = (Rw+CP[k]CT), we have

P[k+1] = AP[k]AT +FRvF
T −AP[k]CTLT −LCP[k]AT +LRεLT

= AP[k]AT +FRvF
T +

(
L−AP[k]CTR−1

ε
)
Rε
(
L−AP[k]CTR−1

ε
)T

−AP[k]CTR−1
ε CPT [k]AT .

To minimize this expression, we chooseL = AP[k]CTR−1
ε , and the theorem is

proved.
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The Kalman filter can also be applied to continuous-time stochastic processes.
The mathematical derivation of this result requires more sophisticated tools, but
the final form of the estimator is relatively straightforward.

Consider a continuous stochastic system

dx
dt

= Ax+Bu+Fv, E{v(s)vT(t)}= Rv(t)δ (t −s),

y=Cx+w, E{w(s)wT(t)}= Rw(t)δ (t −s),

whereδ (τ) is the unit impulse function. Assume that the disturbancev and noise
w are zero mean and Gaussian (but not necessarily stationary):

pdf(v) =
1

n
√

2π
√

detRv
e−

1
2vTR−1

v v, pdf(w) =
1

n
√

2π
√

detRw
e−

1
2wTR−1

w w.

We wish to find the estimate ˆx(t) that minimizes the mean square errorE{(x(t)−
x̂(t))(x(t)− x̂(t))T} given{y(τ) : 0≤ τ ≤ t}.

Theorem 7.5(Kalman–Bucy, 1961). The optimal estimator has the form of a lin-
ear observer

dx̂
dt

= Ax̂+Bu+L(y−Cx̂),

where L(t) = P(t)CTR−1
w and P(t) = E{(x(t)− x̂(t))(x(t)− x̂(t))T} and satisfies

dP
dt

= AP+PAT −PCTR−1
w (t)CP+FRv(t)F

T , P[0] = E{x[0]xT [0]}.

As in the discrete case, when the system is stationary and ifP(t) converges, the
observer gain is constant:

L = PCTR−1
w where AP+PAT −PCTR−1

w CP+FRvF
T = 0.

The second equation is thealgebraic Riccati equation.

Example 7.5 Vectored thrust aircraft
We consider the lateral dynamics of the system, consisting of the subsystems
whose states are given byz= (x,θ , ẋ, θ̇). To design a Kalman filter for the system,
we must include a description of the process disturbances and the sensor noise. We
thus augment the system to have the form

dz
dt

= Az+Bu+Fv, y=Cz+w,

whereF represents the structure of the disturbances (including the effects of non-
linearities that we have ignored in the linearization),v represents the disturbance
source (modeled as zero mean, Gaussian white noise) andw represents that mea-
surement noise (also zero mean, Gaussian and white).

For this example, we chooseF as the identity matrix and choose disturbances
vi , i = 1, . . . ,n, to be independent disturbances with covariance given byRii = 0.1,
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(a) Position measurement only
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(b) Position and orientation

Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first design (a) only
the lateral position of the aircraft is measured. Adding a direct measurement of the roll
angle produces a much better observer (b). The initial condition for bothsimulations is
(0.1,0.0175,0.01,0).

Ri j = 0, i 6= j. The sensor noise is a single random variable which we model as
having covarianceRw = 10−4. Using the same parameters as before, the resulting
Kalman gain is given by

L =




37.0
−46.9
185

−31.6



.

The performance of the estimator is shown in Figure7.9a. We see that while the
estimator converges to the system state, it contains significant overshoot in the
state estimate, which can lead to poor performance in a closed loop setting.

To improve the performance of the estimator, we explore the impact of adding
a new output measurement. Suppose that instead of measuring just the output po-
sition x, we also measure the orientation of the aircraftθ . The output becomes

y=


1 0 0 0

0 1 0 0


z+


w1

w2


 ,

and if we assume thatw1 andw2 are independent noise sources each with covari-
anceRwi = 10−4, then the optimal estimator gain matrix becomes

L =




32.6 −0.150
−0.150 32.6

32.7 −9.79
−0.0033 31.6



.

These gains provide good immunity to noise and high performance, as illustrated
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Figure 7.10:Block diagram of a controller based on a structure with two degrees of freedom
which combines feedback and feedforward. The controller consists of a trajectory generator,
state feedback and an observer. The trajectory generation subsystemcomputes a feedforward
commanduff along with the desired statexd. The state feedback controller uses the estimated
state and desired state to compute a corrective inputufb.

in Figure7.9b. ∇

7.5 A General Controller Structure

State estimators and state feedback are important components of a controller. In
this section, we will add feedforward to arrive at a general controller structure that
appears in many places in control theory and is the heart of most modern control
systems. We will also briefly sketch how computers can be used to implement a
controller based on output feedback.

Feedforward

In this chapter and the previous one we have emphasized feedback as a mechanism
for minimizing tracking error; reference values were introduced simply by adding
them to the state feedback through a gainkr . A more sophisticated way of doing
this is shown by the block diagram in Figure7.10, where the controller consists of
three parts: an observer that computes estimates of the states based on a model and
measured process inputs and outputs, a state feedback, and atrajectory generator
that generates the desired behavior of all statesxd and a feedforward signaluff .
Under the ideal conditions of no disturbances and no modeling errors the signaluff
generates the desired behaviorxd when applied to the process. The signalxd can be
generated by a system that gives the desired response of the state. To generate the
the signaluff , we must also have a model of the inverse of the process dynamics.

To get some insight into the behavior of the system, we assumethat there are no
disturbances and that the system is in equilibrium with a constant reference signal
and with the observer state ˆx equal to the process statex. When the reference
signal is changed, the signalsuff andxd will change. The observer tracks the state
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perfectly because the initial state was correct. The estimated state ˆx is thus equal to
the desired statexd, and the feedback signalufb = K(xd − x̂) will also be zero. All
action is thus created by the signals from the trajectory generator. If there are some
disturbances or some modeling errors, the feedback signal will attempt to correct
the situation.

This controller is said to havetwo degrees of freedombecause the responses
to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).

For an analytic description we start with the full nonlineardynamics of the
process

dx
dt

= f (x,u), y= h(x,u). (7.23)

Assume that the trajectory generator is able to compute a desired trajectory(xd,uff )
that satisfies the dynamics (7.23) and satisfiesr = h(xd,uff ). To design the con-
troller, we construct the error system. Letz= x−xd andv= u−uff and compute
the dynamics for the error:

ż= ẋ− ẋd = f (x,u)− f (xd,uff )

= f (z+xd,v+uff )− f (xd,uff ) =: F(z,v,xd(t),uff (t)).

In general, this system is time-varying. Note thatz=−e in Figure7.10due to the
convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume thate is small (if our controller is doing
a good job), and so we can linearize aroundz= 0:

dz
dt

≈ A(t)z+B(t)v, A(t) =
∂F
∂z

∣∣∣∣
(xd(t),uff (t))

, B(t) =
∂F
∂v

∣∣∣∣
(xd(t),uff (t)

.

It is often the case thatA(t) andB(t) depend only onxd, in which case it is conve-
nient to writeA(t) = A(xd) andB(t) = B(xd).

Assume now thatxd anduff are either constant or slowly varying (with respect
to the performance criterion). This allows us to consider just the (constant) linear
system given by(A(xd),B(xd)). If we design a state feedback controllerK(xd) for
eachxd, then we can regulate the system using the feedback

v=−K(xd)z.

Substituting back the definitions ofz andv, our controller becomes

u=−K(xd)(x−xd)+uff .

This form of controller is called again scheduledlinear controller withfeedfor-
ward uff .

Finally, we consider the observer. The full nonlinear dynamics can be used for
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Figure 7.11:Trajectory generation for changing lanes. We wish to change from the left lane
to the right lane over a distance of 30 m in 4 s. The planned trajectory in thexyplane is shown
in (a) and the lateral positiony and the steering angleδ over the maneuver time interval are
shown in (b).

.

the prediction portion of the observer and the linearized system for the correction
term:

dx̂
dt

= f (x̂,u)+L(x̂)(y−h(x̂,u)),

whereL(x̂) is the observer gain obtained by linearizing the system around the cur-
rently estimated state. This form of the observer is known as an extended Kalman
filter and has proved to be a very effective means of estimating the state of a non-
linear system.

There are many ways to generate the feedforward signal, and there are also
many different ways to compute the feedback gainK and the observer gainL.
Note that once again the internal model principle applies: the controller contains a
model of the system to be controlled through the observer.

Example 7.6 Vehicle steering
To illustrate how we can use a two degree-of-freedom design to improve the per-
formance of the system, consider the problem of steering a car to change lanes on
a road, as illustrated in Figure7.11a.

We use the non-normalized form of the dynamics, which were derived in Exam-
ple2.8. Using the center of the rear wheels as the reference (α = 0), the dynamics
can be written as

dx
dt

= cosθv,
dy
dt

= sinθv,
dθ
dt

=
v
b

tanδ ,

wherev is the forward velocity of the vehicle andδ is the steering angle. To gener-
ate a trajectory for the system, we note that we can solve for the states and inputs
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of the system givenx, y by solving the following sets of equations:

ẋ= vcosθ , ẍ= v̇cosθ −vθ̇ sinθ ,
ẏ= vsinθ , ÿ= v̇sinθ +vθ̇ cosθ ,
θ̇ = (v/b) tanδ .

(7.24)

This set of five equations has five unknowns (θ , θ̇ , v, v̇ andδ ) that can be solved
using trigonometry and linear algebra. It follows that we can compute a feasible
trajectory for the system given any pathx(t), y(t). (This special property of a sys-
tem is known asdifferential flatness[FLMR92, FLMR95].)

To find a trajectory from an initial state(x0,y0,θ0) to a final state(xf ,yf ,θ f ) at
a timeT, we look for a pathx(t),y(t) that satisfies

x(0) = x0, x(T) = xf ,

y(0) = y0, y(T) = yf ,

ẋ(0)sinθ0− ẏ(0)cosθ0 = 0, ẋ(T)sinθ f − ẏ(T)cosθ f = 0,

ẏ(0)sinθ0+ ẋ(0)cosθ0 = v0, ẏ(T)sinθ f + ẋ(T)cosθ f = vf .

(7.25)

One such trajectory can be found by choosingx(t) andy(t) to have the form

xd(t) = α0+α1t +α2t
2+α3t

3, yd(t) = β0+β1t +β2t
2+β3t

3.

Substituting these equations into equation (7.25), we are left with a set of linear
equations that can be solved forαi ,βi , i = 0,1,2,3. This gives a feasible trajectory
for the system by using equation (7.24) to solve forθd, vd andδd.

Figure7.11bshows a sample trajectory generated by a set of higher-orderequa-
tions that also set the initial and final steering angle to zero. Notice that the feedfor-
ward input is quite different from 0, allowing the controller to command a steering
angle that executes the turn in the absence of errors. ∇

Kalman’s Decomposition of a Linear System
�

In this chapter and the previous one we have seen that two fundamental properties
of a linear input/output system are reachability and observability. It turns out that
these two properties can be used to classify the dynamics of asystem. The key
result is Kalman’s decomposition theorem, which says that alinear system can be
divided into four subsystems:Σro which is reachable and observable,Σrō which is
reachable but not observable,Σr̄o which is not reachable but is observable andΣr̄ ō

which is neither reachable nor observable.
We will first consider this in the special case of systems wherethe matrixA has

distinct eigenvalues. In this case we can find a set of coordinates such that theA
matrix is diagonal and, with some additional reordering of the states, the system
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Figure 7.12:Kalman’s decomposition of a linear system. The decomposition in (a) is fora
system with distinct eigenvalues and the one in (b) is the general case. Thesystem is bro-
ken into four subsystems, representing the various combinations of reachable and observable
states. The input/output relationship only depends on the subset of states that are both reach-
able and observable.

can be written as

dx
dt

=




Aro 0 0 0
0 Arō 0 0
0 0 Ar̄o 0
0 0 0 Ar̄ ō




x+




Bro

Brō

0
0




u,

y=

Cro 0 Cr̄o 0


x+Du.

(7.26)

All statesxk such thatBk 6= 0 are reachable, and all states such thatCk 6= 0 are
observable. If we set the initial state to zero (or equivalently look at the steady-
state response ifA is stable), the states given byxr̄o andxr̄ ō will be zero andxrō

does not affect the output. Hence the outputy can be determined from the system

dxro

dt
= Aroxro +Brou, y=Croxro +Du.

Thus from the input/output point of view, it is only the reachable and observable
dynamics that matter. A block diagram of the system illustrating this property is
given in Figure7.12a.

The general case of the Kalman decomposition is more complicated and re-
quires some additional linear algebra; see the original paper by Kalman, Ho and
Narendra [KHN63]. The key result is that the state space can still be decomposed
into four parts, but there will be additional coupling so that the equations have the
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form

dx
dt

=




Aro 0 ∗ 0
∗ Arō ∗ ∗
0 0 Ar̄o 0
0 0 ∗ Ar̄ ō




x+




Bro

Brō

0
0




u,

y=

Cro 0 Cr̄o 0


x,

(7.27)

where∗ denotes block matrices of appropriate dimensions. The input/output re-
sponse of the system is given by

dxro

dt
= Aroxro +Brou, y=Croxro +Du, (7.28)

which are the dynamics of the reachable and observable subsystemΣro. A block
diagram of the system is shown in Figure7.12b.

The following example illustrates Kalman’s decomposition.

Example 7.7 System and controller with feedback from observer states
Consider the system

dx
dt

= Ax+Bu, y=Cx.

The following controller, based on feedback from the observer state, was given in
Theorem7.3:

dx̂
dt

= Ax̂+Bu+L(y−Cx̂), u=−Kx̂+kr r.

Introducing the statesx andx̃= x− x̂, the closed loop system can be written as

d
dt


x

x̃


=


A−BK BK

0 A−LC




x

x̃


+


Bkr

0


 r, y=


C 0




x

x̃


 ,

which is a Kalman decomposition like the one shown in Figure7.12bwith only
two subsystemsΣro and Σr̄o. The subsystemΣro, with statex, is reachable and
observable, and the subsystemΣr̄o, with state ˜x, is not reachable but observable.
It is natural that the state ˜x is not reachable from the reference signalr because it
would not make sense to design a system where changes in the command signal
could generate observer errors. The relationship between the referencer and the
outputy is given by

dx
dt

= (A−BK)x+Bkr r, y=Cx,

which is the same relationship as for a system with full statefeedback. ∇
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noiseexternal disturbancesnoise
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Output

Process
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Figure 7.13: Components of a computer-controlled system. The controller consists of
analog-to-digital (A/D) and digital-to-analog (D/A) converters, as well asa computer that
implements the control algorithm. A system clock controls the operation of thecontroller,
synchronizing the A/D, D/A and computing processes. The operator input is also fed to the
computer as an external input.

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves or other physical devices. Since in modern engi-
neering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by the A/D con-
verter, the control signal is computed and the resulting output is converted to ana-
log form for the actuators, as shown in Figure7.13. To illustrate the main princi-
ples of how to implement feedback in this environment, we consider the controller
described by equations (7.14) and (7.15), i.e.,

dx̂
dt

= Ax̂+Bu+L(y−Cx̂), u=−Kx̂+kr r.

The second equation consists only of additions and multiplications and can thus
be implemented directly on a computer. The first equation can beimplemented by
approximating the derivative by a difference

dx̂
dt

≈ x̂(tk+1)− x̂(tk)
h

= Ax̂(tk)+Bu(tk)+L
(
y(tk)−Cx̂(tk)

)
,
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wheretk are the sampling instants andh= tk+1− tk is the sampling period. Rewrit-
ing the equation to isolate ˆx(tk+1), we get the difference equation

x̂(tk+1) = x̂(tk)+h
(
Ax̂(tk)+Bu(tk)+L

(
y(tk)−Cx̂(tk)

))
. (7.29)

The calculation of the estimated state at timetk+1 requires only addition and mul-
tiplication and can easily be done by a computer. A section ofpseudocode for the
program that performs this calculation is

% Control algorithm - main loop
r = adin(ch1) % read reference
y = adin(ch2) % get process output
u = K*(xd - xhat) + uff % compute control variable
daout(ch1, u) % set analog output
xhat = xhat + h*(A*x+B*u+L*(y-C*x)) % update state estimate

The program runs periodically at a fixed rateh. Notice that the number of com-
putations between reading the analog input and setting the analog output has been
minimized by updating the state after the analog output has been set. The pro-
gram has an array of statesxhat that represents the state estimate. The choice of
sampling period requires some care.

There are more sophisticated ways of approximating a differential equation
by a difference equation. If the control signal is constant between the sampling
instants, it is possible to obtain exact equations; see [ÅW97].

There are several practical issues that also must be dealt with. For example, it
is necessary to filter measured signals before they are sampled so that the filtered
signal has little frequency content abovefs/2, wherefs is the sampling frequency.
This avoids a phenomena known asaliasing. If controllers with integral action
are used, it is also necessary to provide protection so that the integral does not
become too large when the actuator saturates. This issue, called integrator windup,
is studied in more detail in Chapter10. Care must also be taken so that parameter
changes do not cause disturbances.

7.6 Further Reading

The notion of observability is due to Kalman [Kal61b] and, combined with the dual
notion of reachability, it was a major stepping stone towardestablishing state space
control theory beginning in the 1960s. The observer first appeared as the Kalman
filter, in the paper by Kalman [Kal61a] on the discrete-time case and Kalman and
Bucy [KB61] on the continuous-time case. Kalman also conjectured thatthe con-
troller for output feedback could be obtained by combining astate feedback with
an observer; see the quote in the beginning of this chapter. This result was formally
proved by Josep and Tou [JT61] and Gunckel and Franklin [GF71]. The combined
result is known as the linear quadratic Gaussian control theory; a compact treat-
ment is given in the books by Anderson and Moore [AM90] andÅström [Åst06].
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Much later it was shown that solutions to robust control problems also had a sim-
ilar structure but with different ways of computing observer and state feedback
gains [DGKF89]. The general controller structure discussed in Section7.5, which
combines feedback and feedforward, was described by Horowitz in 1963 [Hor63].
The particular form in Figure7.10appeared in [̊AW97], which also treats digital
implementation of the controller. The hypothesis that motion control in humans
is based on a combination of feedback and feedforward was proposed by Ito in
1970 [Ito70].

Exercises

7.1 (Coordinate transformations) Consider a system under a coordinate transfor-
mationz= Tx, whereT ∈R

n×n is an invertible matrix. Show that the observability
matrix for the transformed system is given byW̃o =WoT−1 and hence observability
is independent of the choice of coordinates.

7.2 Show that the system depicted in Figure7.2 is not observable.

7.3 (Observable canonical form) Show that if a system is observable, then there
exists a change of coordinatesz= Tx that puts the transformed system into ob-
servable canonical form.

7.4(Bicycle dynamics) The linearized model for a bicycle is given in equation (3.5),
which has the form

J
d2ϕ
dt2

− Dv0

b
dδ
dt

= mghϕ +
mv2

0h

b
δ ,

whereϕ is the tilt of the bicycle andδ is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.

7.5 (Integral action) The model (7.1) assumes that the inputu = 0 corresponds
to x = 0. In practice, it is very difficult to know the value of the control signal
that gives a precise value of the state or the output because this would require a
perfectly calibrated system. One way to avoid this assumption is to assume that the
model is given by

dx
dt

= Ax+B(u+u0), y=Cx+Du,

whereu0 is an unknown constant that can be modeled asdu0/dt = 0. Consider
u0 as an additional state variable and derive a controller based on feedback from
the observed state. Show that the controller has integral action and that it does not
require a perfectly calibrated system.
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7.6 (Vectored thrust aircraft) The lateral dynamics of the vectored thrust aircraft�
example described in Example6.8 can be obtained by considering the motion
described by the statesz= (x,θ , ẋ, θ̇). Construct an estimator for these dynam-
ics by setting the eigenvalues of the observer into aButterworth patternwith
λbw =−3.83±9.24i, −9.24±3.83i. Using this estimator combined with the state
space controller computed in Example6.8, plot the step response of the closed
loop system.

7.7 (Uniqueness of observers) Show that the design of an observerby eigenvalue
assignment is unique for single-output systems. Constructexamples that show that
the problem is not necessarily unique for systems with many outputs.

7.8 (Observers using differentiation) Consider the linear system (7.2), and assume
that the observability matrixWo is invertible. Show that

x̂=W−1
o


y ẏ ÿ · · · y(n−1)


T

is an observer. Show that it has the advantage of giving the state instantaneously
but that it also has some severe practical drawbacks.

7.9 (Observer for Teorell’s compartment model) Teorell’s compartment model,�
shown in Figure3.17, has the following state space representation:

dx
dt

=




−k1 0 0 0 0
k1 −k2−k4 0 k3 0
0 k4 0 0 0
0 k2 0 −k3−k5 0
0 0 0 k5 0




x+




1
0
0
0
0




u,

where representative parameters arek1 = 0.02, k2 = 0.1, k3 = 0.05, k4 = k5 =
0.005. The concentration of a drug that is active in compartment5 is measured in
the bloodstream (compartment 2). Determine the compartments that are observable
from measurement of concentration in the bloodstream and design an estimator
for these concentrations base on eigenvalue assignment. Choose the closed loop
eigenvalues−0.03,−0.05 and−0.1. Simulate the system when the input is a pulse
injection.

7.10 (Observer design for motor drive) Consider the normalized model of the
motor drive in Exercise2.10 where the open loop system has the eigenvalues
0,0,−0.05± i. A state feedback that gave a closed loop system with eigenval-
ues in−2, −1 and−1± i was designed in Exercise6.11. Design an observer for
the system that has eigenvalues−4, −2 and−2±2i. Combine the observer with
the state feedback from Exercise6.11to obtain an output feedback and simulate
the complete system.
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7.11(Feedforward design for motor drive) Consider the normalized model of the
motor drive in Exercise2.10. Design the dynamics of the block labeled “trajec-
tory generation” in Figure7.10so that the dynamics relating the outputη to the
reference signalr has the dynamics

d3ym

dt3
+am1

d2ym

dt2
+am2

dym

dt
+am3ym = am3r, (7.30)

with parametersam1 = 2.5ωm, am2 = 2.5ω2
m andam3 =ω3

m. Discuss how the largest
value of the feedforward signal for a unit step in the commandsignal depends on
ωm.

7.12(Whipple bicycle model) Consider the Whipple bicycle modelgiven by equa-
tion (3.7) in Section3.2. A state feedback for the system was designed in Exer-
cise6.12. Design an observer and an output feedback for the system.

7.13(Discrete-time random walk) Suppose that we wish to estimatethe position �
of a particle that is undergoing a random walk in one dimension (i.e., along a line).
We model the position of the particle as

x[k+1] = x[k]+u[k],

wherex is the position of the particle andu is a white noise processes withE{u[i]}=
0 andE{u[i]u[ j]} = Ruδ (i − j). We assume that we can measurex subject to ad-
ditive, zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the particle as a function ofk.

(b) Construct a Kalman filter to estimate the position of the particle given the
noisy measurements of its position. Compute the steady-state expected value and
covariance of the error of your estimate.

(c) Suppose thatE{u[0]} = µ 6= 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

7.14 (Kalman decomposition) Consider a linear system characterized by the ma-
trices

A=




−2 1 −1 2
1 −3 0 2
1 1 −4 2
0 1 −1 −1



, B=




2
2
2
1



, C=


0 1 −1 0


 , D = 0.

Construct a Kalman decomposition for the system. (Hint: Tryto diagonalize.)



Chapter Eight
Transfer Functions

The typical regulator system can frequently be described, in essentials, by differential equa-
tions of no more than perhaps the second, third or fourth order. . . . In contrast, the order of
the set of differential equations describing the typical negative feedback amplifier used in
telephony is likely to be very much greater. As a matter of idle curiosity, I once counted to
find out what the order of the set of equations in an amplifier I had just designed would have
been, if I had worked with the differential equations directly. It turned outto be 55.

Henrik Bode, 1960 [Bod60].

This chapter introduces the concept of thetransfer function, which is a compact
description of the input/output relation for a linear system. Combining transfer
functions with block diagrams gives a powerful method for dealing with complex
linear systems. The relationship between transfer functions and other descriptions
of system dynamics is also discussed.

8.1 Frequency Domain Modeling

Figure8.1 is a block diagram for a typical control system, consisting of a process
to be controlled and a controller that combines feedback andfeedforward. We
saw in the previous two chapters how to analyze and design such systems using
state space descriptions of the blocks. As mentioned in Chapter 2, an alternative
approach is to focus on the input/output characteristics ofthe system. Since it is the
inputs and outputs that are used to connect the systems, one could expect that this
point of view would allow an understanding of the overall behavior of the system.
Transfer functions are the main tool in implementing this point of view for linear
systems.

The basic idea of the transfer function comes from looking at the frequency
response of a system. Suppose that we have an input signal thatis periodic. Then
we can decompose this signal into the sum of a set of sines and cosines,

u(t) =
∞

∑
k=0

ak sin(kωt)+bk cos(kωt),

whereω is the fundamental frequency of the periodic input. Each of the terms
in this input generates a corresponding sinusoidal output (in steady state), with
possibly shifted magnitude and phase. The gain and phase at each frequency are
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Figure 8.1: A block diagram for a feedback control system. The reference signal r is fed
through a reference shaping block, which produces the signal that willbe tracked. The error
between this signal and the output is fed to a controller, which produces theinput to the
process. Disturbances and noise are included as external signals at the input and output of
the process dynamics.

determined by the frequency response given in equation (5.24):

G(s) =C(sI−A)−1B+D, (8.1)

where we sets= i(kω) for eachk= 1, . . . ,∞ andi =
√
−1. If we know the steady-

state frequency responseG(s), we can thus compute the response to any (periodic)
signal using superposition.

The transfer function generalizes this notion to allow a broader class of input
signals besides periodic ones. As we shall see in the next section, the transfer func-
tion represents the response of the system to anexponential input, u= est. It turns
out that the form of the transfer function is precisely the same as that of equa-
tion (8.1). This should not be surprising since we derived equation (8.1) by writing
sinusoids as sums of complex exponentials. Formally, the transfer function is the
ratio of the Laplace transforms of output and input, althoughone does not have
to understand the details of Laplace transforms in order to make use of transfer
functions.

Modeling a system through its response to sinusoidal and exponential signals
is known asfrequency domain modeling. This terminology stems from the fact that
we represent the dynamics of the system in terms of the generalized frequencys
rather than the time domain variablet. The transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a particularly convenient
representation in manipulating and analyzing complex linear feedback systems.
As we shall see, there are many graphical representations oftransfer functions that
capture interesting properties of the underlying dynamics. Transfer functions also
make it possible to express the changes in a system because ofmodeling error,
which is essential when considering sensitivity to processvariations of the sort
discussed in Chapter12. More specifically, using transfer functions, it is possibleto
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analyze what happens when dynamic models are approximated by static models or
when high-order models are approximated by low-order models. One consequence
is that we can introduce concepts that express the degree of stability of a system.

While many of the concepts for state space modeling and analysis apply di-
rectly to nonlinear systems, frequency domain analysis applies primarily to linear
systems. The notions of gain and phase can be generalized to nonlinear systems
and, in particular, propagation of sinusoidal signals through a nonlinear system
can approximately be captured by an analog of the frequency response called the
describing function. These extensions of frequency response will be discussed in
Section9.5.

8.2 Derivation of the Transfer Function

As we have seen in previous chapters, the input/output dynamics of a linear sys-
tem have two components: the initial condition response andthe forced response.
In addition, we can speak of the transient properties of the system and its steady-
state response to an input. The transfer function focuses on the steady-state forced
response to a given input and provides a mapping between inputs and their corre-
sponding outputs. In this section, we will derive the transfer function in terms of
the exponential response of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we will make use of a
special type of signal, called anexponential signal,of the form est, wheres=
σ + iω is a complex number. Exponential signals play an important role in linear
systems. They appear in the solution of differential equations and in the impulse
response of linear systems, and many signals can be represented as exponentials
or sums of exponentials. For example, a constant signal is simply eαt with α = 0.
Damped sine and cosine signals can be represented by

e(σ+iω)t = eσteiωt = eσt(cosωt + i sinωt),

whereσ < 0 determines the decay rate. Figure8.2gives examples of signals that
can be represented by complex exponentials; many other signals can be repre-
sented by linear combinations of these signals. As in the case of sinusoidal signals,
we will allow complex-valued signals in the derivation thatfollows, although in
practice we always add together combinations of signals that result in real-valued
functions.

To investigate how a linear system responds to an exponential input u(t) = est

we consider the state space system

dx
dt

= Ax+Bu, y=Cx+Du. (8.2)
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Figure 8.2:Examples of exponential signals. The top row corresponds to exponential signals
with a real exponent, and the bottom row corresponds to those with complexexponents. The
dashed line in the last two cases denotes the bounding envelope for the oscillatory signals.
In each case, if the real part of the exponent is negative then the signal decays, while if the
real part is positive then it grows.

Let the input signal beu(t) = est and assume thats 6= λ j(A), j = 1, . . . ,n, where
λ j(A) is the jth eigenvalue ofA. The state is then given by

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Besτ dτ = eAtx(0)+eAt

∫ t

0
e(sI−A)τBdτ .

As we saw in Section5.3, if s 6= λ (A), the integral can be evaluated and we get

x(t) = eAtx(0)+eAt(sI−A)−1
(

e(sI−A)t − I
)

B

= eAt
(

x(0)− (sI−A)−1B
)
+(sI−A)−1Best.

The output of equation (8.2) is thus

y(t) =Cx(t)+Du(t)

=CeAt
(

x(0)− (sI−A)−1B
)
+
(
C(sI−A)−1B+D

)
est, (8.3)

a linear combination of the exponential functionsest and eAt. The first term in
equation (8.3) is the transient response of the system. Recall thateAt can be written
in terms of the eigenvalues ofA (using the Jordan form in the case of repeated
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eigenvalues), and hence the transient response is a linear combination of terms of
the formeλ j t , whereλ j are eigenvalues ofA. If the system is stable, theneAt → 0
ast → ∞ and this term dies away.

The second term of the output (8.3) is proportional to the inputu(t) = est. This
term is called thepure exponential response. If the initial state is chosen as

x(0) = (sI−A)−1B,

then the output consists of only the pure exponential response and both the state
and the output are proportional to the input:

x(t) = (sI−A)−1Best = (sI−A)−1Bu(t),

y(t) =
(
C(sI−A)−1B+D

)
est =

(
C(sI−A)−1B+D

)
u(t).

This is also the output we see in steady state, when the transients represented by
the first term in equation (8.3) have died out. The map from the input to the output,

Gyu(s) =C(sI−A)−1B+D, (8.4)

is thetransfer functionfrom u to y for the system (8.2), and we can writey(t) =
Gyu(s)u(t) for the case thatu(t) = est. Compare with the definition of frequency
response given by equation (5.24).

An important point in the derivation of the transfer function is the fact that
we have restricteds so thats 6= λ j(A), the eigenvalues ofA. At those values of
s, we see that the response of the system is singular (sincesI−A will fail to be
invertible). Ifs= λ j(A), the response of the system to the exponential inputu= eλ j t

is y = p(t)eλ j t , where p(t) is a polynomial of degree less than or equal to the
multiplicity of the eigenvalueλ j (see Exercise8.2).

Example 8.1 Damped oscillator
Consider the response of a damped linear oscillator, whose state space dynamics
were studied in Section6.3:

dx
dt

=


 0 ω0
−ω0 −2ζ ω0


x+


 0

kω0


u, y=


1 0


x. (8.5)

This system is stable ifζ > 0, and so we can look at the steady-state response to
an inputu= est,

Gyu(s) =C(sI−A)−1B=

1 0




 s −ω0

ω0 s+2ζ ω0




−1 0
kω0




=

1 0



(

1

s2+2ζ ω0s+ω2
0


s+2ζ ω0 −ω0

ω0 s



)
 0

kω0




=
kω2

0

s2+2ζ ω0s+ω2
0

.

(8.6)
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To compute the steady-state response to a step function, we set s= 0 and we see
that

u= 1 =⇒ y= Gyu(0)u= k.

If we wish to compute the steady-state response to a sinusoid, we write

u= sinωt =
1
2

(
ie−iωt − ieiωt) ,

y=
1
2

(
iGyu(−iω)e−iωt − iGyu(iω)eiωt) .

We can now writeG(iω) in terms of its magnitude and phase,

G(iω) =
kω2

0

s2+2ζ ω0s+ω2
0

= Meiθ ,

where the magnitude (or gain)M and phaseθ are given by

M =
kω2

0√
(ω2

0 −ω2)2+(2ζ ω0ω)2
,

sinθ
cosθ

=
−2ζ ω0ω
ω2

0 −ω2
.

We can also make use of the fact thatG(−iω) is given by its complex conjugate
G∗(iω), and it follows thatG(−iω) = Me−iθ . Substituting these expressions into
our output equation, we obtain

y=
1
2

(
i(Me−iθ )e−iωt − i(Meiθ )eiωt

)

= M ·
1
2

(
ie−i(ωt+θ)− iei(ωt+θ)

)
= M sin(ωt +θ).

The responses to other signals can be computed by writing the input as an appro-
priate combination of exponential responses and using linearity. ∇

Coordinate Changes

The matricesA, B andC in equation (8.2) depend on the choice of coordinate
system for the states. Since the transfer function relates input to outputs, it should
be invariant to coordinate changes in the state space. To show this, consider the
model (8.2) and introduce new coordinatesz by the transformationz= Tx, where
T is a nonsingular matrix. The system is then described by

dz
dt

= T(Ax+Bu) = TAT−1z+TBu=: Ãz+ B̃u,

y=Cx+Du=CT−1z+Du=: C̃z+Du.

This system has the same form as equation (8.2), but the matricesA, B andC are
different:

Ã= TAT−1, B̃= TB, C̃=CT−1. (8.7)
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Computing the transfer function of the transformed model, we get

G̃(s) = C̃(sI− Ã)−1B̃+ D̃ =CT−1(sI−TAT−1)−1TB+D

=C
(
T−1(sI−TAT−1)T

)−1
B+D =C(sI−A)−1B+D = G(s),

which is identical to the transfer function (8.4) computed from the system descrip-
tion (8.2). The transfer function is thus invariant to changes of the coordinates in
the state space.

Another property of the transfer function is that it corresponds to the portion of�
the state space dynamics that is both reachable and observable. In particular, if
we make use of the Kalman decomposition (Section7.5), then the transfer func-
tion depends only on the dynamics in the reachable and observable subspaceΣro

(Exercise8.7).

Transfer Functions for Linear Systems

Consider a linear input/output system described by the controlled differential equa-
tion

dny
dtn

+a1
dn−1y
dtn−1 + · · ·+any= b0

dmu
dtm

+b1
dm−1u
dtm−1 + · · ·+bmu, (8.8)

whereu is the input andy is the output. This type of description arises in many
applications, as described briefly in Section2.2; bicycle dynamics and AFM mod-
eling are two specific examples. Note that here we have generalized our previous
system description to allow both the input and its derivatives to appear.

To determine the transfer function of the system (8.8), let the input beu(t) =
est. Since the system is linear, there is an output of the system that is also an
exponential functiony(t) = y0est. Inserting the signals into equation (8.8), we find

(sn+a1sn−1+ · · ·+an)y0est = (b0sm+b1sm−1 · · ·+bm)e
st,

and the response of the system can be completely described bytwo polynomials

a(s) = sn+a1sn−1+ · · ·+an, b(s) = b0sm+b1sm−1+ · · ·+bm. (8.9)

The polynomiala(s) is the characteristic polynomial of the ordinary differential
equation. Ifa(s) 6= 0, it follows that

y(t) = y0est =
b(s)
a(s)

est. (8.10)

The transfer function of the system (8.8) is thus the rational function

G(s) =
b(s)
a(s)

, (8.11)

where the polynomialsa(s) andb(s) are given by equation (8.9). Notice that the
transfer function for the system (8.8) can be obtained by inspection since the co-
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Table 8.1:Transfer functions for some common ordinary differential equations.

Type ODE Transfer Function

Integrator ˙y= u
1
s

Differentiator y= u̇ s

First-order system ˙y+ay= u
1

s+a

Double integrator ¨y= u
1
s2

Damped oscillator ¨y+2ζ ω0ẏ+ω2
0y= u

1

s2+2ζ ω0s+ω2
0

PID controller y= kpu+kdu̇+ki
∫

u kp+kds+
ki

s

Time delay y(t) = u(t − τ) e−τs

efficients ofa(s) andb(s) are precisely the coefficients of the derivatives ofu and
y. The order of the transfer function is defined as the order of the denominator
polynomial.

Equations (8.8)–(8.11) can be used to compute the transfer functions of many
simple ordinary differential equations. Table8.1 gives some of the more com-
mon forms. The first five of these follow directly from the analysis above. For the
proportional-integral-derivative (PID) controller, we make use of the fact that the
integral of an exponential input is given by(1/s)est.

The last entry in Table8.1 is for a pure time delay, in which the output is iden-
tical to the input at an earlier time. Time delays appear in many systems: typical
examples are delays in nerve propagation, communication and mass transport. A
system with a time delay has the input/output relation

y(t) = u(t − τ). (8.12)

As before, let the input beu(t) = est. Assuming that there is an output of the form
y(t) = y0est and inserting into equation (8.12), we get

y(t) = y0est = es(t−τ) = e−sτest = e−sτu(t).

The transfer function of a time delay is thusG(s) = e−sτ , which is not a rational
function but is analytic except at infinity. (A complex function is analytic in a
region if it has no singularities in the region.)

Example 8.2 Electrical circuit elements
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Figure 8.3: Stable amplifier based on negative feedback around an operational amplifier.
The block diagram on the left shows a typical amplifier with low-frequencygainR2/R1. If
we model the dynamic response of the op amp asG(s) = ak/(s+a), then the gain falls off at
frequencyω = aR1k/R2, as shown in the gain curves on the right. The frequency response
is computed fork= 107, a= 10 rad/s,R2 =106 Ω, andR1 = 1, 102, 104 and 106 Ω.

Modeling of electrical circuits is a common use of transfer functions. Consider, for
example, a resistor modeled by Ohm’s lawV = IR, whereV is the voltage across
the resister,I is the current through the resistor andR is the resistance value. If we
consider current to be the input and voltage to be the output,the resistor has the
transfer functionZ(s) =R. Z(s) is also called theimpedanceof the circuit element.

Next we consider an inductor whose input/output characteristic is given by

L
dI
dt

=V.

Letting the current beI(t) = est, we find that the voltage isV(t) = Lsest and the
transfer function of an inductor is thusZ(s) = Ls. A capacitor is characterized by

C
dV
dt

= I ,

and a similar analysis gives a transfer function from current to voltage ofZ(s) =
1/(Cs). Using transfer functions, complex electrical circuits can be analyzed alge-
braically by using the complex impedanceZ(s) just as one would use the resistance
value in a resistor network. ∇

Example 8.3 Operational amplifier circuit
To further illustrate the use of exponential signals, we consider the operational am-
plifier circuit introduced in Section3.3and reproduced in Figure8.3a. The model
introduced in Section3.3is a simplification because the linear behavior of the am-
plifier was modeled as a constant gain. In reality there are significant dynamics in
the amplifier, and the static modelvout=−kv (equation (3.10)) should therefore be
replaced by a dynamic model. In the linear range of the amplifier, we can model
the operational amplifier as having a steady-state frequencyresponse

vout

v
=− ak

s+a
=: −G(s). (8.13)
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This response corresponds to a first-order system with time constant 1/a. The
parameterk is called theopen loop gain, and the productak is called thegain-
bandwidth product; typical values for these parameters arek= 107 andak= 107–
109 rad/s.

Since all of the elements of the circuit are modeled as being linear, if we drive
the inputv1 with an exponential signalest, then in steady state all signals will be
exponentials of the same form. This allows us to manipulate the equations describ-
ing the system in an algebraic fashion. Hence we can write

v1−v
R1

=
v−v2

R2
and v2 =−G(s)v, (8.14)

using the fact that the current into the amplifier is very small, as we did in Sec-
tion 3.3. Eliminatingv between these equations gives the following transfer func-
tion of the system

v2

v1
=

−R2G(s)
R1+R2+R1G(s)

=
−R2ak

R1ak+(R1+R2)(s+a)
.

The low-frequency gain is obtained by settings= 0, hence

Gv2v1(0) =
−kR2

(k+1)R1+R2
≈−R2

R1
,

which is the result given by (3.11) in Section3.3. The bandwidth of the amplifier
circuit is

ωb = a
R1(k+1)+R2

R1+R2
≈ a

R1k
R2

,

where the approximation holds forR2/R1 ≫ 1. The gain of the closed loop system
drops off at high frequencies asR2k/(ω(R1+R2)). The frequency response of the
transfer function is shown in Figure8.3bfor k= 107, a= 10 rad/s,R2 = 106 Ω and
R1 = 1, 102, 104 and 106 Ω.

Note that in solving this example, we bypassed explicitly writing the signals as
v= v0est and instead worked directly withv, assuming it was an exponential. This
shortcut is handy in solving problems of this sort and when manipulating block
diagrams. A comparison with Section3.3, where we made the same calculation
whenG(s) was a constant, shows analysis of systems using transfer functions is
as easy as using static systems. The calculations are the sameif the resistancesR1
andR2 are replaced by impedances, as discussed in Example8.2. ∇

Although we have focused thus far on ordinary differential equations, transfer�
functions can also be used for other types of linear systems.We illustrate this
via an example of a transfer function for a partial differential equation.

Example 8.4 Heat propagation
Consider the problem of one-dimensional heat propagation in a semi-infinite metal



8.2. DERIVATION OF THE TRANSFER FUNCTION 256

rod. Assume that the input is the temperature at one end and that the output is the
temperature at a point along the rod. Letθ(x, t) be the temperature at positionx
and timet. With a proper choice of length scales and units, heat propagation is
described by the partial differential equation

∂θ
∂ t

=
∂ 2θ
∂ 2x

, (8.15)

and the point of interest can be assumed to havex= 1. The boundary condition for
the partial differential equation is

θ(0, t) = u(t).

To determine the transfer function we choose the input asu(t) = est. Assume that
there is a solution to the partial differential equation of the formθ(x, t) = ψ(x)est

and insert this into equation (8.15) to obtain

sψ(x) =
d2ψ
dx2 ,

with boundary conditionψ(0) = 1. This ordinary differential equation (with inde-
pendent variablex) has the solution

ψ(x) = Aex
√

s+Be−x
√

s.

Matching the boundary conditions givesA= 0 andB= 1, so the solution is

y(t) = θ(1, t) = ψ(1)est = e−
√

sest = e−
√

su(t).

The system thus has the transfer functionG(s) = e−
√

s. As in the case of a time
delay, the transfer function is not a rational function but is an analytic function.

∇

Gains, Poles and Zeros

The transfer function has many useful interpretations and the features of a transfer
function are often associated with important system properties. Three of the most
important features are the gain and the locations of the poles and zeros.

Thezero frequency gainof a system is given by the magnitude of the transfer
function ats= 0. It represents the ratio of the steady-state value of the output with
respect to a step input (which can be represented asu= est with s= 0). For a state
space system, we computed the zero frequency gain in equation (5.22):

G(0) = D−CA−1B.

For a system written as a linear differential equation

dny
dtn

+a1
dn−1y
dtn−1 + · · ·+any= b0

dmu
dtm

+b1
dm−1u
dtm−1 + · · ·+bmu,
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if we assume that the input and output of the system are constantsy0 andu0, then
we find thatany0 = bmu0. Hence the zero frequency gain is

G(0) =
y0

u0
=

bm

an
. (8.16)

Next consider a linear system with the rational transfer function

G(s) =
b(s)
a(s)

.

The roots of the polynomiala(s) are called thepolesof the system, and the roots
of b(s) are called thezerosof the system. Ifp is a pole, it follows thaty(t) = ept

is a solution of equation (8.8) with u = 0 (the homogeneous solution). A polep
corresponds to amodeof the system with corresponding modal solutionept. The
unforced motion of the system after an arbitrary excitationis a weighted sum of
modes.

Zeros have a different interpretation. Since the pure exponential output corre-
sponding to the inputu(t) = est with a(s) 6= 0 is G(s)est, it follows that the pure
exponential output is zero ifb(s) = 0. Zeros of the transfer function thus block
transmission of the corresponding exponential signals.

For a state space system with transfer functionG(s) = C(sI−A)−1B+D, the
poles of the transfer function are the eigenvalues of the matrix A in the state space
model. One easy way to see this is to notice that the value ofG(s) is unbounded
whens is an eigenvalue of a system since this is precisely the set ofpoints where
the characteristic polynomialλ (s) = det(sI−A) = 0 (and hencesI−A is non-
invertible). It follows that the poles of a state space system depend only on the
matrix A, which represents the intrinsic dynamics of the system. We say that a
transfer function is stable if all of its poles have negativereal part.

To find the zeros of a state space system, we observe that the zeros are complex
numberss such that the inputu(t) = u0est gives zero output. Inserting the pure
exponential responsex(t) = x0est andy(t) = 0 in equation (8.2) gives

sestx0 = Ax0est+Bu0est 0=Cestx0+Destu0,

which can be written as
A−sI B

C D




x0

u0


est = 0.

This equation has a solution with nonzerox0, u0 only if the matrix on the left does
not have full rank. The zeros are thus the valuess such that the matrix

A−sI B
C D


 (8.17)

loses rank.



8.2. DERIVATION OF THE TRANSFER FUNCTION 258

−6 −4 −2  2

−2

2

Re

Im

Figure 8.4:A pole zero diagram for a transfer function with zeros at−5 and−1 and poles at
−3 and−2±2 j. The circles represent the locations of the zeros, and the crosses the locations
of the poles. A complete characterization requires we also specify the gainof the system.

Since the zeros depend onA, B, C andD, they therefore depend on how the
inputs and outputs are coupled to the states. Notice in particular that if the matrix
B has full row rank, then the matrix in equation (8.17) hasn linearly independent
rows for all values ofs. Similarly there aren linearly independent columns if the
matrixC has full column rank. This implies that systems where the matrix B or C
is square and full rank do not have zeros. In particular it means that a system has
no zeros if it is fully actuated (each state can be controlledindependently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfer function is through
a pole zero diagram, as shown in Figure8.4. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are multiple poles or zeros at
a fixed location, these are often indicated with overlapping crosses or circles (or
other annotations). Poles in the left half-plane correspondto stable modes of the
system, and poles in the right half-plane correspond to unstable modes. We thus
call a pole in the left-half plane astable poleand a pole in the right-half plane an
unstable pole. A similar terminology is used for zeros, even though the zeros do
not directly relate to stability or instability of the system. Notice that the gain must
also be given to have a complete description of the transfer function.

Example 8.5 Balance system
Consider the dynamics for a balance system, shown in Figure8.5. The transfer
function for a balance system can be derived directly from the second-order equa-
tions, given in Example2.1:

Mt
d2p
dt2

−ml
d2θ
dt2

cosθ +c
dp
dt

+mlsinθ
(dθ

dt

)2
= F,

−mlcosθ
d2p
dt2

+Jt
d2θ
dt2

−mglsinθ + γθ̇ = 0.

If we assume thatθ andθ̇ are small, we can approximate this nonlinear system by
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(c) Pole zero diagram forHpF

Figure 8.5: Poles and zeros for a balance system. The balance system (a) can be modeled
around its vertical equilibrium point by a fourth order linear system. The poles and zeros for
the transfer functionsHθF andHpF are shown in (b) and (c), respectively.

a set of linear second-order differential equations,

Mt
d2p
dt2

−ml
d2θ
dt2

+c
dp
dt

= F,

−ml
d2p
dt2

+Jt
d2θ
dt2

+ γ
dθ
dt

−mglθ = 0.

If we let F be an exponential signal, the resulting response satisfies

Mts
2 p−mls2 θ +cs p= F,

Jts
2 θ −mls2 p+ γsθ −mglθ = 0,

where all signals are exponential signals. The resulting transfer functions for the
position of the cart and the orientation of the pendulum are given by solving forp
andθ in terms ofF to obtain

HθF =
mls

(MtJt −m2l2)s3+(γMt +cJt)s2+(cγ −Mtmgl)s−mglc
,

HpF =
Jts2+ γs−mgl

(MtJt −m2l2)s4+(γMt +cJt)s3+(cγ −Mtmgl)s2−mglcs
,

where each of the coefficients is positive. The pole zero diagrams for these two
transfer functions are shown in Figure8.5using the parameters from Example6.7.
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Figure 8.6: Interconnections of linear systems. Series (a), parallel (b) and feedback (c) con-
nections are shown. The transfer functions for the composite systems can be derived by
algebraic manipulations assuming exponential functions for all signals.

If we assume the damping is small and setc= 0 andγ = 0, we obtain

HθF =
ml

(MtJt −m2l2)s2−Mtmgl
,

HpF =
Jts2−mgl

s2
(
(MtJt −m2l2)s2−Mtmgl

) .

This gives nonzero poles and zeros at

p=±
√

mglMt

MtJt −m2l2 ≈±2.68, z=±
√

mgl
Jt

≈±2.09.

We see that these are quite close to the pole and zero locations in Figure8.5. ∇

8.3 Block Diagrams and Transfer Functions

The combination of block diagrams and transfer functions is apowerful way to
represent control systems. Transfer functions relating different signals in the sys-
tem can be derived by purely algebraic manipulations of the transfer functions of
the blocks usingblock diagram algebra. To show how this can be done, we will
begin with simple combinations of systems.

Consider a system that is a cascade combination of systems with the transfer
functionsG1(s) andG2(s), as shown in Figure8.6a. Let the input of the system
beu= est. The pure exponential output of the first block is the exponential signal
G1u, which is also the input to the second system. The pure exponential output of
the second system is

y= G2(G1u) = (G2G1)u.

The transfer function of the series connection is thusG= G2G1, i.e., the product
of the transfer functions. The order of the individual transfer functions is due to
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the fact that we place the input signal on the right-hand sideof this expression,
hence we first multiply byG1 and then byG2. Unfortunately, this has the opposite
ordering from the diagrams that we use, where we typically have the signal flow
from left to right, so one needs to be careful. The ordering is important if eitherG1
or G2 is a vector-valued transfer function, as we shall see in someexamples.

Consider next a parallel connection of systems with the transfer functionsG1
andG2, as shown in Figure8.6b. Letting u = est be the input to the system, the
pure exponential output of the first system is theny1 = G1u and the output of the
second system isy2 = G2u. The pure exponential output of the parallel connection
is thus

y= G1u+G2u= (G1+G2)u,

and the transfer function for a parallel connection isG= G1+G2.
Finally, consider a feedback connection of systems with the transfer functions

G1 andG2, as shown in Figure8.6c. Let u= est be the input to the system,y be the
pure exponential output, andebe the pure exponential part of the intermediate sig-
nal given by the sum ofu and the output of the second block. Writing the relations
for the different blocks and the summation unit, we find

y= G1e, e= u−G2y.

Elimination ofegives

y= G1(u−G2y) =⇒ (1+G1G2)y= G1u =⇒ y=
G1

1+G1G2
u.

The transfer function of the feedback connection is thus

G=
G1

1+G1G2
.

These three basic interconnections can be used as the basis for computing transfer
functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figure8.7, which was given at the beginning of the chapter.
The system has three blocks representing a processP, a feedback controllerC and a
feedforward controllerF . Together,C andF define thecontrol lawfor the system.
There are three external signals: the reference (or command signal) r, the load
disturbanced and the measurement noisen. A typical problem is to find out how
the errore is related to the signalsr, d andn.

To derive the relevant transfer functions we assume that allsignals are expo-
nential signals, drop the arguments of signals and transferfunctions and trace the
signals around the loop. We begin with the signal in which we are interested, in
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Figure 8.7: Block diagram of a feedback system. The inputs to the system are the reference
signalr, the process disturbanced and the measurement noisen. The remaining signals in
the system can all be chosen as possible outputs, and transfer functionscan be used to relate
the system inputs to the other labeled signals.

this case the control errore, given by

e= Fr −y.

The signaly is the sum ofn andη , whereη is the output of the process:

y= n+η , η = P(d+u), u=Ce.

Combining these equations gives

e= Fr −y= Fr − (n+η) = Fr −
(
n+P(d+u)

)

= Fr −
(
n+P(d+Ce)

)
,

and hence
e= Fr −n−Pd−PCe.

Finally, solving this equation foregives

e=
F

1+PC
r − 1

1+PC
n− P

1+PC
d = Gerr +Genn+Gedd, (8.18)

and the error is thus the sum of three terms, depending on the referencer, the
measurement noisen and the load disturbanced. The functions

Ger =
F

1+PC
, Gen=

−1
1+PC

, Ged =
−P

1+PC
(8.19)

are transfer functions from referencer, noisen and disturbanced to the errore.
We can also derive transfer functions by manipulating the block diagrams di-

rectly, as illustrated in Figure8.8. Suppose we wish to compute the transfer func-
tion between the referencer and the outputy. We begin by combining the process
and controller blocks in Figure8.7 to obtain the diagram in Figure8.8a. We can
now eliminate the feedback loop using the algebra for a feedback interconnection
(Figure8.8b) and then use the series interconnection rule to obtain

Gyr =
PCF

1+PC
. (8.20)
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Figure 8.8:Example of block diagram algebra. The results from multiplying the process and
controller transfer functions (from Figure8.7) are shown in (a). Replacing the feedback loop
with its transfer function equivalent yields (b), and finally multiplying the two remaining
blocks gives the reference to output representation in (c).

Similar manipulations can be used to obtain the other transfer functions (Exer-
cise8.8).

The derivation illustrates an effective way to manipulate the equations to obtain
the relations between inputs and outputs in a feedback system. The general idea is
to start with the signal of interest and to trace signals around the feedback loop until
coming back to the signal we started with. With some practice, equations (8.18)
and (8.19) can be written directly by inspection of the block diagram.Notice, for
example, that all terms in equation (8.19) have the same denominators and that the
numerators are the blocks that one passes through when goingdirectly from input
to output (ignoring the feedback). This type of rule can be used to compute transfer
functions by inspection, although for systems with multiple feedback loops it can
be tricky to compute them without writing down the algebra explicitly.

Example 8.6 Vehicle steering
Consider the linearized model for vehicle steering introduced in Example5.12. In
Examples6.4 and7.3 we designed a state feedback compensator and state esti-
mator for the system. A block diagram for the resulting control system is given in
Figure8.9. Note that we have split the estimator into two components,Gx̂u(s) and
Gx̂y(s), corresponding to its inputsu andy. The controller can be described as the
sum of two (open loop) transfer functions

u= Guy(s)y+Gur(s)r.

The first transfer function,Guy(s), describes the feedback term and the second,
Gur(s), describes the feedforward term. We call theseopen looptransfer functions
because they represent the relationships between the signals without considering
the dynamics of the process (e.g., removingP(s) from the system description). To
derive these functions, we compute the transfer functions for each block and then
use block diagram algebra.

We begin with the estimator, which takesu andy as its inputs and produces
an estimate ˆx. The dynamics for this process were derived in Example7.3and are
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Figure 8.9: Block diagram for a steering control system. The control system is designed to
maintain the lateral position of the vehicle along a reference curve (left). The structure of the
control system is shown on the right as a block diagram of transfer functions. The estimator
consists of two components that compute the estimated state ˆx from the combination of the
input u and outputy of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commanded steering angleu.

given by
dx̂
dt

= (A−LC)x̂+Ly+Bu,

x̂=
(
sI− (A−LC)

)−1
B

︸ ︷︷ ︸
Gx̂u

u+
(
sI− (A−LC)

)−1
L

︸ ︷︷ ︸
Gx̂y

y.

Using the expressions forA, B, C andL from Example7.3, we obtain

Gx̂u(s) =




γs+1
s2+ l1s+ l2

s+ l1− γ l2
s2+ l1s+ l2



, Gx̂y(s) =




l1s+ l2
s2+ l1s+ l2

l2s
s2+ l1s+ l2



,

wherel1 and l2 are the observer gains andγ is the scaled position of the center
of mass from the rear wheels. The controller was a state feedback compensator,
which can be viewed as a constant, multi-input, single-output transfer function of
the formu=−Kx̂.

We can now proceed to compute the transfer function for the overall control
system. Using block diagram algebra, we have

Guy(s) =
−KGx̂y(s)

1+KGx̂u(s)
=− s(k1l1+k2l2)+k1l2

s2+s(γk1+k2+ l1)+k1+ l2+k2l1− γk2l2

and

Gur(s) =
kr

1+KGx̂u(s)
=

kr(s2+ l1s+ l2)
s2+s(γk1+k2+ l1)+k1+ l2+k2l1− γk2l2

,
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wherek1 andk2 are the state feedback gains andkr is the reference gain.
Finally, we compute the full closed loop dynamics. We begin byderiving the

transfer function for the processP(s). We can compute this directly from the state
space description of the dynamics, which was given in Example5.12. Using that
description, we have

P(s) = Gyu(s) =C(sI−A)−1B+D =

1 0




s −1

0 s




−1γ
1


=

γs+1
s2 .

The transfer function for the full closed loop system betweenthe inputr and the
outputy is then given by

Gyr =
P(s)Gur

1−P(s)Guy(s)
=

kr(γs+1)
s2+(k1γ +k2)s+k1

.

Note that the observer gainsl1 andl2 do not appear in this equation. This is because
we are considering steady-state analysis and, in steady state, the estimated state
exactly tracks the state of the system assuming perfect models. We will return to
this example in Chapter12to study the robustness of this particular approach.∇

Pole/Zero Cancellations

Because transfer functions are often polynomials ins, it can sometimes happen
that the numerator and denominator have a common factor, which can be can-
celed. Sometimes these cancellations are simply algebraic simplifications, but in
other situations they can mask potential fragilities in themodel. In particular, if a
pole/zero cancellation occurs because terms in separate blocks that just happen to
coincide, the cancellation may not occur if one of the systems is slightly perturbed.
In some situations this can result in severe differences between the expected be-
havior and the actual behavior.

To illustrate when we can have pole/zero cancellations, consider the block dia-
gram in Figure8.7with F = 1 (no feedforward compensation) andC andP given
by

C(s) =
nc(s)
dc(s)

, P(s) =
np(s)

dp(s)
.

The transfer function fromr to e is then given by

Ger(s) =
1

1+PC
=

dc(s)dp(s)

dc(s)dp(s)+nc(s)np(s)
.

If there are common factors in the numerator and denominatorpolynomials, then
these terms can be factored out and eliminated from both the numerator and de-
nominator. For example, if the controller has a zero ats=−a and the process has
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a pole ats=−a, then we will have

Ger(s) =
(s+a)dc(s)d′

p(s)

(s+a)dc(s)d′
p(s)+(s+a)n′c(s)np(s)

=
dc(s)d′

p(s)

dc(s)d′
p(s)+n′c(s)np(s)

,

wheren′c(s) andd′
p(s) represent the relevant polynomials with the terms+a fac-

tored out. In the case whena< 0 (so that the zero or pole is in the right half-plane),
we see that there is no impact on the transfer functionGer.

Suppose instead that we compute the transfer function fromd to e, which repre-
sents the effect of a disturbance on the error between the reference and the output.
This transfer function is given by

Ged(s) =− dc(s)np(s)

(s+a)dc(s)d′
p(s)+(s+a)n′c(s)np(s)

.

Notice that ifa< 0, then the pole is in the right half-plane and the transfer function
Ged is unstable. Hence, even though the transfer function fromr to eappears to be
okay (assuming a perfect pole/zero cancellation), the transfer function fromd to e
can exhibit unbounded behavior. This unwanted behavior is typical of anunstable
pole/zero cancellation.

It turns out that the cancellation of a pole with a zero can also be understood in
terms of the state space representation of the systems. Reachability or observability
is lost when there are cancellations of poles and zeros (Exercise 8.11). A conse-
quence is that the transfer function represents the dynamics only in the reachable
and observable subspace of a system (see Section7.5).

Example 8.7 Cruise control
The input/output response from throttle to velocity for the linearized model for a
car has the transfer functionG(s) = b/(s−a), a< 0. A simple (but not necessarily
good) way to design a PI controller is to choose the parametersof the PI controller
so that the controller zero ats= −ki/kp cancels the process pole ats= a. The
transfer function from reference to velocity isGvr(s) = bkp/(s+bkp), and control
design is simply a matter of choosing the gainkp. The closed loop system dynamics
are of first order with the time constant 1/bkp.

Figure8.10shows the velocity error when the car encounters an increasein the
road slope. A comparison with the controller used in Figure3.3b(reproduced in
dashed curves) shows that the controller based on pole/zerocancellation has very
poor performance. The velocity error is larger, and it takes along time to settle.

Notice that the control signal remains practically constant after t = 15 even
if the error is large after that time. To understand what happens we will analyze
the system. The parameters of the system area= −0.0101 andb= 1.32, and the
controller parameters arekp = 0.5 andki = 0.0051. The closed loop time constant
is 1/(bkp) = 2.5 s, and we would expect that the error would settle in about10 s
(4 time constants). The transfer functions from road slope tovelocity and control
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Figure 8.10: Car with PI cruise control encountering a sloping road. The velocity error is
shown on the left and the throttle is shown on the right. Results with a PI controller with
kp = 0.5 andki = 0.0051, where the process poles=−0.0101, is shown by solid lines, and
a controller withkp = 0.5 andki = 0.5 is shown by dashed lines. Compare with Figure3.3b.

signals are

Gvθ (s) =
bgs

(s−a)(s+bkp)
, Guθ (s) =

bkp

s+bkp
.

Notice that the canceled modes= a = −0.0101 appears inGvθ but not inGuθ .
The reason why the control signal remains constant is that thecontroller has a zero
at s=−0.0101, which cancels the slowly decaying process mode. Notice that the
error would diverge if the canceled pole was unstable. ∇

The lesson we can learn from this example is that it is a bad ideato try to
cancel unstable or slow process poles. A more detailed discussion of pole/zero
cancellations is given in Section12.4.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, it is neces-
sary to form the differential equations that describe the complete system. In many
cases the equations can be obtained by combining the differential equations that
describe each subsystem and substituting variables. This simple procedure cannot
be used when there are closed loops of subsystems that all have a direct connection
between inputs and outputs, known as analgebraic loop.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx
dt

= f (x,u), y= h(x), (8.21)

and a proportional controller described byu= −ky. There is no direct term since
the functionh does not depend onu. In that case we can obtain the equation for
the closed loop system simply by replacingu by−ky in (8.21) to give

dx
dt

= f (x,−ky), y= h(x).
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Such a procedure can easily be automated using simple formulamanipulation.
The situation is more complicated if there is a direct term. Ify= h(x,u), then

replacingu by−kygives

dx
dt

= f (x,−ky), y= h(x,−ky).

To obtain a differential equation forx, the algebraic equationy= h(x,−ky) must
be solved to givey= α(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. Resolving algebraic
loops is a nontrivial problem because it requires the symbolic solution of alge-
braic equations. Most block diagram-oriented modeling languages cannot handle
algebraic loops, and they simply give a diagnosis that such loops are present. In
the era of analog computing, algebraic loops were eliminated by introducing fast
dynamics between the loops. This created differential equations with fast and slow
modes that are difficult to solve numerically. Advanced modeling languages like
Modelica use several sophisticated methods to resolve algebraic loops.

8.4 The Bode Plot

The frequency response of a linear system can be computed fromits transfer func-
tion by settings= iω, corresponding to a complex exponential

u(t) = eiωt = cos(ωt)+ i sin(ωt).

The resulting output has the form

y(t) = G(iω)eiωt = Mei(ωt+ϕ) = M cos(ωt +ϕ)+ iM sin(ωt +ϕ),

whereM andϕ are the gain and phase ofG:

M = |G(iω)|, ϕ = arctan
ImG(iω)

ReG(iω)
.

The phase ofG is also called theargumentof G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single sinusoid (sin or cos) is
amplified byM and phase-shifted byϕ. Note that−π < ϕ ≤ π, so the arctangent
must be taken respecting the signs of the numerator and denominator. It will often
be convenient to represent the phase in degrees rather than radians. We will use the
notation∠G(iω) for the phase in degrees and argG(iω) for the phase in radians.
In addition, while we always take argG(iω) to be in the range(−π,π], we will
take∠G(iω) to be continuous, so that it can take on values outside the range of
−180◦ to 180◦.
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Figure 8.11:Bode plot of the transfer functionC(s) = 20+10/s+10s corresponding to an
ideal PID controller. The top plot is the gain curve and the bottom plot is the phase curve.
The dashed lines show straight-line approximations of the gain curve and the corresponding
phase curve.

The frequency responseG(iω) can thus be represented by two curves: the gain
curve and the phase curve. Thegain curvegives|G(iω)| as a function of frequency
ω, and thephase curvegives∠G(iω). One particularly useful way of drawing
these curves is to use a log/log scale for the gain plot and a log/linear scale for the
phase plot. This type of plot is called aBode plotand is shown in Figure8.11.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy to sketch and interpret.
Since the frequency scale is logarithmic, they cover the behavior of a linear system
over a wide frequency range.

Consider a transfer function that is a rational function of the form

G(s) =
b1(s)b2(s)
a1(s)a2(s)

.

We have

log|G(s)|= log|b1(s)|+ log|b2(s)|− log|a1(s)|− log|a2(s)|,
and hence we can compute the gain curve by simply adding and subtracting gains
corresponding to terms in the numerator and denominator. Similarly,

∠G(s) = ∠b1(s)+∠b2(s)−∠a1(s)−∠a2(s),

and so the phase curve can be determined in an analogous fashion. Since a poly-
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Figure 8.12:Bode plots of the transfer functionsG(s) = sk for k=−2,−1,0,1,2. On a log-
log scale, the gain curve is a straight line with slopek. Using a log-linear scale, the phase
curves for the transfer functions are constants, with phase equal to 90◦×k

.

nomial can be written as a product of terms of the type

k, s, s+a, s2+2ζ ω0s+ω2
0 ,

it suffices to be able to sketch Bode diagrams for these terms. The Bode plot of a
complex system is then obtained by adding the gains and phases of the terms.

The simplest term in a transfer function is one of the formsk, wherek > 0 if
the term appears in the numerator andk< 0 if the term is in the denominator. The
gain and phase of the term are given by

log|G(iω)|= k logω, ∠G(iω) = 90k.

The gain curve is thus a straight line with slopek, and the phase curve is a constant
at 90◦×k. The case whenk= 1 corresponds to a differentiator and has slope 1 with
phase 90◦. The case whenk = −1 corresponds to an integrator and has slope−1
with phase−90◦. Bode plots of the various powers ofk are shown in Figure8.12.

Consider next the transfer function of a first-order system, given by

G(s) =
a

s+a
.

We have
|G(s)|= |a|

|s+a| , ∠G(s) = ∠(a)−∠(s+a),
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Figure 8.13: Bode plots for first- and second-order systems. (a) The first-ordersystem
G(s) = a/(s+a) can be approximated by asymptotic curves (dashed) in both the gain and
the frequency, with the breakpoint in the gain curve atω = a and the phase decreasing by 90◦

over a factor of 100 in frequency. (b) The second-order systemG(s)=ω2
0/(s

2+2ζ ω0s+ω2
0)

has a peak at frequencya and then a slope of−2 beyond the peak; the phase decreases from
0◦ to−180◦. The height of the peak and the rate of change of phase depending on the damp-
ing ratioζ (ζ = 0.02, 0.1, 0.2, 0.5 and 1.0 shown).

and hence

log|G(iω)|= loga− 1
2

log(ω2+a2), ∠G(iω) =−180
π

arctan
ω
a
.

The Bode plot is shown in Figure8.13a, with the magnitude normalized by the
zero frequency gain. Both the gain curve and the phase curve can be approximated
by the following straight lines

log|G(iω)| ≈
{

0 if ω < a

loga− logω if ω > a,

∠G(iω)≈





0 if ω < a/10

−45−45(logω − loga) a/10< ω < 10a

−90 if ω > 10a.

The approximate gain curve consists of a horizontal line up tofrequencyω = a,
called thebreakpointor corner frequency, after which the curve is a line of slope
−1 (on a log-log scale). The phase curve is zero up to frequencya/10 and then
decreases linearly by 45◦/decade up to frequency 10a, at which point it remains
constant at 90◦. Notice that a first-order system behaves like a constant for low
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frequencies and like an integrator for high frequencies; compare with the Bode
plot in Figure8.12.

Finally, consider the transfer function for a second-order system,

G(s) =
ω2

0

s2+2ω0ζs+ω2
0

,

for which we have

log|G(iω)|= 2logω0−
1
2

log
(
ω4+2ω2

0ω2(2ζ 2−1)+ω4
0

)
,

∠G(iω) =−180
π

arctan
2ζ ω0ω
ω2

0 −ω2
.

The gain curve has an asymptote with zero slope forω ≪ ω0. For large val-
ues ofω the gain curve has an asymptote with slope−2. The largest gainQ =
maxω |G(iω)| ≈ 1/(2ζ ), called theQ-value, is obtained forω ≈ ω0. The phase is
zero for low frequencies and approaches 180◦ for large frequencies. The curves
can be approximated with the following piecewise linear expressions

log|G(iω)| ≈
{

0 if ω ≪ ω0

2logω0−2logω if ω ≫ ω0,

∠G(iω)≈
{

0 if ω ≪ ω0

−180 if ω ≫ ω0.

The Bode plot is shown in Figure8.13b. Note that the asymptotic approximation is
poor nearω =ω0 and that the Bode plot depends strongly onζ near this frequency.

Given the Bode plots of the basic functions, we can now sketchthe frequency
response for a more general system. The following example illustrates the basic
idea.

Example 8.8 Asymptotic approximation for a transfer function
Consider the transfer function given by

G(s) =
k(s+b)

(s+a)(s2+2ζ ω0s+ω2
0)
, a≪ b≪ ω0.

The Bode plot for this transfer function appears in Figure8.14, with the complete
transfer function shown as a solid line and the asymptotic approximation shown as
a dashed line.

We begin with the gain curve. At low frequency, the magnitudeis given by

G(0) =
kb

aω2
0

.

When we reachω = a, the effect of the pole begins and the gain decreases with
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Figure 8.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for
the transfer functionG(s) = k(s+b)/(s+a)(s2+2ζ ω0s+ω2

0), wherea≪ b≪ ω0. Each
segment in the gain and phase curves represents a separate portion ofthe approximation,
where either a pole or a zero begins to have effect. Each segment of theapproximation is a
straight line between these points at a slope given by the rules for computing the effects of
poles and zeros.

slope−1. At ω = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used until the effect of the
second-order pole is seen atω =ω0, at which point the asymptote changes to slope
−2. We see that the gain curve is fairly accurate except in the region of the peak
due to the second-order pole (since for this caseζ is reasonably small).

The phase curve is more complicated since the effect of the phase stretches
out much further. The effect of the pole begins atω = a/10, at which point we
change from phase 0 to a slope of−45◦/decade. The zero begins to affect the
phase atω = b/10, producing a flat section in the phase. Atω = 10a the phase
contributions from the pole end, and we are left with a slope of +45◦/decade (from
the zero). At the location of the second-order pole,s≈ iω0, we get a jump in phase
of −180◦. Finally, atω = 10b the phase contributions of the zero end, and we are
left with a phase of−180 degrees. We see that the straight-line approximation for
the phase is not as accurate as it was for the gain curve, but itdoes capture the
basic features of the phase changes as a function of frequency. ∇

The Bode plot gives a quick overview of a system. Since any signal can be
decomposed into a sum of sinusoids, it is possible to visualize the behavior of a
system for different frequency ranges. The system can be viewed as a filter that can
change the amplitude (and phase) of the input signals according to the frequency
response. For example, if there are frequency ranges where the gain curve has
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Figure 8.15:Bode plots for low-pass, band-pass and high-pass filters. The top plotsare the
gain curves and the bottom plots are the phase curves. Each system passes frequencies in a
different range and attenuates frequencies outside of that range.

constant slope and the phase is close to zero, the action of the system for signals
with these frequencies can be interpreted as a pure gain. Similarly, for frequencies
where the slope is +1 and the phase close to 90◦, the action of the system can be
interpreted as a differentiator, as shown in Figure8.12.

Three common types of frequency responses are shown in Figure8.15. The
system in Figure8.15ais called alow-pass filterbecause the gain is constant for
low frequencies and drops for high frequencies. Notice thatthe phase is zero for
low frequencies and−180◦ for high frequencies. The systems in Figure8.15band
c are called aband-pass filterandhigh-pass filterfor similar reasons.

To illustrate how different system behaviors can be read from the Bode plots
we consider the band-pass filter in Figure8.15b. For frequencies aroundω = ω0,
the signal is passed through with no change in gain. However,for frequencies well
below or well aboveω0, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frequencies belowω0/100
there is a phase lead of 90◦, and for frequencies above 100ω0 there is a phase lag
of 90◦. These actions correspond to differentiation and integration of the signal in
these frequency ranges.

Example 8.9 Transcriptional regulation
Consider a genetic circuit consisting of a single gene. We wish to study the re-
sponse of the protein concentration to fluctuations in the mRNA dynamics. We
consider two cases: aconstitutive promoter(no regulation) and self-repression
(negative feedback), illustrated in Figure8.16. The dynamics of the system are



8.4. THE BODE PLOT 275

A

RNAP

(a) Open loop

RNAP

A

(b) Negative feedback

10
−4

10
−3

10
−2

10
−2

10
−1

10
0

 

 

open loop
negative feedback

|G
p

v(
iω

)|

Frequencyω [rad/s]

(c) Frequency response

Figure 8.16: Noise attenuation in a genetic circuit. The open loop system (a) consists of a
constitutive promoter, while the closed loop circuit (b) is self-regulated withnegative feed-
back (repressor). The frequency response for each circuit is shown in (c).

given by
dm
dt

= α(p)− γm−u,
dp
dt

= βm−δ p,

whereu is a disturbance term that affects mRNA transcription.
For the case of no feedback we haveα(p) = α0, and the system has an equi-

librium point atme = α0/γ, pe = βα0/(δγ). The transfer function fromv to p is
given by

Gol
pv(s) =

−β
(s+ γ)(s+δ )

.

For the case of negative regulation, we have

α(p) =
α1

1+kpn +α0,

and the equilibrium points satisfy

me =
δ
β

pe,
α

1+kpn
e
+α0 = γme =

γδ
β

pe.

The resulting transfer function is given by

Gcl
pv(s) =

β
(s+ γ)(s+δ )+βσ

, σ =
nα1kpn−1

e

(1+kpn
e)

2 .

Figure8.16cshows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). Notice that these curves are very similar to the frequency
response curves for the op amp shown in Figure8.3b. ∇
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Figure 8.17:Frequency response of a preloaded piezoelectric drive for an atomicforce mi-
croscope. The Bode plot shows the response of the measured transfer function (solid) and
the fitted transfer function (dashed).

Transfer Functions from Experiments

The transfer function of a system provides a summary of the input/output response
and is very useful for analysis and design. However, modeling from first prin-
ciples can be difficult and time-consuming. Fortunately, we can often build an
input/output model for a given application by directly measuring the frequency
response and fitting a transfer function to it. To do so, we perturb the input to the
system using a sinusoidal signal at a fixed frequency. When steady state is reached,
the amplitude ratio and the phase lag give the frequency response for the excitation
frequency. The complete frequency response is obtained by sweeping over a range
of frequencies.

By using correlation techniques it is possible to determinethe frequency re-
sponse very accurately, and an analytic transfer function can be obtained from the
frequency response by curve fitting. The success of this approach has led to in-
struments and software that automate this process, calledspectrum analyzers. We
illustrate the basic concept through two examples.

Example 8.10 Atomic force microscope
To illustrate the utility of spectrum analysis, we considerthe dynamics of the
atomic force microscope, introduced in Section3.5. Experimental determination
of the frequency response is particularly attractive for this system because its dy-
namics are very fast and hence experiments can be done quickly. A typical example
is given in Figure8.17, which shows an experimentally determined frequency re-
sponse (solid line). In this case the frequency response wasobtained in less than a
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(a) Closed loop (b) Open loop (c) High gain

Figure 8.18: Light stimulation of the eye. In (a) the light beam is so large that it always
covers the whole pupil, giving closed loop dynamics. In (b) the light is focused into a beam
which is so narrow that it is not influenced by the pupil opening, giving open loop dynamics.
In (c) the light beam is focused on the edge of the pupil opening, which has the effect of
increasing the gain of the system since small changes in the pupil opening have a large effect
on the amount of light entering the eye. From Stark [Sta68].

second. The transfer function

G(s) =
kω2

2ω2
3ω2

5(s
2+2ζ1ω1s+ω2

1)(s
2+2ζ4ω4s+ω2

4)e
−sτ

ω2
1ω2

4(s
2+2ζ2ω2s+ω2

2)(s
2+2ζ3ω3s+ω2

3)(s
2+2ζ5ω5s+ω2

5)
,

with ωk = 2π fk and f1 = 2.42 kHz,ζ1 = 0.03, f2 = 2.55 kHz,ζ2 = 0.03, f3 =
6.45 kHz,ζ3= 0.042, f4= 8.25 kHz,ζ4= 0.025, f5= 9.3 kHz,ζ5= 0.032,τ = 10−4 s
andk= 5, was fit to the data (dashed line). The frequencies associatedwith the ze-
ros are located where the gain curve has minima, and the frequencies associated
with the poles are located where the gain curve has local maxima. The relative
damping ratios are adjusted to give a good fit to maxima and minima. When a
good fit to the gain curve is obtained, the time delay is adjusted to give a good fit
to the phase curve. The piezo drive is preloaded, and a simple model of its dynam-
ics is derived in Exercise3.7. The pole at 2.42 kHz corresponds to the trampoline
mode derived in the exercise; the other resonances are higher modes.

∇

Example 8.11 Pupillary light reflex dynamics
The human eye is an organ that is easily accessible for experiments. It has a control
system that adjusts the pupil opening to regulate the light intensity at the retina.

This control system was explored extensively by Stark in the 1960s [Sta68].
To determine the dynamics, light intensity on the eye was varied sinusoidally and
the pupil opening was measured. A fundamental difficulty is that the closed loop
system is insensitive to internal system parameters, so analysis of a closed loop
system thus gives little information about the internal properties of the system.
Stark used a clever experimental technique that allowed him to investigate both
open and closed loop dynamics. He excited the system by varying the intensity
of a light beam focused on the eye and measured pupil area, as illustrated in Fig-
ure8.18. By using a wide light beam that covers the whole pupil, the measurement
gives the closed loop dynamics. The open loop dynamics were obtained by using
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Figure 8.19: Sample curves from an open loop frequency response of the eye (left) and a
Bode plot for the open loop dynamics (right). The solid curve shows a fitof the data using a
third-order transfer function with time delay. The dashed curve in the Bode plot is the phase
of the system without time delay, showing that the delay is needed to properlycapture the
phase. (Figure redrawn from the data of Stark [Sta68].)

a narrow beam, which is small enough that it is not influenced bythe pupil open-
ing. The result of one experiment for determining open loop dynamics is given
in Figure8.19. Fitting a transfer function to the gain curve gives a good fit for
G(s) = 0.17/(1+0.08s)3. This curve gives a poor fit to the phase curve as shown
by the dashed curve in Figure8.19. The fit to the phase curve is improved by
adding a time delay, which leaves the gain curve unchanged while substantially
modifying the phase curve. The final fit gives the model

G(s) =
0.17

(1+0.08s)3e−0.2s.

The Bode plot of this is shown with solid curves in Figure8.19. Modeling of the
pupillary reflex from first principles is discussed in detail in[KS01]. ∇

Notice that for both the AFM drive and pupillary dynamics it isnot easy to de-
rive appropriate models from first principles. In practice, it is often fruitful to use a
combination of analytical modeling and experimental identification of parameters.
Experimental determination of frequency response is less attractive for systems
with slow dynamics because the experiment takes a long time.

8.5 Laplace Transforms
�

Transfer functions are conventionally introduced using Laplace transforms, and in
this section we derive the transfer function using this formalism. We assume basic
familiarity with Laplace transforms; students who are not familiar with them can
safely skip this section. A good reference for the mathematical material in this
section is the classic book by Widder [Wid41].
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Traditionally, Laplace transforms were used to compute responses of linear
systems to different stimuli. Today we can easily generate the responses using
computers. Only a few elementary properties are needed for basic control appli-
cations. There is, however, a beautiful theory for Laplace transforms that makes
it possible to use many powerful tools from the theory of functions of a complex
variable to get deep insights into the behavior of systems.

Consider a functionf (t), f : R+ → R, that is integrable and grows no faster
thanes0t for some finites0 ∈ R and larget. The Laplace transform mapsf to a
functionF = L f : C→ C of a complex variable. It is defined by

F(s) =
∫ ∞

0
e−st f (t)dt, Res> s0. (8.22)

The transform has some properties that makes it well suited todeal with linear
systems.

First we observe that the transform is linear because

L (a f +bg) =
∫ ∞

0
e−st(a f(t)+bg(t))dt

= a
∫ ∞

0
e−st f (t)dt+b

∫ ∞

0
e−stg(t)dt = aL f +bL g.

(8.23)

Next we calculate the Laplace transform of the derivative of afunction. We have

L
d f
dt

=
∫ ∞

0
e−st f ′(t)dt = e−st f (t)

∣∣∣
∞

0
+s
∫ ∞

0
e−st f (t)dt =− f (0)+sL f ,

where the second equality is obtained using integration by parts. We thus obtain

L
d f
dt

= sL f − f (0) = sF(s)− f (0). (8.24)

This formula is particularly simple if the initial conditions are zero because it fol-
lows that differentiation of a function corresponds to multiplication of the trans-
form bys.

Since differentiation corresponds to multiplication bys, we can expect that
integration corresponds to division bys. This is true, as can be seen by calculating
the Laplace transform of an integral. Using integration by parts, we get

L

∫ t

0
f (τ)dτ =

∫ ∞

0

(
e−st

∫ t

0
f (τ)dτ

)
dt

=−e−st

s

∫ t

0
f (τ)dτ

∣∣∣
∞

0
+
∫ ∞

0

e−sτ

s
f (τ)dτ =

1
s

∫ ∞

0
e−sτ f (τ)dτ ,

hence
L

∫ t

0
f (τ)dτ =

1
s
L f =

1
s
F(s). (8.25)
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Next consider a linear time-invariant system with zero initial state. We saw in
Section5.3 that the relation between the inputu and the outputy is given by the
convolution integral

y(t) =
∫ ∞

0
h(t − τ)u(τ)dτ ,

whereh(t) is the impulse response for the system. Taking the Laplace transform
of this expression, we have

Y(s) =
∫ ∞

0
e−sty(t)dt =

∫ ∞

0
e−st

∫ ∞

0
h(t − τ)u(τ)dτ dt

=
∫ ∞

0

∫ t

0
e−s(t−τ)e−sτh(t − τ)u(τ)dτ dt

=
∫ ∞

0
e−sτu(τ)dτ

∫ ∞

0
e−sth(t)dt = H(s)U(s).

Thus, the input/output response is given byY(s) = H(s)U(s), whereH, U andY
are the Laplace transforms ofh, u and y. The system theoretic interpretation is
that the Laplace transform of the output of a linear system is aproduct of two
terms, the Laplace transform of the inputU(s) and the Laplace transform of the
impulse response of the systemH(s). A mathematical interpretation is that the
Laplace transform of a convolution is the product of the transforms of the functions
that are convolved. The fact that the formulaY(s) = H(s)U(s) is much simpler
than a convolution is one reason why Laplace transforms have become popular in
engineering.

We can also use the Laplace transform to derive the transfer function for a state
space system. Consider, for example, a linear state space system described by

dx
dt

= Ax+Bu, y=Cx+Du.

Taking Laplace transformsunder the assumption that all initial values are zero
gives

sX(s) = AX(s)+BU(s) Y(s) =CX(s)+DU(s).

Elimination ofX(s) gives

Y(s) =
(
C(sI−A)−1B+D

)
U(s). (8.26)

The transfer function isG(s) =C(sI−A)−1B+D (compare with equation (8.4)).

8.6 Further Reading

The idea of characterizing a linear system by its steady-state response to sinusoids
was introduced by Fourier in his investigation of heat conduction in solids [Fou07].
Much later, it was used by the electrical engineer Steinmetz who introduced theiω
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method for analyzing electrical circuits. Transfer functions were introduced via the
Laplace transform by Gardner Barnes [GB42], who also used them to calculate the
response of linear systems. The Laplace transform was very important in the early
phase of control because it made it possible to find transientsvia tables (see, e.g.,
[JNP47]). Combined with block diagrams, transfer functions and Laplace trans-
forms provided powerful techniques for dealing with complex systems. Calcu-
lation of responses based on Laplace transforms is less important today, when
responses of linear systems can easily be generated using computers. There are
many excellent books on the use of Laplace transforms and transfer functions for
modeling and analysis of linear input/output systems. Traditional texts on control
such as [DB04], [FPEN05] and [Oga01] are representative examples. Pole/zero
cancellation was one of the mysteries of early control theory. It is clear that com-
mon factors can be canceled in a rational function, but cancellations have system
theoretical consequences that were not clearly understooduntil Kalman’s decom-
position of a linear system was introduced [KHN63]. In the following chapters, we
will use transfer functions extensively to analyze stability and to describe model
uncertainty.

Exercises

8.1 Let G(s) be the transfer function for a linear system. Show that if we ap-
ply an input u(t) = Asin(ωt), then the steady-state output is given byy(t) =
|G(iω)|Asin(ωt +argG(iω)). (Hint: Start by showing that the real part of a com-
plex number is a linear operation and then use this fact.)

8.2 Consider the system
dx
dt

= ax+u.

Compute the exponential response of the system and use this to derive the transfer
function fromu to x. Show that whens= a, a pole of the transfer function, the
response to the exponential inputu(t) = est is x(t) = eatx(0)+ teat.

8.3 (Inverted pendulum) A model for an inverted pendulum was introduced in
Example2.2. Neglecting damping and linearizing the pendulum around the upright
position gives a linear system characterized by the matrices

A=


 0 1

mgl/Jt 0


 , B=


 0

1/Jt


 , C=


1 0


 , D = 0.

Determine the transfer function of the system.

8.4(Solutions corresponding to poles and zeros) Consider the differential equation

dny
dtn

+a1
dn−1y
dtn−1 + · · ·+any= b1

dn−1u
dtn−1 +b2

dn−2u
dtn−2 + · · ·+bnu.
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(a) Letλ be a root of the characteristic polynomial

sn+a1sn−1+ · · ·+an = 0.

Show that ifu(t) = 0, the differential equation has the solutiony(t) = eλ t .

(b) Let κ be a zero of the polynomial

b(s) = b1sn−1+b2sn−2+ · · ·+bn.

Show that if the input isu(t) = eκt , then there is a solution to the differential
equation that is identically zero.

8.5 (Operational amplifier) Consider the operational amplifier introduced in Sec-
tion 3.3 and analyzed in Example8.3. A PI controller can be constructed using
an op amp by replacing the resistorR2 with a resistor and capacitor in series, as
shown in Figure3.10. The resulting transfer function of the circuit is given by

G(s) =−
(

R2+
1

Cs

)
·

(
kCs(

(k+1)R1C+R2C
)
s+1

)
,

wherek is the gain of the op amp,R1 andR2 are the resistances in the compensation
network andC is the capacitance.

(a) Sketch the Bode plot for the system under the assumption that k ≫ R2 > R1.
You should label the key features in your plot, including thegain and phase at low
frequency, the slopes of the gain curve, the frequencies at which the gain changes
slope, etc.

(b) Suppose now that we include some dynamics in the amplifier, as outlined in
Example 8.1. This would involve replacing the gaink with the transfer function

H(s) =
k

1+sT
.

Compute the resulting transfer function for the system (i.e., replacek with H(s))
and find the poles and zeros assuming the following parameter values

R2

R1
= 100, k= 106, R2C= 1, T = 0.01.

(c) Sketch the Bode plot for the transfer function in part (b) using straight line
approximations and compare this to the exact plot of the transfer function (using
MATLAB). Make sure to label the important features in your plot.

8.6 (Transfer function for state space system) Consider the linear state space sys-
tem

dx
dt

= Ax+Bu, y=Cx.
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Show that the transfer function is

G(s) =
b1sn−1+b2sn−2+ · · ·+bn

sn+a1sn−1+ · · ·+an
,

where

b1=CB, b2=CAB+a1CB, . . . , bn=CAn−1B+a1CAn−2B+ · · ·+an−1CB

andλ (s) = sn+a1sn−1+ · · ·+an is the characteristic polynomial forA.

8.7 (Kalman decomposition) Show that the transfer function of a system depends�
only on the dynamics in the reachable and observable subspace of the Kalman
decomposition. (Hint: Consider the representation given by equation (7.27).)

8.8 Using block diagram algebra, show that the transfer functions fromd to y and
n to y in Figure8.7are given by

Gyd =
P

1+PC
Gyn =

1
1+PC

.

8.9 (Bode plot for a simple zero) Show that the Bode plot for transfer function
G(s) = (s+a)/a can be approximated by

log|G(iω)| ≈
{

0 if ω < a

logω − loga if ω > a,

∠G(iω)≈





0 if ω < a/10

45+45(logω − loga) a/10< ω < 10a

90 if ω > 10a.

8.10 (Vectored thrust aircraft) Consider the lateral dynamics of a vectored thrust
aircraft as described in Example2.9. Show that the dynamics can be described
using the following block diagram:

1
ms2+cs

θ
−mg Σ

ν
u1

r

Js2
x

Use this block diagram to compute the transfer functions from u1 to θ andx and
show that they satisfy

Hθu1 =
r

Js2 , Hxu1 =
Js2−mgr

Js2(ms2+cs)
.

8.11 (Common poles) Consider a closed loop system of the form of Figure 8.7, �
with F = 1 andP andC having a pole/zero cancellation. Show that if each system
is written in state space form, the resulting closed loop system is not reachable and
not observable.
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8.12(Congestion control) Consider the congestion control model described in Sec-
tion 3.4. Letw represent the individual window size for a set ofN identical sources,
q represent the end-to-end probability of a dropped packet,b represent the number
of packets in the router’s buffer andp represent the probability that a packet is
dropped by the router. We write ¯w= Nw to represent the total number of packets
being received from allN sources. Show that the linearized model can be described
by the transfer functions

Gbw̄(s) =
e−τ f s

τes+e−τ f s
, Gw̄q(s) =− N

qe(τes+qewe)
, Gpb(s) = ρ,

where(we,be) is the equilibrium point for the system,τe is the steady-state round-
trip time andτ f is the forward propagation time.

8.13(Inverted pendulum with PD control) Consider the normalizedinverted pen-
dulum system, whose transfer function is given byP(s)= 1/(s2−1) (Exercise8.3).
A proportional-derivative control law for this system has transfer functionC(s) =
kp+ kds (see Table8.1). Suppose that we chooseC(s) = α(s−1). Compute the
closed loop dynamics and show that the system has good tracking of reference
signals but does not have good disturbance rejection properties.

8.14(Vehicle suspension [HB90]) Active and passive damping are used in cars to
give a smooth ride on a bumpy road. A schematic diagram of a carwith a damping
system in shown in the figure below.

(Porter Class I race car driven by Todd Cuffaro)

xb

xw

xr

F +

-

Σ

F

Body

Actuator

Wheel

This model is called aquarter car model, and the car is approximated with two
masses, one representing one fourth of the car body and the other a wheel. The
actuator exerts a forceF between the wheel and the body based on feedback from
the distance between the body and the center of the wheel (therattle space).

Let xb, xw andxr represent the heights of body, wheel and road measured from
their equilibria. A simple model of the system is given by Newton’s equations for
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the body and the wheel,

mbẍb = F, mwẍw =−F +kt(xr −xw),

wheremb is a quarter of the body mass,mw is the effective mass of the wheel
including brakes and part of the suspension system (theunsprung mass) andkt is
the tire stiffness. For a conventional damper consisting ofa spring and a damper,
we haveF = k(xw − xb) + c(ẋw − ẋb). For an active damper the forceF can be
more general and can also depend on riding conditions. Ridercomfort can be
characterized by the transfer functionGaxr from road heightxr to body acceler-
ationa= ẍb. Show that this transfer function has the propertyGaxr (iωt) = kt/mb,
whereωt =

√
kt/mw (the tire hop frequency). The equation implies that there are

fundamental limitations to the comfort that can be achievedwith any damper.

8.15(Vibration absorber) Damping vibrations is a common engineering problem.
A schematic diagram of a damper is shown below:

m1

k1

m2

c1

k2

F

x1

x2

The disturbing vibration is a sinusoidal force acting on massm1, and the damper
consists of the massm2 and the springk2. Show that the transfer function from
disturbance force to heightx1 of the massm1 is

Gx1F =
m2s2+k2

m1m2s4+m2c1s3+(m1k2+m2(k1+k2))s2+k2c1s+k1k2
.

How should the massm2 and the stiffnessk2 be chosen to eliminate a sinusoidal
oscillation with frequencyω0. (More details are vibration absorbers is given in the
classic text by Den Hartog [DH85, pp. 87–93].)



Chapter Nine
Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tests that it possessed the
advantages which he had predicted for it. In particular, its gain was constant to a high degree,
and it was linear enough so that spurious signals caused by the interactionof the various
channels could be kept within permissible limits. For best results the feedback factorµβ had
to be numerically much larger than unity. The possibility of stability with a feedback factor
larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 1956 [Nyq56].

In this chapter we study how the stability and robustness of closed loop systems
can be determined by investigating how sinusoidal signals of different frequencies
propagate around the feedback loop. This technique allows usto reason about
the closed loop behavior of a system through the frequency domain properties of
the open loop transfer function. The Nyquist stability theorem is a key result that
provides a way to analyze stability and introduce measures of degrees of stability.

9.1 The Loop Transfer Function

Determining the stability of systems interconnected by feedback can be tricky be-
cause each system influences the other, leading to potentially circular reasoning.
Indeed, as the quote from Nyquist above illustrates, the behavior of feedback sys-
tems can often be puzzling. However, using the mathematicalframework of trans-
fer functions provides an elegant way to reason about such systems, which we call
loop analysis.

The basic idea of loop analysis is to trace how a sinusoidal signal propagates in
the feedback loop and explore the resulting stability by investigating if the propa-
gated signal grows or decays. This is easy to do because the transmission of sinu-
soidal signals through a linear dynamical system is characterized by the frequency
response of the system. The key result is the Nyquist stability theorem, which pro-
vides a great deal of insight regarding the stability of a system. Unlike proving sta-
bility with Lyapunov functions, studied in Chapter4, the Nyquist criterion allows
us to determine more than just whether a system is stable or unstable. It provides a
measure of the degree of stability through the definition of stability margins. The
Nyquist theorem also indicates how an unstable system should be changed to make
it stable, which we shall study in detail in Chapters10–12.
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Figure 9.1: The loop transfer function. The stability of the feedback system (a) can be de-
termined by tracing signals around the loop. LettingL = PC represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected at the point A has the
same magnitude and phase when it reaches point B.

Consider the system in Figure9.1a. The traditional way to determine if the
closed loop system is stable is to investigate if the closed loop characteristic poly-
nomial has all its roots in the left half-plane. If the process and the controller have
rational transfer functionsP(s) = np(s)/dp(s) andC(s) = nc(s)/dc(s), then the
closed loop system has the transfer function

Gyr(s) =
PC

1+PC
=

np(s)nc(s)

dp(s)dc(s)+np(s)nc(s)
,

and the characteristic polynomial is

λ (s) = dp(s)dc(s)+np(s)nc(s).

To check stability, we simply compute the roots of the characteristic polynomial
and verify that they each have negative real part. This approach is straightforward
but it gives little guidance for design: it is not easy to tellhow the controller should
be modified to make an unstable system stable.

Nyquist’s idea was to investigate conditions under which oscillations can occur
in a feedback loop. To study this, we introduce theloop transfer function L(s) =
P(s)C(s), which is the transfer function obtained by breaking the feedback loop,
as shown in Figure9.1b. The loop transfer function is simply the transfer function
from the input at position A to the output at position B multiplied by−1 (to account
for the usual convention of negative feedback).

We will first determine conditions for having a periodic oscillation in the loop.
Assume that a sinusoid of frequencyω0 is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequencyω0. It seems reasonable
that an oscillation can be maintained if the signal at B has the same amplitude and
phase as the injected signal because we can then disconnect the injected signal and
connect A to B. Tracing signals around the loop, we find that thesignals at A and
B are identical if

L(iω0) =−1, (9.1)

which then provides a condition for maintaining an oscillation. The key idea of
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(a) Amplifier circuit

v2Z1

Z1+Z2

e vZ2

Z1

v1 −G(s)Σ

(b) Block diagram

Figure 9.2: Loop transfer function for an op amp. The op amp circuit (a) has a nominal
transfer functionv2/v1 = Z2(s)/Z1(s), whereZ1 andZ2 are the impedances of the circuit
elements. The system can be represented by its block diagram (b), where we now include
the op amp dynamicsG(s). The loop transfer function isL = Z1G/(Z1+Z2).

the Nyquist stability criterion is to understand when this can happen in a general
setting. As we shall see, this basic argument becomes more subtle when the loop
transfer function has poles in the right half-plane.

Example 9.1 Operational amplifier circuit
Consider the op amp circuit in Figure9.2a, whereZ1 andZ2 are the transfer func-
tions of the feedback elements from voltage to current. Thereis feedback because
voltagev2 is related to voltagev through the transfer function−G describing the op
amp dynamics and voltagev is related to voltagev2 through the transfer function
Z1/(Z1+Z2). The loop transfer function is thus

L =
GZ1

Z1+Z2
. (9.2)

Assuming that the currentI is zero, the current through the elementsZ1 andZ2 is
the same, which implies

v1−v
Z1

=
v−v2

Z2
.

Solving forv gives

v=
Z2v1+Z1v2

Z1+Z2
=

Z2v1−Z1Gv
Z1+Z2

=
Z2

Z1

L
G

v1−Lv.

Sincev2 =−Gv the input/output relation for the circuit becomes

Gv2v1 =−Z2

Z1

L
1+L

.

A block diagram is shown in Figure9.2b. It follows from (9.1) that the condition
for oscillation of the op amp circuit is

L(iω) =
Z1(iω)G(iω)

Z1(iω)+Z2(iω)
=−1 (9.3)

∇
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One of the powerful concepts embedded in Nyquist’s approachto stability anal-
ysis is that it allows us to study the stability of the feedback system by looking at
properties of the loop transfer function. The advantage of doing this is that it is
easy to see how the controller should be chosen to obtain a desired loop transfer
function. For example, if we change the gain of the controller, the loop transfer
function will be scaled accordingly. A simple way to stabilize an unstable system
is then to reduce the gain so that the−1 point is avoided. Another way is to in-
troduce a controller with the property that it bends the looptransfer function away
from the critical point, as we shall see in the next section. Different ways to do
this, called loop shaping, will be developed and will be discussed in Chapter11.

9.2 The Nyquist Criterion

In this section we present Nyquist’s criterion for determining the stability of a
feedback system through analysis of the loop transfer function. We begin by intro-
ducing a convenient graphical tool, the Nyquist plot, and show how it can be used
to ascertain stability.

The Nyquist Plot

We saw in the last chapter that the dynamics of a linear systemcan be represented
by its frequency response and graphically illustrated by a Bode plot. To study the
stability of a system, we will make use of a different representation of the fre-
quency response called aNyquist plot. The Nyquist plot of the loop transfer func-
tion L(s) is formed by tracings∈ C around the Nyquist “D contour,” consisting
of the imaginary axis combined with an arc at infinity connecting the endpoints
of the imaginary axis. The contour, denoted asΓ ∈ C, is illustrated in Figure9.3a.
The image ofL(s) whens traversesΓ gives a closed curve in the complex plane
and is referred to as the Nyquist plot forL(s), as shown in Figure9.3b. Note that
if the transfer functionL(s) goes to zero ass gets large (the usual case), then the
portion of the contour “at infinity” maps to the origin. Furthermore, the portion of
the plot corresponding toω < 0 is the mirror image of the portion withω > 0.

There is a subtlety in the Nyquist plot when the loop transfer function has
poles on the imaginary axis because the gain is infinite at the poles. To solve this
problem, we modify the contourΓ to include small deviations that avoid any poles
on the imaginary axis, as illustrated in Figure9.3a(assuming a pole ofL(s) at the
origin). The deviation consists of a small semicircle to the right of the imaginary
axis pole location.

The condition for oscillation given in equation (9.1) implies that the Nyquist
plot of the loop transfer function go through the pointL = −1, which is called
the critical point. Let ωc represent a frequency at which∠L(iωc) = 180◦, corre-
sponding to the Nyquist curve crossing the negative real axis. Intuitively it seems
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Figure 9.3: The Nyquist contourΓ and the Nyquist plot. The Nyquist contour (a) encloses
the right half-plane, with a small semicircle around any poles ofL(s) on the imaginary axis
(illustrated here at the origin) and an arc at infinity, represented byR→ ∞. The Nyquist
plot (b) is the image of the loop transfer functionL(s) whens traversesΓ in the clockwise
direction. The solid line corresponds toω > 0, and the dashed line toω < 0. The gain
and phase at the frequencyω areg= |L(iω)| andϕ = ∠L(iω). The curve is generated for
L(s) = 1.4e−s/(s+1)2.

reasonable that the system is stable if|L(iωc)| < 1, which means that the critical
point−1 is on the left-hand side of the Nyquist curve, as indicated in Figure9.3b.
This means that the signal at point B will have smaller amplitude than the in-
jected signal. This is essentially true, but there are several subtleties that require
a proper mathematical analysis to clear up. We defer the details for now and state
the Nyquist condition for the special case whereL(s) is a stable transfer function.

Theorem 9.1(Simplified Nyquist criterion). Let L(s) be the loop transfer function
for a negative feedback system (as shown in Figure9.1a) and assume that L has
no poles in the closed right half-plane (Res≥ 0) except for single poles on the
imaginary axis. Then the closed loop system is stable if and only if the closed
contour given byΩ = {L(iω) : −∞ < ω < ∞} ⊂C has no net encirclements of the
critical point s=−1.

The following conceptual procedure can be used to determine that there are
no encirclements. Fix a pin at the critical points= −1, orthogonal to the plane.
Attach a string with one end at the critical point and the other on the Nyquist plot.
Let the end of the string attached to the Nyquist curve traverse the whole curve.
There are no encirclements if the string does not wind up on thepin when the curve
is encircled.

Example 9.2 Third-order system
Consider a third-order transfer function

L(s) =
1

(s+a)3 .
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Figure 9.4: Nyquist plot for a third-order transfer function. The Nyquist plot consists of a
trace of the loop transfer functionL(s) = 1/(s+a)3. The solid line represents the portion
of the transfer function along the positive imaginary axis, and the dashedline the negative
imaginary axis. The outer arc of the D contour maps to the origin.

To compute the Nyquist plot we start by evaluating points on the imaginary axis
s= iω, which yields

L(iω) =
1

(iω +a)3 =
(a− iω)3

(a2+ω2)3 =
a3−3aω2

(a2+ω2)3 + i
ω3−3a2ω
(a2+ω2)3 .

This is plotted in the complex plane in Figure9.4, with the points corresponding
to ω > 0 drawn as a solid line andω < 0 as a dashed line. Notice that these curves
are mirror images of each other.

To complete the Nyquist plot, we computeL(s) for s on the outer arc of the
Nyquist D contour. This arc has the forms= Reiθ for R→ ∞. This gives

L(Reiθ ) =
1

(Reiθ +a)3 → 0 as R→ ∞.

Thus the outer arc of theD contour maps to the origin on the Nyquist plot. ∇

An alternative to computing the Nyquist plot explicitly is to determine the plot
from the frequency response (Bode plot), which gives the Nyquist curve fors= iω,
ω > 0. We start by plottingG(iω) from ω = 0 to ω = ∞, which can be read off
from the magnitude and phase of the transfer function. We then plot G(Reiθ ) with
θ ∈ [−π/2,π/2] andR→ ∞, which almost always maps to zero. The remaining
parts of the plot can be determined by taking the mirror imageof the curve thus far
(normally plotted using a dashed line). The plot can then be labeled with arrows
corresponding to a clockwise traversal around the D contour(the same direction
in which the first portion of the curve was plotted).

Example 9.3 Third-order system with a pole at the origin
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Figure 9.5:Sketching Nyquist and Bode plots. The loop transfer function isL(s) = 1/(s(s+
1)2). The large semicircle is the map of the small semicircle of theΓ contour around the
pole at the origin. The closed loop is stable because the Nyquist curve does not encircle the
critical point. The point where the phase is−180◦ is marked with a circle in the Bode plot.

Consider the transfer function

L(s) =
k

s(s+1)2 ,

where the gain has the nominal valuek= 1. The Bode plot is shown in Figure9.5a.
The system has a single pole ats= 0 and a double pole ats=−1. The gain curve
of the Bode plot thus has the slope−1 for low frequencies, and at the double pole
s= 1 the slope changes to−3. For smallswe haveL ≈ k/s, which means that the
low-frequency asymptote intersects the unit gain line atω = k. The phase curve
starts at−90◦ for low frequencies, it is−180◦ at the breakpointω = 1 and it is
−270◦ at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquist plot, shown
in Figure9.5b. It starts with a phase of−90◦ for low frequencies, intersects the
negative real axis at the breakpointω =1 whereL(i)=−0.5 and goes to zero along
the imaginary axis for high frequencies. The small half-circle of theΓ contour at
the origin is mapped on a large circle enclosing the right half-plane. The Nyquist
curve does not encircle the critical point, and it follows from the simplified Nyquist
theorem that the closed loop is stable. SinceL(i) = −k/2, we find the system
becomes unstable if the gain is increased tok= 2 or beyond. ∇

The Nyquist criterion does not require that|L(iωc)|< 1 for all ωc correspond-
ing to a crossing of the negative real axis. Rather, it says that the number of en-
circlements must be zero, allowing for the possibility thatthe Nyquist curve could
cross the negative real axis and cross back at magnitudes greater than 1. The fact
that it was possible to have high feedback gains surprised the early designers of
feedback amplifiers, as mentioned in the quote in the beginning of this chapter.
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Figure 9.6: Internet congestion control. A set ofN sources using TCP/Reno send messages
through a single router with admission control (left). Link delays are included for the forward
and backward directions. The Nyquist plot for the loop transfer function is shown on the
right.

One advantage of the Nyquist criterion is that it tells us howa system is in-
fluenced by changes of the controller parameters. For example, it is very easy to
visualize what happens when the gain is changed since this just scales the Nyquist
curve.

Example 9.4 Congestion control
Consider the Internet congestion control system describedin Section3.4. Suppose
we haveN identical sources and a disturbanced representing an external data
source, as shown in Figure9.6a. We letw represent the individual window size for
a source,q represent the end-to-end probability of a dropped packet,b represent
the number of packets in the router’s buffer andp represent the probability that a
packet is dropped by the router. We write ¯w for the total number of packets being
received from allN sources. We also include a time delay between the router and
the senders, representing the time delays between the sender and receiver.

To analyze the stability of the system, we use the transfer functions computed
in Exercise8.12:

G̃bw̄(s) =
1

τes+e−τ f s
, Gwq(s) =− 1

qe(τes+qewe)
, Gpb(s) = ρ,

where(we,be) is the equilibrium point for the system,N is the number of sources,
τe is the steady-state round-trip time andτ f is the forward propagation time. We
useG̃bw̄ to represent the transfer function with the forward time delay removed
since this is accounted for as a separate block in Figure9.6a. Similarly, Gwq =
Gw̄q/N since we have pulled out the multiplierN as a separate block as well.

The loop transfer function is given by

L(s) = ρ ·
N

τes+e−τ f s
·

1
qe(τes+qewe)

e−τes.
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Using the fact thatqe≈ 2N/w2
e = 2N3/(τec)2 andwe= be/N = τec/N from equa-

tion (3.22), we can show that

L(s) = ρ ·
N

τes+e−τ f s
·

c3τ3
e

2N3(cτ2
es+2N2)

e−τes.

Note that we have chosen the sign ofL(s) to use the same sign convention as in
Figure 9.1b. The exponential term representing the time delay gives significant
phase aboveω = 1/τe, and the gain at the crossover frequency will determine
stability.

To check stability, we require that the gain be sufficiently small at crossover. If
we assume that the pole due to the queue dynamics is sufficiently fast that the TCP
dynamics are dominant, the gain at the crossover frequencyωc is given by

|L(iωc)|= ρ ·N ·
c3τ3

e

2N3cτ2
eωc

=
ρc2τe

2N2ωc
.

Using the Nyquist criterion, the closed loop system will be unstable if this quantity
is greater than 1. In particular, for a fixed time delay, the system will become un-
stable as the link capacityc is increased. This indicates that the TCP protocol may
not be scalable to high-capacity networks, as pointed out byLow et al. [LPD02].
Exercise9.7provides some ideas of how this might be overcome. ∇

Conditional Stability

Normally, we find that unstable systems can be stabilized simply by reducing the
loop gain. There are, however, situations where a system can be stabilized by in-
creasing the gain. This was first encountered by electrical engineers in the design
of feedback amplifiers, who coined the termconditional stability. The problem was
actually a strong motivation for Nyquist to develop his theory. We will illustrate
by an example.

Example 9.5 Third-order system
Consider a feedback system with the loop transfer function

L(s) =
3(s+6)2

s(s+1)2 . (9.4)

The Nyquist plot of the loop transfer function is shown in Figure 9.7. Notice that
the Nyquist curve intersects the negative real axis twice. The first intersection oc-
curs atL = −12 for ω = 2, and the second atL = −4.5 for ω = 3. The intuitive
argument based on signal tracing around the loop in Figure9.1bis strongly mis-
leading in this case. Injection of a sinusoid with frequency2 rad/s and amplitude
1 at A gives, in steady state, an oscillation at B that is in phase with the input and
has amplitude 12. Intuitively it seems unlikely that closing of the loop will result
in a stable system. However, it follows from Nyquist’s stability criterion that the
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Figure 9.7:Nyquist curve for the loop transfer functionL(s) = 3(s+1)2

s(s+6)2 . The plot on the right
is an enlargement of the box around the origin of the plot on the left. The Nyquist curve
intersects the negative real axis twice but has no net encirclements of−1.

system is stable because there are no net encirclements of the critical point. Note,
however, that if wedecreasethe gain, then we can get an encirclement, implying
that the gain must be sufficiently large for stability. ∇

General Nyquist Criterion

Theorem9.1 requires thatL(s) have no poles in the closed right half-plane. In
some situations this is not the case and a more general resultis required. Nyquist
originally considered this general case, which we summarize as a theorem.

Theorem 9.2(Nyquist’s stability theorem). Consider a closed loop system with
the loop transfer function L(s) that has P poles in the region enclosed by the
Nyquist contour. Let N be the net number of clockwise encirclements of−1 by
L(s) when s encircles the Nyquist contourΓ in the clockwise direction. The closed
loop system then has Z= N+P poles in the right half-plane.

The full Nyquist criterion states that ifL(s) hasP poles in the right half-plane,
then the Nyquist curve forL(s) should haveP counterclockwise encirclements
of −1 (so thatN = −P). In particular, thisrequiresthat |L(iωc)| > 1 for someωc

corresponding to a crossing of the negative real axis. Care has to be taken to get the
right sign of the encirclements. The Nyquist contour has to betraversed clockwise,
which means thatω moves from−∞ to ∞ andN is positive if the Nyquist curve
winds clockwise. If the Nyquist curve winds counterclockwise, thenN will be
negative (the desired case ifP 6= 0).

As in the case of the simplified Nyquist criterion, we use smallsemicircles of
radiusr to avoid any poles on the imaginary axis. By lettingr → 0, we can use
Theorem9.2to reason about stability. Note that the image of the small semicircles
generates a section of the Nyquist curve whose magnitude approaches infinity,
requiring care in computing the winding number. When plotting Nyquist curves
on the computer, one must be careful to see that such poles areproperly handled,
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Figure 9.8: PD control of an inverted pendulum. (a) The system consists of a mass that is
balanced by applying a force at the pivot point. A proportional-derivative controller with
transfer functionC(s) = k(s+2) is used to commandu based onθ . (b) A Nyquist plot of
the loop transfer function for gaink= 1. There is one counterclockwise encirclement of the
critical point, givingN =−1 clockwise encirclements.

and often one must sketch those portions of the Nyquist plot by hand, being careful
to loop the right way around the poles.

Example 9.6 Stabilized inverted pendulum
The linearized dynamics of a normalized inverted pendulum can be represented by
the transfer functionP(s) = 1/(s2−1), where the input is acceleration of the pivot
and the output is the pendulum angleθ , as shown in Figure9.8(Exercise8.3). We
attempt to stabilize the pendulum with a proportional-derivative (PD) controller
having the transfer functionC(s) = k(s+2). The loop transfer function is

L(s) =
k(s+2)
s2−1

.

The Nyquist plot of the loop transfer function is shown in Figure 9.8b. We have
L(0) =−2k andL(∞) = 0. If k> 0.5, the Nyquist curve encircles the critical point
s=−1 in the counterclockwise direction when the Nyquist contour γ is encircled
in the clockwise direction. The number of encirclements is thus N = −1. Since
the loop transfer function has one pole in the right half-plane (P= 1), we find that
Z = N+P = 0 and the system is thus stable fork > 0.5. If k < 0.5, there is no
encirclement and the closed loop will have one pole in the right half-plane. ∇

Derivation of Nyquist’s Stability Theorem
�

We will now prove the Nyquist stability theorem for a generalloop transfer func-
tion L(s). This requires some results from the theory of complex variables, for
which the reader can consult Ahlfors [Ahl66]. Since some precision is needed in
stating Nyquist’s criterion properly, we will use a more mathematical style of pre-
sentation. We also follow the mathematical convention of counting encirclements
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in the counterclockwise direction for the remainder of thissection. The key result
is the following theorem about functions of complex variables.

Theorem 9.3(Principle of variation of the argument). Let D be a closed region
in the complex plane and letΓ be the boundary of the region. Assume the function
f : C→ C is analytic in D and onΓ, except at a finite number of poles and zeros.
Then thewinding numberwn is given by

wn =
1

2π
∆Γ arg f (z) =

1
2π i

∫

Γ

f ′(z)
f (z)

dz= Z−P,

where∆Γ is the net variation in the angle when z traverses the contourΓ in the
counterclockwise direction, Z is the number of zeros in D andP is the number of
poles in D. Poles and zeros of multiplicity m are counted m times.

Proof. Assume thatz= a is a zero of multiplicitym. In the neighborhood ofz= a
we have

f (z) = (z−a)mg(z),

where the functiong is analytic and different from zero. The ratio of the derivative
of f to itself is then given by

f ′(z)
f (z)

=
m

z−a
+

g′(z)
g(z)

,

and the second term is analytic atz= a. The functionf ′/ f thus has a single pole
at z= a with the residuem. The sum of the residues at the zeros of the function is
Z. Similarly, we find that the sum of the residues for the poles is−P, and hence

Z−P=
1

2π i

∫

Γ

f ′(z)
f (z)

dz=
1

2π i

∫

Γ

d
dz

log f (z)dz=
1

2π i
∆Γ log f (z),

where∆Γ again denotes the variation along the contourΓ. We have

log f (z) = log| f (z)|+ i arg f (z),

and since the variation of| f (z)| around a closed contour is zero it follows that

∆Γ log f (z) = i∆Γ arg f (z),

and the theorem is proved.

This theorem is useful in determining the number of poles and zeros of a func-
tion of complex variables in a given region. By choosing an appropriate closed
regionD with boundaryΓ, we can determine the difference between the number
of poles and zeros through computation of the winding number.

Theorem9.3can be used to prove Nyquist’s stability theorem by choosingΓ as
the Nyquist contour shown in Figure9.3a, which encloses the right half-plane. To
construct the contour, we start with part of the imaginary axis− jR≤ s≤ jR and a
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semicircle to the right with radiusR. If the function f has poles on the imaginary
axis, we introduce small semicircles with radiir to the right of the poles as shown
in the figure. The Nyquist contour is obtained by lettingR→ ∞ andr → 0. Note
that Γ has orientationoppositethat shown in Figure9.3a. (The convention in
engineering is to traverse the Nyquist contour in the clockwise direction since this
corresponds to moving upwards along the imaginary axis, which makes it easy to
sketch the Nyquist contour from a Bode plot.)

To see how we use the principle of variation of the argument tocompute stabil-
ity, consider a closed loop system with the loop transfer function L(s). The closed
loop poles of the system are the zeros of the functionf (s) = 1+L(s). To find the
number of zeros in the right half-plane, we investigate the winding number of the
function f (s) = 1+L(s) ass moves along the Nyquist contourΓ in thecounter-
clockwisedirection. The winding number can conveniently be determined from
the Nyquist plot. A direct application of Theorem9.3gives the Nyquist criterion,
taking care to flip the orientation. Since the image of 1+L(s) is a shifted version
of L(s), we usually state the Nyquist criterion as net encirclements of the−1 point
by the image ofL(s).

9.3 Stability Margins

In practice it is not enough that a system is stable. There mustalso be some margins
of stability that describe how stable the system is and its robustness to perturba-
tions. There are many ways to express this, but one of the most common is the
use of gain and phase margins, inspired by Nyquist’s stability criterion. The key
idea is that it is easy to plot the loop transfer functionL(s). An increase in con-
troller gain simply expands the Nyquist plot radially. An increase in the phase of
the controller twists the Nyquist plot. Hence from the Nyquist plot we can easily
pick off the amount of gain or phase that can be added without causing the system
to become unstable.

Formally, thegain margin gm of a system is defined as the smallest amount that
the open loop gain can be increased before the closed loop system goes unstable.
For a system whose phase decreases monotonically as a function of frequency
starting at 0◦, the gain margin can be computed based on the smallest frequency
where the phase of the loop transfer functionL(s) is −180◦. Let ωpc represent
this frequency, called thephase crossover frequency. Then the gain margin for the
system is given by

gm =
1

|L(iωpc)|
. (9.5)

Similarly, thephase marginis the amount of phase lag required to reach the sta-
bility limit. Let ωgc be thegain crossover frequency, the smallest frequency where
the loop transfer functionL(s) has unit magnitude. Then for a system with mono-
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Figure 9.9:Stability margins. The gain margingm and phase marginϕm are shown on the the
Nyquist plot (a) and the Bode plot (b). The gain margin corresponds tothe smallest increase
in gain that creates an encirclement, and the phase margin is the smallest change in phase
that creates an encirclement. The Nyquist plot also shows the stability margin sm, which is
the shortest distance to the critical point−1.

tonically decreasing gain, the phase margin is given by

ϕm = π +argL(iωgc). (9.6)

These margins have simple geometric interpretations on the Nyquist diagram
of the loop transfer function, as shown in Figure9.9a, where we have plotted the
portion of the curve corresponding toω > 0. The gain margin is given by the in-
verse of the distance to the nearest point between−1 and 0 where the loop transfer
function crosses the negative real axis. The phase margin is given by the small-
est angle on the unit circle between−1 and the loop transfer function. When the
gain or phase is monotonic, this geometric interpretation agrees with the formulas
above.

A drawback with gain and phase margins is that it is necessaryto give both of
them in order to guarantee that the Nyquist curve is not closeto the critical point.
An alternative way to express margins is by a single number, thestability margin
sm, which is the shortest distance from the Nyquist curve to thecritical point. This
number is related to disturbance attenuation, as will be discussed in Section11.3.

For many systems, the gain and phase margins can be determined from the
Bode plot of the loop transfer function. To find the gain marginwe first find the
phase crossover frequencyωpc where the phase is−180◦. The gain margin is the
inverse of the gain at that frequency. To determine the phasemargin we first de-
termine the gain crossover frequencyωgc, i.e., the frequency where the gain of the
loop transfer function is 1. The phase margin is the phase of the loop transfer func-
tion at that frequency plus 180◦. Figure9.9billustrates how the margins are found
in the Bode plot of the loop transfer function. Note that the Bode plot interpretation
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Figure 9.10: Stability margins for a third-order transfer function. The Nyquist plot onthe
left allows the gain, phase and stability margins to be determined by measuring the distances
of relevant features. The gain and phase margins can also be read off of the Bode plot on the
right.

of the gain and phase margins can be incorrect if there are multiple frequencies at
which the gain is equal to 1 or the phase is equal to−180◦.

Example 9.7 Third-order system
Consider a loop transfer functionL(s) = 3/(s+1)3. The Nyquist and Bode plots
are shown in Figure9.10. To compute the gain, phase and stability margins, we
can use the Nyquist plot shown in Figure9.10. This yields the following values:

gm = 2.67, ϕm = 41.7◦, sm = 0.464.

The gain and phase margins can also be determined from the Bodeplot. ∇

The gain and phase margins are classical robustness measuresthat have been
used for a long time in control system design. The gain margin is well defined if
the Nyquist curve intersects the negative real axis once. Analogously, the phase
margin is well defined if the Nyquist curve intersects the unitcircle at only one
point. Other more general robustness measures will be introduced in Chapter12.

Even if both the gain and phase margins are reasonable, the system may still
not be robust, as is illustrated by the following example.

Example 9.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function

L(s) =
0.38(s2+0.1s+0.55)

s(s+1)(s2+0.06s+0.5)
.

A numerical calculation gives the gain margin asgm = 266, and the phase margin
is 70◦. These values indicate that the system is robust, but the Nyquist curve is
still close to the critical point, as shown in Figure9.11. The stability margin is
sm = 0.27, which is very low. The closed loop system has two resonant modes,
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Figure 9.11:System with good gain and phase margins but a poor stability margin. Nyquist
(a) and Bode (b) plots of the loop transfer function and step response (c) for a system with
good gain and phase margins but with a poor stability margin. The Nyquist plot shows on
the portion of the curve corresponding toω > 0.

one with damping ratioζ = 0.81 and the other withζ = 0.014. The step response
of the system is highly oscillatory, as shown in Figure9.11c. ∇

The stability margin cannot easily be found from the Bode plotof the loop
transfer function. There are, however, other Bode plots thatwill give sm; these will
be discussed in Chapter12. In general, it is best to use the Nyquist plot to check
stability since this provides more complete information than the Bode plot.

When designing feedback systems, it will often be useful to define the robust-
ness of the system using gain, phase and stability margins. These numbers tell us
how much the system can vary from our nominal model and still be stable. Rea-
sonable values of the margins are phase marginϕm = 30◦–60◦, gain margingm =
2–5 and stability marginsm = 0.5–0.8.

There are also other stability measures, such as thedelay margin, which is the
smallest time delay required to make the system unstable. For loop transfer func-
tions that decay quickly, the delay margin is closely related to the phase margin,
but for systems where the gain curve of the loop transfer function has several peaks
at high frequencies, the delay margin is a more relevant measure.

Example 9.9 Nanopositioning system for an atomic force microscope
Consider the system for horizontal positioning of the sample in an atomic force
microscope. The system has oscillatory dynamics, and a simple model is a spring–
mass system with low damping. The normalized transfer function is given by

P(s) =
ω2

0

s2+2ζ ω0s+ω2
0

, (9.7)

where the damping ratio typically is a very small number, e.g., ζ = 0.1.
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Figure 9.12:Nyquist and Bode plots of the loop transfer function for the AFM system (9.7)
with an integral controller. The frequency in the Bode plot is normalized bya. The parame-
ters areζ = 0.01 andki = 0.008.

We will start with a controller that has only integral action. The resulting loop
transfer function is

L(s) =
kiω2

0

s(s2+2ζ ω0s+ω2
0)
,

whereki is the gain of the controller. Nyquist and Bode plots of the loop transfer
function are shown in Figure9.12. Notice that the part of the Nyquist curve that is
close to the critical point−1 is approximately circular.

From the Bode plot in Figure9.12b, we see that the phase crossover frequency
is ωpc = a, which will be independent of the gainki . Evaluating the loop transfer
function at this frequency, we haveL(iω0) = −ki/(2ζ ω0), which means that the
stability margin issm= 1−ki/(2ζ ω0). To have a desired stability margin ofsm the
integral gain should be chosen as

ki = 2ζ ω0(1−sm).

Figure9.12shows Nyquist and Bode plots for the system with gain margingm =
2.5 and stability marginsm = 0.6. The gain curve in the Bode plot is almost a
straight line for low frequencies and has a resonant peak atω = ω0. The gain
crossover frequency is approximately equal toki . The phase decreases monotoni-
cally from−90◦ to−270◦: it is equal to−180◦ atω =ω0. The curve can be shifted
vertically by changingki : increasingki shifts the gain curve upward and increases
the gain crossover frequency. Since the phase is−180◦ at the resonant peak, it is
necessary that the peak not touch the line|L(iω)|= 1. ∇



9.4. BODE’S RELATIONS AND MINIMUM PHASE SYSTEMS 303

9.4 Bode’s Relations and Minimum Phase Systems

An analysis of Bode plots reveals that there appears to be a relation between the
gain curve and the phase curve. Consider, for example, the Bode plots for the
differentiator and the integrator (shown in Figure8.12). For the differentiator the
slope is+1 and the phase is a constantπ/2 radians. For the integrator the slope is
−1 and the phase is−π/2. For the first-order systemG(s) = s+a, the amplitude
curve has the slope 0 for small frequencies and the slope+1 for high frequencies,
and the phase is 0 for low frequencies andπ/2 for high frequencies.

Bode investigated the relations between the curves for systems with no poles
and zeros in the right half-plane. He found that the phase wasuniquely given by
the shape of the gain curve, and vice versa:

argG(iω0) =
π
2

∫ ∞

0
f (ω)

d log|G(iω)|
d logω

d logω ≈ π
2

d log|G(iω)|
d logω

, (9.8)

where f is the weighting kernel

f (ω) =
2

π2 log
∣∣∣
ω +ω0

ω −ω0

∣∣∣.

The phase curve is thus a weighted average of the derivative ofthe gain curve. If
the gain curve has constant slopen, the phase curve has constant valuenπ/2.

Bode’s relations (9.8) hold for systems that do not have poles and zeros in the
right half-plane. Such systems are calledminimum phase systemsbecause systems
with poles and zeros in the right half-plane have a larger phase lag. The distinction
is important in practice because minimum phase systems are easier to control than
systems with a larger phase lag. We will now give a few examples of nonminimum
phase transfer functions.

The transfer function of a time delay ofτ units isG(s) = e−sτ . This transfer
function has unit gain|G(iω)|= 1, and the phase is argG(iω) =−ωτ. The corre-
sponding minimum phase system with unit gain has the transfer functionG(s) = 1.
The time delay thus has an additional phase lag ofωτ. Notice that the phase lag
increases linearly with frequency. Figure9.13ashows the Bode plot of the transfer
function. (Because we use a log scale for frequency, the phase falls off exponen-
tially in the plot.)

Consider a system with the transfer functionG(s) = (a−s)/(a+s) with a> 0,
which has a zeros= a in the right half-plane. The transfer function has unit gain
|G(iω)| = 1, and the phase is argG(iω) = −2arctan(ω/a). The corresponding
minimum phase system with unit gain has the transfer function G(s) = 1. Fig-
ure 9.13bshows the Bode plot of the transfer function. A similar analysis of the
transfer functionG(s) = (s+a)/(s−a) with a> 0, which has a pole in the right
half-plane, shows that its phase is argG(iω) = −2arctan(a/ω). The Bode plot is
shown in Figure9.13c.
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Figure 9.13:Bode plots of systems that are not minimum phase. (a) Time delayG(s)= e−sT,
(b) system with a right half-plane (RHP) zeroG(s) = (a− s)/(a+ s) and (c) system with
right half-plane pole. The corresponding minimum phase system has thetransfer function
G(s) = 1 in all cases, the phase curves for that system are shown as dashed lines.

The presence of poles and zeros in the right half-plane imposes severe limita-
tions on the achievable performance. Dynamics of this type should be avoided by
redesign of the system whenever possible. While the poles are intrinsic properties
of the system and they do not depend on sensors and actuators,the zeros depend
on how inputs and outputs of a system are coupled to the states. Zeros can thus be
changed by moving sensors and actuators or by introducing new sensors and ac-
tuators. Nonminimum phase systems are unfortunately quitecommon in practice.

The following example gives a system theoretic interpretation of the common
experience that it is more difficult to drive in reverse gear and illustrates some of
the properties of transfer functions in terms of their polesand zeros.

Example 9.10 Vehicle steering
The nonnormalized transfer function from steering angle to lateral velocity for the
simple vehicle model is

G(s) =
av0s+v2

0

bs
,

wherev0 is the velocity of the vehicle anda,b> 0 (see Example5.12). The transfer
function has a zero ats= v0/a. In normal driving this zero is in the left half-
plane, but it is in the right half-plane when driving in reverse,v0 < 0. The unit step
response is

y(t) =
av0

b
+

v2
0t

b
.

The lateral velocity thus responds immediately to a steeringcommand. For reverse
steeringv0 is negative and the initial response is in the wrong direction, a behavior
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Figure 9.14:Vehicle steering for driving in reverse. (a) Step responses from steering angle to
lateral translation for a simple kinematics model when driving forward (dashed) and reverse
(solid). With rear-wheel steering the center of mass first moves in the wrong direction and
that the overall response with rear-wheel steering is significantly delayed compared with that
for front-wheel steering. (b) Frequency response for driving forward (dashed) and reverse
(solid). Notice that the gain curves are identical, but the phase curve fordriving in reverse
has nonminimum phase.

that is representative for nonminimum phase systems (called aninverse response).
Figure9.14 shows the step response for forward and reverse driving. In this

simulation we have added an extra pole with the time constantT to approximately
account for the dynamics in the steering system. The parameters area = b = 1,
T = 0.1, v0 = 1 for forward driving andv0 = −1 for reverse driving. Notice that
for t > t0 = a/v0, wheret0 is the time required to drive the distancea, the step
response for reverse driving is that of forward driving withthe time delayt0. The
position of the zerov0/a depends on the location of the sensor. In our calculation
we have assumed that the sensor is at the center of mass. The zero in the transfer
function disappears if the sensor is located at the rear wheel. The difficulty with
zeros in the right half-plane can thus be visualized by a thought experiment where
we drive a car in forward and reverse and observe the lateral position through a
hole in the floor of the car. ∇

9.5 Generalized Notions of Gain and Phase
�

A key idea in frequency domain analysis is to trace the behavior of sinusoidal sig-
nals through a system. The concepts of gain and phase represented by the transfer
function are strongly intuitive because they describe amplitude and phase relations
between input and output. In this section we will see how to extend the concepts
of gain and phase to more general systems, including some nonlinear systems. We
will also show that there are analogs of Nyquist’s stabilitycriterion if signals are
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approximately sinusoidal.

System Gain

We begin by considering the case of a static linear systemy = Au, whereA is
a matrix whose elements are complex numbers. The matrix does not have to be
square. Let the inputs and outputs be vectors whose elements are complex numbers
and use the Euclidean norm

‖u‖=
√

Σ|ui |2. (9.9)

The norm of the output is
‖y‖2 = u∗A∗Au,

where∗ denotes the complex conjugate transpose. The matrixA∗A is symmetric
and positive semidefinite, and the right-hand side is a quadratic form. The square
root of eigenvalues of the matrixA∗A are all real, and we have

‖y‖2 ≤ λmax(A
∗A)‖u‖2.

The gain of the system can then be defined as the maximum ratio of the output to
the input over all possible inputs:

γ = max
u

‖y‖
‖u‖ =

√
λmax(A∗A). (9.10)

The square root of the eigenvalues of the matrixA∗A are called thesingular values
of the matrixA, and the largest singular value is denotedσ̄(A).

To generalize this to the case of an input/output dynamical system, we need
to think of the inputs and outputs not as vectors of real numbers but as vectors of
signals. For simplicity, consider first the case of scalar signals andlet the signal
spaceL2 be square-integrable functions with the norm

‖u‖2 =

√∫ ∞

0
|u|2(τ)dτ .

This definition can be generalized to vector signals by replacing the absolute value
with the vector norm (9.9). We can now formally define the gain of a system taking
inputsu∈ L2 and producing outputsy∈ L2 as

γ = sup
u∈L2

‖y‖
‖u‖ , (9.11)

where sup is thesupremum,defined as the smallest number that is larger than its
argument. The reason for using the supremum is that the maximum may not be
defined foru∈ L2. This definition of the system gain is quite general and can even
be used for some classes of nonlinear systems, though one needs to be careful
about how initial conditions and global nonlinearities arehandled.
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Figure 9.15:A feedback connection of two general nonlinear systemsH1 andH2. The sta-
bility of the system can be explored using the small gain theorem.

The norm (9.11) has some nice properties in the case of linear systems. In
particular, given a single-input, single-output stable linear system with transfer
functionG(s), it can be shown that the norm of the system is given by

γ = sup
ω

|G(iω)|=: ‖G‖∞. (9.12)

In other words, the gain of the system corresponds to the peakvalue of the fre-
quency response. This corresponds to our intuition that an input produces the
largest output when we are at the resonant frequencies of thesystem.‖G‖∞ is
called theinfinity normof the transfer functionG(s).

This notion of gain can be generalized to the multi-input, multi-output case as
well. For a linear multivariable system with a real rationaltransfer function matrix
G(s) we can define the gain as

γ = ‖G‖∞ = sup
ω

σ̄(G(iω)). (9.13)

Thus we can combine the idea of the gain of a matrix with the ideaof the gain of
a linear system by looking at the maximum singular value overall frequencies.

Small Gain and Passivity

For linear systems it follows from Nyquist’s theorem that the closed loop is stable
if the gain of the loop transfer function is less than 1 for allfrequencies. This result
can be extended to a larger class of systems by using the concept of the system
gain defined in equation (9.11).

Theorem 9.4 (Small gain theorem). Consider the closed loop system shown in
Figure9.15, where H1 and H2 are stable systems and the signal spaces are properly
defined. Let the gains of the systems H1 and H2 beγ1 andγ2. Then the closed loop
system is input/output stable ifγ1γ2 < 1, and the gain of the closed loop system is

γ =
γ1

1− γ1γ2
.

Notice that if systemsH1 andH2 are linear, it follows from the Nyquist stability
theorem that the closed loop is stable because ifγ1γ2 < 1, the Nyquist curve is
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always inside the unit circle. The small gain theorem is thus an extension of the
Nyquist stability theorem.

Although we have focused on linear systems, the small gain theorem also holds
for nonlinear input/output systems. The definition of gain in equation (9.11) holds
for nonlinear systems as well, with some care needed in handling the initial condi-
tion.

The main limitation of the small gain theorem is that it does not consider the
phasing of signals around the loop, so it can be very conservative. To define the
notion of phase we require that there be a scalar product. Forsquare-integrable
functions this can be defined as

〈u,y〉=
∫ ∞

0
u(τ)y(τ)dτ .

The phaseϕ between two signals can now be defined as

〈u,y〉= ‖u‖‖y‖cos(ϕ).

Systems where the phase between inputs and outputs is 90◦ or less for all inputs
are calledpassive systems. It follows from the Nyquist stability theorem that a
closed loop linear system is stable if the phase of the loop transfer function is
between−π andπ. This result can be extended to nonlinear systems as well. It is
called thepassivity theoremand is closely related to the small gain theorem. See
Khalil [Kha01] for a more detailed description.

Additional applications of the small gain theorem and its application to robust
stability are given in Chapter12.

Describing Functions
�

For special nonlinear systems like the one shown in Figure9.16a, which consists
of a feedback connection between a linear system and a staticnonlinearity, it is
possible to obtain a generalization of Nyquist’s stabilitycriterion based on the idea
of describing functions. Following the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that correspondsto the first harmonic.

To carry out this analysis, we have to analyze how a sinusoidal signal propa-
gates through a static nonlinear system. In particular we investigate how the first
harmonic of the output of the nonlinearity is related to its (sinusoidal) input. Let-
ting F represent the nonlinear function, we expandF(eiωt) in terms of its harmon-
ics:

F(aeiωt) =
∞

∑
n=0

Mn(a)e
i(nωt+ϕn(a)),
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Figure 9.16:Describing function analysis. A feedback connection between a static nonlin-
earity and a linear system is shown in (a). The linear system is characterized by its transfer
functionL(s), which depends on frequency, and the nonlinearity by its describing function
N(a), which depends on the amplitudea of its input. The Nyquist plot ofL(iω) and the plot
of the−1/N(a) are shown in (b). The intersection of the curves represents a possible limit
cycle.

whereMn(a) andϕn(a) represent the gain and phase of thenth harmonic, which
depend on the input amplitude since the functionF is nonlinear. We define the
describing function to be the complex gain of the first harmonic:

N(a) = M1(a)e
iϕ1(a). (9.14)

The function can also be computed by assuming that the input isa sinusoid and
using the first term in the Fourier series of the resulting output.

Arguing as we did when deriving Nyquist’s stability criterion, we find that an
oscillation can be maintained if

L(iω)N(a) =−1. (9.15)

This equation means that if we inject a sinusoid at A in Figure9.16, the same
signal will appear at B and an oscillation can be maintained by connecting the
points. Equation (9.15) gives two conditions for finding the frequencyω of the
oscillation and its amplitudea: the phase must be 180◦, and the magnitude must
be unity. A convenient way to solve the equation is to plotL(iω) and−1/N(a) on
the same diagram as shown in Figure9.16b. The diagram is similar to the Nyquist
plot where the critical point−1 is replaced by the curve−1/N(a) anda ranges
from 0 to∞.

It is possible to define describing functions for types of inputs other than si-
nusoids. Describing function analysis is a simple method, but it is approximate
because it assumes that higher harmonics can be neglected. Excellent treatments
of describing function techniques can be found in the texts by Atherton [Ath75]
and Graham and McRuer [GM61].

Example 9.11 Relay with hysteresis
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Figure 9.17:Describing function analysis for a relay with hysteresis. The input/output rela-
tion of the hysteresis is shown in (a) and the input with amplitudea= 2, the output and its
first harmonic are shown in (b). The Nyquist plots of the transfer function L(s) = (s+1)−4

and the negative of the inverse describing function for the relay withb = 3 andc = 1 are
shown in (c).

Consider a linear system with a nonlinearity consisting of arelay with hystere-
sis. The output has amplitudeb and the relay switches when the input is±c, as
shown in Figure9.17a. Assuming that the input isu = asin(ωt), we find that
the output is zero ifa ≤ c, and if a > c, the output is a square wave with am-
plitudeb that switches at timesωt = arcsin(c/a)+nπ. The first harmonic is then
y(t) = (4b/π)sin(ωt −α), where sinα = c/a. For a> c the describing function
and its inverse are

N(a) =
4b
aπ

(√
1− c2

a2 − i
c
a

)
,

1
N(a)

=
π
√

a2−c2

4b
+ i

πc
4b

,

where the inverse is obtained after simple calculations. Figure 9.17bshows the
response of the relay to a sinusoidal input with the first harmonic of the output
shown as a dashed line. Describing function analysis is illustrated in Figure9.17c,
which shows the Nyquist plot of the transfer functionL(s) = 2/(s+1)4 (dashed
line) and the negative inverse describing function of a relay with b= 1 andc= 0.5.
The curves intersect fora = 1 andω = 0.77 rad/s, indicating the amplitude and
frequency for a possible oscillation if the process and the relay are connected in a
a feedback loop. ∇

9.6 Further Reading

Nyquist’s original paper giving his now famous stability criterion was published in
theBell Systems Technical Journalin 1932 [Nyq32]. More accessible versions are
found in the book [BK64], which also includes other interesting early papers on
control. Nyquist’s paper is also reprinted in an IEEE collection of seminal papers
on control [Bas01]. Nyquist used+1 as the critical point, but Bode changed it to
−1, which is now the standard notation. Interesting perspectives on early devel-
opments are given by Black [Bla77], Bode [Bod60] and Bennett [Ben93]. Nyquist
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did a direct calculation based on his insight into the propagation of sinusoidal sig-
nals through systems; he did not use results from the theory of complex functions.
The idea that a short proof can be given by using the principle of variation of the
argument is presented in the delightful book by MacColl [Mac45]. Bode made
extensive use of complex function theory in his book [Bod45], which laid the
foundation for frequency response analysis where the notion of minimum phase
was treated in detail. A good source for complex function theory is the classic by
Ahlfors [Ahl66]. Frequency response analysis was a key element in the emergence
of control theory as described in the early texts by James et al. [JNP47], Brown and
Campbell [BC48] and Oldenburger [Old56], and it became one of the cornerstones
of early control theory. Frequency response methods underwent a resurgence when
robust control emerged in the 1980s, as will be discussed in Chapter12.

Exercises

9.1 (Operational amplifier) Consider an op amp circuit withZ1 = Z2 that gives
a closed loop system with nominally unit gain. Let the transfer function of the
operational amplifier be

G(s) =
ka1a2

(s+a)(s+a1)(s+a2)
,

wherea1,a2 ≫ a. Show that the condition for oscillation isk < a1+a2 and com-
pute the gain margin of the system. Hint: Assumea= 0.

9.2 (Atomic force microscope) The dynamics of the tapping mode ofan atomic
force microscope are dominated by the damping of the cantilever vibrations and
the system that averages the vibrations. Modeling the cantilever as a spring–mass
system with low damping, we find that the amplitude of the vibrations decays as
exp(−ζ ωt), whereζ is the damping ratio andω is the undamped natural frequency
of the cantilever. The cantilever dynamics can thus be modeled by the transfer
function

G(s) =
a

s+a
,

wherea= ζ ω0. The averaging process can be modeled by the input/output relation

y(t) =
1
τ

∫ t

t−τ
u(v)dv,

where the averaging time is a multiplen of the period of the oscillation 2π/ω. The
dynamics of the piezo scanner can be neglected in the first approximation because
they are typically much faster thana. A simple model for the complete system is
thus given by the transfer function

P(s) =
a(1−e−sτ)

sτ(s+a)
.
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Plot the Nyquist curve of the system and determine the gain of aproportional
controller that brings the system to the boundary of stability.

9.3 (Heat conduction) A simple model for heat conduction in a solid is given by
the transfer function

P(s) = ke−
√

s.

Sketch the Nyquist plot of the system. Determine the frequency where the phase
of the process is−180◦ and the gain at that frequency. Show that the gain required
to bring the system to the stability boundary isk= eπ .

9.4 (Vectored thrust aircraft) Consider the state space controller designed for the�
vectored thrust aircraft in Examples6.8 and7.5. The controller consists of two
components: an optimal estimator to compute the state of thesystem from the out-
put and a state feedback compensator that computes the inputgiven the (estimated)
state. Compute the loop transfer function for the system anddetermine the gain,
phase and stability margins for the closed loop dynamics.

9.5 (Vehicle steering) Consider the linearized model for vehicle steering with a
controller based on state feedback discussed in Example7.4. The transfer functions
for the process and controller are given by

P(s) =
γs+1

s2 , C(s) =
s(k1l1+k2l2)+k1l2

s2+s(γk1+k2+ l1)+k1+ l2+k2l1− γk2l2
,

as computed in Example8.6. Let the process parameter beγ = 0.5 and assume that
the state feedback gains arek1 = 1 andk2 = 0.914 and that the observer gains are
l1 = 2.828 andl2 = 4. Compute the stability margins numerically.

9.6 (Stability margins for second-order systems) A process whose dynamics is
described by a double integrator is controlled by an ideal PD controller with the
transfer functionC(s) = kds+ kp, where the gains arekd = 2ζ ω0 andkp = ω2

0 .
Calculate and plot the gain, phase and stability margins as afunctionζ .

9.7 (Congestion control in overload conditions) A strongly simplified flow model
of a TCP loop under overload conditions is given by the loop transfer function

L(s) =
k
s
e−sτ ,

where the queuing dynamics are modeled by an integrator, theTCP window con-
trol is a time delayτ and the controller is simply a proportional controller. A major
difficulty is that the time delay may change significantly during the operation of
the system. Show that if we can measure the time delay, it is possible to choose a
gain that gives a stability margin ofsn ≥ 0.6 for all time delaysτ.

9.8 (Bode’s formula) Consider Bode’s formula (9.8) for the relation between gain
and phase for a transfer function that has all its singularities in the left half-plane.
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Plot the weighting function and make an assessment of the frequencies where the
approximation argG≈ (π/2)d log|G|/d logω is valid.

9.9 (Pad́e approximation to a time delay) Consider the transfer functions

G1(s) = e−sτ , G2(s) = e−sτ ≈ 1−sτ/2
1+sτ/2

. (9.16)

Show that the minimum phase properties of the transfer functions are similar for
frequenciesω < 1/τ. A long time delayτ is thus equivalent to a small right half-
plane zero. The approximation (9.16) is called a first-orderPad́e approximation.

9.10(Inverse response) Consider a system whose input/output response is modeled
by G(s) = 6(−s+1)/(s2+5s+6), which has a zero in the right half-plane. Com-
pute the step response for the system, and show that the output goes in the wrong
direction initially, which is also referred to as aninverse response. Compare the
response to a minimum phase system by replacing the zero ats= 1 with a zero at
s=−1.

9.11(Describing function analysis) . Consider the system with the block diagram
shown on the left below.

−1

Σ
r e u

P(s)
y

R( ·)

y

u

c

b

The blockR is a relay with hysteresis whose input/output response is shown on the
right and the process transfer function isP(s) = e−sτ/s. Use describing function
analysis to determine frequency and amplitude of possible limit cycles. Simulate
the system and compare with the results of the describing function analysis.



Chapter Ten
PID Control

Based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and
paper industries, 97% of regulatory controllers utilize PID feedback.

L. Desborough and R. Miller, 2002 [DM02].

This chapter treats the basic properties of proportional-integral-derivative (PID)
control and the methods for choosing the parameters of the controllers. We also
analyze the effects of actuator saturation and time delay, two important features of
many feedback systems, and describe methods for compensating for these effects.
Finally, we will discuss the implementation of PID controllers as an example of
how to implement feedback control systems using analog or digital computation.

10.1 Basic Control Functions

PID control, which was introduced in Section1.5and has been used in several ex-
amples, is by far the most common way of using feedback in engineering systems.
It appears in simple devices and in large factories with thousands of controllers.
PID controllers appear in many different forms: as stand-alone controllers, as part
of hierarchical, distributed control systems and built into embedded components.
Most PID controllers do not use derivative action, so they should strictly speaking
be called PI controllers; we will, however, use PID as a genericterm for this class
of controller. There is also growing evidence that PID controlappears in biological
systems [YHSD00].

Block diagrams of closed loop systems with PID controllers are shown in Fig-
ure 10.1. The control signalu for the system in Figure10.1ais formed entirely
from the errore; there is no feedforward term (which would correspond tokr r in
the state feedback case). A common alternative in which proportional and deriva-
tive action do not act on the reference is shown in Figure10.1b; combinations of
the schemes will be discussed in Section10.5. The command signalr is called
the reference signal in regulation problems, or thesetpointin the literature of PID
control. The input/output relation for an ideal PID controller with error feedback
is

u= kpe+ki

∫ t

0
e(τ)dτ +kd

de
dt

= kp

(
e+

1
Ti

∫ t

0
e(τ)dτ +Td

de
dt

)
. (10.1)
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(b) PID using two degrees of freedom

Figure 10.1: Block diagrams of closed loop systems with ideal PID controllers. Both con-
trollers have one output, the control signalu. The controller in (a), which is based on error
feedback, has one input, the control errore= r −y. For this controller proportional, integral
and derivative action acts on the errore= r −y. The two degree-of-freedom controller in (b)
has two inputs, the referencer and the process outputy. Integral action acts on the error, but
proportional and derivative action act on the process outputy.

The control action is thus the sum of three terms: proportional feedback, the in-
tegral term and derivative action. For this reason PID controllers were originally
calledthree-term controllers. The controller parameters are the proportional gain
kp, the integral gainki and the derivative gainkd. The time constantsTi andTd,
called integral time (constant) and derivative time (constant), are sometimes used
instead of the integral and derivative gains.

The controller (10.1) represents an idealized controller. It is a useful abstrac-
tion for understanding the PID controller, but several modifications must be made
to obtain a controller that is practically useful. Before discussing these practical
issues we will develop some intuition about PID control.

We start by considering pure proportional feedback. Figure10.2ashows the re-
sponses of the process output to a unit step in the reference value for a system with
pure proportional control at different gain settings. In the absence of a feedforward
term, the output never reaches the reference, and hence we are left with nonzero
steady-state error. Letting the process and the controller have transfer functions
P(s) andC(s), the transfer function from reference to output is

Gyr =
PC

1+PC
, (10.2)

and thus the steady-state error for a unit step is

1−Gyr(0) =
1

1+kpP(0)
.

For the system in Figure10.2awith gainskp = 1, 2 and 5, the steady-state error is
0.5, 0.33 and 0.17. The error decreases with increasing gain,but the system also
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Figure 10.2: Responses to step changes in the reference value for a system with a propor-
tional controller (a), PI controller (b) and PID controller (c). The process has the transfer
functionP(s) = 1/(s+1)3, the proportional controller has parameterskp = 1, 2 and 5, the
PI controller has parameterskp = 1, ki = 0, 0.2, 0.5 and 1, and the PID controller has param-
eterskp = 2.5, ki = 1.5 andkd = 0, 1, 2 and 4.

becomes more oscillatory. Notice in the figure that the initial value of the control
signal equals the controller gain.

To avoid having a steady-state error, the proportional termcan be changed to

u(t) = kpe(t)+uff , (10.3)

whereuff is a feedforward term that is adjusted to give the desired steady-state
value. If we chooseuff = r/P(0) = kr r, then the output will be exactly equal to
the reference value, as it was in the state space case, provided that there are no
disturbances. However, this requires exact knowledge of the process dynamics,
which is usually not available. The parameteruff , calledresetin the PID literature,
must therefore be adjusted manually.

As we saw in Section6.4, integral action guarantees that the process output
agrees with the reference in steady state and provides an alternative to the feed-
forward term. Since this result is so important, we will provide a general proof.
Consider the controller given by equation (10.1). Assume that there exists a steady
state withu= u0 ande= e0. It then follows from equation (10.1) that

u0 = kpe0+kie0t,

which is a contradiction unlesse0 or ki is zero. We can thus conclude that with inte-
gral action the error will be zero if it reaches a steady state. Notice that we have not
made any assumptions about the linearity of the process or the disturbances. We
have, however assumed that an equilibrium exists. Using integral action to achieve
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(b) Derivative action

Figure 10.3: Implementation of PI and PD controllers. The block diagram in (a) shows how
integral action is implemented usingpositive feedbackwith a first-order system, sometimes
called automatic reset. The block diagram in (b) shows how derivative action can be imple-
mented by taking differences between a static system and a first-order system.

zero steady-state error is much better than using feedforward, which requires a
precise knowledge of process parameters.

The effect of integral action can also be understood from frequency domain
analysis. The transfer function of the PID controller is

C(s) = kp+
ki

s
+kds. (10.4)

The controller has infinite gain at zero frequency (C(0) = ∞), and it then follows
from equation (10.2) that Gyr(0) = 1, which implies that there is no steady-state
error for a step input.

Integral action can also be viewed as a method for generatingthe feedforward
term uff in the proportional controller (10.3) automatically. One way to do this
is shown in Figure10.3a, where the controller output is low-pass-filtered and fed
back with positive gain. This implementation, calledautomatic reset, was one of
the early inventions of integral control. The transfer function of the system in Fig-
ure10.3ais obtained by block diagram algebra; we have

Gue= kp
1+sTi

sTi
= kp+

kp

sTi
,

which is the transfer function for a PI controller.
The properties of integral action are illustrated in Figure10.2bfor a step input.

The proportional gain is constant,kp = 1, and the integral gains areki = 0, 0.2,
0.5 and 1. The caseki = 0 corresponds to pure proportional control, with a steady-
state error of 50%. The steady-state error is eliminated whenintegral gain action
is used. The response creeps slowly toward the reference for small values ofki and
goes faster for larger integral gains, but the system also becomes more oscillatory.

The integral gainki is a useful measure for attenuation of load disturbances.
Consider a closed loop system under PID control and assume that the system is
stable and initially at rest with all signals being zero. Apply a unit step disturbance
at the process input. After a transient the process output goes to zero and the con-
troller output settles at a value that compensates for the disturbance. It follows
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from (10.1) that
u(∞) = ki

∫ ∞

0
e(t)dt.

The integrated error is thus inversely proportional to the integral gainki . The inte-
gral gain is thus a measure of the effectiveness of disturbance attenuation. A large
gain ki attenuates disturbances effectively, but too large a gain gives oscillatory
behavior, poor robustness and possibly instability.

We now return to the general PID controller and consider the effect of the
derivative termkd. Recall that the original motivation for derivative feedback was
to provide predictive or anticipatory action. Notice that the combination of the
proportional and the derivative terms can be written as

u= kpe+kd
de
dt

= kp
(
e+Td

de
dt

)
= kpep,

whereep(t) can be interpreted as a prediction of the error at timet +Td by linear
extrapolation. The prediction timeTd = kd/kp is the derivative time constant of the
controller.

Derivative action can be implemented by taking the difference between the
signal and its low-pass filtered version as shown in Figure10.3b. The transfer
function for the system is

Gue(s) = kp

(
1− 1

1+sTd

)
= kp

sTd

1+sTd
. (10.5)

The system thus has the transfer functionG(s) = sTd/(1+ sTd), which approxi-
mates a derivative for low frequencies (|s|< 1/Td).

Figure10.2cillustrates the effect of derivative action: the system is oscillatory
when no derivative action is used, and it becomes more dampedas the derivative
gain is increased. Performance deteriorates if the derivative gain is too high. When
the input is a step, the controller output generated by the derivative term will be
an impulse. This is clearly visible in Figure10.2c. The impulse can be avoided by
using the controller configuration shown in Figure10.1b.

Although PID control was developed in the context of engineering applications,
it also appears in nature. Disturbance attenuation by feedback in biological sys-
tems is often calledadaptation. A typical example is the pupillary reflex discussed
in Example8.11, where it is said that the eye adapts to changing light intensity.
Analogously, feedback with integral action is called perfect adaptation [YHSD00].
In biological systems proportional, integral and derivative action is generated by
combining subsystems with dynamical behavior similarly towhat is done in en-
gineering systems. For example, PI action can be generated bythe interaction of
several hormones [ESGK02].

Example 10.1 PD action in the retina
The response of cone photoreceptors in the retina is an example where proportional
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Figure 10.4:Schematic diagram of cone photoreceptors (C) and horizontal cells (H)in the
retina. In the schematic diagram in (a), excitatory feedback is indicated byarrows and in-
hibitory feedback by circles. A block diagram is shown in (b) and the step response in (c).

and derivative action is generated by a combination of conesand horizontal cells.
The cones are the primary receptors stimulated by light, which in turn stimulate the
horizontal cells, and the horizontal cells give inhibitory(negative) feedback to the
cones. A schematic diagram of the system is shown in Figure10.4a. The system
can be modeled by ordinary differential equations by representing neuron signals
as continuous variables representing the average pulse rate. In [Wil99] it is shown
that the system can be represented by the differential equations

dx1

dt
=

1
Tc
(−x1−kx2+u),

dx2

dt
=

1
Th

(x1−x2),

whereu is the light intensity andx1 andx2 are the average pulse rates from the
cones and the horizontal cells. A block diagram of the systemis shown in Fig-
ure10.4b. The step response of the system shown in Figure10.4cshows that the
system has a large initial response followed by a lower, constant steady-state re-
sponse typical of proportional and derivative action. The parameters used in the
simulation arek= 4, Tc = 0.025 andTh = 0.08. ∇

10.2 Simple Controllers for Complex Systems

Many of the design methods discussed in previous chapters have the property
that the complexity of the controller is directly reflected bythe complexity of the
model. When designing controllers by output feedback in Chapter7, we found for
single-input, single-output systems that the order of the controller was the same as
the order of the model, possibly one order higher if integralaction was required.
Applying similar design methods for PID control will requirethat we have low-
order models of the processes to be able to easily analyze theresults.

Low-order models can be obtained from first principles. Any stable system
can be modeled by a static system if its inputs are sufficientlyslow. Similarly a
first-order model is sufficient if the storage of mass, momentumor energy can be
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captured by only one variable; typical examples are the velocity of a car on a road,
angular velocity of a stiff rotational system, the level in atank and the concentra-
tion in a volume with good mixing. System dynamics are of second order if the
storage of mass, energy and momentum can be captured by two state variables;
typical examples are the position of a car on the road, the stabilization of stiff
satellites, the levels in two connected tanks and two-compartment models. A wide
range of techniques for model reduction are also available.In this chapter we will
focus on design techniques where we simplify the models to capture the essential
properties that are needed for PID design.

We begin by analyzing the case of integral control. A stable system can be con-
trolled by an integral controller provided that the requirements on the closed loop
system are modest. To design the controller we assume that the transfer function
of the process is a constantK = P(0). The loop transfer function under integral
control then becomesKki/s, and the closed loop characteristic polynomial is sim-
ply s+Kki . Specifying performance by the desired time constantTcl of the closed
loop system, we find that the integral gain is given by

ki = 1/(TclP(0)).

The analysis requires thatTcl be sufficiently large that the process transfer function
can be approximated by a constant.

For systems that are not well represented by a constant gain,we can obtain
a better approximation by using the Taylor series expansionof the loop transfer
function:

L(s) =
kiP(s)

s
≈ ki(P(0)+sP′(0))

s
= kiP

′(0)+
kiP(0)

s
.

ChoosingkiP′(0) =−0.5 gives a system with good robustness, as will be discussed
in Section12.5. The controller gain is then given by

ki =− 1
2P′(0)

, (10.6)

and the expected closed loop time constant isTcl ≈−2P′(0)/P(0).

Example 10.2 Integral control of AFM in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force
microscope in tapping mode was discussed in Exercise9.2. The transfer function
for the system dynamics is

P(s) =
a(1−e−sτ)

sτ(s+a)
,

wherea = ζ ω0, τ = 2πn/ω0 and the gain has been normalized to 1. We have
P(0) = 1 andP′(0) =−τ/2−1/a, and it follows from (10.6) that the integral gain
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Figure 10.5: Integral control for AFM in tapping mode. An integral controller is designed
based on the slope of the process transfer function at 0. The controllergives good robustness
properties based on a very simple analysis.

can be chosen aski = a/(2+aτ). Nyquist and Bode plots for the resulting loop
transfer function are shown in Figure10.5. ∇

A first-order system has the transfer function

P(s) =
b

s+a
.

With a PI controller the closed loop system has the characteristic polynomial

s(s+a)+bkps+bki = s2+(a+bkp)s+bki .

The closed loop poles can thus be assigned arbitrary values byproper choice of
the controller gains. Requiring that the closed loop systemhave the characteristic
polynomial

p(s) = s2+a1s+a2,

we find that the controller parameters are

kp =
a1−a

b
, ki =

a2

b
. (10.7)

If we require a response of the closed loop system that is slower than that of the
open loop system, a reasonable choice isa1 = a+α anda2 = αa. If a response
faster than that of the open loop system is required, it is reasonable to choose
a1 = 2ζ ω0 anda2 = ω2

0 , whereω0 andζ are undamped natural frequency and
damping ratio of the dominant mode. These choices have significant impact on
the robustness of the system and will be discussed in Section12.4. An upper limit
to ω0 is given by the validity of the model. Large values ofω0 will require fast
control actions, and actuators may saturate if the value is too large. A first-order
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Figure 10.6: Cruise control using PI feedback. The step responses for the errorand input
illustrate the effect of parametersζ = 1 andω0 on the response of a car with cruise control.
A change in road slope from 0◦ to 4◦ is applied betweent = 5 and 6 s. (a) Responses for
ω0 = 0.5 andζ = 0.5, 1 and 2. Choosingζ = 1 gives no overshoot. (b) Responses forζ = 1
andω0 = 0.2, 0.5 and 1.0.

model is unlikely to represent the true dynamics for high frequencies. We illustrate
the design by an example.

Example 10.3 Cruise control using PI feedback
Consider the problem of maintaining the speed of a car as it goes up a hill. In
Example5.14we found that there was little difference between the linearand non-
linear models when investigating PI control, provided that the throttle did not reach
the saturation limits. A simple linear model of a car was given in Example5.11:

d(v−ve)

dt
=−a(v−ve)+b(u−ue)−gθ , (10.8)

wherev is the velocity of the car,u is the input from the engine andθ is the slope
of the hill. The parameters werea = 0.0101,b = 1.3203,g = 9.8, ve = 20 and
ue= 0.1616. This model will be used to find suitable parameters of a vehicle speed
controller. The transfer function from throttle to velocityis a first-order system.
Since the open loop dynamics is so slow, it is natural to specify a faster closed loop
system by requiring that the closed loop system be of second-order with damping
ratio ζ and undamped natural frequencyω0. The controller gains are given by
(10.7).

Figure10.6 shows the velocity and the throttle for a car that initially moves
on a horizontal road and encounters a hill with a slope of 4◦ at time t = 6 s. To
design a PI controller we chooseζ = 1 to obtain a response without overshoot, as
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shown in Figure10.6a. The choice ofω0 is a compromise between response speed
and control actions: a large value gives a fast response, butit requires fast con-
trol action. The trade-off is illustrated in Figure10.6b. The largest velocity error
decreases with increasingω0, but the control signal also changes more rapidly. In
the simple model (10.8) it was assumed that the force responds instantaneously to
throttle commands. For rapid changes there may be additional dynamics that have
to be accounted for. There are also physical limitations to the rate of change of the
force, which also restricts the admissible value ofω0. A reasonable choice ofω0
is in the range 0.5–1.0. Notice in Figure10.6that even withω0 = 0.2 the largest
velocity error is only 1 m/s. ∇

A PI controller can also be used for a process with second-order dynamics, but
there will be restrictions on the possible locations of the closed loop poles. Using
a PID controller, it is possible to control a system of second order in such a way
that the closed loop poles have arbitrary locations; see Exercise10.2.

Instead of finding a low-order model and designing controllers for them, we
can also use a high-order model and attempt to place only a fewdominant poles.
An integral controller has one parameter, and it is possibleto position one pole.
Consider a process with the transfer functionP(s). The loop transfer function with
an integral controller isL(s) = kiP(s)/s. The roots of the closed loop characteristic
polynomial are the roots ofs+kiP(s) = 0. Requiring thats=−a be a root, we find
that the controller gain should be chosen as

ki =
a

P(−a)
. (10.9)

The poles=−a will be dominant ifa is small. A similar approach can be applied
to PI and PID controllers.

10.3 PID Tuning

Users of control systems are frequently faced with the task of adjusting the con-
troller parameters to obtain a desired behavior. There are many different ways to
do this. One approach is to go through the conventional stepsof modeling and
control design as described in the previous section. Since the PID controller has
so few parameters, a number of special empirical methods have also been devel-
oped for direct adjustment of the controller parameters. Thefirst tuning rules were
developed by Ziegler and Nichols [ZN42]. Their idea was to perform a simple
experiment, extract some features of process dynamics fromthe experiment and
determine the controller parameters from the features.
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Figure 10.7: Ziegler–Nichols step and frequency response experiments. The unit step re-
sponse in (a) is characterized by the parametersa andτ. The frequency response method (b)
characterizes process dynamics by the point where the Nyquist curveof the process transfer
function first intersects the negative real axis and the frequencyωc where this occurs.

Ziegler–Nichols’ Tuning

In the 1940s, Ziegler and Nichols developed two methods for controller tuning
based on simple characterization of process dynamics in thetime and frequency
domains.

The time domain method is based on a measurement of part of the open loop
unit step response of the process, as shown in Figure10.7a. The step response is
measured by applying a unit step input to the process and recording the response.
The response is characterized by parametersa andτ, which are the intercepts of
the steepest tangent of the step response with the coordinate axes. The parameter
τ is an approximation of the time delay of the system anda/τ is the steepest slope
of the step response. Notice that it is not necessary to wait until steady state is
reached to find the parameters, it suffices to wait until the response has had an
inflection point. The controller parameters are given in Table10.1. The parameters
were obtained by extensive simulation of a range of representative processes. A
controller was tuned manually for each process, and an attempt was then made to
correlate the controller parameters witha andτ.

In the frequency domain method, a controller is connected tothe process, the
integral and derivative gains are set to zero and the proportional gain is increased
until the system starts to oscillate. The critical value of the proportional gainkc

is observed together with the period of oscillationTc. It follows from Nyquist’s
stability criterion that the loop transfer functionL = kcP(s) intersects the critical
point at the frequencyωc = 2π/Tc. The experiment thus gives the point on the
Nyquist curve of the process transfer function where the phase lag is 180◦, as
shown in Figure10.7b.

The Ziegler–Nichols methods had a huge impact when they were introduced
in the 1940s. The rules were simple to use and gave initial conditions for manual
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Table 10.1:Ziegler–Nichols tuning rules. (a) The step response methods give the parameters
in terms of the intercepta and the apparent time delayτ. (b) The frequency response method
gives controller parameters in terms ofcritical gain kc andcritical period Tc.

Type kp Ti Td

P 1/a

PI 0.9/a 3τ

PID 1.2/a 2τ 0.5τ

(a) Step response method

Type kp Ti Td

P 0.5kc

PI 0.4kc 0.8Tc

PID 0.6kc 0.5Tc 0.125Tc

(b) Frequency response method

tuning. The ideas were adopted by manufacturers of controllers for routine use.
The Ziegler–Nichols tuning rules unfortunately have two severe drawbacks: too
little process information is used, and the closed loop systems that are obtained
lack robustness.

The step response method can be improved significantly by characterizing the
unit step response by parametersK, τ andT in the model

P(s) =
K

1+sT
e−τs. (10.10)

The parameters can be obtained by fitting the model to a measuredstep response.
Notice that the experiment takes a longer time than the experiment in Figure10.7a
because to determineK it is necessary to wait until the steady state has been
reached. Also notice that the intercepta in the Ziegler–Nichols rule is given by
a= Kτ/T.

The frequency response method can be improved by measuring more points on
the Nyquist curve, e.g., the zero frequency gainK or the point where the process
has a 90◦ phase lag. This latter point can be obtained by connecting an integral
controller and increasing its gain until the system reachesthe stability limit. The
experiment can also be automated by using relay feedback, aswill be discussed
later in this section.

There are many versions of improved tuning rules. As an illustration we give
the following rules for PI control, based on [ÅH05]:

kp =
0.15τ +0.35T

Kτ

(0.9T
Kτ

)
, ki =

0.46τ +0.02T
Kτ2

(0.3T
Kτ2

)
,

kp = 0.22kc−
0.07
K

(
0.4kc

)
, ki =

0.16kc

Tc
+

0.62
KTc

(0.5kc

Tc

)
.

(10.11)

The values for the Ziegler–Nichols rule are given in parentheses. Notice that the
improved formulas typically give lower controller gains than the Ziegler–Nichols
method. The integral gain is higher for systems where the dynamics are delay-
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Figure 10.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step responses
(b) for PI control of the vertical motion of an atomic force microscope intapping mode. The
averaging parameter isn = 20. Results with Ziegler–Nichols tuning are shown by dashed
lines, and modified Ziegler–Nichols tuning is shown by solid lines. The Nyquist plot of the
process transfer function is shown by dotted lines.

dominated,τ ≫ T.

Example 10.4 Atomic force microscope in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force
microscope in tapping mode was discussed in Example10.2. The transfer function
is normalized by choosing 1/a as the time unit. The normalized transfer function
is

P(s) =
1−e−sTn

sTn(s+1)
,

whereTn = 2nπa/ω0 = 2nπζ . The Nyquist plot of the transfer function is shown
in Figure10.8afor z= 0.002 andn= 20. The leftmost intersection of the Nyquist
curve with the real axis occurs at Res= −0.0461 forω = 13.1. The critical gain
is thuskc = 21.7 and the critical period isTc = 0.48. Using the Ziegler–Nichols
tuning rule, we find the parameterskp = 8.87 andki = 22.6 (Ti = 0.384) for a PI
controller. With this controller the stability margin issm = 0.31, which is quite
small. The step response of the controller is shown in Figure10.8. Notice in par-
ticular that there is a large overshoot in the control signal.

The modified Ziegler–Nichols rule (10.11) gives the controller parameterskp =
3.47 andki = 8.73 (Ti = 0.459) and the stability margin becomessm = 0.61. The
step response with this controller is shown in Figure10.8. A comparison of the re-
sponses obtained with the original Ziegler–Nichols rule shows that the overshoot
has been reduced. Notice that the control signal reaches itssteady-state value al-
most instantaneously. It follows from Example10.2that a pure integral controller
has the normalized gainki = 1/(2+Tn) = 0.44. Comparing this with the gains of a
PI controller, we can conclude that a PI controller gives much better performance
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Figure 10.9:Block diagram of a process with relay feedback (a) and typical signals (b). The
process outputy is a solid line, and the relay outputu is a dashed line. Notice that the signals
u andy have opposite phases.

than a pure integral controller. ∇

Relay Feedback

The Ziegler–Nichols frequency response method increases thegain of a propor-
tional controller until oscillation to determine the critical gainkc and the corre-
sponding critical periodTc or, equivalently, the point where the Nyquist curve in-
tersects the negative real axis. One way to obtain this information automatically is
to connect the process in a feedback loop with a nonlinear element having a relay
function as shown in Figure10.9a. For many systems there will then be an oscilla-
tion, as shown in Figure10.9b, where the relay outputu is a square wave and the
process outputy is close to a sinusoid. Moreover the input and the output are out
of phase, which means that the system oscillates with the critical periodTc, where
the process has a phase lag of 180◦. Notice that an oscillation with constant period
is established quickly.

The critical period is simply the period of the oscillation. To determine the
critical gain we expand the square wave relay output in a Fourier series. Notice
in the figure that the process output is practically sinusoidal because the process
attenuates higher harmonics effectively. It is then sufficient to consider only the
first harmonic component of the input. Lettingd be the relay amplitude, the first
harmonic of the square wave input has amplitude 4d/π. If a is the amplitude of the
process output, the process gain at the critical frequencyωc = 2π/Tc is |P(iωc)|=
πa/(4d) and the critical gain is

Kc =
4d
aπ

. (10.12)

Having obtained the critical gainKc and the critical periodTc, the controller pa-
rameters can then be determined using the Ziegler–Nichols rules. Improved tuning
can be obtained by fitting a model to the data obtained from the relay experiment.
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The relay experiment can be automated. Since the amplitude of the oscillation
is proportional to the relay output, it is easy to control it by adjusting the relay
output.Automatic tuningbased on relay feedback is used in many commercial PID
controllers. Tuning is accomplished simply by pushing a button that activates relay
feedback. The relay amplitude is automatically adjusted to keep the oscillations
sufficiently small, and the relay feedback is switched to a PID controller as soon
as the tuning is finished.

10.4 Integrator Windup

Many aspects of a control system can be understood from linear models. There are,
however, some nonlinear phenomena that must be taken into account. These are
typically limitations in the actuators: a motor has limitedspeed, a valve cannot be
more than fully opened or fully closed, etc. For a system thatoperates over a wide
range of conditions, it may happen that the control variablereaches the actuator
limits. When this happens, the feedback loop is broken and the system runs in
open loop because the actuator remains at its limit independently of the process
output as long as the actuator remains saturated. The integral term will also build
up since the error is typically nonzero. The integral term andthe controller output
may then become very large. The control signal will then remain saturated even
when the error changes, and it may take a long time before the integrator and the
controller output come inside the saturation range. The consequence is that there
are large transients. This situation is referred to asintegrator windup, illustrated in
the following example.

Example 10.5 Cruise control
The windup effect is illustrated in Figure10.10a, which shows what happens when
a car encounters a hill that is so steep (6◦) that the throttle saturates when the cruise
controller attempts to maintain speed. When encountering the slope at timet = 5,
the velocity decreases and the throttle increases to generate more torque. However,
the torque required is so large that the throttle saturates.The error decreases slowly
because the torque generated by the engine is just a little larger than the torque
required to compensate for gravity. The error is large and theintegral continues
to build up until the error reaches zero at time 30, but the controller output is still
larger than the saturation limit and the actuator remains saturated. The integral
term starts to decrease, and at time 45 and the velocity settles quickly to the desired
value. Notice that it takes considerable time before the controller output comes into
the range where it does not saturate, resulting in a large overshoot. ∇

There are many methods to avoid windup. One method is illustrated in Fig-
ure 10.11: the system has an extra feedback path that is generated by measuring
the actual actuator output, or the output of a mathematical model of the saturating
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(b) Anti-windup

Figure 10.10: Simulation of PI cruise control with windup (a) and anti-windup (b). The
figure shows the speedv and the throttleu for a car that encounters a slope that is so steep that
the throttle saturates. The controller output is a dashed line. The controller parameters are
kp = 0.5 andki = 0.1. The anti-windup compensator eliminates the overshoot by preventing
the error for building up in the integral term of the controller.

actuator, and forming an error signales as the difference between the output of
the controllerv and the actuator outputu. The signales is fed to the input of the
integrator through gainkt . The signales is zero when there is no saturation and the
extra feedback loop has no effect on the system. When the actuator saturates, the
signales is fed back to the integrator in such a way thates goes toward zero. This
implies that controller output is kept close to the saturation limit. The controller
output will then change as soon as the error changes sign and integral windup is
avoided.

The rate at which the controller output is reset is governed bythe feedback
gainkt ; a large value ofkt gives a short reset time. The parameterkt cannot be too
large because measurement noise can then cause an undesirable reset. A reasonable
choice is to choosekt as a fraction of 1/Ti . We illustrate how integral windup can
be avoided by investigating the cruise control system.

Example 10.6 Cruise control with anti-windup
Figure10.10bshows what happens when a controller with anti-windup is applied
to the system simulated in Figure10.10a. Because of the feedback from the ac-
tuator model, the output of the integrator is quickly reset to a value such that the
controller output is at the saturation limit. The behavior isdrastically different from
that in Figure10.10aand the large overshoot is avoided. The tracking gain iskt = 2
in the simulation. ∇
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Figure 10.11: PID controller with a filtered derivative and anti-windup. The input to the
integrator (1/s) consists of the error term plus a “reset” based on input saturation. If the
actuator is not saturated, thenes = u−ν , otherwisees will decrease the integrator input to
prevent windup.

10.5 Implementation

There are many practical issues that have to be considered when implementing PID
controllers. They have been developed over time based on practical experience. In
this section we consider some of the most common. Similar considerations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivative has high gain for high-
frequency signals. This means that high-frequency measurement noise will gener-
ate large variations in the control signal. The effect of measurement noise may be
reduced by replacing the termkds by kds/(1+ sTf ), which can be interpreted as
an ideal derivative of a low-pass filtered signal. For smalls the transfer function
is approximatelykds and for larges it is equal tokd/Tf . The approximation acts
as a derivative for low-frequency signals and as a constant gain for high-frequency
signals. The filtering time is chosen asTf = (kd/kp)/N, with N in the range 2–20.
Filtering is obtained automatically if the derivative is implemented by taking the
difference between the signal and its filtered version as shown in Figure10.3b(see
equation (10.5)).

Instead of filtering just the derivative, it is also possible to use an ideal con-
troller and filter the measured signal. The transfer function of such a controller
with a filter is then

C(s) = kp

(
1+

1
sTi

+sTd

)
1

1+sTf +(sTf )2/2
, (10.13)

where a second-order filter is used.
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Setpoint Weighting

Figure 10.1 shows two configurations of a PID controller. The system in Fig-
ure 10.1ahas a controller witherror feedbackwhere proportional, integral and
derivative action acts on the error. In the simulation of PID controllers in Fig-
ure10.2cthere is a large initial peak in the control signal, which is caused by the
derivative of the reference signal. The peak can be avoided byusing the controller
in Figure10.1b, where proportional and derivative action acts only on the process
output. An intermediate form is given by

u= kp
(
β r −y

)
+ki

∫ ∞

0

(
r(τ)−y(τ)

)
dτ +kd

(
γ

dr
dt

− dy
dt

)
, (10.14)

where the proportional and derivative actions act on fractionsβ andγ of the ref-
erence. Integral action has to act on the error to make sure that the error goes to
zero in steady state. The closed loop systems obtained for different values ofβ
andγ respond to load disturbances and measurement noise in the same way. The
response to reference signals is different because it depends on the values ofβ and
γ, which are calledreference weightsor setpoint weights. We illustrate the effect
of setpoint weighting by an example.

Example 10.7 Cruise control with setpoint weighting
Consider the PI controller for the cruise control system derived in Example10.3.
Figure10.12shows the effect of setpoint weighting on the response of thesystem
to a reference signal. Withβ = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to the saturation limit. There is no
overshoot withβ = 0 and the control signal is much smaller, clearly a much better
drive comfort. The frequency responses gives another view ofthe same effect. The
parameterβ is typically in the range 0–1, andγ is normally zero to avoid large
transients in the control signal when the reference is changed. ∇

The controller given by equation (10.14) is a special case of the general con-
troller structure having two degrees of freedom, which was discussed in Sec-
tion 7.5.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different technologies. Figure10.13
shows how PI and PID controllers can be implemented by feedbackaround oper-
ational amplifiers.

To show that the circuit in Figure10.13b is a PID controller we will use the
approximate relation between the input voltagee and the output voltageu of the
operational amplifier derived in Example8.3,

u=−Z2

Z1
e.
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Figure 10.12:Time and frequency responses for PI cruise control with setpoint weighting.
Step responses are shown in (a), and the gain curves of the frequency responses in (b). The
controller gains arekp = 0.74 andki = 0.19. The setpoint weights areβ = 0, 0.5 and 1, and
γ = 0.

In this equationZ1 is the impedance between the negative input of the amplifier
and the input voltagee, andZ2 is the impedance between the zero input of the
amplifier and the output voltageu. The impedances are given by

Z1(s) =
R1

1+R1C1s
, Z2(s) = R2+

1
C2s

,

and we find the following relation between the input voltageeand the output volt-

−

+

R1 R C2 2

e

u

(a) PI controller

−

+

R1 R C2 2

C1

e

u

(b) PID controller

Figure 10.13:Schematic diagrams for PI and PID controllers using op amps. The circuit in
(a) uses a capacitor in the feedback path to store the integral of the error. The circuit in (b)
adds a filter on the input to provide derivative action.
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ageu:

u=−Z2

Z1
e=−R2

R1

(1+R1C1s)(1+R2C2s)
R2C2s

e.

This is the input/output relation for a PID controller of the form (10.1) with pa-
rameters

kp =
R1C1+R2C2

R1C2
, Ti = R1C1+R2C2, Td =

R1R2C1C2

R1C1+R2C2
.

The corresponding results for a PI controller are obtained by settingC1 = 0 (re-
moving the capacitor).

Computer Implementation

In this section we briefly describe how a PID controller may be implemented us-
ing a computer. The computer typically operates periodically, with signals from
the sensors sampled and converted to digital form by the A/D converter, and the
control signal computed and then converted to analog form for the actuators. The
sequence of operation is as follows:

1. Wait for clock interrupt

2. Read input from sensor

3. Compute control signal

4. Send output to the actuator

5. Update controller variables

6. Repeat

Notice that an output is sent to the actuators as soon as it is available. The time
delay is minimized by making the calculations in step 3 as short as possible and
performing all updates after the output is commanded. This simple way of reducing
the latency is, unfortunately, seldom used in commercial systems.

As an illustration we consider the PID controller in Figure10.11, which has
a filtered derivative, setpoint weighting and protection against integral windup.
The controller is a continuous-time dynamical system. To implement it using a
computer, the continuous-time system has to be approximated by a discrete-time
system.

A block diagram of a PID controller with anti-windup is shown in Figure10.11.
The signalv is the sum of the proportional, integral and derivative terms, and the
controller output isu= sat(v), where sat is the saturation function that models the
actuator. The proportional termkp(β r−y) is implemented simply by replacing the
continuous variables with their sampled versions. Hence

P(tk) = kp(β r(tk)−y(tk)) , (10.15)

where{tk} denotes the sampling instants, i.e., the times when the computer reads
its input. We leth represent the sampling time, so thattk+1 = tk+h. The integral
term is obtained by approximating the integral with a sum,

I(tk+1) = I(tk)+kihe(tk)+
h
Tt

(
sat(v)−v

)
, (10.16)
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whereTt = h/kt represents the anti-windup term. The filtered derivative termD is
given by the differential equation

Tf
dD
dt

+D =−kdẏ.

Approximating the derivative with a backward difference gives

Tf
D(tk)−D(tk−1)

h
+D(tk) =−kd

y(tk)−y(tk−1)

h
,

which can be rewritten as

D(tk) =
Tf

Tf +h
D(tk−1)−

kd

Tf +h
(y(tk)−y(tk−1)) . (10.17)

The advantage of using a backward difference is that the parameterTf /(Tf + h)
is nonnegative and less than 1 for allh> 0, which guarantees that the difference
equation is stable. Reorganizing equations (10.15)–(10.17), the PID controller can
be described by the following pseudocode:

% Precompute controller coefficients
bi=ki*h
ad=Tf/(Tf+h)
bd=kd/(Tf+h)
br=h/Tt

% Control algorithm - main loop
while (running) {

r=adin(ch1) % read setpoint from ch1
y=adin(ch2) % read process variable from ch2
P=kp*(b*r-y) % compute proportional part
D=ad*D-bd*(y-yold) % update derivative part
v=P+I+D % compute temporary output
u=sat(v,ulow,uhigh) % simulate actuator saturation
daout(ch1) % set analog output ch1
I=I+bi*(r-y)+br*(u-v) % update integral
yold=y % update old process output
sleep(h) % wait until next update interval

}

Precomputation of the coefficientsbi, ad, bd andbr saves computer time in
the main loop. These calculations have to be done only when controller parameters
are changed. The main loop is executed once every sampling period. The program
has three states:yold, I, andD. One state variable can be eliminated at the cost
of less readable code. The latency between reading the analoginput and setting
the analog output consists of four multiplications, four additions and evaluation
of thesat function. All computations can be done using fixed-point calculations
if necessary. Notice that the code computes the filtered derivative of the process
output and that it has setpoint weighting and anti-windup protection.
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10.6 Further Reading

The history of PID control is very rich and stretches back to thebeginning of the
foundation of control theory. Very readable treatments aregiven by Bennett [Ben79,
Ben93] and Mindel [Min02]. The Ziegler–Nichols rules for tuning PID controllers,
first presented in 1942 [ZN42], were developed based on extensive experiments
with pneumatic simulators and Vannevar Bush’s differential analyzer at MIT. An
interesting view of the development of the Ziegler–Nichols rules is given in an in-
terview with Ziegler [Bli90]. An industrial perspective on PID control is given in
[Bia95], [Shi96] and [YH91] and in the paper [DM02] cited in the beginning of this
chapter. A comprehensive presentation of PID control is given in [ÅH05]. Interac-
tive learning tools for PID control can be downloaded fromhttp://www.calerga.com/contrib.

Exercises

10.1 (Ideal PID controllers) Consider the systems represented bythe block dia-
grams in Figure10.1. Assume that the process has the transfer functionP(s) =
b/(s+a) and show that the transfer functions fromr to y are

(a) Gyr(s) =
bkds2+bkps+bki

(1+bkd)s2+(a+bkp)s+bki
,

(b) Gyr(s) =
bki

(1+bkd)s2+(a+bkp)s+bki
.

Pick some parameters and compare the step responses of the systems.

10.2 Consider a second-order process with the transfer function

P(s) =
b

s2+a1s+a2
.

The closed loop system with a PI controller is a third-order system. Show that
it is possible to position the closed loop poles as long as thesum of the poles
is −a1. Give equations for the parameters that give the closed loopcharacteristic
polynomial

(s+α0)(s
2+2ζ0ω0s+ω2

0).

10.3 Consider a system with the transfer functionP(s) = (s+1)−2. Find an in-
tegral controller that gives a closed loop pole ats= −a and determine the value
of a that maximizes the integral gain. Determine the other polesof the system
and judge if the pole can be considered dominant. Compare with the value of the
integral gain given by equation (10.6).

http://www.calerga.com/contrib
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10.4 (Ziegler–Nichols tuning) Consider a system with transfer function P(s) =
e−s/s. Determine the parameters of P, PI and PID controllers using Ziegler–Nichols
step and frequency response methods. Compare the parametervalues obtained by
the different rules and discuss the results.

10.5 (Vehicle steering) Design a proportional-integral controller for the vehicle
steering system that gives the closed loop characteristic polynomial

s3+2ω0s2+2ω0s+ω3
0 .

10.6 (Congestion control) A simplified flow model for TCP transmission is de-
rived in [HMTG00, LPD02]. The linearized dynamics are modeled by the transfer
function

Gqp(s) =
b

(s+a1)(s+a2)
e−sτe,

which describes the dynamics relating the expected queue length q to the ex-
pected packet dropp. The parameters are given bya1 = 2N2/(cτ2

e), a2 = 1/τe

andb= c2/(2N). The parameterc is the bottleneck capacity,N is the number of
sources feeding the link andτe is the round-trip delay time. Use the parameter val-
uesN = 75 sources,C = 1250 packets/s andτe = 0.15 and find the parameters of
a PI controller using one of the Ziegler–Nichols rules and the corresponding im-
proved rule. Simulate the responses of the closed loop systems obtained with the
PI controllers.

10.7 (Motor drive) Consider the model of the motor drive in Exercise 2.10. De-
velop an approximate second-order model of the system and use it to design an
ideal PD controller that gives a closed loop system with eigenvalues inζ ω0 ±
iω0

√
1−ζ 2. Add low-pass filtering as shown in equation (10.13) and explore

how largeω0 can be made while maintaining a good stability margin. Simulate
the closed loop system with the chosen controller and compare the results with the
controller based on state feedback in Exercise6.11.

10.8 Consider the system in Exercise10.7investigate what happens if the second-
order filtering of the derivative is replace by a first-order filter.

10.9 (Tuning rules) Apply the Ziegler–Nichols and the modified tuning rules to
design PI controllers for systems with the transfer functions

P1 =
e−s

s
, P2 =

e−s

s+1
, P3 = e−s.

Compute the stability margins and explore any patterns.

10.10 (Windup and anti-windup) Consider a PI controller of the formC(s) =
1+ 1/s for a process with input that saturates when|u| > 1, and whose linear
dynamics are given by the transfer functionP(s) = 1/s. Simulate the response of
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the system to step changes in the reference signal of magnitude 1, 2 and 3. Repeat
the simulation when the windup protection scheme in Figure10.11is used.

10.11 (Windup protection by conditional integration) Many methods have been
proposed to avoid integrator windup. One method calledconditional integration
is to update the integral only when the error is sufficiently small. To illustrate this
method we consider a system with PI control described by

dx1

dt
= u, u= satu0(kpe+kix2),

dx2

dt
=

{
e if |e|< e0

0 if |e| ≥ e0,

wheree= r − x. Plot the phase portrait of the system for the parameter values
kp = 1, ki = 1, u0 = 1 ande0 = 1 and discuss the properties of the system. The ex-
ample illustrates the difficulties of introducing ad hoc nonlinearities without care-
ful analysis.



Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with sensitivity deteriora-
tions in another frequency range, and the price is higher if the plant is open-loop unstable.
This applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [Ste03].

In this chapter we continue to explore the use of frequency domain techniques
with a focus on the design of feedback systems. We begin with amore thorough de-
scription of the performance specifications for control systems and then introduce
the concept of “loop shaping” as a mechanism for designing controllers in the fre-
quency domain. We also introduce some fundamental limitations to performance
for systems with time delays and right half-plane poles and zeros.

11.1 Sensitivity Functions

In the previous chapter, we considered the use of proportional-integral-derivative
(PID) feedback as a mechanism for designing a feedback controller for a given
process. In this chapter we will expand our approach to include a richer repertoire
of tools for shaping the frequency response of the closed loop system.

One of the key ideas in this chapter is that we can design the behavior of the
closed loop system by focusing on the open loop transfer function. This same ap-
proach was used in studying stability using the Nyquist criterion: we plotted the
Nyquist plot for theopenloop transfer function to determine the stability of the
closedloop system. From a design perspective, the use of loop analysis tools is
very powerful: since the loop transfer function isL = PC, if we can specify the
desired performance in terms of properties ofL, we can directly see the impact of
changes in the controllerC. This is much easier, for example, than trying to rea-
son directly about the tracking response of the closed loop system, whose transfer
function is given byGyr = PC/(1+PC).

We will start by investigating some key properties of the feedback loop. A
block diagram of a basic feedback loop is shown in Figure11.1. The system loop is
composed of two components: the process and the controller.The controller itself
has two blocks: the feedback blockC and the feedforward blockF . There are two
disturbances acting on the process, the load disturbanced and the measurement
noisen. The load disturbance represents disturbances that drive the process away
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Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedom. The
controller has a feedback blockC and a feedforward blockF . The external signals are the
reference signalr, the load disturbanced and the measurement noisen. The process output
is η , and the control signal isu.

from its desired behavior, while the measurement noise represents disturbances
that corrupt information about the process given by the sensors. In the figure, the
load disturbance is assumed to act on the process input. This is a simplification
since disturbances often enter the process in many different ways, but it allows us
to streamline the presentation without significant loss of generality.

The process outputη is the real variable that we want to control. Control is
based on the measured signaly, where the measurements are corrupted by mea-
surement noisen. The process is influenced by the controller via the control vari-
ableu. The process is thus a system with three inputs—the control variableu, the
load disturbanced and the measurement noisen—and one output—the measured
signaly. The controller is a system with two inputs and one output. The inputs
are the measured signaly and the reference signalr, and the output is the control
signalu. Note that the control signalu is an input to the process and the output of
the controller, and that the measured signaly is the output of the process and an
input to the controller.

The feedback loop in Figure11.1 is influenced by three external signals, the
referencer, the load disturbanced and the measurement noisen. Any of the re-
maining signals can be of interest in controller design, depending on the particular
application. Since the system is linear, the relations between the inputs and the in-
teresting signals can be expressed in terms of the transfer functions. The following



11.1. SENSITIVITY FUNCTIONS 340

relations are obtained from the block diagram in Figure11.1:
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In addition, we can write the transfer function for the errorbetween the reference
r and the outputη (not an explicit signal in the diagram), which satisfies

ε = r −η =
(

1− PCF
1+PC

)
r +

−P
1+PC

d+
PC

1+PC
n.

There are several interesting conclusions we can draw from these equations.
First we can observe that several transfer functions are the same and that the ma-
jority of the relations are given by the following set of six transfer functions, which
we call theGang of Six:

TF =
PCF

1+PC
, T =

PC
1+PC

, PS=
P

1+PC
,

CFS=
CF

1+PC
, CS=

C
1+PC

, S=
1

1+PC
.

(11.2)

The transfer functions in the first column give the response of the process output
and control signal to the reference signal. The second columngives the response
of the control variable to the load disturbance and the noise, and the final col-
umn gives the response of the process output to those two inputs. Notice that only
four transfer functions are required to describe how the system reacts to load dis-
turbances and measurement noise, and that two additional transfer functions are
required to describe how the system responds to reference signals.

The linear behavior of the system is determined by the six transfer functions
in equation (11.2), and specifications can be expressed in terms of these transfer
functions. The special case whenF = 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feedback from the error only and
the system is completely characterized by four transfer functions, namely, the four
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rightmost transfer functions in equation (11.2), which have specific names:

S=
1

1+PC
sensitivity
function

PS=
P

1+PC

load
sensitivity
function

T =
PC

1+PC

complementary
sensitivity
function

CS=
C

1+PC

noise
sensitivity
function

(11.3)

These transfer functions and their equivalent systems are called theGang of Four.
The load sensitivity function is sometimes called the input sensitivity function and
the noise sensitivity function is sometimes called the output sensitivity function.
These transfer functions have many interesting properties that will be discussed
in detail in the rest of the chapter. Good insight into these properties is essential
in understanding the performance of feedback systems for the purposes of both
analysis and design.

Analyzing the Gang of Six, we find that the feedback controllerC influences
the effects of load disturbances and measurement noise. Notice that measurement
noise enters the process via the feedback. In Section12.2 it will be shown that
the controller influences the sensitivity of the closed loop to process variations.
The feedforward partF of the controller influences only the response to command
signals.

In Chapter9 we focused on the loop transfer function, and we found that its
properties gave useful insights into the properties of a system. To make a proper
assessment of a feedback system it is necessary to consider the properties of all the
transfer functions (11.2) in the Gang of Six or the Gang of Four, as illustrated in
the following example.

Example 11.1 The loop transfer function gives only limited insight
Consider a process with the transfer functionP(s) = 1/(s−a) controlled by a PI
controller with error feedback having the transfer function C(s) = k(s−a)/s. The
loop transfer function isL = k/s, and the sensitivity functions are

T =
PC

1+PC
=

k
s+k

, PS=
P

1+PC
=

s
(s−a)(s+k)

,

CS=
C

1+PC
=

k(s−a)
s+k

, S=
1

1+PC
=

s
s+k

.

Notice that the factors−a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivity function or the comple-
mentary sensitivity function. However, cancellation of the factor is very serious if
a> 0 since the transfer functionPSrelating load disturbances to process output is
then unstable. In particular, a small disturbanced can lead to an unbounded output,
which is clearly not desirable. ∇
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Figure 11.2:A more general representation of a feedback system. The process inputu repre-
sents the control signal, which can be manipulated, and the process inputw represents other
signals that influence the process. The process outputy is the vector of measured variables
andz are other signals of interest.

The system in Figure11.1represents a special case because it is assumed that
the load disturbance enters at the process input and that themeasured output is the
sum of the process variable and the measurement noise. Disturbances can enter in
many different ways, and the sensors may have dynamics. A more abstract way
to capture the general case is shown in Figure11.2, which has only two blocks
representing the process (P) and the controller (C ). The process has two inputs,
the control signalu and a vector of disturbancesw, and two outputs, the measured
signaly and a vector of signalsz that is used to specify performance. If we omit the
reference inputr, the system in Figure11.1can be captured by choosingw= (d,n)
andz= (η ,ν ,e,ε). The process transfer functionP is a 5× 3 matrix, and the
controller transfer functionC is a 1×1 matrix; compare with Exercise11.3.

Processes with multiple inputs and outputs can also be considered by regarding
u andy as vectors. Representations at these higher levels of abstraction are useful
for the development of theory because they make it possible to focus on fundamen-
tals and to solve general problems with a wide range of applications. However, care
must be exercised to maintain the coupling to the real-worldcontrol problems we
intend to solve.

11.2 Feedforward Design

Most of our analysis and design tools up to this point have focused on the role of
feedback and its effect on the dynamics of the system. Feedforward is a simple
and powerful technique that complements feedback. It can beused both to im-
prove the response to reference signals and to reduce the effect of measurable dis-
turbances. Feedforward compensation admits perfect elimination of disturbances,
but it is much more sensitive to process variations than feedback compensation. A
general scheme for feedforward was discussed in Section7.5 using Figure7.10.
A simple form of feedforward for PID controllers was discussed in Section10.5.
The controller in Figure11.1also has a feedforward block to improve response to
command signals. An alternative version of feedforward is shown in Figure11.3,
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Figure 11.3: Block diagram of a system with feedforward compensation for improvedre-
sponse to reference signals and measured disturbances (2 DOF system). Three feedforward
elements are present:Fm(s) sets the desired output value,Fu(s) generates the feedforward
commandufr andFd(s) attempts to cancel disturbances.

which we will use in this section to understand some of the trade-offs between
feedforward and feedback.

Controllers with two degrees of freedom (feedforward and feedback) have the
advantage that the response to reference signals can be designed independently of
the design for disturbance attenuation and robustness. We will first consider the
response to reference signals, and we will therefore initially assume that the load
disturbanced is zero. LetFm represent the ideal response of the system to reference
signals. The feedforward compensator is characterized by the transfer functions
Fu andFm. When the reference is changed, the transfer functionFu generates the
signalufr , which is chosen to give the desired output when applied as input to the
process. Under ideal conditions the outputy is then equal toym, the error signal
is zero and there will be no feedback action. If there are disturbances or modeling
errors, the signalsym andy will differ. The feedback then attempts to bring the
error to zero.

To make a formal analysis, we compute the transfer function from reference
input to process output:

Gyr(s) =
P(CFm+Fu)

1+PC
= Fm+

PFu−Fm

1+PC
, (11.4)

whereP=P2P1. The first term represents the desired transfer function. The second
term can be made small in two ways. Feedforward compensation can be used to
makePFu−Fm small, or feedback compensation can be used to make 1+PC large.
Perfect feedforward compensation is obtained by choosing

Fu =
Fm

P
. (11.5)

Design of feedforward using transfer functions is thus a very simple task. Notice
that the feedforward compensatorFu contains an inverse model of the process dy-
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namics.
Feedback and feedforward have different properties. Feedforward action is ob-

tained by matching two transfer functions, requiring precise knowledge of the pro-
cess dynamics, while feedback attempts to make the error small by dividing it by
a large quantity. For a controller having integral action, the loop gain is large for
low frequencies, and it is thus sufficient to make sure that thecondition for ideal
feedforward holds at higher frequencies. This is easier thantrying to satisfy the
condition (11.5) for all frequencies.

We will now consider reduction of the effects of the load disturbanced in Fig-
ure 11.3 by feedforward control. We assume that the disturbance signal is mea-
sured and that the disturbance enters the process dynamics in a known way (cap-
tured byP1 andP2). The effect of the disturbance can be reduced by feeding the
measured signal through a dynamical system with the transfer functionFd. Assum-
ing that the referencer is zero, we can use block diagram algebra to find that the
transfer function from the disturbance to the process output is

Gyd =
P2(1+FdP1)

1+PC
, (11.6)

whereP= P1P2. The effect of the disturbance can be reduced by making 1+FdP1
small (feedforward) or by making 1+PC large (feedback). Perfect compensation
is obtained by choosing

Fd =−P−1
1 , (11.7)

requiring inversion of the transfer functionP1.
As in the case of reference tracking, disturbance attenuation can be accom-

plished by combining feedback and feedforward control. Since low-frequency dis-
turbances can be eliminated by feedback, we require the use of feedforward only
for high-frequency disturbances, and the transfer function Fd in equation (11.7)
can then be computed using an approximation ofP1 for high frequencies.

Equations (11.5) and (11.7) give analytic expressions for the feedforward com-
pensator. To obtain a transfer function that can be implemented without difficulties
we require that the feedforward compensator be stable and that it does not require
differentiation. Therefore there may be constraints on possible choices of the de-
sired responseFm, and approximations are needed if the process has zeros in the
right half-plane or time delays.

Example 11.2 Vehicle steering
A linearized model for vehicle steering was given in Example6.4. The normalized
transfer function from steering angleδ to lateral deviationy is P(s) = (γs+1)/s2.
For a lane transfer system we would like to have a nice response without overshoot,
and we therefore choose the desired response asFm(s) = a2/(s+a)2, where the
response speed or aggressiveness of the steering is governed by the parametera.
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Figure 11.4:Feedforward control for vehicle steering. The plot on the left shows the trajec-
tory generated by the controller for changing lanes. The plots on the rightshow the lateral
deviationy (top) and the steering angleδ (bottom) for a smooth lane change control using
feedforward (based on the linearized model).

Equation (11.5) gives

Fu =
Fm

P
=

a2s2

(γs+1)(s+a)2 ,

which is a stable transfer function as long asγ > 0. Figure11.4shows the responses
of the system fora= 0.5. The figure shows that a lane change is accomplished in
about 10 vehicle lengths with smooth steering angles. The largest steering angle
is slightly larger than 0.1 rad (6◦). Using the scaled variables, the curve showing
lateral deviations (y as a function oft) can also be interpreted as the vehicle path
(y as a function ofx) with the vehicle length as the length unit. ∇

A major advantage of controllers with two degrees of freedomthat combine
feedback and feedforward is that the control design problemcan be split in two
parts. The feedback controllerC can be designed to give good robustness and ef-
fective disturbance attenuation, and the feedforward partcan be designed indepen-
dently to give the desired response to command signals.

11.3 Performance Specifications

A key element of the control design process is how we specify the desired per-
formance of the system. It is also important for users to understand performance
specifications so that they know what to ask for and how to test asystem. Specifi-
cations are often given in terms of robustness to process variations and responses
to reference signals and disturbances. They can be given in terms of both time
and frequency responses. Specifications for the step responseto reference signals
were given in Figure5.9 in Section5.3 and in Section6.3. Robustness specifica-
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tions based on frequency domain concepts were provided in Section 9.3 and will
be considered further in Chapter12. The specifications discussed previously were
based on the loop transfer function. Since we found in Section11.1that a single
transfer function did not always characterize the properties of the closed loop com-
pletely, we will give a more complete discussion of specifications in this section,
based on the full Gang of Six.

The transfer function gives a good characterization of the linear behavior of a
system. To provide specifications it is desirable to capture the characteristic prop-
erties of a system with a few parameters. Common features fortime responses
are overshoot, rise time and settling time, as shown in Figure5.9. Common fea-
tures of frequency responses are resonant peak, peak frequency, gain crossover
frequency and bandwidth. Aresonant peakis a maximum of the gain, and the
peak frequency is the corresponding frequency. Thegain crossover frequencyis
the frequency where the open loop gain is equal one. Thebandwidthis defined as
the frequency range where the closed loop gain is 1/

√
2 of the low-frequency gain

(low-pass), mid-frequency gain (band-pass) or high-frequency gain (high-pass).
There are interesting relations between specifications in thetime and frequency
domains. Roughly speaking, the behavior of time responses for short times is re-
lated to the behavior of frequency responses at high frequencies, and vice versa.
The precise relations are not trivial to derive.

Response to Reference Signals

Consider the basic feedback loop in Figure11.1. The response to reference signals
is described by the transfer functionsGyr = PCF/(1+PC) andGur = CF/(1+
PC) (F = 1 for systems with error feedback). Notice that it is useful to consider
both the response of the output and that of the control signal. In particular, the
control signal response allows us to judge the magnitude andrate of the control
signal required to obtain the output response.

Example 11.3 Third-order system
Consider a process with the transfer functionP(s) = (s+1)−3 and a PI controller
with error feedback having the gainskp = 0.6 andki = 0.5. The responses are illus-
trated in Figure11.5. The solid lines show results for a proportional-integral (PI)
controller with error feedback. The dashed lines show results for a controller with
feedforward designed to give the transfer functionGyr = (0.5s+ 1)−3. Looking
at the time responses, we find that the controller with feedforward gives a faster
response with no overshoot. However, much larger control signals are required to
obtain the fast response. The largest value of the control signal is 8, compared to
1.2 for the regular PI controller. The controller with feedforward has a larger band-
width (marked with◦) and no resonant peak. The transfer functionGur also has
higher gain at high frequencies. ∇
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Figure 11.5: Reference signal responses. The responses in process outputy and control
signalu to a unit step in the reference signalr are shown in (a), and the gain curves ofGyr

andGur are shown in (b). Results with PI control with error feedback are shownby solid
lines, and the dashed lines show results for a controller with a feedforward compensator.

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to compare the output of the
closed loop system in Figure11.1with the output of the corresponding open loop
system obtained by settingC= 0. If we let the disturbances for the open and closed
loop systems be identical, the output of the closed loop system is then obtained
simply by passing the open loop output through a system with the transfer func-
tion S. The sensitivity function tells how the variations in the output are influenced
by feedback (Exercise11.7). Disturbances with frequencies such that|S(iω)| < 1
are attenuated, but disturbances with frequencies such that |S(iω)| > 1 are am-
plified by feedback. The maximum sensitivityMs, which occurs at the frequency
ωms, is thus a measure of the largest amplification of the disturbances. The max-
imum magnitude of 1/(1+L) is also the minimum of|1+L|, which is precisely
the stability marginsm defined in Section9.3, so thatMs = 1/sm. The maximum
sensitivity is therefore also a robustness measure.

If the sensitivity function is known, the potential improvements by feedback
can be evaluated simply by recording a typical output and filtering it through the
sensitivity function. A plot of the gain curve of the sensitivity function is a good
way to make an assessment of the disturbance attenuation. Since the sensitivity
function depends only on the loop transfer function, its properties can also be vi-
sualized graphically using the Nyquist plot of the loop transfer function. This is
illustrated in Figure11.6. The complex number 1+L(iω) can be represented as
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Figure 11.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function (a) can be used to calculate the properties of the
sensitivity function through the relationS= 1/(1+L). The sensitivity crossover frequency
ωsc and the frequencyωms where the sensitivity has its largest value are indicated in the
sensitivity plot. The Nyquist plot (b) shows the same information in a different form. All
points inside the dashed circle have sensitivities greater than 1.

the vector from the point−1 to the pointL(iω) on the Nyquist curve. The sensi-
tivity is thus less than 1 for all points outside a circle withradius 1 and center at
−1. Disturbances with frequencies in this range are attenuated by the feedback.

The transfer functionGyd from load disturbanced to process outputy for the
system in Figure11.1is

Gyd =
P

1+PC
= PS=

T
C
. (11.8)

Since load disturbances typically have low frequencies, it is natural to focus on the
behavior of the transfer function at low frequencies. For a system withP(0) 6= 0
and a controller with integral action, the controller gain goes to infinity for small
frequencies and we have the following approximation for small s:

Gyd =
T
C

≈ 1
C

≈ s
ki
, (11.9)

whereki is the integral gain. Since the sensitivity functionSgoes to 1 for larges,
we have the approximationGyd ≈ P for high frequencies.

Measurement noise, which typically has high frequencies, generates rapid vari-
ations in the control variable that are detrimental becausethey cause wear in many
actuators and can even saturate an actuator. It is thus important to keep variations
in the control signal due to measurement noise at reasonablelevels—a typical re-
quirement is that the variations are only a fraction of the span of the control signal.
The variations can be influenced by filtering and by proper designof the high-
frequency properties of the controller.
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Figure 11.7:Disturbance responses. The time and frequency responses of process outputy
to load disturbanced are shown in (a) and the responses of control signalu to measurement
noisen are shown in (b).

The effects of measurement noise are captured by the transferfunction from
the measurement noise to the control signal,

−Gun =
C

1+PC
=CS=

T
P
. (11.10)

The complementary sensitivity function is close to 1 for low frequencies (ω <
ωgc), andGun can be approximated by−1/P. The sensitivity function is close to 1
for high frequencies (ω > ωgc), andGun can be approximated by−C.

Example 11.4 Third-order system
Consider a process with the transfer functionP(s) = (s+1)−3 and a proportional-
integral-derivative (PID) controller with gainskp = 0.6, ki = 0.5 andkd = 2.0. We
augment the controller using a second-order noise filter withTf = 0.1, so that its
transfer function is

C(s) =
kds2+kps+ki

s(s2T2
f /2+sTf +1)

.

The system responses are illustrated in Figure11.7. The response of the output to
a step in the load disturbance in the top part of Figure11.7ahas a peak of 0.28 at
time t = 2.73 s. The frequency response in Figure11.7ashows that the gain has a
maximum of 0.58 atω = 0.7 rad/s.

The response of the control signal to a step in measurement noise is shown in
Figure11.7b. The high-frequency roll-off of the transfer functionGun(iω) is due
to filtering; without it the gain curve in Figure11.7bwould continue to rise after
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20 rad/s. The step response has a peak of 13 att = 0.08 s. The frequency response
has its peak 20 atω = 14 rad/s. Notice that the peak occurs far above the peak
of the response to load disturbances and far above the gain crossover frequency
ωgc= 0.78 rad/s. An approximation derived in Exercise11.9gives max|CS(iω)| ≈
kd/Tf = 20, which occurs atω =

√
2/Td = 14.1 rad/s. ∇

11.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that it is based on the loop trans-
fer function, which is related to the controller transfer function throughL = PC.
It is thus easy to see how the controller influences the loop transfer function. To
make an unstable system stable we simply have to bend the Nyquist curve away
from the critical point.

This simple idea is the basis of several different design methods collectively
called loop shaping. These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. One possibility is to determine
a loop transfer function that gives a closed loop system withthe desired properties
and to compute the controller asC = L/P. Another is to start with the process
transfer function, change its gain and then add poles and zeros until the desired
shape is obtained. In this section we will explore differentloop-shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfer function that gives good
performance and good stability margins. Figure11.8shows a typical loop trans-
fer function. Good robustness requires good stability margins (or good gain and
phase margins), which imposes requirements on the loop transfer function around
the crossover frequenciesωpc andωgc. The gain ofL at low frequencies must be
large in order to have good tracking of command signals and good attenuation
of low-frequency disturbances. SinceS= 1/(1+L), it follows that for frequencies
where|L|> 101 disturbances will be attenuated by a factor of 100 and thetracking
error is less than 1%. It is therefore desirable to have a large crossover frequency
and a steep (negative) slope of the gain curve. The gain at low frequencies can
be increased by a controller with integral action, which is also calledlag compen-
sation. To avoid injecting too much measurement noise into the system, the loop
transfer function should have low gain at high frequencies,which is calledhigh-
frequency roll-off. The choice of gain crossover frequency is a compromise among
attenuation of load disturbances, injection of measurement noise and robustness.

Bode’s relations (see Section9.4) impose restrictions on the shape of the loop
transfer function. Equation (9.8) implies that the slope of the gain curve at gain
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Figure 11.8: Gain curve and sensitivity functions for a typical loop transfer function.The
plot on the left shows the gain curve and the plots on the right show the sensitivity function
and complementary sensitivity function. The gain crossover frequency ωgc and the slope
ngc of the gain curve at crossover are important parameters that determine the robustness of
closed loop systems. At low frequency, a large magnitude forL provides good load distur-
bance rejection and reference tracking, while at high frequency a small loop gain is used to
avoid amplifying measurement noise.

crossover cannot be too steep. If the gain curve has a constant slope, we have the
following relation between slopengc and phase marginϕm:

ngc =−2+
2ϕm

π
. (11.11)

This formula is a reasonable approximation when the gain curve does not deviate
too much from a straight line. It follows from equation (11.11) that the phase
margins 30◦, 45◦ and 60◦ correspond to the slopes−5/3,−3/2 and−4/3.

Loop shaping is a trial-and-error procedure. We typically start with a Bode plot
of the process transfer function. We then attempt to shape the loop transfer function
by changing the controller gain and adding poles and zeros tothe controller trans-
fer function. Different performance specifications are evaluated for each controller
as we attempt to balance many different requirements by adjusting controller pa-
rameters and complexity. Loop shaping is straightforward toapply to single-input,
single-output systems. It can also be applied to systems with one input and many
outputs by closing the loops one at a time starting with the innermost loop. The
only limitation for minimum phase systems is that large phase leads and high con-
troller gains may be required to obtain closed loop systems with a fast response.
Many specific procedures are available: they all require experience, but they also
give good insight into the conflicting requirements. There arefundamental limita-
tions to what can be achieved for systems that are not minimumphase; they will
be discussed in the next section.
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Figure 11.9: Frequency response for lead and lag compensatorsC(s) = k(s+ a)/(s+ b).
Lead compensation (a) occurs whena< band provides phase lead betweenω = aandω = b.
Lag compensation (b) corresponds toa> b and provides low-frequency gain. PI control is
a special case of lag compensation and PD control is a special case of lead compensation.
PI/PD frequency responses are shown by dashed curves.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfer function of the process
and add simple compensators with the transfer function

C(s) = k
s+a
s+b

. (11.12)

The compensator is called alead compensatorif a< b, and alag compensatorif
a> b. The PI controller is a special case of a lag compensator withb= 0, and the
ideal PD controller is a special case of a lead compensator with a= 0. Bode plots
of lead and lag compensators are shown in Figure11.9. Lag compensation, which
increases the gain at low frequencies, is typically used to improve tracking per-
formance and disturbance attenuation at low frequencies. Compensators that are
tailored to specific disturbances can be also designed, as shown in Exercise11.10.
Lead compensation is typically used to improve phase margin.The following ex-
amples give illustrations.

Example 11.5 Atomic force microscope in tapping mode
A simple model of the dynamics of the vertical motion of an atomic force micro-
scope in tapping mode was given in Exercise9.2. The transfer function for the
system dynamics is

P(s) =
a(1−e−sτ)

sτ(s+a)
,

wherea= ζ ω0, τ = 2πn/ω0 and the gain has been normalized to 1. A Bode plot
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Figure 11.10:Loop-shaping design of a controller for an atomic force microscope in tap-
ping mode. (a) Bode plots of the process (dashed), the loop transfer function for an integral
controller with critical gain (dotted) and a PI controller (solid) adjusted to give reasonable
robustness. (b) Gain curves for the Gang of Four for the system.

of this transfer function for the parametersa= 1 andτ = 0.25 is shown in dashed
curves in Figure11.10a. To improve the attenuation of load disturbances we in-
crease the low-frequency gain by introducing an integral controller. The loop trans-
fer function then becomesL = kiP(s)/s, and we adjust the gain so that the phase
margin is zero, givingki = 8.3. Notice the increase of the gain at low frequencies.
The Bode plot is shown by the dotted line in Figure11.10a, where the critical point
is indicated by◦. To improve the phase margin we introduce proportional action
and we increase the proportional gainkp gradually until reasonable values of the
sensitivities are obtained. The valuekp = 3.5 gives maximum sensitivityMs = 1.6
and maximum complementary sensitivityMt = 1.3. The loop transfer function is
shown in solid lines in Figure11.10a. Notice the significant increase of the phase
margin compared with the purely integral controller (dotted line).

To evaluate the design we also compute the gain curves of the transfer functions
in the Gang of Four. They are shown in Figure11.10b. The peaks of the sensitivity
curves are reasonable, and the plot ofPS shows that the largest value ofPS is
0.3, which implies that the load disturbances are well attenuated. The plot ofCS
shows that the largest controller gain is 6. The controller has a gain of 3.5 at high
frequencies, and hence we may consider adding high-frequency roll-off. ∇

A common problem in the design of feedback systems is that thephase margin
is too small, and phaseleadmust then be added to the system. If we seta< b in
equation (11.12), we add phase lead in the frequency range between the pole/zero
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(a) Simplified model

Symbol Description Value

m Vehicle mass 4.0 kg

J Vehicle inertia,ϕ3 axis 0.0475 kg m2

r Force moment arm 25.0 cm

c Damping coefficient 0.05 kg m/s

g Gravitational constant 9.8 m/s2

(b) Parameter values

Figure 11.11:Roll control of a vectored thrust aircraft. (a) The roll angleθ is controlled by
applying maneuvering thrusters, resulting in a moment generated byF1. (b) The table lists
the parameter values for a laboratory version of the system.

pair (and extending approximately 10× in frequency in each direction). By appro-
priately choosing the location of this phase lead, we can provide additional phase
margin at the gain crossover frequency.

Because the phase of a transfer function is related to the slope of the magnitude,
increasing the phase requires increasing the gain of the loop transfer function over
the frequency range in which the lead compensation is applied. In Exercise11.11
it is shown that the gain increases exponentially with the amount of phase lead. We
can also think of the lead compensator as changing the slope of the transfer func-
tion and thus shaping the loop transfer function in the crossover region (although
it can be applied elsewhere as well).

Example 11.6 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust aircraft such as the one il-
lustrated in Figure11.11. Following Exercise8.10, we model the system with a
second-order transfer function of the form

P(s) =
r

Js2 ,

with the parameters given in Figure11.11b. We take as our performance speci-
fication that we would like less than 1% error in steady state and less than 10%
tracking error up to 10 rad/s.

The open loop transfer function is shown in Figure11.12a. To achieve our
performance specification, we would like to have a gain of at least 10 at a frequency
of 10 rad/s, requiring the gain crossover frequency to be at ahigher frequency. We
see from the loop shape that in order to achieve the desired performance we cannot
simply increase the gain since this would give a very low phase margin. Instead,
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Figure 11.12: Control design for a vectored thrust aircraft using lead compensation. The
Bode plot for the open loop processP is shown in (a) and the loop transfer functionL =
PC using a lead compensator in (b). Note the phase lead in the crossover region nearω =
100 rad/s.

we must increase the phase at the desired crossover frequency.
To accomplish this, we use a lead compensator (11.12) with a= 2 andb= 50.

We then set the gain of the system to provide a large loop gain up to the desired
bandwidth, as shown in Figure11.12b. We see that this system has a gain of greater
than 10 at all frequencies up to 10 rad/s and that it has more than 60◦ of phase
margin. ∇

The action of a lead compensator is essentially the same as that of the derivative
portion of a PID controller. As described in Section10.5, we often use a filter for
the derivative action of a PID controller to limit the high-frequency gain. This same
effect is present in a lead compensator through the pole ats= b.

Equation (11.12) is a first-order compensator and can provide up to 90◦ of
phase lead. Larger phase lead can be obtained by using a higher-order lead com-
pensator (Exercise11.11):

C(s) = k
(s+a)n

(s+b)n , a< b.

11.5 Fundamental Limitations

Although loop shaping gives us a great deal of flexibility in designing the closed
loop response of a system, there are certain fundamental limits on what can be
achieved. We consider here some of the primary performance limitations that can
occur because of difficult dynamics; additional limitationsrelated to robustness are
considered in the next chapter.
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Right Half-Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to control. The limitations are
related to poles and zeros in the right half-plane and time delays. To explore the
limitations caused by poles and zeros in the right half-plane we factor the process
transfer function as

P(s) = Pmp(s)Pap(s), (11.13)

wherePmp is the minimum phase part andPap is the nonminimum phase part. The
factorization is normalized so that|Pap(iω)|= 1, and the sign is chosen so thatPap

has negative phase. The transfer functionPap is called anall-pass systembecause
it has unit gain for all frequencies. Requiring that the phase margin beϕm, we get

argL(iωgc) = argPap(iωgc)+argPmp(iωgc)+argC(iωgc)≥−π +ϕm, (11.14)

whereC is the controller transfer function. Letngc be the slope of the gain curve
at the crossover frequency. Since|Pap(iω)|= 1, it follows that

ngc =
d log|L(iω)|

d logω

∣∣∣∣∣
ω=ωgc

=
d log|Pmp(iω)C(iω)|

d logω

∣∣∣∣∣
ω=ωgc

.

Assuming that the slopengc is negative, it has to be larger than−2 for the system
to be stable. It follows from Bode’s relations, equation (9.8), that

argPmp(iω)+argC(iω)≈ ngc
π
2
.

Combining this with equation (11.14) gives the following inequality for the allow-
able phase lag of the all-pass part at the gain crossover frequency:

−argPap(iωgc)≤ π −ϕm+ngc
π
2
=: ϕl . (11.15)

This condition, which we call thegain crossover frequency inequality, shows that
the gain crossover frequency must be chosen so that the phaselag of the non-
minimum phase component is not too large. For systems with high robustness
requirements we may choose a phase margin of 60◦ (ϕm = π/3) and a slope
ngc = −1, which gives an admissible phase lagϕl = π/6 = 0.52 rad (30◦). For
systems where we can accept a lower robustness we may choose aphase margin
of 45◦ (ϕm= π/4) and the slopengc=−1/2, which gives an admissible phase lag
ϕl = π/2= 1.57 rad (90◦).

The crossover frequency inequality shows that nonminimum phase components
impose severe restrictions on possible crossover frequencies. It also means that
there are systems that cannot be controlled with sufficient stability margins. We
illustrate the limitations in a number of commonly encountered situations.

Example 11.7 Zero in the right half-plane
The nonminimum phase part of the process transfer function for a system with a
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right half-plane zero is
Pap(s) =

z−s
z+s

,

wherez> 0. The phase lag of the nonminimum phase part is

−argPap(iω) = 2arctan
ω
z
.

Since the phase lag ofPap increases with frequency, the inequality (11.15) gives
the following bound on the crossover frequency:

ωgc < z tan(ϕ l/2). (11.16)

With ϕl = π/3 we getωgc < 0.6z. Slow right half-plane zeros (z small) therefore
give tighter restrictions on possible gain crossover frequencies than fast right half-
plane zeros. ∇

Time delays also impose limitations similar to those given by zeros in the right
half-plane. We can understand this intuitively from the Padé approximation

e−sτ ≈ 1−0.5sτ
1+0.5sτ

=
2/τ −s
2/τ +s

.

A long time delay is thus equivalent to a slow right half-plane zeroz= 2/τ.

Example 11.8 Pole in the right half-plane
The nonminimum phase part of the transfer function for a system with a pole in
the right half-plane is

Pap(s) =
s+ p
s− p

,

wherep> 0. The phase lag of the nonminimum phase part is

−argPap(iω) = 2arctan
p
ω
,

and the crossover frequency inequality becomes

ωgc >
p

tan(ϕ l/2)
. (11.17)

Right half-plane poles thus require that the closed loop system have a sufficiently
high bandwidth. Withϕl = π/3 we getωgc > 1.7p. Fast right half-plane poles (p
large) therefore give tighter restrictions on possible gain crossover frequencies than
slow right half-plane poles. The control of unstable systemsimposes minimum
bandwidth requirements for process actuators and sensors. ∇

We will now consider systems with a right half-plane zeroz and a right half-
plane polep. If p = z, there will be an unstable subsystem that is neither reach-
able nor observable, and the system cannot be stabilized (see Section7.5). We
can therefore expect that the system is difficult to control ifthe right half-plane
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Figure 11.13:Example limitations due to the gain crossover frequency inequality. The fig-
ures show the phase lag of the all-pass factorPap as a function of frequency. Since the phase
lag of Pap at the gain crossover frequency cannot be too large, it is necessaryto choose the
gain crossover frequency properly. All systems have a right half-plane pole ats= 1. The
system in (a) has zeros ats= 2, 5, 20 and 100 (solid lines) and ats= 0.5, 0.2, 0.05 and 0.01
(dashed lines). The system in (b) has time delaysτ = 0.02 0.1, 0.5 and 1.

pole and zero are close. A straightforward way to use the crossover frequency in-
equality is to plot the phase of the nonminimum phase factorPap of the process
transfer function. Such a plot, which can be incorporated in an ordinary Bode plot,
will immediately show the permissible gain crossover frequencies. An illustration
is given in Figure11.13, which shows the phase ofPap for systems with a right
half-plane pole/zero pair and systems with a right half-plane pole and a time delay.
If we require that the phase lagϕ l of the nonminimum phase factor be less than
90◦, we must require that the ratioz/p be larger than 6 or smaller than 1/6 for
systems with right half-plane poles and zeros and that the productpτ be less than
0.3 for systems with a time delay and a right half-plane pole.Notice the symmetry
in the problem forz> p andz< p: in either case the zeros and the poles must be
sufficiently far apart (Exercise11.12). Also notice that possible values of the gain
crossover frequencyωgc are quite restricted.

Using the theory of functions of complex variables, it can beshown that for
systems with a right half-plane polep and a right half-plane zeroz (or a time delay
τ), any stabilizing controller gives sensitivity functionswith the property

sup
ω

|S(iω)| ≥ p+z
|p−z| , sup

ω
|T(iω)| ≥ epτ . (11.18)

This result is proven in Exercise11.13.
As the examples above show, right half-plane poles and zerossignificantly limit

the achievable performance of a system, hence one would liketo avoid these when-
ever possible. The poles of a system depend on the intrinsic dynamics of the sys-
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tem and are given by the eigenvalues of the dynamics matrixA of a linear system.
Sensors and actuators have no effect on the poles; the only wayto change poles
is to redesign the system. Notice that this does not imply that unstable systems
should be avoided. Unstable system may actually have advantages; one example is
high-performance supersonic aircraft.

The zeros of a system depend on how the sensors and actuators are coupled to
the states. The zeros depend on all the matricesA, B, C andD in a linear system.
The zeros can thus be influenced by moving the sensors and actuators or by adding
sensors and actuators. Notice that a fully actuated systemB= I does not have any
zeros.

Example 11.9 Balance system
As an example of a system with both right half-plane poles andzeros, consider the
balance system with zero damping, whose dynamics are given by

HθF =
ml

−(MtJt −m2l2)s2+mglMt
,

HpF =
−Jts2+mgl

s2
(
−(MtJt −m2l2)s2+mglMt

) .

Assume that we want to stabilize the pendulum by using the cart position as the
measured signal. The transfer function from the input forceF to the cart position
p has poles{0,0,±

√
mglMt/(MtJt −m2l2)} and zeros{±

√
mgl/Jt}. Using the

parameters in Example6.7, the right half-plane pole is atp = 2.68 and the zero
is atz= 2.09. Equation (11.18) then gives|S(iω)| ≥ 8, which shows that it is not
possible to control the system robustly.

The right half-plane zero of the system can be eliminated by changing the out-
put of the system. For example, if we choose the output to correspond to a position
at a distancer along the pendulum, we havey= p−r sinθ and the transfer function
for the linearized output becomes

Hy,F = HpF − rHθF =
(mlr−Jt)s2+mgl

s2
(
−(MtJt −m2l2)s2+mglMt

) .

If we chooser sufficiently large, thenmlr − Jt > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary zeros. The gain crossover
frequency inequality is then based just on the right half-plane pole (Example11.8).
If our admissible phase lag for the nonminimum phase part isϕl = 45◦, then our
gain crossover must satisfy

ωgc >
p

tan(ϕl/2)
= 6.48 rad/s.

If the actuators have sufficiently high bandwidth, e.g., a factor of 10 aboveωgc or
roughly 10 Hz, then we can provide robust tracking up to this frequency. ∇
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Bode’s Integral Formula

In addition to providing adequate phase margin for robust stability, a typical con-
trol design will have to satisfy performance conditions on the sensitivity functions
(Gang of Four). In particular, the sensitivity functionS= 1/(1+PC) represents the
disturbance attenuation and also relates the tracking error e to the reference signal:
we usually want the sensitivity to be small over the range of frequencies where we
want small tracking error and good disturbance attenuation. A basic problem is to
investigate ifScan be made small over a large frequency range. We will start by
investigating an example.

Example 11.10 System that admits small sensitivities
Consider a closed loop system consisting of a first-order process and a proportional
controller. Let the loop transfer function be

L(s) = PC=
k

s+1
,

where parameterk is the controller gain. The sensitivity function is

S(s) =
s+1

s+1+k

and we have

|S(iω)|=

√
1+ω2

1+2k+k2+ω2 .

This implies that|S(iω)|< 1 for all finite frequencies and that the sensitivity can be
made arbitrarily small for any finite frequency by makingk sufficiently large. ∇

The system in Example11.10is unfortunately an exception. The key feature
of the system is that the Nyquist curve of the process is completely contained in
the right half-plane. Such systems are calledpassive, and their transfer functions
arepositive real. For typical control systems there are severe constraints on the
sensitivity function. The following theorem, due to Bode, provides insights into
the limits of performance under feedback.

Theorem 11.1(Bode’s integral formula). Assume that the loop transfer function
L(s) of a feedback system goes to zero faster than1/s as s→ ∞, and let S(s)
be the sensitivity function. If the loop transfer function has poles pk in the right
half-plane, then the sensitivity function satisfies the following integral:

∫ ∞

0
log|S(iω)|dω =

∫ ∞

0
log

1
|1+L(iω)| dω = π ∑ pk. (11.19)

Equation (11.19) implies that there are fundamental limitations to what can
be achieved by control and that control design can be viewed as a redistribution
of disturbance attenuation over different frequencies. Inparticular, this equation
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Figure 11.14:Interpretation of thewaterbed effect. The function log|S(iω)| is plotted versus
ω in linear scales in (a). According to Bode’s integral formula (11.19), the area of log|S(iω)|
above zero must be equal to the area below zero. Gunter Stein’s interpretation of design as a
trade-off of sensitivities at different frequencies is shown in (b) (from [Ste03]).

shows that if the sensitivity function is made smaller for some frequencies, it must
increase at other frequencies so that the integral of log|S(iω)| remains constant.
This means that if disturbance attenuation is improved in onefrequency range, it
will be worse in another, a property sometime referred to as thewaterbed effect. It
also follows that systems with open loop poles in the right half-plane have larger
overall sensitivity than stable systems.

Equation (11.19) can be regarded as aconservation law: if the loop transfer
function has no poles in the right half-plane, the equation simplifies to

∫ ∞

0
log|S(iω)|dω = 0.

This formula can be given a nice geometric interpretation as illustrated in Fig-
ure11.14, which shows log|S(iω)| as a function ofω. The area over the horizontal
axis must be equal to the area under the axis when the frequency is plotted on a
linear scale. Thus if we wish to make the sensitivity smaller up to some frequency
ωsc, we must balance this by increased sensitivity aboveωsc. Control system de-
sign can be viewed as trading the disturbance attenuation atsome frequencies for
disturbance amplification at other frequencies. Notice thatthe system in Exam-
ple 11.10violates the condition that lims→∞ sL(s) = 0 and hence the integral for-
mula does not apply.

There is result analogous to equation (11.19) for the complementary sensitivity
function: ∫ ∞

0

log|T(iω)|
ω2 dω = π ∑ 1

zi
, (11.20)

where the summation is over all right half-plane zeros. Notice that slow right half-
plane zeros are worse than fast ones and that fast right half-plane poles are worse
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Figure 11.15:X-29 flight control system. The aircraft makes use of forward swept wings and
a set of canards on the fuselage to achieve high maneuverability (a). The desired sensitivity
for the closed loop system is shown in (b). We seek to use our control authority to shape the
sensitivity curve so that we have low sensitivity (good performance) upto frequencyω1 by
creating higher sensitivity up to our actuator bandwidthωa.

than slow ones.

Example 11.11 X-29 aircraft
As an example of the application of Bode’s integral formula,we present an anal-
ysis of the control system for the X-29 aircraft (see Figure11.15a), which has an
unusual configuration of aerodynamic surfaces that are designed to enhance its
maneuverability. This analysis was originally carried out by Gunter Stein in his
article “Respect the Unstable” [Ste03], which is also the source of the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parameters that describe
the key properties of the system. The X-29 has longitudinal dynamics that are very
similar to inverted pendulum dynamics (Exercise8.3) and, in particular, have a
pair of poles at approximatelyp = ±6 and a zero atz= 26. The actuators that
stabilize the pitch have a bandwidth ofωa = 40 rad/s and the desired bandwidth of
the pitch control loop isω1 = 3 rad/s. Since the ratio of the zero to the pole is only
4.3, we may expect that it may be difficult to achieve the specifications.

To evaluate the achievable performance, we search for a control law such that
the sensitivity function is small up to the desired bandwidth and not greater than
Ms beyond that frequency. Because of the Bode integral formula, we know that
Ms must be greater than 1 at high frequencies to balance the small sensitivity at
low frequency. We thus ask if we can find a controller that has the shape shown
in Figure11.15bwith the smallest value ofMs. Note that the sensitivity above the
frequencyωa is not specified since we have no actuator authority at that frequency.
However, assuming that the process dynamics fall off at highfrequency, the sen-
sitivity at high frequency will approach 1. Thus, we desire todesign a closed loop
system that has low sensitivity at frequencies belowω1 and sensitivity that is not
too large betweenω1 andωa.

From Bode’s integral formula, we know that whatever controller we choose,
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equation (11.19) must hold. We will assume that the sensitivity function is given
by

|S(iω)|=
{

ωMs
ω1

ω ≤ ω1

Ms ω1 ≤ ω ≤ ωa,

corresponding to Figure11.15b. If we further assume that|L(s)| ≤ δ/ω2 for fre-
quencies larger than the actuator bandwidth, Bode’s integral becomes

∫ ∞

0
log|S(iω)|dω =

∫ ωa

0
log|S(iω)|dω

=
∫ ω1

0
log

ωMs

ω1
dω +(ωa−ω1) logMs = π p.

Evaluation of the integral gives−ω1+ωa logMs = π p or

Ms = e(π p+ω1)/ωa.

This formula tells us what the achievable value ofMs will be for the given control
specifications. In particular, usingp = 6, ω1 = 3 andωa = 40 rad/s, we find that
Ms = 1.75, which means that in the range of frequencies betweenω1 and ωa,
disturbances at the input to the process dynamics (such as wind) will be amplified
by a factor of 1.75 in terms of their effect on the aircraft.

Another way to view these results is to compute the phase margin that corre-
sponds to the given level of sensitivity. Since the peak sensitivity normally occurs
at or near the crossover frequency, we can compute the phase margin correspond-
ing to Ms = 1.75. As shown in Exercise11.14, the maximum achievable phase
margin for this system is approximately 35◦, which is below the usual design limit
of 45◦ in aerospace systems. The zero ats= 26 limits the maximum gain crossover
that can be achieved. ∇

Derivation of Bode’s Formula
�

We now derive Bode’s integral formula (Theorem11.1). This is a technical section
that requires some knowledge of the theory of complex variables, in particular
contour integration. Assume that the loop transfer function has distinct poles at
s= pk in the right half-plane and thatL(s) goes to zero faster than 1/s for large
values ofs.

Consider the integral of the logarithm of the sensitivity functionS(s) = 1/(1+
L(s)) over the contour shown in Figure11.16. The contour encloses the right half-
plane except for the pointss= pk where the loop transfer functionL(s) =P(s)C(s)
has poles and the sensitivity functionS(s) has zeros. The direction of the contour
is counterclockwise.

The integral of the log of the sensitivity function around this contour is given
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Figure 11.16: Contour used to prove Bode’s theorem. For each right half-plane polewe
create a path from the imaginary axis that encircles the pole as shown. To avoid clutter we
have shown only one of the paths that enclose one right half-plane.

by
∫

Γ
log(S(s))ds=

∫ −iR

iR
log(S(s))ds+

∫

R
log(S(s))ds+∑

k

∫

γ
log(S(s))ds

= I1+ I2+ I3 = 0,

whereR is a large semicircle on the right andγk is the contour starting on the
imaginary axis ats= Im pk and a small circle enclosing the polepk. The integral
is zero because the function logS(s) is analytic inside the contour. We have

I1 =−i
∫ R

−R
log(S(iω))dω =−2i

∫ R

0
log(|S(iω)|)dω

because the real part of logS(iω) is an even function and the imaginary part is an
odd function. Furthermore we have

I2 =
∫

R
log(S(s))ds=−

∫

R
log(1+L(s))ds≈−

∫

R
L(s)ds.

SinceL(s) goes to zero faster than 1/s for larges, the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integralI3. For this purpose we split the contour into three
partsX+, γ andX−, as indicated in Figure11.16. We can then write the integral as

I3 =
∫

X+

logS(s)ds+
∫

γ
logS(s)ds+

∫

X−
logS(s)ds.

The contourγ is a small circle with radiusr around the polepk. The magnitude of
the integrand is of the order logr, and the length of the path is 2πr. The integral
thus goes to zero as the radiusr goes to zero. SinceS(s)≈ k/(s− pk) close to the
pole, the argument ofS(s) decreases by 2π as the contour encircles the pole. On
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the contoursX+ andX− we therefore have

|SX+ |= |SX− |, argSX− = argSX+ −2π.

Hence
log(SX+)− log(SX−) = 2π i,

and we get ∫

X+

logS(s)ds+
∫

X−
logS(s)ds= 2π i Repk.

Repeating the argument for all polespk in the right half plane, letting the small
circles go to zero and the large circle go to infinity gives

I1+ I2+ I3 =−2i
∫ R

0
log|S(iω)|dω + i ∑

k

2π Repk = 0.

Since complex poles appear as complex conjugate pairs,∑k Repk = ∑k pk, which
gives Bode’s formula (11.19).

11.6 Design Example

In this section we present a detailed example that illustrates the main design tech-
niques described in this chapter.

Example 11.12 Lateral control of a vectored thrust aircraft
The problem of controlling the motion of a vertical takeoff and landing (VTOL)
aircraft was introduced in Example2.9and in Example11.6, where we designed a
controller for the roll dynamics. We now wish to control the position of the aircraft,
a problem that requires stabilization of both the attitude and the position.

To control the lateral dynamics of the vectored thrust aircraft, we make use of
a “inner/outer” loop design methodology, as illustrated inFigure11.17. This dia-
gram shows the process dynamics and controller divided intotwo components: an
inner loopconsisting of the roll dynamics and control and anouter loopconsist-
ing of the lateral position dynamics and controller. This decomposition follows the
block diagram representation of the dynamics given in Exercise8.10.

The approach that we take is to design a controllerCi for the inner loop so that
the resulting closed loop systemHi provides fast and accurate control of the roll
angle for the aircraft. We then design a controller for the lateral position that uses
the approximation that we can directly control the roll angle as an input to the dy-
namics controlling the position. Under the assumption thatthe dynamics of the roll
controller are fast relative to the desired bandwidth of thelateral position control,
we can then combine the inner and outer loop controllers to get a single controller
for the entire system. As a performance specification for the entire system, we
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Figure 11.17: Inner/outer control design for a vectored thrust aircraft. The inner loop Hi
controls the roll angle of the aircraft using the vectored thrust. The outerloop controllerCo

commands the roll angle to regulate the lateral position. The process dynamics are decom-
posed into inner loop (Pi) and outer loop (Po) dynamics, which combine to form the full
dynamics for the aircraft.

.

would like to have zero steady-state error in the lateral position, a bandwidth of
approximately 1 rad/s and a phase margin of 45◦.

For the inner loop, we choose our design specification to provide the outer loop
with accurate and fast control of the roll. The inner loop dynamics are given by

Pi = Hθu1 =
r

Js2+cs
.

We choose the desired bandwidth to be 10 rad/s (10 times that of the outer loop)
and the low-frequency error to be no more than 5%. This specification is satisfied
using the lead compensator of Example11.6designed previously, so we choose

Ci(s) = k
s+a
s+b

, a= 2, b= 50, k= 1.

The closed loop dynamics for the system satisfy

Hi =
Ci

1+CiPi
−mg

CiPi

1+CiPi
=

Ci(1−mgPi)
1+CiPi

.

A plot of the magnitude of this transfer function is shown in Figure11.18, and we
see thatHi ≈−mg= 39.2 is a good approximation up to 10 rad/s.

To design the outer loop controller, we assume the inner looproll control is
perfect, so that we can takeθd as the input to our lateral dynamics. Following the
diagram shown in Exercise8.10, the outer loop dynamics can be written as

P(s) = Hi(0)Po(s) =
Hi(0)
ms2

,

where we replaceHi(s) with Hi(0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, this approximation may not
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Figure 11.18: Outer loop control design for a vectored thrust aircraft. (a) The outerloop
approximates the roll dynamics as a state gain−mg. (b) The Bode plot for the roll dynamics,
indicating that this approximation is accurate up to approximately 10 rad/s.

be valid, and so we must verify this when we complete our design.
Our control goal is now to design a controller that gives zerosteady-state error

in x and has a bandwidth of 1 rad/s. The outer loop process dynamicsare given
by a second-order integrator, and we can again use a simple lead compensator to
satisfy the specifications. We also choose the design such that the loop transfer
function for the outer loop has|Lo|< 0.1 for ω > 10 rad/s, so that theHi dynamics
can be neglected. We choose the controller to be of the form

Co(s) =−ko
s+ao

s+bo
,

with the negative sign to cancel the negative sign in the process dynamics. To find
the location of the poles, we note that the phase lead flattens out at approximately
bo/10. We desire phase lead at crossover, and we desire the crossover atωgc =
1 rad/s, so this givesbo = 10. To ensure that we have adequate phase lead, we must
chooseao such thatbo/10< 10ao < bo, which implies thatao should be between
0.1 and 1. We chooseao = 0.3. Finally, we need to set the gain of the system such
that at crossover the loop gain has magnitude 1. A simple calculation shows that
ko = 2 satisfies this objective. Thus, the final outer loop controllerbecomes

Co(s) = 0.8
s+0.3
s+10

.

Finally, we can combine the inner and outer loop controllers and verify that
the system has the desired closed loop performance. The Bode and Nyquist plots
corresponding to Figure11.17with inner and outer loop controllers are shown in
Figure11.19, and we see that the specifications are satisfied. In addition, we show
the Gang of Four in Figure11.20, and we see that the transfer functions between
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Figure 11.19: Inner/outer loop controller for a vectored thrust aircraft. The Bode plot (a)
and Nyquist plot (b) for the transfer function for the combined inner and outer loop transfer
functions are shown. The system has a phase margin of 68◦ and a gain margin of 6.2.

all inputs and outputs are reasonable. The sensitivity to load disturbancesPS is
large at low frequency because the controller does not have integral action.

The approach of splitting the dynamics into an inner and an outer loop is com-
mon in many control applications and can lead to simpler designs for complex
systems. Indeed, for the aircraft dynamics studied in this example, it is very chal-
lenging to directly design a controller from the lateral position x to the inputu1.
The use of the additional measurement ofθ greatly simplifies the design because
it can be broken up into simpler pieces. ∇

11.7 Further Reading

Design by loop shaping was a key element in the early development of control, and
systematic design methods were developed; see James, Nichols and Phillips [JNP47],
Chestnut and Mayer [CM51], Truxal [Tru55] and Thaler [Tha89]. Loop shap-
ing is also treated in standard textbooks such as Franklin, Powell and Emami-
Naeini [FPEN05], Dorf and Bishop [DB04], Kuo and Golnaraghi [KG02] and
Ogata [Oga01]. Systems with two degrees of freedom were developed by Horowitz [Hor63],
who also discussed the limitations of poles and zeros in the right half-plane. Fun-
damental results on limitations are given in Bode [Bod45]; more recent presenta-
tions are found in Goodwin, Graebe and Salgado [GGS01]. The treatment in Sec-
tion 11.5is based on [̊Ast00]. Much of the early work was based on the loop trans-
fer function; the importance of the sensitivity functions appeared in connection
with the development in the 1980s that resulted inH∞ design methods. A compact
presentation is given in the texts by Doyle, Francis and Tannenbaum [DFT92] and
Zhou, Doyle and Glover [ZDG96]. Loop shaping was integrated with the robust
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Figure 11.20:Gang of Four for vectored thrust aircraft system.

control theory in McFarlane and Glover [MG90] and Vinnicombe [Vin01]. Com-
prehensive treatments of control system design are given inMaciejowski [Mac89]
and Goodwin, Graebe and Salgado [GGS01].

Exercises

11.1 Consider the system in Figure11.1. Give all signal pairs that are related by
the transfer functions 1/(1+PC), P/(1+PC), C/(1+PC) andPC/(1+PC).

11.2 Consider the system in Example11.1. Choose the parametersa = −1 and
compute the time and frequency responses for all the transfer functions in the Gang
of Four for controllers withk= 0.2 andk= 5.

11.3 (Equivalence of Figures11.1and11.2) Consider the system in Figure11.1
and let the outputs of interest bez= (η ,ν) and the major disturbances bew =
(n,d). Show that the system can be represented by Figure11.2and give the matrix
transfer functionsP andC . Verify that the elements of the closed loop transfer
functionHzw are the Gang of Four.

11.4 Consider the spring–mass system given by (2.14), which has the transfer
function

P(s) =
1

ms2+cs+k
.

Design a feedforward compensator that gives a response withcritical damping
(ζ = 1).
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11.5(Sensitivity of feedback and feedforward) Consider the system in Figure11.1
and letGyr be the transfer function relating the measured signaly to the reference
r. Show that the sensitivities ofGyr with respect to the feedforward and feedback
transfer functionsF andC are given bydGyr/dF =CP/(1+PC) anddGyr/dC=
FP/(1+PC)2 = GyrL/C.

11.6(Equivalence of controllers with two degrees of freedom) Showthat the sys-
tems in Figures11.1 and 11.3 give the same responses to command signals if
FmC+Fu =CF.

11.7(Disturbance attenuation) Consider the feedback system shown in Figure11.1.
Assume that the reference signal is constant. Letyol be the measured output when
there is no feedback andycl be the output with feedback. Show thatYcl(s) =
S(s)Yol(s), whereS is the sensitivity function.

11.8 (Disturbance reduction through feedback) Consider a problem in which an
output variable has been measured to estimate the potentialfor disturbance attenu-
ation by feedback. Suppose an analysis shows that it is possible to design a closed
loop system with the sensitivity function

S(s) =
s

s2+s+1
.

Estimate the possible disturbance reduction when the measured disturbance is

y(t) = 5sin(0.1t)+3sin(0.17t)+0.5cos(0.9t)+0.1t.

11.9 Show that the effect of high frequency measurement noise on the control
signal for the system in Example11.4can be approximated by

CS≈C=
kds

(sTf )2/2+sTf +1
,

and that the largest value of|CS(iω)| is kd/Tf which occurs forω =
√

2/Tf .

11.10(Attenuation of low-frequency sinusoidal disturbances) Integral action elim-
inates constant disturbances and reduces low-frequency disturbances because the
controller gain is infinite at zero frequency. A similar idea can be used to reduce the
effects of sinusoidal disturbances of known frequencyω0 by using the controller

C(s) = kp+
kss

s2+2ζ ω0s+ω2
0

.

This controller has the gainCs(iω0) = kp+ ks/(2ζ ) for the frequencyω0, which
can be large by choosing a small value ofζ . Assume that the process has the
transfer functionP(s) = 1/s. Determine the Bode plot of the loop transfer function
and simulate the system. Compare the results with PI control.
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11.11 Consider a lead compensator with the transfer function

Cn(s) =
(s n

√
k+a

s+a

)n
,

which has zero frequency gainC(0) = 1 and high-frequency gainC(∞) = k. Show
that the gain required to give a given phase leadϕ is

k=
(

1+2tan2(ϕ/n)+2tan(ϕ/n)
√

1+ tan2(ϕ/n)
)n

,

and that lim
n→∞

k= e2ϕ .

11.12 Consider a process with the loop transfer function

L(s) = k
z−s
s− p

,

with positivezandp. Show that the system is stable ifp/z< k< 1 or 1< k< p/z,
and that the largest stability margin issm = |p− z|/(p+ z) is obtained fork =
2p/(p+z). Determine the pole/zero ratios that gives the stability margin sm= 2/3.

11.13 Prove the inequalities given by equation (11.18). (Hint: Use the maximum�
modulus theorem.)

11.14(Phase margin formulas) Show that the relationship between the phase mar-
gin and the values of the sensitivity functions at gain crossover is given by

|S(iωgc)|= |T(iωgc)|=
1

2sin(ϕm/2)
.

11.15(Stabilization of an inverted pendulum with visual feedback) Consider sta-
bilization of an inverted pendulum based on visual feedbackusing a video camera
with a 50-Hz frame rate. Let the effective pendulum length bel . Assume that we
want the loop transfer function to have a slope ofngc = −1/2 at the crossover
frequency. Use the gain crossover frequency inequality to determine the minimum
length of the pendulum that can be stabilized if we desire a phase margin of 45◦.

11.16 (Rear-steered bicycle) Consider the simple model of a bicycle in Equa-
tion (3.5), which has one pole in the right half-plane. The model is alsovalid for
a bicycle with rear wheel steering, but the sign of the velocity is then reversed and
the system also has a zero in the right half-plane. Use the results of Exercise11.12
to give a condition on the physical parameters that admits a controller with the
stability marginsm.

11.17Prove the formula (11.20) for the complementary sensitivity. �



Chapter Twelve
Robust Performance

However, by building an amplifier whose gain is deliberately made, say 40 decibels higher
than necessary (10000 fold excess on energy basis), and then feedingthe output back on the
input in such a way as to throw away that excess gain, it has been found possible to effect
extraordinary improvement in constancy of amplification and freedom from non-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1934 [Bla34].

This chapter focuses on the analysis of robustness of feedback systems, a vast
topic for which we provide only an introduction to some of thekey concepts. We
consider the stability and performance of systems whose process dynamics are
uncertain and derive fundamental limits for robust stability and performance. To
do this we develop ways to describe uncertainty, both in the form of parameter
variations and in the form of neglected dynamics. We also briefly mention some
methods for designing controllers to achieve robust performance.

12.1 Modeling Uncertainty

Harold Black’s quote above illustrates that one of the key uses of feedback is to
provide robustness to uncertainty (“constancy of amplification”). It is one of the
most useful properties of feedback and is what makes it possible to design feed-
back systems based on strongly simplified models.

One form of uncertainty in dynamical systems isparametric uncertaintyin
which the parameters describing the system are unknown. A typical example is
the variation of the mass of a car, which changes with the number of passengers
and the weight of the baggage. When linearizing a nonlinear system, the parame-
ters of the linearized model also depend on the operating conditions. It is straight-
forward to investigate the effects of parametric uncertainty simply by evaluating
the performance criteria for a range of parameters. Such a calculation reveals the
consequences of parameter variations. We illustrate by a simple example.

Example 12.1 Cruise control
The cruise control problem was described in Section3.1, and a PI controller was
designed in Example10.3. To investigate the effect of parameter variations, we
will choose a controller designed for a nominal operating condition correspond-
ing to massm= 1600 kg, fourth gear (α = 12) and speedve = 25 m/s; the con-
troller gains arekp = 0.72 andki = 0.18. Figure12.1ashows the velocityv and



12.1. MODELING UNCERTAINTY 373

0 5 10 15 20
−1

0

1

Time t [s]

E
rr

or
 e

0 5 10 15 20
0

1

2

Time t [s]

In
pu

t u

(a) Disturbance response

−1 −0.5

−0.5

0.5

Reλ

Imλ

(b) Closed loop eigenvalues

Figure 12.1: Responses of the cruise control system to a slope increase of 3◦ (a) and the
eigenvalues of the closed loop system (b). Model parameters are swept over a wide range.

the throttleu when encountering a hill with a 3◦ slope with masses in the range
1600<m< 2000 kg, gear ratios 3–5 (α = 10, 12 and 16) and velocity 10≤ v≤ 40
m/s. The simulations were done using models that were linearized around the dif-
ferent operating conditions. The figure shows that there are variations in the re-
sponse but that they are quite reasonable. The largest velocity error is in the range
of 0.2–0.6 m/s, and the settling time is about 15 s. The controlsignal is marginally
larger than 1 in some cases, which implies that the throttle is fully open. A full
nonlinear simulation using a controller with windup protection is required if we
want to explore these cases in more detail. Figure12.1bshows the eigenvalues of
the closed loop system for the different operating conditions. The figure shows that
the closed loop system is well damped in all cases. ∇

This example indicates that at least as far as parametric variations are con-
cerned, the design based on a simple nominal model will give satisfactory control.
The example also indicates that a controller with fixed parameters can be used in
all cases. Notice that we have not considered operating conditions in low gear and
at low speed, but cruise controllers are not typically used in these cases.

Unmodeled Dynamics

It is generally easy to investigate the effects of parametric variations. However,
there are other uncertainties that also are important, as discussed at the end of Sec-
tion 2.3. The simple model of the cruise control system captures only the dynamics
of the forward motion of the vehicle and the torque characteristics of the engine
and transmission. It does not, for example, include a detailed model of the engine
dynamics (whose combustion processes are extremely complex) or the slight de-
lays that can occur in modern electronically controlled engines (as a result of the
processing time of the embedded computers). These neglectedmechanisms are
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Figure 12.2:Unmodeled dynamics in linear systems. Uncertainty can be represented using
additive perturbations (left), multiplicative perturbations (middle) or feedback perturbations
(right). The nominal system isP, and∆, δ = ∆/P and∆fb represent unmodeled dynamics.

calledunmodeled dynamics.
Unmodeled dynamics can be accounted for by developing a morecomplex

model. Such models are commonly used for controller development, but substan-
tial effort is required to develop them. An alternative is toinvestigate if the closed
loop system is sensitive to generic forms of unmodeled dynamics. The basic idea
is to describe the unmodeled dynamics by including a transfer function in the sys-
tem description whose frequency response is bounded but otherwise unspecified.
For example, we might model the engine dynamics in the cruisecontrol example
as a system that quickly provides the torque that is requested through the throt-
tle, giving a small deviation from the simplified model, whichassumed the torque
response was instantaneous. This technique can also be used in many instances
to model parameter variations, allowing a quite general approach to uncertainty
management.

In particular, we wish to explore if additional linear dynamics may cause dif-
ficulties. A simple way is to assume that the transfer functionof the process is
P(s)+∆, whereP(s) is the nominal simplified transfer function and∆ represents
the unmodeled dynamics in terms ofadditive uncertainty. Different representa-
tions of uncertainty are shown in Figure12.2.

When Are Two Systems Similar? The Vinnicombe Metric
�

A fundamental issue in describing robustness is to determine when two systems are
close. Given such a characterization, we can then attempt todescribe robustness
according to how close the actual system must be to the model in order to still
achieve the desired levels of performance. This seemingly innocent problem is
not as simple as it may appear. A naive approach is to say that two systems are
close if their open loop responses are close. Even if this appears natural, there are
complications, as illustrated by the following examples.

Example 12.2 Similar in open loop but large differences in closed loop
The systems with the transfer functions

P1(s) =
k

s+1
, P2(s) =

k
(s+1)(sT+1)2 (12.1)
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Figure 12.3: Determining when two systems are close. The plots in (a) show a situation
when the open loop responses are almost identical, but the closed loop responses are very
different. The processes are given by equation (12.1) with k= 100 andT = 0.025. The plots
in (b) show the opposite situation: the systems are different in open loop but similar in closed
loop. The processes are given by equation (12.2) with k= 100.

have very similar open loop responses for small values ofT, as illustrated in the top
plot in Figure12.3a, which is plotted forT = 0.025 andk= 100. The differences
between the step responses are barely noticeable in the figure. The step responses
with unit gain error feedback are shown in the bottom plot in Figure12.3a. Notice
that one closed loop system is stable and the other one is unstable. ∇

Example 12.3 Different in open loop but similar in closed loop
Consider the systems

P1(s) =
k

s+1
, P2(s) =

k
s−1

. (12.2)

The open loop responses are very different becauseP1 is stable andP2 is unstable,
as shown in the top plot in Figure12.3b. Closing a feedback loop with unit gain
around the systems, we find that the closed loop transfer functions are

T1(s) =
k

s+k+1
, T2(s) =

k
s+k−1

,

which are very close for largek, as shown in Figure12.3b. ∇

These examples show that if our goal is to close a feedback loop, it may be
very misleading to compare the open loop responses of the system.

Inspired by these examples we introduce theVinnicombe metric, which is a
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Figure 12.4: Geometric interpretation ofd(P1,P2). At each frequency, the points on the
Nyquist curve forP1 (solid) andP2 (dashed) are projected onto a sphere of radius 1 sitting
at the origin of the complex plane. The projection of the point 1− i is shown. The distance
between the two systems is defined as the maximum distance between the projections of
P1(iω) andP2(iω) over all frequenciesω. The figure is plotted for the transfer functions
P1(s) = 2/(s+1) andP2(s) = 2/(s−1). (Diagram courtesy G. Vinnicombe.)

distance measure that is appropriate for closed loop systems. Consider two systems
with the transfer functionsP1 andP2, and define

d(P1,P2) = sup
ω

|P1(iω)−P2(iω)|√
(1+ |P1(iω)|2)(1+ |P2(iω)|2)

, (12.3)

which is a metric with the property 0≤ d(P1,P2) ≤ 1. The numberd(P1,P2) can
be interpreted as the difference between the complementarysensitivity functions
for the closed loop systems that are obtained with unit feedback aroundP1 andP2;
see Exercise12.3. The metric also has a nice geometric interpretation, as shown in
Figure12.4, where the Nyquist plots ofP1 andP2 are projected onto a sphere with
radius 1 at the origin of the complex plane (called theRiemann sphere). Points in
the complex plane are projected onto the sphere by a line through the point and
the north pole (Figure12.4). The distanced(P1,P2) is the longest chordal distance
between the projections ofP1(iω) andP2(iω). The distance is small whenP1 and
P2 are small or large, but it emphasizes the behavior around thegain crossover
frequency.

The distanced(P1,P2) has one drawback for the purpose of comparing the be-
havior of systems under feedback. IfP2 is perturbed continuously fromP1 to P2,
there can be intermediate transfer functionsP whered(P1,P) is 1 even ifd(P1,P2)
is small (see Exercise12.4). To explore when this could happen, we observe that

1−d2(P1,P) =
(1+P(iω)P1(−iω))(1+P(−iω)P1(iω))

(1+ |P1(iω)|2)(1+ |P(iω)|2) .

The right-hand side is zero, and henced(P1,P) = 1 if 1+P(iω)P1(−iω) = 0 for
someω. To explore when this could occur, we investigate the behavior of the
function 1+P(s)P1(−s) whenP is perturbed fromP1 to P2. If the functionsf1(s) =
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1+P1(s)P1(−s) and f2(s)= 1+P2(s)P1(−s) do not have the same number of zeros
in the right half-plane, there is an intermediateP such that 1+P(iω)P1(−iω) = 0
for someω. To exclude this case we introduce the setC as all pairs(P1,P2) such
that the functionsf1 = 1+P1(s)P1(−s) and f2 = 1+P2(s)P1(−s) have the same
number of zeros in the right half-plane.

TheVinnicombe metricor ν-gap metricis defined as

δν(P1,P2) =

{
d(P1,P2), if (P1,P2) ∈ C

1, otherwise.
(12.4)

Vinnicombe [Vin01] showed thatδν(P1,P2) is a metric, he gave strong robustness
results based on the metric and he developed the theory for systems with many
inputs and many outputs. We illustrate its use by computing the metric for the
systems in the previous examples.

Example 12.4 Vinnicombe metric for Examples12.2and 12.3
For the systems in Example12.2we have

f1(s) = 1+P1(s)P1(−s) =
1+k2−s2

1−s2 ,

f2(s) = 1+P2(s)P1(−s) =
1+k2+2sT+(T2−1)s2−2s3T −s4T2

(1−s2)(1+2sT+s2T2)
.

The function f1 has one zero in the right half-plane. A numerical calculation
for k = 100 andT = 0.025 shows that the functionf2 has the roots 46.3, -86.3,
−20.0±60.0i. Both functions have one zero in the right half-plane, allowing us to
compute the norm (12.4). For T = 0.025 this givesδν(P1,P2) = 0.98, which is a
quite large value. To have reasonable robustness Vinnicombe recommended values
less than 1/3.

For the system in Example12.3we have

1+P1(s)P1(−s) =
1+k2−s2

1−s2 , 1+P2(s)P1(−s) =
1−k2−2s+s2

(s+1)2

These functions have the same number of zeros in the right half-plane if k > 1.
In this particular case the Vinnicombe metric isd(P1,P2) = 2k/(1+ k2) (Exer-
cise 12.4) and with k = 100 we getδν(P1,P2) = 0.02. Figure12.4 shows the
Nyquist curves and their projections fork = 2. Notice thatd(P1,P2) is very small
for smallk even though the closed loop systems are very different. It istherefore
essential to consider the condition(P1,P2) ∈ C , as discussed in Exercise12.4. ∇
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Figure 12.5:Robust stability using the Nyquist criterion. (a) This plot shows that the shortest
distance to the critical pointsm is a robustness measure. (b) This plot shows the Nyquist curve
of a nominal loop transfer function and its uncertainty caused by additiveprocess variations
∆.

12.2 Stability in the Presence of Uncertainty

Having discussed how to describe uncertainty and the similarity between two sys-
tems, we now consider the problem of robust stability: When can we show that
the stability of a system is robust with respect to process variations? This is an
important question since the potential for instability is one of the main drawbacks
of feedback. Hence we want to ensure that even if we have smallinaccuracies in
our model, we can still guarantee stability and performance.

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant way to study the effects
of uncertainty for linear systems. A simple criterion is that the Nyquist curve be
sufficiently far from the critical point−1. Recall that the shortest distance from
the Nyquist curve to the critical point issm = 1/Ms, whereMs is the maximum
of the sensitivity function andsm is the stability margin introduced in Section9.3.
The maximum sensitivityMs or the stability marginsm is thus a good robustness
measure, as illustrated in Figure12.5a.

We will now derive explicit conditions for permissible process uncertainties.
Consider a stable feedback system with a processP and a controllerC. If the
process is changed fromP to P+∆, the loop transfer function changes fromPC
to PC+C∆, as illustrated in Figure12.5b. If we have a bound on the size of∆
(represented by the dashed circle in the figure), then the system remains stable
as long as the process variations never overlap the−1 point, since this leaves the
number of encirclements of−1 unchanged.

Some additional assumptions are required for the analysis tohold. Most impor-
tantly, we require that the process perturbations∆ be stable so that we do not in-
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troduce any new right half-plane poles that would require additional encirclements
in the Nyquist criterion.

We will now compute an analytical bound on the allowable process distur-
bances. The distance from the critical point−1 to the loop transfer functionL is
|1+ L|. This means that the perturbed Nyquist curve will not reach the critical
point−1 provided that|C∆|< |1+L|, which implies

|∆|<
∣∣∣
1+PC

C

∣∣∣ or |δ |=
∣∣∣
∆
P

∣∣∣<
1
|T| . (12.5)

This condition must be valid for all points on the Nyquist curve, i.e, pointwise
for all frequencies. The condition for robust stability can thus be written as

|δ (iω)|=
∣∣∣
∆(iω)

P(iω)

∣∣∣<
1

|T(iω)| for all ω ≥ 0. (12.6)

Notice that the condition is conservative because it follows from Figure12.5that
the critical perturbation is in the direction toward the critical point −1. Larger
perturbations can be permitted in the other directions.

The condition in equation (12.6) allows us to reason about uncertainty without
exact knowledge of the process perturbations. Namely, we can verify stability for
any uncertainty∆ that satisfies the given bound. From an analysis perspective,
this gives us a measure of the robustness for a given design. Conversely, if we
require robustness of a given level, we can attempt to chooseour controllerC such
that the desired level of robustness is available (by askingthatT be small) in the
appropriate frequency bands.

Equation (12.6) is one of the reasons why feedback systems work so well in
practice. The mathematical models used to design control systems are often simpli-
fied, and the properties of a process may change during operation. Equation (12.6)
implies that the closed loop system will at least be stable for substantial variations
in the process dynamics.

It follows from equation (12.6) that the variations can be large for those fre-
quencies whereT is small and that smaller variations are allowed for frequencies
whereT is large. A conservative estimate of permissible process variations that
will not cause instability is given by

|δ (iω)|=
∣∣∣
∆(iω)

P(iω)

∣∣∣<
1

Mt
,

whereMt is the largest value of the complementary sensitivity

Mt = sup
ω

|T(iω)|=
∥∥∥

PC
1+PC

∥∥∥
∞
. (12.7)

The value ofMt is influenced by the design of the controller. For example, it is
shown in Exercise12.5 that if Mt = 2 then pure gain variations of 50% or pure
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Figure 12.6:Robustness for a cruise controller. On the left the maximum relative error 1/|T|
(solid) and the absolute error|P|/|T| (dashed) for the process uncertainty∆. The Nyquist
curve is shown on the right as a solid line. The dashed circles show permissible perturbations
in the process dynamics,|∆|= |P|/|T|, at the frequenciesω = 0, 0.0142 and 0.05.

phase variations of 30◦ are permitted without making the closed loop system un-
stable.

Example 12.5 Cruise control
Consider the cruise control system discussed in Section3.1. The model of the car
in fourth gear at speed 25 m/s is

P(s) =
1.38

s+0.0142
,

and the controller is a PI controller with gainskp = 0.72 andki = 0.18. Fig-
ure 12.6 plots the allowable size of the process uncertainty using the bound in
equation (12.6). At low frequencies,T(0) = 1 and so the perturbations can be as
large as the original process (|δ |= |∆/P|< 1). The complementary sensitivity has
its maximumMt = 1.14 atωmt = 0.35, and hence this gives the minimum allow-
able process uncertainty, with|δ |< 0.87 or|∆|< 3.47. Finally, at high frequencies,
T → 0 and hence the relative error can get very large. For example, at ω = 5 we
have|T(iω)|= 0.195, which means that the stability requirement is|δ |< 5.1. The
analysis clearly indicates that the system has good robustness and that the high-
frequency properties of the transmission system are not important for the design
of the cruise controller.

Another illustration of the robustness of the system is given in the right dia-
gram in Figure12.6, which shows the Nyquist curve of the transfer function of the
process and the uncertainty bounds∆ = |P|/|T| for a few frequencies. Note that
the controller can tolerate large amounts of uncertainty and still maintain stability
of the closed loop. ∇

The situation illustrated in the previous example is typicalof many processes:
moderately small uncertainties are required only around the gain crossover fre-
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Figure 12.7: Illustration of robustness to process perturbations. A system with additiveun-
certainty (left) can be manipulated via block diagram algebra to one with multiplicative
uncertaintyδ = ∆/P (center). Additional manipulations isolate the uncertainty in a manner
that allows application of the small gain theorem (right)

quencies, but large uncertainties can be permitted at higher and lower frequencies.
A consequence of this is that a simple model that describes the process dynamics
well around the crossover frequency is often sufficient for design. Systems with
many resonant peaks are an exception to this rule because theprocess transfer
function for such systems may have large gains for higher frequencies also, as
shown for instance in Example9.9.

The robustness condition given by equation (12.6) can be given another inter-
pretation by using the small gain theorem (Theorem9.4). To apply the theorem
we start with block diagrams of a closed loop system with a perturbed process and
make a sequence of transformations of the block diagram thatisolate the block
representing the uncertainty, as shown in Figure12.7. The result is the two-block
interconnection shown in Figure12.7c, which has the loop transfer function

L =
PC

1+PC
∆
P
= Tδ .

Equation (12.6) implies that the largest loop gain is less than 1 and hence the
system is stable via the small gain theorem.

The small gain theorem can be used to check robust stability for uncertainty in
a variety of other situations. Table12.1summarizes a few of the common cases;
the proofs (all via the small gain theorem) are left as exercises.

Table 12.1:Conditions for robust stability for different types of uncertainty

Process Uncertainty Type Robust Stability

P+∆ Additive ‖CS∆‖∞ < 1

P(1+δ ) Multiplicative ‖Tδ‖∞ < 1

P/(1+∆fb ·P) Feedback ‖PS∆fb‖∞ < 1
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The following example illustrates that it is possible to design systems that are
robust to parameter variations.

Example 12.6 Bode’s ideal loop transfer function
A major problem in the design of electronic amplifiers is to obtain a closed loop
system that is insensitive to changes in the gain of the electronic components.
Bode found that the loop transfer functionL(s) = ks−n, with 1≤ n ≤ 5/3, was
an ideal loop transfer function. The gain curve of the Bode plot is a straight line
with slope−n and the phase is constant argL(iω) = −nπ/2. The phase margin
is thusϕm = 90(2−n)◦ for all values of the gaink and the stability margin is
sm = sinπ(1−n/2). This exact transfer function cannot be realized with physical
components, but it can be approximated over a given frequency range with a ratio-
nal function (Exercise12.7). An operational amplifier circuit that has the approx-
imate transfer functionG(s) = k/(s+ a) is a realization of Bode’s ideal transfer
function with n = 1, as described in Example8.3. Designers of operational am-
plifiers go to great efforts to make the approximation valid over a wide frequency
range. ∇

Youla Parameterization
�

Since stability is such an essential property, it is useful tocharacterize all con-
trollers that stabilize a given process. Such a representation, which is called aYoula
parameterization, is very useful when solving design problems because it makes it
possible to search over all stabilizing controllers without the need to test stability
explicitly.

We will first derive Youla’s parameterization for a stable process with a rational
transfer functionP. A system with the complementary sensitivity functionT can
be obtained by feedforward control with the stable transferfunctionQ if T = PQ.
Notice thatT must have the same right half-plane zeros asP sinceQ is stable.
Now assume that we want to implement the complementary transfer functionT
by using unit feedback with the controllerC. SinceT = PC/(1+PC) = PQ, it
follows that the controller transfer function is

C=
Q

1−PQ
. (12.8)

A straightforward calculation gives

S= 1−PQ, PS= P(1−PQ), CS= Q, T = PQ.

These transfer functions are all stable ifP andQ are stable and the controller given
by equation (12.8) is thus stabilizing. Indeed, it can be shown that all stabilizing
controllers are in the form given by equation (12.8) for some choice ofQ. The
parameterization is illustrated by the block diagrams in Figure12.8a.
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Figure 12.8:Youla parameterization. Block diagrams of Youla parameterizations for astable
system (a) and an unstable system (b). Notice that the signalv is zero in steady state.

A similar characterization can be obtained for unstable systems. Consider a
process with a rational transfer functionP(s) = a(s)/b(s), wherea(s) andb(s) are
polynomials. By introducing a stable polynomialc(s), we can write

P(s) =
b(s)
a(s)

=
B(s)
A(s)

,

whereA(s) = a(s)/c(s) andB(s) = b(s)/c(s) are stable rational functions. Simi-
larly we introduce the controllerC0(s) = G0(s)/F0(s), whereF0(s) andG0(s) are
stable rational functions. We have

S0 =
AF0

AF0+BG0
, PS0 =

BF0

AF0+BG0
,

C0S0 =
AG0

AF0+BG0
, T0 =

BG0

AF0+BG0
.

The controllerC0 is stabilizing if and only if the rational functionAF0+BG0 does
not have any zeros in the right half plane. LetQ be a stable rational function and
consider the controller

C=
G0+QA
F0−QB

. (12.9)

The Gang of Four forP andC is

S=
A(F0−QB)
AF0+BG0

, PS=
B(F0−QB)
AF0+BG0

,

CS=
A(G0+QA)
AF0+BG0

, T =
B(G0+QA)
AF0+BG0

.

All these transfer functions are stable if the rational function AF0+BG0 does not
have any zeros in the right half plane and the controllerC given by (12.9) is there-
fore stabilizing for any stableQ. A block diagram of the closed loop system with
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Figure 12.9:Block diagram of a basic feedback loop. The external signals are the reference
signalr, the load disturbanced and the measurement noisen. The process output isy, and
the control signal isu. The processP may include unmodeled dynamics, such as additive
perturbations.

the controllerC is shown in Figure12.8b. Notice that the transfer functionQ ap-
pears affinely in the expressions for the Gang of Four, which isvery useful if we
want to determine the transfer functionQ to obtain specific properties.

12.3 Performance in the Presence of Uncertainty

So far we have investigated the risk for instability and robustness to process un-
certainty. We will now explore how responses to load disturbances, measurement
noise and reference signals are influenced by process variations. To do this we will
analyze the system in Figure12.9, which is identical to the basic feedback loop
analyzed in Chapter11.

Disturbance Attenuation

The sensitivity functionSgives a rough characterization of the effect of feedback
on disturbances, as was discussed in Section11.3. A more detailed characterization
is given by the transfer function from load disturbances to process output:

Gyd =
P

1+PC
= PS. (12.10)

Load disturbances typically have low frequencies, and it is therefore important
that the transfer function be small for low frequencies. Forprocesses with constant
low-frequency gain and a controller with integral action wehaveGyd ≈ s/ki . The
integral gainki is thus a simple measure of the attenuation of load disturbances.

To find out how the transfer functionGyd is influenced by small variations in
the process transfer function we differentiate (12.10) with respect toP yielding

dGyd

dP
=

1
(1+PC)2 =

SP
P(1+PC)

= S
Gyd

P
,
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and it follows that
dGyd

Gyd
= S

dP
P
. (12.11)

The response to load disturbances is thus insensitive to process variations for fre-
quencies where|S(iω)| is small, i.e., for frequencies where load disturbances are
important.

A drawback with feedback is that the controller feeds measurement noise into
the system. In addition to the load disturbance rejection, it is thus also important
that the control actions generated by measurement noise arenot too large. It fol-
lows from Figure12.9 that the transfer functionGun from measurement noise to
controller output is given by

Gun =− C
1+PC

=−T
P
. (12.12)

Since measurement noise typically has high frequencies, thetransfer functionGun

should not be too large for high frequencies. The loop transfer function PC is
typically small for high frequencies, which implies thatGun ≈ C for large s. To
avoid injecting too much measurement noise it is therefore important thatC(s)
be small for larges. This property is calledhigh-frequency roll-off. An example
is filtering of the measured signal in a PID controller to reducethe injection of
measurement noise; see Section10.5.

To determine how the transfer functionGun is influenced by small variations in
the process transfer, we differentiate equation (12.12):

dGun

dP
=

d
dP

(
− C

1+PC

)
=

C
(1+PC)2C=−T

Gun

P
.

Rearranging the terms gives

dGun

Gun
=−T

dP
P
. (12.13)

Since the complementary sensitivity function is also small for high frequencies,
we find that process uncertainty has little influence on the transfer functionGun for
frequencies where measurements are important.

Reference Signal Tracking

The transfer function from reference to output is given by

Gyr =
PCF

1+PC
= TF, (12.14)

which contains the complementary sensitivity function. Tosee how variations inP
affect the performance of the system, we differentiate equation (12.14) with respect
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Figure 12.10:Operational amplifier with uncertain dynamics. The circuit on the left is mod-
eled using the transfer functionG(s) to capture its dynamic properties and it has a load at
the output. The block diagram on the right shows the input/output relationships. The load is
represented as a disturbanced applied at the output ofG(s).

to the process transfer function:

dGyr

dP
=

CF
1+PC

− PCFC
(1+PC)2 =

CF
(1+PC)2 = S

Gyr

P
,

and it follows that
dGyr

Gyr
= S

dP
P
. (12.15)

The relative error in the closed loop transfer function thus equals the product of
the sensitivity function and the relative error in the process. In particular, it follows
from equation (12.15) that the relative error in the closed loop transfer function is
small when the sensitivity is small. This is one of the useful properties of feedback.

As in the last section, there are some mathematical assumptions that are re-
quired for the analysis presented here to hold. As already stated, we require that
the perturbations∆ be small (as indicated by writingdP). Second, we require that
the perturbations be stable, so that we do not introduce any new right half-plane
poles that would require additional encirclements in the Nyquist criterion. Also, as
before, this condition is conservative: it allows for any perturbation that satisfies
the given bounds, while in practice the perturbations may bemore restricted.

Example 12.7 Operational amplifier circuit
To illustrate the use of these tools, consider the performance of an op amp-based
amplifier, as shown in Figure12.10. We wish to analyze the performance of the
amplifier in the presence of uncertainty in the dynamic response of the op amp
and changes in the loading on the output. We model the system using the block
diagram in Figure12.10b, which is based on the derivation in Example9.1.

Consider first the effect of unknown dynamics for the operational amplifier. If
we model the dynamics of the op amp asv2 = −G(s)v, then the transfer function
for the overall circuit is given by

Gv2v1 =−R2

R1

G(s)
G(s)+R2/R1+1

.

We see that ifG(s) is large over the desired frequency range, then the closed loop
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system is very close to the ideal responseα = R2/R1. AssumingG(s) = b/(s+a),
whereb is the gain-bandwidth product of the amplifier, as discussed in Exam-
ple8.3, the sensitivity function and the complementary sensitivity function become

S=
s+a

s+a+αb
, T =

αb
s+a+αb

.

The sensitivity function around the nominal values tells us how the tracking re-
sponse response varies as a function of process perturbations:

dGyr

Gyr
= S

dP
P
.

We see that for low frequencies, whereS is small, variations in the bandwidtha or
the gain-bandwidth productb will have relatively little effect on the performance
of the amplifier (under the assumption thatb is sufficiently large).

To model the effects of an unknown load, we consider the addition of a dis-
turbance at the output of the system, as shown in Figure12.10b. This disturbance
represents changes in the output voltage due to loading effects. The transfer func-
tion Gyd = Sgives the response of the output to the load disturbance, andwe see
that if Sis small, then we are able to reject such disturbances. The sensitivity of Gyd
to perturbations in the process dynamics can be computed by taking the derivative
of Gyd with respect toP:

dGyd

dP
=

−C
(1+PC)2 =−T

P
Gyd =⇒ dGyd

Gyd
=−T

dP
P
.

Thus we see that the relative changes in the disturbance rejection are roughly the
same as the process perturbations at low frequency (whenT is approximately 1)
and drop off at higher frequencies. However, it is importantto remember thatGyd
itself is small at low frequency, and so these variations in relative performance may
not be an issue in many applications. ∇

12.4 Robust Pole Placement

In Chapters6 and 7 we saw how to design controllers by setting the locations
of the eigenvalues of the closed loop system. If we analyze the resulting system
in the frequency domain, the closed loop eigenvalues correspond to the poles of
the closed loop transfer function and hence these methods are often referred to as
design bypole placement.

State space design methods, like many methods developed for control system
design, do not explicitly take robustness into account. In such cases it is essen-
tial to always investigate the robustness because there areseemingly reasonable
designs that give controllers with poor robustness. We illustrate this by analyzing
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controllers designed by state feedback and observers. The closed loop poles can
be assigned to arbitrary locations if the system is observable and reachable. How-
ever, if we want to have a robust closed loop system, the polesand zeros of the
process impose severe restrictions on the location of the closed loop poles. Some
examples are first given; based on the analysis of these examples we then present
design rules for robust pole (eigenvalue) placement.

Slow Stable Process Zeros

We will first explore the effects of slow stable zeros, and we begin with a simple
example.

Example 12.8 Vehicle steering
Consider the linearized model for vehicle steering in Example 8.6, which has the
transfer function

P(s) =
0.5s+1

s2 .

A controller based on state feedback was designed in Example6.4, and state feed-
back was combined with an observer in Example7.4. The system simulated in
Figure7.8 has closed loop poles specified byωc = 0.3, ζc = 0.707,ωo = 7 and
ζo = 9. Assume that we want a faster closed loop system and chooseωc = 10,
ζc = 0.707,ωo = 20 andζo = 0.707. Using the state representation in Example7.3,
a pole placement design gives state feedback gainsk1 = 100 andk2 =−35.86 and
observer gainsl1 = 28.28 andl2 = 400. The controller transfer function is

C(s) =
−11516s+40000

s2+42.4s+6657.9
.

Figure 12.11 shows Nyquist and Bode plots of the loop transfer function. The
Nyquist plot indicates that the robustness is poor since theloop transfer function is
very close to the critical point−1. The phase margin is 7◦ and the stability margin
is sm = 0.077. The poor robustness shows up in the Bode plot, where the gain
curve hovers around the value 1 and the phase curve is close to−180◦ for a wide
frequency range. More insight is obtained by analyzing the sensitivity functions,
shown by solid lines in Figure12.12. The maximum sensitivities areMs = 13 and
Mt = 12, indicating that the system has poor robustness.

At first sight it is surprising that a controller where the nominal closed system
has well damped poles and zeros is so sensitive to process variations. We have an
indication that something is unusual because the controller has a zero ats= 3.5
in the right half-plane. To understand what happens, we willinvestigate the reason
for the peaks of the sensitivity functions.

Let the transfer functions of the process and the controller be

P(s) =
np(s)

dp(s)
, C(s) =

nc(s)
dc(s)

,
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Figure 12.11: Observer-based control of steering. The Nyquist plot (left) and Bode plot
(right) of the loop transfer function for vehicle steering with a controller based on state
feedback and an observer. The controller provides stable operation,but with very low gain
and phase margin.

wherenp(s), nc(s), dp(s) anddc(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

T(s) =
PC

1+PC
=

np(s)nc(s)

dp(s)dc(s)+np(s)nc(s)
.

The poles ofT(s) are the poles of the closed loop system and the zeros are given
by the zeros of the process and controller. Sketching the gaincurve of the com-
plementary sensitivity function we find thatT(s) = 1 for low frequencies and that
|T(iω)| starts to increase at its first zero, which is the process zero at s= −2. It
increases further at the controller zero ats= 3.5, and it does not start to decrease
until the closed loop poles appear atωc = 10 andωo = 20. We can thus conclude
that there will be a peak in the complementary sensitivity function. The magnitude
of the peak depends on the ratio of the zeros and the poles of the transfer function.

The peak of the complementary sensitivity function can be avoided by assign-
ing a closed loop pole close to the slow process zero. We can achieve this by choos-
ing ωc = 10 andζc = 2.6, which gives closed loop poles ats= −2 ands= −50.
The controller transfer function then becomes

C(s) =
3628s+40000

s2+80.28s+156.56
= 3628

s+11.02
(s+2)(s+78.28)

.

The sensitivity functions are shown by dashed lines in Figure12.12. The controller
gives the maximum sensitivitiesMs= 1.34 andMt = 1.41, which give much better
robustness. Notice that the controller has a pole ats= −2 that cancels the slow
process zero. The design can also be done simply by canceling the slow stable
process zero and designing the controller for the simplified system. ∇

One lesson from the example is that it is necessary to choose closed loop poles
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Figure 12.12:Sensitivity functions for observer-based control of vehicle steering.The com-
plementary sensitivity function (left) and the sensitivity function (right) forthe original con-
troller with ωc = 10, ζc = 0.707,ωo = 20, ζo = 0.707 (solid) and the improved controller
with ωc = 10,ζc = 2.6 (dashed).

that are equal to or close to slow stable process zeros. Another lesson is that slow
unstable process zeros impose limitations on the achievable bandwidth, as already
noted in Section11.5.

Fast Stable Process Poles

The next example shows the effect of fast stable poles.

Example 12.9 Fast system poles
Consider a PI controller for a first-order system, where the process and the con-
troller have the transfer functionsP(s) = b/(s+a) andC(s) = kp+ki/s. The loop
transfer function is

L(s) =
b(kps+ki)

s(s+a)
,

and the closed loop characteristic polynomial is.

s(s+a)+b(kps+ki) = s2+(a+bkp)s+kib

If we specify the desired closed loop poles should be−p1 and−p2, we find that
the controller parameters are given by

kp =
p1+ p2−a

b
, ki =

p1p2

b
.

The sensitivity functions are then

S(s) =
s(s+a)

(s+ p1)(s+ p2)
, T(s) =

(p1+ p2−a)s+ p1p2

(s+ p1)(s+ p2)
.

Assume that the process pole−a is much more negative than the closed loop poles
−p1 and−p2, say,p1 < p2 ≪ a. Notice that the proportional gain is negative and
that the controller has a zero in the right half-plane ifa > p1+ p2, an indication
that the system has bad properties.
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Figure 12.13: Gain curves for Bode plots of the sensitivity functionS for designs with
p1 < p2 < a (left) anda< p1 < p2 (right). The solid lines are the true sensitivities, and the
dashed lines are the asymptotes.

Next consider the sensitivity function, which is 1 for high frequencies. Moving
from high to low frequencies, we find that the sensitivity increases at the pro-
cess poles=−a. The sensitivity does not decrease until the closed loop poles are
reached, resulting in a large sensitivity peak that is approximatelya/p2. The mag-
nitude of the sensitivity function is shown in Figure12.13for a= b= 1, p1 = 0.05
andp2 = 0.2. Notice the high-sensitivity peak. For comparison we alsoshow the
gain curve for the case when the closed loop poles (p1 = 5, p2 = 20) are faster
than the process pole (a= 1).

The problem with poor robustness can be avoided by choosing one closed loop
pole equal to the process pole, i.e.,p2 = a. The controller gains then become

kp =
p1

b
, ki =

ap1

l
,

which means that the fast process pole is canceled by a controller zero. The loop
transfer function and the sensitivity functions are

L(s) =
bkp

s
, S(s) =

s
s+bkp

, T(s) =
bkp

s+bkp
.

The maximum sensitivities are now less than 1 for all frequencies. Notice that this
is possible because the process transfer function goes to zero ass−1. ∇

Design Rules for Pole Placement

Based on the insight gained from the examples, it is now possible to obtain design
rules that give designs with good robustness. Consider the expression (12.7) for
maximum complementary sensitivity, repeated here:

Mt = sup
ω

|T(iω)|=
∥∥∥

PC
1+PC

∥∥∥
∞
.

Let ωgc be the desired gain crossover frequency. Assume that the process has ze-
ros that are slower thanωgc. The complementary sensitivity function is 1 for low
frequencies, and it increases for frequencies close to the process zeros unless there
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is a closed loop pole in the neighborhood. To avoid large values of the comple-
mentary sensitivity function we find that the closed loop system should therefore
have poles close to or equal to the slow stable zeros. This means that slow stable
zeros should be canceled by controller poles. Since unstablezeros cannot be can-
celed, the presence of slow unstable zeros means that achievable gain crossover
frequency must be smaller than the slowest unstable processzero.

Now consider process poles that are faster than the desired gain crossover fre-
quency. Consider the expression for the maximum of the sensitivity function:

Ms = sup
ω

|S(iω)|=
∥∥∥

1
1+PC

∥∥∥
∞
.

The sensitivity function is 1 for high frequencies. Moving from high to low fre-
quencies, the sensitivity function increases at the fast process poles. Large peaks
can result unless there are closed loop poles close to the fast process poles. To avoid
large peaks in the sensitivity the closed loop system shouldtherefore have poles
that match the fast process poles. This means that the controller should cancel the
fast process poles by controller zeros. Since unstable modescannot be canceled,
the presence of a fast unstable pole implies that the gain crossover frequency must
be sufficiently large.

To summarize, we obtain the following simple rule for choosing closed loop
poles: slow stable process zeros should be matched by slow closed loop poles,
and fast stable process poles should be matched by fast closed loop poles. Slow
unstable process zeros and fast unstable process poles impose severe limitations.

Example 12.10 Nanopositioning system for an atomic force microscope
A simple nanopositioner was explored in Example9.9, where it was shown that
the system could be controlled using an integral controller. The performance of
the closed loop was poor because the gain crossover frequency was limited to
ωgc = 2ζ ω0(1−sm). It can be shown that little improvement is obtained by using
a PI controller. To achieve improved performance, we will therefore apply PID
control. For a modest performance increase, we will use the design rule derived in
Example12.9that fast stable process poles should be canceled by controller zeros.
The controller transfer function should thus be chosen as

C(s) =
kds2+kps+ki

s
=

ki

s
s2+2ζas+a2

a2 (12.16)

wherea= ω0, which giveskp = 2ζki/a andkd = ki/a2.
Figure12.14shows the gain curves for the Gang of Four for a system designed

with ki = 0.5. A comparison with Figure9.12 shows that the bandwidth is in-
creased significantly fromωgc = 0.01 toωgc = ki = 0.5. Since the process pole is
canceled, the system will, however, still be very sensitiveto load disturbances with
frequencies close to the resonant frequency. The gain curve of CShas a dip or a
notch at the resonant frequency, which implies that the controller gain is very low
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Figure 12.14:Nanopositioning system control via cancellation of the fast process pole.Gain
plots for the Gang of Four for PID control with second-order filtering (12.17) are shown
by solid lines, and the dashed lines show results for an ideal PID controllerwithout filter-
ing (12.16).

for frequencies around the resonance. The gain curve also shows that the system is
very sensitive to high-frequency noise. The system will likely be unusable because
the gain goes to infinity for high frequencies.

The sensitivity to high frequency noise can be remedied by modifying the con-
troller to be

C(s) =
ki

s
s2+2ζas+a2

a2(1+sTf +(sTf )2/2)
, (12.17)

which has high-frequency roll-off. Selection of the constant Tf for the filter is a
compromise between attenuation of high-frequency measurement noise and ro-
bustness. A large value ofTf reduces the effects of sensor noise significantly, but
it also reduces the stability margin. Since the gain crossover frequency without
filtering is ki , a reasonable choice isTF = 0.2/Tf , as shown by the solid curves in
Figure12.14. The plots of|CS(iω)| and|S(iω)| show that the sensitivity to high-
frequency measurement noise is reduced dramatically at thecost of a marginal
increase of sensitivity. Notice that the poor attenuation of disturbances with fre-
quencies close to the resonance is not visible in the sensitivity function because of
the exact cancellation of poles and zeros.

The designs thus far have the drawback that load disturbanceswith frequencies
close to the resonance are not attenuated. We will now consider a design that ac-
tively attenuates the poorly damped modes. We start with an ideal PID controller
where the design can be done analytically, and we add high-frequency roll-off. The
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loop transfer function obtained with this controller is

L(s) =
a2(kds2+kps+ki)

s(s2+2ζas+a2)
. (12.18)

The closed loop system is of third order, and its characteristic polynomial is

s3+(kda2+2ζa)s2+(kp+1)a2s+kia
2. (12.19)

A general third-order polynomial can be parameterized as

s3+(α0+2ζ )ω0s2+(1+2α0ζ )ω2
0s+α0ω3

0 . (12.20)

The parametersα0 andζ give the relative configuration of the poles, and the pa-
rameterω0 gives their magnitudes, and therefore also the bandwidth ofthe system.

The identification of coefficients of equal powers ofs with equation (12.19)
gives a linear equation for the controller parameters, which has the solution

kp =
(1+2α0ζ )ω2

0

a2 −1, ki =
α0ω3

0

a2 , kd =
(α0+2ζ )ω0

a2 − 2ζ
a
. (12.21)

To obtain a design with active damping, it is necessary that the closed loop band-
width be at least as fast as the oscillatory modes. Adding high-frequency roll-off,
the controller becomes

C(s) =
kds2+kps+k

s(1+sTf +(sTf )2/2)
. (12.22)

The valueTf = Td/10= 0.1kd/k is a good value for the filtering time constant.
Figure 12.15 shows the gain curves of the Gang of Four for designs with

ζ = 0.707,α0 = 1 andω0 = a, 2a and 4a. The figure shows that the largest values
of the sensitivity function and the complementary sensitivity function are small.
The gain curve forPSshows that the load disturbances are now well attenuated
over the whole frequency range, and attenuation increases with increasingω0. The
gain curve forCSshows that large control signals are required to provide active
damping. The high gain ofCSfor high frequencies also shows that low-noise sen-
sors and actuators with a wide range are required. The largestgains forCSare 19,
103 and 434 forω0 = a, 2a and 4a, respectively. There is clearly a trade-off be-
tween disturbance attenuation and controller gain. A comparison of Figures12.14
and12.15illustrates the trade-offs between control action and disturbance attenu-
ation for the designs with cancellation of the fast process pole and active damping.

∇
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Figure 12.15: Nanopositioner control using active damping. Gain curves for the Gangof
Four for PID control of the nanopositioner designed forω0 = a (dash-dotted), 2a (dashed),
and 4a (solid). The controller has high-frequency roll-off and has been designed to give
active damping of the oscillatory mode. The different curves correspond to different choices
of magnitudes of the poles, parameterized byω0 in equation (12.19).

12.5 Design for Robust Performance
�

Control design is a rich problem where many factors have to betaken into account.
Typical requirements are that load disturbances should be attenuated, the controller
should inject only a moderate amount of measurement noise, the output should
follow variations in the command signal well and the closed loop system should be
insensitive to process variations. For the system in Figure12.9these requirements
can be captured by specifications on the sensitivity functions S and T and the
transfer functionsGyd, Gun, Gyr andGur. Notice that it is necessary to consider
at least six transfer functions, as discussed Section11.1. The requirements are
mutually conflicting, and it is necessary to make trade-offs.The attenuation of
load disturbances will be improved if the bandwidth is increased, but so will the
noise injection.

It is highly desirable to have design methods that can guarantee robust perfor-
mance. Such design methods did not appear until the late 1980s. Many of these
design methods result in controllers having the same structure as the controller
based on state feedback and an observer. In this section we provide a brief review
of some of the techniques as a preview for those interested inmore specialized
study.

Quantitative Feedback Theory

Quantitative feedback theory(QFT) is a graphical design method for robust loop
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Figure 12.16: Hall and Nichols charts. The Hall chart is a Nyquist plot with curves for
constant gain and phase of the complementary sensitivity functionT. The Nichols chart is the
conformal map of the Hall chart under the transformationN = logL (with the scale flipped).
The dashed curve is the line where|T(iω)| = 1, and the shaded region corresponding to
loop transfer functions whose complementary sensitivity changes by nomore than±10% is
shaded.

shaping that was developed by I. M. Horowitz [Hor91]. The idea is to first deter-
mine a controller that gives a complementary sensitivity that is robust to process
variations and then to shape the response to reference signals by feedforward. The
idea is illustrated in Figure12.16a, which shows the level curves of the comple-
mentary sensitivity functionT on a Nyquist plot. The complementary sensitivity
function has unit gain on the line ReL(iω) = −0.5. In the neighborhood of this
line, significant variations in process dynamics only give moderate changes in the
complementary transfer function. The shaded part of the figurecorresponds to the
region 0.9< |T(iω)|< 1.1. To use the design method, we represent the uncertainty
for each frequency by a region and attempt to shape the loop transfer function so
that the variation inT is as small as possible. The design is often performed using
the Nichols chart shown in Figure12.16b.

Linear Quadratic Control

One way to make the trade-off between the attenuation of loaddisturbances and
the injection of measurement noise is to design a controllerthat minimizes the loss
function

J =
1
T

∫ T

0

(
y2(t)+ρu2(t)

)
dt,

whereρ is a weighting parameter as discussed in Section6.3. This loss function
gives a compromise between load disturbance attenuation and disturbance injec-
tion because it balances control actions against deviations in the output. If all state
variables are measured, the controller is a state feedbacku= −Kx and it has the
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same form as the controller obtained by eigenvalue assignment (pole placement)
in Section6.2. However, the controller gain is obtained by solving an optimiza-
tion problem. It has been shown that this controller is very robust. It has a phase
margin of at least 60◦ and an infinite gain margin. The controller is called alin-
ear quadratic controlor LQ control because the process model is linear and the
criterion is quadratic.

When all state variables are not measured, the state can be reconstructed using
an observer, as discussed in Section7.3. It is also possible to introduce process
disturbances and measurement noise explicitly in the modeland to reconstruct
the states using a Kalman filter, as discussed briefly in Section7.4. The Kalman
filter has the same structure as the observer designed by eigenvalue assignment in
Section7.3, but the observer gainsL are now obtained by solving an optimization
problem. The control law obtained by combining linear quadratic control with a
Kalman filter is calledlinear quadratic Gaussian controlor LQG control. The
Kalman filter is optimal when the models for load disturbancesand measurement
noise are Gaussian.

It is interesting that the solution to the optimization problem leads to a con-
troller having the structure of a state feedback and an observer. The state feedback
gains depend on the parameterρ, and the filter gains depend on the parameters in
the model that characterize process noise and measurement noise (see Section7.4).
There are efficient programs to compute these feedback and observer gains.

The nice robustness properties of state feedback are unfortunately lost when the
observer is added. It is possible to choose parameters that give closed loop systems
with poor robustness, similar to Example12.8. We can thus conclude that there is a
fundamental difference between using sensors for all states and reconstructing the
states using an observer.

H∞ Control
�

Robust control design is often calledH∞ control for reasons that will be explained
shortly. The basic ideas are simple, but the details are complicated and we will
therefore just give the flavor of the results. A key idea is illustrated in Figure12.17,
where the closed loop system is represented by two blocks, the processP and the
controller C as discussed in Section11.1. The processP has two inputs, the
control signalu, which can be manipulated by the controller, and the generalized
disturbancew, which represents all external influences, e.g., command signals and
disturbances. The process has two outputs, the generalized error z, which is a vec-
tor of error signals representing the deviation of signals from their desired values,
and the measured signaly, which can be used by the controller to computeu. For
a linear system and a linear controller the closed loop system can be represented
by the linear system

z= H(P(s),C(s))w, (12.23)
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Figure 12.17:H∞ robust control formulation. The left figure shows a general representation
of a control problem used in robust control. The inputu represents the control signal, the
input w represents the external influences on the system, the outputz is the generalized
error and the outputy is the measured signal. The right figure shows the special case of the
basic feedback loop in Figure12.9where the reference signal is zero. In this case we have
w= (n,d) andz= (y,−u).

which tells how the generalized errorzdepends on the generalized disturbancesw.
The control design problem is to find a controllerC such that the gain of the trans-
fer functionH is small even when the process has uncertainties. There are many
different ways to specify uncertainty and gain, giving riseto different designs. The
namesH2 andH∞ control correspond to the norms‖H‖2 and‖H‖∞.

To illustrate the ideas we will consider a regulation problem for a system where
the reference signal is assumed to be zero and the external signals are the load
disturbanced and the measurement noisen, as shown in Figure12.17(right). The
generalized input isw = (−n,d). (The negative sign ofn is not essential but is
chosen to obtain somewhat nicer equations.) The generalizederror is chosen as
z= (η ,ν), whereη is the process output andν is the part of the load disturbance
that is not compensated by the controller. The closed loop system is thus modeled
by

z=


 y
−u


=




1
1+PC

P
1+PC

C
1+PC

PC
1+PC





n

d


= H(P,C)


n

d


 , (12.24)

which is the same as equation (12.23). A straightforward calculation shows that

‖H(P,C))‖∞ = sup
ω

√
(1+ |P(iω)|2)(1+ |C(iω)|2)

|1+P(iω)C(iω)| . (12.25)

There are numerical methods for finding a controller such that‖H(P,C)‖∞ < γ,
if such a controller exists. The best controller can then be found by iterating on
γ. The calculations can be made by solvingalgebraic Riccatiequations, e.g., by
using the commandhinfsyn in MATLAB. The controller has the same order as
the process and the same structure as the controller based onstate feedback and an
observer; see Figure7.7and Theorem7.3.

Notice that if we minimize‖H(P,C)‖∞, we make sure that the transfer func-
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tionsGyd = P/(1+PC), representing the transmission of load disturbances to the
output, andGun = −C/(1+PC), representing how measurement noise is trans-
mitted to the control signal, are small. Since the sensitivity and the complementary
sensitivity functions are also elements ofH(P,C), we have also guaranteed that
the sensitivities are less thanγ. The design methods thus balance performance and
robustness.

There are strong robustness results associated with theH∞ controller. It follows
from equations (12.4) and (12.25) that

‖H(P,C)‖∞ =
1

δν(P,−1/C)
. (12.26)

The inverse of‖H(P,C)‖∞ is thus equal to the Vinnicombe distance betweenP and
−1/C and can therefore be interpreted as ageneralized stability margin. Compare
this with sm, which we defined as the shortest distance between the Nyquistcurve
of the loop transfer function and the critical point−1. It also follows that if we find
a controllerC with ‖H(P,C)‖∞ < γ, then this controller will stabilize any process
P∗ such thatδν(P,P∗)< 1/γ.

Disturbance Weighting

Minimizing the gain‖H(P,C)‖∞ means that the gains of all individual signal trans-
missions from disturbances to outputs are less thanγ for all frequencies of the in-
put signals. The assumption that the disturbances are equally important and that
all frequencies are also equally important is not very realistic; recall that load
disturbances typically have low frequencies and measurement noise is typically
dominated by high frequencies. It is straightforward to modify the problem so that
disturbances of different frequencies are given differentemphasis, by introducing
a weighting filter on the load disturbance as shown in Figure12.18. For example,
low-frequency load disturbances will be enhanced by choosing W as a low-pass
filter because the actual load disturbance isWd̄.

By using block diagram manipulation as shown in Figure12.18, we find that
the system with frequency weighting is equivalent to the system with no frequency
weighting in Figure12.18and the signals are related through

z̄=


y

ū







1
1+ P̄C̄

P̄

1+ P̄C̄
C̄

1+ P̄C̄

P̄C̄

1+ P̄C̄





n

d̄


= H(P̄,C̄)w̄, (12.27)

whereP̄ = PW andC̄ = W−1C. The problem of finding a controller̄C that min-
imizes the gain ofH(P̄,C̄) is thus equivalent to the problem without disturbance
weighting; having obtained̄C, the controller for the original system is thenC =
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Figure 12.18:Block diagrams of a system with disturbance weighting. The left figure pro-
vides a frequency weight on processes disturbances. Through block diagram manipulation,
this can be converted to the standard problem on the right.

WC̄. Notice that if we introduce the frequency weightingW = k/s, we will auto-
matically get a controller with integral action.

Limits of Robust Design

There is a limit to what can be achieved by robust design. In spite of the nice prop-
erties of feedback, there are situations where the process variations are so large
that it is not possible to find a linear controller that gives a robust system with
good performance. It is then necessary to use other types of controllers. In some
cases it is possible to measure a variable that is well correlated with the process
variations. Controllers for different parameter values can then be designed and the
corresponding controller can be chosen based on the measured signal. This type of
control design is calledgain scheduling. The cruise controller is a typical example
where the measured signal could be gear position and velocity. Gain scheduling
is the common solution for high-performance aircraft wherescheduling is done
based on Mach number and dynamic pressure. When using gain scheduling, it is
important to make sure that switches between the controllers do not create unde-
sirable transients (often referred to asbumpless transfer).

If it is not possible to measure variables related to the parameters,automatic
tuningandadaptive controlcan be used. In automatic tuning the process dynamics
are measured by perturbing the system, and a controller is then designed automat-
ically. Automatic tuning requires that parameters remain constant, and it has been
widely applied for PID control. It is a reasonable guess that in the future many
controllers will have features for automatic tuning. If parameters are changing, it
is possible to use adaptive methods where process dynamics are measured online.

12.6 Further Reading

The topic of robust control is a large one, with many articles and textbooks devoted
to the subject. Robustness was a central issue in classical control as described in
Bode’s classical book [Bod45]. Robustness was deemphasized in the euphoria of
the development of design methods based on optimization. Thestrong robustness
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of controllers based on state feedback, shown by Anderson and Moore [AM90],
contributed to the optimism. The poor robustness of output feedback was pointed
out by Rosenbrock [RM71], Horowitz [Hor75] and Doyle [Doy78] and resulted
in a renewed interest in robustness. A major step forward wasthe development
of design methods where robustness was explicitly taken into account, such as
the seminal work of Zames [Zam81]. Robust control was originally developed
using powerful results from the theory of complex variables, which gave con-
trollers of high order. A major breakthrough was made by Doyle, Glover, Khar-
gonekar and Francis [DGKF89], who showed that the solution to the problem
could be obtained using Riccati equations and that a controller of low order could
be found. This paper led to an extensive treatment ofH∞ control, including books
by Francis [Fra87], McFarlane and Glover [MG90], Doyle, Francis and Tannen-
baum [DFT92], Green and Limebeer [GL95], Zhou, Doyle and Glover [ZDG96],
Skogestand and Postlethwaite [SP05] and Vinnicombe [Vin01]. A major advan-
tage of the theory is that it combines much of the intuition from servomechanism
theory with sound numerical algorithms based on numerical linear algebra and op-
timization. The results have been extended to nonlinear systems by treating the
design problem as a game where the disturbances are generated by an adversary,
as described in the book by Basar and Bernhard [BB91]. Gain scheduling and
adaptation are discussed in the book byÅström and Wittenmark [̊AW08].

Exercises

12.1 Consider systems with the transfer functionsP1 = 1/(s+1) andP2 = 1/(s+
a). Show thatP1 can be changed continuously toP2 with bounded additive and
multiplicative uncertainty ifa > 0 but not ifa < 0. Also show that no restriction
ona is required for feedback uncertainty.

12.2 Consider systems with the transfer functionsP1 = (s+1)/(s+1)2 andP2 =
(s+ a)/(s+ 1)2. Show thatP1 can be changed continuously toP2 with bounded
feedback uncertainty ifa> 0 but not ifa< 0. Also show that no restriction ona is
required for additive and multiplicative uncertainties.

12.3(Difference in sensitivity functions) LetT(P,C) be the complementary sensi-
tivity function for a system with processP and controllerC. Show that

T(P1,C)−T(P2,C) =
(P1−P2)C

(1+P1C)(1+P2C)
,

and derive a similar formula for the sensitivity function.

12.4 (The Riemann sphere) Consider systems with the transfer functions P1 = �
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k/(s+1) andP2 = k/(s−1). Show that

d(P1,P2) =
2k

1+k2 , δν(P1,P2) =





1, if k< 1
2k

1+k2 otherwise.

Use the Riemann sphere to show geometrically thatδν(P1,P2) = 1 if k< 1. (Hint:
It is sufficient to evaluate the transfer function forω = 0.)

12.5(Stability margins) Consider a feedback loop with a process and a controller
having transfer functionsP andC. Assume that the maximum sensitivity isMs= 2.
Show that the phase margin is at least 30◦ and that the closed loop system will be
stable if the gain is changed by 50%.

12.6(Bode’s ideal loop transfer function) Make Bode and Nyquistplots of Bode’s
ideal loop transfer function. Show that the phase margin isϕm =180◦–90◦n and
that the stability margin issm = arcsinπ(1−n/2).

12.7 Consider a process with the transfer functionP(s) = k/(s(s+1)), where the
gain can vary between 0.1 and 10. A controller that is robust to these gain variations
can be obtained by finding a controller that gives the loop transfer functionL(s) =
1/(s

√
s). Suggest how the transfer function can be implemented by approximating

it by a rational function.

12.8 (Smith predictor) TheSmith predictor, a controller for systems with time
delays, is a special version of Figure12.8awith P(s) = e−sτP0(s) andC(s) =
C0(s)/(1+C0(s)P(s)). The controllerC0(s) is designed to give good performance
for the processP0(s). Show that the sensitivity functions are

S(s) =
1+(1−e−sτ)P0(s)C0(s)

1+P0(s)C0(s)
, T(s) =

P0(s)C0(s)
1+P0(s)C0(s)

e−sτ .

12.9 (Ideal delay compensator) Consider a process whose dynamics are a pure
time delay with transfer functionP(s) = e−s. The ideal delay compensator is a
controller with the transfer functionC(s) = 1/(1−e−s). Show that the sensitivity
functions areT(s) = e−s andS(s) = 1−e−s and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

12.10(Vehicle steering) Consider the Nyquist curve in Figure12.11. Explain why
part of the curve is approximately a circle. Derive a formulafor the center and the
radius and compare with the actual Nyquist curve.

12.11 Consider a process with the transfer function

P(s) =
(s+3)(s+200)

(s+1)(s2+10s+40)(s+40)
.
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Discuss suitable choices of closed loop poles for a design that gives dominant poles
with undamped natural frequency 1 and 10.

12.12(AFM nanopositioning system) Consider the design in Example12.10and
explore the effects of changing parametersα0 andζ0.

12.13(H∞ control) Consider the matrixH(P,C) in equation (12.24). Show that it
has the singular values

σ1 = 0, σ2 = σ̄ = sup
ω

√
(1+ |P(iω)|2)(1+ |C(iω)|2)

|1+P(iω)C(iω)| = ‖H(P,C))‖∞.

Also show thatσ̄ = 1/dν(P,−1/C), which implies that 1/σ̄ is a generalization of
the closest distance of the Nyquist plot to the critical point.

12.14 Show that

δv(P,−1/C) = inf
ω

|P(iω)+1/C(iω)|√
(1+ |P(iω)|2)(1+1/|C(iω)|2)

=
1

‖H(P,C))‖∞
.

12.15 Consider the system

dx
dt

= Ax+Bu=


−1 0

1 0


x+


a−1

1


u, y=Cx=


0 1


y.

Design a state feedback that gives det(sI−BK) = s2+ 2ζcωcs+ω2
c , and an ob-

server with det(sI− LC) = s2+ 2ζoωos+ω2
o and combine them using the sepa-

ration principle to get an output feedback. Choose the numerical valuesa = 1.5,
ωc = 5, ζc = 0.6 andωo = 10,ζo = 0.6. Compute the eigenvalues of the perturbed
system when the process gain is increased by 2%. Also computethe loop transfer
function and the sensitivity functions. Is there a way to know beforehand that the
system will be highly sensitive?

12.16 (Robustness using the Nyquist criterion) Another view of robust perfor-
mance can be obtained through appeal to the Nyquist criterion. LetSmax(iω) rep-
resent a desired upper bound on our sensitivity function. Show that the system
provides this level of performance subject to additive uncertainty ∆ if the follow-
ing inequality is satisfied:

|1+ L̃|= |1+L+C∆|> 1
|Smax(iω)| for all ω ≥ 0. (12.28)

Describe how to check this condition using a Nyquist plot.



Bibliography

[Abk69] M. A. Abkowitz. Stability and Motion Control of Ocean Vehicles. MIT Press, Cam-
bridge, MA, 1969.

[Ack72] J. Ackermann. Der Entwurf linearer Regelungssysteme im Zustandsraum.Regelung-
stechnik und Prozessdatenverarbeitung, 7:297–300, 1972.

[Ack85] J. Ackermann.Sampled-Data Control Systems. Springer, Berlin, 1985.

[Agn76] C. E. Agnew. Dynamic modeling and control of congestion-prone systems.Opera-
tions Research, 24(3):400–419, 1976.
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and transfer functions,282
and uncertainty,54, 376
from experiments,278
relationship to state space

models,34, 102, 157
steady-state response,161
transfer function for,254

inputs,31, 34
insect flight control,49–50
instrumentation,11–12, 77
insulin-glucose dynamics,2,

94–95
integral action,26–28,

210–214, 316, 318–320,
322, 350

for bias compensation,245
setpoint weighting,333, 337
time constant,317

integral gain,26, 317, 319, 322
integrator windup,244, 330,

332, 339
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conditional integration,339
intelligent machines,see

robotics
internal model principle,231,

239
Internet,13, 14, 81, 83, 86, 99,

see alsocongestion
control

Internet Protocol (IP),83
invariant set,127, 130
inverse model,174, 237, 345
inverse response,307, 315
inverted pendulum,40, 75,

107, 116, 127, 129, 137,
139, 298, 364, see also
balance systems

Jacobian linearization,
170–173

Jordan form,149–153, 177,
203

Kalman, R. E.,180, 213, 218,
241, 244

Kalman decomposition,
240–242, 254, 283, 285

Kalman filter,232–237, 244,
399

extended,239
Kalman-Bucy filter,235
Kelly, F. P.,86
Kepler, J.,30
Keynes, J. M.,15
Keynesian economic model,

66, 178
Krasovski-Lasalle principle,

126–127

LabVIEW, 131, 176
lag,seephase lag
lag compensation,352, 354
Laplace transforms,ix,

280–282
Laplacian matrix,62
Lasalle’s invariance principle,

seeKrasovski-Lasalle
principle

lead,seephase lead

lead compensation,354, 356,
357, 368, 373

limit cycle, 98, 108, 109, 117,
119, 131, 311

linear quadratic control,
206–210, 234, 244,
398–399

linear systems,32, 37, 80, 111,
141–176, 240, 250, 254,
283, 309

linear time-invariant systems,
32, 33, 37, 144, 282

linearity,143, 270
linearization,117, 125, 142,

170–175, 238, 374
Lipschitz continuity,105
load disturbances,340, 387,

see alsodisturbances
load sensitivity function,343
local behavior,110, 117, 126,

129, 171
locally asymptotically stable,

110
logistic growth model,96, 97,

100
loop analysis,288, 340
loop shaping,291, 352–357,

370, 398
design rules,353
fundamental limitations,

357–367
see alsoBode’s loop transfer

function
loop transfer function,

288–291, 300, 301, 309,
340, 343, 352, 353, 356,
362, 363, 370, see also
Bode’s loop transfer
function

Lotus Notes server,seee-mail
server

low-order models,322
low-pass filter,276, 332
LQ control,seelinear

quadratic control
LTI systems,seelinear

time-invariant systems
Lyapunov equation,122, 137
Lyapunov functions,119, 120,

122, 129, 136, 177
design of controllers using,

127, 133
existence of,122

Lyapunov stability analysis,
46, 118–128, 135

discrete time,138

manifold,128
margins,seestability margins
Mars Exploratory Rovers,12
mass spectrometer,12
materials science,9
Mathematica,44, 132, 176
MATLAB, 28, 44, 131, 176,

216
acker,196, 228
dlqe,234
dlqr, 210
hinfsyn,401
jordan,150
linmod,172
lqr, 206
place,196, 205, 229
trim, 172

matrix exponential,146–149,
154, 156, 176

coordinate transformations,
159

Jordan form,150
second-order systems,149,

177
maximum complementary

sensitivity,382, 394
maximum sensitivity,349,

380, 394
measured signals,34, 36, 102,

218, 231, 244, 341, 344,
400

measurement noise,4, 23, 219,
220, 232, 233, 235, 263,
264, 332, 340–342, 352,
387

response to,350–352, 387
mechanical systems,34, 38,

45, 55, 65, 175
mechanics,30–31, 33, 135,

141
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minimal model
(insulin-glucose),95, see
also insulin-glucose
dynamics

minimum phase,305, 313, 358
modal form,139, 156, 160
Modelica,36
modeling,4, 29–36, 65, 70

control perspective,33
discrete control,60
discrete-time,40–41,

168–169
frequency domain,248–250
from experiments,50–52
model reduction,5
normalization and scaling,

52
of uncertainty,53–54
simplified models, use of,

34, 322, 375, 381, 383
software for,36, 172, 175
state space,36–46
uncertainty,seeuncertainty

modes,153–155, 259
relationship to poles,260

motion control systems,
55–58, 245

motors, electric,69, 215, 246
multi-input, multi-output

systems,309, 344, 353,
see alsoinput/output
models

multiplicative uncertainty,376,
383, 384

nanopositioner (AFM),303,
394

natural frequency,199, 323
negative definite function,119
negative feedback,19, 24, 78,

190, 288, 321
Nernst’s law,65
networking,13, 48, 86, see

alsocongestion control
neural systems,11, 50, 64, 321
neutral stability,110, 111
Newton, I.,30
Nichols, N. B.,175, 325, 326,

370

Nichols chart,398
Nobel Prize,11, 12, 15, 65, 87
noise,seedisturbances;

measurement noise
noise attenuation,277,

350–352
noise cancellation,133
noise sensitivity function,343
nonlinear systems,34, 102,

106, 108, 116, 118, 122,
129–134, 219, 238, 309,
310

linear approximation,117,
125, 171, 178, 374

system identification,67
nonminimum phase,305, 306,

315, 358, 360, see also
inverse response

nonunique solutions (ODEs),
105

normalized coordinates,
52–53, 67, 173

norms,308–309
Nyquist, H.,288, 313
Nyquist criterion,292, 294,

297, 300, 309, 310, 326
for robust stability,380, 405

Nyquist D contour,291, 292,
297

Nyquist plot,291–292, 300,
301, 326, 349, 350, 398

observability,34, 218–219,
240, 244

rank condition,220
tests for,219–221
unobservable systems,221,

240–242, 286
observability matrix,220, 223
observable canonical form,

222, 245
observer gain,225, 227–230,

233–235
observers,218, 223–227, 235,

238
block diagram,219, 227
see alsoKalman filter

ODEs,seedifferential
equations

Ohm’s law,65, 78, 256
on-off control,25
open loop,1, 2, 78, 181, 265,

288, 330, 340, 349, 376
open loop gain,257, 300, 348
operational amplifiers,77–81,

256, 333, 384
circuits,98, 165, 290, 388
dynamic model,79, 256
input/output characteristics,

78
oscillator using,99, 138
static model,77, 256

optimal control,206, 233, 235,
399

order, of a system,36, 37, 255
ordinary differential equations,

seedifferential equations
oscillator dynamics,99, 103,

104, 148, 199, 252, 255
normal form,67
see alsonanopositioner

(AFM); spring-mass
system

outer loop control,367, 368,
370

output feedback,229, 230,
244, see alsocontrol:
using estimated state; loop
shaping; PID control

output sensitivity function,see
noise sensitivity function

outputs,seemeasured signals
overdamped oscillator,199
overshoot,162, 189, 200, 201,

348

Pad́e approximation,315, 359
paging control (computing),60
parallel connection,262, 263
parametric stability diagram,

131, 132
parametric uncertainty,54, 374
particle accelerator,12
particular solution,143, 163,

see alsoforced response
passive systems,310, 362
passivity theorem,310
patch clamp,11
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PD control,319, 354
peak frequency,167, 348
pendulum dynamics,121, see

also inverted pendulum
perfect adaptation,320
performance,81
performance limitations,357,

358, 362, 394, 402
due to right half-plane poles

and zeros,306
see alsocontrol:

fundamental limitations
performance specifications,

162, 163, 189, 340,
347–353, 386, see also
overshoot; maximum
sensitivity; resonant peak;
rise time; settling time

periodic solutions,see
differential equations;
limit cycles

persistence, of a web
connection,81, 83

Petri net,48
pharmacokinetics,91, 95, see

alsodrug administration
phase,46, 164, 165, 202, 250,

253, 270, 311, see also
minimum phase;
nonminimum phase

minimum vs. nonminimum,
305

phase crossover frequency,
300, 301

phase curve (Bode plot),
271–273, 275

relationship to gain curve,
305, 352

phase lag,165, 276, 305, 358,
360

phase lead,165, 276, 357, 373
phase margin,301, 302, 353,

355, 358, 373, 404
from Bode plot,301
reasonable values,303

phase portrait,31, 106–107,
129

Philbrick, G. A.,80
photoreceptors,321

physics, relationship to
control,4

PI control,19, 26, 70, 73, 319,
324, 354

first-order system,323, 392
PID control,25–27, 255,

316–337, 357
block diagram,317, 319,

332
computer implementation,

335
ideal form,316, 337
implementation,319,

332–337
in biological systems,320
op amp implementation,

333–335
tuning,325–330
see alsoderivative action;

integral action
pitchfork bifurcation,140
planar dynamical systems,

106, 110, see also
second-order systems

pole placement,190, 390, 394,
see alsoeigenvalue
assignment

robust,389
pole zero diagram,260
pole/zero cancellations,

267–269, 286, 394
poles,259, 260

dominant,324, see also
dominant eigenvalues
(poles)

fast stable,392, 394
pure imaginary,291, 297
relationship to eigenvalues,

259
right half-plane,260, 297,

306, 358–362, 373, 394
population dynamics,96–97,

100, 101, see also
predator-prey system

positive definite function,119,
120, 122, 126

positive definite matrix,122,
206

positive feedback,17, 23–24,

138, 319
positive real (transfer

function),362
power of a matrix,146
power systems (electric),7–8,

68, 108, 136
predator-prey system,41,

96–97, 130, 196
prediction, in controllers,26,

27, 238, 320, 404, see also
derivative action

prediction time,320
principle of the argument,see

variation of the argument,
principle of

process control,9, 10, 14, 48
proportional control,25, 26,

316, see alsoPID control
proportional, integral,

derivative control,seePID
control

protocol,seecongestion
control; consensus

pulse signal,157, 158, 203,
see alsoimpulse function

pupil response,279, 320
pure exponential response,252

Q-value,68, 201, 274
quantitative feedback theory

(QFT),398
quarter car model,286, 287
queuing systems,58–60, 68

random process,58, 232, 233,
247

reachability,34, 180–188, 213,
240

rank condition,183
tests for,182
unreachable systems,185,

215, 240–242, 286
reachability matrix,183, 187
reachable canonical form,38,

186–188, 192, 194, 214,
215

reachable set,180
real-time systems,5
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reference signal,25, 189, 190,
249, 263, 316, 333, 342,
345, see alsocommand
signals; setpoint

effect on observer error,230,
237, 242

response to,347, 348, 372
tracking,189, 237, 238, 352,

388
reference weighting,see

setpoint weighting
region of attraction,see

equilibrium points:
regions of attraction

regulator,seecontrol law
relay feedback,312, 329
Reno (protocol),seeInternet;

congestion control
repressilator,64
repressor,17, 63, 68, 123, 178,

277
reset, in PID control,318, 319
resonant frequency,201, 309
resonant peak,167, 201, 348,

383
resource usage, in computing

systems,14, 59, 61, 81
response,seeinput/output

models
retina,321, see alsopupil

response
Riccati equation,206, 235,

401, 403
Riemann sphere,378
right half-plane poles and

zeros,seepoles: right
half-plane; zeros: right
half-plane

rise time,162, 189, 201, 348
robotics,8, 12–13, 175
robustness,18–19, 347, 376,

403
performance,386–389,

397–403
stability,380–386
using gain and phase

margin,303, 352
using maximum sensitivity,

349, 352, 380, 404, 405

using pole placement,
389–397

via gain and phase margin,
302

see alsouncertainty
roll-off, seehigh-frequency

roll-off
root locus diagram,131, 132
Routh-Hurwitz criterion,140
rush-hour effect,59, 68

saddle (equilibrium point),111
sampling,168–169, 243, 244,

336
saturation function,48, 77,

335, see alsoactuators:
saturation

scaling,seenormalized
coordinates

scanning tunneling
microscope,12, 87

schematic diagrams,47, 48, 77
Schitter, G.,90, 91
second-order systems,30, 177,

198–202, 216, 273, 324
Segway Personal Transporter,

38, 183
self-activation,138
self-repression,178, 276
semidefinite function,119
sensitivity crossover

frequency,350
sensitivity function,343, 350,

351, 353, 363, 380, 388,
394

and disturbance attenuation,
349, 363, 372

sensor matrix,37, 41
sensor networks,61
sensors,4, 10, 219, 243, 306,

335, 341, 344, 359, 361,
399

effect on zeros,306, 361
in computing systems,81
see alsomeasured signals

separation principle,218, 231
series connection,262
service rate (queuing systems),

58

setpoint,316
setpoint weighting,333, 337
settling time,162, 163, 177,

189, 201, 348
similarity of two systems,

376–380
simulation,43–45, 54
SIMULINK, 172
single-input, single-output

(SISO) systems,102, 142,
143, 170, 222, 309

singular values,308, 309, 405
sink (equilibrium point),111
small gain theorem,309–310,

383
Smith predictor,404
software tools for control,vii
solution (ODE),see

differential equations:
solutions

Sony AIBO,12
source (equilibrium point),111
spectrum analyzer,278
Sperry autopilot,20
spring-mass system,30, 43,

45, 46, 88, 136
coupled,155, 159
generalized,38, 76
identification,50
normalization,52, 67
see alsooscillator dynamics

stability,4, 20, 45, 106,
109–128

asymptotic stability,110,
114

conditional,296
in the sense of Lyapunov,

110
local versus global,110,

118, 129
Lyapunov analysis,see

Lyapunov stability
analysis

neutrally stable,110, 111
of a system,112
of equilibrium points,45,

110, 119, 120, 125
of feedback loop,see

Nyquist criterion
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of limit cycles,117
of linear systems,111–115,

122, 151
of solutions,109, 110, 118
of transfer functions,259
robust,seerobust stability
unstable solutions,110
using eigenvalues,125, 151,

152
using linear approximation,

115, 125, 172
using Routh-Hurwitz

criterion,140
using state feedback,

189–210
see alsobifurcations;

equilibrium points
stability diagram,see

parametric stability
diagram

stability margin (quantity),
301, 303, 349, 373, 380,
401

reasonable values,303
stability margins (concept),

300–305, 314, 352
stable pole,260
stable zero,260
Stark, L.,279
state, of a dynamical system,

30, 34, 36
state estimators,seeobservers
state feedback,180–213, 224,

230, 237–239, 243–244,
390, 399, see also
eigenvalue assignment;
linear quadratic control

state space,30, 36–46, 189
state vector,36
steady-state gain,seezero

frequency gain
steady-state response,28, 45,

161–168, 178, 190, 201,
249, 250, 252, 278, 283

steam engines,2, 3, 18
steering,seevehicle steering
Stein, G.,ix, 1, 340, 363, 364
step input,32, 145, 161, 162,

258, 326

step response,32, 33, 50, 51,
146, 158, 162, 189,
199–201, 326

stochastic cooling,12
stochastic systems,233, 235
summing junction,48
superposition,32, 143, 144,

158, 176, 249
supervisory control,see

decision making: higher
levels of

supply chains,16
supremum (sup),309
switching behavior,24, 69,

125, 126, 402
system identification,50, 67,

278

tapping mode,seeatomic
force microscope

TCP/IP,seeInternet;
congestion control

Teorell, T.,92, 95
thermostat,6
three-term controllers,317, see

alsoPID control
thrust vectored aircraft,see

vectored thrust aircraft
time constant, first-order

system,177
time delay,6, 13, 255, 303,

305, 326, 335, 359, 360
compensation for,404
Pad́e approximation,315,

359
time plot,31
time-invariant systems,32, 36,

135, 144–146
tracking,seereference signal:

tracking
trail (bicycle dynamics),75, 76
transcriptional regulation,see

gene regulation
transfer functions,248–282

by inspection,254
derivation using exponential

signals,250
derivation using Laplace

transforms,282

for control systems,263,
285

for electrical circuits,255
for time delay,255
frequency response,249,

270
from experiments,278
irrational,255, 258
linear input/output systems,

250, 254, 255, 285
transient response,44, 161,

162, 164, 181, 204, 250,
251

Transmission Control Protocol
(TCP),83

transportation systems,9
Tsien, H. S.,12
tuning rules,338, see

Ziegler-Nichols tuning
two degree-of-freedom

control,237, 238, 317,
345, 347, 370, 372

uncertainty,4, 18–19, 34,
53–54, 211, 374–380

component or parameter
variation,4, 53, 374

disturbances and noise,4,
34, 189, 263, 340

unmodeled dynamics,4, 54,
375, 381

see alsoadditive
uncertainty; feedback
uncertainty; multiplicative
uncertainty

uncertainty band,53
uncertainty lemon,54, 74, 80,

90
underdamped oscillator,104,

199, 200
unit step,161
unmodeled dynamics,see

uncertainty: unmodeled
dynamics

unstable pole,seepoles: right
half-plane

unstable pole/zero
cancellation,268

unstable solution, for a
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dynamical system,110,
111, 114, 151, 260

unstable zero,seezeros: right
half-plane

variation of the argument,
principle of,299, 313

vector field,31, 106
vectored thrust aircraft,56–58,

152, 207, 235, 285, 356,
367

vehicle steering,55–56, 172,
190, 227, 231, 239, 265,
306, 314, 346, 390

ship dynamics,55
vehicle suspension,286, see

alsocoupled spring-mass
system

vertical takeoff and landing,
seevectored thrust aircraft

vibration absorber,287
Vinnicombe, G.,371, 378,

379, 403
Vinnicombe metric,376–380,

401
voltage clamp,11, 65

waterbed effect,363
Watt governor,seecentrifugal

governor
Watt steam engine,2, 18
web server control,81–83, 209
web site, companion,vii
Whipple, F. J. W.,77
Wiener, N.,12, 13
winding number,299
window size (TCP),84, 86,

111
windup,seeintegrator windup
Wright, W.,20
Wright Flyer,8, 20

X-29 aircraft,364
X-45 aircraft,9

Youla parameterization,
384–386

zero frequency gain,167, 190,
194, 201, 258, 259

zeros,259
Bode plot for,285
effect of sensors and

actuators on,306, 307,
361

for a state space system,259
right half-plane,260, 306,

358–361, 364, 373, 394
signal-blocking property,

259
slow stable,390, 392, 394

Ziegler, J. G.,325, 326, 337
Ziegler-Nichols tuning,

326–329, 337
frequency response,326
improved method,327
step response,326
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