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Preface

This book provides an introduction to the basic principles @mols for the design
and analysis of feedback systems. It is intended to serveeasd audience of
scientists and engineers who are interested in understg@add utilizing feedback
in physical, biological, information and social system Néve attempted to keep
the mathematical prerequisites to a minimum while beingfcénot to sacrifice
rigor in the process. We have also attempted to make use ofiga from a
variety of disciplines, illustrating the generality of nyaof the tools while at the
same time showing how they can be applied in specific appicatbmains.

A major goal of this book is to present a concise and insightiew of the
current knowledge in feedback and control systems. The fieltbofrol started
by teaching everything that was known at the time and, as meawledge was
acquired, additional courses were developed to cover nelanigues. A conse-
guence of this evolution is that introductory courses hameained the same for
many years, and it is often necessary to take many individoatses in order
to obtain a good perspective on the field. In developing thiskbave have at-
tempted to condense the current knowledge by emphasizimtafuoental concepts.
We believe that it is important to understand why feedbaalsiful, to know the
language and basic mathematics of control and to grasp thedmdigms that
have been developed over the past half century. It is alsoritapt to be able to
solve simple feedback problems using back-of-the-eneetephniques, to recog-
nize fundamental limitations and difficult control problearsd to have a feel for
available design methods.

This book was originally developed for use in an experimecoalse at Cal-
tech involving students from a wide set of backgrounds. Thesmwas offered to
undergraduates at the junior and senior levels in traditiengineering disciplines,
as well as first- and second-year graduate students in emgigead science. This
latter group included graduate students in biology, compsitience and physics.
Over the course of several years, the text has been classested at Caltech and
at Lund University, and the feedback from many students alidagues has been
incorporated to help improve the readability and accel#tyilof the material.

Because of its intended audience, this book is organizedslightly unusual
fashion compared to many other books on feedback and cohtrparticular, we
introduce a number of concepts in the text that are normabgnved for second-
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year courses on control and hence often not available testadvho are not con-
trol systems majors. This has been done at the expense ohdeatditional top-
ics, which we felt that the astute student could learn inddpatly and are often
explored through the exercises. Examples of topics that we inaluded are non-
linear dynamics, Lyapunov stability analysis, the matsip@nential, reachability
and observability, and fundamental limits of performanod eobustness. Topics
that we have deemphasized include root locus techniqued/|dg compensation
and detailed rules for generating Bode and Nyquist plotsamdh

Several features of the book are designed to facilitate asfduction as a basic
engineering text and as an introduction for researcheratural, information and
social sciences. The bulk of the material is intended to b usgardless of the
audience and covers the core principles and tools in theysinadnd design of
feedback systems. Advanced sections, marked by the “damgdrend” symbol
shown here, contain material that requires a slightly mecérical background,
of the sort that would be expected of senior undergraduatesgineering. A few
sections are marked by two dangerous bend symbols and arelet for readers
with more specialized backgrounds, identified at the begmuwif the section. To
limit the length of the text, several standard results aridrestons are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here napemion web site
has been developed and is available from the publisher'spagb:

http://www.cds.caltech.edumurray/amwiki

The web site contains a database of frequently asked questiopplemental ex-
amples and exercises, and lecture material for coursed bagdéis text. The mate-
rial is organized by chapter and includes a summary of thenpaiints in the text
as well as links to external resources. The web site also icsnifae source code
for many examples in the book, as well as utilities to implatribe techniques
described in the text. Most of the code was originally writtesing MATLAB M-
files but was also tested with LabView MathScript to ensure caififity with
both packages. Many files can also be run using other scrifatinggiages such as
Octave, SciLab, SysQuake and Xmath.

The first half of the book focuses almost exclusively on stadéesgontrol sys-
tems. We begin in Chapt& with a description of modeling of physical, biolog-
ical and information systems using ordinary differentiqliations and difference
equations. Chapt& presents a number of examples in some detail, primarily as a
reference for problems that will be used throughout the tesitowing this, Chap-
ter 4 looks at the dynamic behavior of models, including defingiar stability
and more complicated nonlinear behavior. We provide ad@usections in this
chapter on Lyapunov stability analysis because we find thatiseful in a broad
array of applications and is frequently a topic that is natoduced until later in
one’s studies.
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The remaining three chapters of the first half of the book focureear sys-
tems, beginning with a description of input/output beheindChapters. In Chap-
ter 6, we formally introduce feedback systems by demonstratow state space
control laws can be designed. This is followed in Chajgtby material on output
feedback and estimators. Chaptérand?7 introduce the key concepts of reacha-
bility and observability, which give tremendous insighbithe choice of actuators
and sensors, whether for engineered or natural systems.

The second half of the book presents material that is oftesidered to be
from the field of “classical control.” This includes the tra@msfunction, introduced
in Chapter8, which is a fundamental tool for understanding feedbaclesys.
Using transfer functions, one can begin to analyze thel#tabi feedback systems
using frequency domain analysis, including the abilitygagon about the closed
loop behavior of a system from its open loop characterislibss is the subject of
Chapter9, which revolves around the Nyquist stability criterion.

In Chaptersl0 and 11, we again look at the design problem, focusing first
on proportional-integral-derivative (PID) controllersdaimien on the more general
process of loop shaping. PID control is by far the most commemigeh technique
in control systems and a useful tool for any student. The enapt frequency
domain design introduces many of the ideas of modern cotiteary, including
the sensitivity function. In Chaptd2, we combine the results from the second half
of the book to analyze some of the fundamental trade-offsdsent robustness and
performance. This is also a key chapter illustrating the pa@fthe techniques that
have been developed and serving as an introduction for niwanaed studies.

The book is designed for use in a 10- to 15-week course in feédbastems
that provides many of the key concepts needed in a varietigofjdines. For a 10-
week course, Chaptels2, 46 and8-11 can each be covered in a week’s time,
with the omission of some topics from the final chapters. A nieisurely course,
spread out over 14-15 weeks, could cover the entire book, 2uwteeks on mod-
eling (Chapter® and 3)—patrticularly for students without much background in
ordinary differential equations—and 2 weeks on robustgraerénce (Chaptet?2).

The mathematical prerequisites for the book are modest akddping with
our goal of providing an introduction that serves a broadienme. We assume
familiarity with the basic tools of linear algebra, incladi matrices, vectors and
eigenvalues. These are typically covered in a sophomogg-teurse on the sub-
ject, and the textbooks by ApostoApo69, Arnold [Arn87] and Strang $tr89
can serve as good references. Similarly, we assume basicldagevof differ-
ential equations, including the concepts of homogeneodgarticular solutions
for linear ordinary differential equations in one variabfgpostol [Apo69 and
Boyce and DiPrimaBDO04] cover this material well. Finally, we also make use
of complex numbers and functions and, in some of the advaseetions, more
detailed concepts in complex variables that are typicallyeced in a junior-level
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engineering or physics course in mathematical methodss#@pf\po67 or Stew-
art [Ste02 can be used for the basic material, with Ahlfofh]66], Marsden and
Hoffman [MH98] or Saff and Snider$S02 being good references for the more
advanced material. We have chosen not to include appenslicearizing these
various topics since there are a number of good books alailab

One additional choice that we felt was important was thesiecinot to rely
on a knowledge of Laplace transforms in the book. While the& is by far the
most common approach to teaching feedback systems in emgigemany stu-
dents in the natural and information sciences may lack tbessary mathematical
background. Since Laplace transforms are not required in ssgnéial way, we
have included them only in an advanced section intendecetthings together
for students with that background. Of course, we make treimes use ofrans-
fer functions which we introduce through the notion of response to exptiale
inputs, an approach we feel is more accessible to a broay affiscientists and
engineers. For classes in which students have already hdddeajpansforms, it
should be quite natural to build on this background in thereympate sections of
the text.
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback goliemsve grow, respond
to stress and challenge, and regulate factors such as body temperalooe, pressure and
cholesterol level. The mechanisms operate at every level, from thedtitgraf proteins in

cells to the interaction of organisms in complex ecologies.

M. B. Hoagland and B. Dodsoithe Way Life Works1995 HD95].

In this chapter we provide an introduction to the basic cphoéfeedbackand
the related engineering discipline aéntrol. We focus on both historical and cur-
rent examples, with the intention of providing the contextdurrent tools in feed-
back and control. Much of the material in this chapter is &edfrom Mur03],
and the authors gratefully acknowledge the contributidnRaper Brockett and
Gunter Stein to portions of this chapter.

1.1 What Is Feedback?

A dynamical systeris a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The tdeadbackefers to a situation
in which two (or more) dynamical systems are connected bagetuch that each
system influences the other and their dynamics are thus $groagpled. Simple
causal reasoning about a feedback system is difficult be¢hadé@st system in-
fluences the second and the second system influences the filsigléaa circular
argument. This makes reasoning based on cause and eff&ygt & it is neces-
sary to analyze the system as a whole. A consequence of tthistithe behavior
of feedback systems is often counterintuitive, and it isdéfage necessary to resort
to formal methods to understand them.

Figurel.lillustrates in block diagram form the idea of feedback. Wemfise
the termsopen loopand closed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are inteecbad in a cycle, as
shown in Figurel.1a If we break the interconnection, we refer to the configuratio
as an open loop system, as shown in FiglLifida

As the quote at the beginning of this chapter illustrates agonsource of ex-
amples of feedback systems is biology. Biological systerakenuse of feedback
in an extraordinary number of ways, on scales ranging frorteoubes to cells to
organisms to ecosystems. One example is the regulatioruobsgg in the blood-
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u y r u y
System 1——=| System 2 - —=| System 1 System 2——»

'

'

(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used aguhefin
system 2, and the output of system 2 becomes the input of system tingr@alosed loop
system. (b) The interconnection between system 2 and system 1 is iigraodethe system
is said to be open loop.

stream through the production of insulin and glucagon byptecreas. The body
attempts to maintain a constant concentration of glucosichnis used by the
body’s cells to produce energy. When glucose levels riger(eating a meal, for
example), the hormone insulin is released and causes tlygdatbre excess glu-
cose in the liver. When glucose levels are low, the pancrea®tes the hormone
glucagon, which has the opposite effect. Referring to Fiduitewe can view the
liver as system 1 and the pancreas as system 2. The outputfedindr is the glu-
cose concentration in the blood, and the output from theneasds the amount of
insulin or glucagon produced. The interplay between insaifid glucagon secre-
tions throughout the day helps to keep the blood-glucoseeardration constant,
at about 90 mg per 100 mL of blood.

An early engineering example of a feedback system is a ¢egaligovernor,
in which the shaft of a steam engine is connected to a flybalher@sm that is
itself connected to the throttle of the steam engine, astithted in Figurd..2 The
system is designed so that as the speed of the engine inerg@sbaps because
of a lessening of the load on the engine), the flyballs spread apd a linkage
causes the throttle on the steam engine to be closed. Thisnrslmws down the
engine, which causes the flyballs to come back together. Wecdel this system
as a closed loop system by taking system 1 as the steam engirsgystem 2 as
the governor. When properly designed, the flyball governantaas a constant
speed of the engine, roughly independent of the loadingitiond. The centrifugal
governor was an enabler of the successful Watt steam engheh fueled the
industrial revolution.

Feedback has many interesting properties that can be egblimitdesigning
systems. As in the case of glucose regulation or the flybakguay, feedback can
make a system resilient toward external influences. It cam ladsused to create
linear behavior out of nonlinear components, a common ambrin electronics.
More generally, feedback allows a system to be insensitivk to external distur-
bances and to variations in its individual elements.

Feedback has potential disadvantages as well. It can crgasenic instabili-
ties in a system, causing oscillations or even runaway heh@nother drawback,
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugatigoven the
left consists of a set of flyballs that spread apart as the speed of gireeencreases. The
steam engine on the right uses a centrifugal governor (above andladttb&the flywheel)
to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip TEy8a8].)

especially in engineering systems, is that feedback candate unwanted sensor
noise into the system, requiring careful filtering of signétiss for these reasons
that a substantial portion of the study of feedback systerdevoted to developing
an understanding of dynamics and a mastery of techniquegismngical systems.

Feedback systems are ubiquitous in both natural and engihegstems. Con-
trol systems maintain the environment, lighting and poweour buildings and
factories; they regulate the operation of our cars, cons@feetronics and manu-
facturing processes; they enable our transportation anghemications systems;
and they are critical elements in our military and spaceesyst For the most part
they are hidden from view, buried within the code of embeduézioprocessors,
executing their functions accurately and reliably. Feellias also made it pos-
sible to increase dramatically the precision of instrureentch as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintainsrtake chemical and
biological conditions through feedback. At the other endhef size scale, global
climate dynamics depend on the feedback interactions leetwiee atmosphere,
the oceans, the land and the sun. Ecosystems are filled withpdesuof feedback
due to the complex interactions between animal and plaat Bifzen the dynam-
ics of economies are based on the feedback between indisidod corporations
through markets and the exchange of goods and services.

1.2 What Is Control?

The termcontrol has many meanings and often varies between communities. In
this book, we define control to be the use of algorithms anddfaeklin engineered
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systems. Thus, control includes such examples as feedbagkilo electronic am-
plifiers, setpoint controllers in chemical and materialscpssing, “fly-by-wire”
systems on aircraft and even router protocols that contild flow on the Inter-
net. Emerging applications include high-confidence softwgsgems, autonomous
vehicles and robots, real-time resource management systedbiologically en-
gineered systems. At its core, control isiaformationscience and includes the
use of information in both analog and digital representetio

A modern controller senses the operation of a system, caapaagainst the
desired behavior, computes corrective actions based ondelnoebd the system’s
response to external inputs and actuates the system td #féeedesired change.
This basideedback loopf sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logicearsuring that the dy-
namics of the closed loop system are stable (bounded distaes give bounded
errors) and that they have additional desired behaviordghsturbance attenua-
tion, fast responsiveness to changes in operating pou)jt, Bhese properties are
established using a variety of modeling and analysis tegles that capture the
essential dynamics of the system and permit the explorafipossible behaviors
in the presence of uncertainty, noise and component failure

A typical example of a control system is shown in Figit8 The basic ele-
ments of sensing, computation and actuation are clearly. $eanodern control
systems, computation is typically implemented on a digitethputer, requiring the
use of analog-to-digital (A/D) and digital-to-analog (D/éonverters. Uncertainty
enters the system through noise in sensing and actuatieysieims, external dis-
turbances that affect the underlying system operation aeértain dynamics in
the system (parameter errors, unmodeled effects, etc). [Gogitam that com-
putes the control action as a function of the sensor valuetésa called acontrol
law. The system can be influenced externally by an operator whadintescom-
mand signaldo the system.

Control engineering relies on and shares tools from phy&lgaamics and
modeling), computer science (information and software) @perations research
(optimization, probability theory and game theory), buisitalso different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control aeddisiciplines is in
the modeling of physical systems, which is common acrogsedls of engineering
and science. One of the fundamental differences betwednota@niented model-
ing and modeling in other disciplines is the way in which rattions between
subsystems are represented. Control relies on a type afaypput modeling that
allows many new insights into the behavior of systems, ssahsiurbance attenu-
ation and stable interconnection. Model reduction, whesienpler (lower-fidelity)
description of the dynamics is derived from a high-fidelitydah is also naturally
described in an input/output framework. Perhaps most imptyt modeling in a
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= System -
i Clock 1
! Y $ Y i
| D/IA |« Computer | AD |« Filter |« :
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Figure 1.3: Components of a computer-controlled system. The upper dasheéjp@sents
the process dynamics, which include the sensors and actuators in adulitiendynamical
system being controlled. Noise and external disturbances can pereudyilamics of the
process. The controller is shown in the lower dashed box. It consiatltdr and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a compiln@rimplements
the control algorithm. A system clock controls the operation of the contysijachronizing
the A/D, D/A and computing processes. The operator input is also fed tmthputer as an
external input.

control context allows the design abustinterconnections between subsystems,
a feature that is crucial in the operation of all large engied systems.

Control is also closely associated with computer scienoeesiirtually all
modern control algorithms for engineering systems areémginted in software.
However, control algorithms and software can be very diffierfrom traditional
computer software because of the central role of the dyrsofithe system and
the real-time nature of the implementation.

1.3 Feedback Examples

Feedback has many interesting and useful properties. Itsiggessible to design

precise systems from imprecise components and to makearglguantities in a

system change in a prescribed fashion. An unstable systetmecstabilized using

feedback, and the effects of external disturbances cancueed. Feedback also
offers new degrees of freedom to a designer by exploitingisgnactuation and

computation. In this section we survey some of the imporégglications and

trends for feedback in the world around us.
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(a) Honeywell thermostat, 1953 (b) Chrysler cruise control, 1958

Figure 1.4: Early control devices. (a) Honeywell T87 thermostat originally intrelimn
1953. The thermostat controls whether a heater is turned on by complaeircurrent tem-
perature in a room to a desired value that is set using a dial. (b) Chrysiise control
system introduced in the 1958 Chrysler ImperRbjv5§. A centrifugal governor is used
to detect the speed of the vehicle and actuate the throttle. The referexexkisspecified
through an adjustment spring. (Left figure courtesy of Honeywédirtrational, Inc.)

Early Technological Examples

The proliferation of control in engineered systems occupéaharily in the latter
half of the 20th century. There are some important exceptisumsh as the cen-
trifugal governor described earlier and the thermostatufeid.49, designed at
the turn of the century to regulate the temperature of lngjsli

The thermostat, in particular, is a simple example of feekllcantrol that ev-
eryone is familiar with. The device measures the temperatuacouilding, com-
pares that temperature to a desired setpoint and usdsdtiback errobetween
the two to operate the heating plant, e.g., to turn heat omvithe temperature
is too low and to turn it off when the temperature is too highisTéxplanation
captures the essence of feedback, but it is a bit too simgle f&r a basic device
such as the thermostat. Because lags and delays exist iedliadnplant and sen-
sor, a good thermostat does a bit of anticipation, turnireghtbater off before the
error actually changes sign. This avoids excessive temperatvings and cycling
of the heating plant. This interplay between the dynamichefgrocess and the
operation of the controller is a key element in modern cdslystems design.

There are many other control system examples that have gedtlover the
years with progressively increasing levels of sophisiticatAn early system with
broad public exposure was toauise controloption introduced on automobiles in
1958 (see Figuré.4b). Cruise control illustrates the dynamic behavior of ctbse
loop feedback systems in action—the slowdown error as thiesyclimbs a grade,
the gradual reduction of that error due to integral actiotécontroller, the small
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Figure 1.5: A small portion of the European power network. By 2008 Europeanepow
suppliers will operate a single interconnected network covering a regiomthe Arctic to
the Mediterranean and from the Atlantic to the Urals. In 2004 the installedmpeagmore
than 700 GW (& 101 W). (Source: UCTE [www.ucte.org])
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overshoot at the top of the climb, etc. Later control systemawtomobiles such
as emission controls and fuel-metering systems have ahieajor reductions of
pollutants and increases in fuel economy.

Power Generation and Transmission

Access to electrical power has been one of the major driveteahnological
progress in modern society. Much of the early developmenbafrol was driven
by the generation and distribution of electrical power. ars mission critical
for power systems, and there are many control loops in iddai power stations.
Control is also important for the operation of the whole powetwork since it is
difficult to store energy and it is thus necessary to matchymtion to consump-
tion. Power management is a straightforward regulationlproffor a system with
one generator and one power consumer, but it is more diffinudt highly dis-
tributed system with many generators and long distanceseegt consumption
and generation. Power demand can change rapidly in an untakldi manner and
combining generators and consumers into large networkesiggossible to share
loads among many suppliers and to average consumption amaimgcustomers.
Large transcontinental and transnational power systenss thavefore been built,
such as the one show in Figutes.

Most electricity is distributed by alternating current (AG2cause the transmis-
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sion voltage can be changed with small power losses usingftamers. Alternat-

ing current generators can deliver power only if the gemesaare synchronized
to the voltage variations in the network. This means that ¢hers of all genera-

tors in a network must be synchronized. To achieve this vatall decentralized

controllers and a small amount of interaction is a challeggiroblem. Sporadic
low-frequency oscillations between distant regions haaenbobserved when re-
gional power grids have been interconnect€@p5].

Safety and reliability are major concerns in power systemerd may be dis-
turbances due to trees falling down on power lines, liglgrminequipment failures.
There are sophisticated control systems that attempt to tkeegystem operating
even when there are large disturbances. The control acteonbecto reduce volt-
age, to break up the net into subnets or to switch off linespaweer users. These
safety systems are an essential element of power distibatistems, but in spite
of all precautions there are occasionally failures in lggge@er systems. The power
system is thus a nice example of a complicated distributstbsywhere control is
executed on many levels and in many different ways.

Aerospace and Transportation

In aerospace, control has been a key technological catyatodcing back to the
beginning of the 20th century. Indeed, the Wright brotheesarrectly famous
not for demonstrating simply powered flight bzdantrolled powered flight. Their
early Wright Flyer incorporated moving control surfacegfiieal fins and canards)
and warpable wings that allowed the pilot to regulate theraft’s flight. In fact,
the aircraft itself was not stable, so continuous pilot ections were mandatory.
This early example of controlled flight was followed by a fagting success story
of continuous improvements in flight control technology,naimating in the high-
performance, highly reliable automatic flight control syssewe see in modern
commercial and military aircraft today (Figuieo).

Similar success stories for control technology have ocdumemany other
application areas. Early World War Il bombsights and fire cargervo systems
have evolved into today’s highly accurate radar-guidedsgamd precision-guided
weapons. Early failure-prone space missions have evolvedroutine launch
operations, manned landings on the moon, permanently rdaspece stations,
robotic vehicles roving Mars, orbiting vehicles at the ouyiknets and a host of
commercial and military satellites serving various sutaate, communication,
navigation and earth observation needs. Cars have advéooednanually tuned
mechanical/pneumatic technology to computer-contradigdration of all major
functions, including fuel injection, emission controlugye control, braking and
cabin comfort.

Current research in aerospace and transportation systeimgestigating the
application of feedback to higher levels of decision makingluding logical reg-
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(a) F/A-18 “Hornet” (b) X-45 UCAV

Figure 1.6: Military aerospace systems. (a) The F/A-18 aircraft is one of the ficstyrtion
military fighters to use “fly-by-wire” technology. (b) The X-45 (UCAVnmanned aerial
vehicle is capable of autonomous flight, using inertial measuremenrsessd the global
positioning system (GPS) to monitor its position relative to a desired traje(Ritgtographs
courtesy of NASA Dryden Flight Research Center.)

ulation of operating modes, vehicle configurations, payloadfigurations and
health status. These have historically been performed byahwperators, but to-
day that boundary is moving and control systems are inarghsiaking on these
functions. Another dramatic trend on the horizon is the uskrge collections
of distributed entities with local computation, global amemication connections,
little regularity imposed by the laws of physics and no plifisy of imposing
centralized control actions. Examples of this trend incltlge national airspace
management problem, automated highway and traffic managemeérommand
and control for future battlefields.

Materials and Processing

The chemical industry is responsible for the remarkable n@ssyin developing
new materials that are key to our modern society. In additiothe continuing
need to improve product quality, several other factors & fihocess control in-
dustry are drivers for the use of control. Environmentalusést continue to place
stricter limitations on the production of pollutants, fiog the use of sophisticated
pollution control devices. Environmental safety consitiers have led to the de-
sign of smaller storage capacities to diminish the risk ojomehemical leakage,
requiring tighter control on upstream processes and, irestases, supply chains.
And large increases in energy costs have encouraged erngineesign plants that
are highly integrated, coupling many processes that usegdrate independently.
All of these trends increase the complexity of these prazeasd the performance
requirements for the control systems, making control sysiesign increasingly
challenging. Some examples of materials-processing téotpypare shown in Fig-
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Figure 1.7: Materials processing. Modern materials are processed underloacefutrolled
conditions, using reactors such as the metal organic chemical vapositden (MOCVD)
reactor shown on the left, which was for manufacturing supercondyttin films. Using
lithography, chemical etching, vapor deposition and other techniqoelex devices can
be built, such as the IBM cell processor shown on the right. (MOCVD incagetesy of Bob
Kee. IBM cell processor photograph courtesy Tom Way, IBM Ccaaifion; unauthorized use
not permitted.)

urel.?.

As in many other application areas, new sensor technologging new op-
portunities for control. Online sensors—including lasackscattering, video mi-
croscopy and ultraviolet, infrared and Raman spectroseapg becoming more
robust and less expensive and are appearing in more mamifigcprocesses.
Many of these sensors are already being used by currentgsrcoatrol systems,
but more sophisticated signal-processing and controhigales are needed to use
more effectively the real-time information provided by $besensors. Control en-
gineers also contribute to the design of even better sengbrsh are still needed,
for example, in the microelectronics industry. As elsewh#ne challenge is mak-
ing use of the large amounts of data provided by these nevosemsan effective
manner. In addition, a control-oriented approach to modele essential physics
of the underlying processes is required to understand théafmental limits on
observability of the internal state through sensor data.

Instrumentation

The measurement of physical variables is of prime interestisnce and engineer-
ing. Consider, for example, an accelerometer, where eatyuments consisted of
a mass suspended on a spring with a deflection sensor. Thei@gnezisuch an
instrument depends critically on accurate calibratiorhefspring and the sensor.
There is also a design compromise because a weak spring ggresdnsitivity
but low bandwidth.
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Electrode
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Glass Pipette Controller |
Ion Channel — - .

Cell Membrane — y

Figure 1.8: The voltage clamp method for measuring ion currents in cells using fekdba
A pipet is used to place an electrode in a cell (left and middle) and maintapotleatial of
the cell at a fixed level. The internal voltage in the celjisand the voltage of the external
fluid is ve. The feedback system (right) controls the curieinto the cell so that the voltage
drop across the cell membrafe = v; — ve is equal to its reference valde . The current

is then equal to the ion current.

A different way of measuring acceleration is to Usece feedbackThe spring
is replaced by a voice coil that is controlled so that the nragsains at a con-
stant position. The acceleration is proportional to the entrthrough the voice
coil. In such an instrument, the precision depends entarlthe calibration of the
voice coil and does not depend on the sensor, which is usgdasrihe feedback
signal. The sensitivity/bandwidth compromise is also a@didlrhis way of using
feedback has been applied to many different engineeringfaid has resulted in
instruments with dramatically improved performance. Edeedback is also used
in haptic devices for manual control.

Another important application of feedback is in instrunadiain for biological
systems. Feedback is widely used to measure ion currentdisruseng a device
called avoltage clampwhich is illustrated in Figurd.8 Hodgkin and Huxley
used the voltage clamp to investigate propagation of agt@iantials in the giant
axon of the squid. In 1963 they shared the Nobel Prize in Mediwiith Eccles
for “their discoveries concerning the ionic mechanism®ived in excitation and
inhibition in the peripheral and central portions of theveecell membrane.” A
refinement of the voltage clamp calleghatch clampmade it possible to measure
exactly when a single ion channel is opened or closed. Thisdessloped by
Neher and Sakmann, who received the 1991 Nobel Prize in Medtéin their
discoveries concerning the function of single ion chanmetzlls.”

There are many other interesting and useful applicationsexffack in scien-
tific instruments. The development of the mass spectrometar early example.
In a 1935 paper, Nier observed that the deflection of ions dépen both the
magnetic and the electric fieldblie35. Instead of keeping both fields constant,
Nier let the magnetic field fluctuate and the electric field wadrotied to keep the
ratio between the fields constant. Feedback was implementegl vescuum tube
amplifiers. This scheme was crucial for the development of ssstroscopy.

The Dutch engineer van der Meer invented a clever way to ustbée to
maintain a good-quality high-density beam in a particlesterator MPTvdM8(.
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The idea is to sense particle displacement at one point incitedexator and apply
a correcting signal at another point. This scheme, caltedhastic coolingwas
awarded the Nobel Prize in Physics in 1984. The method was edstentthe
successful experiments at CERN where the existence of thelparW and Z
associated with the weak force was first demonstrated.

The 1986 Nobel Prize in Physics—awarded to Binnig and Rohretheir
design of the scanning tunneling microscope—is anothanpi&of an innovative
use of feedback. The key idea is to move a narrow tip on a caeetilream across
a surface and to register the forces on the BR86. The deflection of the tip is
measured using tunneling. The tunneling current is used kgdback system to
control the position of the cantilever base so that the tlimgpeurrent is constant,
an example of force feedback. The accuracy is so high thatithd@il atoms can
be registered. A map of the atoms is obtained by moving the bhe cantilever
horizontally. The performance of the control system is diyereflected in the
image quality and scanning speed. This example is descnibadditional detalil
in Chapter3.

Robotics and Intelligent Machines

The goal of cybernetic engineering, already articulatethé1940s and even be-
fore, has been to implement systems capable of exhibitiglghpiflexible or “in-
telligent” responses to changing circumstances. In 1948MhT mathematician
Norbert Wiener gave a widely read account of cybernetidiefig. A more math-
ematical treatment of the elements of engineering cybiesetas presented by
H. S. Tsien in 1954, driven by problems related to the controhiskiles [T'si54].
Together, these works and others of that time form much ofrtedlectual basis
for modern work in robotics and control.

Two accomplishments that demonstrate the successes oflthariethe Mars
Exploratory Rovers and entertainment robots such as the SB®,Ashown in
Figurel.9. The two Mars Exploratory Rovers, launched by the Jet Propulsid-
oratory (JPL), maneuvered on the surface of Mars for more tharars starting in
January 2004 and sent back pictures and measurementsraértigonment. The
Sony AIBO robot debuted in June 1999 and was the first “ententm” robot to
be mass-marketed by a major international corporational particularly note-
worthy because of its use of artificial intelligence (Al) taologies that allowed it
to act in response to external stimulation and its own judgmEhis higher level
of feedback is a key element in robotics, where issues suohsiacle avoidance,
goal seeking, learning and autonomy are prevalent.

Despite the enormous progress in robotics over the lastcealfury, in many
ways the field is still in its infancy. Today’s robots still éklt simple behaviors
compared with humans, and their ability to locomote, intetrgomplex sensory
inputs, perform higher-level reasoning and cooperateth@gen teams is limited.
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Figure 1.9: Robotic systems. (a) Spirit, one of the two Mars Exploratory Rovers theeth

on Mars in January 2004. (b) The Sony AIBO Entertainment Robotobiiee first enter-

tainment robots to be mass-marketed. Both robots make use of féebistaeeen sensors,
actuators and computation to function in unknown environments. (Plagtbgrcourtesy of
Jet Propulsion Laboratory and Sony Electronics, Inc.)

Indeed, much of Wiener’s vision for robotics and intellig@machines remains
unrealized. While advances are needed in many fields to aliies vision—

including advances in sensing, actuation and energy sterdige opportunity to
combine the advances of the Al community in planning, adaptand learning
with the techniques in the control community for modelingglgsis and design of
feedback systems presents a renewed path for progress.

Networks and Computing Systems

Control of networks is a large research area spanning mamystancluding con-
gestion control, routing, data caching and power managerSereral features of
these control problems make them very challenging. The damifeature is the
extremely large scale of the system; the Internet is probtia largest feedback
control system humans have ever built. Another is the deakred nature of the
control problem: decisions must be made quickly and baskboriocal informa-
tion. Stability is complicated by the presence of varyingetilags, as information
about the network state can be observed or relayed to ctemgr@anly after a de-
lay, and the effect of a local control action can be felt tlgioaut the network
only after substantial delay. Uncertainty and variatiothi&nnetwork, through net-
work topology, transmission channel characteristic$ficrdemand and available
resources, may change constantly and unpredictably. ©tingplicating issues are
the diverse traffic characteristics—in terms of arrivalistets at both the packet
and flow time scales—and the different requirements for guafiservice that the
network must support.

Related to the control of networks is control of the serviead &it on these net-
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Figure 1.10: A multitier system for services on the Internet. In the complete system shown
schematically in (a), users request information from a set of comg(iter 1), which in turn
collect information from other computers (tiers 2 and 3). The individealer shown in (b)

has a set of reference parameters set by a (human) system opweititdeedback used to
maintain the operation of the system in the presence of uncertainty. (Badéellerstein et

al. [HDPTO04.)

works. Computers are key components of the systems of muteb servers and
database servers used for communication, electronic cooemadvertising and
information storage. While hardware costs for computingetdecreased dramati-
cally, the cost of operating these systems has increasedigeof the difficulty in
managing and maintaining these complex interconnectddrags The situation is
similar to the early phases of process control when feedwasKirst introduced to
control industrial processes. As in process control, theeeinteresting possibili-
ties for increasing performance and decreasing costs lyiagfieedback. Several
promising uses of feedback in the operation of computeesystare described in
the book by Hellerstein et alHDPTO04.

A typical example of a multilayer system for e-commerce isvah in Fig-
ure 1.10a The system has several tiers of servers. The edge servertadeep
coming requests and routes them to the HTTP server tier wheyeatfe parsed
and distributed to the application servers. The processingifferent requests can
vary widely, and the application servers may also accessredtservers managed
by other organizations.

Control of an individual server in a layer is illustrated ilgiie1.10b A quan-
tity representing the quality of service or cost of opematiesuch as response time,
throughput, service rate or memory usage—is measured ootheuter. The con-
trol variables might represent incoming messages acceptiexties in the oper-
ating system or memory allocation. The feedback loop thesgits to maintain
quality-of-service variables within a target range of esu

Economics

The economy is a large, dynamical system with many actorergovents, orga-
nizations, companies and individuals. Governments cbtiteoeconomy through
laws and taxes, the central banks by setting interest rag@€@mpanies by set-
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ting prices and making investments. Individuals contrelésonomy through pur-
chases, savings and investments. Many efforts have beea tmadodel the sys-
tem both at the macro level and at the micro level, but thisefing is difficult
because the system is strongly influenced by the behaviotedlitferent actors
in the system.

Keynes Key36 developed a simple model to understand relations amorgsgro
national product, investment, consumption and governggrding. One of Keynes’
observations was that under certain conditions, e.g.nduhie 1930s depression,
an increase in the investment of government spending ceald fo a larger in-
crease in the gross national product. This idea was used bya@overnments to
try to alleviate the depression. Keynes’ ideas can be cegptoy a simple model
that is discussed in Exerci@e4.

A perspective on the modeling and control of economic systeam be ob-
tained from the work of some economists who have receive@®tiegiges Riks-
bank Prize in Economics in Memory of Alfred Nobel, popularlyied the Nobel
Prize in Economics. Paul A. Samuelson received the prize in 1&7Qhe sci-
entific work through which he has developed static and dynaoanomic the-
ory and actively contributed to raising the level of anadyisi economic science.”
Lawrence Klein received the prize in 1980 for the developroétdarge dynamical
models with many parameters that were fitted to historiced G55, e.g., a
model of the U.S. economy in the period 1929-1952. Other relsess have mod-
eled other countries and other periods. In 1997 Myron Sclehesed the prize
with Robert Merton for a new method to determine the value exfvdtives. A
key ingredient was a dynamic model of the variation of stadkgs that is widely
used by banks and investment companies. In 2004 Finn E. Kydiat&dward C.
Prestcott shared the economics prize “for their contrimgito dynamic macroe-
conomics: the time consistency of economic policy and theérdy forces behind
business cycles,” a topic that is clearly related to dynaraiad control.

One of the reasons why it is difficult to model economic systenikat there
are no conservation laws. A typical example is that the vafuecompany as ex-
pressed by its stock can change rapidly and erratically.€Taex, however, some
areas with conservation laws that permit accurate mode@mg example is the
flow of products from a manufacturer to a retailer as illugiléin Figurel.11 The
products are physical quantities that obey a conservationdnd the system can
be modeled by accounting for the number of products in tHergifit inventories.
There are considerable economic benefits in controlling sughalins so that prod-
ucts are available to customers while minimizing producéd are in storage. The
real problems are more complicated than indicated in thedigacause there may
be many different products, there may be different factatiat are geographically
distributed and the factories may require raw material bassemblies.

Control of supply chains was proposed by Forrester in 19&itd1 and is
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Figure 1.11: Supply chain dynamics (after Forrest&of61]). Products flow from the pro-
ducer to the customer through distributors and retailers as indicated bglithérees. There
are typically many factories and warehouses and even more distrilundretailers. Multi-
ple feedback loops are present as each agent tries to maintain theipuapeory level.

now growing in importance. Considerable economic benefitsbeaobtained by
using models to minimize inventories. Their use accelerdtadhatically when
information technology was applied to predict sales, keapkt of products and
enable just-in-time manufacturing. Supply chain manageimas contributed sig-
nificantly to the growing success of global distributors.

Advertising on the Internet is an emerging application aftool. With network-
based advertising it is easy to measure the effect of differerketing strategies
quickly. The response of customers can then be modeled, adlidek strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understandgyregate behavior
in complex large-scale systems. This behavior emerges fnenmteraction of a

multitude of simpler systems with intricate patterns ommhation flow. Repre-

sentative examples can be found in fields ranging from embgyaio seismology.

Researchers who specialize in the study of specific compkes)s often develop
an intuitive emphasis on analyzing the role of feedbackrtarconnection) in fa-

cilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domgiarts for the
analysis of various complex systems, the development @faous methodology
that can discover and exploit common features and essemtitiematical struc-
ture is just beginning to emerge. Advances in science armhtéagy are creating
a new understanding of the underlying dynamics and the itapoe of feedback
in a wide variety of natural and technological systems. Weflgrhighlight three
application areas here.

Biological System#A major theme currently of interest to the biology commu-
nity is the science of reverse (and eventually forward) eegiing of biological
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Figure 1.12: The wiring diagram of the growth-signaling circuitry of the mammalian
cell [HWO0OQ]. The major pathways that are thought to play a role in cancer are indicate
in the diagram. Lines represent interactions between genes and piiotéiescell. Lines
ending in arrowheads indicate activation of the given gene or pathwags énding in a
T-shaped head indicate repression. (Used with permission of Elsedieaid the authors.)

control networks such as the one shown in FiglwE2 There are a wide variety
of biological phenomena that provide a rich source of exaspf control, includ-
ing gene regulation and signal transduction; hormonal,umafogical and cardio-
vascular feedback mechanisms; muscular control and lotomactive sensing,
vision and proprioception; attention and consciousness;p@pulation dynamics
and epidemics. Each of these (and many more) provide opptesito figure out
what works, how it works, and what we can do to affect it.

One interesting feature of biological systems is the freguse of positive
feedback to shape the dynamics of the system. Positive fekdiaa be used to
create switchlike behavior through autoregulation of aeg@md to create oscilla-
tions such as those present in the cell cycle, central pagemerators or circadian
rhythm.

Ecosystemdn contrast to individual cells and organisms, emergenp@ries
of aggregations and ecosystems inherently reflect seletigmimanisms that act on
multiple levels, and primarily on scales well below that lod system as a whole.
Because ecosystems are complex, multiscale dynamicamsgsthey provide a
broad range of new challenges for the modeling and analy$tedback systems.
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Recent experience in applying tools from control and dymaisystems to bac-
terial networks suggests that much of the complexity ofehsstworks is due to
the presence of multiple layers of feedback loops that pevobust functional-
ity to the individual cell. Yet in other instances, eventstet cell level benefit the
colony at the expense of the individual. Systems level aisatyan be applied to
ecosystems with the goal of understanding the robustnesscbfsystems and the
extent to which decisions and events affecting individya&icses contribute to the
robustness and/or fragility of the ecosystem as a whole.

Environmental Sciencé.is now indisputable that human activities have altered
the environment on a global scale. Problems of enormous @xitypthallenge re-
searchers in this area, and first among these is to understafeetdback systems
that operate on the global scale. One of the challenges ielgf@ng such an un-
derstanding is the multiscale nature of the problem, withitkd understanding of
the dynamics of microscale phenomena such as microbi@bgriganisms being
a necessary component of understanding global phenomectaas the carbon
cycle.

1.4 Feedback Properties

Feedback is a powerful idea which, as we have seen, is usatsadly in natural
and technological systems. The principle of feedback is lenigase correcting
actions on the difference between desired and actual pesfoce. In engineering,
feedback has been rediscovered and patented many timesindifferent con-
texts. The use of feedback has often resulted in vast impremesnin system ca-
pability, and these improvements have sometimes beerutemoary, as discussed
above. The reason for this is that feedback has some trulyrkaivle properties.
In this section we will discuss some of the properties of Bemtt that can be un-
derstood intuitively. This intuition will be formalized irubsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness teriaiaty. By mea-
suring the difference between the sensed value of a regudgnal and its desired
value, we can supply a corrective action. If the system wwks some change that
affects the regulated signal, then we sense this changeyatalforce the system
back to the desired operating point. This is precisely thecethat Watt exploited
in his use of the centrifugal governor on steam engines.

As an example of this principle, consider the simple feelllsgstem shown in
Figure1.13 In this system, the speed of a vehicle is controlled by ditigshe
amount of gas flowing to the engine. Simplportional-integral (P1) feedback
is used to make the amount of gas depend on both the error dretive current
and the desired speed and the integral of that error. The plthe right shows
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Figure 1.13: A feedback system for controlling the speed of a vehicle. In the blockaliag
on the left, the speed of the vehicle is measured and compared to theldpses within the
“Compute” block. Based on the difference in the actual and desiregtispéhe throttle (or
brake) is used to modify the force applied to the vehicle by the enginetdain and wheels.
The figure on the right shows the response of the control system to maonded change
in speed from 25 m/s to 30 m/s. The three different curves corresfmodiffering masses
of the vehicle, between 1000 and 3000 kg, demonstrating the robusitinthesclosed loop
system to a very large change in the vehicle characteristics.

the results of this feedback for a step change in the desreeldsand a variety of
different masses for the car, which might result from haardjfferent number of
passengers or towing a trailer. Notice that independeihieofitass (which varies by
a factor of 3!), the steady-state speed of the vehicle alappsoaches the desired
speed and achieves that speed within approximately 5 s. Tibysetrformance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide rotass is the nega-
tive feedback amplifier. When telephone communications weveloped, ampli-
fiers were used to compensate for signal attenuation in loeg.liA vacuum tube
was a component that could be used to build amplifiers. Distodaused by the
nonlinear characteristics of the tube amplifier togethehaitnplifier drift were
obstacles that prevented the development of line amplifegra fong time. A ma-
jor breakthrough was the invention of the feedback amplifiet927 by Harold S.
Black, an electrical engineer at Bell Telephone Laborasoidack usedhegative
feedbackwhich reduces the gain but makes the amplifier insensitivatiations
in tube characteristics. This invention made it possibleuitdbstable amplifiers
with linear characteristics despite the nonlinearitiethefvacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a sySthrough feed-
back, we can alter the behavior of a system to meet the neeais application:
systems that are unstable can be stabilized, systems ésluggish can be made
responsive and systems that have drifting operating poenisbe held constant.
Control theory provides a rich collection of techniquesnalgize the stability and
dynamic response of complex systems and to place bounde deltavior of such
systems by analyzing the gains of linear and nonlinear egexthat describe their
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components.

An example of the use of control in the design of dynamics fmem the
area of flight control. The following quote, from a lecture mneted by Wilbur
Wright to the Western Society of Engineers in 1980AcF53, illustrates the role
of control in the development of the airplane:

Men already know how to construct wings or airplanes, whittem
driven through the air at sufficient speed, will not only sirsthe
weight of the wings themselves, but also that of the engind, Gt
the engineer as well. Men also know how to build engines arehsc

of sufficient lightness and power to drive these planes aaBusy
speed ... Inability to balance and steer still confrontsietiis of the
flying problem ... When this one feature has been worked oet, th
age of flying will have arrived, for all other difficulties are ofinor
importance.

The Wright brothers thus realized that control was a key iss@mable flight.
They resolved the compromise between stability and manehiigy by building
an airplane, the Wright Flyer, that was unstable but manainer The Flyer had
a rudder in the front of the airplane, which made the plang weaneuverable. A
disadvantage was the necessity for the pilot to keep adgithie rudder to fly the
plane: if the pilot let go of the stick, the plane would craéither early aviators
tried to build stable airplanes. These would have been esflyt but because of
their poor maneuverability they could not be brought up thair. By using their
insight and skillful experiments the Wright brothers mauefirst successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there sttaong motiva-
tion to find a mechanism that would stabilize an aircraft. Sude\dce, invented
by Sperry, was based on the concept of feedback. Sperry use-astgypilized
pendulum to provide an indication of the vertical. He theraiaged a feedback
mechanism that would pull the stick to make the plane go up Wds point-
ing down, and vice versa. The Sperry autopilot was the first udeeafback in
aeronautical engineering, and Sperry won a prize in a cotigpefor the safest
airplane in Paris in 1914. Figure14 shows the Curtiss seaplane and the Sperry
autopilot. The autopilot is a good example of how feedbackeamsed to stabilize
an unstable system and hence “design the dynamics” of tbeatir

One of the other advantages of designing the dynamics of imeleythat it
allows for increased modularity in the overall system desBy using feedback
to create a system whose response matches a desired profilenwale the com-
plexity and variability that may be present inside a sulmystThis allows us to
create more complex systems by not having to simultanedustythe responses
of a large number of interacting components. This was oneehtlvantages of
Black’s use of negative feedback in vacuum tube amplifiees:résulting device
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Figure 1.14: Aircraft autopilot system. The Sperry autopilot (left) contained a sdbof
gyros coupled to a set of air valves that controlled the wing surfaces19h2 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able totanalevel
flight as a mechanic walked on the wing (righyg93.

had a well-defined linear input/output response that did apedd on the individ-
ual characteristics of the vacuum tubes being used.

Higher Levels of Automation

A major trend in the use of feedback is its application to biglevels of situa-
tional awareness and decision making. This includes not waditional logical
branching based on system conditions but also optimizatidaptation, learning
and even higher levels of abstract reasoning. These prolassria the domain of
the artificial intelligence community, with an increasinderof dynamics, robust-
ness and interconnection in many applications.

One of the interesting areas of research in higher levelseofsin is au-
tonomous control of cars. Early experiments with autonontivdng were per-
formed by Ernst Dickmanns, who in the 1980s equipped cars edtheras and
other sensorsic07]. In 1994 his group demonstrated autonomous driving with
human supervision on a highway near Paris and in 1995 ones@igns drove au-
tonomously (with human supervision) from Munich to Copeggraat speeds of
up to 175 km/hour. The car was able to overtake other vehicidshange lanes
automatically.

This application area has been recently explored througb&iRPA Grand
Challenge, a series of competitions sponsored by the U.&rgment to build ve-
hicles that can autonomously drive themselves in desertidyah environments.
Caltech competed in the 2005 and 2007 Grand Challenges asimagified Ford
E-350 offroad van nicknamed “Alice.” It was fully automateailuding electron-
ically controlled steering, throttle, brakes, transmdgsand ignition. Its sensing
systems included multiple video cameras scanning at 10z36dveral laser rang-
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Figure 1.15:DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the 2005 ar@720
competitions and its networked control architect @& G+064. The feedback system fuses
data from terrain sensors (cameras and laser range finders) tohetex digital elevation
map. This map is used to compute the vehicle’s potential speed over thtemnd an
optimization-based path planner then commands a trajectory for the véhitddow. A
supervisory control module performs higher-level tasks suchrdling sensor and actuator
failures.

ing units scanning at 10 Hz and an inertial navigation paekagable of providing
position and orientation estimates at 5 ms temporal rasoluComputational re-
sources included 12 high-speed servers connected todhtbaegh a 1-Gb/s Eth-
ernet switch. The vehicle is shown in Figutel5 along with a block diagram of
its control architecture.

The software and hardware infrastructure that was develepatled the ve-
hicle to traverse long distances at substantial speedsstimg), Alice drove itself
more than 500 km in the Mojave Desert of California, with thdity to follow
dirt roads and trails (if present) and avoid obstacles atbagath. Speeds of more
than 50 km/h were obtained in the fully autonomous mode. @uksat tuning
of the algorithms was done during desert testing, in parabge of the lack of
systems-level design tools for systems of this level of dewity. Other competi-
tors in the race (including Stanford, which won the 2005 catitipa) used algo-
rithms for adaptive control and learning, increasing theatilities of their sys-
tems in unknown environments. Together, the competitotisérGrand Challenge
demonstrated some of the capabilities of the next generaticontrol systems
and highlighted many research directions in control at éigbvels of decision
making.

Drawbacks of Feedback

While feedback has many advantages, it also has some drisvi@ltsief among
these is the possibility of instability if the system is n&sd@yned properly. We
are all familiar with the effects opositive feedbackvhen the amplification on
a microphone is turned up too high in a room. This is an exampfeearback
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instability, something that we obviously want to avoid. Tisigricky because we
must design the system not only to be stable under nominalittoms but also to
remain stable under all possible perturbations of the dycem

In addition to the potential for instability, feedback iméetly couples different
parts of a system. One common problem is that feedback affenots measure-
ment noise into the system. Measurements must be carefudyefil so that the
actuation and process dynamics do not respond to them, ahilee same time
ensuring that the measurement signal from the sensor iegyagupled into the
closed loop dynamics (so that the proper levels of perfonaame achieved).

Another potential drawback of control is the complexity afl@edding a con-
trol system in a product. While the cost of sensing, compartand actuation has
decreased dramatically in the past few decades, the faetimsrthat control sys-
tems are often complicated, and hence one must carefulnbalthe costs and
benefits. An early engineering example of this is the use ofopiocessor-based
feedback systems in automobiles.The use of microprocessamtomotive appli-
cations began in the early 1970s and was driven by increlgsstigct emissions
standards, which could be met only through electronic cbsitrEarly systems
were expensive and failed more often than desired, leadirfigetjuent customer
dissatisfaction. It was only through aggressive improvetsién technology that
the performance, reliability and cost of these systemsvalibthem to be used in a
transparent fashion. Even today, the complexity of thesteBysis such that it is
difficult for an individual car owner to fix problems.

Feedforward

Feedback is reactive: there must be an error before coreeatitions are taken.
However, in some circumstances it is possible to measurstarbdance before it
enters the system, and this information can then be usedécctarective action
before the disturbance has influenced the system. The effabedisturbance
is thus reduced by measuring it and generating a controhkigat counteracts it.
This way of controlling a system is callégedforward Feedforward is particularly
useful in shaping the response to command signals becaosaaad signals are
always available. Since feedforward attempts to match tgmeds, it requires good
process models; otherwise the corrections may have thegnsme or may be
badly timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward arlwgoas to a market-
based economy versus a planned economy. In business, arigardf strategy
corresponds to running a company based on extensive stratagning, while a
feedback strategy corresponds to a reactive approacholiogyi feedforward has
been suggested as an essential element for motion contiahiians that is tuned
during training. Experience indicates that it is often adageous to combine feed-
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back and feedforward, and the correct balance requireghihand understanding
of their respective properties.

Positive Feedback

In most of this text, we will consider the role akgative feedbackn which we
attempt to regulate the system by reacting to disturbamcasiay that decreases
the effect of those disturbances. In some systems, paatigdiological systems,
positive feedbackan play an important role. In a system with positive fee&tbac
the increase in some variable or signal leads to a situatiariich that quantity is
further increased through its dynamics. This has a destadglieffect and is usu-
ally accompanied by a saturation that limits the growth ef gmantity. Although
often considered undesirable, this behavior is used irgiocal (and engineering)
systems to obtain a very fast response to a condition orlsigna

One example of the use of positive feedback is to create lsingcbehavior,
in which a system maintains a given state until some inpusae a threshold.
Hysteresis is often present so that noisy inputs near tiesllotd do not cause the
system to jitter. This type of behavior is callb@tability and is often associated
with memory devices.

1.5 Simple Forms of Feedback

The idea of feedback to make corrective actions based on fiieeettice between
the desired and the actual values of a quantity can be impl@dén many differ-

ent ways. The benefits of feedback can be obtained by very siegiback laws
such as on-off control, proportional control and proparéibintegral-derivative
control. In this section we provide a brief preview of someha topics that will

be studied more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

B {umax ife>0

1.1
Unin ife<O, (3.1)

where thecontrol error e=r —y is the difference between the reference signal (or
command signal) and the output of the systeyrandu is the actuation command.
Figurel.1l6ashows the relation between error and control. This contvolhaplies
that maximum corrective action is always used.

The feedback in equatiod () is calledon-off control One of its chief advan-
tagesisthatitis simple and there are no parameters to eh@osoff control often
succeeds in keeping the process variable close to the mefersuch as the use of
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Figure 1.16: Input/output characteristics of on-off controllers. Each plot showéniiet on
the horizontal axis and the corresponding output on the vertical axial toh-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (@fe that for on-off
control with hysteresis, the output depends on the value of past inputs.

a simple thermostat to maintain the temperature of a rootgpitally results in
a system where the controlled variables oscillate, whidaftsn acceptable if the
oscillation is sufficiently small.

Notice that in equation1(1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing esith dead zone or
hysteresis (see Figudel6bandl1.169.

PID Control

The reason why on-off control often gives rise to oscillasias that the system
overreacts since a small change in the error makes the edtuatiable change
over the full range. This effect is avoidedpnoportional contro] where the char-
acteristic of the controller is proportional to the contalor for small errors. This
can be achieved with the control law

Umax If €> €max
u= < kpe if emin < €< emax (1.2)
Umin  if € < &nin,

wherek,, is the controller gaingmin = Umin/Kp andeémax = Umax/Kp. The interval
(emin, €max) is called theproportional bandbecause the behavior of the controller
is linear when the error is in this interval:

u=Kp(r—y) =kpe if €min < e < enax (1.3)

While a vast improvement over on-off control, proportiocahtrol has the
drawback that the process variable often deviates fronefesence value. In par-
ticular, if some level of control signal is required for thgstkem to maintain a
desired value, then we must hawe 0 in order to generate the requisite input.

This can be avoided by making the control action proportioodhe integral
of the error:

u(t) = ki /Ot e(1)dr. (1.4)
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Figure 1.17: Action of a PID controller. At time, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedb&elsed on the integral

of the error up to time (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of changheferror. Ty
represents the approximate amount of time in which the error is projemtedid (see text).

This control form is calledntegral control andk; is the integral gain. It can be
shown through simple arguments that a controller with iretegction has zero
steady-state error (Exerci&eb). The catch is that there may not always be a steady
state because the system may be oscillating.

An additional refinement is to provide the controller with antieipative abil-
ity by using a prediction of the error. A simple predictiongisen by the linear
extrapolation

de(t)

dt
which predicts the errory time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be egpeel mathematically as
u(t) = ke(t +m/ dr+kdde(t). (1.5)
The control action is thus a sum of three terms: the past aggepted by the
integral of the error, the present as represented by theogiopal term and the
future as represented by a linear extrapolation of the d€ther derivative term).
This form of feedback is called@oportional-integral-derivative (PI1D) controller
and its action is illustrated in Figute17.

A PID controller is very useful and is capable of solving a widege of con-
trol problems. More than 95% of all industrial control pretvis are solved by
PID control, although many of these controllers are actyathportional-integral
(PI) controllersbecause derivative action is often not includB#02]. There are
also more advanced controllers, which differ from PID coligrs by using more
sophisticated methods for prediction.

et+Ty) ~et)+ Ty
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1.6 Further Reading

The material in this section draws heavily from the reporthaf Panel on Future
Directions on Control, Dynamics and Systerivkf03]. Several additional papers
and reports have highlighted the successes of coritf8Bf and new vistas in
control [Bro0O0O, Kum01, Wis07. The early development of control is described
by Mayr [May7( and in the books by BennetBgn79 Ben93, which cover the
period 1800-1955. A fascinating examination of some of tagyénistory of con-
trol in the United States has been written by Mind&lifn02]. A popular book
that describes many control concepts across a wide rangsayplthes isOut of
Control by Kelly [Kel94]. There are many textbooks available that describe con-
trol systems in the context of specific disciplines. For eagis, the textbooks by
Franklin, Powell and Emami-NaeirfrfPENO03, Dorf and Bishop PB04], Kuo and
Golnaraghi KG02] and Seborg, Edgar and MellichanfREM04 are widely used.
More mathematically oriented treatments of control theocjude Sontag$on9g
and Lewis Lew03. The book by Hellerstein et alHDPT04 provides a descrip-
tion of the use of feedback control in computing systems. Aber of books
look at the role of dynamics and feedback in biological systeincluding Mil-
horn [Mil66] (now out of print), J. D. Murray Mur04] and Ellner and Gucken-
heimer EG0Y. The book by FradkovHfra07 and the tutorial article by Bechhoe-
fer [Bec03 cover many specific topics of interest to the physics comiguni

Exercises

1.1(Eye mation) Perform the following experiment and explainy@sults: Hold-
ing your head still, move one of your hands left and right iontrof your face,
following it with your eyes. Record how quickly you can moweuy hand before
you begin to lose track of it. Now hold your hand still and shakur head left to
right, once again recording how quickly you can move befoséng track of your
hand.

1.2 Identify five feedback systems that you encounter in youryelay environ-
ment. For each system, identify the sensing mechanismatimiumechanism and
control law. Describe the uncertainty with respect to whioh feedback system
provides robustness and/or the dynamics that are changratinthe use of feed-
back.

1.3(Balance systems) Balance yourself on one foot with yous eij@sed for 15 s.
Using Figurel.3 as a guide, describe the control system responsible foiirkgep
you from falling down. Note that the “controller” will difiefrom that in the dia-
gram (unless you are an android reading this in the far fluture
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1.4(Cruise control) Download the MATLAB code used to produce satians for
the cruise control system in Figutel3from the companion web site. Using trial
and error, change the parameters of the control law so teaiwérshoot in speed
is not more than 1 m/s for a vehicle with mams= 1000 kg.

1.5 (Integral action) We say that a system with a constant inpathes steady
state if the output of the system approaches a constant @aluiene increases.
Show that a controller with integral action, such as thosergin equationsi(.4)
and (L.5), gives zero error if the closed loop system reaches stdath. s

1.6 Search the web and pick an article in the popular press abaedibéck and
control system. Describe the feedback system using thertelogy given in the
article. In particular, identify the control system and ctése (a) the underlying
process or system being controlled, along with the (b) sefspactuator and (d)
computational element. If the some of the information isawaiilable in the article,
indicate this and take a guess at what might have been used.



Chapter Two
System Modeling

... | asked Fermi whether he was not impressed by the agreemewmtdre our calculated
numbers and his measured numbers. He replied, “How many arbipargmeters did you
use for your calculations?” | thought for a moment about our cut-ofigedures and said,
“Four” He said, “l remember my friend Johnny von Neumann useday svith four param-
eters | can fit an elephant, and with five | can make him wiggle his trunk”

Freeman Dyson on describing the predictions of his model for mesuinspscattering to
Enrico Fermi in 1953Dys04.

A model is a precise representation of a system’s dynamied ts answer
guestions via analysis and simulation. The model we chogsendis on the ques-
tions we wish to answer, and so there may be multiple modelsa fEingle dy-
namical system, with different levels of fidelity dependingtbe phenomena of
interest. In this chapter we provide an introduction to thieaept of modeling and
present some basic material on two specific methods commealy in feedback
and control systems: differential equations and diffeeepguations.

2.1 Modeling Concepts

A modelis a mathematical representation of a physical, biologicahformation
system. Models allow us to reason about a system and make&twed about
how a system will behave. In this text, we will mainly be irsted in models of
dynamical systems describing the input/output behavi@ystems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which thecesffef actions
do not occur immediately. For example, the velocity of a caesinot change
immediately when the gas pedal is pushed nor does the tetapeia a room
rise instantaneously when a heater is switched on. Similatheadache does not
vanish right after an aspirin is taken, requiring time fdoitake effect. In business
systems, increased funding for a development project datdaerease revenues in
the short term, although it may do so in the long term (if it wapod investment).
All of these are examples of dynamical systems, in which thleakior of the
system evolves with time.

In the remainder of this section we provide an overview of emhthe key
concepts in modeling. The mathematical details introdueed &are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring—mass system with nonlinear damping. The position of the mass is de-
noted byq, with g = O corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring conktamdl a damper with force depen-
dent on the velocity.”

The Heritage of Mechanics

The study of dynamics originated in attempts to describegiéay motion. The
basis was detailed observations of the planets by TychoeBaal the results of
Kepler, who found empirically that the orbits of the plansasiid be well described
by ellipses. Newton embarked on an ambitious program tatexplain why the
planets move in ellipses, and he found that the motion coeldxXplained by his
law of gravitation and the formula stating that force equadss times acceleration.
In the process he also invented calculus and differentiahgons.

One of the triumphs of Newton’s mechanics was the obsenvaliat the mo-
tion of the planets could be predicted based on the curresitipos and velocities
of all planets. It was not necessary to know the past motioa stdteof a dynam-
ical system is a collection of variables that completelyrabterizes the motion of
a system for the purpose of predicting future motion. Forsiesy of planets the
state is simply the positions and the velocities of the gn&e call the set of all
possible states thstate space

A common class of mathematical models for dynamical systisnesdinary
differential equations (ODES). In mechanics, one of the &stsuch differential
equations is that of a spring—mass system with damping:

mg+c(q) +kg=0. (2.1)

This system is illustrated in Figu2 1 The variableg € R represents the position
of the masam with respect to its rest position. We use the notatioio denote

the derivative ofg with respect to time (i.e., the velocity of the mass) antb ~
represent the second derivative (acceleration). The spsimgsumed to satisfy
Hooke’s law, which says that the force is proportional to digplacement. The
friction element (damper) is taken as a nonlinear functi@), which can model

effects such as stiction and viscous drag. The posdiand velocityq represent

the instantaneous state of the system. We say that thisnsystasecond-order

systensince the dynamics depend on the first two derivatives of
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Figure 2.2: lllustration of a state model. A state model gives the rate of change of ttee sta
as a function of the state. The plot on the left shows the evolution of the statéuaction

of time. The plot on the right shows the evolution of the states relative to etheln, with

the velocity of the state denoted by arrows.

The evolution of the position and velocity can be describadgusither a time
plot or a phase portrait, both of which are shown in Fig2u2 Thetime plot on
the left, shows the values of the individual states as a fongif time. Thephase
portrait, on the right, shows theector fieldfor the system, which gives the state
velocity (represented as an arrow) at every point in the saaice. In addition, we
have superimposed the traces of some of the states frometiiffeonditions. The
phase portrait gives a strong intuitive representatiorhefd@quation as a vector
field or a flow. While systems of second order (two states) carepreesented in
this way, unfortunately it is difficult to visualize equat®of higher order using
this approach.

The differential equation2(1) is called anautonomousystem because there
are no external influences. Such a model is natural for use éstigl mechanics
because it is difficult to influence the motion of the planetanbmy examples, it
is useful to model the effects of external disturbances atrotied forces on the
system. One way to capture this is to replace equafidh) by

m+c(q) +ka=u, (2.2)

whereu represents the effect of external inputs. The mog4) (s called aforced

or controlled differential equatianit implies that the rate of change of the state
can be influenced by the inpuft). Adding the input makes the model richer and
allows new questions to be posed. For example, we can examfatinfluence
external disturbances have on the trajectories of a sy<dgmn the case where
the input variable is something that can be modulated in &clbed way, we can
analyze whether it is possible to “steer” the system from poiat in the state
space to another through proper choice of the input.
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Figure 2.3: lllustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the onthemight is its
representation as a block diagram.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineg, where the de-
sign of electronic amplifiers led to a focus on input/outputdséor. A system was
considered a device that transforms inputs to outputs|usdrited in Figure.3.
Conceptually an input/output model can be viewed as a gaoie tof inputs and
outputs. Given an input signalt) over some interval of time, the model should
produce the resulting output).

The input/output framework is used in many engineering dis@s since it
allows us to decompose a system into individual componesrisected through
their inputs and outputs. Thus, we can take a complicate@rmsystich as a radio
or a television and break it down into manageable pieces asdie receiver,
demodulator, amplifier and speakers. Each of these piecesd®®ainputs and
outputs and, through proper design, these components cardoeonnected to
form the entire system.

The input/output view is particularly useful for the spedaikass oflinear time-
invariant systemsrThis term will be defined more carefully later in this chapler,
roughly speaking a system is linear if the superpositiorlifaah) of two inputs
yields an output that is the sum of the outputs that wouldespond to individual
inputs being applied separately. A system is time-invaiiftie output response
for a given input does not depend on when that input is applied

Many electrical engineering systems can be modeled bytlitve-invariant
systems, and hence a large number of tools have been dedetpralyze them.
One such tool is thetep responsevhich describes the relationship between an
input that changes from zero to a constant value abruptlye@ isput) and the
corresponding output. As we shall see later in the text, thp gesponse is very
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Figure 2.4: Input/output response of a linear system. The step response (a3 gimautput

of the system due to an input that changes from 0 to 1 at timé& s. The frequency re-
sponse (b) shows the amplitude gain and phase change due to a sihingoitiat different

frequencies.

useful in characterizing the performance of a dynamicaksysand it is often used
to specify the desired dynamics. A sample step responsevasim Figure2.4a

Another way to describe a linear time-invariant system igefresent it by its
response to sinusoidal input signals. This is calledftthguency responsand a
rich, powerful theory with many concepts and strong, usefallts has emerged.
The results are based on the theory of complex variables anddeapransforms.
The basic idea behind frequency response is that we can cafypdbaracterize
the behavior of a system by its steady-state response tedgédal inputs. Roughly
speaking, this is done by decomposing any arbitrary sigrtal a linear combi-
nation of sinusoids (e.g., by using the Fourier transforng tnen using linearity
to compute the output by combining the response to the iddalifrequencies. A
sample frequency response is shown in Figlish

The input/output view lends itself naturally to experimémeatermination of
system dynamics, where a system is characterized by recpidi response to
particular inputs, e.g., a step or a set of sinusoids ovengeraf frequencies.

The Control View

When control theory emerged as a discipline in the 1940sapipgoach to dy-
namics was strongly influenced by the electrical enginediimgut/output) view.
A second wave of developments in control, starting in the 1850s, was inspired
by mechanics, where the state space perspective was usezim€hgence of space
flight is a typical example, where precise control of the oobbid spacecraft is es-
sential. These two points of view gradually merged into wkabday the state
space representation of input/output systems.

The development of state space models involved modifyingnbdels from
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mechanics to include external actuators and sensors diingtimore general
forms of equations. In control, the model given by equatig)(was replaced by

% = f(x,u), y = h(x,u), (2.3)
wherex is a vector of state variablesjs a vector of control signals aryds a vec-
tor of measurements. The tew/dt represents the derivative pfvith respect to
time, now considered a vector, aficandh are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimensionntachanical systems,
the state consists of the position and velocity of the sysgmnthatx = (q,q) in
the case of a damped spring—mass system. Note that in theldanmulation we
model dynamics as first-order differential equations, butwilesee that this can
capture the dynamics of higher-order differential equeiby appropriate defini-
tion of the state and the mapsandh.

Adding inputs and outputs has increased the richness ofdlsical problems
and led to many new concepts. For example, it is natural tdf gslssible statex
can be reached with the proper choicaigfeachability) and if the measurement
contains enough information to reconstruct the state (ohbdity). These topics
will be addressed in greater detail in Chapt@end?.

A final development in building the control point of view wag #imergence of
disturbances and model uncertainty as critical elementsaritheory. The simple
way of modeling disturbances as deterministic signalsdtk@s and sinusoids has
the drawback that such signals cannot be predicted precisehore realistic ap-
proach is to model disturbances as random signals. This vietvgives a natural
connection between prediction and control. The dual viewamit/output repre-
sentations and state space representations are pattiausaful when modeling
uncertainty since state models are convenient to descnbeninal model but un-
certainties are easier to describe using input/output leqdéen via a frequency
response description). Uncertainty will be a constant thémoughout the text
and will be studied in particular detail in Chapti.

An interesting observation in the design of control systestisat feedback sys-
tems can often be analyzed and designed based on complgraimple models.
The reason for this is the inherent robustness of feedbat&ragsHowever, other
uses of models may require more complexity and more accutasy example is
feedforward control strategies, where one uses a modektmprpute the inputs
that cause the system to respond in a certain way. Anothariggystem valida-
tion, where one wishes to verify that the detailed respoh#eeosystem performs
as it was designed. Because of these different uses of mdadslsommon to use
a hierarchy of models having different complexity and figelit
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Multidomain Modeling @

Modeling is an essential element of many disciplines, taditions and methods
from individual disciplines can differ from each other, sstrated by the previ-
ous discussion of mechanical and electrical engineerindifffculty in systems
engineering is that it is frequently necessary to deal wétefogeneous systems
from many different domains, including chemical, electjenechanical and in-
formation systems.

To model such multidomain systems, we start by partitiorangystem into
smaller subsystems. Each subsystem is represented by dalquations for mass,
energy and momentum, or by appropriate descriptions ofnmétion processing
in the subsystem. The behavior at the interfaces is capturetkescribing how
the variables of the subsystem behave when the subsystenistenrconnected.
These interfaces act by constraining variables within tdéesidual subsystems to
be equal (such as mass, energy or momentum fluxes). The comquded is then
obtained by combining the descriptions of the subsysterddtainterfaces.

Using this methodology it is possible to build up libraridssabsystems that
correspond to physical, chemical and informational congpdst The procedure
mimics the engineering approach where systems are buitt fobsystems that
are themselves built from smaller components. As expegiéngained, the com-
ponents and their interfaces can be standardized and teallé@cmodel libraries.
In practice, it takes several iterations to obtain a goagi¥pthat can be reused for
many applications.

State models or ordinary differential equations are noablétfor component-
based modeling of this form because states may disappear eadmeponents are
connected. This implies that the internal description of mponent may change
when it is connected to other components. As an illustratierconsider two ca-
pacitors in an electrical circuit. Each capacitor has a stateesponding to the
voltage across the capacitors, but one of the states wipgisar if the capacitors
are connected in parallel. A similar situation happens with rotating inertias,
each of which is individually modeled using the angle of tiotaand the angular
velocity. Two states will disappear when the inertias amegd by a rigid shaft.

This difficulty can be avoided by replacing differential edqoas bydifferential
algebraic equationswhich have the form

F(z,2) =0,
wherez € R". A simple special case is
x=f(xy), 9gxy =0, (2.4)

wherez = (x,y) andF = (x— f(x,y),9(x,y)). The key property is that the deriva-
tive zis not given explicitly and there may be pure algebraic refet between the
components of the vectar
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The model 2.4) captures the examples of the parallel capacitors andrikedi
rotating inertias. For example, when two capacitors areeoted, we simply add
the algebraic equation expressing that the voltages atihessapacitors are the
same.

Modelicais a language that has been developed to support compoasedb
modeling. Differential algebraic equations are used astsic description, and
object-oriented programming is used to structure the nsodébdelica is used to
model the dynamics of technical systems in domains such abaneal, electri-
cal, thermal, hydraulic, thermofluid and control subsystevisdelica is intended
to serve as a standard format so that models arising in éifteiomains can be
exchanged between tools and users. A large set of free ancheanal Modelica
component libraries are available and are used by a growimgpber of people
in industry, research and academia. For further informagibout Modelica, see
http://www.modelica.or@r Tiller [TilO1].

2.2 State Space Models

In this section we introduce the two primary forms of modéksttwe use in this
text: differential equations and difference equationghBoake use of the notions
of state, inputs, outputs and dynamics to describe the limhafva system.

Ordinary Differential Equations

The state of a system is a collection of variables that sunzmdhe past of a
system for the purpose of predicting the future. For a playsigstem the state
is composed of the variables required to account for stovAgeass, momentum
and energy. A key issue in modeling is to decide how accyraétéd storage has
to be represented. The state variables are gathered in a weetB" called the
state vectarThe control variables are represented by another vectoRP, and
the measured signal by the vecyor RY. A system can then be represented by the
differential equation

31( = f(x,u), y=h(x,u), (2.5)
wheref : R" x RP — R" andh : R" x RP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called trder of the system. The sys-
tem @.5) is calledtime-invariantbecause the functions andh do not depend
explicitly on timet; there are more general time-varying systems where the func
tions do depend on time. The model consists of two functidrestunctionf gives
the rate of change of the state vector as a function of gtatel controlu, and the
functionh gives the measured values as functions of staed controlu.


http://www.modelica.org

2.2. STATE SPACE MODELS 37

A system is called dnear state space system if the functiohandh are linear
in x andu. A linear state space system can thus be represented by

d
d%( = Ax+Bu, y = Cx+ Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said {mbar and
time-invariant or LTI for short. The matrixA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influeneeahtput directly.
A different form of linear differential equations, genezalg the second-order
dynamics from mechanics, is an equation of the form
dn dnfl
de): T dt”—i/
wheret is the independent (time) variabl}) is the dependent (output) variable
and u(t) is the input. The notation¥y/dt® is used to denote thkth derivative
of y with respect ta, sometimes also written 38<. The controlled differential
equation 2.7) is said to be amth-order system. This system can be converted into
state space form by defining

+ofay=u, 2.7)

X1 dnfly/dtnfl
Xo dnfzy/dtnfz
X= . = . 3
Xn—1 dy/dt
Xn y
and the state space equations become
X1 —aiX1 — - —anXn u
dt . - . . Y y— n
Xn-1 Xn—2 0
Xn Xn—1 0
With the appropriate definitions &, B, C andD, this equation is in linear state
space form.

An even more general system is obtained by letting the olopuatlinear com-
bination of the states of the system, i.e.,

y = bixg + boXo + - - - + bpxny + du.
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(a) Segway (b) Saturn rocket (c) Cart—pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Satket @nd (c)
inverted pendulum on a cart. Each of these examples uses forcedattitia of the system
to keep it upright.

This system can be modeled in state space as

X1 —a; —a ... —apn-1 —an 1
X2 1 0 .. 0 0 0
dlx| o 1 0 0 |xy|0]y
. 5 s 5 (2.8)
X 0 o0 10 0
y— [bl by ... bn]x+du.

This particular form of a linear state space system is cabedhable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems
An example of a type of system that can be modeled using ardutifferential
equations is the class bhalance system#\ balance system is a mechanical sys-
tem in which the center of mass is balanced above a pivot pBathe common
examples of balance systems are shown in Figuge The Segway® Personal
Transporter (Figur@.59 uses a motorized platform to stabilize a person standing
on top of it. When the rider leans forward, the transportatievice propels itself
along the ground but maintains its upright position. Anotlxeample is a rocket
(Figure 2.5b), in which a gimbaled nozzle at the bottom of the rocket isduse
stabilize the body of the rocket above it. Other examplesatddiice systems in-
clude humans or other animals standing upright or a perstamtiag a stick on
their hand.

Balance systems are a generalization of the spring—maies1syse saw earlier.
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We can write the dynamics for a mechanical system in the géfeam

M(a)d+C(a,q) +K(a) =B(q)u,

whereM(q) is the inertia matrix for the systent(q,q) represents the Coriolis
forces as well as the damping(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into theuwycs. The spe-
cific form of the equations can be derived using Newtonian raeids. Note that
each of the terms depends on the configuration of the sygterd that these terms
are often nonlinear in the configuration variables.

Figure2.5cshows a simplified diagram for a balance system consisting of a
inverted pendulum on a cart. To model this system, we chdase wriables that
represent the position and velocity of the base of the syspeand p, and the an-
gle and angular rate of the structure above the b@s;d 6. We letF represent
the force applied at the base of the system, assumed to be hotizontal direc-
tion (aligned withp), and choose the position and angle of the system as outputs.
With this set of definitions, the dynamics of the system candraputed using
Newtonian mechanics and have the form

(M+m) —mlcos6 p cp+mising62)  (F
[‘mlCOSQ (J+m|2)] [9] * [ y9—mglsin9] - [0] (29

whereM is the mass of the basm,andJ are the mass and moment of inertia of the
system to be balancedis the distance from the base to the center of mass of the
balanced body; andy are coefficients of viscous friction amgds the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space fgrdetining the
state ax=(p, 8, p, 0), the input as1 = F and the output ag= (p, 0). If we define
the total mass and total inertia as

Mi=M+m, J=J+mP,

the equations of motion then become

4 p 3\
p . o .

d |6 —Mmlsg 6 + mg(ml*/J)sgce —cp— (y/I)mlcg +u
dt [p| ~ M —m(ml2/J)c3 ’
6 —ml2sgc 62 + Mglsg — clcgp— y(M/m)6 + lcgu

J(M/m) —m(lcg)?

_|P
y_ \9]7

where we have used the shorthamd= cosf andsg = sinf.
In many cases, the angiewill be very close to 0, and hence we can use the
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approximations sif ~ 6 and co$) ~ 1. Furthermore, i is small, we can ig-
nore quadratic and higher termsén Substituting these approximations into our
equations, we see that we are left witlireear state space equation

o 0o 0 1 0 0 0
d e 0o 0 0 1 0 0
at|p| ~ |0 mA2g/u —ca/u —yim/p| | p| T a/m |
6)  \o mmgl/u —clm/u —yMy/u) 8 Im/p
(1000
Y=1o 1 0 o) *®
whereu = MyJ; — nél?, 0

Example 2.2 Inverted pendulum

A variation of the previous example is one in which the lomatf the base does

not need to be controlled. This happens, for example, if werdeeested only in
stabilizing a rocket’s upright orientation without womg about the location of
base of the rocket. The dynamics of this simplified system aengiy

d [9] [mgl ° ] y—0 (2.10)
dt [6) ~ | —=sin6— L6+ —cosbu|’ - '
N N J
wherey is the coefficient of rotational friction} = J+ ml? andu is the force
applied at the base. This system is referred to asarted pendulum O

Difference Equations

In some circumstances, it is more natural to describe théuten of a system
at discrete instants of time rather than continuously iretitfi we refer to each
of these times by an integé&r=0,1,2, ..., then we can ask how the state of the
system changes for eakhJust as in the case of differential equations, we define
the state to be those sets of variables that summarize thefghe system for the
purpose of predicting its future. Systems described in tlaamar are referred to
asdiscrete-time systems

The evolution of a discrete-time system can be written in ¢t f

x[k+ 1] = f(x[k],ulk]), y[K] = h(x[k],ulk]), (2.11)

wherex[k] € R" is the state of the system at tirkgan integer)u[k] € RP is the
input andy[k] € RY is the output. As beforef, andh are smooth mappings of the
appropriate dimension. We call equatidhl(]) a difference equatiosince it tells
us howx[k+ 1] differs fromx[k]. The statex[k] can be either a scalar- or a vector-
valued quantity; in the case of the latter we weij¢k| for the value of thgth state
at timek.
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Figure 2.6: Predator versus prey. The photograph on the left shows a Canadiaarygl
a snowshoe hare, the lynx’s primary prey. The graph on the rightskize populations of
hares and lynxes between 1845 and 1935 in a section of the CanadidesIdptac37. The

data were collected on an annual basis over a period of 90 yearso@Pdyeh copyright Tom
and Pat Leeson.)

Just as in the case of differential equations, it is oftercdse that the equations
are linear in the state and input, in which case we can destirdsystem by

x[k+ 1] = AXK] + Bulk], y[K] = Cx[K] + DulK].

As before, we refer to the matricés B, C andD as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. Thatswt of a linear dif-
ference equation with initial conditiox{0] and inputu[0],...,u[T] is given by

x[K] = AX[0] + kZ:)Akleu[ il,
=
1 k> 0. (2.12)
y[k] = CAX[0] + ;CAk*iflsu[ j]+ Dulk],
i=

Difference equations are also useful as an approximatiatifiegirential equa-
tions, as we will show later.

Example 2.3 Predator—prey
As an example of a discrete-time system, consider a simptiehfor a predator—
prey system. The predator—prey problem refers to an ecalbgystem in which
we have two species, one of which feeds on the other. This tiggstem has
been studied for decades and is known to exhibit interesiymgmics. Figur®.6
shows a historical record taken over 90 years for a populatfdynxes versus a
population of hares\lac37. As can been seen from the graph, the annual records
of the populations of each species are oscillatory in nature

A simple model for this situation can be constructed usingsardte-time
model by keeping track of the rate of births and deaths of epelties. Letting
H represent the population of hares dndepresent the population of lynxes, we
can describe the state in terms of the populations at despexiods of time. Let-
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Figure 2.7: Discrete-time simulation of the predator—prey modL®. Using the param-
etersa = ¢ = 0.014, b, (u) = 0.6 andd = 0.7 in equation 2.13 with daily updates, the
period and magnitude of the lynx and hare population cycles approxinmatelh the data
in Figure2.6.

ting k be the discrete-time index (e.g., the day or month numbex);an write
H[k+1] = H[K] + by (u)H[K] — aL[k]H[k],
Lk+1] = L[K] + cL[kH[K] —dsL[K],

whereby (u) is the hare birth rate per unit period and as a function of tual f
supplyu, ds is the lynx mortality rate and andc are the interaction coefficients.
The interaction ternaL[k]H [k] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey megisahence given
by the product of the population sizes. The interaction tekfik]H [k] in the lynx
dynamics has a similar form and represents the rate of grofittie lynx popula-
tion. This model makes many simplifying assumptions—sudh@$act that hares
decrease in number only through predation by lynxes—buténds sufficient to
answer basic questions about the system.

To illustrate the use of this system, we can compute the nuofdgnxes and
hares at each time point from some initial population. Thigoise by starting with
X[0] = (Ho,Lo) and then using equatio2.l3 to compute the populations in the
following period. By iterating this procedure, we can gexteithe population over
time. The output of this process for a specific choice of pararaetnd initial con-
ditions is shown in Figur@.7. While the details of the simulation are different
from the experimental data (to be expected given the sitityla our assump-
tions), we see qualitatively similar trends and hence weusanthe model to help
explore the dynamics of the system. O

(2.13)

Example 2.4 E-mail server

The IBM Lotus server is an collaborative software system tHatiaisters users’
e-mail, documents and notes. Client machines interact evithusers to provide
access to data and applications. The server also handlesaditih@istrative tasks.
In the early development of the system it was observed teapénformance was
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poor when the central processing unit (CPU) was overloadeause of too many
service requests, and mechanisms to control the load weireftine introduced.

The interaction between the client and the server is in tha fidiremote proce-
dure calls (RPCs). The server maintains a log of statisticooifpteted requests.
The total number of requests being served, caRe& (RPCs in server), is also
measured. The load on the server is controlled by a paranedted MaxUser s,
which sets the total number of client connections to theeseivhis parameter is
controlled by the system administrator. The server can bardegl as a dynami-
cal system withvixUser s as the input an®l S as the output. The relationship
between input and output was first investigated by explottiegsteady-state per-
formance and was found to be linear.

In [HDPTO04 a dynamic model in the form of a first-order difference equmati
is used to capture the dynamic behavior of this system. Usistgm identification
techniques, they construct a model of the form

ylk+1] = ay[k] + bulk],

whereu = MaxUser s — MaxUser s andy = RI S— RI'S. The parametera =
0.43 andb = 0.47 are parameters that describe the dynamics of the systemdar
the operating point, anifaxUser s = 165 andRI S = 135 represent the nomi-
nal operating point of the system. The number of requests warmged over a
sampling period of 60 s. O

Simulation and Analysis

State space models can be used to answer many questions. Deenudst com-
mon, as we have seen in the previous examples, involvesctiregthe evolution
of the system state from a given initial condition. While $omple models this can
be done in closed form, more often it is accomplished thracmhputer simula-
tion. One can also use state space models to analyze thdl dedravior of the
system without making direct use of simulation.

Consider again the damped spring—mass system from Se&cfidout this time
with an external force applied, as shown in Fig2:8 We wish to predict the
motion of the system for a periodic forcing function, withigem initial condition,
and determine the amplitude, frequency and decay rate oéthdting motion.

We choose to model the system with a linear ordinary diffeaérequation.
Using Hooke’s law to model the spring and assuming that thepga exerts a
force that is proportional to the velocity of the system, vagédn

md -+ cq+ kg = u, (2.14)

wherem is the massgq is the displacement of the massjs the coefficient of
viscous friction k is the spring constant andis the applied force. In state space
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Figure 2.8: A driven spring—mass system with damping. Here we use a linear damping
element with coefficient of viscous frictiom The mass is driven with a sinusoidal force of
amplitudeA.

form, usingx = (q,q) as the state and choosigg- g as the output, we have

ax sz y=X
qJr Cc (VI ) = A1.
dt | 2% — —xi+
m m m
We see that this is a linear second-order differential egqoatith one inputu and

one outputy.

We now wish to compute the response of the system to an inpléddrmu =
Asinawt. Although it is possible to solve for the response analiiticave instead
make use of a computational approach that does not rely ogpibeific form of
this system. Consider the general state space system

dx
Fri f(x,u).

Given the state at timet, we can approximate the value of the state at a short
time h > 0 later by assuming that the rate of changé ©f u) is constant over the
intervalt tot + h. This gives

X(t4h) =x(t) +hf(x(t),u(t)). (2.15)

Iterating this equation, we can thus solve fas a function of time. This approxi-
mation is known as Euler integration and is in fact a diffeesaguation if we leh
represent the time increment and wxf&] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methaasEuler
integration, they still have some of the same basic trafie-of

Returning to our specific example, Figlze® shows the results of computing
X(t) using equationq.15), along with the analytical computation. We see that as
h gets smaller, the computed solution converges to the exhaican. The form
of the solution is also worth noticing: after an initial tei@nt, the system settles
into a periodic motion. The portion of the response after thedient is called the
steady-state responsethe input.



2.2. STATE SPACE MODELS 45

2
— 1r **K*: +/+/+\+\ SR 7
E %0 | 5%, OéOSa%*
o p
s 0 s
g U522 %gscgg e
&_17*3’h20.5 w.{*/ \ /1( 4 Y i
N *
---h=0.1 v
— analytical
_2 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50
Timet [sec]

Figure 2.9: Simulation of the forced spring—mass system with different simulation time
constants. The solid line represents the analytical solution. The dasheddpresent the
approximate solution via the method of Euler integration, using decreasipgizes.

In addition to generating simulations, models can also leel trs answer other
types of questions. Two that are central to the methods itbestcin this text con-
cern the stability of an equilibrium point and the inputfowttfrequency response.
We illustrate these two computations through the exampmsiaband return to the
general computations in later chapters.

Returning to the damped spring—mass system, the equafiomstion with no

input forcing are given by
X2
dx_ [ c ok ] , (2.16)

dt | —Sxo——xg
m m

wherex; is the position of the mass (relative to the rest positiorg ®nis its
velocity. We wish to show that if the initial state of the srstis away from the
rest position, the system will return to the rest positiorrgually (we will later
define this situation to mean that the rest positioasgmptotically stable While
we could heuristically show this by simulating many, mangiah conditions, we
seek instead to prove that this is true &myinitial condition.

To do so, we construct a functidh: R" — R that maps the system state to a
positive real number. For mechanical systems, a convediwite is the energy of
the system,

V(X) = %kx%%—%mx%. (2.17)
If we look at the time derivative of the energy function, we seat

dv c k
— = kxgXg + mxexe = K MXo(——Xp — —X1) = —CX3
g = ok +moeke = kxe + %( X mxl) 5,

which is always either negative or zero. Hen¢g(t)) is never increasing and,
using a bit of analysis that we will see formally later, theiindual states must
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remain bounded.

If we wish to show that the states eventually return to thgioyiwe must use
a slightly more detailed analysis. Intuitively, we can @ass follows: suppose
that for some period of time/ (x(t)) stops decreasing. Then it must be true that
V(x(t)) = 0, which in turn implies thaty(t) = O for that same period. In that case,
X2(t) = 0, and we can substitute into the second line of equafdlty to obtain

0=x Cx kx X
=Xe= o X X=X

Thus we must have thai also equals zero, and so the only time téx(t)) can
stop decreasing is if the state is at the origin (and hensestrgtem is at its rest
position). Since we know thaf(x(t)) is never increasing (because< 0), we
therefore conclude that the origin is stable @oryinitial condition).

This type of analysis, called Lyapunov stability analyss;onsidered in detalil
in Chapted. It shows some of the power of using models for the analyssystem
properties.

Another type of analysis that we can perform with models isdmpute the
output of a system to a sinusoidal input. We again considesfhing—mass sys-
tem, but this time keeping the input and leaving the systeits iariginal form:

mdg -+ cq+kg=u. (2.18)
We wish to understand how the system responds to a sinusojmdlof the form
u(t) = Asinwt.

We will see how to do this analytically in Chapt®rbut for now we make use of
simulations to compute the answer.

We first begin with the observation thatjt) is the solution to equatior2(18
with inputu(t), then applying an inputit) will give a solution 2j(t) (this is easily
verified by substitution). Hence it suffices to look at an inpithwnit magnitude,
A= 1. A second observation, which we will prove in Chagers that the long-
term response of the system to a sinusoidal input is itseilfigssid at the same
frequency, and so the output has the form

q(t) = g(w)sin(wt + ¢ (w)),
whereg(w) is called thegain of the system an@ (w) is called thephase(or phase
offset).
To compute the frequency response numerically, we can atmtie system
at a set of frequencies,...,wy and plot the gain and phase at each of these
frequencies. An example of this type of computation is showFigure2.10



2.3. MODELING METHODOLOGY 47

10

)

IS

(8]

%]

D

i=)

c

‘©

O]
4 ‘ ‘ ‘ ‘ 107 — .
0 10 20 30 40 50 10 10 10

Time [s] Frequency [rad/sec] (log scale)

Figure 2.10: A frequency response (gain only) computed by measuring the respain
individual sinusoids. The figure on the left shows the response ofystera as a function
of time to a number of different unit magnitude inputs (at differentdestries). The figure
on the right shows this same data in a different way, with the magnitude oktiponse
plotted as a function of the input frequency. The filled circles corredporthe particular
frequencies shown in the time responses.

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to haveeddiht representations
of the system that capture the essential features and haleviant details. In all
branches of science and engineering it is common practinosdsome graphical
description of systems, callethematic diagramslhey can range from stylistic
pictures to drastically simplified standard symbols. Thesaupes make it possi-
ble to get an overall view of the system and to identify thevitial components.
Examples of such diagrams are shown in FigRr&l Schematic diagrams are
useful because they give an overall picture of a system, isigogiifferent subpro-
cesses and their interconnection and indicating variahkscan be manipulated
and signals that can be measured.

Block Diagrams

A special graphical representation calletlack diagramhas been developed in
control engineering. The purpose of a block diagram is to exsigk the informa-
tion flow and to hide details of the system. In a block diagraiffiergnt process
elements are shown as boxes, and each box has inputs depditezblwith arrows
pointing toward the box and outputs denoted by lines witbvasrgoing out of the
box. The inputs denote the variables that influence a procedsha outputs de-
note the signals that we are interested in or signals thatiniel other subsystems.
Block diagrams can also be organized in hierarchies, wineligidual blocks may
themselves contain more detailed block diagrams.

Figure2.12shows some of the notation that we use for block diagramsa&gn
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Figure 2.11: Schematic diagrams for different disciplines. Each diagram is used toéiles
the dynamics of a feedback system: (a) electrical schematics for armystem Kun93,

(b) a biological circuit diagram for a synthetic clock circlt§MNO3], (c) a process dia-
gram for a distillation columngEMO04 and (d) a Petri net description of a communication
protocol.

are represented as lines, with arrows to indicate inputsoaityguts. The first di-
agram is the representation for a summation of two signatsinfaut/output re-
sponse is represented as a rectangle with the system nam&floematical de-
scription) in the block. Two special cases are a proportigain, which scales the
input by a multiplicative factor, and an integrator, whialtputs the integral of the
input signal.

Figure2.13illustrates the use of a block diagram, in this case for nmodehe
flight response of a fly. The flight dynamics of an insect are inbigdntricate,
involving careful coordination of the muscles within the fiymhaintain stable flight
in response to external stimuli. One known characterigtites is their ability to
fly upwind by making use of the optical flow in their compound eyes feedback
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Figure 2.12: Standard block diagram elements. The arrows indicate the the inputs &nd ou
puts of each element, with the mathematical operation corresponding tttked labeled

at the output. The system block (f) represents the full input/output nsgpof a dynamical
system.

mechanism. Roughly speaking, the fly controls its orientasio that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose #ralbdynamics
of the system into a series of interconnected subsystentddoky. Referring to
Figure2.13 we can model the insect navigation system through an ioeection
of five blocks. The sensory motor system (a) takes the infaoméitom the visual
system (e) and generates muscle commands that attempetatsdly so that the
point of contraction is centered. These muscle command®akeded into forces
through the flapping of the wings (b) and the resulting aeradyin forces that are
produced. The forces from the wings are combined with the dretipe fly (d) to
produce a net force on the body of the fly. The wind velocity entlerough the
drag aerodynamics. Finally, the body dynamics (c) descrivethe fly translates
and rotates as a function of the net forces that are appligdTioe insect position,
speed and orientation are fed back to the drag aerodynamitsision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicatédysiem. For
example, the visual system of a fruit fly consists of two coggid compound
eyes (with about 700 elements per eye), and the sensory sydtem has about
200,000 neurons that are used to process information. A oetegled block dia-
gram of the insect flight control system would show the intanstions between
these elements, but here we have used one block to represerthé& motion of
the fly affects the output of the visual system, and a secorukorepresent how
the visual field is processed by the fly’s brain to generate reusminmands. The
choice of the level of detail of the blocks and what elememtseparate into differ-
ent blocks often depends on experience and the questidraihaants to answer
using the model. One of the powerful features of block diagg#s their ability to
hide information about the details of a system that may natdexled to gain an
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Figure 2.13: A block diagram representation of the flight control system for an irfggng
against the wind. The mechanical portion of the model consists of thelyaigt dynamics
of the fly, the drag due to flying through the air and the forces genergtéuehwings. The
motion of the body causes the visual environment of the fly to changethainformation
is then used to control the motion of the wings (through the sensory mattamsy, closing
the loop.

understanding of the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and ac$,dttds also possible
to obtain models of system dynamics from experiments on tbegss. The mod-
els are restricted to input/output models since only thepsats are accessible to
experiments, but modeling from experiments can also be gwdhlwith modeling
from physics through the use of feedback and interconnectio

A simple way to determine a system’s dynamics is to obsemedbponse to a
step change in the control signal. Such an experiment begisstting the control
signal to a constant value; then when steady state is estialdlithe control signal
is changed quickly to a new level and the output is observed. &tperiment
gives the step response of the system, and the shape of gmsesgives useful
information about the dynamics. Itimmediately gives anidation of the response
time, and it tells if the system is oscillatory or if the regge is monotone.

Example 2.5 Spring—mass system
Consider the spring—mass system from Sec®dnwhose dynamics are given by
mg+ cq+kg=u. (2.19)

We wish to determine the constamts c andk by measuring the response of the
system to a step input of magnituBig
We will show in Chapte6 that wherc? < 4km, the step response for this system
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Figure 2.14: Step response for a spring—mass system. The magnitude of the stéfsinpu
Fo = 20 N. The period of oscillatiofT is determined by looking at the time between two
subsequent local maxima in the response. The period combined wittettysstate value
g() and the relative decrease between local maxima can be used to estinpeeatheters

in a model of the system.

from the rest configuration is given by

a(t) = ¢ (1— LK o s +¢>> ,

v 4km—c? o —tant <\/4km— c2>
) - C .

2m

From the form of the solution, we see that the form of the respas determined
by the parameters of the system. Hence, by measuring céettures of the step
response we can determine the parameter values.

Figure2.14shows the response of the system to a step of magrifgee20 N,
along with some measurements. We start by noting that tlaelgtstate position
of the mass (after the oscillations die down) is a functiothefspring constark

q(e0) = %, (2.20)
whereFy is the magnitude of the applied forcé (= 1 for a unit step input). The
parameter Ak is called thegain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2 V4km—c?
= (2.21)

Finally, the rate of decay of the oscillations is given by tlpanential factor in
the solution. Measuring the amount of decay between twogeek have

Fo>:£

og(afts) ~ 2) ~log(a(ts) - ) = (12~ ta) (2.22)
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Using this set of three equations, we can solve for the parsiand determine
that for the step response in Figl2el4we havem ~ 250 kg,c ~ 60 N s/m and
k=40 N/m. |

Modeling from experiments can also be done using many ofgealks. Sinu-
soidal signals are commonly used (particularly for systewite fast dynamics)
and precise measurements can be obtained by exploitinglation techniques.
An indication of nonlinearities can be obtained by repeptrperiments with in-
put signals having different amplitudes.

Normalization and Scaling

Having obtained a model, it is often useful to scale the Wem by introducing
dimension-free variables. Such a procedure can often dintpk equations for a
system by reducing the number of parameters and reveabgtiieg properties of
the model. Scaling can also improve the numerical conditgmif the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose unite&eh independent
variable and introduce new variables by dividing the vddaliy the chosen nor-
malization unit. We illustrate the procedure with two exdesp

Example 2.6 Spring—mass system
Consider again the spring—mass system introduced eatkgiecting the damp-
ing, the system is described by
mg+kg=u.

The model has two parametarsandk. To normalize the model we introduce
dimension-free variables = q/I and T = wyt, wherean = y/k/m andl is the
chosen length scale. We scale forcerbl? and introducer = u/(mlag). The
scaled equation then becomes

d>x  d?q/! 1

2 = dan? ~ migg| ATY= XY
which is the normalized undamped spring—mass system. éttat the normal-
ized model has no parameters, while the original model hadpsrametersn
and k. Introducing the scaled, dimension-free state variakles x = g/l and
2, =dx/dt = g/(lay), the model can be written as

a2 - (%o (2)- ()

This simple linear equation describes the dynamics of anmgpmass system,
independent of the particular parameters, and hence gs/assight into the fun-
damental dynamics of this oscillatory system. To recoverghysical frequency
of oscillation or its magnitude, we must invert the scaling lvave applied. [
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Example 2.7 Balance system
Consider the balance system described in Se@idnNeglecting damping by
puttingc = 0 andy = 0 in equation 2.9), the model can be written as

d2p d20 _do.,
(M+m)w—mlcosew+mlsm9(a) =F,
d2p ,.d20 .
—m|COS@W+(J—|—m| )W—mglsme =0.

Let an = \/mgl/(J+ ml?), choose the length scalelaet the time scale be/tu,
choose the force scale &9 + m)l w? and introduce the scaled variabtes- wyt,
x=p/l andu= F/((M+m)lwp). The equations then become

2x d?6 . rdB\2 d>x d’6

a2 CYCOSGP + orsm6<a) =u, -p COS@W + az sin@ =0,

wherea = m/(M +m) andf = ml?/(J+ ml?). Notice that the original model has
five parameterm, M, J, | andg but the normalized model has only two parameters
a andB. If M > mandml? > J, we geta ~ 0 andf ~ 1 and the model can be
approximated by

d?x d’e .

ﬁfu, P—smefucose.
The model can be interpreted as a mass combined with an idveeiedulum
driven by the same input. O

Model Uncertainty

Reducing uncertainty is one of the main reasons for usirgjg@ek, and it is there-
fore important to characterize uncertainty. When makingsneements, there is a
good tradition to assign both a nominal value and a measusea#rtainty. It is
useful to apply the same principle to modeling, but unfaoatety it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be cteniaed by a func-
tion, uncertainty can be expressed by an uncertainty bankuasated in Fig-
ure 2.15a At low signal levels there are uncertainties due to senssolution,
friction and quantization. Some models for queuing systemsells are based
on averages that exhibit significant variations for smallydations. At large sig-
nal levels there are saturations or even system failuressiginal ranges where a
model is reasonably accurate vary dramatically betweehcapipns, but it is rare
to find models that are accurate for signal ranges larger té&n 1

Characterization of the uncertainty of a dynamic model isimmore difficult.
We can try to capture uncertainties by assigning uncerégind parameters of the
model, but this is often not sufficient. There may be errors dyghenomena that
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relatiorestdpthe
dashed lines indicate the range of possible uncertainty. The uncertairip [EPD59 in

(b) is one way to capture uncertainty in dynamical systems emphasizirgiadel is valid

only in some amplitude and frequency ranges. In (c) a model is repies by a nominal
modelM and another model representing the uncertainty analogous to the representation
of parameter uncertainty.

have been neglected, e.g., small time delays. In contralltmeate test is how well
a control system based on the model performs, and time detaybe important.
There is also a frequency aspect. There are slow phenomefaaswaging, that
can cause changes or drift in the systems. There are alsdremgirency effects: a
resistor will no longer be a pure resistance at very highuesgies, and a beam
has stiffness and will exhibit additional dynamics whenjsabto high-frequency
excitation. Theuncertainty lemofGPD59 shown in Figure2.15bis one way to
conceptualize the uncertainty of a system. It illustrabed & model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing unaietty in Chapted 2
using figures such as Figu2el5c¢c These tools make use of the concept of a trans-
fer function, which describes the frequency response ohpntioutput system.
For now, we simply note that one should always be carefuldogrize the limits
of a model and not to make use of models outside their rangppicability. For
example, one can describe the uncertainty lemon and thek thenake sure that
signals remain in this region. In early analog computingysiesm was simulated
using operational amplifiers, and it was customary to givenaawhen certain
signal levels were exceeded. Similar features can be indlundgigital simulation.

2.4 Modeling Examples

In this section we introduce additional examples that ftate some of the differ-
ent types of systems for which one can develop differentjpbéion and difference
equation models. These examples are specifically chosen framga of differ-
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ent fields to highlight the broad variety of systems to whiakdfgack and control
concepts can be applied. A more detailed set of applicatlmatsserve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation aredfack to control the
movement of a mechanical system. Motion control systemga&om nanoposi-
tioning systems (atomic force microscopes, adaptive sptio control systems
for the read/write heads in a disk drive of a CD player, to nfiacturing systems
(transfer machines and industrial robots), to automotomrol systems (antilock
brakes, suspension control, traction control), to air guats flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model

A common problem in motion control is to control the trajegtof a vehicle

through an actuator that causes a change in the orientéatsteering wheel on an
automobile and the front wheel of a bicycle are two examdassimilar dynam-
ics occur in the steering of ships or control of the pitch dyies of an aircraft.

In many cases, we can understand the basic behavior of theteens through the
use of a simple model that captures the basic kinematicseafytbtem.

Consider a vehicle with two wheels as shown in Fig2rEa For the purpose
of steering we are interested in a model that describes hewelocity of the
vehicle depends on the steering andlelo be specific, consider the velocinat
the center of mass, a distarecéom the rear wheel, and letbe the wheel base, as
shown in Figure2.16 Let x andy be the coordinates of the center of ma$she
heading angle and the angle between the velocity vectoand the centerline of
the vehicle. Since = rytand anda = ratana, it follows that taro = (a/b)tand
and we get the following relation betweeanand the steering angte

a(d) = arctar( atané) :

b
Assume that the wheels are rolling without slip and that tblecity of the rear
wheel isvp. The vehicle speed at its center of mass is vp/ cosa, and we find
that the motion of this point is given by

(2.23)

31(: vcos(a + 0) :vomi(gsj;e),

. (a1 6) (2.24)
dy . _sin(a +

at =vsin(a +0) =Vo oeg

To see how the angl@ is influenced by the steering angle, we observe from Fig-
ure 2.16that the vehicle rotates with the angular veloaigy'r, around the point
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead viewelfiale
with four wheels. The wheel basebsand the center of mass at a distaaderward of the
rear wheels. By approximating the motion of the front and rear pairshefelg by a single
front wheel and a single rear wheel, we obtain an abstraction calldzidyee modelshown
on the right. The steering angle dsand the velocity at the center of mass has the angle
relative the length axis of the vehicle. The position of the vehicle is givetxby and the
orientation (heading) bg.

O. Hence 48 vo Vo
it 1. Db tand. (2.25)

Equations2.23—(2.25 can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the roadhatdhe two front
wheels can be approximated by a single wheel at the centdreofdar. The as-
sumption of no slip can be relaxed by adding an extra statablar giving a more
realistic model. Such a model also describes the steeringndigs of ships as well
as the pitch dynamics of aircraft and missiles. It is alsosfiids to choose coor-
dinates so that the reference point is at the rear wheelse§monding to setting
a = 0), a model often referred to as tBeibins car[Dub57.

Figure2.16 represents the situation when the vehicle moves forwardhasd
front-wheel steering. The case when the vehicle reversdstésned by changing
the sign of the velocity, which is equivalent to a vehicletwi¢ar-wheel steering.

|

Example 2.9 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such asHbgier “jump jet”
shown Figure2.17a The Harrier is capable of vertical takeoff by redirecting it
thrust downward and through the use of smaller maneuvehningters located on
its wings. A simplified model of the Harrier is shown in Fig@dd7h where we
focus on the motion of the vehicle in a vertical plane throtige wings of the
aircraft. We resolve the forces generated by the main dowahtauster and the
maneuvering thrusters as a pair of foréggndF, acting at a distancebelow the
aircraft (determined by the geometry of the thrusters).
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Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) reslits its
engine thrust downward so that it can “hover” above the ground.eSminfrom the engine
is diverted to the wing tips to be used for maneuvering. As shown in (bae¢héhrust on
the aircraft can be decomposed into a horizontal féicand a vertical forcé, acting at a
distance from the center of mass.

Let (x,y,0) denote the position and orientation of the center of mass®f t
aircraft. Letm be the mass of the vehiclé,the moment of inertiag the gravita-
tional constant andthe damping coefficient. Then the equations of motion for the
vehicle are given by

mX = F1 cosf — F,sinf — cx,
my = F1sin@ + F,cosé —mg— cy, (2.26)
JO =rFy.

It is convenient to redefine the inputs so that the origin is @uilé®rium point

of the system with zero input. Lettinggy = F; andu, = F, — mg, the equations

become . . . .
mMX = —mgsin® — cX+ U1 cos6 — U, Sind,

my = mg(cosB — 1) — cy+ u; Sin6 + U coso, (2.27)
JO =Trujp.
These equations describe the motion of the vehicle as a $eeeftoupled second-
order differential equations. O

Information Systems

Information systems range from communication systemsthkenternet to soft-
ware systems that manipulate data or manage enterprisesgdarces. Feedback
is presentin all these systems, and designing strategiesfting, flow control and
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive ai ratel are
stored in a queue. Messages are processed and removed froretiesatjuate:. The average
size of the queue is given byc R.

buffer management is a typical problem. Many results in quetheory emerged
from design of telecommunication systems and later fronelbgment of the In-
ternet and computer communication systeBG87, Kle75, Sch87. Management
of queues to avoid congestion is a central problem and wethghefore start by
discussing the modeling of queuing systems.

Example 2.10 Queuing systems

A schematic picture of a simple queue is shown in Figaud8 Requests arrive
and are then queued and processed. There can be large variatiarrival rates
and service rates, and the queue length builds up when tivelasate is larger
than the service rate. When the queue becomes too larg&eervenied using
an admission control policy.

The system can be modeled in many different ways. One way i®teheach
incoming request, which leads to an event-based model wihestate is an integer
that represents the queue length. The queue changes wheuestragives or a
request is serviced. The statistics of arrival and serviairgtypically modeled as
random processes. In many cases it is possible to determaitigtiss of quantities
like queue length and service time, but the computationdeayuite complicated.

A significant simplification can be obtained by usindglav model Instead
of keeping track of each request we instead view service aqdests as flows,
similar to what is done when replacing molecules by a contimwhen analyzing
fluids. Assuming that the average queue lengtha continuous variable and that
arrivals and services are flows with ratesand u, the system can be modeled by
the first-order differential equation

((ji(:)\—u:/\—umaxf(x), x>0, (2.28)

where tUmax is the maximum service rate arf@x) is a number between 0 and 1
that describes the effective service rate as a functioneofjtfeue length.

It is natural to assume that the effective service rate dépem the queue
length because larger queues require more resources. ddyssgtate we have
f(X) = A /Umax, @and we assume that the queue length goes to zero WhgRax
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Figure 2.19: Queuing dynamics. (a) The steady-state queue length as a funcfioiugfy.
(b) The behavior of the queue length when there is a temporary overidad system. The
solid line shows a realization of an event-based simulation, and the dasheshéws the
behavior of the flow model.29).

goes to zero and that it goes to infinity whan timax goes to 1. This implies
that f(0) = 0 and thatf () = 1. In addition, if we assume that the effective ser-
vice rate deteriorates monotonically with queue lengtantthe functionf (x) is
monotone and concave. A simple function that satisfies thie baguirements is
f(x) = x/(14x), which gives the model

dx X

at A— Umaxm-
This model was proposed by Agnewdn7§. It can be shown that if arrival and
service processes are Poisson processes, the averageangthéd given by equa-
tion (2.29 and that equatior2(29 is a good approximation even for short queue
lengths; see Tipped[59Q.

To explore the properties of the mod2l29 we will first investigate the equi-
librium value of the queue length when the arrival ratés constant. Setting the
derivativedx/dt to zero in equation.29 and solving forx, we find that the queue
lengthx approaches the steady-state value

A
Xe Hmax— A
Figure 2.19ashows the steady-state queue length as a functioh/pfnax, the
effective service rate excess. Notice that the queue lengteases rapidly as
approachegimax. To have a queue length less than 20 requirgsmax < 0.95. The
average time to service a requesitds= (Xx+ 1)/ Umax and it increases dramatically
asA approachegimax.

Figure2.19billustrates the behavior of the server in a typical overlsiaghtion.
The maximum service rate [gmax = 1, and the arrival rate starts &t= 0.5. The
arrival rate is increased th = 4 at time 20, and it returns td = 0.5 at time 25.
The figure shows that the queue builds up quickly and clearsskewly. Since the
response time is proportional to queue length, it meanshieaguality of service

(2.29)

(2.30)
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Figure 2.20: Illustration of feedback in the virtual memory system of the IBM/370. (a¢ T
effect of feedback on execution times in a simulation, followiBggg. Results with no
feedback are shown with, and results with feedback with Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three statedbtamed based
on process measurements.

is poor for a long period after an overload. This behavior lfedatherush-hour
effectand has been observed in web servers and many other questegisysuch
as automobile traffic.

The dashed line in Figur2.19bshows the behavior of the flow model, which
describes the average queue length. The simple model cajitehavior qualita-
tively, but there are variations from sample to sample whendueue length is
short. O

Many complex systems use discrete control actions. Sucaragstan be mod-
eled by characterizing the situations that correspond ¢b eantrol action, as il-
lustrated in the following example.

Example 2.11 Virtual memory paging control

An early example of the use of feedback in computer systenssapplied in the
operating system OS/VS for the IBM 37BG68 Cro75. The system used virtual
memory, which allows programs to address more memory thainyisically avail-
able as fast memory. Data in current fast memory (randonsacoemory, RAM)
is accessed directly, but data that resides in slower medasl) is automatically
loaded into fast memory. The system is implemented in suchyahed it appears
to the programmer as a single large section of memory. Thesysérformed very
well in many situations, but very long execution times wamneaintered in over-
load situations, as shown by the open circles in Figu&®a The difficulty was
resolved with a simple discrete feedback system. The loaldeoéntral process-
ing unit (CPU) was measured together with the number of pagpswetween
fast memory and slow memory. The operating region was clagsafiebeing in
one of three states: normal, underload or overload. The n@ta is character-
ized by high CPU activity, the underload state is charaadriz/ low CPU activity
and few page replacements, the overload state has modetate CPU load but
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Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor xetvith
five nodes. In this network, node 1 communicates with node 2 and nodenthgnicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the converg&rtbe consensus
protocol @.31) to the average value of the initial conditions.

many page replacements; see FigRr20h The boundaries between the regions
and the time for measuring the load were determined fromlaitions using typ-
ical loads. The control strategy was to do nothing in the nbtosd condition,

to exclude a process from memory in the overload conditiahtarallow a new
process or a previously excluded process in the underloaditéan. The crosses
in Figure2.20ashow the effectiveness of the simple feedback system inlateul
loads. Similar principles are used in many other situatieng.,, in fast, on-chip
cache memory. O

Example 2.12 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications whergvavd to collect
and aggregate information over a region of space using phellsiensors that are
connected together via a communications network. Exampt#sde monitoring
environmental conditions in a geographical area (or inaiailding), monitoring
the movement of animals or vehicles and monitoring the nesoloading across
a group of computers. In many sensor networks the compuotdtiesources are
distributed along with the sensors, and it can be importarthie set of distributed
agents to reach a consensus about a certain property, stiehaserage tempera-
ture in a region or the average computational load amongaf semputers.

We model the connectivity of the sensor network using a gragth nodes
corresponding to the sensors and edges corresponding ¢xittence of a direct
communications link between two nodes. We use the notatipto represent the
set of neighbors of a node For example, in the network shown in Figilze21a
N2 ={1,3,4,5} and.43 = {2,4}.

To solve the consensus problem xgebe the state of thigh sensor, correspond-
ing to that sensor’s estimate of the average value that wieyéing to compute. We
initialize the state to the value of the quantity measuredhleyindividual sensor.



2.4. MODELING EXAMPLES 62

The consensus protocol (algorithm) can now be realized asahuipdate law

Xilk+ 1 =x[kl+y Sy (XK —xk]). (2.31)
jeM
This protocol attempts to compute the average by updatintptiat state of each
agent based on the value of its neighbors. The combined dgsashiall agents
can be written in the form

X[k+ 1] = x[k] — y(D — A)x[K], (2.32)

whereA is the adjacency matrix and is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The congi@escribes the
rate at which the estimate of the average is updated basedfamation from
neighboring nodes. The matrix.= D — A is called theLaplacianof the graph.
The equilibrium points of equatior2(32 are the set of states such tixalk +
1] = x¢[K]. It can be shown that. = (a,a,...,a) is an equilibrium state for the
system, corresponding to each sensor having an identitalags a for the av-
erage. Furthermore, we can show thais indeed the average value of the initial
states. Since there can be cycles in the graph, it is poshéti¢hie state of the sys-
tem could enter into an infinite loop and never converge to dwreld consensus
state. A formal analysis requires tools that will be introéld later in the text, but
it can be shown that for any connected graph we can always fyrgliah that the
states of the individual agents converge to the averagemAlation demonstrating
this property is shown in Figur2.21h O

Biological Systems

Biological systems provide perhaps the richest sourceanftiack and control ex-
amples. The basic problem of homeostasis, in which a quanidly as temperature
or blood sugar level is regulated to a fixed value, is but oné@fmany types of

complex feedback interactions that can occur in molecukrhimes, cells, organ-
isms and ecosystems.

Example 2.13 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNAgnherated from
a segment of DNA. The promoter region of a gene allows traptson to be con-
trolled by the presence of other proteins, which bind to thermwter region and
either repress or activate RNA polymerase, the enzyme tioaiupes an mRNA
transcript from DNA. The mRNA is then translated into a proeteccording to its
nucleotide sequence. This process is illustrated in FigL22

A simple model of the transcriptional regulation processhimugh the use
of a Hill function [dJ02 Mur04]. Consider the regulation of a protein A with a
concentration given by, and a corresponding mRNA concentratiog. Let B
be a second protein with concentratipgmthat represses the production of protein
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Figure 2.22:Biological circuitry. The cell on the left is a bovine pulmonary cell, stained s
that the nucleus, actin and chromatin are visible. The figure on the rigbé gin overview
of the process by which proteins in the cell are made. RNA is transcribed DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by ameltg called
aribosome.

A through transcriptional regulation. The resulting dynesrof p, andm, can be
written as

dmy Oab d
T 1t kabpgab + 0a0 — YalMa;, dili:a = BaMa — GaPa, (2.33)
where ay, + 050 IS the unregulated transcription ratg, represents the rate of
degradation of MRNA@gap, Kap and ng, are parameters that describe how B re-
presses AB; represents the rate of production of the protein from itsespond-
ing MRNA andd, represents the rate of degradation of the protein A. The pa-
rametera, describes the “leakiness” of the promoter, angd is called the Hill
coefficient and relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the ptamuof another
protein rather than repressing it. In this case, the egusaitiave the form

dme _ GakabPp™
dt 1+Kap pgab

where the variables are the same as described previoudly.thit in the case of
the activator, ifpy is zero, then the production ratedsy (versusag,+ aao for the
repressor). Ay gets large, the first term in the expression rigy approaches 1
and the transcription rate becomesg, + a5o (versusago for the repressor). Thus
we see that the activator and repressor act in oppositeofagtum each other.

As an example of how these models can be used, we consideraithel of a
“repressilator,” originally due to Elowitz and LeibleELOQ]. The repressilator is
a synthetic circuit in which three proteins each repressteman a cycle. This is
shown schematically in Figur223a where the three proteins are TetRgl and
Lacl. The basic idea of the repressilator is that if TetR is@néshen it represses
the production of cl. If A cl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed, thencl

d
+ 00 — YaMa, dili:a = BaMa — &aPa, (2.34)
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Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagfahe o
repressilator, showing the layout of the genes in the plasmid that holds¢hé as well as
the circuit diagram (center). (b) A simulation of a simple model for theaggilator, showing
the oscillation of the individual protein concentrations. (Figure courtesklbwitz.)

is no longer repressed, and so on. If the dynamics of theitaoeidesigned prop-
erly, the resulting protein concentrations will oscillate

We can model this system using three copies of equafld38( with A and
B replaced by the appropriate combination of TetR, cl and Lakeé state of the
system is then given by= (Mretr, Pretr, Mel; Pels MLacl, PLact) - Figure2.23bshows
the traces of the three protein concentrations for parasete 2, a = 0.5, k =
6.25x 104 ag=5x10"% y=58x1073, 3 =0.12 andd = 1.2 x 103 with
initial conditionsx(0) = (1,0,0,200,0,0) (following [ELOQ]). O

Example 2.14 Wave propagation in neuronal networks

The dynamics of the membrane potential in a cell are a fund@hemechanism

in understanding signaling in cells, particularly in news@nd muscle cells. The
Hodgkin—Huxley equations give a simple model for studyimgpagation waves
in networks of neurons. The model for a single neuron has titme fo

av
(;a = —Ina— Ik — lieak+ linput,

whereV is the membrane potentidl,is the capacitancéy, andlk are the current
caused by the transport of sodium and potassium across ltheerabrane Jjeak
is a leakage current arlghyt is the external stimulation of the cell. Each current

obeys Ohm’s law, i.e.,
I = g<V - E)7
whereg is the conductance aritlis the equilibrium voltage. The equilibrium volt-
age is given by Nernst's law,
_RT

Ce
E=—log—
nF gci’
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whereR is Boltzmann’s constani] is the absolute temperatur,is Faraday’s
constantn is the charge (or valence) of the ion andndce are the ion concentra-
tions inside the cell and in the external fluid. At 20 we haveRT/F =20 mV.

The Hodgkin—Huxley model was originally developed as a meanwedict
the quantitative behavior of the squid giant axéfHbB2]. Hodgkin and Huxley
shared the 1963 Nobel Prize in Physiology (along with J. C. Bydte analysis
of the electrical and chemical events in nerve cell disabsrghe voltage clamp
described in Sectioh.3was a key element in Hodgkin and Huxley’s experiments.

U

2.5 Further Reading

Modeling is ubiquitous in engineering and science and hasgliistory in applied
mathematics. For example, the Fourier series was intratiogd-ourier when he
modeled heat conduction in solidBqu07. Models of dynamics have been de-
veloped in many different fields, including mechaniésr{78, Gol53, heat con-
duction [CJ59, fluids [BRS6Q, vehicles Pbk69, Bla91, Ell94], robotics MLS94,
SVv89, circuits [Gui6d, power systemsqun93, acoustics Ber54 and microme-
chanical systemsSen0]. Control theory requires modeling from many differ-
ent domains, and most control theory texts contain sevdrapters on model-
ing using ordinary differential equations and differencpiaions (see, for ex-
ample, FPENO03Y). A classic book on the modeling of physical systems, espe-
cially mechanical, electrical and thermofluid systems, isir@a [Can03. The
book by Aris |Ari94] is highly original and has a detailed discussion of the use
of dimension-free variables. Two of the authors’ favoriteoks on modeling of
biological systems are J. D. Murrayiir04] and Wilson Wil99].

Exercises

2.1 (Chain of integrators form) Consider the linear ordinarffedential equa-
tion (2.7). Show that by choosing a state space representationxithy, the
dynamics can be written as

0o 1 0 0
S 0

A=| O S 0 =], C:[l .0 o].
o . 0 1 :
—8 —an-1 - 1

This canonical form is called th&hain of integratordorm.
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2.2(Inverted pendulum) Use the equations of motion for a baaystem to derive
a dynamic model for the inverted pendulum described in Exa@@and verify
that for small@ the dynamics are approximated by equati®i).

2.3 (Discrete-time dynamics) Consider the following discriiee system
x[k+ 1] = AXk] + Bulk], y[k] = CxK],

where

x= X, a=[q @) g_ (9] C:[l q.
X2 0 ax 1
In this problem, we will explore some of the properties o$ttliscrete-time system
as a function of the parameters, the initial conditions d&ednputs.

(a) For the case wheay» = 0 andu = 0, give a closed form expression for the
output of the system.

(b) A discrete system is iaquilibriumwhenx[k+ 1] = x[k] for all k. Letu=r be

a constant input and compute the resulting equilibrium gfointhe system. Show
that if |a;| < 1 for all i, all initial conditions give solutions that converge to the
equilibrium point.

(c) Write a computer program to plot the output of the systenesponse to a unit
step inputulk] = 1, k > 0. Plot the response of your system witld] = 0 andA
given bya;1 = 0.5, a12 = 1 anday, = 0.25.

2.4 (Keynesian economics) Keynes’ simple model for an econangyvien by
Y[K| = CIK] + I [K] + G[K],

whereY, C, | andG are gross national product (GNP), consumption, investment
and government expenditure for ydaiConsumption and investment are modeled
by difference equations of the form

Ck+1]=aYk,  I[Kk+1] =b(C[k+1]—C[K),

wherea and b are parameters. The first equation implies that consumption in
creases with GNP but that the effect is delayed. The secoratiequmplies that
investment is proportional to the rate of change of consionpt
Show that the equilibrium value of the GNP is given by

1
1 a(
where the parameter/(1 — a) is the Keynes multiplier (the gain froinor G to
Y). With a= 0.75 an increase of government expenditure will result in aftdd

Ye le+Ge),
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increase of GNP. Also show that the model can be written a®tlosving discrete-
time state model:

[Cl:[[ll:-r 11]]] N [aba—b ;b] [(':[['S]] + [;b] GlK],

Y[k = C[K] + [ + G[K].

2.5(Least squares system identification) Consider a nonlinéareintial equation@
that can be written in the form

dx M

a@t Z;OIi fi(x),

wheref;(x) are known nonlinear functions amqg are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estinfaties)all statex at
time instantdy, ty, ..., tn, with N > M. Show that the parameteas can be deter-
mined by finding the least squares solution to a linear equatiche form

Ha = b,

wherea € RM is the vector of all parameters amtlc RN*M andb € RN are
appropriately defined.

2.6(Normalized oscillator dynamics) Consider a damped sprimass system with
dynamics
mg+cq+kg=F.

Let wp = y/k/mbe the natural frequency agd= c/(2v/'km) be the damping ratio.
(a) Show that by rescaling the equations, we can write therdiagsin the form

G+ 2 wod + whq = wu, (2.35)
whereu = F /k. This form of the dynamics is that of a linear oscillator witktural
frequencywy and damping ratid .

(b) Show that the system can be further normalized and wiiittéme form
dz dz

The essential dynamics of the system are governed by a siaglpidg parameter
{. TheQ-valuedefined a®) = 1/2¢ is sometimes used insteadof

2.7 (Electric generator) An electric generator connected tocangtpower grid can
be modeled by a momentum balance for the rotor of the gemerato

d?¢ EV .
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wherelJ is the effective moment of inertia of the generatprthe angle of rota-
tion, Py, the mechanical power that drives the generd&gis the active electrical
power, E the generator voltagd/ the grid voltage an the reactance of the
line. Assuming that the line dynamics are much faster thanrétor dynamics,
P.=VI = (EV/X)sin¢, wherel is the current component in phase with the volt-
ageE and¢ is the phase angle between voltagesndV. Show that the dynamics
of the electric generator has a normalized form that is sintd the dynamics of a
pendulum with forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing sysdescribed in
Example2.10 The long delays created by temporary overloads can be rddhyce
rejecting requests when the queue gets large. This allowestsg|that are accepted
to be serviced quickly and requests that cannot be accontetda receive a
rejection quickly so that they can try another server. Gigrsan admission control
system described by

dx X
at Au— Ivlmaxm, U= satq1)(K(r —x)), (2.37)

where the controller is a simple proportional control witttsation (sat, is
defined by equation3(9)) andr is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rustrteffect and explain
how the choice of affects the system dynamics.

2.9(Biological switch) A genetic switch can be formed by conimagtwo repres-
sors together in a cycle as shown below.

A
- 7 N
] —w L A7 [ I B ]
B

LUZ

Using the models from ExampR13—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach stetady quickly—
show that the dynamics can be written in normalized cootdsas

dzz U dz U

- =7 o 4V, e

dr  1+7 dr  1+7
wherez; andz, are scaled versions of the protein concentrations andrtteedcale

has also been changed. Show that 200 using the parameters in Examglé3
and use simulations to demonstrate the switch-like behavithe system.

Z2 — V2, (238)

2.10 (Motor drive) Consider a system consisting of a motor dgviwo masses
that are connected by a torsional spring, as shown in theatiagelow.
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This system can represent a motor with a flexible shaft thag¢glaMoad. Assuming
that the motor delivers a torque that is proportional to tineent, the dynamics of
the system can be described by the equations

d2¢, d¢: d¢o _
B +o(Tgr g ) KO g2 =k, (2.39)
o dg, d '
e (gt~ ) 0T

Similar equations are obtained for a robot with flexible armd fam the arms of
DVD and optical disk drives.
Derive a state space model for the system by introducingibier(alized) state

variablesq = @1, X = ¢2, X3 = w1/, andxs = &/ wo, wherewn = /k(J1 + Jz)/(J1J2)
is the undamped natural frequency of the system when theataignal is zero.



Chapter Three

Examples

... Don't apply any model until you understand the simplifying assumptonwhich it is
based, and you can test their validity. Catch phrase: use only as dirdatett limit yourself
to a single model: More than one model may be useful for understandiegedif aspects of
the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1936IFQ.

In this chapter we present a collection of examples spanmagy different
fields of science and engineering. These examples will be hsedghout the text
and in exercises to illustrate different concepts. Firsietireaders may wish to
focus on only a few examples with which they have had the mst xperience
or insight to understand the concepts of state, input, auapd dynamics in a
familiar setting.

3.1 Cruise Control

The cruise control system of a car is a common feedback systeoustered in
everyday life. The system attempts to maintain a constantitglin the presence
of disturbances primarily caused by changes in the slope@dé The controller
compensates for these unknowns by measuring the speed@idrthed adjusting
the throttle appropriately.

To model the system we start with the block diagram in Fidhife Let v be
the speed of the car angl the desired (reference) speed. The controller, which
typically is of the proportional-integral (Pl) type des@ibbriefly in Chapted,
receives the signalg andv, and generates a control signakhat is sent to an
actuator that controls the throttle position. The throttiéurn controls the torque
T delivered by the engine, which is transmitted through trergiand the wheels,
generating a forc& that moves the car. There are disturbance fofgedue to
variations in the slope of the road, the rolling resistanue aerodynamic forces.
The cruise controller also has a human—machine interfadeatiosvs the driver
to set and modify the desired speed. There are also functiaslisconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engaresmission,
wheels and car body—and a detailed model can be very cortgaichn spite of
this, the model required to design the cruise controllerteguite simple.
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torquéhat is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environmettt,asiaerodynamic
drag and gravitational forces on hills, the net force causes the carue.Mbe velocity of

the carv is measured by a control system that adjusts the throttle through an aciuetbn
anism. A driver interface allows the system to be turned on and off aneteéeence speed

Vr to be established.

To develop a mathematical model we start with a force baltorabe car body.
Let v be the speed of the canthe total mass (including passengeFs}the force
generated by the contact of the wheels with the road Faride disturbance force
due to gravity, friction and aerodynamic drag. The equatifanation of the car is
simply

m =F —Fa. (3.1)

The forceF is generated by the engine, whose torque is proportiondigo t
rate of fuel injection, which is itself proportional to a dosl sighal 0<u <1
that controls the throttle position. The torque also dep@mdengine speed. A
simple representation of the torque at full throttle is gty the torque curve

T(w) =T (1-5(&-1)2) (3.2)

where the maximum torquR, is obtained at engine spee#,. Typical parameters
areTy, =190 Nm,wy, = 420 rad/s (about 4000 RPM) afid= 0.4. Letn be the gear
ratio andr the wheel radius. The engine speed is related to the veldeitygh the

expression n
w= V= anv,

and the driving force can be written as
nu
F= TT(w) = apuT(apv).

Typical values ofx,, for gears 1 through 5 am, = 40,0, = 25,03 = 16,04 =12
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Figure 3.2: Torque curves for typical car engine. The graph on the left showsotigeie
generated by the engine as a function of the angular velocity of the engiile,the curve
on the right shows torque as a function of car speed for differemsgea

andas = 10. The inverse ofr, has a physical interpretation as tféective wheel
radius Figure 3.2 shows the torque as a function of engine speed and vehicle
speed. The figure shows that the effect of the gear is to “flattemtdrque curve

so that an almost full torque can be obtained almost over timaerspeed range.

The disturbance forc&y has three major components;, the forces due to
gravity; F, the forces due to rolling friction; arfg,, the aerodynamic drag. Letting
the slope of the road be, gravity gives the forcéy = mgsiné, as illustrated in
Figure3.33 whereg = 9.8 m/$ is the gravitational constant. A simple model of
rolling friction is

Fr = mgQ Sgr(V),

whereC; is the coefficient of rolling friction and sgw) is the sign ofv (+1) or
zero ifv= 0. A typical value for the coefficient of rolling friction i€, = 0.01.
Finally, the aerodynamic drag is proportional to the squétbhespeed:

1
Fa= épchvz,

wherep is the density of airCy is the shape-dependent aerodynamic drag coef-
ficient andA is the frontal area of the car. Typical parameters@re 1.3 kg/n?,
Cq = 0.32 andA = 2.4 n?.
Summarizing, we find that the car can be modeled by
dv

M = anuT(anv) —mgG sgnv) — %pCdsz —mgsing, (3.3)

where the functiorT is given by equation3.2). The model 8.3) is a dynamical
system of first order. The state is the car velogityvhich is also the output. The
input is the signall that controls the throttle position, and the disturbanddés
force Ry, which depends on the slope of the road. The system is nonleeause
of the torque curve, the gravity term and the nonlinear dtaraf rolling friction
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Figure 3.3: Car with cruise control encountering a sloping road. A schematic diaggam
shown in (a), and (b) shows the response in speed and throttle whereao§id is encoun-
tered. The hill is modeled as a net change ofrthill angle 8, with a linear change in the
angle betweeh =5 andt = 6. The PI controller has proportional gainkig= 0.5, and the
integral gain i%; = 0.1.

and aerodynamic drag. There can also be variations in thengtess; e.g., the
mass of the car depends on the number of passengers anddheelog carried in
the car.

We add to this model a feedback controller that attemptsguolate the speed
of the car in the presence of disturbances. We shall use ai@pal-integral
controller, which has the form

u(t) = kpe(t) + ki /0t e(T)dr.

This controller can itself be realized as an input/outputasiygital system by defin-
ing a controller state and implementing the differential equation

dz

at
whereyV; is the desired (reference) speed. As discussed briefly indpel, the
integrator (represented by the stafensures that in steady state the error will be
driven to zero, even when there are disturbances or modeifiogs. (The design
of PI controllers is the subject of Chaptkd.) Figure3.3bshows the response of
the closed loop system, consisting of equatid@®)(@nd @.4), when it encounters
a hill. The figure shows that even if the hill is so steep that tirettle changes
from 0.17 to almost full throttle, the largest speed errdess than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the mo8&) (It may seem

surprising that such a seemingly complicated system camberitbed by the sim-
ple model 8.3). It is important to make sure that we restrict our use of tloeleh

—V, u=Kp(vr — V) +kiz, (3.4)
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Figure 3.4: Finite state machine for cruise control system. The figure on the left show
some typical buttons used to control the system. The controller can be iof dour modes,
corresponding to the nodes in the diagram on the right. Transition betweendtes is
controlled by pressing one of the five buttons on the cruise control ioterfan, off, set,
resume or cancel.

to the uncertainty lemon conceptualized in Figdr&5h The model is not valid
for very rapid changes of the throttle because we have ighibre details of the
engine dynamics, neither is it valid for very slow changesaose the properties
of the engine will change over the years. Nevertheless thaehis very useful for
the design of a cruise control system. As we shall see in tii@pters, the reason
for this is the inherent robustness of feedback systems:iéttee model is not per-
fectly accurate, we can use it to design a controller and makeof the feedback
in the controller to manage the uncertainty in the system.

The cruise control system also has a human—machine intetfatallows the
driver to communicate with the system. There are many diffieneys to imple-
ment this system; one version is illustrated in FigBrd The system has four
buttons: on-off, set/decelerate, resume/accelerateamzet The operation of the
system is governed by a finite state machine that controls tduesof the Pl con-
troller and the reference generator. Implementation otrotiars and reference
generators will be discussed more fully in Chagtér

The use of control in automotive systems goes well beyondithple cruise
control system described here. Applications include emmsscontrol, traction
control, power control (especially in hybrid vehicles) ahptive cruise control.
Many automotive applications are discussed in detail irbiek by Kiencke and
Nielsen KNOQ] and in the survey papers by Powers et BP§G PNOQ.

3.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the fieatiiat one of its key
properties is due to a feedback mechanism that is createtiebgdsign of the
front fork. A detailed model of a bicycle is complex becausedystem has many
degrees of freedom and the geometry is complicated. Howavgreat deal of
insight can be obtained from simple models.
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Figure 3.5: Schematic views of a bicycle. The steering anglé,ignd the roll angle ig.
The center of mass has heighand distance from a vertical through the contact poiR
of the rear wheel. The wheel basévjsand the trail isc.

To derive the equations of motion we assume that the bicptie on the hori-
zontalxy plane. Introduce a coordinate system that is fixed to the l@ayith the
&-axis through the contact points of the wheels with the gdotine n-axis hor-
izontal and thef-axis vertical, as shown in Figui&5. Let vy be the velocity of
the bicycle at the rear whedd,the wheel basep the tilt angle and the steering
angle. The coordinate system rotates around the ivith the angular veloc-
ity w = Vvpd /b, and an observer fixed to the bicycle experiences forces dile to
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pletum, as shown
in the rear view in Figur@®.5b. To model the tilt, consider the rigid body obtained
when the wheels, the rider and the front fork assembly are fizetie bicycle
frame. Letm be the total mass of the systednthe moment of inertia of this body
with respect to thé€ -axis andD the product of inertia with respect to th€ axes.
Furthermore, let thé and{ coordinates of the center of mass with respect to the
rear wheel contact poinBy, bea andh, respectively. We havé ~ mt? andD =
mah The torques acting on the system are due to gravity and petsdtiaction.
Assuming that the steering anglds small, the equation of motion becomes

d? Dvp dd . méh
Jdtf “b dt mghsing + To
The termmghsing is the torque generated by gravity. The terms contaidiagd
its derivative are the torques generated by steering, \wetterm(Dvg/b)dd/dt
due to inertial forces and the terfmih/b) & due to centripetal forces.

The steering angle is influenced by the torque the rider apmi¢ise handle

bar. Because of the tilt of the steering axis and the shapheofront fork, the

5. (3.5)
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Figure 3.6: Block diagram of a bicycle with a front fork. The steering torque applietth¢éo
handlebars i§, the roll angle isp and the steering angle & Notice that the front fork
creates a feedback from the roll anglé¢o the steering anglé that under certain conditions
can stabilize the system.

contact point of the front wheel with the ro&d is behind the axis of rotation of
the front wheel assembly, as shown in Fig@&c. The distance between the
contact point of the front whed®, and the projection of the axis of rotation of
the front fork assembl¥?; is called thetrail. The steering properties of a bicycle
depend critically on the trail. A large trail increases #ighbut makes the steering
less agile.

A consequence of the design of the front fork is that the stgeangled is
influenced both by steering torqdeand by the tilt of the frame. This means
that a bicycle with a front fork is &edback systemas illustrated by the block
diagram in Figure3.6. The steering anglé influences the tilt angle, and the
tilt angle influences the steering angle, giving rise to theutar causality that is
characteristic of reasoning about feedback. For a froik ¥dth a positive trail,
the bicycle will steer into the lean, creating a centrifuffakte that attempts to
diminish the lean. Under certain conditions, the feedbarkactually stabilize the
bicycle. A crude empirical model is obtained by assuming tihe blockB can be
modeled as the static system

5 =kiT — k. (3.6)

This model neglects the dynamics of the front fork, the tioaerinteraction and
the fact that the parameters depend on the velocity. A mangrate model, called
theWhipple modelis obtained using the rigid-body dynamics of the front farid
the frame. Assuming small angles, this model becomes

M [g] +Cw [(g] + (Ko 4 KoV3) [g] = [?] , (3.7)

where the elements of thex22 matricedM, C, Ko andK; depend on the geometry
and the mass distribution of the bicycle. Note that this Hasra somewhat similar
to that of the spring—mass system introduced in Chapgerd the balance system
in Example2.1 Even this more complex model is inaccurate because thaater
tion between the tire and the road is neglected; takingiissaccount requires two
additional state variables. Again, the uncertainty lenmoRigure2.15bprovides a
framework for understanding the validity of the model unithese assumptions.
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Figure 3.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all conmext{g) Only the
signal connections.

Interesting presentations on the development of the kécgob given in the
books by D. Wilson Wil04] and Herlihy Her04. The model 8.7) was presented
in a paper by Whipple in 1899/4hi99]. More details on bicycle modeling are
given in the paper/f{KLOS], which has many references.

3.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementatidslack’s feedback
amplifier. It is a universal component that is widely used fstiumentation, con-
trol and communication. It is also a key element in analogmating. Schematic
diagrams of the operational amplifier are shown in Figdiie The amplifier has
one inverting input\{_), one noninverting inputv;) and one outputoy). There
are also connections for the supply voltages,ande,, and a zero adjustment
(offset null). A simple model is obtained by assuming that ifput currents_
andi_ are zero and that the output is given by the static relation

Vout = Salty, ;. vinay) (k(vy —vo)), (3.8)
where sat denotes the saturation function

a ifx<a
Satap(X) = ¢ x ifa<x<b (3.9)
b if x>h.

We assume that the galkis large, in the range of $61(, and the voltagesmin
andvmax satisfy

€ < Vmin < Vmax < €4
and hence are in the range of the supply voltages. More aecmadels are ob-
tained by replacing the saturation function with a smootcfion as shown in
Figure3.8. For small input signals the amplifier characteris8@ is linear:

Vout = k(v —Vv_) =1 —kv. (3.10)
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Figure 3.8: Input/output characteristics of an operational amplifier. The differeiniat is
given byv; —v_. The output voltage is a linear function of the input in a small range around
0, with saturation a¥nin, andvmax. In the linear regime the op amp has high gain.

Since the open loop gakis very large, the range of input signals where the system
is linear is very small.

A simple amplifier is obtained by arranging feedback aroumdhthsic opera-
tional amplifier as shown in Figurg9a To model the feedback amplifier in the
linear range, we assume that the curignt i_ +i, is zero and that the gain of
the amplifier is so large that the voltage- v_ — v, is also zero. It follows from
Ohm'’s law that the currents through resistBisandR, are given by

i__ v
RR R
and hence the closed loop gain of the amplifier is
R
V2_ kg, where ky= 2. (3.11)
\%1 Ry

A more accurate model is obtained by continuing to negleetdirrentip but

oO—WV AW
Ry Ry
v
- vi| R € R v V2
Vi @ ——O — 72 1 > _—k >
Ry Ri+R
V2
o o)
(a) Amplifier circuit (b) Block diagram

Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feledbaignd
an operational amplifier and has a corresponding block diagramigb)téBistor&k; andR,
determine the gain of the amplifier.



3.3. OPERATIONAL AMPLIFIER CIRCUITS 79

assuming that the voltagds small but not negligible. The current balance is then
Vi1 —V V—\Vo
R R
Assuming that the amplifier operates in the linear range aimg) esjuation 3.10),
the gain of the closed loop system becomes
Vo - R le

===~ ___ 3.13
kel vi RIRI+R+kR ( )

If the open loop gairk of the operational amplifier is large, the closed loop gain
ko is the same as in the simple model given by equat®hlj. Notice that the
closed loop gain depends only on the passive componenthandariations irk
have only a marginal effect on the closed loop gain. For ejaiifik = 10° and
R2/R1 =100, a variation ok by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nicesthation of how feedback
can be used to make precise systems from uncertain comgoietitis particular
case, feedback is used to trade high gain and low robustoeks\f gain and high
robustness. EquatioB.L3 was the formula that inspired Black when he invented
the feedback amplifieHla34] (see the quote at the beginning of Chafit2y.

It is instructive to develop a block diagram for the feedbaahplifier in Fig-
ure3.9a To do this we will represent the pure amplifier with inmand output,
as one block. To complete the block diagram, we must deshdies depends on
v; andvs. Solving equation3.12 for v gives

Rz Rl Rl ( R,

2
= vy + Vo = A VANRY ),
R1+ Ry ! Ri+ Ry 2 Ri+R\Ry 1

and we obtain the block diagram shown in Fig8réh The diagram clearly shows
that the system has feedback and that the gain frotovis R /(Ry + Ry), which
can also be read from the circuit diagram in Fig@r@a If the loop is stable and
the gain of the amplifier is large, it follows that the ereds small, and we find that
v2 = —(Rz/R1)va. Notice that the resistdr; appears in two blocks in the block
diagram. This situation is typical in electrical circuitsidait is one reason why
block diagrams are not always well suited for some types g$iolal modeling.

The simple model of the amplifier given by equati8@mlQ) provides qualitative
insight, but it neglects the fact that the amplifier is a dyr@hsystem. A more
realistic model is

(3.12)

\Y

d;";“‘ = —aVpui— bv (3.14)

The parametdr that has dimensions of frequency and is calledythia-bandwidth
productof the amplifier. Whether a more complicated model is used rm#pen
the questions to be answered and the required size of thetaimtg lemon. The
model @.14) is still not valid for very high or very low frequencies sedrift
causes deviations at low frequencies and there are adalitignamics that appear
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around aratipesl
amplifier. The capacitd is used to store charge and represents the integral of the input.

at frequencies close t@ The model is also not valid for large signals—an upper
limit is given by the voltage of the power supply, typicaltythe range of 5-10 V—
neither is it valid for very low signals because of electrizaise. These effects can
be added, if needed, but increase the complexity of the sisaly

The operational amplifier is very versatile, and many diffesystems can be
built by combining it with resistors and capacitors. In faaty linear system can
be implemented by combining operational amplifiers withstess and capacitors.
Exercise3.5shows how a second-order oscillator is implemented, and&gy0
shows the circuit diagram for an analog proportional-iraégontroller. To de-
velop a simple model for the circuit we assume that the ctiigeis zero and that
the open loop gaik is so large that the input voltagds negligible. The currerit
through the capacitor is= Cd\/dt, wherev; is the voltage across the capacitor.
Since the same current goes through the resitowe get

v
- Ry T dt’
which implies that

Ve(t) = é/i(t)dt: F\)llc/otvl(r)dr.

The output voltage is thus given by

. R> 1/t
t) = —Roi —Ve=——vy(t) — =—— d
va(t) ol — Ve Rlvl() RlC/o vi(7)dT,
which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered byptkl[Lun05,
Phi4g, and their usage is described in many textbooks (eGp,75]). Good infor-
mation is also available from suppliedun02 Man03.
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3.4 Computing Systems and Networks

The application of feedback to computing systems followsstdrme principles as
the control of physical systems, but the types of measurevaard control inputs
that can be used are somewhat different. Measurementso(sgrse typically
related to resource utilization in the computing system etsvork and can in-
clude quantities such as the processor load, memory usag#weork bandwidth.
Control variables (actuators) typically involve settiimgits on the resources avail-
able to a process. This might be done by controlling the amotumemory, disk
space or time that a process can consume, turning on or afépsang, delaying
availability of a resource or rejecting incoming requests tserver process. Pro-
cess modeling for networked computing systems is alsoegithg, and empirical
models based on measurements are often used when a firspi@snoodel is not
available.

Web Server Control

Web servers respond to requests from the Internet and gravidrmation in the
form of web pages. Modern web servers start multiple prasess respond to
requests, with each process assigned to a single sourtaafuither requests are
received from that source for a predefined period of time. RBsE®that are idle
become part of a pool that can be used to respond to new reqiiesprovide a
fast response to web requests, it is important that the wafersprocesses do not
overload the server's computational capabilities or esh&simemory. Since other
processes may be running on the server, the amount of aegiedressing power
and memory is uncertain, and feedback can be used to prowit®gerformance
in the presence of this uncertainty.

Figure 3.11 illustrates the use of feedback to modulate the operatioanof
Apache web server. The web server operates by placing ingoooinnection re-
quests on a queue and then starting a subprocess to handéstefpr each ac-
cepted connection. This subprocess responds to requestsafgiven connection
as they come in, alternating betweeBuwsy state and &4i t state. (Keeping the
subprocess active between requests is known agdisistencef the connection
and provides a substantial reduction in latency to requestsiultiple pieces of
information from a single site.) If no requests are receif@d sufficiently long
period of time, controlled by thBeepAl i ve parameter, then the connection is
dropped and the subprocess enterk@ine state, where it can be assigned another
connection. A maximum ofaxCl i ent s simultaneous requests will be served,
with the remainder remaining on the incoming request queue.

The parameters that control the server represent a tradeetffeen perfor-
mance (how quickly requests receive a response) and resaosage (the amount
of processing power and memory used by the server). InogéstMaxCl i ent s
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Figure 3.11:Feedback control of a web server. Connection requests arriveiopat queue,
where they are sent to a server process. A finite state machine kespsfttae state of the
individual server processes and responds to requests. A colgasithm can modify the
server’s operation by controlling parameters that affect its behastich as the maximum
number of requests that can be serviced at a single fWag@ i ent s) or the amount of
time that a connection can remain idle before it is droppéepAl i ve).

parameter allows connection requests to be pulled off ofjtiteie more quickly
but increases the amount of processing power and memorg tisagis required.
Increasing th&eepAl i ve timeout means that individual connections can remain
idle for a longer period of time, which decreases the prangdsad on the ma-
chine but increases the size of the queue (and hence the aofdime required
for a user to initiate a connection). Successful operatiom lofisy server requires
a proper choice of these parameters, often based on triadramd

To model the dynamics of this system in more detail, we craaliscrete-time
model with states given by the average processor legdand the percentage
memory usage&mem The inputs to the system are taken as the maximum number
of clientsumc and the keep-alive timey,. If we assume a linear model around the
equilibrium point, the dynamics can be written as

L) = (22 L) = (B 22 (k) o9

where the coefficients of th@andB matrices can be determined based on empiri-
cal measurements or detailed modeling of the web servertsegsing and memory
usage. Using system identification, Diao et BIGH+02 HDPTO04 identified the
linearized dynamics as

_( 054 -011 (-85 44 4
A= [—0.026 063]’ B= [—2.5 2.8] X107

where the system was linearized about the equilibrium point
chu == 058, uka == 11 S Xmem == 055, Umc - 600.
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This model shows the basic characteristics that were destabove. Looking
first at theB matrix, we see that increasing theepAl i ve timeout (first col-
umn of theB matrix) decreases both the processor usage and the menagg us
since there is more persistence in connections and hensenyer spends a longer
time waiting for a connection to close rather than taking orea active connec-
tion. TheMaxC i ent s connection increases both the processing and memory
requirements. Note that the largest effect on the procésadiis theKeepAl i ve
timeout. TheA matrix tells us how the processor and memory usage evolvesin a
gion of the state space near the equilibrium point. The diagenms describe how
the individual resources return to equilibrium after a siant increase or decrease.
The off-diagonal terms show that there is coupling betweertio resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later exdespthat it can
be used to modify the parameters controlling the serverahtime and provide
robustness with respect to uncertainties in the load on thehine. Similar types
of mechanisms have been used for other types of serversinipigrtant to re-
member the assumptions on the model and their role in detargiwhen the
model is valid. In particular, since we have chosen to useageequantities over
a given sample time, the model will not provide an accurapeesentation for
high-frequency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decené@liefficient and ex-
pandable communication system. The system consists of e tangber of inter-
connected gateways. A message is split into several packéth are transmitted
over different paths in the network, and the packages aoénegj to recover the
message at the receiver. An acknowledgment (“ack”) messaggnt back to the
sender when a packet is received. The operation of the systgmverned by a
simple but powerful decentralized control structure ttest Bvolved over time.

The system has two control mechanisms cafieatocols the Transmission
Control Protocol (TCP) for end-to-end network communicatiod ¢he Internet
Protocol (IP) for routing packets and for host-to-gateway ategay-to-gateway
communication. The current protocols evolved after sometapalar congestion
collapses occurred in the mid 1980s, when throughput ureéegly could drop by
a factor of 1000 Jac9%. The control mechanism in TCP is based on conserving
the number of packets in the loop from the sender to the recaivd back to the
sender. The sending rate is increased exponentially whee th@o congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we motlet¢ separate
elements of the system: the rate at which packets are semidsidual sources
(computers), the dynamics of the queues in the links (reptmnd the admission
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Figure 3.12:Internet congestion control. (a) Source computers send informati@uters,
which forward the information to other routers that eventually connecitogbeiving com-
puter. When a packet is received, an acknowledgment packet isagnthrough the routers
(not shown). The routers buffer information received from thersesi and send the data
across the outgoing link. (b) The equilibrium buffer skzefor a set ofN identical comput-
ers sending packets through a single router with drop probapility

control mechanism for the queues. Fig@r&2ais a block diagram of the system.

The current source control mechanism on the Internet is @@obknown as
TCP/Reno [PD02. This protocol operates by sending packets to a receiver and
waiting to receive an acknowledgment from the receiverttimpacket has arrived.
If no acknowledgment is sent within a certain timeout pertbe packet is retrans-
mitted. To avoid waiting for the acknowledgment before $egdhe next packet,
Reno transmits multiple packets up to a fixeiddowaround the latest packet that
has been acknowledged. If the window length is chosen plgpaickets at the be-
ginning of the window will be acknowledged before the soure@smits packets
at the end of the window, allowing the computer to continlyppageam packets at
a high rate.

To determine the size of the window to use, TCP/Reno uses adekahech-
anism in which (roughly speaking) the window size is incezbisy 1 every time a
packet is acknowledged and the window size is cut in half wiekets are lost.
This mechanism allows a dynamic adjustment of the window isizehich each
computer acts in a greedy fashion as long as packets are telimgred but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed byritbésg the
dynamics of the window size. Suppose we h&/eomputers and lety; be the
current window size (measured in number of packets) forttheomputer. Let
gi represent the end-to-end probability that a packet will mpded someplace
between the source and the receiver. We can model the dymainibe window
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size by the differential equation
ri ('[ — Ti)
Wi

dw

Wi
W_( —q) =

+qi(—%ri(t—n)), Nn=—_, (3.16)

Tj
wherert; is the end-to-end transmission time for a packet to reackdsrthtion and
the acknowledgment to be sent back and the resulting rate at which packets
are cleared from the list of packets that have been receiMael first term in the
dynamics represents the increase in window size when a packeceived, and
the second term represents the decrease in window size wpanokat is lost.
Notice thatr; is evaluated at timé— 1;, representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the rogtezue and the
admission control mechanism for the queue. Assume that welhfnks in the
network and us¢ to index the individual links. We model the queue in terms of
the current number of packets in the router’s bubieand assume that the router
can contain a maximum df max packets and transmits packets at a catequal
to the capacity of the link. The buffer dynamics can then bétenias

(j;tazs—q, s= Y rnt-g). (3.17)
{i: TeLi}

wherel; is the set of links that are being used by sou'razé is the time it takes a
packet from sourceto reach linkl ands is the total rate at which packets arrive
atlink|1.

The admission control mechanism determines whether a giaekep is ac-
cepted by a router. Since our model is based on the averagétmsain the net-
work and not the individual packets, one simple model is suat that the proba-
bility that a packet is dropped depends on how full the buep, = m (by, bmax)-
For simplicity, we will assume for now thay = p/by (see Exercis8.6for a more
detailed model). The probability that a packet is dropped given link can be
used to determine the end-to-end probability that a pasKest in transmission:

G=1-1@-p)~ 5 pt—17), (3.18)

leL lel;

wheretP is the backward delay from linkto sourcei and the approximation is
valid as long as the individual drop probabilities are smak use the backward
delay since this represents the time required for the acletmyment packet to be
received by the source.

Together, equations3(16), (3.17 and B.18 represent a model of congestion
control dynamics. We can obtain substantial insight by icterg1g a special case
in which we haveN identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be éghan which case
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the dynamics can be reduced to the form

dw _1_pc2iw))  db_oSw
dt 1 2 dt 41

b
| C, T= o (3.19)
wherew; € R, i =1...,N, are the window sizes for the sources of déte, R
is the current buffer size of the routgy, controls the rate at which packets are
dropped ana is the capacity of the link connecting the router to the corarsu
The variabler represents the amount of time required for a packet to beepsed
by a router, based on the size of the buffer and the capadihedink. Substituting

T into the equations, we write the state space dynamics as

dw ¢ w2 db & ow
Tt _b_p(;<j|_-|-2)7 a_i;T—C. (3.20)

More sophisticated models can be founditMTGOO, LPDOZ. _
The nominal operating point for the system can be found bingaft = b =0:

c w2 Jow
Ob—pc<1+2), Ofi;T—c.

Exploiting the fact that all of the source dynamics are id=itiit follows that all
of thew; should be the same, and it can be shown that there is a unigudeagm
satisfying the equations
be cTe 1 3

Wie=~ N’ W(Pbe) +(pbe) —1=0. (3.21)
The solution for the second equation is a bit messy but caltydssidetermined
numerically. A plot of its solution as a function of (20°N?) is shown in Fig-
ure3.12h We also note that at equilibrium we have the following addil equal-
ities:

_ De  Nwe _ We

= Np.= Npb =
Te c c ’ qe pe p (53] re Te

Figure3.13shows a simulation of 60 sources communicating across desing
link, with 20 sources dropping out at= 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Notetteabuffer size and
window sizes automatically adjust to match the capacitheflink.

(3.22)

A comprehensive treatment of computer networks is giveihéntéxtbook by
TannenbaumTan9§. A good presentation of the ideas behind the control prin-
ciples for the Internet is given by one of its designers, \Vatobson, inJac9%.

F. Kelly [Kel85] presents an early effort on the analysis of the system. Tio& bo
by Hellerstein et al. HDPTO04 gives many examples of the use of feedback in
computer systems.
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Figure 3.13: Internet congestion control fa¥ identical sources across a single link. As
shown on the left, multiple sources attempt to communicate through a rautessaa single
link. An “ack” packet sent by the receiver acknowledges that thesaggs was received;
otherwise the message packet is resent and the sending rate is slowedtdbe source.
The simulation on the right is for 60 sources starting random rates, withi2@es dropping
out att = 500 ms. The buffer size is shown at the top, and the individual soates for 6
of the sources are shown at the bottom.

3.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig andigleiRohrer
for their design of thescanning tunneling microscop&he idea of the instrument
is to bring an atomically sharp tip so close to a conductinmfgse that tunneling
occurs. Animage is obtained by traversing the tip acrossahgle and measuring
the tunneling current as a function of tip position. This imien has stimulated
the development of a family of instruments that permit visagion of surface
structure at the nanometer scale, including dh@mic force microscopéAFM),
where a sample is probed by a tip on a cantilever. An AFM canaipen two
modes. Intapping modehe cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. loontact modehe cantilever is in contact with the
sample, and its bending is controlled by feedback. In bosesaontrol is actuated
by a piezo element that controls the vertical position ofdhetilever base (or the
sample). The control system has a direct influence on pictuaktgand scanning
rate.

A schematic picture of an atomic force microscope is showfigare3.14a A
microcantilever with a tip having a radius of the order of 10 i3 placed close to
the sample. The tip can be moved vertically and horizontalggia piezoelectric
scanner. It is clamped to the sample surface by attractivelea\Waals forces and
repulsive Pauli forces. The cantilever tilt depends on thedoaphy of the surface
and the position of the cantilever base, which is contratigdhe piezo element.
The tilt is measured by sensing the deflection of the laser bearg a photodiode.
The signal from the photodiode is amplified and sent to a cdatrtat drives
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Figure 3.14: Atomic force microscope. (a) A schematic diagram of an atomic forceamic
scope, consisting of a piezo drive that scans the sample under the AFMI&per reflects
off of the cantilever and is used to measure the detection of the tip througgdadck con-
troller. (b) An AFM image of strands of DNA. (Image courtesy Veecstiuments.)

the amplifier for the vertical position of the cantilever. Bgntrolling the piezo
element so that the deflection of the cantilever is consthatsignal driving the
vertical deflection of the piezo element is a measure of thaiattorces between
the cantilever tip and the atoms of the sample. An image ostinface is obtained
by scanning the cantilever along the sample. The resolutiakemit possible to
see the structure of the sample on the atomic scale, agalledtin Figure3.14h
which shows an AFM image of DNA.

The haorizontal motion of an AFM is typically modeled as a sprmgss sys-
tem with low damping. The vertical motion is more complicat&d model the
system, we start with the block diagram shown in FigBrgs Signals that are
easily accessible are the input voltag® the power amplifier that drives the piezo
element, the voltage applied to the piezo element and the output voltagéthe
signal amplifier for the photodiode. The controller is a PI colfgr implemented
by a computer, which is connected to the system by analaligital (A/D) and
digital-to-analog (D/A) converters. The deflection of thetdawer ¢ is also shown
in the figure. The desired reference value for the deflection is@ut to the com-
puter.

There are several different configurations that have diftedgnamics. Here
we will discuss a high-performance system froﬁf\p+07] where the cantilever
base is positioned vertically using a piezo stack. We bdginnbodeling with a
simple experiment on the system. Fig@ré6ashows a step response of a scanner
from the input voltage! to the power amplifier to the output voltagef the signal
amplifier for the photodiode. This experiment captures theadynos of the chain
of blocks fromu to y in the block diagram in Figur8.15 Figure3.16ashows that
the system responds quickly but that there is a poorly danogeilatory mode
with a period of about 35 us. A primary task of the modelingisibderstand the
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Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempisefo tke can-
tilever deflection equal to its reference value. Cantilever deflection isureshsamplified
and converted to a digital signal, then compared with its reference valoerrécting sig-
nal is generated by the computer, converted to analog form, ampliféedeart to the piezo
element.

origin of the oscillatory behavior. To do so we will explofeetsystem in more
detail.

The natural frequency of the clamped cantilever is typicadlyeral hundred
kilohertz, which is much higher than the observed oscillatdbf about 30 kHz.
As a first approximation we will model it as a static system. 8itiee deflections
are small, we can assume that the bendirg the cantilever is proportional to the
difference in height between the cantilever tip at the piantthe piezo scanner. A
more accurate model can be obtained by modeling the caattide/a spring—mass
system of the type discussed in Chafer

Figure3.16aalso shows that the response of the power amplifier is fast. The
photodiode and the signal amplifier also have fast respomsesam thus be mod-
eled as static systems. The remaining block is a piezo syst#imswspension.
A schematic mechanical representation of the vertical anotif the scanner is
shown in Figure3.16h We will model the system as two masses separated by an
ideal piezo element. The mass is half of the piezo system, and the massis
the other half of the piezo system plus the mass of the support

A simple model is obtained by assuming that the piezo crgsaérates a force
F between the masses and that there is a dangimghe spring. Let the positions
of the center of the masses heandz,. A momentum balance gives the following
model for the system:

d221 d222 dz

m—— =F —— = —C——

Lae ~ 0 Mae 2 dt

Let the elongation of the piezo elemdnt z; — z, be the control variable and
the heightz; of the cantilever base be the output. Eliminating the vaei&bin

— k222 —F.
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Figure 3.16: Modeling of an atomic force microscope. (a) A measured step respdhg
top curve shows the voltageapplied to the drive amplifier (50 mV/div), the middle curve
is the outpud/, of the power amplifier (500 mV/div) and the bottom curve is the ouyput
of the signal amplifier (500 mV/div). The time scale is 25/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical postiamd the piezo
crystal.

equations above and substituting- | for z, gives the model

(m + )d2 +cd i OII+k| (3.23)
L) g T2 Mo T %2 7@ '

Summarizing, we find that a simple model of the system is ohddryemod-
eling the piezo by 3.23 and all the other blocks by static models. Introducing
the linear equations= kzu andy = ksz;, we now have a complete model relat-
ing the outputy to the control signal. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the powepldier. As in the
previous examples, the concept of the uncertainty lemongareR.15bprovides
a framework for describing the uncertainty: the model w#ldccurate up to the
frequencies of the fastest modeled modes and over a rangetaimin which
linearized stiffness models can be used.

The experimental results in FiguBel6acan be explained qualitatively as fol-
lows. When a voltage is applied to the piezo, it expandkbthe massm moves
up and the mass, moves down instantaneously. The system settles after aypoorl
damped oscillation.

It is highly desirable to design a control system for the igaitmotion so
that it responds quickly with little oscillation. The instnent designer has sev-
eral choices: to accept the oscillation and have a slow resptime, to design a
control system that can damp the oscillations or to redebigmechanics to give
resonances of higher frequency. The last two alternatiwesagiaster response and
faster imaging.

Since the dynamic behavior of the system changes with theepiep of the

+kozg = +Co
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sample, itis necessary to tune the feedback loop. In sinygtems this is currently
done manually by adjusting parameters of a Pl controller. §lage interesting
possibilities for making AFM systems easier to use by intaidg automatic tun-
ing and adaptation.

The book by Sarid$ar9] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamentalli state physics, see
Kittel [Kit95]. The model discussed in this section is based on Schi&hQ].

3.6 Drug Administration

The phrase “Take two pills three times a day” is a recommeaodatith which we
are all familiar. Behind this recommendation is a solutibam open loop control
problem. The key issue is to make sure that the concentrafiannoedicine in
a part of the body is sufficiently high to be effective but nothsgh that it will
cause undesirable side effects. The control action is qaeahtake two pills and
sampledgevery 8 hoursThe prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and wéitljiet patient.

Drug administration is a control problem. To solve it we mustlerstand how
a drug spreads in the body after it is administered. This tagikedpharmacoki-
netics is now a discipline of its own, and the models used are caltadpart-
ment modelsThey go back to the 1920s when Widmark modeled the propagatio
of alcohol in the body\WT24]. Compartment models are now important for the
screening of all drugs used by humans. The schematic diagr&igure3.17il-
lustrates the idea of a compartment model. The body is viewseal mumber of
compartments like blood plasma, kidney, liver and tisshes$ are separated by
membranes. It is assumed that there is perfect mixing sdhbatrug concentra-
tion is constant in each compartment. The complex transpocegses are approx-
imated by assuming that the flow rates between the comparraemproportional
to the concentration differences in the compartments.

To describe the effect of a drug it is necessary to know betkdncentration
and how it influences the body. The relation between concémmraand its effect
eis typically nonlinear. A simple model is

C
e= . 3.24
Co—}—CemaX ( )
The effect is linear for low concentrations, and it saturatasigh concentrations.
The relation can also be dynamic, and it is then caglledrmacodynamics

Compartment Models

The simplest dynamic model for drug administration is oladibhy assuming that
the drug is evenly distributed in a single compartment aftbas been adminis-
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Figure 3.17: Abstraction used to compartmentalize the body for the purpose of diegcrib
drug distribution (based on Teorelldo37). The body is abstracted by a number of com-
partments with perfect mixing, and the complex transport processeap@roximated by
assuming that the flow is proportional to the concentration differenceg icdimpartments.

The constant&; parameterize the rates of flow between different compartments.

tered and that the drug is removed at a rate proportionaktadhcentration. The
compartments behave like stirred tanks with perfect mixireg c be the concen-
tration, V the volume andj the outflow rate. Converting the description of the
system into differential equations gives the model
dc

v dt
This equation has the solutiaft) = coe~ %V = cye K, which shows that the con-
centration decays exponentially with the time consfartV /q after an injection.
The input is introduced implicitly as an initial conditiontine model 8.25. More
generally, the way the input enters the model depends onlmwdrug is adminis-
tered. For example, the input can be represented as a massifitotkié compart-
ment where the drug is injected. A pill that is dissolved ckso &e interpreted as
an input in terms of a mass flow rate.

The model 8.25 is called a ane-compartment modet asingle-pool model
The parameteq/V is called the elimination rate constant. This simple model
often used to model the concentration in the blood plasman8gsuring the con-
centration at a few times, the initial concentration canlitaimed by extrapolation.
If the total amount of injected substance is known, the va¥frcan then be de-
termined a&/ = m/co; this volume is called thapparent volume of distribution
This volume is larger than the real volume if the concentratiothe plasma is
lower than in other parts of the body. The mod&PR§H is very simple, and there
are large individual variations in the parameters. The patargV andq are often
normalized by dividing by the weight of the person. Typicatgmeters for aspirin
areV = 0.2 L/kg andg = 0.01(L/h)/kg. These numbers can be compared with a
blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, an icetkular fluid

—qc, c>0. (3.25)

S
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Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compatrtme
model. Each compartment is labeled by its volume, and arrows indicat®wheffchemical
into, out of and between compartments. (b) A system with six compartraseatsto study
the metabolism of thyroid hormon&pd83. The notationk;; denotes the transport from
compartmenj to compartment.

volume of 0.4 L/kg and an outflow of 0.0015 L/min/kg.

The simple one-compartment model captures the gross belddoug distri-
bution, but it is based on many simplifications. Improved ni®dan be obtained
by considering the body as composed of several compartiriexamples of such
systems are shown in Figugel8 where the compartments are represented as cir-
cles and the flows by arrows.

Modeling will be illustrated using the two-compartment rebith Figure3.18a
We assume that there is perfect mixing in each compartmehthet the transport
between the compartments is driven by concentration diffegs. We further as-
sume that a drug with concentratiogis injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the outpuicLand
c2 be the concentrations of the drug in the compartments ang lendV- be the
volumes of the compartments. The mass balances for the cormgrds are

dc
Vi =d(c2—c) —docr +0ol, €1 >0,
dc
Vz(T,[2 =q(c1—C2), €2>0, (3.26)
y=Ca.

Introducing the variableky = qo/Vi, k1 = q/V1, ko = q/V2 andby = ¢p/V4 and
using matrix notation, the model can be written as

%‘3: [_kokz_kl kﬁz] c+ [%’] u, y= [0 1) C. (3.27)
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Figure 3.19: Insulin—glucose dynamics. (a) Sketch of body parts involved in the alooitr
glucose. (b) Schematic diagram of the system. (c) Responses of iasdliglucose when
glucose in injected intravenously. FrofPB84.

Comparing this model with its graphical representation iguFé 3.18a we find
that the mathematical representati@2() can be written by inspection.

It should also be emphasized that simple compartment msdelsas the one
in equation 8.27) have a limited range of validity. Low-frequency limits exie-
cause the human body changes with time, and since the carmgrariodel uses
average concentrations, they will not accurately reprasgid changes. There are
also nonlinear effects that influence transportation batvilee compartments.

Compartment models are widely used in medicine, engingexnd environ-
mental science. An interesting property of these systeitiats/ariables like con-
centration and mass are always positive. An essential diffiau compartment
modeling is deciding how to divide a complex system into cartrpents. Com-
partment models can also be nonlinear, as illustrated inékéesection.

Insulin—glucose Dynamics

It is essential that the blood glucose concentration in thaykis kept within a
narrow range (0.7-1.1 g/L). Glucose concentration is infladrity many factors
like food intake, digestion and exercise. A schematic pe&uf the relevant parts
of the body is shown in Figuréx19aandb.

There is a sophisticated mechanism that regulates glucosectation. Glu-
cose concentration is maintained by the pancreas, whiaketescthe hormones
insulin and glucagon. Glucagon is released into the bloedst when the glucose
level is low. It acts on cells in the liver that release glueoisulin is secreted
when the glucose level is high, and the glucose level is ledidry causing the
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liver and other cells to take up more glucose. In diseaseguikenile diabetes the
pancreas is unable to produce insulin and the patient mjesitimsulin into the
body to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are caagdicdynamics
with time scales that range from seconds to hours have besamaa. Models of
different complexity have been developed. The models aredifp tested with
data from experiments where glucose is injected intravelyoand insulin and
glucose concentrations are measured at regular time atserv

A relatively simple model called thainimal modelvas developed by Bergman
and coworkersBer89. This models uses two compartments, one representing the
concentration of glucose in the bloodstream and the otipeesenting the concen-
tration of insulin in the interstitial fluid. Insulin in the ®dstream is considered
an input. The reaction of glucose to insulin can be modeledhbtjuations

dX1 o

dx .
at —(p1+X2)X1 + P10e, (th = —pax2+ p3(u—ie), (3.28)

wherege andie represent the equilibrium values of glucose and insudinis the
concentration of glucose and is proportional to the concentration of interstitial
insulin. Notice the presence of the tepgx; in the first equation. Also notice
that the model does not capture the complete feedback locgube it does not
describe how the pancreas reacts to the glucose. FRjiBzshows a fit of the
model to a test on a normal person where glucose was injecteyénously at
timet = 0. The glucose concentration rises rapidly, and the panoespsnds with
a rapid spikelike injection of insulin. The glucose and iirsidvels then gradually
approach the equilibrium values.

Models of the type in equatior8(28 and more complicated models having
many compartments have been developed and fitted to expeaindaa. A diffi-
culty in modeling is that there are significant variations iodel parameters over
time and for different patients. For example, the parampten equation 8.29
has been reported to vary with an order of magnitude for heatidividuals. The
models have been used for diagnosis and to develop schem#geftreatment
of persons with diseases. Attempts to develop a fully autmnaatificial pancreas
have been hampered by the lack of reliable sensors.

The papers by Widmark and TandbeWyT24] and Teorell Teo37 are classics
in pharmacokinetics, which is now an established disogpliith many textbooks
[Dos68 Jac72 GP83. Because of its medical importance, pharmacokinetics is
now an essential component of drug development. The bookdysHRig63 is a
good source for the modeling of physiological systems, ambee mathematical
treatment is given inKS01]. Compartment models are discussed@ofi83. The
problem of determining rate coefficients from experimentids discussed in
[BA?O] and [God83. There are many publications on the insulin—glucose model.
The minimal model is discussed i@T84, Ber89 and more recent references are
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[MLKO6, FCF+04.

3.7 Population Dynamics

Population growth is a complex dynamic process that involliesinteraction of
one or more species with their environment and the largesyestem. The dynam-
ics of population groups are interesting and important imyngifferent areas of
social and environmental policy. There are examples whewespecies have been
introduced into new habitats, sometimes with disastroaslt® There have also
been attempts to control population growth both througlerimiges and through
legislation. In this section we describe some of the modesdan be used to un-
derstand how populations evolve with time and as a functidinesr environments.

Logistic Growth Model

Let x be the population of a species at timé\ simple model is to assume that the
birth rates and mortality rates are proportional to thel fotgulation. This gives
the linear model

(;1(: bx—dx= (b—d)x=rx, x>0, (3.29)

where birth rateb and mortality rated are parameters. The model gives an ex-
ponential increase i > d or an exponential decreasehif< d. A more realistic
model is to assume that the birth rate decreases when théapiopus large. The
following modification of the model3.29 has this property:

dx X
A _Z > .
at rx(1 k)’ x>0, (3.30)

wherek is the carrying capacityof the environment. The mode8.30 is called
thelogistic growth model

Predator—Prey Models

A more sophisticated model of population dynamics incluttheseffects of com-
peting populations, where one species may feed on anothsisitimtion, referred
to as thepredator—prey problemwas introduced in Examp 3, where we devel-
oped a discrete-time model that captured some of the feaddifgistorical records
of lynx and hare populations.

In this section, we replace the difference equation mods tisere with a more
sophisticated differential equation model. lkéft) represent the number of hares
(prey) and leL(t) represent the number of lynxes (predator). The dynamicseof th



3.7. POPULATION DYNAMICS 97

system are modeled as

dH H aHL
dt‘rH<1 k) ey =0
dL b aHL
dt  “c+H
In the first equationy represents the growth rate of the haresepresents the
maximum population of the hares (in the absence of lynxespresents the in-
teraction term that describes how the hares are diminishadunction of the lynx
population anat controls the prey consumption rate for low hare populatioithe
second equatiot represents the growth coefficient of the lynxes dmdpresents
the mortality rate of the lynxes. Note that the hare dynanmichide a term that
resembles the logistic growth mod&l80).

Of particular interest are the values at which the popufataues remain con-
stant, callecequilibrium points The equilibrium points for this system can be de-
termined by setting the right-hand side of the above eqguatio zero. Lettinde
andL. represent the equilibrium state, from the second equat®have

cd
Le= He = . .32
e=0 or Hg b_d (3.32)
Substituting this into the first equation, we have thatlfge= 0 eitherHe = 0 or
He = k. ForLe # 0, we obtain

_ IHe(c+He) (1— E) _ bcr(abk—cd—dk)
- aHe k/ (ab—d)2k
Thus, we have three possible equilibrium poixgs= (Le, He):

() ) ()

whereHg andLg are given in equations3(32 and @.33. Note that the equilib-
rium populations may be negative for some parameter vaboesesponding to a
nonachievable equilibrium point.

Figure3.20shows a simulation of the dynamics starting from a set of f@pu
tion values near the nonzero equilibrium values. We seddhaltis choice of pa-
rameters, the simulation predicts an oscillatory popaifatiount for each species,
reminiscent of the data shown in Figl2.

(3.31)

dL, L>0.

L (3.33)

Volume | of the two-volume set by J. D. Murramr04] give a broad coverage
of population dynamics.
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Figure 3.20: Simulation of the predator—prey system. The figure on the left showswa sim
lation of the two populations as a function of time. The figure on the right shibe/ pop-
ulations plotted against each other, starting from different values of apelation. The
oscillation seen in both figures is an example tifrdt cycle The parameter values used for
the simulations ara=3.2,b=0.6,c=50,d = 0.56,k =125 andr = 1.6.

Exercises

3.1(Cruise control) Consider the cruise control example dieedrin Sectior8.1
Build a simulation that re-creates the response to a hillvehia Figure3.3band
show the effects of increasing and decreasing the mass céthy 25%. Redesign
the controller (using trial and error is fine) so that it reguta within 1% of the
desired speed within 3 s of encountering the beginning ohilhe

3.2 (Bicycle dynamics) Show that the dynamics of a bicycle frammemby equa-
tion (3.5 can be approximated in state space form as

i ()= (s &) ) + (i) o
y— [1 0] X,

where the inputi is the steering anglé and the outpuy is the tilt angleg. What
do the stateg; andxp represent?

3.3 (Bicycle steering) Combine the bicycle model given by etue3.5) and the
model for steering kinematics in Exam#e3to obtain a model that describes the
path of the center of mass of the bicycle.

3.4 (Operational amplifier circuit) Consider the op amp circhibwn below.
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Show that the dynamics can be written in state space form as

1 1 0 1

dx . - R1C1 B RaCl R]_C]_ _

i & 1 . 1 X+ . u, y_(O 1]x,
Ra RCo RoCo

whereu = v; andy = vs. (Hint: Usev, andvs as your state variables.)

3.5(Operational amplifier oscillator) The op amp circuit showioleis an imple-
mentation of an oscillator.

(&) Ry C
i w |

Show that the dynamics can be written in state space form as

0 R4
dx R1RsC1
dt 1 ’
T RG, 0

where the state variables represent the voltages acrosaplaeitors; = v and
Xo = Vo.

3.6 (Congestion control using RELPW+02) A number of improvements can
be made to the model for Internet congestion control presemt Section3.4.
To ensure that the router’s buffer size remains positivecaremodify the buffer
dynamics to satisfy

% _Js—q b >0
dt Salpw) (s —C) b =0.

In addition, we can model the drop probability of a packeeasn how close we
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are to the buffer limits, a mechanism known as random eatiotien (RED):

0 at) < blower
—m (84) B plri(t) —p b:ower b:ower <a (t) < blupper
e ) i) —(1— 2b|“pper) bfpperg at) < ZbIUpper
! a(t) > 20"

da B
Fri —aic(a —hy),

wherea, b'PP®, blover and p;'PP*" are parameters for the RED protocol.

Using the model above, write a simulation for the system andl &irset of
parameter values for which there is a stable equilibriunmipaind a set for which
the system exhibits oscillatory solutions. The followingssef parameters should
be explored:

N = 20,30,...,60, blower = 40 pkts o =0.1,
c=8,9,...,15 pktyms byPPe" =540 pks a =104,
T=5560,...,100 ms

3.7 (Atomic force microscope with piezo tube) A schematic déagrof an AFM
where the vertical scanner is a piezo tube with preloadisgdsvn below.

T
Vr
my
kl% =L e
ko =] 2

Show that the dynamics can be written as
2 2|

d pAl dZ]_ d dl
(m1+mz)w+(cl+cZ)E+(k1+kz)zl M 15 +C2 3 kel

Are there parameter values that make the dynamics parntiggianple?

+Co—

3.8(Drug administration) The metabolism of alcohol in the body be modeled
by the nonlinear compartment model

d d (o]
Vbdf?[o @ =0(cp — ) — Omax—— + gi,

=q(c — Cp) + v, Mi— at o
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whereV, = 48 L andV, = 0.6 L are the apparent volumes of distribution of body
water and liver water, andc are the concentrations of alcohol in the compart-
ments,qyy anddg are the injection rates for intravenous and gastrointaistin
take,q = 1.5 L/min is the total hepatic blood flowgmax = 2.75 mmol/min and
co = 0.1 mmol/L. Simulate the system and compute the concentritithe blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9 (Population dynamics) Consider the model for logistic gtogiven by equa-
tion (3.30. Show that the maximum growth rate occurs when the size gbdipe
ulation is half of the steady-state value.

3.10 (Fisheries management) The dynamics of a commercial fisherpeate-
scribed by the following simple model:

dx

dt
wherex s the total biomasd,(x) = rx(1—x/k) is the growth rate ankl(x, u) = axu
is the harvesting rate. The outpyis the rate of revenue, and the parameteis
andc are constants representing the price of fish and the cost aidisBhow that
there is an equilibrium where the steady-state biomasgs-sc/(ab). Compare

with the situation when the biomass is regulated to a cohstloe and find the
maximum sustainable return in that case.

f(x) —h(x,u), y = bh(x,u) —cu



Chapter Four

Dynamic Behavior

It Don't Mean a Thing If It Ain't Got That Swing.
Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behakiynamical sys-
tems focused on systems modeled by nonlinear differergiztons. This allows
us to consider equilibrium points, stability, limit cyclead other key concepts in
understanding dynamic behavior. We also introduce somaadstfor analyzing
the global behavior of solutions.

4.1 Solving Differential Equations

In the last two chapters we saw that one of the methods of nmgpdinamical
systems is through the use of ordinary differential equat{®DES). A state space,
input/output system has the form

Zlf[( = f(x,u), y =h(x,u), (4.1)
wherex= (x1,...,%,) € R"is the statey € RP is the input ang € R%is the output.
The smooth mapé : R" x RP — R"andh: R" x RP — RY represent the dynamics
and measurements for the system. In general, they can bmeanfunctions of
their arguments. We will sometimes focus on single-inpimgls-output (SISO)
systems, for whiclp=q=1.

We begin by investigating systems in which the input has Ise¢to a function
of the statepy = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equatin this case become

dx :
4 = fxa() =Fx). (4.2)

To understand the dynamic behavior of this system, we neethatyze the
features of the solutions of equatiah2). While in some simple situations we can
write down the solutions in analytical form, often we mudyen computational
approaches. We begin by describing the class of solutiartsifproblem.

We say thatx(t) is a solution of the differential equation4(2) on the time
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intervaltg e Rtot; e R if

d)c(j(tt) =F(x(t)) foralltg<t<ts.

A given differential equation may have many solutions. Wé# wiost often be
interested in thenitial value problem wherex(t) is prescribed at a given time
to € R and we wish to find a solution valid for dlituretimet > to.
We say thak(t) is a solution of the differential equatiod.@) with initial value
Xo € R"attg e R if
dx(t)

X(to) =% and T:F(x(t)) foralltp <t <ts.

For most differential equations we will encounter, thera ismiquesolution that is
defined fortg < t < tf. The solution may be defined for all tinte> to, in which
case we takeés = . Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to thisrgly as the solution
of an ODE.

We will typically assume thdp is equal to 0. In the case whénis independent
of time (as in equationd4(.2)), we can do so without loss of generality by choosing
a new independent (time) variable=t —ty (Exercise4.1).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of thenfor
G+ 2{ o+ wdq =0,

whereq is the displacement of the oscillator from its rest positibimese dynamics
are equivalent to those of a spring—mass system, as showneirtiga2.6. We
assume thaf < 1, corresponding to a lightly damped system (the reasorhfer t
particular choice will become clear later). We can rewtlis in state space form
by settingx; = g andx; = g/ wp, giving

dxq dx

—— = WpX —— = — X1 — 2{ WoXe.

qr — W% at WoX1 — 2 woXz
In vector form, the right-hand side can be written as

(X
Fo0= [—woxl—ZzZasz] '

The solution to the initial value problem can be written in anfer of different
ways and will be explored in more detail in ChapeiHere we simply assert that
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Figure 4.1: Response of the damped oscillator to the initial condikge- (1,0). The solu-
tion is unique for the given initial conditions and consists of an oscillatorytieoldior each
state, with an exponentially decaying magnitude.

the solution can be written as

1 .
xl(t) = eszut)t (X]_OCOSO.ht + @(O.bleo—f- Xzo) SII’](.Qﬂ) ,

1 .
Xo(t) = e <ot <xzocosa)dt — @(nguﬁ- wod X20) sma)dt> ,

wherexy = (X10,%20) is the initial condition andwy = wy+/1— 2. This solution
can be verified by substituting it into the differential eqoat We see that the so-
lution is explicitly dependent on the initial condition,dait can be shown that this
solution is unique. A plot of the initial condition resporiseshown in Figuret.1
We note that this form of the solution holds only fox0{ < 1, corresponding to
an “underdamped” oscillator. O

Without imposing some mathematical conditions on the fiondE, the differ- @
ential equation4.2) may not have a solution for al| and there is no guarantee
that the solution is unique. We illustrate these possiéditvith two examples.

Example 4.2 Finite escape time
Letx € R and consider the differential equation

dx
g 4.3
gt =X (4.3)
with the initial conditionx(0) = 1. By differentiation we can verify that the func-
tion 1
t)=—
X(t) =1

satisfies the differential equation and that it also satisfiedritial condition. A
graph of the solution is given in Figude2g notice that the solution goes to infinity
ast goes to 1. We say that this system liimite escape timeThus the solution
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Figure 4.2: Existence and uniqueness of solutions. EquatibB) (has a solution only for
time t < 1, at which point the solution goes to, as shown in (a). Equatio{) is an

example of a system with many solutions, as shown in (b). For each valalene get a
different solution starting from the same initial condition.

exists only in the time interval &t < 1. O

Example 4.3 Nonunique solution

Letx € R and consider the differential equation
dx
— =2 4.4
gt = 2VX (4.4)
with initial conditionx(0) = 0. We can show that the function

0= 0 fo<t<a
| (t-a)? ift>a

satisfies the differential equation for all values of the patera > 0. To see this,
we differentiatex(t) to obtain

dx_ fo fo<t<a
dt  |2(t-a) ift>a,

and hencex = 2,/x for all t > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figurd.2h Notice that in this case there are many solutions
to the differential equation. O

These simple examples show that there may be difficulties eviénsimple
differential equations. Existence and uniqueness can begigeed by requiring
that the functiorF have the property that for some fixed: R,

IFO)—FW) <cllx=y[ forallxy,

which is calledLipschitz continuity A sufficient condition for a function to be
Lipschitz is that the JacobiatF /dx is uniformly bounded for atk. The difficulty
in Example4.2 is that the derivativedF /dx becomes large for large and the
difficulty in Example4.3is that the derivative@F /dx is infinite at the origin.



4.2. QUALITATIVE ANALYSIS 106

1 ‘\\\\\\\ 1
SR
05, ERARRRR 0.5
SN
« oo, Sy \ %
2 of ot . g Of
Yy <y
\ AR ~ - ., j
_0'5\\\\\\\._,/ —0.5
NN
_ NS - -1 )
}1 -0.5 0 (;; 1 -1 -05 0 0.5 1
X1 X1
(a) Vector field (b) Phase portrait

Figure 4.3: Phase portraits. (a) This plot shows the vector field for a planar dya&syis-
tem. Each arrow shows the velocity at that point in the state space. (bpl®hiacludes the
solutions (sometimes called streamlines) from different initial conditiority the vector
field superimposed.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is importantriderstanding some
of the key concepts of stability in nonlinear dynamics. W# f@icus on an im-
portant class of systems known as planar dynamical sysiEmse systems have
two state variables € R?, allowing their solutions to be plotted in thgy,x,)
plane. The basic concepts that we describe hold more ggnaralican be used to
understand dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamicalesys with state
x € R? is to plot the phase portrait of the system, briefly introduice@hapter2.
We start by introducing the concept ofvactor field For a system of ordinary

differential equations q
X

a:F(X)a

the right-hand side of the differential equation defines argx ¢ R" a velocity
F(x) € R". This velocity tells us how changes and can be represented as a vector
F(x) e R".

For planar dynamical systems, each state corresponds totarpthe plane and
F(x) is a vector representing the velocity of that state. We cahthpkse vectors
on a grid of points in the plane and obtain a visual image ofdymamics of the
system, as shown in Figuke3a The points where the velocities are zero are of
particular interest since they define stationary points efflibw: if we start at such
a state, we stay at that state.
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A phase portraitis constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a seiitidil conditions, we
plot the solution of the differential equation in the pldk& This corresponds to
following the arrows at each point in the phase plane andidgathe resulting tra-
jectory. By plotting the solutions for several differenitial conditions, we obtain
a phase portrait, as show in Figute8h Phase portraits are also sometimes called
phase plane diagrams

Phase portraits give insight into the dynamics of the systgshbwing the so-
lutions plotted in the (two-dimensional) state space oftsem. For example, we
can see whether all trajectories tend to a single point as iticreases or whether
there are more complicated behaviors. In the example in €3y corresponding
to a damped oscillator, the solutions approach the origimlidnitial conditions.
This is consistent with our simulation in Figudel, but it allows us to infer the
behavior for all initial conditions rather than a singletiai condition. However,
the phase portrait does not readily tell us the rate of chahgee states (although
this can be inferred from the lengths of the arrows in theosefatld plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a stages an equilibrium point for a dynamical system

dx

if F(xe) = 0. If a dynamical system has an initial conditi{®) = Xe, then it will

stay at the equilibrium poink(t) = X for all t > 0, where we have takep = 0.
Equilibrium points are one of the most important features df@amical sys-

tem since they define the states corresponding to constaratimgeconditions. A

dynamical system can have zero, one or more equilibriumtgoin

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figurd, which is a part of the balance system
we considered in Chapt@r The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at thedaf the rocket, we
seek to keep the rocket stabilized in the upright positiore $tate variables are
the anglef = x; and the angular velocitg6/dt = xo, the control variable is the
acceleratioru of the pivot and the output is the andle

For simplicity we assume thagl/J = 1 andl/J = 1, so that the dynamics
(equation 2.10) become

dx _ [ *2 ] . (4.5)

dt | sinxg — cx 4+ ucosxg
This is a nonlinear time-invariant system of second orders $hime set of equa-
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a iode
for a class of balance systems in which we wish to keep a system uprightasa rocket (a).
Using a simplified model of an inverted pendulum (b), we can develomagoportrait that
shows the dynamics of the system (c). The system has multiple equilibriints pmarked

by the solid dots along the = 0 line.

tions can also be obtained by appropriate normalizatiohegystem dynamics as
illustrated in Example.7.
We consider the open loop dynamics by setting 0. The equilibrium points

for the system are given by
+nmt
Xe = [ 0 ] 3

wheren=0,1,2,.... The equilibrium points fon even correspond to the pendu-
lum pointing up and those farodd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inpugsdhown in Figuret.4c.
The phase portrait shows2mm < x; < 211, so five of the equilibrium points are
shown. O

Nonlinear systems can exhibit rich behavior. Apart fromikdopia they can
also exhibit stationary periodic solutions. This is of grpedctical value in gen-
erating sinusoidally varying voltages in power systemsnogenerating periodic
signals for animal locomotion. A simple example is given ireExse4.12 which
shows the circuit diagram for an electronic oscillator. Amalized model of the
oscillator is given by the equation

C:j)(::x2+x1(l—x%—x§), dd>f[2 = X1 +X%(1—x¢ —x3). (4.6)
The phase portrait and time domain solutions are given in Eigls The figure
shows that the solutions in the phase plane converge towdanittajectory. In the
time domain this corresponds to an oscillatory solutiontiidenatically the circle
is called dimit cycle More formally, we call an isolated solutiot) a limit cycle
of periodT > 0if x(t+T) =x(t) forallt € R.
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different iwitnalitions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) slaasingle solution
plotted as a function of time, with the limit cycle corresponding to a steady dswillaf
fixed amplitude.

There are methods for determining limit cycles for secortkpsystems, but
for general higher-order systems we have to resort to caatipatl analysis. Com-
puter algorithms find limit cycles by searching for periodigjéctories in state
space that satisfy the dynamics of the system. In many sinststable limit cy-
cles can be found by simulating the system with differerttahconditions.

4.3 Stability

The stability of a solution determines whether or not sohgioearby the solution
remain close, get closer or move further away. We now giveradbdefinition of
stability and describe tests for determining whether atemius stable.

Definitions

Let x(t;a) be a solution to the differential equation with initial cdtieh a. A
solution isstableif other solutions that start nearstay close tx(t;a). Formally,
we say that the solutior(t; a) is stable if for alle > 0, there exists & > 0 such

that
Ib—al|<d = ||x(t;b)—x(t;a)]| <& forallt>0.

Note that this definition does not imply theft; b) approaches(t;a) as time in-
creases hut just that it stays nearby. Furthermore, the wlldemay depend on
€, so that if we wish to stay very close to the solution, we mayeha start very,
very close § < ¢). This type of stability, which is illustrated in Figu#e6, is also
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Figure 4.6: lllustration of Lyapunov’s concept of a stable solution. The solutionesgmted
by the solid line is stable if we can guarantee that all solutions remain within acfube
diametere by choosing initial conditions sufficiently close the solution.

calledstability in the sense of Lyapund¥a solution is stable in this sense and the
trajectories do not converge, we say that the solutioreigtrally stable

An important special case is when the solutigtta) = xe is an equilibrium
solution. Instead of saying that the solution is stable, wely say that the equi-
librium point is stable. An example of a neutrally stableigqtium point is shown
in Figure4.7. From the phase portrait, we see that if we start near theilequih
point, then we stay near the equilibrium point. Indeed, lids Example, given any
¢ that defines the range of possible initial conditions, we @aply choosed = ¢
to satisfy the definition of stability since the trajectoréae perfect circles.

A solutionx(t; a) isasymptotically stablé it is stable in the sense of Lyapunov
and alsox(t; b) — x(t;a) ast — o for b sufficiently close taa. This corresponds
to the case where all nearby trajectories converge to thessalution for large
time. Figure4.8 shows an example of an asymptotically stable equilibriuintpo
Note from the phase portraits that not only do all trajeet®istay near the equi-
librium point at the origin, but that they also all approakh origin ag gets large
(the directions of the arrows on the phase portrait show iiteetibn in which the
trajectories move).

A solutionx(t;a) is unstablef it is not stable. More specifically, we say that a
solutionx(t; a) is unstable if given some > 0, there doesot exist ad > 0 such
that if ||b—a|| < 9, then||x(t;b) — x(t; a)|| < & for all t. An example of an unstable
equilibrium point is shown in Figur4.9.

The definitions above are given without careful descriptiothefr domain of
applicability. More formally, we define a solution to hacally stable(or locally
asymptotically stableif it is stable for all initial conditionsc € B, (a), where

Br(a) ={x:|x—a| <r}

is a ball of radiug arounda andr > 0. A system isglobally stableif it is sta-
ble for all r > 0. Systems whose equilibrium points are only locally stalale c
have interesting behavior away from equilibrium pointswasexplore in the next
section.

For planar dynamical systems, equilibrium points have ssigned names
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable

equilibrium point. The equilibrium pointe at the origin is stable since all trajectories that
start neaxe stay neaxe.
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Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium poixy at the origin is asymptotically stable
since the trajectories converge to this point as c.
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point at the origin is unstable since not all trajectories
that start neaxe stay neae. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.
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Figure 4.10: Phase portraits for a congestion control protocol running ith 60 identical
source computers. The equilibrium values correspond to a fixed wiattive source, which
results in a steady-state buffer size and corresponding transmistgoA faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

based on their stability type. An asymptotically stableilguum point is called

a sink or sometimes amttractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, @ saddle if
some trajectories lead to the equilibrium point and othesseraway (this is the
situation pictured in Figurd.9). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such asotiein Figuret.?) is called
acenter

Example 4.5 Congestion control
The model for congestion control in a network consistindladentical computers
connected to a single router, introduced in Sec8ahis given by

dw ¢ 1 w2 db e

at b P° ( 3 ) ’ - ¢

wherew is the window size anflis the buffer size of the router. Phase portraits are
shown in Figuret. 10for two different sets of parameter values. In each case we se
that the system converges to an equilibrium point in whi@htffer is below its
full capacity of 500 packets. The equilibrium size of the bufepresents a balance
between the transmission rates for the sources and theitapithe link. We see
from the phase portraits that the equilibrium points arergsgtically stable since

all initial conditions result in trajectories that converp these points. O
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Stability of Linear Systems

A linear dynamical system has the form

dx

i Ax, x(0) = Xo, 4.7)
whereA € R"™" is a square matrix, corresponding to the dynamics matrix of a
linear control system2(6). For a linear system, the stability of the equilibrium at

the origin can be determined from the eigenvalues of theixnatr
A(A) = {se C:detsl—A) =0}.

The polynomial dgsl — A) is the characteristic polynomiaénd the eigenvalues
are its roots. We use the notatiapfor the jth eigenvalue oA, so thatA; € A(A).
In generalA can be complex-valued, althoughAfis real-valued, then for any
eigenvalue), its complex conjugatd * will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stabdita linear system
depends only on the matr we find that stability is a property of the system. For
a linear system we can therefore talk about the stabilithefdystem rather than
the stability of a particular solution or equilibrium paint

The easiest class of linear systems to analyze are those w¥&teen matrices
are in diagonal form. In this case, the dynamics have the form

A1 0
dx A2
— = X. 4.8
at . (4.8)
0 An
It is easy to see that the state trajectories for this systenndependent of each
other, so that we can write the solution in termsafidividual systems = Ajx;.
Each of these scalar solutions is of the form

xj (t) = €ix;(0).

We see that the equilibrium point = O is stable ifA; < 0 and asymptotically
stable ifA; < 0.
Another simple case is when the dynamics are in the bloclodialgorm

o1 W 0 0
—w 01 0 0
dx _ S I
dt 0 0o . : : .
0 0 Om  Wn
0 0 —Wm Om

In this case, the eigenvalues can be shown tdjbe oj - iw;. We once again can
separate the state trajectories into independent sofufiimreach pair of states, and
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the solutions are of the form
Xoj—1(t) = 71" (xoj_1(0) coswjt + X2} (0) sinwjt),
X2 (t) = €71 (—x2j_1(0) sinwjt + X2j (0) coswjt) ,

wherej = 1,2,...,m. We see that this system is asymptotically stable if and only
if gj = ReAj < 0. Itis also possible to combine real and complex eigensgailue
(block) diagonal form, resulting in a mixture of solutiorfstioe two types.

Very few systems are in one of the diagonal forms above, buesystems can
be transformed into these forms via coordinate transfaomst One such class of
systems is those for which the dynamics matrix has distimmbepeating) eigen-
values. In this case there is a matfixc R"™*" such that the matriT AT ! is
in (block) diagonal form, with the block diagonal elementsresponding to the
eigenvalues of the original matrix (see Exercisd.14). If we choose new coordi-
natesz = Tx, then dz

— =Tx=TAx=TAT 'z
dt

and the linear system has a (block) diagonal dynamics mditighermore, the
eigenvalues of the transformed system are the same as greabsystem since if
vis an eigenvector of, thenw = Tvcan be shown to be an eigenvecto@¥T 1.
We can reason about the stability of the original system byngahat x(t) =
T—1z(t), and so if the transformed system is stable (or asymptbtistdble), then
the original system has the same type of stability.

This analysis shows that for linear systems with distinceeiglues, the sta-
bility of the system can be completely determined by exangjrihe real part of
the eigenvalues of the dynamics matrix. For more gener&ss we make use
of the following theorem, proved in the next chapter:

Theorem 4.1(Stability of a linear system)The system

dx
a_Ax

is asymptotically stable if and only if all eigenvalues of IAhave a strictly neg-
ative real part and is unstable if any eigenvalue of A has &tyrpositive real
part.

Example 4.6 Compartment model

Consider the two-compartment module for drug deliveryodtrced in SectioB.6.
Using concentrations as state variables and denotingdke\stctor by, the sys-
tem dynamics are given by

dX_ —ko—ki ki bo _
dt[ ko —k2] x+[0 u, y= [O 1] X,

where the inpuu is the rate of injection of a drug into compartment 1 and the
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concentration of the drug in compartment 2 is the measurgzlioy We wish to
design a feedback control law that maintains a constanubgipen byy = yq.
We choose an output feedback control law of the form

u= —K(y—Ya) + Ug,
whereuy is the rate of injection required to maintain the desiredcemtration
andk is a feedback gain that should be chosen such that the clospdystem is
stable. Substituting the control law into the system, weiabta

dX_ —ko—k1 kg —bok bo .
a_ [ ko —ko X+ 0 (ud+de) =: AX+ B,

y= [0 1) X=:Cx

The equilibrium concentratiox, € R? is given byxe = —A 1Bus and

_ boks
= - CA Ble=———(ug+kyy).
Ye b= ot bokzk( a +Kya)
Choosingug such thatye = yq provides the constant rate of injection required to
maintain the desired output. We can now shift coordinatgdaice the equilibrium

point at the origin, which yields (after some algebra)
dz_ (—ko—ki ki—bok .
dt ko —ko ?

wherez = X — Xe. We can now apply the results of Theordni to determine the
stability of the system. The eigenvalues of the system aenddy the roots of the
characteristic polynomial

A(S) = S*+ (Ko + ky + ko) s+ (koka -+ bokoK).

While the specific form of the roots is messy, it can be shownttieroots have
negative real part as long as the linear term and the corstaniare both positive
(Exercise4.16). Hence the system is stable for dny O. O

Stability Analysis via Linear Approximation

An important feature of differential equations is that ibféen possible to deter-
mine the local stability of an equilibrium point by approyting the system by a
linear system. The following example illustrates the badéai

Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dyiseamgcgiven by

d_ (0
dt  |sinxg—yx2 )’
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Figure 4.11: Comparison between the phase portraits for the full nonlinear systgrasda
its linear approximation around the origin (b). Notice that near the equilibpgaimt at the
center of the plots, the phase portraits (and hence the dynamics) ars aerdical.

where we have defined the statexas (0, 8). We first consider the equilibrium
point atx = (0, 0), corresponding to the straight-up position. If we assuraéttie
angle@ = x; remains small, then we can replacesinvith x; and cox; with 1,
which gives the approximate system

dx X 0 1
= [Xlzsz] = [1 y] X. (4.9)

Intuitively, this system should behave similarly to the m@omplicated model
as long as¢; is small. In particular, it can be verified that the equililoniyoint
(0,0) is unstable by plotting the phase portrait or computing therealues of the
dynamics matrix in equatiors(9)

We can also approximate the system around the stable equilitpoint at
x=(1,0). In this case we have to expandsirand cox; aroundx; = 71, according
to the expansions

sin(rr+6) = —sin@ ~ -0, coyrm+8) = —cog0)~ —1.

If we definez; = x; — irandz, = xo, the resulting approximate dynamics are given

by g
j_ 2 . 0 1
(Lm0 ) .10

Note thatz= (0,0) is the equilibrium point for this system and that it has thmea
basic form as the dynamics shown in Figdt8. Figure4.11shows the phase por-
traits for the original system and the approximate systeyarad the corresponding
equilibrium points. Note that they are very similar, altgbuot exactly the same.
It can be shown that if a linear approximation has either ggtically stable or

unstable equilibrium points, then the local stability o triginal system must be
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the same (Theored.3). O
More generally, suppose that we have a nonlinear system
dx
— =F(X

that has an equilibrium point at. Computing the Taylor series expansion of the
vector field, we can write
d oF . .
X_F Xe) + =—| (X—Xe)+ higher-order terms ifx — Xe).

a_() ox |y,

SinceF (xe) = 0, we can approximate the system by choosing a new statélearia
Z= X— X and writing

d—Z:Az, where A= oF . (4.11)
dt OX |y,

We call the systend(11) thelinear approximatiorof the original nonlinear system

or thelinearizationat Xe.

The fact that a linear model can be used to study the behaviarmanlin-
ear system near an equilibrium point is a powerful one. lIddee can take this
even further and use a local linear approximation of a nealirsystem to design
a feedback law that keeps the system near its equilibriumtgdesign of dy-
namics). Thus, feedback can be used to make sure that salu@orain close to
the equilibrium point, which in turn ensures that the linepproximation used to
stabilize it is valid.

Linear approximations can also be used to understand thiitgtabnonequi-
librium solutions, as illustrated by the following example

Example 4.8 Stable limit cycle

Consider the system given by equatidng,
dxq dx
dt dt

whose phase portrait is shown in Figur®. The differential equation has a peri-

odic solution

= Xo+x1(1— X2 —3), = X1 +X%(1-x —x3),

x1(t) = x1(0) cost +x2(0) sint, (4.12)

with x2(0) +x3(0) = 1.
To explore the stability of this solution, we introduce pataordinates and
¢, which are related to the state variabkgsndx, by

X1 = COS§, X2 =rsing.
Differentiation gives the following linear equations foand¢:
Xy =Fcosp —rgsing, Xo =fsing +r¢cosp.
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Solving this linear system farand¢ gives, after some calculation,

dr %_

- = _2 =
at A g

Notice that the equations are decoupled; hence we can arthlyztability of each
state separately.

The equation for has three equilibriar =0, r = 1 andr = —1 (not realiz-
able since must be positive). We can analyze the stability of theselibgiai by
linearizing the radial dynamics with(r) = r(1—r?). The corresponding linear
dynamics are given by

dr OF
Gl " (1-3r3)r, re=0,1,

e

where we have abused notation and usdd represent the deviation from the
equilibrium point. It follows from the sign ofl — 3r2) that the equilibriunt = 0

is unstable and the equilibrium= 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes to= 1 as time goes to infinity, but if the system
starts withr = 0, it will remain at the equilibrium for all times. This impkahat
all solutions to the original system that do not starkat X, = 0 will approach
the circlex? +x3 = 1 as time increases.

To show the stability of the full solutior4(12), we must investigate the be-
havior of neighboring solutions with different initial cditions. We have already
shown that the radiuswill approach that of the solutio®(12 as long as(0) > 0.
The equation for the angl¢ can be integrated analytically to giygt) = —t +
¢ (0), which shows that solutions starting at different angpewill neither con-
verge nor diverge. Thus, the unit circleagracting, but the solution4.12) is only
stable, not asymptotically stable. The behavior of the systeillustrated by the
simulation in Figuret.12 Notice that the solutions approach the circle rapidly, but

-1

that there is a constant phase shift between the solutions. O
4.4 Lyapunov Stability Analysis @
We now return to the study of the full nonlinear system

% =F(x), xeR" (4.13)

Having defined when a solution for a nonlinear dynamical systestable, we
can now ask how to prove that a given solution is stable, asyioplly stable
or unstable. For physical systems, one can often argue atalitity based on
dissipation of energy. The generalization of that techniguarbitrary dynamical
systems is based on the use of Lyapunov functions in placeerfg.
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Figure 4.12:Solution curves for a stable limit cycle. The phase portrait on the left shiost

the trajectory for the system rapidly converges to the stable limit cycle. fEinéng points

for the trajectories are marked by circles in the phase portrait. The timaidgoiots on

the right show that the states do not converge to the solution but insteathimairconstant
phase error.

In this section we will describe techniques for determiniing stability of so-
lutions for a nonlinear systend(13. We will generally be interested in stability
of equilibrium points, and it will be convenient to assumattk = 0 is the equi-
librium point of interest. (If not, rewrite the equationsamew set of coordinates

Z=X—Xe.)

Lyapunov Functions

A Lyapunov function V. R" — R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, itase find a nonnegative
function that always decreases along trajectories of teegery, we can conclude
that the minimum of the function is a stable equilibrium gdlocally).

To describe this more formally, we start with a few definitiovge say that a
continuous functiorV is positive definitef V(x) > 0 for all x # 0 andV (0) = 0.
Similarly, a function iegative definité V (x) < 0 for allx# 0 andV (0) = 0. We
say that a functiolVv is positive semidefinité V (x) > 0 for all x, butV (x) can be
zero at points other than just= 0.

To illustrate the difference between a positive definite fiomcand a positive
semidefinite function, suppose thet R? and let

Vi) =X, Va(X) =+,

Both V; andV, are always nonnegative. However, it is possibleMpto be zero
even ifx # 0. Specifically, if we sex= (0, c), wherec € R is any nonzero number,
thenVy(x) = 0. On the other hand/z(x) = O if and only ifx = (0,0). ThusV; is
positive semidefinite and, is positive definite.

We can now characterize the stability of an equilibrium poin= 0 for the



4.4. LYAPUNOV STABILITY ANALYSIS 120

Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov functx) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system vaysbaus¥® (x)

to decrease along the trajectory.

system 4.13.

Theorem 4.2(Lyapunov stability theorem)Let V be a nonnegative function on
R" and letV represent the time derivative of V along trajectories & flystem
dynamicg4.13:
ovdx oV

= xat ox ¥
Let B = B;(0) be a ball of radius r around the origin. If there exists>r0 such
that V is positive definite and is negative semidefinite for all«By, then x= 0
is locally stable in the sense of Lyapunov. If V is positiviinite andV is negative
definite in B, then x= 0is locally asymptotically stable.

If V satisfies one of the conditions above, we say that a (local)Lyapunov
functionfor the system. These results have a nice geometric intatjmet The
level curves for a positive definite function are the curveingd byV (x) = c,
¢ > 0, and for eactt this gives a closed contour, as shown in Figdré3 The
condition thatV (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories ntoenaller and smaller
values ofv and ifV is negative definite thexmust approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system
dx 2
at o 1ix X.
This system has equilibrium pointsya& 1 andx = —2. We consider the equilib-
rium point atx = 1 and rewrite the dynamics usizg= x — 1:
dz 2

dt 21z 2%
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which has an equilibrium point &= 0. Now consider the candidate Lyapunov
function 1

which is globally positive definite. The derivative ¥f along trajectories of the

system is given by )
z

= m—
If we restrict our analysis to an inten}, wherer < 2, then 2+-z> 0 and we can
multiply through by 2+ zto obtain

22— (P+2) (242 =-7—-32=-7(z+3)<0, zeB,r<2

It follows thatV(z) < Oforallze B, z# 0, and hence the equilibrium poixg= 1
is locally asymptotically stable. O

V() =z

A slightly more complicated situation occurs\ifis negative semidefinite. In
this case it is possible thslt(x) = 0 whenx # 0, and hence& could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum

A normalized model for a hanging pendulum is
dd)il = Xo, ?;2 = —sinxy,

wherex; is the angle between the pendulum and the vertical, withtigest;

corresponding to counterclockwise rotation. The equatasan equilibrium; =

x2 = 0, which corresponds to the pendulum hanging straight ddwexplore the

stability of this equilibrium we choose the total energy dyapunov function:

1 1 1
V(X) = 1—cosxg + Exg ~ Exf + éxg.

The Taylor series approximation shows that the function sitpe definite for
smallx. The time derivative o¥ (x) is

V = X1 SiNXy + XoXp = Xp SiNXg — Xp Sinxg = 0.
Since this function is negative semidefinite, it follows froiyabunov’s theorem
that the equilibrium is stable but not necessarily asynigatly stable. When per-
turbed, the pendulum actually moves in a trajectory thatesponds to constant
energy. O

Lyapunov functions are not always easy to find, and they arainigue. In
many cases energy functions can be used as a starting ppingsadone in Ex-
ample4.10 It turns out that Lyapunov functions can always be foundédny
stable system (under certain conditions), and hence onetimat if a system
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is stable, a Lyapunov function exists (and vice versa). Rexasults using sum-
of-squares methods have provided systematic approachdmdng Lyapunov
systemsPPP02 Sum-of-squares techniques can be applied to a broad yafiet
systems, including systems whose dynamics are describgalipgomial equa-
tions, as well as hybrid systems, which can have differendigtoofor different
regions of state space.

For a linear dynamical system of the form

dx
2A
TR

it is possible to construct Lyapunov functions in a systécmaganner. To do so, we
consider quadratic functions of the form

V(x) = X" Px,

whereP € R"™" is a symmetric matrix® = P'). The condition thaV be positive
definite is equivalent to the condition thHabe apositive definite matrix

x'Px>0, forallx#0,

which we write ad® > 0. It can be shown that P is symmetric, the® is positive
definite if and only if all of its eigenvalues are real and psit

Given a candidate Lyapunov functid(x) = x' Px, we can now compute its
derivative along flows of the system:

. dVdx

V= oxdt
The requirement thaf be negative definite (for asymptotic stability) becomes a
condition that the matrixQ be positive definite. Thus, to find a Lyapunov func-

tion for a linear system it is sufficient to choos®a> 0 and solve thé.yapunov
equation

X" (ATP+ PA)x =: —xT Qx.

ATP+PA=—Q. (4.14)

This is a linear equation in the entries Bf and hence it can be solved using
linear algebra. It can be shown that the equation always reugion if all of
the eigenvalues of the matrix are in the left half-plane. Moreover, the solution
P is positive definite ifQ is positive definite. It is thus always possible to find
a quadratic Lyapunov function for a stable linear system.whedefer a proof
of this until Chapter5, where more tools for analysis of linear systems will be
developed.

Knowing that we have a direct method to find Lyapunov functitordinear
systems, we can now investigate the stability of nonlingatesns. Consider the
system

dx

i F(x) =: Ax+F (x), (4.15)
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(a) Circuit diagram (b) Equilibrium points
Figure 4.14: Stability of a genetic switch. The circuit diagram in (a) represents two pitein
that are each repressing the production of the other. The inp@sdu, interfere with this

repression, allowing the circuit dynamics to be modified. The equilibriumtgdor this
circuit can be determined by the intersection of the two curves shown.in (b)

whereF (0) = 0 andF (x) contains terms that are second order and higher in the
elements ok. The functionAx is an approximation oF (x) near the origin, and
we can determine the Lyapunov function for the linear apipnation and investi-
gate if it is also a Lyapunov function for the full nonlinearsgem. The following
example illustrates the approach.

Example 4.11 Genetic switch
Consider the dynamics of a set of repressors connectedhtrget a cycle, as
shown in Figure4.14a The normalized dynamics for this system were given in

Exercise2.9;
dzz  u dz  u

dt 144 P dr 144 @

wherez; and z, are scaled versions of the protein concentrationand u are
parameters that describe the interconnection betweeneihesgand we have set
the external inputs; andus to zero.

The equilibrium points for the system are found by equatiregtiime deriva-
tives to zero. We define

(4.16)

_ M oy A —pnd
f(u)ilJru”’ f (u)idui (1+um?2’
and the equilibrium points are defined as the solutions of guatons
1 = f(Zz), Zn = f(Zl).

If we plot the curveqz, f(z)) and(f(z),2) on a graph, then these equations
will have a solution when the curves intersect, as shown inreig.14h Because
of the shape of the curves, it can be shown that there willydvwe three solutions:
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one atzie = e, ONe Withzye < 2 and one withege > zpe. If > 1, then we can
show that the solutions are given approximately by

1 1
Zie~ U, 2R F; Z1e = Z2e, Z1e ™ Wv Ze = . (4.17)

To check the stability of the system, we writtéu) in terms of its Taylor series
expansion aboule:

f(u) = f(Ue) + f'(Ue) - (U—Ug) + % f”(Ug) - (U— Ug)? 4 higher-order terms

where f’ represents the first derivative of the function, afdthe second. Using
these approximations, the dynamics can then be written as

dw -1 (ze) =
a: [f/(zle) _i ]W+F(W)7

wherew = z— 7, is the shifted state ark:-:l(w) represents quadratic and higher-order
terms.

We now use equatior(14) to search for a Lyapunov function. ChoosiQg- |
and lettingP € R?*? have elementsg;j, we search for a solution of the equation

-1 fi) (Pu P2 (Pu pr2) (-1 f) _ (-1 O

f; —1) (P2 P22 P12 P22 fi —1 o -1)°
wheref] = f’(ze) andf) = f’(z). Note that we have sgb, = p;2 to forceP to
be symmetric. Multiplying out the matrices, we obtain

—2pu+2fipre puafy—2pa+p2fi) _ (-1 0

P11fs—2p1a+ p22f]  —2p22+2f5p12 0o -1)°
which is a set ofinear equations for the unknowns;. We can solve these linear
equations to obtain

f12— 5 +2 f1 4 f42 — 542

Pu1=—"Fm—7 Pr2= -2 "7 Poo= "0
4(f1f2_1) 4(flf2_1) 4(f1f2_l)
To check tha¥ (w) = w' Pwis a Lyapunov function, we must verify thetw) is
positive definite function or equivalently thBt> 0. SinceP is a 2x 2 symmetric
matrix, it has two real eigenvaluds andA, that satisfy
A1+ Az =traceP), A1-A2 =detP).
In order forP to be positive definite we must have tigtandA, are positive, and
we thus require that
f2 215+ 157 +4
4—-A4f1f)

f2—215f+ f)°+4
16— 161/ f;

tracgP) = >0, detP)= > 0.
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We see that tra¢®) = 4de{(P) and the numerator of the expressions is jigt-
f2)24+4 > 0, so it suffices to check the sign of-1f; 5. In particular, forP to be
positive definite, we require that

'(z10) ' (220) < 1.

We can now make use of the expressionsffodefined earlier and evaluate at
the approximate locations of the equilibrium points detdiieequation4.17). For
the equilibrium points wherey # zpe, We can show that

1 —unu™?l —un —(n-1) )
f'(z1e) f'(22e) ~ f/(“)f/(unfl) = (1H+Zn)2 ’ 11:—n(n—1) LT
Usingn = 2 andu = 200 from Exercise.9, we see thaf’(ze)f'(z¢) < 1 and
henceP is a positive definite. This implies th¥tis a positive definite function and
hence a potential Lyapunov function for the system.
To determine if the systend (1) is stable, we now compuié at the equilib-
rium point. By construction,

V = w'(PA+ATP)W+F T(w)Pw+w'PF (w)
= —w'w+FT(w)Pw+w'PF (w).

Since all terms irF are quadratic or higher order im, it follows thatF T (w)Pw
andw'PF (w) consist of terms that are at least third ordeminTherefore ifw is
sufficiently close to zero, then the cubic and higher-ordensewill be smaller
than the quadratic terms. Hence, sufficiently close te 0,Vis negative definite,
allowing us to conclude that these equilibrium points arih stable.
Figure4.15shows the phase portrait and time traces for a systempvith,
illustrating the bistable nature of the system. When thigintondition starts with
a concentration of protein B greater than that of A, the smhutonverges to the
equilibrium point at (approximately)l/u"1 u). If A is greater than B, then it
goes to(u,1/u""1). The equilibrium point withz;e = 25 is unstable. O

More generally, we can investigate what the linear appration tells about
the stability of a solution to a nonlinear equation. The fwellog theorem gives a
partial answer for the case of stability of an equilibriunirmo

Theorem 4.3. Consider the dynamical syste@.15 with F(0) = 0 andF such
thatlim ||F (x)|/||x|| — 0 as||x|| — O. If the real parts of all eigenvalues of A are
strictly less than zero, then.x= 0 is a locally asymptotically stable equilibrium
point of equatior(4.15).

This theorem implies that asymptotic stability of the linapproximation im-
plies local asymptotic stability of the original nonlinear system. Thedrem is
very important for control because it implies that stalilian of a linear approxi-
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Figure 4.15: Dynamics of a genetic switch. The phase portrait on the left shows that the
switch has three equilibrium points, corresponding to protein A having aecdration
greater than, equal to or less than protein B. The equilibrium point withl gujogein con-
centrations is unstable, but the other equilibrium points are stable. The sonuta the

right shows the time response of the system starting from two differentlio@raditions.

The initial portion of the curve corresponds to initial concentratz(® = (1,5) and con-
verges to the equilibrium wheme < zpe. At timet = 10, the concentrations are perturbed
by +2inz; and—2 in z,, moving the state into the region of the state space whose solutions
converge to the equilibrium point whezg, < 7.

mation of a nonlinear system results in a stable equilibrionthe nonlinear sys-
tem. The proof of this theorem follows the technique used innipla 4.11 A
formal proof can be found irKhaO1].

Krasovski—Lasalle Invariance Principle Q Q

For general nonlinear systems, especially those in symfmiin, it can be difficult
to find a positive definite functioM whose derivative is strictly negative definite.
The Krasovski—Lasalle theorem enables us to conclude thepstimstability of
an equilibrium point under less restrictive conditionsyedy, in the case wheié
is negative semidefinite, which is often easier to constHmivever, it applies only
to time-invariant or periodic systems. This section makesafssome additional
concepts from dynamical systems; see Hata{67 or Khalil [Kha01] for a more
detailed description.

We will deal with the time-invariant case and begin by introithg a few more
definitions. We denote the solution trajectories of the tim&riant system

dx

i F(x) (4.18)
asx(t;a), which is the solution of equatiod (18 at timet starting froma atto = 0.
The w limit setof a trajectoryx(t; a) is the set of all pointg € R" such that there
exists a strictly increasing sequence of timesuch thatx(t,;a) — zasn — oo.
A setM C R" is said to be amnvariant setif for all b € M, we havex(t;b) e M
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forallt > 0. It can be proved that th® limit set of every trajectory is closed and
invariant. We may now state the Krasovski—Lasalle principle

Theorem 4.4(Krasovski-Lasalle principle)Let V : R" — R be a locally positive
definite function such that on the compactQet= {x € R": V(x) < r} we have
V(x) < 0. Define _
S={xe Q;:V(x) =0}.

As t— oo, the trajectory tends to the largest invariant set insidé.&; its w limit
set is contained inside the largest invariant set in S. Irtipatar, if S contains no
invariant sets other than x 0, then 0 is asymptotically stable.

Proofs are given infra63 and [LaS6Q.

Lyapunov functions can often be used to design stabilizimgfrollers, as is
illustrated by the following example, which also illusgathow the Krasovski—
Lasalle principle can be applied.

Example 4.12 Inverted pendulum
Following the analysis in Examp7, an inverted pendulum can be described by
the following normalized model:

Xm dX2 .
—= = —= = sinxy + UCOSX 4.19
dt % dt 1+ b (4.19)

wherex; is the angular deviation from the upright position and the (scaled)
acceleration of the pivot, as shown in Figutd6a The system has an equilib-
rium atx; = X2 = 0, which corresponds to the pendulum standing upright. This
equilibrium is unstable.

To find a stabilizing controller we consider the following déadate for a Lya-
punov function:

V(X) = (cosxg — 1) +a(1l—cosxg) + %xg ~ (a— %)x% + %xg
The Taylor series expansion shows that the function is pesitefinite near the
origin if a > 0.5. The time derivative 0¥ (x) is
V = —x; SinxXg + 2a%; SiNX; COSXy + XpXp = X2(U+ 2asinx; ) COSXy.
Choosing the feedback law
U= —2asinxX; — X2 COSXy.

gives .

V = —x5coSX;.
It follows from Lyapunov’s theorem that the equilibrium eéchlly stable. However,
since the function is only negative semidefinite, we cannotkme asymptotic
stability using Theorem.2 However, note that = 0 implies thatx, = 0 orx; =
/24N
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Figure 4.16: Stabilized inverted pendulum. A control law applies a foucat the bottom
of the pendulum to stabilize the inverted position (a). The phase portraghys that
the equilibrium point corresponding to the vertical position is stabilized. Tlaeed region
indicates the set of initial conditions that converge to the origin. The ellipsegmonds to a
level set of a Lyapunov functiovi(x) for whichV (x) > 0 andV (x) < 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction ofuHiéragm
point. The actual dynamics of the system evolve on a manifold (c).

If we restrict our analysis to a small neighborhood of thgiorQ),, r < 11/2,

then we can define
S={(x1,%) € Q : xp =0}

and we can compute the largest invariant set inSid€or a trajectory to remain
in this set we must have, = 0 for all t and hence(t) = 0 as well. Using the
dynamics of the systerd (19, we see that,(t) = 0 andxx(t) = 0 impliesx, (t) =0
as well. Hence the largest invariant set insRis (x;,x2) = 0, and we can use the
Krasovski—Lasalle principle to conclude that the origindsdlly asymptotically
stable. A phase portrait of the closed loop system is shoviaigure4.16h

In the analysis and the phase portrait, we have treated tgie afthe pendulum
6 = xq as a real number. In fach, is an angle withd = 2T equivalent tof = 0.
Hence the dynamics of the system actually evolves m@aaifold(smooth surface)
as shown in Figurd.16c Analysis of nonlinear dynamical systems on manifolds
is more complicated, but uses many of the same basic idessresl here. [

4.5 Parametric and Nonlocal Behavior @

Most of the tools that we have explored are focused on thd luslzavior of a
fixed system near an equilibrium point. In this section weflyrimtroduce some
concepts regarding the global behavior of nonlinear systend the dependence
of a system'’s behavior on parameters in the system model.
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Regions of Attraction

To get some insight into the behavior of a nonlinear systeroamestart by finding
the equilibrium points. We can then proceed to analyze tbal loehavior around
the equilibria. The behavior of a system near an equilibriwintpis called the
local behavior of the system.

The solutions of the system can be very different far away faonequilibrium
point. This is seen, for example, in the stabilized penduluiExample4.12 The
inverted equilibrium point is stable, with small oscillatis that eventually con-
verge to the origin. But far away from this equilibrium pothere are trajectories
that converge to other equilibrium points or even cases iithvthe pendulum
swings around the top multiple times, giving very long datibns that are topo-
logically different from those near the origin.

To better understand the dynamics of the system, we can agraime set of all
initial conditions that converge to a given asymptoticaligble equilibrium point.
This set is called theegion of attractionfor the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figutéh In general,
computing regions of attraction is difficult. However, evewe cannot determine
the region of attraction, we can often obtain patches ardbedtable equilibria
that are attracting. This gives partial information aboethiehavior of the system.

One method for approximating the region of attraction istigh the use of
Lyapunov functions. Suppose thdtis a local Lyapunov function for a system
around an equilibrium pointy. Let Q, be a set on whicV (x) has a value less
thanr,

Qr={xeR":V(x) <r},
and suppose that(x) < 0 for all x € Q,, with equality only at the equilibrium
point xo. ThenQ, is inside the region of attraction of the equilibrium poi&tnce
this approximation depends on the Lyapunov function andlioéce of Lyapunov
function is not unique, it can sometimes be a very conseevaistimate.

It is sometimes the case that we can find a Lyapunov fundtisoch thav is
positive definite an¥ is negative (semi-) definite for atle R". In many instances
it can then be shown that the region of attraction for the ldariim point is the
entire state space, and the equilibrium point is said tglbleally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Examfl2 The Lya-
punov function for the system was

1
V(x) = (cosxy — 1) +a(1—cosxy) + EX%’

andV was negative semidefinite for alland nonzero wher; # +71/2. Hence
anyx such thatx;| < /2 andV (x) > 0 will be inside the invariant set defined by
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the level curves o¥ (x). One of these level sets is shown in Figdr&6h 0

Bifurcations

Another important property of nonlinear systems is howrthehavior changes as
the parameters governing the dynamics change. We can stigdiyn tthe context
of models by exploring how the location of equilibrium pantheir stability, their
regions of attraction and other dynamic phenomena, suchméisdycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

d

d—i(:F(x,u), x€R", u e R, (4.20)
wherex is the state angl is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x,u) =0,

and aspu is varied, the corresponding solutiorsg 1) can also vary. We say that
the system4.20 has abifurcationat u = u* if the behavior of the system changes
qualitatively atu*. This can occur either because of a change in stability tye or
change in the number of solutions at a given valug of

Example 4.14 Predator—prey
Consider the predator—prey system described in Se8tibrThe dynamics of the
system are given by

dH ( H) aHL dL aHL

a M) e a e

whereH andL are the numbers of hares (prey) and lynxes (predatorspabd
¢, d, k andr are parameters that model a given predator—prey systerorifoks
in more detail in SectioB.7). The system has an equilibrium pointtég > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behavithe system,
we choose to focus on two specific parameters of integegiie interaction coef-
ficient between the populations apda parameter affecting the prey consumption
rate. Figure4.17ais a numerically computegarametric stability diagranshow-
ing the regions in the chosen parameter space for which thiéietum point is
stable (leaving the other parameters at their nominal g3lW&e see from this fig-
ure that for certain combinations aindc we get a stable equilibrium point, while
at other values this equilibrium point is unstable.

Figure4.17bis a numerically computeblifurcation diagramfor the system. In
this plot, we choose one parameter to vaaygnd then plot the equilibrium value
of one of the stateH) on the vertical axis. The remaining parameters are set to

dL, (4.21)
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Figure 4.17: Bifurcation analysis of the predator—prey system. (a) Parametric stadiidity
gram showing the regions in parameter space for which the system is gtgtB&urcation
diagram showing the location and stability of the equilibrium point as a functi@n ©he
solid line represents a stable equilibrium point, and the dashed line refresennstable
equilibrium point. The dashed-dotted lines indicate the upper and lowerdsdanthe limit
cycle at that parameter value (computed via simulation). The nominawalithe parame-
ters in the model ara= 3.2,b=0.6,c=50,d = 0.56,k = 125 andr = 1.6.

their nominal values. A solid line indicates that the edpiilim point is stable; a
dashed line indicates that the equilibrium point is ungtallote that the stability
in the bifurcation diagram matches that in the parametabibty diagram for

¢ = 50 (the nominal value) and varying from 1.35 to 4. For the predator—prey
system, when the equilibrium point is unstable, the sofutionverges to a stable
limit cycle. The amplitude of this limit cycle is shown by thashed-dotted line in
Figure4.17h 0

A patrticular form of bifurcation that is very common when tatling linear
systems is that the equilibrium remains fixed but the stgbiftthe equilibrium
changes as the parameters are varied. In such a case it @imgvi® plot the
eigenvalues of the system as a function of the parameter$. [Bats are called
root locus diagramdbecause they give the locus of the eigenvalues when param-
eters change. Bifurcations occur when parameter valuesuae that there are
eigenvalues with zero real part. Computing environmenté &ilabVIEW, MAT-

LAB and Mathematica have tools for plotting root loci.

Example 4.15 Root locus diagram for a bicycle model

Consider the linear bicycle model given by equatidry)in Section3.2 Introduc-
ing the state variables = ¢, xo = §, x3 = ¢ andxs = & and setting the steering
torqueT = 0, the equations can be written as

dx 0 |
D X=:AX
dt ~M~1(Ko+Kav3) —M~ICv
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Figure 4.18: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle velocitye system

is stable when all eigenvalues have negative real part (shaded yeg@plot in (b) shows
the locus of eigenvalues on the complex plane as the velotyaried and gives a different
view of the stability of the system. This type of plot is calletbat locus diagram

wherel is a 2x 2 identity matrix ands is the velocity of the bicycle. Figuré. 18a
shows the real parts of the eigenvalues as a function of igldeigure 4.18b
shows the dependence of the eigenvalues af the velocityp. The figures show
that the bicycle is unstable for low velocities because twemvalues are in the
right half-plane. As the velocity increases, these eigemgamove into the left
half-plane, indicating that the bicycle becomes self4itahg. As the velocity is
increased further, there is an eigenvalue close to themdtigit moves into the right
half-plane, making the bicycle unstable again. Howevas, ¢éigenvalue is small
and so it can easily be stabilized by a rider. FiglirBBashows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. O

Parametric stability diagrams and bifurcation diagrams peovide valuable
insights into the dynamics of a nonlinear system. It is ugundcessary to carefully
choose the parameters that one plots, including combihi@gnatural parameters
of the system to eliminate extra parameters when possildempQter programs
such asAUTO, LOCBI F andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations tcsag feedback laws
that stabilize an equilibrium point and provide a desiregkleof performance.
However, for some classes of problems the feedback comtrollist be nonlinear
to accomplish its function. By making use of Lyapunov fuans we can often
design a nonlinear control law that provides stable bemaa®mwe saw in Exam-
ple4.12
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Figure 4.19: Headphones with noise cancellation. Noise is sensed by the exterior micro-
phone (a) and sent to a filter in such a way that it cancels the noise ttettgges the head
phone (b). The filter parameteasandb are adjusted by the controll@represents the input
signal to the headphones.

One way to systematically design a nonlinear controlleo isdgin with a can-
didate Lyapunov functiol (x) and a control system= f(x, u). We say thaV (x)
is a control Lyapunov functiorif for every x there exists a1 such thatV (x) =
%—\;f(x, u) < 0. In this case, it may be possible to find a functim(x) such that
u = a(x) stabilizes the system. The following example illustratesapproach.

Example 4.16 Noise cancellation
Noise cancellation is used in consumer electronics anddustnial systems to re-
duce the effects of noise and vibrations. The idea is to lpgaliiuce the effect
of noise by generating opposing signals. A pair of headphavith noise can-
cellation such as those shown in Fig4rd9ais a typical example. A schematic
diagram of the system is shown in Figutd 9h The system has two microphones,
one outside the headphones that picks up exterior nmo&®d another inside the
headphones that picks up the sigaalvhich is a combination of the desired signal
and the external noise that penetrates the headphone. Ttz Bm the exterior
microphone is filtered and sent to the headphones in such ahagif tancels the
external noise that penetrates into the headphones. Thegas of the filter are
adjusted by a feedback mechanism to make the noise sigrted internal micro-
phone as small as possible. The feedback is inherently rearllvecause it acts by
changing the parameters of the filter.

To analyze the system we assume for simplicity that the gratian of external
noise into the headphones is modeled by a first-order dyn&gyiseem described

by
dz
Fri agz+ bgn, (4.22)
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wherezis the sound level and the paramet&ys< 0 andbg are not known. Assume
that the filter is a dynamical system of the same type:

d—w— aw-+bn
dt '

We wish to find a controller that updatesand b so that they converge to the
(unknown) parameter andbg. Introducex; = e=w—2z X = a—ag andxz =
b — bg; then

dX1

= = ao(W—2) + (a— ag)w+ (b —bo)n = agxg + XoW+ X3n. (4.23)

We will achieve noise cancellation if we can find a feedbackflamchanging the
parameterga andb so that the erroe goes to zero. To do this we choose

1
V (X1, %2,X3) = 5 (oxE + x5+ X3)

as a candidate Lyapunov function fa@r.23. The derivative oV is
V = arx1Xq + XoXo 4 XaX3 = A @gXe + Xa (X2 + QWxq ) + X3(X3 + anxy ).

Choosing
X2 = —OWXg = —aWe X3=—anx, = —ane (4.24)

we find thatv = aaox% < 0, and it follows that the quadratic function will decrease
as long a2 = x; = w—z+# 0. The nonlinear feedbaclt.4) thus attempts to
change the parameters so that the error between the sigh#i@noise is small.
Notice that feedback lawd(24) does not use the model.2) explicitly.

A simulation of the system is shown in Figu4e2Q In the simulation we have
represented the signal as a pure sinusoid and the noiseaablimnd noise. The fig-
ure shows the dramatic improvement with noise cancellalibe sinusoidal signal
is not visible without noise cancellation. The filter paramethange quickly from
their initial valuesa = b = 0. Filters of higher order with more coefficients are used
in practice. O

4.6 Further Reading

The field of dynamical systems has a rich literature that clarzes the possi-
ble features of dynamical systems and describes how paiambanges in the
dynamics can lead to topological changes in behavior. Readiatroductions to
dynamical systems are given by Stroga®trf4 and the highly illustrated text
by Abraham and ShawAlS82. More technical treatments include Andronov, Vitt
and Khaikin RQVK87], Guckenheimer and Holme&H83 and Wiggins Wig9qQ.
For students with a strong interest in mechanics, the texirbold [Arn87] and
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headpligne s
nal without noise cancellation, and the bottom left figure shows the sigttahaise cancel-
lation. The right figures show the parameta@ndb of the filter.

Marsden and RatiuMIR94] provide an elegant approach using tools from differ-
ential geometry. Finally, good treatments of dynamicalayst methods in biol-
ogy are given by WilsonWil99] and Ellner and GuckenheimeEGO0S. There

is a large literature on Lyapunov stability theory, inclhuglithe classic texts by
Malkin [Mal59], Hahn Hah67 and Krasovski Kra63. We highly recommend
the comprehensive treatment by Khaklia01].

Exercises

4.1 (Time-invariant systems) Show that if we have a solution ef differential
equation 4.1) given byx(t) with initial conditionx(tg) = Xo, thenx{1) = X(t —to)
is a solution of the differential equation

(0)'

& —F®

with initial conditionX(0) = Xp, wherer =t —to.

4.2 (Flow in a tank) A cylindrical tank has cross sectidim?, effective outlet
areaam? and inflowg, m3/s. An energy balance shows that the outlet velocity
isv=/2ghm/s, whereg m/s’ is the acceleration of gravity arids the distance

between the outlet and the water level in the tank (in met8is)w that the system
can be modeled by

dh a ~— 1 —
a == _Z\ Zgh—l— inn, qout =a ZQh
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Use the parameters= 0.2,a= 0.01. Simulate the system when the inflow is zero
and the initial level ifh= 0.2. Do you expect any difficulties in the simulation?

4.3 (Cruise control) Consider the cruise control system dbedrin Sectior8.1
Generate a phase portrait for the closed loop system on flabhgr@ = 0), in third
gear, using a PI controller (witky, = 0.5 andk; = 0.1), m= 1000 kg and desired
speed 20 m/s. Your system model should include the effeatafating the input
between 0 and 1.

4.4 (Lyapunov functions) Consider the second-order system

dxq dx
o @ ot —bx — cx,
wherea, b,c > 0. Investigate whether the functions
1 1 1 1 b
Vi(x) = éxf + Exg, Va(x) = EX% + E(XZ + axl)z

are Lyapunov functions for the system and give any condittbat must hold.

4.5 (Damped spring—mass system) Consider a damped spring-systesn with
dynamics .

mg+cq+kg= 0.
A natural candidate for a Lyapunov function is the total ggef the system, given
by

1 -, 1

V= Smg’ équ'
Use the Krasovski—Lasalle theorem to show that the systesyistotically sta-
ble.

4.6 (Electric generator) The following simple model for an electrenerator con-
nected to a strong power grid was given in Exer@sé

d? EV .
The parameter b EvV
max
_ - — 4.25
&= B, ~ Xmn (4.25)

is the ratio between the maximum deliverable poRgsx = EV/X and the me-
chanical powePy,.

(a) Considema as a bifurcation parameter and discuss how the equilibipe rak
ona.
(b) Fora > 1, show that there is a center ¢¢ = arcsir{l/a) and a saddle at

¢ =1m— ¢o.
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(c) Show that ifPy,/J = 1 there is a solution through the saddle that satisfies

;(%‘f)z—cjy+¢o—acos¢—\/ﬂ:0 (4.26)

Use simulation to show that the stability region is the iimieof the area enclosed
by this solution. Investigate what happens if the systemm isquilibrium with a
value ofathat is slightly larger than 1 arelsuddenly decreases, corresponding to
the reactance of the line suddenly increasing.

4.7 (Lyapunov equation) Show that Lyapunov equatidrif) always has a solu-
tion if all of the eigenvalues oA are in the left half-plane. (Hint: Use the fact that
the Lyapunov equation is linear A and start with the case whefehas distinct
eigenvalues.)

4.8 (Congestion control) Consider the congestion control lemmbdescribed in
Section3.4. Confirm that the equilibrium point for the system is given loyia-
tion (3.21) and compute the stability of this equilibrium point usindjreear ap-
proximation.

4.9 (Swinging up a pendulum) Consider the inverted penduluncudised in Ex-
ample4.4, that is described by

6 = sinf +ucosb,
wheref is the angle between the pendulum and the vertical and theotsignal
u is the acceleration of the pivot. Using the energy function
V(6,0) =cosh — 1+ %62,
show that the state feedbaak= k(Vp — V)6 cosb causes the pendulum to “swing
up” to the upright position.

4.10(Root locus diagram) Consider the linear system

dx 0 1 -1

dt_[O _3]x+[4]u, y_(l O]x,
with the feedbacki = —ky. Plot the location of the eigenvalues as a function the
parametek.

4.11(Discrete-time Lyapunov function) Consider a nonlineacdete-time sys-@
tem with dynamicx(k+ 1] = f(x[k]) and equilibrium poinke = 0. Suppose there
exists a smooth, positive definite funct®dnR" — R such thaV/ (f(x)) =V (x) <0

for x £ 0 and V(0) = 0. Show thate = 0 is (locally) asymptotically stable.

4.12 (Operational amplifier oscillator) An op amp circuit for ancitletor was
shown in Exercise3.5. The oscillatory solution for that linear circuit was stable
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but not asymptotically stable. A schematic of a modified dirthat has nonlinear
elements is shown in the figure below.

de ae
C
Ry Rt ||1
MN % 11
V2 R3 ’:':: V3 Rl + Vi
2 2

B el VAN w R R
v v2 R
2 2

The modification is obtained by making a feedback around eaehatipnal am-
plifier that has capacitors using multipliers. The sigaak v% +v§ —v% is the
amplitude error. Show that the system is modeled by

dVl . R4 1
Tt RIRG 2T Rllclvl(v‘z’_"%_v%)’

dV2 1 1
—C=———V V2(V§ — V2 —V3).
dt R,Co 1+ RooCo 2o~ V1~ V2)
Show that, under suitable conditions on parameter valueg;itbuit gives an os-
cillation with a stable limit cycle with amplitude,. (Hint: Use the results of Ex-
ample4.8)

4.13(Self-activating genetic circuit) Consider the dynamica genetic circuit that
implementsself-activationthe protein produced by the gene is an activator for the
protein, thus stimulating its own production through pwesifeedback. Using the
models presented in Exam@®el3 the dynamics for the system can be written as

dm_ _ap?
dt  1+kp?

for p,m > 0. Find the equilibrium points for the system and analyze tuall
stability of each using Lyapunov analysis.

d
+ag—ym, d—f:Bm—(Sp, (4.27)

4.14 (Diagonal systems) LeA € R"™" be a square matrix with real eigenvalues
A1,...,An and corresponding eigenvectess. . ., Vi.

(a) Show that if the eigenvalues are distingt£ A;j for i # j), thenv; # v; for
i .
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(b) Show that the eigenvectors form a basis®rso that any vectok can be
written asx =Y oV, for o € R.

(c) LetT = [vl Vo oL, vn] and show thaT —1AT is a diagonal matrix of the
form (4.8).
(d) Show that if some of tha; are complex numbers, théncan be written as
N1 0
A= where N=AcR or /\i:[a w]‘
-w o
0 Nk

in an appropriate set of coordinates.
This form of the dynamics of a linear system is often refersedsmodal form

4.15(Furuta pendulum) The Furuta pendulum, an inverted penduluarotating
arm, is shown to the left in the figure below.

0.5

Pendulum angl®/mt
o

0 5 10 15 20
Angular velocityw

Consider the situation when the pendulum arm is spinninly egnstant rate. The
system has multiple equilibrium points that depend on thgukam velocityw, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

JpB — Jpeh sin@cosh — myglsing = 0,

whereJ, is the moment of inertia of the pendulum with respect to it®pim, is
the pendulum mass,is the distance between the pivot and the center of mass of
the pendulum andy is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the conwiftip for stability of
each equilibrium point (in terms @iy).

(b) Consider the angular velocity as a bifurcation parametel verify the bifur-
cation diagram given above. This is an example pitehfork bifurcation
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4.16 (Routh-Hurwitz criterion) Consider a linear differentiatjuation with the
characteristic polynomial

A(S) =S +ais+ay, A(S) =S +ays+axs+as.

Show that the system is asymptotically stable if and onlylitte coefficientss;
are positive and ifja > az. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.



Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For examplecthéon between
force on a spring and displacement of the spring is always nonlinear t@ stegree. The
relation between current through a resistor and voltage drop acrosksd deviates from a
straight-line relation. However, if in each case the relatioméasonablyinear, then it will
be found that the system behavior will be very close to that obtained bynaggan ideal,
linear physical element, and the analytical simplification is so enormousmt@ahake linear
assumptions wherever we can possibly do so in good conscience.

Robert H. CannorDynamics of Physical Systeni®67 [Can03.

In Chapters2—4 we considered the construction and analysis of differentia
equation models for dynamical systems. In this chapter weeiafize our results
to the case of linear, time-invariant input/output systeiivgo central concepts
are the matrix exponential and the convolution equatiorguiph which we can
completely characterize the behavior of a linear systemalfe describe some
properties of the input/output response and show how tooxppate a nonlinear
system by a linear one.

5.1 Basic Definitions

We have seen several instances of linear differential @ngin the examples in
the previous chapters, including the spring—mass systamgdd oscillator) and
the operational amplifier in the presence of small (nonsangpRinput signals.
More generally, many dynamical systems can be modeledaetyby linear dif-
ferential equations. Electrical circuits are one exampla brfoad class of systems
for which linear models can be used effectively. Linear medek also broadly
applicable in mechanical engineering, for example, as fsarfesmall deviations
from equilibria in solid and fluid mechanics. Signal-procegsystems, including
digital filters of the sort used in CD and MP3 players, are anatbarce of good
examples, although these are often best modeled in didaretdas described in
more detail in the exercises).

In many cases, wereatesystems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linearviehthat led Harold
S. Black to the invention of the negative feedback amplifiem@dt all modern
signal processing systems, whether analog or digital, esgfack to produce lin-
ear or near-linear input/output characteristics. Fordrsstems, it is often useful
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to represent the input/output characteristics as lingagring the internal details
required to get that linear response.

For other systems, nonlinearities cannot be ignored, &dhed one cares
about the global behavior of the system. The predator—pr@ylgm is one exam-
ple of this: to capture the oscillatory behavior of the idegendent populations
we must include the nonlinear coupling terms. Other examirlelude switch-
ing behavior and generating periodic motion for locomatidowever, if we care
about what happens near an equilibrium point, it often sidficeapproximate
the nonlinear dynamics by their local linearization, as Weaaly explored briefly
in Section4.3. The linearization is essentially an approximation of thalimear
dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systemsenformally. Con-
sider a state space system of the form

33[( = f(x,u), y=h(x,u), (5.1)
wherex € R", u € RP andy € RY. As in the previous chapters, we will usually
restrict ourselves to the single-input, single-outputdag takingp = q= 1. We
also assume that all functions are smooth and that for amaagoclass of inputs
(e.g., piecewise continuous functions of time) the sohgiof equationg.1) exist
for all time.

It will be convenient to assume that the origia= 0, u = 0 is an equilibrium
point for this systemx = 0) and thath(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose {xatue) # (0,0) is an equilibrium point
of the system with outpwle = h(Xe, Ug). Then we can define a new set of states,
inputs and outputs,

)’Z:X_X& UZU_UE; y:y_Yea

and rewrite the equations of motion in terms of these vagtbl

d ~
a>”<: f(X4+Xe, U+ Ue) =: (X, 0),
¥ = h(X+Xe, G+ Ug) — Ye =: (%, Q).

In the new set of variables, the origin is an equilibrium peiith output O, and
hence we can carry out our analysis in this set of variablase@e have obtained
our answers in this new set of variables, we simply “traeSlgtem back to the
original coordinates using= X+ Xe, U= 0+ Us andy = Y+ Ve.

Returning to the original equationS.{), now assuming without loss of gen-
erality that the origin is the equilibrium point of intereste write the outpuy(t)

corresponding to the initial conditiof{0) = Xp and inputu(t) asy(t;xp,u). Using
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this notation, a system is said to bdirsear input/output systerif the following
conditions are satisfied:

() y(t;oxy+ Bxz,0) = ay(t;xg,0) + By(t; x2,0),
(i) y(t;axo,0u) = ay(t; %o, 0) + dy(t; 0, u), (5.2)
(iii)  y(t;0,0u1+ yuz) = SY(t; 0,ur) + yy(t; 0, u2).

Thus, we define a system to be linear if the outputs are jointlsali in the initial
condition responséu = 0) and the forced respongg(0) = 0). Property (iii) is a
statement of therinciple of superpositionthe response of a linear system to the
sum of two inputa; anduy is the sum of the outputg andy, corresponding to
the individual inputs.

The general form of a linear state space system is

dx _
dt

where A € R™" B € R™P, C € R9*" andD € RY*P. In the special case of a
single-input, single-output syster,is a column vectorC is a row vector andd

is scalar. Equationb(3) is a system of linear first-order differential equationshwit
inputu, statex and outpul. It is easy to show that given solutiorgt) andxz(t)
for this set of equations, they satisfy the linearity coiodis.

We definex,(t) to be the solution with zero input (tht@mogeneous solutipn
and the solutiorxp(t) to be the solution with zero initial condition @@articular
solution). Figure5.1illustrates how these two individual solutions can be super
imposed to form the complete solution.

It is also possible to show that if a finite-dimensional dynaahsystem is in-
put/output linear in the sense we have described, it caryallva represented by a
state space equation of the for;3) through an appropriate choice of state vari-
ables. In Sectiorb.2 we will give an explicit solution of equatiorb(3), but we
illustrate the basic form through a simple example.

Ax+ Bu, y=Cx+Du, (5.3)

Example 5.1 Scalar system
Consider the first-order differential equation

dX_aX+U =X
dt_ ) y_ )

with x(0) = Xo. Letu; = Asinwst andu; = Bcoswt. The homogeneous solution
iS Xn(t) = €®'xo, and two particular solutions witk(0) = 0 are

—w € + wy coswt + asinawgt
a2+ w? ’
ae® — acoswpt + wp sinwpt
a2+ w? '

Xpl(t) =—-A

sz(t) =B
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Figure 5.1: Superposition of homogeneous and particular solutions. The firstrowssthe
input, state and output corresponding to the initial condition response€etioad row shows
the same variables corresponding to zero initial condition but nonzeub. ilfipe third row
is the complete solution, which is the sum of the two individual solutions.

Suppose that we now choos@) = aXp andu = u; + Uy. Then the resulting solu-
tion is the weighted sum of the individual solutions:

Awy Ba
x(t) = ™ (axo+ a2+w12+ a2+w22>

5.4
y coSwnt + asinwyt —acoswyt + wy sinapt ®.4)
—A > > B > .
a2 4 w? a%+ w?
To see this, substitute equatidh4) into the differential equation. Thus, the prop-
erties of a linear system are satisfied. O

Time Invariance

Time invariancds an important concept that is used to describe a systemewhos
properties do not change with time. More precisely, for aetimvariant system
if the inputu(t) gives outputy(t), then if we shift the time at which the input
is applied by a constant amouat u(t + a) gives the outpuy(t + a). Systems
that are linear and time-invariant, often called@l systemshave the interesting
property that their response to an arbitrary input is coteplecharacterized by
their response to step inputs or their response to shortulises.”

To explore the consequences of time invariance, we first ctarthe response
to a piecewise constant input. Assume that the system ialipiait rest and con-
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1 L
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So6 u(ty) — u(to) 1 =205
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0.2 u(to) 7 Complete
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(a) Piecewise constant input (b) Output response

Figure 5.2: Response to piecewise constant inputs. A piecewise constant sigriz cap-
resented as a sum of step signals (a), and the resulting output is the shenindividual
outputs (b).

sider the piecewise constant input shown in Figbui2a The input has jumps at
timesty, and its values after the jumps anéty). The input can be viewed as a
combination of steps: the first step at titgehas amplitudei(tp), the second step
at timet; has amplitudei(t;) — u(to), etc.

Assuming that the system is initially at an equilibrium gddigo that the initial
condition response is zero), the response to the input cabta@ed by superim-
posing the responses to a combination of step inputsHI(Et be the response to
a unit step applied at time 0. The response to the first step isHlfie— to)u(to),

the response to the second stefig —t1) (u(t1) — u(to)), and we find that the
complete response is given by

y(t) = H(t —to)u(to) +H(t —t1) (u(tr) — u(to)) +---
= (H(t—to) —H(t—t1))u(to) + (H(t —t1) —H(t —t2))u(ts) + - --

th<t

= Z (t—tn) —H(t —th1))u(tn)
tn<tH (t—tn) —H(t —thy1)

— u(tn) (tn+l - tn) .

tn+1 - tn

An example of this computation is shown in Fig&r2h

The response to a continuous input signal is obtained by datkia limit as
the1 —th — 0, which gives

_ /OtH’(tr)u(r)dT, (5.5)

whereH’ is the derivative of the step response, also calledripilse response
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The response of a linear time-invariant system to any inpuotloas be computed
from the step response. Notice that the output depends ortlyeninput since we
assumed the system was initially at re$6) = 0. We will derive equationd.5) in

a slightly different way in the Sectiof.3.

5.2 The Matrix Exponential

Equation B.5) shows that the output of a linear system can be written astagral
over the inputai(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial conditioWde begin by exploring

the initial condition response using the matrix exponéntia

Initial Condition Response

Although we have shown that the solution of a linear set dedétial equations
defines a linear input/output system, we have not fully comgbtihe solution of
the system. We begin by considering the homogeneous respongsponding to
the system

dx
— =A 5.6
gt = A% (5.6)
For thescalardifferential equation
dx
— = R,aeR
at ax, xeR,aeR,

the solution is given by the exponential
x(t) = €™x(0).

We wish to generalize this to the vector case, whiebecomes a matrix. We define
thematrix exponentiafs the infinite series

1. 3
eX—I+X+2X +30 x %kl (5.7)

whereX € R™"is a square matrix anidis then x n identity matrix. We make use
of the notation

X0=1, X?=xX, X"=Xx"1X,
which defines what we mean by the “power” of a matrix. Equati®f)(is easy
to remember since it is just the Taylor series for the scadporential, applied to
the matrixX. It can be shown that the series in equatibrv) converges for any
matrix X € R™" in the same way that the normal exponential is defined for any
scalara € R.
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ReplacingX in equation $.7) by At, wheret € R, we find that

1 1 ® 1
t_ L A22 33, kik
e =+ AL+ SA + A+ —kzzok!At,

and differentiating this expression with respect tives
d 1 =1
— M AL A AR =AY AR = A 5.8
dt AR 2 i 8

Multiplying by x(0) from the right, we find thax(t) = €*'x(0) is the solution to the
differential equationg.6) with initial conditionx(0). We summarize this important
result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6) is given by
X(t) = e'x(0).

Notice that the form of the solution is exactly the same aséatar equations,
but we must put the vectox0) on the right of the matrixl.

The form of the solution immediately allows us to see that tietson is linear
in the initial condition. In particular, ikn; (t) is the solution to equatiorb(6) with
initial condition x(0) = Xp1 andXn2(t) with initial condition x(0) = xg2, then the
solution with initial conditionx(0) = axp1 + BXo2 iS given by

X(t) = e (axo1+ Bxoz) = (0 €%01 + BEMX02) = A% () + BXna(t).
Similarly, we see that the corresponding output is given by
y(t) =Cx(t) = aym(t) + Bynz(t),
whereyp; (t) andyn,(t) are the outputs corresponding®@ (t) andx(t).
We illustrate computation of the matrix exponential by twamples.

Example 5.2 Double integrator
A very simple linear system that is useful in understandiagidconcepts is the
second-order system given by

q=u, y=aq

This system is called double integratobecause the inputis integrated twice to
determine the outpuyt
In state space form, we write= (qg,q) and

dx_01X 0],
at_lo of X 1| ™
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The dynamics matrix of a double integrator is

01
o)
and we find by direct calculation thAZ = 0 and hence
¢ (1 t)
o = [0 1)

Thus the homogeneous solutian=£ 0) for the double integrator is given by

X(t) = [1 t] [Xl(o)] _ X1(O)+tx2(0)]’

01 X2<0) Xz(O)
y(t) = x1(0) +tx2(0).

Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring—masesysvith zero damp-
ing, is

G+ whg=u.
Putting the system into state space form, the dynamics nfatriis system can
be written as

A 0 w and At _ co_swot sinapt '
—wy O —Sinapt  cosunt

This expression foe™ can be verified by differentiation:

gef“— —pSinapt iy Ccosupt
dt = = | —apcoswpt —apSinwpt

0 wo cosupt  Sinapt t
—wp O —Sinapt  cosupt

The solution is then given by

=0 - [ o et ) (0],

If the system has damping,

G+ 2¢ wod+ whq = U,
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the solution is more complicated, but the matrix exponénta be shown to be

Zeiwut _ Ze_iwdt dant | giayt gt _ g—iayt
_|_
,%Zt 2\/ Zz_l 2 2\/{2—1
€ e—iwut _ eiwdt Ze—iwdt _ Zei“’dt eiwdt _}_e—iwut

2./72-1 2./72-1 - 2

wherewy = wo+/{?% — 1. Note thatwy and+/{? — 1 can be either real or complex,
but the combinations of terms will always yield a real valaethe entries in the

matrix exponential. O

An important class of linear systems are those that can beedead into diag-
onal form. Suppose that we are given a system

dx
a_Ax

such that all the eigenvalues Afare distinct. It can be shown (Exerciéd 4 that
we can find an invertible matriX such thaiff AT~1 is diagonal. If we choose a set
of coordinatez = T x, then in the new coordinates the dynamics become

dz_ 1 OX _ rpx—TAT 2
dt dt

By construction ofT, this system will be diagonal.
Now consider a diagonal matri& and the correspondinkth power of At,
which is also diagonal:

M 0 ALtk 0
A AktK
A= ? . (Ak= S ,
0 An 0 /\rlftk
It follows from the series expansion that the matrix expdiaéis given by
eht 0
t
s |
0 et

A similar expansion can be done in the case where the eigewalre complex,
using a block diagonal matrix, similar to what was done in idect.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transformdegonal form.
They can, however, be transformed to a closely related foalted theJordan
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X1 X2 X1 X3 X2 X1

A A A A A A

Figure 5.3: Representations of linear systems where the dynamics matrices asn Jord
blocks. A first-order Jordan block can be represented as an integrithofeedbackA, as
shown on the left. Second- and third-order Jordan blocks can besepted as series con-
nections of integrators with feedback, as shown on the right.

form, in which the dynamics matrix has the eigenvalues along idgotal. When
there are equal eigenvalues, there may be 1's appearing sufierdiagonal indi-
cating that there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it dgnwritten
as

Jb 0 ... 0 0 A1 O 0

0 J» O 0 0 0O A 1 0
I=|: .. |, where 3=1: oo - (59)

0 0 Ji O 0 0 A1

0O 0 ... 0 K 0O 0 ... 0 XN

Each matrixJ; is called aJordan block andA; for that block corresponds to an
eigenvalue ofl. A first-order Jordan block can be represented as a system con-
sisting of an integrator with feedbacdk A Jordan block of higher order can be
represented as series connections of such systems, astkasin Figureb.3.

Theorem 5.2(Jordan decompositionAny matrix Ac R"™" can be transformed
into Jordan form with the eigenvalues of A determink@n the Jordan form.

Proof. See any standard text on linear algebra, such as St&ir@f]. The special
case where the eigenvalues are distinct is examined in Bedrdi4 O

Converting a matrix into Jordan form can be complicatedcalgh MATLAB
can do this conversion for numerical matrices usingjtbe dan function. The
structure of the resulting Jordan form is particularly ietting since there is no
requirement that the individual’s be unique, and hence for a given eigenvalue
we can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the mataix be computed
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in terms of the Jordan blocks:

e 0 0
Jo .
= |0 ¢ . (5.10)
: .0
0 ... 0 ek

This follows from the block diagonal form af. The exponentials of the Jordan
blocks can in turn be written as

/ 2 n—-1
1t 5 .. 7(;_1)!
tn72
0 1 t =
eit=1. 1 .| Mt (5.11)
.ot
L0 ... 0 1

When there are multiple eigenvalues, the invariant sulespassociated with
each eigenvalue correspond to the Jordan blocks of thexwatNote thatA may
be complex, in which case the transformatibrihat converts a matrix into Jor-
dan form will also be complex. Wheh has a nonzero imaginary component, the
solutions will have oscillatory components since

0@t — o9 (cosewt + i sinawt).

We can now use these results to prove Theodelnwhich states that the equilib-
rium pointxe = 0 of a linear system is asymptotically stable if and only iARe O.

Proof of Theorerd.1 LetT € C™" be an invertible matrix that transformsinto
Jordan form,) = TAT—1. Using coordinatez= Tx, we can write the solutior(t)
as
z(t) = e¥'z(0).

Since any solutiom(t) can be written in terms of a solutiat) with z(0) = T x(0),
it follows that it is sufficient to prove the theorem in the tséormed coordinates.

The solutionz(t) can be written in terms of the elements of the matrix expo-
nential. From equatiorb(11) these elements all decay to zero for arbitrz\@) if
and only if ReA; < 0. Furthermore, if any\; has positive real part, then there ex-
ists an initial conditiorz(0) such that the corresponding solution increases without
bound. Since we can scale this initial condition to be arbiyramall, it follows
that the equilibrium point is unstable if any eigenvalue pasitive real part. [J

The existence of a canonical form allows us to prove many pti@geof linear
systems by changing to a set of coordinates in whichAhmeatrix is in Jordan
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form. We illustrate this in the following proposition, whidollows along the same
lines as the proof of Theoreshl

Proposition 5.3. Suppose that the system

dx
2 A
a

has no eigenvalues with strictly positive real part and omenore eigenvalues
with zero real part. Then the system is stable if and only ifJivelan blocks cor-
responding to each eigenvalue with zero real part are scélas 1) blocks.

Proof. See Exercisé.6b. O

The following example illustrates the use of the Jordan form.

Example 5.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft sucthasdescribed in Ex-
ample2.9. Suppose that we choosg= u, = 0 so that the dynamics of the system
become

Z
g 5
z Zs
-t . 5.12
dt —gsinzg— gz |’ (12)
g(coszz—1) — &
\ 0 )

wherez = (x,y, 8,X,y,8). The equilibrium points for the system are given by set-
ting the velocitiex, y andé to zero and choosing the remaining variables to satisfy
—gsinzze=0
g(coszze—1) =0
This corresponds to the upright orientation for the aircrisiftte thatxe andye
are not specified. This is because we can translate the systamew (upright)
position and still obtain an equilibrium point.

To compute the stability of the equilibrium point, we comgtite linearization
using equation4.11):

— Z37e - ee = 0

0 0 O 1 0 0
00 O 0 1 0
A_OF| _[o0o 0o o 0o 1
~oz|, |00 -g -¢m 0 Of
00 O 0 -c¢/maoO
00 O 0 0 0)

The eigenvalues of the system can be computed as
A(A) ={0,0,0,0,—c/m,—c/m}.
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e _— _— -
(a) Mode 1 (b) Mode 2

Figure 5.4: Modes of vibration for a system consisting of two masses connectedimgsp
In (a) the masses move left and right in synchronization in (b) they rntawvard or against
each other.

We see that the linearized system is not asymptoticallylestsibce not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense oubyapwe must
make use of the Jordan form. It can be shown that the JordandbA is given by

(0l0 0 0] O 0
00 1 0] 0 0
| oloo 1 o 0
J=10l0 0 o o 0
0/0 0 Of—¢/m| O
0[O0 0 O] 0O |-c/m J

Since the second Jordan block has eigenvalue 0 and is not kesigpnvalue, the
linearization is unstable. O

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a geserdf the types of
behavior the system can exhibit. For oscillatory systeims t¢érmmodeis often
used to describe the vibration patterns that can occur. &gudrillustrates the
modes for a system consisting of two masses connected mgspfne pattern is
when both masses oscillate left and right in unison, andremas when the masses
move toward and away from each other.

The initial condition response of a linear system can be @rith terms of a
matrix exponential involving the dynamics matAxThe properties of the matrix
therefore determine the resulting behavior of the systemerG matrixA € R"™",
recall thatv is an eigenvector oA with eigenvalue if

Av=Av.

In generald andv may be complex-valued, althoughAfis real-valued, then for
any eigenvalud its complex conjugatd * will also be an eigenvalue (with* as
the corresponding eigenvector).

Suppose first thax andv are a real-valued eigenvalue/eigenvector pairXor
If we look at the solution of the differential equation #(0) = v, it follows from
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Figure 5.5: The notion of modes for a second-order system with real eigenvalbhedeft
figure shows the phase portrait and the modes corresponding to selthenstart on the
eigenvectors (bold lines). The corresponding time functions are sbowime right.

the definition of the matrix exponential that

1 A2t2
flv= (I +At+§A2t2+~-)v:v+)\tv+TV+~- =é''v.

The solution thus lies in the subspace spanned by the eigenvébe eigenvalue
A describes how the solution varies in time, and this soluaften called anode
of the system. (In the literature, the term “mode” is als@oftised to refer to the
eigenvalue rather than the solution.)
If we look at the individual elements of the vectorandy, it follows that
x(t) el v
X (t) N e)‘th N Vj’
and hence the ratios of the components of the staiee constants for a (real)
mode. The eigenvector thus gives the “shape” of the soluti@his also called
a mode shapef the system. Figuré.5 illustrates the modes for a second-order
system consisting of a fast mode and a slow mode. Notice lteattate variables
have the same sign for the slow mode and different signs &fa$t mode.
The situation is more complicated when the eigenvalues afe complex.
SinceA has real elements, the eigenvalues and the eigenvectorsrapex con-
jugatesA = g £iw andv = u=iw, which implies that

U v+ Vv W V—V*
2 2
Making use of the matrix exponential, we have

v = M (u+iw) = €”*((ucoswt — wsinwt) +i(usinwt +wcosat)),
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from which it follows that

Mu= %(e‘“v+ eAt\f*) — ue” coswt — wet sinat,
eMtw = % (e/“v— eNv*) — ue’t sinwt + we’ coswt.

A solution with initial conditions in the subspace spanngadhe real paru and
imaginary partv of the eigenvector will thus remain in that subspace. Thetisoiu
will be a logarithmic spiral characterized lmyand w. We again call the solution
corresponding tad a mode of the system, andhe mode shape.

If a matrix A hasn distinct eigenvaluess, ..., Ay, then the initial condition re-
sponse can be written as a linear combination of the modesed&ahis, suppose
for simplicity that we have all real eigenvalues with copesding unit eigenvec-
torsvy,...,Vvh. From linear algebra, these eigenvectors are linearly ieleégnt,
and we can write the initial conditiox(0) as

X(0) = a1V1 + OoVo + -+ + V.
Using linearity, the initial condition response can be teritas

Thus, the response is a linear combination of the modes ofytters, with the

amplitude of the individual modes growing or decayingeis The case for dis-
tinct complex eigenvalues follows similarly (the case fondistinct eigenvalues is
more subtle and requires making use of the Jordan form disdus the previous
section).

Example 5.5 Coupled spring—mass system
Consider the spring—mass system shown in Fidude but with the addition of
dampers on each mass. The equations of motion of the system are

méa = —2kep — cq1 + Kap, mMbz = kop — 2kap — Cp.

In state space form, we define the state tabe(qs, 02,41, 02), and we can rewrite
the equations as

0 0 1 0

0 0 0 1
dx 2k k c
—=-=2Z 2 _Z 0 Ix
dt m m m

k 2k

k% , ¢

m m m

We now define a transformatian= T x that puts this system into a simpler form.
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Letz; = 3(0h + ), 2 = &1, 23 = 5(0 — 02) andzs = 23, SO that

1 1 0 O
z—Tx—l 0O 0 1 1 X
— 721 120 of™
0O 0 1 -1
In the new coordinates, the dynamics become
(0 1 0 0
k c
iz | m m ° ©°
— = 27
dt 0 0 0 1
o o X _c
m m

and we see that the system is in block diagonahfoda) form.

In thez coordinates, the stategs andz, parameterize one mode with eigenval-
uesA ~ —c/(2m) £i,/k/m (for c small), and the states andz; another mode
with A ~ —c/(2m) £i,/3k/m. From the form of the transformatioh we see
that these modes correspond exactly to the modes in Figdrén which g, and
g2 move either toward or against each other. The real and imggpets of the
eigenvalues give the decay ratesind frequencies for each mode. O

5.3 Input/Output Response

In the previous section we saw how to compute the initial @@mresponse using
the matrix exponential. In this section we derive the couatroh equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equatiod ,(repeated here:
d
d%( = Ax+Bu, y = Cx+ Du. (5.13)

Using the matrix exponential, the solution to equatidril8 can be written as
follows.

Theorem 5.4. The solution to the linear differential equati¢®.13 is given by

x(t) = eMx(0) + /Ot A-DBu(T)dr. (5.14)
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Proof. To prove this, we differentiate both sides and use the ptp§8r8) of the
matrix exponential. This gives

t
dx_ Ax(0) + / AL -DBU(T)dT + Bu(t) = Ax+ Bu,
0

dt
which proves the result. Notice that the calculation is eally the same as for
proving the result for a first-order equation. Ol

It follows from equations§.13 and 6.14) that the input/output relation for a
linear system is given by

y(t) = CeMx(0) + /O tCeA(‘*T)Bu(r)dr +Du(t). (5.15)

It is easy to see from this equation that the output is joititigar in both the
initial conditions and the input, which follows from the darity of matrix/vector
multiplication and integration.

Equation .15 is called theconvolution equatioyand it represents the general
form of the solution of a system of coupled linear differahgquations. We see
immediately that the dynamics of the system, as charaetktiy the matrixA,
play a critical role in both the stability and performancetloé system. Indeed,
the matrix exponential describésth what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can ivemgusing the concep
of theimpulse responsef a system. Consider the application of an input signél
u(t) given by the following equation:

0 t<0
ut)=pet)=¢1l/e 0<t<e (5.16)
0 t>e.

This signal is gulseof duratione and amplitude 1g, as illustrated in Figuré.6a
We define anmpulsed(t) to be the limit of this signal as — O:

o(t) = Liino Pe(t). (5.17)

This signal, sometimes calleddelta function,is not physically achievable but
provides a convenient abstraction in understanding thgorese of a system. Note
that the integral of an impulse is 1:

/Oté(r)dr:/otliinopg(t)dr: lim /Ot pe(t)dr

£—0

&
=lim [ 1/edt=1 t>0.
0

e—0



5.3. INPUT/OUTPUT RESPONSE 158

15 1
] /73~ — — -Pulse responses
o | NS Impulse response
Yosi Qg .
0.5 1 r///( \Qtt\
| I R
0 1. 0 ‘ ‘ ‘
0 2 4 6 8 10 0 10 20 30 40
Timet t
(a) Pulse and impulse functions (b) Pulse and impulse responses

Figure 5.6: Pulse response and impulse response. (a) The rectangles shosvqfulgdth

5, 25 and 08, each with total area equal to 1. The arrow denotes an imp@\tsedefined

by equation .17). The corresponding pulse responses for a linear system with elgeava

A = {-0.08,-0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of durati8n 0

In particular, the integral of an impulse over an arbitgashort period of time is
identically 1.

We define thempulse responsef a systenh(t) to be the output corresponding
to having an impulse as its input:

h(t) — /O 'Ct-TBs(1) dr = CEMB, (5.18)

where the second equality follows from the fact thét) is zero everywhere ex-
cept the origin and its integral is identically 1. We can novitevthe convolution

equation in terms of the initial condition response, thevotution of the impulse

response and the input signal, and the direct term:

y(t) = CeMx(0) + /Ot h(t — 1)u(t)dt + Du(t). (5.19)

One interpretation of this equation, explored in Exer&s2 is that the response
of the linear system is the superposition of the response tofimite set of shifted
impulses whose magnitudes are given by the injut This is essentially the ar-
gument used in analyzing FiguBe2 and deriving equation5(5). Note that the
second term in equatiod (19 is identical to equation(5), and it can be shown
that the impulse response is formally equivalent to thevdévie of the step re-
sponse.

The use of pulses as approximations of the impulse functiso jatovides a
mechanism for identifying the dynamics of a system from deigure5.6bshows
the pulse responses of a system for different pulse widtbsicélthat the pulse
responses approach the impulse response as the pulse wekhazero. As a
general rule, if the fastest eigenvalue of a stable systenda part-omay, then a
pulse of lengtre will provide a good estimate of the impulse responsaifyax <
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1. Note that for Figuré.6, a pulse width off = 1 s givesegmax = 0.62 and the
pulse response is already close to the impulse response.

Coordinate Invariance

The components of the input vectarand the output vectoy are given by the
chosen inputs and outputs of a model, but the state varidelesnd on the coor-
dinate frame chosen to represent the state. This choice oflicates affects the
values of the matrice8, B andC that are used in the model. (The direct tebm
is not affected since it maps inputs to outputs.) We now itigate some of the
consequences of changing coordinate systems.
Introduce new coordinatesby the transformatioz = T x, whereT is an in-

vertible matrix. It follows from equatiors(3) that

d ~ ~
& = T(AX+BU) = TAT 12+ TBu=: Az+ Bu

y =Cx+Du=CT 'z4+Du=:Cz+Du.

The transformed system has the same form as equ&i8nlfut the matrices, B
andC are different:

A=TAT B=TB, C=cCcT L. (5.20)

There are often special choices of coordinate systems tbat a to see a partic-
ular property of the system, hence coordinate transfoonattan be used to gain
new insight into the dynamics.

We can also compare the solution of the system in transfooeddinates to
that in the original state coordinates. We make use of anitapbproperty of the

exponential map, .
ST o TeT L,

which can be verified by substitution in the definition of the rixaéxponential.
Using this property, it is easy to show that

X(t) =T 2z(t) = T 2T x(0) + T* /O LA OBy dr.

From this form of the equation, we see that if it is possibler&ms$formA into

a form A for which the matrix exponential is easy to compute, we canthat
computation to solve the general convolution equationHeruntransformed state
x by simple matrix multiplications. This technique is illustied in the following
example.

Example 5.6 Coupled spring—mass system
Consider the coupled spring—mass system shown in Figidré he input to this
system is the sinusoidal motion of the end of the rightmoshgpand the output
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Figure 5.7: Coupled spring mass system. Each mass is connected to two springs Wth stif
nessk and a viscous damper with damping coefficienThe mass on the right is driven
through a spring connected to a sinusoidally varying attachment.

is the position of each masg, andg,. The equations of motion are given by

MGy = —2kay — g1 + Kap,

the equations as

dx
dt

.

0
0
2k
m

k

m

S~ oo

2k
m

md, = kap — 2kap — ¢z + ku.
In state space form, we define the state tabe(qs, 02,41, 2), and we can rewrite

3‘0 [N

0
1
0

c

m

X+

3|l o oo

This is a coupled set of four differential equations and isegodomplicated to solve

in analytical form.

The dynamics matrix is the same as in Exanfple and we can use the coor-
dinate transformation defined there to put the system in nfodail:

dz
dt

(0

1

0
0

m

0 )
0
1

0
k

2m
0

k

Z+

m

- 2m

Note that the resulting matrix equations are block diaganal hence decoupled.
We can solve for the solutions by computing the solutionsvaf $ets of second-
order systems represented by the stétes,) and(z3,z4). Indeed, the functional
form of each set of equations is identical to that of a singling—mass system.
(The explicit solution is derived in Sectidh3)
Once we have solved the two sets of independent second-egdations, we
can recover the dynamics in the original coordinates byrting the state trans-
formation and writingc = T ~1z. We can also determine the stability of the system
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Figure 5.8: Transient versus steady-state response. The input to a linear sysieows in
(a), and the corresponding output wikfD) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

by looking at the stability of the independent second-osystems. O

Steady-State Response

Given a linear input/output system

31( = AX+ Bu, y =Cx+Du, (5.21)

the general form of the solution to equatidhdl) is given by the convolution

equation: .

y(t) = CeMx(0) +/ Cce\=TBy(1)dT 4 Du(t).
0

We see from the form of this equation that the solution cassisan initial condi-
tion response and an input response.

The input response, corresponding to the last two terms iedhation above,
itself consists of two components—tlransient responsand thesteady-state re-
sponse The transient response occurs in the first period of time #fieinput
is applied and reflects the mismatch between the initial ¢mmdand the steady-
state solution. The steady-state response is the portidreadutput response that
reflects the long-term behavior of the system under the gimpats. For inputs
that are periodic the steady-state response will often bHegie, and for constant
inputs the response will often be constant. An example ofttduesient and the
steady-state response for a periodic input is shown in Fig@e

A particularly common form of input is step inputwhich represents an abrupt
change in input from one value to anothemAit step(sometimes called the Heav-
iside step function) is defined as
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and stasely-s
value give the key performance properties of the signal.

The step responsef the system&.21) is defined as the outpytt) starting from
zero initial condition (or the appropriate equilibrium ptiand given a step input.
We note that the step input is discontinuous and hence is nagtipally imple-
mentable. However, it is a convenient abstraction that @elyiused in studying
input/output systems.

We can compute the step response to a linear system usingmielation
equation. Settingk(0) = 0 and using the definition of the step input above, we
have

t t
y(t):/ Ce“(t‘T)Bu(T)errDu(t):C/ f-TBdr +D
0 0
t —
:c/ ¢“Bdo + D =C (A 1eB)|7_ +D
0 -

—CAlMB_cA 1B+ D.

If A has eigenvalues with negative real part (implying that thgimis a stable
equilibrium point in the absence of any input), then we cavrite the solution as

y(t)=CA e"B+D-CA B, t>0. (5.22)
~ —
transient steady-state

The first term is the transient response and decays to zdresa®. The second
term is the steady-state response and represents the ¥ahe @utput for large
time.

A sample step response is shown in Figbr@ Several terms are used when
referring to a step response. Thady-state valuesyof a step response is the
final level of the output, assuming it converges. Tise time T is the amount of
time required for the signal to go from 10% of its final value @@ of its final
value. Itis possible to define other limits as well, but in thi®k we shall use these
percentages unless otherwise indicated. dvershoot M is the percentage of the
final value by which the signal initially rises above the finaluea This usually
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Figure 5.10: Response of a compartment model to a constant drug infusion. A sdigsle
gram of the system is shown in (a). The step response (b) shows thef @racentration
buildup in compartment 2. In (c) a pulse of initial concentration is used ¢éedpp the
response.

assumes that future values of the signal do not overshodirthlevalue by more
than this initial transient, otherwise the term can be ambig. Finally, thesettling
time T is the amount of time required for the signal to stay within @Pits final
value for all future times. The settling time is also somesrdefined as reaching
1% or 5% of the final value (see Exerc4). In general these performance mea-
sures can depend on the amplitude of the input step, butfealisystems the last
three quantities defined above are independent of the sibe sctép.

Example 5.7 Compartment model

Consider the compartment model illustrated in FigbwE)and described in more
detail in SectiorB.6. Assume that a drug is administered by constant infusion in
compartmenY; and that the drug has its effect in compartméntTo assess how
quickly the concentration in the compartment reaches gtetate we compute
the step response, which is shown in Figbireh. The step response is quite slow,
with a settling time of 39 min. It is possible to obtain theastg-state concentration
much faster by having a faster injection rate initially, aswn in Figure5.1Cc.
The response of the system in this case can be computed by rambivo step
responses (Exercige3). O

Another common input signal to a linear system is a sinuswid combination
of sinusoids). Thérequency respons® an input/output system measures the way
in which the system responds to a sinusoidal excitation @odiits inputs. As we
have already seen for scalar systems, the particular snlagisociated with a sinu-
soidal excitation is itself a sinusoid at the same frequeHeyce we can compare
the magnitude and phase of the output sinusoid to the inpatelgenerally, if a
system has a sinusoidal output response at the same frgoagtie input forcing,
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we can speak of the frequency response of the system.

To see this in more detail, we must evaluate the convolutipagon 6.15) for
u = coswt. This turns out to be a very messy calculation, but we can makef
the fact that the system is linear to simplify the derivationparticular, we note
that 1

coswt = 5 (é“’t + ef”‘").

Since the system is linear, it suffices to compute the respdrtbe gystem to the
complex inputu(t) = € and we can then reconstruct the input to a sinusoid by
averaging the responses correspondingtow ands= —iw.

Applying the convolution equation to the inpuit= €% we have

1
y(t) = Cx(0) + /0 CA-UBETdr + Dt

t
_ Cex(0) + CeM / els-ATBdr + De.

0

If we assume that none of the eigenvaluesfddre equal tas = +iw, then the
matrix sl — Ais invertible, and we can write

y(t) = Ce&'x(0) +CeM (51— A) el A7B) ‘to Dt
= Cex(0) +Ce(sl—A)t (e(slfmt _ |) B D™
= Cé'x(0) +C(sl - A) 'e"B—Ce(sI— A) B+ De,
and we obtain

y(t) = CeMt (x(O) ~(sl— A)—ls) + (C(sl A B+ D) et (5.23)

transient steady-state

Notice that once again the solution consists of both a temtgiomponent and a
steady-state component. The transient component decagsdaf zhe system is
asymptotically stable and the steady-state componenboptional to the (com-
plex) inputu = e,

We can simplify the form of the solution slightly further bgwriting the steady-

state response as
yss( ) eleest Mest+|9)

where _
Me® =C(sl—A)"1B+D (5.24)

andM and 0 represent the magnitude and phase of the complex nu@(s¢r-
A)~'B+D. Whens = iw, we say thaiM is thegain and 8 is the phaseof the
system at a given forcing frequenay Using linearity and combining the solutions
for s= +iw ands= —iw, we can show that if we have an input A, sin(wt + ()
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Figure 5.11:Response of a linear system to a sinusoid. (a) A sinusoidal input ofitnegn
Ay (dashed) gives a sinusoidal output of magnitégesolid), delayed byAT seconds. (b)
Frequency response, showing gain and phase. The gain is giver Iogtit of the output
amplitude to the input amplitud®) = Ay/A,. The phase lag is given by = —2nAT /T; it
is negative for the case shown because the output lags the input.

and an outpuy = Aysin(wt + ¢ ), then

. A
gain(w) = Ey =M, phaséw)=¢—=6.
The steady-state solution for a sinusaig- coswt is now given by

Yss(t) = Mcogq wt + 6).

If the phased is positive, we say that the outplgadsthe input, otherwise we say
it lagsthe input.

A sample sinusoidal response is illustrated in FigbrEla The dashed line
shows the input sinusoid, which has amplitude 1. The outputssid is shown
as a solid line and has a different amplitude plus a shiftets@hThe gain is the
ratio of the amplitudes of the sinusoids, which can be daterchby measuring
the height of the peaks. The phase is determined by compdrgatio of the
time between zero crossings of the input and output to theatygeriod of the
sinusoid:

6 =-2m: E
T

A convenient way to view the frequency response is to plot Hmvgain and
phase in equatiorb(24) depend orw (throughs = iw). Figure5.11bshows an
example of this type of representation.

Example 5.8 Active band-pass filter
Consider the op amp circuit shown in Figlird.2a We can derive the dynamics of
the system by writing theodal equationswhich state that the sum of the currents
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp wittR@o
filters arranged to provide a band-pass filter. The plot in (b) showsdimeamd phase of the
filter as a function of frequency. Note that the phase starts atd96 to the negative gain of

the operational amplifier.

at any node must be zero. Assuming that= v, = 0, as we did in SectioB3.3,
we have

V] — Vi dv. dw v dv:
0= 1R12—C1d—t2, 020175+ﬁz+ zd—f.
Choosingv, andvs as our states and using these equations, we obtain
dV2 Vi —\V2 dV3 —V3 Vi —\V2
dt - RC ' dt RC, RGC
Rewriting these in linear state space form, we obtain
oy 1
31( = Rfcl 1 X+ Ri(il u, y= (O l) X, (5.25)
RC; RGC RiC,

wherex = (v2,v3), u= vy andy = vs.

The frequency response for the system can be computed usiatj@ayb.24):
& RiCis
Ry (1+ R]_C]_S)(l—l- RZCZS) ’
The magnitude and phase are plotted in Figudbfor Ry = 100Q, R, =5 kQ
andC; = C, = 100 pF. We see that the circuit passes through signals wihdre
cies at about 10 rad/s, but attenuates frequencies belod$aad above 50 rad/s.
At 0.1 rad/s the input signal is attenuated byx2®.05). This type of circuit is
called aband-pass filtesince it passes through signals in the band of frequencies
between 5 and 50 rad/s. O

sS=iw.

Mel® =C(sI—-A)'B+D=—
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As in the case of the step response, a number of standardrfespe defined
for frequency responses. The gain of a system at0 is called thezero frequency
gainand corresponds to the ratio between a constant input arsiehdy output:

Mo = —CA 1B+D.

The zero frequency gain is well defined onhAifs invertible (and, in particular, if

it does not have eigenvalues at 0). Itis also important te tiwit the zero frequency
gain is a relevant quantity only when a system is stable atheutorresponding
equilibrium point. So, if we apply a constant input= r, then the correspond-
ing equilibrium pointxe = —A~!Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero fesguy gain is often called
the DC gain DC stands for direct current and reflects the common separafi
signals in electrical engineering into a direct currentdZeequency) term and an
alternating current (AC) term.)

The bandwidthw, of a system is the frequency range over which the gain has
decreased by no more than a factor ¢f/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the bandwidth isftequency where
the gain has decreased by\12 from the zero frequency gain. For systems that
attenuate low frequencies but pass through high frequentie reference gain
is taken as the high-frequency gain. For a system such asatikfass filter in
Example5.8, bandwidth is defined as the range of frequencies where tineigjai
larger than 1+/2 of the gain at the center of the band. (For Exangp&this would
give a bandwidth of approximately 50 rad/s.)

Another important property of the frequency response is¢henant peak |V
the largest value of the frequency response, angéak frequencyoy, the fre-
guency where the maximum occurs. These two properties destre frequency
of the sinusoidal input that produces the largest possilieud and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomicdamicroscope in
contact mode, discussed in Secti®®. The basic dynamics are given by equa-
tion (3.23. The piezo stack can be modeled by a second-order systenmumth
damped natural frequenay; and damping ratids. The dynamics are then de-
scribed by the linear system

0 1 0 0 0
dx [ —k/(Mm+mp) —cp/(M+mp) 1/mp 0 -t o,
dt 0 0 0 w3 (Ol e
0 0 -3 —2{303 w3

y mp [ m ko myCo

= 1 0] X,
m+m \Lm+m m+m
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dyioarof an
atomic force microscope in contact mode. The plot in (b) shows the gaiphase for the
piezo stack. The response contains two frequency peaks at ressnafrthe system, along
with an antiresonance ab = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

where the input signal is the drive signal to the amplifier dredautput is the elon-
gation of the piezo. The frequency response of the systenoversim Figure5.13h
The zero frequency gain of the systenvig= 1. There are two resonant poles with
peakdVl;1 = 2.12 atwinrr = 238 krad's andM,2 = 4.29 atwmr, = 746 krad's. The
bandwidth of the system, defined as the lowest frequency whemgain isy/2 less
than the zero frequency gain,ds = 292 krad's. There is also a dip in the gain
Mg = 0.556 for wng = 268 krad's. This dip, called aantiresonancgis associated
with a dip in the phase and limits the performance when th&esyss controlled
by simple controllers, as we will see in Chapi€x O

Sampling

It is often convenient to use both differential and differerequations in modeling
and control. For linear systems it is straightforward toéfarm from one to the
other. Consider the general linear system described bytiegua.13 and assume
that the control signal is constant over a sampling inteo¥alonstant lengti. It
follows from equation§.14) of Theoremb.4that

t+h
X(t+h) = ex(t) + / AU-DBY(T) T = DX(t) 4 TUt),  (5.26)
t
where we have assumed that the discontinuous control sgjeahtinuous from
the right. The behavior of the system at the sampling titnekh is described by
the difference equation
X[k+ 1] = dx[k] + Tu[K],

y[K] = Cxk] 4 Dulk]. (5.27)
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Notice that the difference equatiob.27) is an exact representation of the behavior
of the system at the sampling instants. Similar expressiansalso be obtained if
the control signal is linear over the sampling interval.

The transformation from5(26) to (5.27) is calledsampling The relations be-
tween the system matrices in the continuous and sampledsemations are as
follows:

® = e r:(/oheASds)B; A:%Iogcb, B:(/OheAsds)_lr. (5.28)

Notice that ifA is invertible, we have
r=A1e"-1)B.

All continuous-time systems can be sampled to obtain aelisdime version,
but there are discrete-time systems that do not have a cooiiatime equivalent.
The precise conditions depend on the properties of the matpgnential expAh)
in equation 5.26).

Example 5.10 IBM Lotus server
In Example2.4 we described how the dynamics of an IBM Lotus server were
obtained as the discrete-time system

ylk+1] = ay[k] + bulk],

wherea = 0.43, b = 0.47 and the sampling period = 60s. A differential
equation model is needed if we would like to design contrateyns based on
continuous-time theory. Such a model is obtained by applgiggation $.28);
hence loga h 1

A== 00141  B= (/0 etdt) b=00116

and we find that the difference equation can be interpretecsamaled version of
the ordinary differential equation

%‘ — _0.0141x+ 0.0116..

U
5.4 Linearization

As described at the beginning of the chapter, a common saidriieear system
models is through the approximation of a nonlinear systera layear one. These
approximations are aimed at studying the local behavior ®fsdem, where the
nonlinear effects are expected to be small. In this sectierdiscuss how to lo-
cally approximate a system by its linearization and what lsarsaid about the
approximation in terms of stability. We begin with an illcegion of the basic con-
cept using the cruise control example from Chagter
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Example 5.11 Cruise control
The dynamics for the cruise control system were derived ini@e8t1 and have
the form

mg\t/ = opuT(anv) —mgG sgnv) — %pCVsz —mgsiné, (5.29)

where the first term on the right-hand side of the equationeéddihce generated
by the engine and the remaining three terms are the rollinidn, aerodynamic
drag and gravitational disturbance force. There is an dxititin (ve, U) when the
force applied by the engine balances the disturbance forces

To explore the behavior of the system near the equilibriumwildinearize the
system. A Taylor series expansion of equatibr29 around the equilibrium gives

d(Vd—tVe) = a(V—Ve) —bg(0 — Be) +-b(u—Ue) +higher order terms,  (5.30)
where
2T/ —
L UealT (an\r/g) PCAE | gcos, b "”T(m%"e) (5.31)

Notice that the term corresponding to rolling friction gigaars ifv = 0. For a
car in fourth gear with/e = 25 m/s,6, = 0 and the numerical values for the car
from Section3.1, the equilibrium value for the throttle ige = 0.1687 and the
parameters ara= —0.0101,b = 1.32 andc = 9.8. This linear model describes
how small perturbations in the velocity about the nomin&espevolve in time.
Figure5.14shows a simulation of a cruise controller with linear and|imaar
models; the differences between the linear and nonlineateiscare small, and
hence the linearized model provides a reasonable approgima O

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, sirgiéput nonlinear system

dx n
aff(x,u), xeR"ueR,
y =h(x,u), yeR,

(5.32)

with an equilibrium point ax = X, U = Ue. Without loss of generality we can
assume thate = 0 andue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thdocal behavior of the system around the equilibrium pdiat ue),
we suppose that— xe andu — ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with(tower-order) lin-
ear terms. This is roughly the same type of argument that id wéen we do
small-angle approximations, replacing 8invith 8 and co® with 1 for 6 near
zero.
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controltes geekp = 0.5

andk; = 0.1.

As we did in Chapted, we define a new set of state variabiess well as
inputsv and outputsv:

Z=X—Xe, V=U-—Ug, W =Yy —h(Xe,Ug).

These variables are all close to zero when we are near thébemum point, and so
in these variables the nonlinear terms can be thought ofeakitiiner-order terms
in a Taylor series expansion of the relevant vector fieldsufassg for now that
these exist).

Formally, theJacobian linearizatiorof the nonlinear systenb(32 is

gtz = Az+ By, w=Cz+Dy, (533)
where
A:ﬂ , B:ﬂ , C:@ , D:@ (5.34)
1704 (Xe,le) Ju (Xe,le) ox (Yo U) Ju (Xe,le)

The system%.33 approximates the original syste.82 when we are near the
equilibrium point about which the system was linearizedingsrheorend. 3, if
the linearization is asymptotically stable, then the efydilm pointxe is locally
asymptotically stable for the full nonlinear system.

It is important to note that we can define the linearization fstem only near



5.4. LINEARIZATION 172
an equilibrium point. To see this, consider a polynomiateys

dx 2
gt = 02X+ agx +ag+ U,

whereag # 0. A set of equilibrium points for this system is given by, ue) =

(Xe, —80 — A1Xe — azxg - asxg), and we can linearize around any of them. Suppose
that we try to linearize around the origin of the system 0, u = 0. If we drop the
higher-order terms i, then we get

%_ +aiX+u
dt_ao 1 )

which isnotthe Jacobian linearization & # 0. The constant term must be kept,
and itis not present irb(33. Furthermore, even if we kept the constant term in the
approximate model, the system would quickly move away frioimpoint (since it

is “driven” by the constant terrag), and hence the approximation could soon fail
to hold.

Software for modeling and simulation frequently has faetitfor performing
linearization symbolically or numerically. The MATLAB commea r i mfinds
the equilibrium, andl i nnod extracts linear state space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering

Consider the vehicle steering system introduced in Exar@eThe nonlinear
equations of motion for the system are given by equati@a3—(2.25 and can
be written as

4 (X vcos(a(d) +6) tans

) atan
— |yl =[vsin@@®)+8)| a5 =arcta ;
dt [9] Y0 tans ’( b )

b
wherex, y and 6 are the position and orientation of the center of mass of the
vehicle,vp is the velocity of the rear whedj,is the distance between the front and
rear wheels and is the angle of the front wheel. The functior{d) is the angle
between the velocity vector and the vehicle’s length axis.

We are interested in the motion of the vehicle about a sttdigé path @ = 6)
with fixed velocityvgp # 0. To find the relevant equilibrium point, we first &&= 0
and we see that we must hade= 0, corresponding to the steering wheel being
straight. This also yieldg = 0. Looking at the first two equations in the dynamics,
we see that the motion in the direction is by definitiomot at equilibrium since
X% 4+ y? = V2 # 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral aeviztthe vehicle
from a straight line. For simplicity, we leé, = 0, which corresponds to driving
along thex axis. We can then focus on the equations of motion inytlzed 6
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directions. With some abuse of notation we introduce the sta (y, ) andu= 9.
The system is then in standard form with

vsin(a(u) +x2)
i ] , o a(u) = arctar(atanu>, h(x,u) = x;.

f(x,u) = [ b

Vo
—tanu
b

The equilibrium point of interest is given by= (0,0) andu = 0. To compute
the linearized model around this equilibrium point, we maike of the formu-
las 6.34). A straightforward calculation yields

A— of _ |0 W B— of _ [aw/b
~ Ox|x=0 (0 0}" ~ dujx=0  (Vo/b )’
u=0 u=0
Jch oh
- = 1 = — =
c OX | x=0 [ 0) ’ D Ju|x=0 O’
u=0 u=0
and the linearized system
dx = Ax+ BuU, y=Cx+Du (5.35)

dt
thus provides an approximation to the original nonlinearadyics.

The linearized model can be simplified further by introduciogmalized vari-
ables, as discussed in Sect®3. For this system, we choose the wheel bass
the length unit and the unit as the time required to travel aakbase. The nor-
malized state is thus= (x1/b,x2), and the new time variable is= vot/b. The
model 6.35 then becomes

dz_ (z+yw) (0 1 y -

dr_[ y =1o ol 7zt 1w y= (1 O] z (5.36)
wherey = a/b. The normalized linear model for vehicle steering with ngpmshg
wheels is thus a linear system with only one parameter. 0

Feedback Linearization

Another type of linearization is the use of feedback to contree dynamics of a
nonlinear system into those of a linear one. We illustragehihsic idea with an
example.

Example 5.13 Cruise control
Consider again the cruise control system from Exarbpld, whose dynamics are
given in equation§.29:

m(;\t/ = apuT(anv) — mgG sgr(v) — %pCdsz — mgsiné.
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Linearized dynamics

Nonlinear|
Process

Linear
Controller

—1 |-

Figure 5.15: Feedback linearization. A nonlinear feedback of the form a(x,v) is used
to modify the dynamics of a nonlinear process so that the responsettimmputv to the
outputy is linear. A linear controller can then be used to regulate the system’s dy:am

If we chooseu as a feedback law of the form

_ / 1
u= T () (u +mgG sgn(v) + ZpC\,A\/2 ) (5.37)
then the resulting dynamics become
dv
ma =u +d, (5.38)
whered = —mgsin@ is the disturbance force due the slope of the road. If we

now define a feedback law faf (such as a proportional-integral-derivative [PID]
controller), we can use equatioB.87) to compute the final input that should be
commanded.

Equation 6.38 is a linear differential equation. We have essentiallyéiried”
the nonlinearity through the use of the feedback 18v87). This requires that we
have an accurate measurement of the vehicle velacdg well as an accurate
model of the torque characteristics of the engine, geansatirag and friction
characteristics and mass of the car. While such a model igerarally available
(remembering that the parameter values can change), if sigrda good feedback
law for U, then we can achieve robustness to these uncertainties. O

More generally, we say that a system of the form

dx

dt - f(x7u)7 y_ h(X),
is feedback linearizablé we can find a control lawu = a(x,v) such that the
resulting closed loop system is input/output linear withutv and outputy, as
shown in Figures.15 To fully characterize such systems is beyond the scope of
this text, but we note that in addition to changes in the inihietgeneral theory also
allows for (nonlinear) changes in the states that are usel@goribe the system,
keeping only the input and output variables fixed. More det@ilthis process can
be found in the textbooks by Isidoiisj95] and Khalil [KhaO1].

One case that comes up relatively frequently, and is henctspecial mention,@
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is the set of mechanical systems of the form

M(a)§+C(a,q) = B(q)u.

Hereq € R" is the configuration of the mechanical systavh(g) € R"*" is the
configuration-dependent inertia matr(,q, q) € R" represents the Coriolis forces
and additional nonlinear forces (such as stiffness antddriandB(q) € R™P is

the input matrix. Ifp = n, then we have the same number of inputs and config-
uration variables, and if we further have th&{g) is an invertible matrix for all
configurationgy, then we can choose

u=B"Y(q)(M(aq)v+C(q,q)). (5.39)
The resulting dynamics become
M(@d=M(@v = 4=V,

which is a linear system. We can now use the tools of lineateaysheory to
analyze and design control laws for the linearized systemembering to apply
equation .39 to obtain the actual input that will be applied to the system

This type of control is common in robotics, where it goes byrthme ofcom-
puted torqueand in aircraft flight control, where it is calledti/namic inversion
Some modeling tools like Modelica can generate the code ®inverse model
automatically. One caution is that feedback linearizatian often cancel out ben-
eficial terms in the natural dynamics, and hence it must be wibdcare. Exten-
sions that do not require complete cancellation of nontitiea are discussed in
Khalil [Kha01 and Krsti et al. KKK95].

5.5 Further Reading

The majority of the material in this chapter is classical aad be found in most
books on dynamics and control theory, including early warkscontrol such as
James, Nichols and PhillipdiiP47 and more recent textbooks such as Dorf and
Bishop [DB04], Franklin, Powell and Emami-NaeirffPENOJ and OgataQga0].

An excellent presentation of linear systems based on theb&tponential is
given in the book by Brocketgro7(, a more comprehensive treatment is given by
Rugh [Rug93 and an elegant mathematical treatment is given in Sorf8ag93§.
Material on feedback linearization can be found in booksamlinear control the-
ory such as Isidorilgi95] and Khalil [KhaOJ. The idea of characterizing dynamics
by considering the responses to step inputs is due to Hdayise also introduced
an operator calculus to analyze linear systems. The unitsthprefore also called
theHeaviside step functiodnalysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of latkathematical rigor,
as described in the biography by Nahiah88§. The difficulties were cleared up
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later by the mathematician Laurent Schwartz who develajgdbution theoryin
the late 1940s. In engineering, linear systems have toadiiy been analyzed us-
ing Laplace transforms as described in Gardner and Ba@®43. Use of the ma-
trix exponential started with developments of control tlydn the 1960s, strongly
stimulated by a textbook by Zadeh and Desa@$3]. Use of matrix techniques
expanded rapidly when the powerful methods of numeric linégebra were pack-
aged in programs like LabVIEW, MATLAB and Mathematica.

Exercises

5.1(Response to the derivative of a signal) Show thgttif is the output of a linear
system corresponding to inpugt), then the output corresponding to an inp(it) -

is given byyit). (Hint: Use the definition of the derivativg(t) = limg_o(y(t +
£)-y(t))/€.)

5.2(Impulse response and convolution) Show that a sigftalcan be decompose@
in terms of the impulse functiod(t)

/6t—r

and use this decomposition plus the principle of superiposio show that the
response of a linear system to an inp(t) (assuming a zero initial condition) can

be written as i
= / h(t—T1)u(r)dr
0

whereh(t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the ctommgratr model
given in Example5.7. Compute the step response for the system and compare
it with Figure 5.10b Use the principle of superposition to compute the response
to the 5 s pulse input shown in FiguselOc Use the parameter valukg= 0.1,

kl =01, kz =05 andbo =15.

5.4 (Matrix exponential for second-order system) Assume ¢hatl and letwy =

wo+/1— 2. Show that

lon oy ]t— [ez‘*btcoswdt ez“b‘sinwdt]

exp[ -~y —{wp —e {Wlsinayt e ¢t cosyt

5.5 (Lyapunov function for a linear system) Consider a lineatesnx = Ax with
ReA; < O for all eigenvalued j of the matrixA. Show that the matrix

P:/OmeATTQe”dT
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defines a Lyapunov function of the for(x) = x" Px

5.6 (Nondiagonal Jordan form) Consider a linear system withrdaloform that
is non-diagonal.

(a) Prove PropositioB.3by showing that if the system contains a real eigenvalue
A = 0 with a nontrivial Jordan block, then there exists an ihitiandition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvalugs ReéA = 0 by @
using the block Jordan form

0 w 1 O
3o | @ O 0 1
' 10 0 0 w
0 0 —-w O
5.7 (Rise time for a first-order system) Consider a first-orderesystf the form
T dx _ X+Uu =X
dt - ) y_ g

We say that the parameteis thetime constantor the system since the zero input
system approaches the origined/”. For a first-order system of this form, show
that the rise time for a step response of the system is appedgly 2r, and that
1%, 2%, and 5% settling times approximately correspondsan, 4t and 3.

5.8 (Discrete-time systems) Consider a linear discrete-tiyséesn of the form
x[k+ 1] = AXK] + Bulk], y[K] = Cx[k] 4 Dulk].

(@) Show that the general form of the output of a discrete-fimgar system is
given by the discrete-time convolution equation:

y[k] = CAX[0] + kZl]CAkleu[ j]+ DulK.
=

(b) Show that a discrete-time linear system is asymptotica#ible if and only if
all the eigenvalues o4 have a magnitude strictly less than 1.

(c) Letu[k] = sin(wk) represent an oscillatory input with frequenay< T (to
avoid “aliasing”). Show that the steady-state componenhefresponse has gain
M and phasé, where

Me® =C(é®l —A)"B+D.
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(d) Show that if we have a nonlinear discrete-time system
x[k+1] = f(x[kl,ulk]), xkl€eR" ueR,
ylk =h(x[kl,ulk]), YyeR,

then we can linearize the system around an equilibrium gainte) by defining
the matrices, B, C andD as in equationg.34).

5.9 (Keynesian economics) Consider the following simple Keyae macroeco-
nomic model in the form of a linear discrete-time systemulised in Exercisg.8

[CI:[[tt:—rll]]] = [aba—b ;b] [CI:[[tt]]] * [;b] Gltl
Y[t] = Clt] +1[t] + Glt]

Determine the eigenvalues of the dynamics matrix. Wherharenagnitudes of the
eigenvalues less than 1? Assume that the system is in equititwith constant
values capital spending, investment and government expenditu@ Explore
what happens when government expenditure increases by W8&sthe values
a=0.25andb=0.5.

5.10 Consider a scalar system

dx
=1-—
at X3+ U.

Compute the equilibrium points for the unforced systers-(0) and use a Taylor
series expansion around the equilibrium point to compugditiearization. \Verify
that this agrees with the linearization in equati6r8@).

5.11 (Transcriptional regulation) Consider the dynamics of aegie circuit that
implementsself-repressionthe protein produced by a gene is a repressor for that
gene, thus restricting its own production. Using the mogetsented in Exam-
ple 2.13 the dynamics for the system can be written as

dm__a
dt — 1+kp?

whereu is a disturbance term that affects RNA transcription amg > 0. Find

the equilibrium points for the system and use the lineardygthmics around each

equilibrium point to determine the local stability of theuddprium point and the
step response of the system to a disturbance.

+ap—ym—u, Zf:ﬁm—ép, (5.40)



Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage orameor ac-
cumulation of past causes. We must, of course, demand that theistdrofl states> be
sufficiently rich to carry all information about the past history2ofo predict the effect of the
past upon the future. We do not insist, however, that the state igdlsésuch information
although this is often a convenient assumption.

R. E. Kalman, P. L. Falb and M. A. Arbifippics in Mathematical System Theat969 KFA69].

This chapter describes how the feedback of a system’s statbeaised to
shape the local behavior of a system. The concept of readlabvihtroduced and
used to investigate how to design the dynamics of a systeoughrassignment
of its eigenvalues. In particular, it will be shown that undertain conditions it
is possible to assign the system eigenvalues arbitrarilgdpyopriate feedback of
the system state.

6.1 Reachability

One of the fundamental properties of a control system is whiabf points in the
state space can be reached through the choice of a contud! infurns out that the
property of reachability is also fundamental in understagdhe extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of therayaihd focusing on
the evolution of the state, given by

dx

dt
wherex € R", u € R, Ais ann x n matrix andB a column vector. A fundamental
question is whether it is possible to find control signals sb &my point in the state
space can be reached through some choice of input. To stigjyh define the
reachable setZ(Xp, < T) as the set of all points; such that there exists an input
u(t), 0<t <T that steers the system frax(0) = xo to Xx(T) = X¢, as illustrated in
Figure6.1a

= Ax+Bu, (6.1)
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4

i
4 *ﬁ Ei/

X0 3 i
R (%0, <T) :

(a) Reachable set (b) Reachability through control

Figure 6.1: The reachable set for a control system. TheZgty, < T) shown in (a) is the set
of points reachable fromy in time less thaf. The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontakarand the control
inputs drawn as vertical arrows. The set of achievable equilibrium pigirite x axis. By
setting the control inputs as a function of the state, it is possible to steer teensicsthe
origin, as shown on the sample path.

Definition 6.1 (Reachability) A linear system iseachableif for any xp,x; € R"
there exists & > 0 andu: [0, T] — R such that the corresponding solution satisfies
X(0) = xg andx(T) = Xs.

The definition of reachability addresses whether it is possibteach all points
in the state space inteansientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrieintp of the system
(since we can remain at those points once we get there). Ttaf aéitpossible
equilibria for constant controls is given by

& = {Xe : A%+ Bue = 0 for someue € R}.

This means that possible equilibria lie in a one- (or posditijjrer) dimensional
subspace. If the matri is invertible, this subspace is spannediy B.
The following example provides some insight into the podisigs.

Example 6.1 Double integrator
Consider a linear system consisting of a double integratovse dynamics are

iven b
d y dxg dxe

= — X27 R
dt dt
Figure6.1bshows a phase portrait of the system. The open loop dynamie®}
are shown as horizontal arrows pointed to the rightdor- O and to the left for
X2 < 0. The control input is represented by a double-headed arrdtei vertical
direction, corresponding to our ability to set the valug0fThe set of equilibrium
points& corresponds to the, axis, withug = 0.
Suppose first that we wish to reach the origin from an initialditon (a, 0).
We can directly move the state up and down in the phase plah&dmust rely
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on the natural dynamics to control the motion to the left agttr If a > 0, we
can move the origin by first setting< 0, which will causex; to become negative.
Oncex; < 0, the value of; will begin to decrease and we will move to the left.
After awhile, we can setf, to be positive, moving, back toward zero and slowing
the motion in thex; direction. If we bringx, > 0, we can move the system state in
the opposite direction.

Figure6.1bshows a sample trajectory bringing the system to the orlgate
that if we steer the system to an equilibrium point, it is ploiesto remain there
indefinitely (sincex; = 0 whenx, = 0), but if we go to any other point in the state
space, we can pass through the point only in a transieniashi O

To find general conditions under which a linear system is raileh we will
first give a heuristic argument based on formal calculatiatfs mwpulse functions.
We note that if we can reach all points in the state space gtresome choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system toputu(t) is given
by
t
X(t) = / A-IBY(T) dT. (6.2)
0

If we choose the input to be a impulse functidft) as defined in Sectioh.3, the

state becomes i dx
X5 = / SRS (1) dT = dits =B,
0

(Note that the state changes instantaneously in resporike tmpulse.) We can
find the response to the derivative of an impulse function kintathe derivative
of the impulse response (ExercBd):

dxs

Continuing this process and using the linearity of the systae input
U(t) = 01 3(t) + 028(t) + azd(t) + - -+ and ™Y (1)
gives the state
X(t) = a1MB+ a2 A€M B+ asA%€ B+ - - - 4 a, AT 1B
Taking the limit ag goes to zero through positive values, we get

lim x(t) = a1B+ a2AB+ a3A?B+ - - + a, A" 1B.
t—0+
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On the right is a linear combination of the columns of the Ratr
W — [B AB .. A”—ls] . (6.3)

To reach an arbitrary point in the state space, we thus rethat there ara linear
independent columns of the matii%. The matrixW; is called thereachability
matrix.

An input consisting of a sum of impulse functions and themddives is a very
violent signal. To see that an arbitrary point can be reaghitdsmoother signals
we can make use of the convolution equation. Assuming theeinikial condition
is zero, the state of a linear system is given by

:/teA(‘T)Bu(r)drz/teATBu(t—r)dr.
0 0

It follows from the theory of matrix functions, specificalljg Cayley—Hamilton
theorem (see Exercig10), that

& =lag(1) +Aay(T) + -+ A" Lay_1(1),
whereaq;(1) are scalar functions, and we find that

B/ ao(T)u(t — 1) dr+AB/ a1 (T)u(t—1)dr

+ --+A”‘1B/ On—1(T)u(t — 7)dT.
0

Again we observe that the right-hand side is a linear contisinaf the columns
of the reachability matri¥\; given by equationg.3). This basic approach leads to
the following theorem.

Theorem 6.1 (Reachability rank condition)A linear system is reachable if and
only if the reachability matrix Wis invertible.

The formal proof of this theorem is beyond the scope of this lbex follows
along the lines of the sketch above and can be found in modtsboo linear
control theory, such as Callier and DescgbP]] or Lewis [Lew03. We illustrate
the concept of reachability with the following example.

Example 6.2 Balance system

Consider the balance system introduced in Exar@dend shown in Figuré.2
Recall that this system is a model for a class of examples iiciwtine center

of mass is balanced above a pivot point. One example is the é8egersonal
Transporter shown in Figu& 23 about which a natural question to ask is whether
we can move from one stationary point to another by apprtgpaaplication of
forces through the wheels.
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(a) Segway (b) Cart-pendulum system

Figure 6.2: Balance system. The Segway Personal Transporter shown in (exsuaple of
a balance system that uses torque applied to the wheels to keep the riget. dpsimplified
diagram for a balance system is shown in (b). The system consists c§samuen a rod of
lengthl connected by a pivot to a cart with mads

The nonlinear equations of motion for the system are givergumagon @.9)
and repeated here:

(M+m)p—mlcosd § = —cp—mlsind 62 +F,
J+ml?)8 —mlcosh p = —yb + mglsiné.
)6 — mlcosh 6 Isin@

For simplicity, we takec = y = 0. Linearizing around the equilibrium poirg =
(p,0,0,0), the dynamics matrix and the control matrix are

(6.4)

0 0 1 0 0
0 0 01 0
A= 1o mizgiu 0 o BT |am |
0 Mimgl/u 0 O Im/u
whereu = MyJ; — 12, My = M +mandJ; = J+ ml2. The reachability matrix is
0  J/u 0 gi*m?/u?
0 [ 0 [2m? M 2
d/u 0 gi*m?/ 0
Im/u 0 glPm?(m+M)/u? 0
The determinant of this matrix is
g?l4m?
detW) = = 40,
W) =" 7

and we can conclude that the system is reachable. This inthkésve can move
the system from any initial state to any final state and, ini@aer, that we can
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Figure 6.3: An unreachable system. The cart—pendulum system shown on the $e& ha
single input that affects two pendula of equal length and mass. Sincertiesfaffecting the
two pendula are the same and their dynamics are identical, it is not possnleiti@rily
control the state of the system. The figure on the right is a block diagraresentation of
this situation.

always find an input to bring the system from an initial statemoequilibrium
point. O

It is useful to have an intuitive understanding of the medras that make a
system unreachable. An example of such a system is given urd=6g3. The
system consists of two identical systems with the same ir@learly, we cannot
separately cause the first and the second systems to do sognditfierent since
they have the same input. Hence we cannot reach arbitraegstand so the system
is not reachable (Exercige3).

More subtle mechanisms for nonreachability can also odeurexample, if
there is a linear combination of states that always remainstant, then the system
is not reachable. To see this, suppose that there exists eeiarH such that

0= %Hx: H(Ax+Bu), forallu.
ThenH is in the left null space of botA andB and it follows that
HW = H [B AB .. A“—ls] =0.

Hence the reachability matrix is not full rank. In this cageye have an initial
conditionXy and we wish to reach a staxe for which Hxy # HX;, then since
Hx(t) is constant, no input can move fronxg to X;.

Reachable Canonical Form

As we have already seen in previous chapters, it is oftenesvent to change
coordinates and write the dynamics of the system in the fomamgd coordinates
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@ (3) @ @ y
d bl b2 bn—l bn
Z Z _
u /zj f 1 f 2 o f Zn-1 f Zn
-1 a ap an_1 an
I :

Figure 6.4: Block diagram for a system in reachable canonical form. The indiViskazes
of the system are represented by a chain of integrators whose ingaridtepn the weighted
values of the states. The output is given by an appropriate combinatibe sf/stem input
and other states.

z= Tx One application of a change of coordinates is to convertsgesyinto a
canonical form in which it is easy to perform certain typesioélysis.

A linear state space system isreachable canonical fornf its dynamics are
given by

—a; —a —ag ... —an 1

g 1 0 0 .. 0 0

2_1o 1 0 .. 0|z]|0fy

dt : e : (6.6)
0 1 0 0

y— [bl by by ... bn]z+du.

A block diagram for a system in reachable canonical form ashin Figure6.4.
We see that the coefficients that appear inAhendB matrices show up directly
in the block diagram. Furthermore, the output of the system &mple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable c@abform is given

by
As)="+as" 1+ +an_15+an. (6.7)

The reachability matrix also has a relatively simple strrestu

1 —a &—a
0 1 —az

W= (B AB .. AviB)=f: i

* %

[eoNe)
o o
[eoNe)
[
*
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wherex indicates a possibly nonzero term. This matrix is full ramcsino col-
umn can be written as a linear combination of the others Isecatithe triangular
structure of the matrix.

We now consider the problem of changing coordinates sudttitibalynamics
of a system can be written in reachable canonical form.A,& represent the
dynamics of a given system aAdB be the dynamics in reachable canonical form.
Suppose that we wish to transform the original system intohalale canonical
form using a coordinate transformatiar= T x. As shown in the last chapter, the
dynamics matrix and the control matrix for the transformgstem are

A=TAT 1, B=TB.
The reachability matrix for the transformed system then bexo
vu:(é AB ... NF%].
Transforming each element individually, we have
AB=TAT TB=TAB
A’B = (TAT 1)2TB=TAT ITAT 1TB=TAB,

A'B = TA"B,
and hence the reachability matrix for the transformed sys$se
W4:1'[B AB --- AmiB):szL (6.8)

SinceW; is invertible, we can thus solve for the transformatibrthat takes the
system into reachable canonical form:

T=ww
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

(@ w), (0],
d |—-w a 1]

We wish to find the transformation that converts the systemrieachable canon-

ical form: L
x| —a 5
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The coefficientsa; anda, can be determined from the characteristic polynomial
for the original system:
a;=—2a,

A(s) =detsl—A) = —2as+ (a’ + w?) = R
=0 "+ w".

The reachability matrix for each system is

[0 w =~ (1 —&
The transformatio becomes

—(ar+a)/w 1] B [a/w 1] 7

—Www1l_
T =W [ 1/w 0)] (l/w O

and hence the coordinates

[zl] Txe [axl/erxz]

2 X1/
put the system in reachable canonical form. O
We summarize the results of this section in the followingtieen.

Theorem 6.2(Reachable canonical form).et A and B be the dynamics and con-
trol matrices for a reachable system. Then there exists asfmamation z= Tx
such that in the transformed coordinates the dynamics antt@anatrices are in
reachable canonical forr(6.6) and the characteristic polynomial for A is given by

detfsl—A) ="+ ays" 1+ +an 15+ an.

One important implication of this theorem is that for anyategble system, we
can assume without loss of generality that the coordinatestesen such that the
system is in reachable canonical form. This is particulaskgful for proofs, as we
shall see later in this chapter. However, for high-ordetesys, small changes in
the coefficients can give large changes in the eigenvalues. Hence, the fg@acha
canonical form is not always well conditioned and must balwgigh some care.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variablasghrmits prediction
of the future development of a system. We now explore the adekesigning the
dynamics of a system through feedback of the state. We vgillrag that the system
to be controlled is described by a linear state model and tsasgie input (for
simplicity). The feedback control law will be developed shbgystep using a single
idea: the positioning of closed loop eigenvalues in dedwedtions.
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Controller Process

X=Ax+Bu
y=Cx+Du

Figure 6.5: A feedback control system with state feedback. The controller useystens
statex and the reference inputto command the process through its inputWe model
disturbances via the additive inpait

State Space Controller Structure

Figure6.5is a diagram of a typical control system using state feedbak& full
system consists of the process dynamics, which we take iader]| the controller
elementsK andk;, the reference input (or command signaland process dis-
turbancedd. The goal of the feedback controller is to regulate the ougifuhe
systemy such that it tracks the reference input in the presence tifrtiances and
also uncertainty in the process dynamics.

An important element of the control design is the perforneasgecification.
The simplest performance specification is that of stabilitythe absence of any
disturbances, we would like the equilibrium point of theteys to be asymptoti-
cally stable. More sophisticated performance specificattgpically involve giv-
ing desired properties of the step or frequency responsheosystem, such as
specifying the desired rise time, overshoot and settlimg tof the step response.
Finally, we are often concerned with the disturbance attémug@roperties of the
system: to what extent can we experience disturbance impaisl still hold the
outputy near the desired value?

Consider a system described by the linear differential gopia

31( = Ax+ Bu, y =Cx+Du, (6.9)

where we have ignored the disturbance sigh&r now. Our goal is to drive the
outputy to a given reference valueand hold it there. Notice that it may not be
possible to maintain all equilibria; see Exerct8.

We begin by assuming that all components of the state vectomaasured.
Since the state at tintecontains all the information necessary to predict the &itur
behavior of the system, the most general time-invariantrobtaw is a function
of the state and the reference input:

u=a(x,r).
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If the feedback is restricted to be linear, it can be written a
u=—Kx+kr, (6.10)

wherer is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figuse The nega-
tive sign is a convention to indicate that negative feedligthe normal situation.
The closed loop system obtained when the feedb&d{\is applied to the sys-
tem 6.9 is given by dx

4t = (A= BK)x+Bkr. (6.11)

We attempt to determine the feedback giiiso that the closed loop system has
the characteristic polynomial

p(s) ="+ pas" 4+ + pr-1S+ Pn. (6.12)

This control problem is called theigenvalue assignment problampole place-
ment problenfwe will define poles more formally in Chapt8y.

Note thatk; does not affect the stability of the system (which is detaadiby
the eigenvalues o&A — BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the aldsep system are given
by

Xe=—(A—BK) 1Bkr,  ye=Cxe+Du,

hencek. should be chosen such that=r (the desired output value). Sinkeis a
scalar, we can easily solve to show thaDiE= 0 (the most common case),

k- =—1/(C(A-BK)'B). (6.13)

Notice thatk, is exactly the inverse of the zero frequency gain of the cdsep
system. The solution fdD # 0 is left as an exercise.

Using the gainK andk,, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to condtauch a state feedback
control law, we begin with a few examples that provide sormsdimtuition and
insights.

Example 6.4 Vehicle steering
In Example5.12we derived a normalized linear model for vehicle steeringe Th
dynamics describing the lateral deviation were given by

Y [0

C:(l 0], D=0
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The reachability matrix for the system is thus

w = (B AB]:[{ é]

The system is reachable since\dgt= —1 = 0.

We now want to design a controller that stabilizes the dycarand tracks a
given reference valueof the lateral position of the vehicle. To do this we introduc
the feedback

U= —Kx+kr=—kixg — koXo + K,

and the closed loop system becomes

(:ﬁ(_(A—BK)erkar_ [__‘Lkll 1:kV2k2] X+ [‘ﬁf] r,

(6.14)
y=Cx+Du= (l 0] X.

The closed loop system has the characteristic polynomial

_ S+yk yke—1) _
det(sI—A+BK)_det[ K S+k2]_32+(yk1+k2)s+k1.

Suppose that we would like to use feedback to design the dysashthe system
to have the characteristic polynomial

p(s) = & + 2{c S+ W2

Comparing this polynomial with the characteristic polynahof the closed loop
system, we see that the feedback gains should be chosen as

ki=af, ke =20cax— Yo,
Equation 6.13 givesk; = k; = w?, and the control law can be written as
u= k]_(l' — Xl) —koxo = wcz(r — Xl) — (ZZCOQ; — Vwcz)Xz.

The step responses for the closed loop system for differdnesaf the de-
sign parameters are shown in Figé:.é. The effect ofwy is shown in Figuré.6a
which shows that the response speed increases with incgaasi The responses
for . = 0.5 and 1 have reasonable overshoot. The settling time is aldocarl
lengths fora, = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths fora, = 1. The control signad is large initially and goes to zero as time
increases because the closed loop dynamics have an imtedriag initial value
of the control signal isi(0) = k; = w?r, and thus the achievable response time is
limited by the available actuator signal. Notice in paréeuhe dramatic increase
in control signal wherw, changes from 1 to 2. The effect ¢f is shown in Fig-
ure6.6h The response speed and the overshoot increase with degrdasaping.
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Figure 6.6: State feedback control of a steering system. Step responses obtétinedmy
trollers designed witl{; = 0.7 andaw, = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasigout that largew; also give large initial control

actions. Step responses obtained with a controller designedawith 1 and{; = 0.5, 0.7
and 1 are shown in (b).

Using these plots, we conclude that reasonable values design parameters are
to havew in the range of 0.5to 1 an¢l ~ 0.7. O

The example of the vehicle steering system illustrates hate $eedback can
be used to set the eigenvalues of a closed loop system toeaybialues.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the paeasnef the system

are the coefficients of the characteristic polynomial. Ihisrefore natural to con-

sider systems in this form when solving the eigenvalue assgnt problem.
Consider a system in reachable canonical form, i.e,

—a; —a —az ... —an 1

q 1 0 o ... 0 0

9 soiBu=| 0 1 0o . 0|z

dt : SRR 0 (6.15)
0 1 0 0

y=Cz= [bl by - bn] ya

It follows from(6.7) that the open loop system has the characteristic polyriomia
det(sl—A)=s"+a;s" 1+ ... +a,_15+an.



6.2. STABILIZATION BY STATE FEEDBACK 192

Before making a formal analysis we can gain some insight bgstigating the
block diagram of the system shown in Figel The characteristic polynomial
is given by the parameteg in the figure. Notice that the parametgr can be
changed by feedback from statgto the inputu. It is thus straightforward to
change the coefficients of the characteristic polynomialtaiedeedback.

Returning to equations, introducing the control law

U= —Kz+kr =—kz1 —kozo — -+ — Knzn + ki, (6.16)
the closed loop system becomes
—ay -k —ap—ky —az—ks ... —an—ky K
1 0 0 0 0
az_| o 1 0 .. 0 |z|o]|r

dt : : : (6.17)

0 1 0 0

y— [lo1 by - bn] z

The feedback changes the elements of the first row oAthmatrix, which corre-
sponds to the parameters of the characteristic polynoiiti@.closed loop system
thus has the characteristic polynomial

St (a1 +ka)S" 4 (@ +ko)S" 2 (@1 +Kno1)S+ @n + k.
Requiring this polynomial to be equal to the desired closeg lpolynomial
p(s) ="+ p1S" 1+ + Pn_1S+ pn,
we find that the controller gains should be chosen as

Rlzpl—al, R2=|02—612, En:pn—aw
This feedback simply replaces the parameggrs the system@&.15 by p;. The
feedback gain for a system in reachable canonical form s thu

K:(pl—al pp—ay - pn—an]. (6.18)

To have zero frequency gain equal to unity, the paranietshould be chosen
as -
bn bn’
Notice that it is essential to know the precise values of ppatarsa, andby in
order to obtain the correct zero frequency gain. The zerau@egy gain is thus
obtained by precise calibration. This is very different froistaining the correct
steady-state value by integral action, which we shall sést@n sections.

(6.19)



6.2. STABILIZATION BY STATE FEEDBACK 193

Eigenvalue Assignment

We have seen through the examples how feedback can be usesdign the dy-

namics of a system through assignment of its eigenvaluesolVe the problem in
the general case, we simply change coordinates so that $tensys in reachable
canonical form. Consider the system

31( = Ax+ Bu, y = Cx+ Du. (6.20)
We can change the coordinates by a linear transformatienT x so that the
transformed system is in reachable canonical foBmi%). For such a system the
feedback is given by equatio®.16), where the coefficients are given by equa-

tion (6.18. Transforming back to the original coordinates gives #wtiback
U= —Kz+kr=—KTx+ktr.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedbadBdnsider the system
given by equatioli6.20), with one input and one output. L&ts) = " +a;" 1 +
---+an_1S+ an be the characteristic polynomial of A. If the system is readbha

then there exists a feedback
U= —Kx+kr

that gives a closed loop system with the characteristicrpmtyial
p(s) ="+ pas 4+ + pr1S+ P
and unity zero frequency gain between r and y. The feedbaokiggiven by
K=KT = (pl—al p2—ay - pn—an) Wew, 2, (6.21)

where a are the coefficients of the characteristic polynomial of tietrix A and
the matrices \WandW; are given by
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1l aa & an-1
01 & an—2
W= (B AB - AIB), W= | S
0o o0 .- 1 a
00 0 - 1

The reference gain is given by
k- =—1/(C(A-BK)'B).

For simple problems, the eigenvalue assignment problenbeaolved by in-
troducing the elements of K as unknown variables. We then compute the char-
acteristic polynomial

A(s) = def(sl — A+ BK)
and equate coefficients of equal powers tf the coefficients of the desired char-
acteristic polynomial

p(s) ="+ pas" 4+ -+ + pn_1S+ P

This gives a system of linear equations to deternkjn@he equations can always
be solved if the system is reachable, exactly as we did in Elaéi

Equation 6.21), which is called Ackermann’s formulaAgk72, Ack85], can
be used for numeric computations. It is implemented in theTM®B function
acker . The MATLAB function pl ace is preferable for systems of high order
because it is better conditioned numerically.

Example 6.5 Predator—prey

Consider the problem of regulating the population of an gstesn by modulating
the food supply. We use the predator—prey model introducegkection3.7. The
dynamics for the system are given by

dH H aHL

—— = H(l-—)-——, H>0
dt (r+u) ( k) c+H’ -7
dL aHL

== —dL, L>0.

dt IDchH dL, 20

We choose the following nominal parameters for the systeni;twcorrespond to
the values used in previous simulations:

a=32, b=0.6, c =150,

d = 0.56, k=125 r=16.
We take the parameteycorresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a foodrsedor the hares.

This is reflected in our model by the terfn+ u) in the first equation. We choose
the number of lynxes as the output of our system.
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To control this system, we first linearize the system arourdetuilibrium
point of the systen(He,Le), which can be determined numerically to ke~
(20.6,29.5). This yields a linear dynamical system

d VAl 0.13 -0.93 Z; 17.2 VAl

i l2) o575 (2)+ (07) w9 2],
wherezz =H —He, 2 = L — Le andv = u. It is easy to check that the system
is reachable around the equilibriufa v) = (0,0), and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system regjlialancing the
ability to modulate the input against the natural dynamiafie system. This can
be done by the process of trial and error or by using some afhtbre systematic
techniques discussed in the remainder of the text. For nevgimply choose the
desired closed loop eigenvalues to ba at {—0.1,—-0.2}. We can then solve for
the feedback gains using the techniques described earhiah results in

K = (0025 -—0052].

Finally, we solve for the reference galp, using equationg.13 to obtaink, =
0.002.
Putting these steps together, our control law becomes

v=—Kz+kLyg,

whereLg is the desired number of lynxes. In order to implement therobtaw,
we must rewrite it using the original coordinates for theteys yielding

U=Us— K(X—Xe) +kr(Lg —Ye)
H—206
L—295

This rule tells us how much we should modulatas a function of the current
number of lynxes and hares in the ecosystem. Figurashows a simulation of
the resulting closed loop system using the parameters dedineee and starting
with an initial population of 15 hares and 20 lynxes. Note tha system quickly
stabilizes the population of lynxes at the reference valge=(30). A phase por-
trait of the system is given in Figui@ 7k showing how other initial conditions
converge to the stabilized equilibrium population. Notibat the dynamics are
very different from the natural dynamics (shown in Fig8r20). O

. [0025 -—0052] [ ]-%Qoozaﬂ-295y

The results of this section show that we can use state feedbai#sign the
dynamics of a system, under the strong assumption that wemeasure all of the
states. We shall address the availability of the statesaméxt chapter, when we
consider output feedback and state estimation. In addifibeorem6.3, which



6.3. STATE FEEDBACK DESIGN

80 T 100,
Hare
- — —Lynx 80f
60 ymx
S . g 6op
<
s 40 7 <
g o > 40l
20 20f
0 1 1 1 1 0
0 20 40 60 80 100 0
Time (years)

(a) Initial condition response

(b) Phase portrait

Figure 6.7: Simulation results for the controlled predator—prey system. The population
lynxes and hares as a function of time is shown in (a), and a phaseipfortiae controlled
system is shown in (b). Feedback is used to make the population stafile=aP0.6 and
Le = 30.

states that the eigenvalues can be assigned to arbitraydos, is also highly ide-
alized and assumes that the dynamics of the process are kodvigh precision.
The robustness of state feedback combined with state estisnatconsidered in
Chapterl2 after we have developed the requisite tools.

6.3 State Feedback Design

The location of the eigenvalues determines the behavioredatltteed loop dynam-
ics, and hence where we place the eigenvalues is the maigndéscision to be
made. As with all other feedback design problems, thereradetoffs among the
magnitude of the control inputs, the robustness of the sysbeperturbations and
the closed loop performance of the system. In this sectiorxanine some of
these trade-offs starting with the special case of secodéeraystems.

Second-Order Systems

One class of systems that occurs frequently in the analpsisiasign of feedback
systems is second-order linear differential equationsaBse of their ubiquitous
nature, it is useful to apply the concepts of this chapteh#d specific class of
systems and build more intuition about the relationshipvken stability and per-
formance.

The canonical second-order system is a differential equatithe form

G+ 20 and + wha = kaxu, y=0. (6.22)
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In state space form, this system can be represented as

dx (0 Wy 0 _
5= [—wo —ZZwo] X+ [kab] u, y= [1 o] X. (6.23)

The eigenvalues of this system are given by

A= *ZO.b:l: \/ a’g(zzil)v

and we see that the origin is a stable equilibrium poimtyt> 0 and{ > 0. Note
that the eigenvalues are complex{if< 1 and real otherwise. Equation8.22
and 6.23 can be used to describe many second-order systems, inglddmped
oscillators, active filters and flexible structures, as shawthé examples below.

The form of the solution depends on the valu& ofvhich is referred to as the
damping ratiofor the system. I{ > 1, we say that the systemaserdampegdand
the natural response & 0) of the system is given by

_ BxaiotXo gt OX10+X0 gt
y(t) - B —a € B —a € )
wherea = wy({ ++/{%—1) andf = wo({ — /{2 —1). We see that the response

consists of the sum of two exponentially decaying signéié = 1, then the system
is critically dampedand solution becomes

y(t) = & ™ (x10+ (X20+ { woXao)t).-

Note that this is still asymptotically stable as longwas> 0, although the second
term in the solution is increasing with time (but more slowan the decaying
exponential that is multiplying it).

Finally, if 0 < { < 1, then the solution is oscillatory and equatiér?@) is said
to beunderdampedrlhe parametewy is referred to as theatural frequencyf the
system, stemming from the fact that for sm@llthe eigenvalues of the system are
A = —{wp+iwn\/1— {2 The natural response of the system is given by

_ o—Cont (42 1 '
y(t)=e <x10coswdt+ ( o X10-+ wdxzo) smwdt> ,

wherewy = wo\/1— {2 is called thedamped frequencyor{ < 1, ay ~ wy de-
fines the oscillation frequency of the solution ahdives the damping rate relative
to wy.

Because of the simple form of a second-order system, it isiplesto solve
for the step and frequency responses in analytical form. dhaign for the step
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Figure 6.8: Step response for a second-order system. Normalized step respdis the
system 6.23 for { =0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizoigdsan scaled units
wpt; higher values oty result in a faster response (rise time and settling time).

response depends on the magnitudé:of

Z
J1-22

yt) =k(1—e @ (1+awt)), (=1

y(t) =k (1—(35‘*’Dt coswyt — ez‘*’otsinwdt> . <1

6.24)
_ 1 ¢ —apt({—+/{?-1) (
Y(t)k<1 §<m+l>e
1 14 _ 2_1
+§( fz_fl)e wt(¢+v¢ )), Z>1,

where we have takex(0) = 0. Note that for the lightly damped cas¢ € 1) we
have an oscillatory solution at frequenay.

Step responses of systems witk= 1 and different values of are shown in
Figure 6.8 The shape of the response is determined bgnd the speed of the
response is determined loy (included in the time axis scaling): the response is
faster ifwy is larger.

In addition to the explicit form of the solution, we can alsorpute the proper-
ties of the step response that were defined in Seéti@r-or example, to compute
the maximum overshoot for an underdamped system, we rethdateutput as

1
Vi@

where¢ = arccog]. The maximum overshoot will occur at the first time in which

y(t) =k (1— e ¢l sin( eyt + ¢)> : (6.25)



6.3. STATE FEEDBACK DESIGN 199

Table 6.1: Properties of the step response for a second-order system withQ 1.

Property Value =05 ¢=1/v2 =1
Steady-state value k k k k
Rise time T ~1/ap -e/8%  18/any 22/wyp 2.7/ an
Overshoot Mp=e@/VI-C  16% 4% 0%
Settling time (2%) Ts~4/{wy 8.0/ap  5.9/wy 5.8/

the derivative ofy is zero, which can be shown to be
Mp = LAY 1_62.

Similar computations can be done for the other charactesisfia step response.
Table6.1summarizes the calculations.

The frequency response for a second-order system can alsmnimited ex-
plicitly and is given by
2

Mel® = ke = ke :
(iw)2+20wp(iw)+w  wf— w?+ 2 ww
A graphical illustration of the frequency response is giweRigure6.9. Notice the
resonant peak that increases with decreadinthe peak is often characterized by
its Q-value defined a®) = 1/2¢. The properties of the frequency response for a
second-order system are summarized in Ték?e

Example 6.6 Drug administration
To illustrate the use of these formulas, consider the twogartment model for

Table 6.2: Properties of the frequency response for a second-order syster@ w { < 1.

Property Value (=01 (=05 ¢=1/V2
Zero frequency gain Mg k k k
Bandwidth Wy 154wy 127wy wo
Resonant peak gain M, 1.54k 127k k

Resonant frequency wmnr Wy 0.707wy O
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Figure 6.9: Frequency response of a second-order sys&g8y, (a) Eigenvalues as a func-
tion of {. (b) Frequency response as a functior{ofThe upper curve shows the gain ratio
M, and the lower curve shows the phase s8ift-or small{ there is a large peak in the
magnitude of the frequency response and a rapid change in phaseedesic = . As {

is increased, the magnitude of the peak drops and the phase chamgesmoothly between

0° and -180.

drug administration, described in Secti®®. The dynamics of the system are

%: [ kok2 ke —l(liz] c+ [boo] u, y= {0 1] c,
wherec; andc, are the concentrations of the drug in each compartniglit=
0,...,2 andbg are parameters of the systemis the flow rate of the drug into
compartment 1 angis the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in eachartmment, and we
would like to design a feedback law to maintain the output givan reference
valuer.

We choosel = 0.9 to minimize the overshoot and choose the rise time to be
T, = 10 min. Using the formulas in Tablg.1, this gives a value foty = 0.22.
We can now compute the gain to place the eigenvalues at thagidm. Setting
u= —Kx-+Kkr, the closed loop eigenvalues for the system satisfy

A(s) = —0.198-+0.0959.

Choosingk; = —0.2027 andk, = 0.2005 gives the desired closed loop behavior.
Equation 6.13 gives the reference gaig = 0.0645. The response of the con-
troller is shown in Figuré.10and compared with an open loop strategy involving
administering periodic doses of the drug. O
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Figure 6.10: Open loop versus closed loop drug administration. Comparison betwegn d
administration using a sequence of doses versus continuously monttogingncentrations
and adjusting the dosage continuously. In each case, the concentraf@mpisximately)
maintained at the desired level, but the closed loop system has substansisisat@bility

in drug concentration.

Higher-Order Systems

Our emphasis so far has considered only second-order syskemhigher-order
systems, eigenvalue assignment is considerably more diiffespecially when
trying to account for the many trade-offs that are preseatfeedback design.

One of the other reasons why second-order systems play suchportant
role in feedback systems is that even for more complicatstigys the response is
often characterized by thdominant eigenvalue§o define these more precisely,
consider a system with eigenvalugs j = 1,...,n. We define thelamping ratio
for a complex eigenvalug to be

—ReA
A

We say that a complex conjugate pair of eigenvalugd™ is adominant pairif it
has the lowest damping ratio compared with all other eigelegof the system.
Assuming that a system is stable, the dominant pair of emjags tends to be
the most important element of the response. To see thispastat we have a
system in Jordan form with a simple Jordan block correspunth the dominant

7=
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pair of eigenvalues:

A
d A
d—tZ: J Zz+ Bu, y=Cz

N

(Note that the state may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of thpaeses from each
of the individual Jordan subsystems. As we see from Figudefor { < 1 the
subsystem with the slowest response is precisely the ohdlvadtsmallest damping
ratio. Hence, when we add the responses from each of thedndivsubsystems,
it is the dominant pair of eigenvalues that will be the priynfactor after the initial
transients due to the other terms in the solution die outl&\this simple analysis
does not always hold (e.g., if some nondominant terms hageraoefficients
because of the particular form of the system), it is oftercéme that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment is thea system be
reachable. In practice there are many other constrainigusecthe selection of
eigenvalues has a strong effect on the magnitude and rateaafje of the control
signal. Large eigenvalues will in general require large argignals as well as
fast changes of the signals. The capability of the actuatditsherefore impose
constraints on the possible location of closed loop eiderga These issues will
be discussed in depth in Chaptéfsandl12.

We illustrate some of the main ideas using the balance sya$esm example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whgsamics were given
in Example6.2 The dynamics are given by

0 0 1 0 0
Al 0 0 0 1 B 0
~ |0 nPliPg/u —ck/u —ydIm/u |’ RV
0 Mimgl/u —clm/u  —yMi/u Im/u

whereMy =M +m, J = J+ml?, u =M J —n?l? and we have left andy nonzero.
We use the following parameters for the system (correspgnaiughly to a human
being balanced on a stabilizing cart):

M = 10Kkg, m= 80 kg c=0.1Ns/m
J =100 kg nf/<, | =1m, y=0.01Nms
The eigenvalues of the open loop dynamics are givehiy0,4.7, — 1.9+ 2.7i.

g=9.8m/g.
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We have verified already in Exampée2 that the system is reachable, and hence
we can use state feedback to stabilize the system and pravigsired level of
performance.

To decide where to place the closed loop eigenvalues, wethaté¢he closed
loop dynamics will roughly consist of two components: a sefast dynamics
that stabilize the pendulum in the inverted position andta&slower dynamics
that control the position of the cart. For the fast dynamis look to the natural
period of the pendulum (in the hanging-down position), Wh& given bywy =

mgl/(J+ml2) ~ 2.1 rad/s. To provide a fast response we choose a damping rati
of { = 0.5 and try to place the first pair of eigenvaluesAab ~ —{wpy +iwp ~
—142i, where we have used the approximation tbé&— {? ~ 1. For the slow
dynamics, we choose the damping ratio to bét0 provide a small overshoot and
choose the natural frequency to bé& @ give a rise time of approximately 5 s.
This gives eigenvalueks 4 = —0.35+0.35.

The controller consists of a feedback on the state and a feealfd gain for
the reference input. The feedback gain is given by

K = [—15.6 1730 -50.1 443],

which can be computed using Theoré&n3 or using the MATLABpl ace com-
mand. The feedforward gain k¢ = —1/(C(A—BK)~!B) = —15.5. The step re-
sponse for the resulting controller (applied to the linesdi system) is given in
Figure6.11a While the step response gives the desired characteritiesnput
required (bottom left) is excessively large, almost thiees the force of gravity
at its peak.

To provide a more realistic response, we can redesign thiodlen to have
slower dynamics. We see that the peak of the input force samuthe fast time
scale, and hence we choose to slow this down by a factor oa8ing the damp-
ing ratio unchanged. We also slow down the second set of eafjezs, with the
intuition that we should move the position of the cart mo@wy than we sta-
bilize the pendulum dynamics. Leaving the damping ratio ier slow dynamics
unchanged at.@ and changing the frequency to 1 (corresponding to a rise ¢im
approximately 10 s), the desired eigenvalues become

A ={-0.33+£0.66, —0.18+0.18i}.
The performance of the resulting controller is shown in Fighdel b O

As we see from this example, it can be difficult to determine nehe place
the eigenvalues using state feedback. This is one of theipaironitations of this
approach, especially for systems of higher dimension.rxgtcontrol techniques,
such as the linear quadratic regulator problem discusset] @& one approach
that is available. One can also focus on the frequency respfon performing the
design, which is the subject of Chapt8&sl2.
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Figure 6.11: State feedback control of a balance system. The step response mifalleo
designed to give fast performance is shown in (a). Although the nsspoharacteristics
(top left) look very good, the input magnitude (bottom left) is very large. #s laggressive
controller is shown in (b). Here the response time is slowed down, but e magnitude
is much more reasonable. Both step responses are applied to the lidebnizenics.

Linear Quadratic Regulators @

As an alternative to selecting the closed loop eigenvaloations to accomplish a
certain objective, the gains for a state feedback controlla instead be chosen is
by attempting to optimize a cost function. This can be paldityuseful in helping
balance the performance of the system with the magnitudeeoiinputs required
to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problemone of the
most common optimal control problems. Given a multi-inpogar system

dx
a:Ax+Bu, x€R", ucRP,

we attempt to minimize the quadratic cost function
J= / (X" Qex+ uT Quu) d, (6.26)
0

whereQyx > 0 andQy > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimensions. This cost function represetrtsda-off between the
distance of the state from the origin and the cost of the obirtput. By choosing

the matriceQ, andQy, we can balance the rate of convergence of the solutions
with the cost of the control.



6.3. STATE FEEDBACK DESIGN 205

The solution to the LQR problem is given by a linear control |dihe form

u=-Q,B"Px
whereP € R™" is a positive definite, symmetric matrix that satisfies the &gna
PA+ATP—PBQ;B"P+Q,=0. (6.27)

Equation 6.27) is called thealgebraic Riccati equatioand can be solved numer-
ically (e.g., using thé qr command in MATLAB).

One of the key questions in LQR design is how to choose the wse@hand
Qu- To guarantee that a solution exists, we must l@ve- 0 andQ, > 0. In addi-
tion, there are certain “observability” conditions Qg that limit its choice. Here
we assume)y > 0 to ensure that solutions to the algebraic Riccati equatioays
exist.

To choose specific values for the cost function weightandQ,, we must use
our knowledge of the system we are trying to control. A pattidy simple choice
is to use diagonal weights

01 0 P1 0
QX = T . ) QU = E .
0 On 0 Pn
For this choice o) andQy, the individual diagonal elements describe how much
each state and input (squared) should contribute to thalbeeist. Hence, we can
take states that should remain small and attach higher wegdjies to them. Sim-

ilarly, we can penalize an input versus the states and otipeits through choice
of the corresponding input weigpt

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the systelr2@), written in state space form as

( 24 O
0
% 0
dz Z 1 1
at _%24 + | 7 C0SOFL — £ Sinf R,
—g— 357 Lsin6F,+ L cosOF,
0 J 'R

(see also ExamplB.4). The system parameters are= 4 kg, J = 0.0475 kg m,
r=0.25mg=29.8 m/€, ¢ = 0.05 N's/m, which corresponds to a scaled model of
the system. The equilibrium point for the system is giverFby- 0, / = mgand

Ze = (Xe,Ye,0,0,0,0). To derive the linearized model near an equilibrium poirg, w



6.3. STATE FEEDBACK DESIGN 206

compute the linearization according to equati6rdf):

(0 0 O 1 0 0 0 0
00 O 0 1 0 0 0
A 00 O 0 0 1 B 0 0
10 0 -.g —¢/m 0 O}’ ~11/m O |’
0 0 O 0 -c¢/moO 0 1/m
00 O 0 0 0 r/J 0 )
1 00 0O00O0 00
C:010000]’ D:oo]'
Lettingé = z— z. andv = F — F, the linearized system is given by
%:A&Jer, y=C¢.

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, vigevihve cost func-
tion as

% T T
1= [[EQE v awat

whereé = z— z, andv = F — F again represent the local coordinates around the
desired equilibrium poinfz, Fe). We begin with diagonal matrices for the state
and input costs:

100000
010000
loo1000 (p O
%=1o00 10 0 Q"_[Op]'
000010
00000 1

This gives a control law of the form= —K¢&, which can then be used to derive
the control law in terms of the original variables:

F=v+FR=-K(z—2)+F.

As computed in Exampl8.4, the equilibrium points have. = (0,mg) andz =
(Xe,Ye,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figuré.12afor p = 1. The response can be tuned by adjusting
the weights in the LQR cost. Figu@l12bshows the response in tixedirection

for different choices of the weight. O

Linear quadratic regulators can also be designed for destiree systems, as
illustrated by the following example.
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Figure 6.12: Step response for a vectored thrust aircraft. The plot in (a) showsdhdy
positions of the aircraft when it is commanded to move 1 m in each diredtigip) thex
motion is shown for control weighis = 1, 1(, 10*. A higher weight of the input term in
the cost function causes a more sluggish response.

Example 6.9 Web server control

Consider the web server example given in Sec8dnwhere a discrete-time model
for the system was given. We wish to design a control law tb& the server
parameters so that the average server processor load isamethat a desired
level. Since other processes may be running on the servewaheserver must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Fig@&d3 We focus
on the special case where we wish to control only the procdsad using both
theKeepAl i ve andMaxC i ent s parameters. We also include a “disturbance”
on the measured load that represents the use of the progessiles by other
processes running on the server. The system has the samestrastare as the
generic control system in Figue5, with the variation that the disturbance enters
after the process dynamics.

The dynamics of the system are given by a set of differencetiemseaof the

Feedback d
Precompensation Controller Server
rcpu e u r’ y
— K C - P —
1 |

Figure 6.13: Feedback control of a web server. The controller sets the values efehe
server parameters based on the difference between the nominalgtera (determined by
kr-r) and the current loagpy. The disturbance represents the load due to other processes
running on the server. Note that the measurement is taken after thebdisterso that we
measure the total load on the server.
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form
X[k+ 1] = AXK] + Buk], YepulK] = CepuX[K] 4 depulK]

wherex = (Xcpu, Xmem) IS the statey = (Uka, Umc) is the inputdcpy is the processing
load from other processes on the computer yapglis the total processor load.
We choose our controller to be a state feedback controlldreoform

u=—-K [Xﬁzlr‘n] + K Tepuy
wherercpy is the desired processor load. Note that we have used theinedgso-
cessor loadcpy instead of the state to ensure that we adjust the systemtimpera
based on the actual load. (This modification is necessary beczuhe nonstan-
dard way in which the disturbance enters the process dyisamic

The feedback gain matrix can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, tivégttost function given

b
d (5 0 (15 0
X=1lo 1) %=1 0 1100¢]"

The cost function for the sta®y is chosen so that we place more emphasis on
the processor load versus the memory use. The cost functidghdanputsQy is
chosen so as to normalize the two inputs, wike2pAl i ve timeout of 50 s hav-
ing the same weight asiaxCl i ent s value of 1000. These values are squared
since the cost associated with the inputs is given't@,u. Using the dynamics in
Section3.4and thedl gr command in MATLAB, the resulting gains become

«_ (~223 101
~ (3827 777}

As in the case of a continuous-time control system, the eefa gairk; is
chosen to yield the desired equilibrium point for the syst&®ttingx[k + 1] =
X[K] = e, the steady-state equilibrium point and output for a givefenence input
r are given by

Xe=(A—BK)Xe+Bkr,  ye=Cxe.

This is a matrix differential equation in whidh is a column vector that sets the
two inputs values based on the desired reference. If we tekddsired output to
be of the formye = (r,0), then we must solve

[é] =C(A—BK—1)"1Bk.

Solving this equation fok;, we obtain

k = ((C(A—BK—I)‘lB)Y1 [é] - [;9?93;3] '



6.4. INTEGRAL ACTION 209

1 ‘ ‘ 50 ‘ 1500
c \\:9_ Xepu —*— Xmem q>’ 401 /‘—' *lZOOé
£ 0.8r b Z 307 \‘L 1900 ©
20 22 600 O
2 Y- < b Q

X1 —e—ka () ——mc (1) 1300 £

0.4 ! ; 0 ; . 0

0 20 40 60 0 20 40 60

Timek [ms] Timek [ms]
(a) System state (b) System inputs

Figure 6.14:Web server with LQR control. The plot in (a) shows the state of the system un
der a change in external load appliedat 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce tha effthe disturbance

by approximately 40%.

The dynamics of the closed loop system are illustrated in Eigur4 We apply
a change in load a.p, = 0.3 at timet = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desirad k&t 057. Note that
both theKeepAl i ve andMaxCl i ent s parameters are adjusted. Although the
load is decreased, it remains approximately 0.2 above thedesteady state.
(Better results can be obtained using the techniques ofekiesection.) O

6.4 Integral Action

Controllers based on state feedback achieve the corredysstate response to
command signals by careful calibration of the gairHowever, one of the primary
uses of feedback is to allow good performance in the presefnzecertainty, and
hence requiring that we have axactmodel of the process is undesirable. An
alternative to calibration is to make use of integral feetthan which the controller
uses an integrator to provide zero steady-state error. Téie bancept of integral
feedback was given in Sectidh5 and in Sectior3.1; here we provide a more
complete description and analysis.

The basic approach in integral feedback is to create a stdtenlie controller
that computes the integral of the error signal, which is tbhsed as a feedback
term. We do this by augmenting the description of the systémamnew state:

d (x)  (Ax+Bu) _ (Ax+Bu
al)-(50)-(a%) e
The statezis seen to be the integral of the difference between the tlualeoutput
y and desired outpuit Note that if we find a compensator that stabilizes the system,

then we will necessarily hawe= 0 in steady state and henge- r in steady state.
Given the augmented system, we design a state space centrothe usual
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fashion, with a control law of the form
u=—Kx—kz+kr, (6.29)

whereK is the usual state feedback terknjs the integral term ang; is used to
set the nominal input for the desired steady state. The negudquilibrium point
for the system is given as

Xe = —(A—BK) 'B(kr — kize).

Note that the value df; is not specified but rather will automatically settle to the
value that makeg =y —r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of teeip values ofA,
B andK as long as the system is stable (which can be done througlb@gie
choice ofK andk;).
The final compensator is given by
dz
u=—Kx—kiz+kt, G-y "
where we have now included the dynamics of the integratoagsgb the specifi-
cation of the controller. This type of compensator is knowa dgnamic compen-
satorsince it has its own internal dynamics. The following examililstrates the
basic approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in Se@idmand considered fur-
ther in Examples.11 The linearized dynamics of the process around an equilib-
rium pointve, Ue are given by

dx

a:ax—bgeervv, Yy =V=X+Ve,

wherex =v— Ve, W= U— Ug, Mis the mass of the car arftiis the angle of the road.
The constana depends on the throttle characteristic and is given in Exabfll
If we augment the system with an integrator, the processrdigssbecome

dx
dt
or, in state space form,

S ()-8 () ) () e ()

Note that when the system is at equilibrium, we have zkad, which implies that
the vehicle speed= v+ x should be equal to the desired reference speedur
controller will be of the form

dz
a:y—Vr7 W:—kpX—k|Z+krVr7

= ax—bg6 + bw, gtzzy—vr:vejo—vr,
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Figure 6.15: Velocity and throttle for a car with cruise control based on proportional
(dashed) and PI control (solid). The PI controller is able to adjust thwtidto compen-
sate for the effect of the hill and maintain the speed at the reference e&lu= 20 m/s.

and the gaingp, ki andk; will be chosen to stabilize the system and provide the
correct input for the reference speed.
Assume that we wish to design the closed loop system to havehéracteristic
polynomial
A(S) =S +ais+ap.

Setting the disturbanc@ = 0, the characteristic polynomial of the closed loop
system is given by
det(sl — (A—BK)) = & + (bk, — &)s+ bk,
and hence we set
a;+a ap a

o="p k= )
The resulting controller stabilizes the system and henegbrd=y — v; to zero,
resulting in perfect tracking. Notice that even if we haverah error in the values
of the parameters defining the system, as long as the clospaigenvalues are
still stable, then the tracking error will approach zero. Jive exact calibration
required in our previous approach (usikg is not needed here. Indeed, we can
even choos& = 0 and let the feedback controller do all of the work.

Integral feedback can also be used to compensate for corishnrbances.
Figure 6.15 shows the results of a simulation in which the car encouradnsl
with angle@ = 4° att = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that thevetotEty converges
to the reference speed. This ability to handle constant ithahces is a general
property of controllers with integral feedback (see Exer6id). O

k = ~1/(C(A~BK) 'B)

6.5 Further Reading

The importance of state models and state feedback was distirsthe seminal
paper by KalmanKal60], where the state feedback gain was obtained by solving
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an optimization problem that minimized a quadratic losscfiom. The notions
of reachability and observability (Chapt@y are also due to KalmarkKpl61h
(see alsoGil63, KHN63]). Kalman defines controllability and reachability as the
ability to reach the origin and an arbitrary state, respebtiKFA69]. We note that
in most textbooks the term “controllability” is used ingtieaf “reachability,” but
we prefer the latter term because it is more descriptivesfuhdamental property
of being able to reach arbitrary states. Most undergradieatbooks on control
contain material on state space systems, including, fanpie Franklin, Powell
and Emami-NaeiniFPENOY and Ogata Qga0l. Friedland’s textbook Fri04]
covers the material in the previous, current and next chapt®nsiderable detail,
including the topic of optimal control.

Exercises

6.1 (Double integrator) Consider the double integrator. Findeggwise constant
control strategy that drives the system from the origin todtatex = (1,1).

6.2 (Reachability from nonzero initial state) Extend the argotie Sectior6.1to
show that if a system is reachable from an initial state ob zieis reachable from
a nonzero initial state.

6.3 (Unreachable systems) Consider the system shown in F@GBréNrite the
dynamics of the two systems as
dx
5=
If x andz have the same initial condition, they will always have thmeastate
regardless of the input that is applied. Show that this vialahe definition of
reachability and further show that the reachability matvjxs not full rank.

dz
AX—+ Bu, i Az+Bu.

6.4 (Integral feedback for rejecting constant disturbancesj)stler a linear system
of the form

((ji(:quLBquFd, y=Cx

whereu is a scalar and is a disturbance that enters the system through a distur-
bance vectoF € R". Assume that the matriXis invertible and the zero frequency
gainCA~1Bis nonzero. Show that integral feedback can be used to coraiecios

a constant disturbance by giving zero steady-state output@ven wherd # 0.

6.5(Rear-steered bicycle) A simple model for a bicycle wasmgivwgequationd.5)
in Section3.2 A model for a bicycle with rear-wheel steering is obtaingddvers-
ing the sign of the velocity in the model. Determine the ctinds under which
this systems is reachable and explain any situations inhwttie system is not
reachable.
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6.6 (Characteristic polynomial for reachable canonical foBhpw that the char-
acteristic polynomial for a system in reachable canonicahfis given by equa-
tion (6.7) and that

d" dn? d d"ku
d;" Far By 1 Aok =

dtn-1 dt dtn-k’
wherez is thekth state.

6.7 (Reachability matrix for reachable canonical form) Coesi@system in reach-
able canonical form. Show that the inverse of the reachglildtrix is given by

1 a a - an

0O 1 a - an-1
W1ti=1]0 0 1 :

. ap

o o o0 -~ 1
6.8 (Non-maintainable equilibria) Consider the normalizeddeloof a pendulum
on a cart

dx_, o

a2z~ de
wherex is cart position and is pendulum angle. Can the andle= 6, for 65 # 0
be maintained?

=—-0+u,

6.9 (Eigenvalue assignment for unreachable system) Considexygtem

dx 0 1 1
dt [0 o] X+ [o] Y v=(1 0)x
with the control law
U= —kqx1 —koxo +kir.

Show that eigenvalues of the system cannot be assigned taayhialues.

6.10 (Cayley—Hamilton theorem) LeA € R™" be a matrix with characteristic
polynomialA (s) = det(sl — A) = 8"+ a;s" 1 + .- +a,_1S+ a,. Assume that the
matrix A can be diagonalized and show that it satisfies

AA) =A"+ A" T+ +ag 1A+ al =0,

Use the result to show tha, k > n, can be rewritten in terms of powers Afof
order less than.

6.11 (Motor drive) Consider the normalized model of the motowverin Exer-
cise2.10 Using the following normalized parameters,

h=10/9, J}H=10, c¢c=01 k=1 k=1,



EXERCISES 214

verify that the eigenvalues of the open loop system afe-00.05+i. Design a
state feedback that gives a closed loop system with eigeesal, —1 and—1+i.
This choice implies that the oscillatory eigenvalues wilivbell damped and that
the eigenvalues at the origin are replaced by eigenvaluéiseonegative real axis.
Simulate the responses of the closed loop system to stepehanthe command
signal for6, and a step change in a disturbance torque on the second rotor.

6.12(Whipple bicycle model) Consider the Whipple bicycle mogigen by equa-
tion (3.7) in Section3.2 Using the parameters from the companion web site, the
model is unstable at the velocity= 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 130+ 4.60i. Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 afddti. Simulate the response of
the system to a step change in the steering reference of ta@02

6.13 (Atomic force microscope) Consider the model of an AFM in eabimode
given in Examplés.9:

0 1 0 0 0

ax [ —ke/(m+mp) —Cz/(M+mp) 1/mp O w2,

dt 0 0 0 w3 (Ol e
0 0 —w3  —2{3003 w3

m [ mka mc 4 o] «
Mm+m LM+ M+

Use the MATLAB scriptaf m dat a. mfrom the companion web site to generate the
system matrices.

y:

(a) Compute the reachability matrix of the system and nura#yi determine its
rank. Scale the model by using milliseconds instead of secaadime units. Re-
peat the calculation of the reachability matrix and its rank

(b) Find a state feedback controller that gives a closed lgefem with complex
poles having damping ratio 0.707. Use the scaled model écdmputations.

(c) Compute state feedback gains using linear quadratitr@oixperiment by
using different weights. Compute the gains@er=qgo = 0,03 = g4 = 1 andp; =
0.1 and explain the result. Chooge= 0> = g3 = g4 = 1 and explore what happens
to the feedback gains and closed loop eigenvalues when yemgelp;. Use the
scaled system for this computation.

6.14 Consider the second-order system

d?y dy du
E_’—OSE +y= aa—FU.

Let the initial conditions be zero.
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(&) Show that the initial slope of the unit step response Riscuss what it means
whena < 0.

(b) Show that there are points on the unit step response thatariant witha.
Discuss qualitatively the effect of the paramet@m the solution.

(c) Simulate the system and explore the effec ofi the rise time and overshoot.

6.15(Bryson’s rule) Bryson and HABH75] have suggested the following method
for choosing the matrice®x and Q, in equation 6.26). Start by choosing)y
and Q, as diagonal matrices whose elements are the inverses ofjtlaeges of
the maxima of the corresponding variables. Then modify theehts to obtain a
compromise among response time, damping and control effpply this method
to the motor drive in Exercisé.11 Assume that the largest values of thgand

¢, are 1, the largest values ¢f and¢, are 2 and the largest control signal is 10.
Simulate the closed loop system fff(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonatredats forQy andQ,,.



Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages:utatign of the
“best approximation”X(t1) of the state from knowledge dftyfort <t; and computation of
u(ty) givenx(ty).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 198&I[60].

In this chapter we show how to use output feedback to modiydynamics
of the system through the use of observers. We introduceaheept of observ-
ability and show that if a system is observable, it is possiblrecover the state
from measurements of the inputs and outputs to the systenth&kleshow how to
design a controller with feedback from the observer stateirdportant concept is
the separation principle quoted above, which is also provee structure of the
controllers derived in this chapter is quite general ancbigioed by many other
design methods.

7.1 Observability

In Section6.2 of the previous chapter it was shown that it is possible to find a
state feedback law that gives desired closed loop eigeewgbuovided that the
system is reachable and that all the states are measurethdsyr situations, it

is highly unrealistic to assume that all the states are nmedsin this section we
investigate how the state can be estimated by using a maticaimaodel and a
few measurements. It will be shown that computation of théestcan be carried
out by a dynamical system called abserver

Definition of Observability

Consider a system described by a set of differential equsitio

dx

i Ax+ Bu, y=Cx+Du, (7.1)
wherex € R" is the statey € RP the input andy € RY the measured output. We
wish to estimate the state of the system from its inputs anputs, as illustrated
in Figure7.1 In some situations we will assume that there is only one oreds

signal, i.e., that the signglis a scalar and th&t is a (row) vector. This signal may
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n

Process
u Xx=Ax+Bu | Y X
- Observer —
y=Cx+Du

A

Figure 7.1: Block diagram for an observer. The observer uses the processimezenty
(possibly corrupted by nois®) and the inputi to estimate the current state of the process,
denotedk”

be corrupted by noise, although we shall start by considering the noise-free.case
We write X for the state estimate given by the observer.

Definition 7.1 (Observability) A linear system imbservabldf forany T > 0 itis
possible to determine the state of the sysi€im) through measurements wft)
andu(t) on the intervalO, T].

The definition above holds for nonlinear systems as well, aaddbults dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many importaptiegtions, even
outside feedback systems. If a system is observable, tlega Hre no “hidden”
dynamics inside it; we can understand everything that isgy@n through ob-
servation (over time) of the inputs and outputs. As we stesdl $he problem of
observability is of significant practical interest becauseill determine if a set of
sensors is sufficient for controlling a system. Sensors coedbivith a mathemat-
ical model can also be viewed as a “virtual sensor” that giwésmation about
variables that are not measured directly. The process ohcdow signals from
many sensors with mathematical models is also caldesor fusion

Testing for Observability

When discussing reachability in the last chapter, we négdethe output and fo-
cused on the state. Similarly, it is convenient here to iltiaeglect the input and
focus on the autonomous system

dx

at = AX, y=Cx (7.2)

We wish to understand when it is possible to determine ttie &tam observations
of the output.

The output itself gives the projection of the state on vediwasare rows of the
matrix C. The observability problem can immediately be solved if ttegrir C is
invertible. If the matrix is not invertible, we can take detives of the output to
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obtain
dy _dx
i Ca = CAX

From the derivative of the output we thus get the projectiothefstate on vectors
that are rows of the matri€A. Proceeding in this way, we get

y C
y CA
y | =| C¥ | x (7.3)
yn-1) cA1
We thus find that the state can be determined ifabgervability matrix
C
CA
W,= | CA? (7.4)
CA-nfl

hasn independent rows. It turns out that we need not consider anyalives
higher thann — 1 (this is an application of the Cayley—Hamilton theorem [Exe
cise6.1Q).

The calculation can easily be extended to systems with inphisstate is then
given by a linear combination of inputs and outputs and thigiher derivatives.
The observability criterion is unchanged. We leave this easen exercise for the
reader.

In practice, differentiation of the output can give largeoes when there is
measurement noise, and therefore the method sketched ebowgte particularly
practical. We will address this issue in more detail in thetisection, but for now
we have the following basic result.

Theorem 7.1(Observability rank condition)A linear system of the fori7.1) is
observable if and only if the observability matrix V¥ full rank.

Proof. The sufficiency of the observability rank condition followsiin the analy-%
sis above. To prove necessity, suppose that the systemasvabte but/, is not

full rank. Letv € R", v # 0, be a vector in the null space 8§, so thatw,v = 0.

If we let x(0) = v be the initial condition for the system and choase 0, then
the output is given by(t) = Ce™v. Sincee™ can be written as a power seriesiin
and sinceA" and higher powers can be rewritten in terms of lower powers (bfy

the Cayley—Hamilton theorem), it follows that the outpuli Wwe identically zero
(the reader should fill in the missing steps if this is not gledowever, if both the
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j a >
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Figure 7.2: An unobservable system. Two identical subsystems have outputs thab-ad
gether to form the overall system output. The individual states of theystdm cannot be
determined since the contributions of each to the output are not distinglésfide circuit
diagram on the right is an example of such a system.

input and output of the system are 0, then a valid estimateen$tate ix = O for
all time, which is clearly incorrect sincg€0) = v # 0. Hence by contradiction we
must have tha\, is full rank if the system is observable. Ol

Example 7.1 Compartment model

Consider the two-compartment model in Fig@r&8a but assume that the concen-
tration in the first compartment can be measured. The systeps®@ided by the
linear system

dc —ko—ki kg bo [

— = c u, =1|1 0] C.

dt [ ka Rl y
The first compartment represents the drug concentration ibltioel plasma, and
the second compartment the drug concentration in the tisheee it is active. To
determine if it is possible to find the concentration in theusscompartment from

a measurement of blood plasma, we investigate the obsétyalbithe system by
forming the observability matrix

C 10
e AR e |

The rows are linearly independentkf # 0, and under this condition it is thus
possible to determine the concentration of the drug in thieeacompartment from
measurements of the drug concentration in the blood. O

It is useful to have an understanding of the mechanisms tla&era system
unobservable. Such a system is shown in Figug The system is composed
of two identical systems whose outputs are added. It seemisiiely clear that
it is not possible to deduce the states from the output sineecannot deduce
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Figure 7.3: Block diagram of a system in observable canonical form. The stateseof th
system are represented by individual integrators whose inputs areghteg combination

of the next integrator in the chain, the first state (rightmost integratorjrengystem input.
The output is a combination of the first state and the input.

the individual output contributions from the sum. This casoabe seen formally
(Exerciser.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms wéluseful in studying
observability. A linear single-input, single-output stapace system is bserv-
able canonical fornif its dynamics are given by

—a1 10 0 by
—-a 0 1 0 b
z_1 . 24| ¢ |u
dt : : ’
—anfl O O 1 bnfl
—-an 0O 0 b

y=(1 00 - 0)ztpou

The definition can be extended to systems with many inputs;rilyedifference is
that the vector multiplyingi is replaced by a matrix.

Figure7.3is a block diagram for a system in observable canonical fa&s.
in the case of reachable canonical form, we see that the deefidn the system
description appear directly in the block diagram. The charéstic polynomial for
a system in observable canonical form is

As)="+as" 1+ +an_15+an. (7.5)

It is possible to reason about the observability of a systeabservable canonical
form by studying the block diagram. If the inputand the outpuy are available,
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the statezy can clearly be computed. Differentiatizg we obtain the input to the
integrator that generates, and we can now obtaip = z +a;z; — byu. Proceed-
ing in this way, we can compute all states. The computatiol) élwvever, require
that the signals be differentiated.

To check observability more formally, we compute the obakility matrix for
a system in observable canonical form, which is given by

1 O 0 .. O
—ai 1 0 ... O

W, = —ad-a —a 1 of .
* * o1

where * represents an entry whose exact value is not importée rows of this
matrix are linearly independent (since it is lower triaragll and henc¥\, is full
rank. A straightforward but tedious calculation shows tihat inverse of the ob-
servability matrix has a simple form given by

1 0 0 0

a1 1 0 0

Wo—l _ | a a1 1 0
-1 A2 A3 -+ 1

As in the case of reachability, it turns out that if a systerhiservable then
there always exists a transformatidnthat converts the system into observable
canonical form. This is useful for proofs since it lets us assuhat a system
is in observable canonical form without any loss of gensralihe observable
canonical form may be poorly conditioned numerically.

7.2 State Estimation

Having defined the concept of observability, we now returmeduestion of how
to construct an observer for a system. We will look for obsesvthat can be repre-
sented as a linear dynamical system that takes the inputstapdts of the system
we are observing and produces an estimate of the systertgs Shat is, we wish
to construct a dynamical system of the form

dx

—~ — FX+Gu+H
i = FX+GutHy,

whereu andy are the input and output of the original system and R" is an
estimate of the state with the property tikét) > x(t) ast — co.
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The Observer

We consider the system in equatiohl) with D set to zero to simplify the expo-
sition: dx

gt =AX+tBu  y=Cx (7.6)

We can attempt to determine the state simply by simulatiegetiuations with the
correct input. An estimate of the state is then given by
dx

§p =Ax+Bu (7.7)

To find the properties of this estimate, introduce the estonatrrorX=x—X. It
follows from equationsq.6) and (7.7) that

dx o

gt~ AX.
If matrix A has all its eigenvalues in the left half-plane, the erwaill'go to zero,
and hence equatiorY (7) is a dynamical system whose output converges to the
state of the systen¥(6).

The observer given by equatior.{) uses only the process inputthe mea-
sured signal does not appear in the equation. We must alaoedhat the system
be stable, and essentially our estimator converges betiaeistate of both the ob-
server and estimator are going to zero. This is not very usefallcontrol design
context since we want to have our estimate converge quiokdyrtonzero state so
that we can make use of it in our controller. We will therefateempt to modify
the observer so that the output is used and its convergeppenies can be de-
signed to be fast relative to the system’s dynamics. Thidaessill also work for
unstable systems.

Consider the observer

dx

o = AR+BUFL(Y—CR). (7.8)

This can be considered as a generalization of equatioi. (Feedback from the
measured output is provided by adding the térfy— CX), which is proportional
to the difference between the observed output and the optpdicted by the ob-
server. It follows from equationg (6) and (7.8) that

dX

If the matrixL can be chosen in such a way that the ma#yix LC has eigenval-
ues with negative real parts, the ersowill go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a statedback and
finding the observer. State feedback design by eigenvalugresent is equivalent
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to finding a matrix so thatA — BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrso thatA — LC has
given eigenvalues. Since the eigenvalues of a matrix anchitspose are the same
we can establish the following equivalences:

A AT, B« CT, KoL, WeWw.

The observer design problem is theal of the state feedback design problem.
Using the results of Theore3, we get the following theorem on observer design.

Theorem 7.2(Observer design by eigenvalue assignme@®nsider the system
given by

dx

at = AX+Bu, y=CX (7.9)
with one input and one output. Lat(s) = "+ a;s" 1 + .- +a, 1S+ a, be the
characteristic polynomial for A. If the system is observalien the dynamical
system

3);(=A>2+ Bu+L(y—CX) (7.10)
is an observer for the system, with L chosen as
Pr—a

L—w i | R % (7.11)
Pn - an

and the matrices WandW, given by

(1 0 0 0 O
C a1 1 0 0 O
CA - ap al 1 0 0
Wo = . y Wo = .
cA1 -2 8-3 an-4 10
a1 &2 3 ... 1

The resulting observer errér= x— X is governed by a differential equation having
the characteristic polynomial

p(s) ="+ pas" 4+ + pn.

The dynamical systen¥(10 is called anobserverfor (the states of) the sys-
tem (7.9 because it will generate an approximation of the stateh@fsiystem
from its inputs and outputs. This form of an observer is a muohenuseful form
than the one given by pure differentiation in equatidra.
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Figure 7.4: Observer for a two compartment system. A two compartment modebisrsh
on the left. The observer measures the input concentratioml output concentration= c;
to determine the compartment concentrations, shown on the right. Thedangentrations
are shown by solid lines and the estimates generated by the observesheyldimes.

Example 7.2 Compartment model

Consider the compartment model in Examppl&, which is characterized by the
matrices

_[—ko—ki ki I o) _
A_[ ko —kz]’ B_[O]’ C= (1 O]'
The observability matrix was computed in Examplé, where we concluded that

the system was observablekif = 0. The dynamics matrix has the characteristic
polynomial

A(S) = det [s+ko+k1 —ky

ok ] =S tertat s ke

Let the desired characteristic polynomial of the observes®e p1s+ p2, and
equation 7.11) gives the observer gain

L:[ 1 o]—l[ 1 O]_l[pl—ko—kl—kg]
—ko—k1 ki ko+ki+k 1 p2 — koka

_ [ p1—ko—ki — ko ]
(P2 — prko+ kiko +K3) /ky | °
Notice that the observability conditioky # O is essential. The behavior of the

observer is illustrated by the simulation in Figut€h Notice how the observed
concentrations approach the true concentrations. O

The observer is a dynamical system whose inputs are the psriogegu and the
process output. The rate of change of the estimate is composed of two ternes. On
term, AX+ B, is the rate of change computed from the model witubstituted
for x. The other terml.(y—¥), is proportional to the difference=y —y between
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<>

Figure 7.5: Block diagram of the observer. The observer takes the sigreatslu as inputs
and produces an estimateNotice that the observer contains a copy of the process model
that is driven byy — y through the observer galn

measured outpytand its estimatg = CX. The observer gaih is a matrix that tells
how the errore is weighted and distributed among the states. The obserusr th
combines measurements with a dynamical model of the sy#tditack diagram

of the observer is shown in Figureb.

Computing the Observer Gain

For simple low-order problems it is convenient to introdtice elements of the
observer gairL as unknown parameters and solve for the values required/¢o gi
the desired characteristic polynomial, as illustratedafollowing example.

Example 7.3 Vehicle steering

The normalized linear model for vehicle steering derived ialfigless.12and6.4
gives the following state space model dynamics relatirgyédtpath deviationy to
steering angle:

dx (0 1 y _

i [0 0] X+ [l] u, y= (1 0) X. (7.12)
Recall that the state, represents the lateral path deviation and #aepresents
the turning rate. We will now derive an observer that usesstrstem model to

determine the turning rate from the measured path deviation
The observability matrix is
10
WO = [0 1] )

i.e., the identity matrix. The system is thus observable,thacigenvalue assign-
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Figure 7.6: Simulation of an observer for a vehicle driving on a curvy road (leftle Bb-
server has an initial velocity error. The plots on the middle show the latevétibnx,, the
lateral velocityx, by solid lines and their estimates &ndx, by dashed lines. The plots on
the right show the estimation errors.

ment problem can be solved. We have
(- 1
A—LC= [_|2 0] ,
which has the characteristic polynomial

S—|—|1 -1

det(sl-A+LC) = det[ I, S

] ZSZ+|1S+|2.

Assuming that we want to have an observer with the charatitepolynomial
S+ P15+ P2 = £+ 2owpS+ W,
the observer gains should be chosen as
l1 = p1= 2w,
The observer is then

df(_ ~ o\ 0 1) . y I 5
a_AerBquL(y—Cx)_ [0 0] X+ [1] u+ [lz] (y—Xq1).

A simulation of the observer for a vehicle driving on a curegd is simulated
in Figure7.6. The vehicle length is the time unit in the normalized modele Th
figure shows that the observer error settles in about 3 veleiotghs. O

lr =

For systems of high order we have to use numerical calculatiohe duality
between the design of a state feedback and the design of arvebmeans that the
computer algorithms for state feedback can also be usedhdooliserver design;
we simply use the transpose of the dynamics matrix and theubutatrix. The
MATLAB commandacker , which essentially is a direct implementation of the
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calculations given in Theoremz2, can be used for systems with one output. The
MATLAB commandpl ace can be used for systems with many outputs. It is also
better conditioned numerically.

7.3 Control Using Estimated State

In this section we will consider a state space system of tima fo

;If[( —Ax+Bu ~ y=Cx (7.13)

Notice that we have assumed that there is no direct term isytsiEem D = 0).
This is often a realistic assumption. The presence of a dieest in combination
with a controller having proportional action creates arehtgic loop, which will
be discussed in Sectidh3. The problem can be solved even if there is a direct
term, but the calculations are more complicated.

We wish to design a feedback controller for the system whehg the output
is measured. As before, we will assume thandy are scalars. We also assume
that the system is reachable and observable. In Chépterfound a feedback of

the form
u=—Kx-+kr

for the case that all states could be measured, and in SetRome developed
an observer that can generate estimates of the)staeed on inputs and outputs.
In this section we will combine the ideas of these sectiorfintba feedback that
gives desired closed loop eigenvalues for systems wheyeootputs are available
for feedback.

If all states are not measurable, it seems reasonable toarfgédback

u=—Kx+kr, (7.14)
wherexis the output of an observer of the state, i.e.,
g
d—)t(:Af(Jr Bu+L(y—CR). (7.15)

Since the systen¥(13 and the observei7(15 are both of state dimensian the
closed loop system has state dimension&th state &, X). The evolution of the
states is described by equatiosl@®—(7.15. To analyze the closed loop system,
the state variablg is replaced by

X=X—X. (7.16)
Subtraction of equatiorv(15 from equation 7.13 gives
dx

ot = AX—AR—L(Cx—C) = AX— LCX = (A~ LO)X



7.3. CONTROL USING ESTIMATED STATE 228

Returning to the process dynamics, introducinffom equation 7.14) into
equation 7.13 and using equatiorv(16) to eliminatex'gives

d
ax = Ax+ Bu= Ax— BKX+Bkr = Ax— BK(x—X) + Bk

dt
= (A— BK)x+ BKX+Bkr.
The closed loop system is thus governed by

d (x A—BK BK X Bk

() = (70 A%) () (o) o
Notice that the statg, fepresenting the observer error, is not affected by the ref
erence signat. This is desirable since we do not want the reference signal to
generate observer errors.

Since the dynamics matrix is block diagonal, we find that theasttaristic
polynomial of the closed loop system is

A(s) = det(sl — A+ BK)det(sl - A+ LC).

This polynomial is a product of two terms: the characteriptitynomial of the
closed loop system obtained with state feedback and thacteaistic polynomial
of the observer error. The feedback14) that was motivated heuristically thus
provides a neat solution to the eigenvalue assignmentgmbrlhe result is sum-
marized as follows.

Theorem 7.3(Eigenvalue assignment by output feedbadRpnsider the system

dx
— =Ax+B =C
at X+ Bu, y=Cx
The controller described by
g
dit‘ — A%+ BU+L(y—CX) = (A~ BK — LC)X+ Bk + Ly,
u=—KxX+kr

gives a closed loop system with the characteristic polyabmi
A(s) = det(sl — A+ BK)det(sl - A+ LC).

This polynomial can be assigned arbitrary roots if the sysiemeachable and
observable.

The controller has a strong intuitive appeal: it can be thbofjas being com-
posed of two parts, one state feedback and one observer. Tiaaniys of the
controller are generated by the observer. The feedbackkyaian be computed
as if all state variables can be measured, and it depends lgrAcend B. The
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Figure 7.7: Block diagram of an observer-based control system. The obsesesrthe mea-
sured outpul and the inputu to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. Theoientonsists of the
observer and the state feedback; the observer is identical to that ireFigur

observer gairL. depends on onhA andC. The property that the eigenvalue as-
signment for output feedback can be separated into an efysnassignment for
a state feedback and an observer is calleds#paration principle

A block diagram of the controller is shown in Figurer. Notice that the con-
troller contains a dynamical model of the plant. This is chlieeinternal model
principle: the controller contains a model of the process being ctiatro

Example 7.4 Vehicle steering

Consider again the normalized linear model for vehiclersigan Example6.4.
The dynamics relating the steering angle the lateral path deviatiopis given by
the state space modél.(2. Combining the state feedback derived in Exantpfe
with the observer determined in Exampls3, we find that the controller is given

by
ag o (0 1), (v l1 -
a_Ax+Bu+L(y—Cx)_ [0 O] X+ [1] u+ [|2] (y—%1),

u=—Kx+kr=Kky(r—=x1)— koX%o.



7.4. KALMAN FILTERING 230

8 1 T T
"""""" K oL’ - |
61 1 <
_1 1 1
R 0 5 10 15
S . - '
AL 1
- —— State feedback 2 “\
0 - = = Output feedback S O0N ~_ . e
- —- Reference >
_2 - L 1 _1 1 1
0 5 10 15 0 5 10 15
Normalized timet Normalized timet

Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane b@em(tiotted), the vehicle
position (solid) and its estimate (dashed), the upper right plot shows kb&tygsolid) and

its estimate (dashed), and the lower right plot shows the control sigimg state feedback
(solid) and the control signal using the estimated state (dashed).

Elimination of the variablel gives

dx = (A—BK—LC)X+Ly+Bkr

dt
—li—yk 1-vke) o (1 y
- (G ) ) (e
The controller is a dynamical system of second order, with itwmputsy andr
and one output.. Figure7.8 shows a simulation of the system when the vehicle
is driven along a curvy road. Since we are using a normalizedemthe length
unit is the vehicle length and the time unit is the time it ®k@travel one vehicle
length. The estimator is initialized with all states equatéoo but the real system
has an initial velocity of 0.5. The figures show that the estamabnverge quickly
to their true values. The vehicle tracks the desired path¢hwisiin the middle of
the road, but there are errors because the road is irreglilartracking error can
be improved by introducing feedforward (Sectio). O

7.4 Kalman Filtering %

One of the principal uses of observers in practice is to eg#rthe state of a sys-
tem in the presence ofoisymeasurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamicalesystis beyond the scope
of this text. In this section, we present a brief introductio the use of stochastic
systems analysis for constructing observers. We work piiyna discrete time

to avoid some of the complications associated with contisttome random pro-
cesses and to keep the mathematical prerequisites to a smmiirhis section as-
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sumes basic knowledge of random variables and stochastiegses; see Kumar
and Varaiya KV86] or Astrom [Ast0g for the required material.
Consider a discrete-time linear system with dynamics

X[k+ 1] = AXK] + Bulk] + Fv[k], y[K] = CxK] +w[K], (7.18)
wherevlk] andw[k] are Gaussian white noise processes satisfying
E{vlk]} =0, E{wlk]} =0,
)0 Kk#] v )]0 Kk#]
E{vKV'[]]} = {RV i EWKWI) = {RW i @19
E{vIKw'[j]} =0.

E{v[K} represents the expected valuev/i§ andE{Vv[k]v'[j]} the correlation ma-
trix. The matricesR, and R, are the covariance matrices for the process distur-
bancev and measurement noise We assume that the initial condition is also
modeled as a Gaussian random variable with

E{X(0]} =x0,  E{XOX"[0]} =P. (7.20)

We would like to find an estimatelk] that minimizes the mean square error
E{(x[K] —X[K])(x[K] —X[K])T} given the measuremenfg(t) : 0< T <t}. We con-
sider an observer in the same basic form as derived preyiousl|

X[k+ 1] = AX[K] + Bulk] + L[K] (y[k] — CX[K]). (7.21)
The following theorem summarizes the main result.

Theorem 7.4 (Kalman, 1961) Consider a random processkk with dynamics
given by equatiorf7.18 and noise processes and initial conditions described by
equationg7.19 and (7.20. The observer gain L that minimizes the mean square
error is given by

L[k] = APKICT (Ry+CP[KICT) 1,

where - T -
Plk+1] = (A—LC)PK(A—LC)" + FR/F" +LRy,L

Po = E{x[0]x" [0]}. (7.22)

Before we prove this result, we reflect on its form and functieimst, note
that the Kalman filter has the form ofracursivefilter: given mean square error
P[K] = E{(x[K] — R[K])(x[k] —X[k])T} at timek, we can compute how the estimate
and errorchange Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimalid and the error covariance
P[k], so we can see how reliable the estimate is. It can also berstiwat the
Kalman filter extracts the maximum possible information almuiput data. If we
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form the residual between the measured output and the estroatput,

elk] = y[k] —CX[K],
we can show that for the Kalman filter the correlation matrix is
) . 1 j=k
k) = E{eljle" K|} =W[K]; ik =
Re(Jv ) {e[”e [ ]} [] K> ik {O j;ﬁk

In other words, the error is a white noise process, so there ismaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used evdreiptocess,
noise or disturbances are nonstationary. When the systetatienary andf P[K]
converges, then the observer gain is constant:

L =APC'(Ry+CPC"),
whereP satisfies
P—=APA" +FRFT — APCT (Ry+CPCT) "CPAT.

We see that the optimal gain depends on both the processaruisihe measure-
ment noise, but in a nontrivial way. Like the use of LQR to chostsge feedback
gains, the Kalman filter permits a systematic derivation efdbserver gains given
a description of the noise processes. The solution for thetaohgain case is
solved by thedl ge command in MATLAB.

Proof of theorem.We wish to minimize the mean square of the eredi(x[k] —
R[K]) (x[K] —X[K])T}. We will define this quantity aB[k] and then show that it sat-
isfies the recursion given in equationZ2. By definition,

Plk+1] = E{(x[k+ 1] — X[k + 1)) (x[k+ 1] — Rk +1])T}
= (A—LC)PK(A—LC)T + FRFT +LR,LT
= APKAT + FR,FT — APKICTLT — LCPKIAT

+L(Ry+CP[KCTLT.
Letting Re = (Ry +CPK|CT), we have
P[k+ 1] = APKAT + FR,FT — APK|CTLT — LCPKAT 4+ LR.L"
— APIKAT +FRFT + (L—APKCTR; V)R (L—APKCTR )"
— APKICTR;ICPT[KIAT.

To minimize this expression, we chooke= APK|C"R;1, and the theorem is
proved. O
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The Kalman filter can also be applied to continuous-time ststohprocesses.
The mathematical derivation of this result requires morehstigated tools, but
the final form of the estimator is relatively straightforward

Consider a continuous stochastic system

;If[(:AXJr Bu+Fv, E{v(s)V' ()} = R,(t)5(t—s),
y=Cx+Ww, E{w(sw' ()} = Ru(t)d(t —9),

whered (1) is the unit impulse function. Assume that the disturbaneed noise
w are zero mean and Gaussian (but not necessarily stationary)

— #e*%VTR;]-V’ df(W) _ #ef%w'r R\ITI].W.
v2m/detR, v2m/detR,

We wish to find the estimatgt) that minimizes the mean square erEof(x(t) —

%(t))(X(t) — (1)) T} given{y(T) : 0 < T <t}.

Theorem 7.5(Kalman—Bucy, 1961) The optimal estimator has the form of a lin-
ear observer

pdf(v)

jf = AR+ Bu+L(y—CX),
where L(t) = P(t)CTR;,! and R(t) = E{(x(t) —X(t))(x(t) —X(t))"} and satisfies
‘3'? = AP+ PAT — PCTR, L (t)CP+FR,(t)FT, P[0] = E{x[0]x"[0]}.

As in the discrete case, when the system is stationary d@d)itonverges, the
observer gain is constant:

L=PC'R,!  where AP+PA" —PC'R,'CP+FR/FT =0.
The second equation is tladgebraic Riccati equation

Example 7.5 Vectored thrust aircraft

We consider the lateral dynamics of the system, consistinthe subsystems
whose states are given by= (x, 8,%, ). To design a Kalman filter for the system,
we must include a description of the process disturbanad@@sensor noise. We
thus augment the system to have the form

dz
a = Az+ Bu+Fv, y=Cz+w,

whereF represents the structure of the disturbances (includie@ttects of non-
linearities that we have ignored in the linearizationjepresents the disturbance
source (modeled as zero mean, Gaussian white noise) aepresents that mea-
surement noise (also zero mean, Gaussian and white).

For this example, we choo$eas the identity matrix and choose disturbances
vi,i=1,...,n, to be independent disturbances with covariance giveRiby 0.1,
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Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first desigro(dy
the lateral position of the aircraft is measured. Adding a direct meamneof the roll
angle produces a much better observer (b). The initial condition for siathlations is
(0.1,0.01750.01,0).

Rj = 0,1 # ]. The sensor noise is a single random variable which we model as
having covarianc®, = 104, Using the same parameters as before, the resulting
Kalman gain is given by
37.0
—46.9
185
—316

The performance of the estimator is shown in Figtu@a We see that while the
estimator converges to the system state, it contains signtfiovershoot in the
state estimate, which can lead to poor performance in actlosg setting.

To improve the performance of the estimator, we explorertiygict of adding
a new output measurement. Suppose that instead of measusirthg output po-
sition X, we also measure the orientation of the airc@aff he output becomes

(1 00O - Wy
Y=1o0 10 0 W |
and if we assume that; andw, are independent noise sources each with covari-
anceRy, = 104, then the optimal estimator gain matrix becomes

L=

326 —0.150
__ | —o0150 326
| 327 —979
~0.0033 316

These gains provide good immunity to noise and high perfoomaas illustrated
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Ust d n
I | Trajectory
Generatiornl Xd e State | b u v n y
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Figure 7.10:Block diagram of a controller based on a structure with two degreesexfdra
which combines feedback and feedforward. The controller condiatrajectory generator,
state feedback and an observer. The trajectory generation subsysteutes a feedforward
commandu; along with the desired staxg. The state feedback controller uses the estimated
state and desired state to compute a corrective ingut

in Figure7.9h O

7.5 A General Controller Structure

State estimators and state feedback are important comookatcontroller. In
this section, we will add feedforward to arrive at a geneoaitller structure that
appears in many places in control theory and is the heart st modern control
systems. We will also briefly sketch how computers can be usé@tplement a
controller based on output feedback.

Feedforward

In this chapter and the previous one we have emphasizeddekdls a mechanism
for minimizing tracking error; reference values were idimoed simply by adding
them to the state feedback through a dainA more sophisticated way of doing
this is shown by the block diagram in FigufelQ, where the controller consists of
three parts: an observer that computes estimates of tles fiased on a model and
measured process inputs and outputs, a state feedback tieajelctory generator
that generates the desired behavior of all stageand a feedforward signai.
Under the ideal conditions of no disturbances and no moglelirors the signal
generates the desired behavigiwhen applied to the process. The sigratan be
generated by a system that gives the desired response daatbeT™ generate the
the signalug, we must also have a model of the inverse of the process dgsami
To get some insight into the behavior of the system, we assaéhere are no
disturbances and that the system is in equilibrium with astam reference signal
and with the observer stateequal to the process state When the reference
signal is changed, the signalg andxy will change. The observer tracks the state
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perfectly because the initial state was correct. The estidsthte is thus equal to
the desired statey, and the feedback signat, = K(xq — X) will also be zero. All
action is thus created by the signals from the trajectoregaor. If there are some
disturbances or some modeling errors, the feedback sighattempt to correct
the situation.

This controller is said to havevo degrees of freedolmecause the responses
to command signals and disturbances are decoupled. Dasicebresponses are
governed by the observer and the state feedback, while spemse to command
signals is governed by the trajectory generator (feedfatjva

For an analytic description we start with the full nonlinemamics of the
process

dx

Fri f(x,u), y = h(x,u). (7.23)
Assume that the trajectory generator is able to computeiseddsajectory(Xq, Us )
that satisfies the dynamicg.23 and satisfies = h(xq,us). To design the con-
troller, we construct the error system. Lzt x — x4 andv = u— ug and compute
the dynamics for the error:

z=X—Xg = f(x,u) — f(Xg, Usr)
= f(z+xg,V+Usg) — f(Xg, ) = F(Z, v, xq(t), ugs (1)).
In general, this system is time-varying. Note that —e in Figure7.10due to the
convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume that small (if our controller is doing
a good job), and so we can linearize aroanrd0:

d—zmA(t)er B(t)y, Alt)= oF , B(t) = oF :

dt 97 | xy(t) (1)) OV | 0. (1)
It is often the case that(t) andB(t) depend only orxg, in which case it is conve-
nient to writeA(t) = A(xq) andB(t) = B(xq).

Assume now thaty andug are either constant or slowly varying (with respect
to the performance criterion). This allows us to considet flas (constant) linear
system given byA(xq),B(xq)). If we design a state feedback controll&fxy) for
eachxy, then we can regulate the system using the feedback

v=—K(xg)z
Substituting back the definitions a&indv, our controller becomes
U= —K(xa)(X—xXa) + Ugr-

This form of controller is called gain scheduledinear controller withfeedfor-
ward Ugs.
Finally, we consider the observer. The full nonlinear dynanaign be used for
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Figure 7.11: Trajectory generation for changing lanes. We wish to change from thieuhesf
to the right lane over a distance of 30 min 4 s. The planned trajectory kyhlane is shown
in (a) and the lateral positiopand the steering ang®over the maneuver time interval are
shown in (b).

the prediction portion of the observer and the linearizestesy for the correction
term: g

dt
whereL (X) is the observer gain obtained by linearizing the systemratdiie cur-
rently estimated state. This form of the observer is knowmesxgended Kalman
filter and has proved to be a very effective means of estimatingate af a non-
linear system.
There are many ways to generate the feedforward signal, amnd Hre also
many different ways to compute the feedback gdimnd the observer gaib.

Note that once again the internal model principle appligs:controller contains a
model of the system to be controlled through the observer.

(%, u) + LX) (y—h(X,u)),

Example 7.6 Vehicle steering
To illustrate how we can use a two degree-of-freedom desigmprove the per-
formance of the system, consider the problem of steering toa@ange lanes on
aroad, as illustrated in Figuiella

We use the non-normalized form of the dynamics, which werweidin Exam-
ple 2.8 Using the center of the rear wheels as the referemce Q), the dynamics
can be written as

dx dy . daé v
pr cosHy, i sinBy, G b tand,

wherev is the forward velocity of the vehicle aritlis the steering angle. To gener-
ate a trajectory for the system, we note that we can solvénfostates and inputs
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of the system giver, y by solving the following sets of equations:
X = vcoso, X = vcosO — vOsing,
y = vsiné, y = Vsind + ve cos, (7.24)
6 = (v/b)tand.
This set of five equations has five unknow#@s (9 v, v andd) that can be solved
using trigonometry and linear algebra. It follows that wa campute a feasible
trajectory for the system given any pattt), y(t). (This special property of a sys-
tem is known aglifferential flatnes$§FLMR92, FLMR95].)

To find a trajectory from an initial stateo, yo, 6o) to a final statéxs,ys, 8s) at
atimeT, we look for a path(t), y(t) that satisfies

X(0) = Xo, X(T) = Xxt,

y(0) = Yo, y(T) =yr, (7.25)
X(0) sinBy — y(0) cosBp = O, X(T)sinBs —y(T)cosds =0,

y(0) sinB +x(0) cosfp = Vo, y(T)sinB; +x(T) cosfBs = vs.

One such trajectory can be found by choosifig andy(t) to have the form
Xq4(t) = ap+ ast + Clztz + a3t3, Ya(t) = Bo+ Bat + thZ + B3t3.

Substituting these equations into equati@2f, we are left with a set of linear
equations that can be solved for;, 3, i = 0,1,2, 3. This gives a feasible trajectory
for the system by using equation.24) to solve forfy, vq anddy.
Figure7.11bshows a sample trajectory generated by a set of higher-eqaer-
tions that also set the initial and final steering angle to.Z¢aice that the feedfor-
ward input is quite different from 0, allowing the contralte command a steering
angle that executes the turn in the absence of errors. O

Kalman’s Decomposition of a Linear System @

In this chapter and the previous one we have seen that twafoedtal properties
of a linear input/output system are reachability and oleahéy. It turns out that
these two properties can be used to classify the dynamicssgftem. The key
result is Kalman’s decomposition theorem, which says thisiear system can be
divided into four subsystem&;, which is reachable and observaliigs which is
reachable but not observablg, which is not reachable but is observable aingl
which is neither reachable nor observable.

We will first consider this in the special case of systems whezenatrixA has
distinct eigenvalues. In this case we can find a set of coarrsuch that thé
matrix is diagonal and, with some additional reorderinghaf states, the system
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Figure 7.12: Kalman’s decomposition of a linear system. The decomposition in (a) & for
system with distinct eigenvalues and the one in (b) is the general cassy3teen is bro-
ken into four subsystems, representing the various combinationsabfaiele and observable
states. The input/output relationship only depends on the subset of stitasetboth reach-
able and observable.

can be written as

Ao 0 0 O Bro
dx 0 Ag 0 O Brg
b X u
dt 0 0 Ao O + 0 ’ (7.26)
0 0 0 Amg 0 '

y— [cro 0 Co o] X+ Du.

All statesxy such thatBy # 0 are reachable, and all states such @a# 0 are
observable. If we set the initial state to zero (or equiviljelook at the steady-
state response i is stable), the states given By andxq will be zero andxg
does not affect the output. Hence the outpaan be determined from the system

dxo
dt

Thus from the input/output point of view, it is only the reableand observable
dynamics that matter. A block diagram of the system illusigathis property is
given in Figure7.12a

The general case of the Kalman decomposition is more congticand re-
quires some additional linear algebra; see the originabphp Kalman, Ho and
Narendra KHN63]. The key result is that the state space can still be decordpose
into four parts, but there will be additional coupling sotttiee equations have the

= AroXro + BroU, y = CroXro + Du.



7.5. A GENERAL CONTROLLER STRUCTURE 240

form
Al’O 0 * 0 Bro
dx | * Ag * Bro
dt - 0 0 AFO 0 X+ 0 U (7 27)
0 0 x  Arg 0 '

y= (Cro 0 G O] X,

wherex denotes block matrices of appropriate dimensions. The fopiut re-
sponse of the system is given by

d
;o = AroXro + BroU, y = CroXo + Du, (7.28)

which are the dynamics of the reachable and observable si@ns¥,,. A block
diagram of the system is shown in Figutd2h
The following example illustrates Kalman’s decomposition.

Example 7.7 System and controller with feedback from observer state

Consider the system d
d%( = Ax+ Bu, y=Cx

The following controller, based on feedback from the obsestate, was given in
Theorem?.3;
dx

a:A>24—Bu+L(y—C>‘(), u=—Kx+kr.

Introducing the statesandxX= x — X, the closed loop system can be written as

d (x]  (A-BK BK X Bk - X

(3= (0 A%) () (%) v- (e 5]
which is a Kalman decomposition like the one shown in Figud2bwith only
two subsystem&,, and 2. The subsystenz,,, with statex, is reachable and
observable, and the subsysteig, with statex; is not reachable but observable.
It is natural that the stateiS not reachable from the reference signakcause it
would not make sense to design a system where changes inriraaad signal
could generate observer errors. The relationship betweereference and the
outputy is given by

dx

a:(A—BK)x—kkar, y =CXx,

which is the same relationship as for a system with full ste¢elback. O
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Figure 7.13: Components of a computer-controlled system. The controller consists of
analog-to-digital (A/D) and digital-to-analog (D/A) converters, as welaamputer that
implements the control algorithm. A system clock controls the operation ofahgoller,
synchronizing the A/D, D/A and computing processes. The operatot isjalso fed to the
computer as an external input.

Computer Implementation

The controllers obtained so far have been described by aydditferential equa-

tions. They can be implemented directly using analog commtsng/hether elec-
tronic circuits, hydraulic valves or other physical degc8ince in modern engi-
neering applications most controllers are implementedgisomputers, we will

briefly discuss how this can be done.

A computer-controlled system typically operates periatijc every cycle, sig-
nals from the sensors are sampled and converted to digital iy the A/D con-
verter, the control signal is computed and the resultinguiLis converted to ana-
log form for the actuators, as shown in Figurd3 To illustrate the main princi-
ples of how to implement feedback in this environment, wesater the controller
described by equation3.l4 and (.19, i.e.,

dx

a:Aﬁ+Bu+L(y—C>A<), u=—KX+kr.

The second equation consists only of additions and muléiptias and can thus
be implemented directly on a computer. The first equation campkmented by
approximating the derivative by a difference

dx  X(tia) — X(t)

5~ . = AX(ti) + Bu(ti) + L (y(tx) — CX(ty)),
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wherety are the sampling instants aha- ty, 1 —ty is the sampling period. Rewrit-
ing the equation to isolatety. 1), we get the difference equation

R(tkr1) = X(t) +h(AR(t) + Bu(t) + L (y(tk) — CR(t)) ) (7.29)

The calculation of the estimated state at tifjng requires only addition and mul-
tiplication and can easily be done by a computer. A sectigssefidocode for the
program that performs this calculation is

% Control algorithm- nmain |oop

r = adin(chl) % read reference

y = adin(ch2) % get process out put

u = Kx(xd - xhat) + uff % conput e control variable
daout (chl, u) % set anal og out put

xhat = xhat + hx(Axx+Bxu+Lx(y-C+x)) % update state estimate

The program runs periodically at a fixed r&teNotice that the number of com-
putations between reading the analog input and settingt@lea output has been
minimized by updating the state after the analog output leees [set. The pro-
gram has an array of statelat that represents the state estimate. The choice of
sampling period requires some care.

There are more sophisticated ways of approximating a diffexleequation
by a difference equation. If the control signal is constagtiveen the sampling
instants, it is possible to obtain exact equations; §Mi!9[7].

There are several practical issues that also must be dehltdt example, it
is necessary to filter measured signals before they are sdreplihat the filtered
signal has little frequency content abofgg2, wherefs is the sampling frequency.
This avoids a phenomena known agasing If controllers with integral action
are used, it is also necessary to provide protection so higaintegral does not
become too large when the actuator saturates. This issled iceibgrator windup
is studied in more detail in Chapt&f. Care must also be taken so that parameter
changes do not cause disturbances.

7.6 Further Reading

The notion of observability is due to Kalmakkdl61hb] and, combined with the dual
notion of reachability, it was a major stepping stone towestblishing state space
control theory beginning in the 1960s. The observer first apgueas the Kalman
filter, in the paper by Kalmarijal614 on the discrete-time case and Kalman and
Bucy [KB61] on the continuous-time case. Kalman also conjecturedttigaton-
troller for output feedback could be obtained by combinirgjete feedback with
an observer; see the quote in the beginning of this chapterr@$ult was formally
proved by Josep and TodT67 and Gunckel and FranklirGF71. The combined
result is known as the linear quadratic Gaussian contrarthea compact treat-
ment is given in the books by Anderson and MooaPO0] and Astrom [,&st06].
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Much later it was shown that solutions to robust control peois also had a sim-
ilar structure but with different ways of computing obseread state feedback
gains PGKF89. The general controller structure discussed in Seciénwhich
combines feedback and feedforward, was described by Hrawi963 Hor63.
The particular form in Figur&.10appeared inAW97], which also treats digital
implementation of the controller. The hypothesis that motiontrol in humans
is based on a combination of feedback and feedforward wgsopeal by Ito in
1970 |to70].

Exercises

7.1 (Coordinate transformations) Consider a system under edowie transfor-
mationz= T x, whereT € R"*"is an invertible matrix. Show that the observability
matrix for the transformed system is given\ly =W, T ~* and hence observability
is independent of the choice of coordinates.

7.2 Show that the system depicted in Figi@is not observable.

7.3 (Observable canonical form) Show that if a system is obségyaihen there
exists a change of coordinates= T x that puts the transformed system into ob-
servable canonical form.

7.4(Bicycle dynamics) The linearized model for a bicycle is giveequation 8.5),
which has the form
d’¢ Dvodd mgh
Yag T ot "Iy O
whereg is the tilt of the bicycle and is the steering angle. Give conditions under
which the system is observable and explain any specialtgihsawhere it loses
observability.

7.5 (Integral action) The model7(1) assumes that the input= 0 corresponds
to x = 0. In practice, it is very difficult to know the value of the conitsignal
that gives a precise value of the state or the output bechisgould require a
perfectly calibrated system. One way to avoid this asswonpsito assume that the
model is given by

(311( = Ax+B(u+up), y =Cx+Du,

whereug is an unknown constant that can be modelediag/dt = 0. Consider
Up as an additional state variable and derive a controllerdaseeedback from
the observed state. Show that the controller has integrialneaid that it does not
require a perfectly calibrated system.
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7.6 (Vectored thrust aircraft) The lateral dynamics of the vesdathrust aircraft
example described in Examp&8 can be obtained by considering the moti
described by the states= (x, 8,x,0). Construct an estimator for these dynam-
ics by setting the eigenvalues of the observer intBudterworth patternwith
Apw = —3.834+9.24i, —9.2443.83i. Using this estimator combined with the state
space controller computed in Exam@e, plot the step response of the closed
loop system.

7.7 (Unigueness of observers) Show that the design of an obdeyweigenvalue
assignment is unique for single-output systems. Constsarnples that show that
the problem is not necessarily unique for systems with manguds.

7.8 (Observers using differentiation) Consider the lineateays(7.2), and assume
that the observability matriy, is invertible. Show that

x=wi(y yy - y<n—1>]T

is an observer. Show that it has the advantage of giving the ststantaneously
but that it also has some severe practical drawbacks.

7.9 (Observer for Teorell's compartment model) Teorell’s camment model,
shown in Figure3.17, has the following state space representation:

K, O 0 0 0 1
o | ek 0 k0 0
— = 0 kg 0 0 O x+ | O] u,
dt 0 ky O —ks—ks O 0
0 0

O 0 0 ks

where representative parameters kye= 0.02, ko, = 0.1, k3 = 0.05, kg = ks =
0.005. The concentration of a drug that is active in compartriesaimeasured in
the bloodstream (compartment 2). Determine the compattntlesit are observable
from measurement of concentration in the bloodstream asjlen estimator
for these concentrations base on eigenvalue assignmeots€lthe closed loop
eigenvalues-0.03,—0.05 and—0.1. Simulate the system when the input is a pulse
injection.

7.10 (Observer design for motor drive) Consider the normalizemtieh of the
motor drive in Exercise2.10 where the open loop system has the eigenvalues
0,0,—0.05+ 1. A state feedback that gave a closed loop system with ei¢fenva
ues in—2, —1 and—1+i was designed in Exercige1l Design an observer for
the system that has eigenvalued, —2 and—2 + 2i. Combine the observer with
the state feedback from Exerci6el1to obtain an output feedback and simulate
the complete system.
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7.11 (Feedforward design for motor drive) Consider the normdlizedel of the
motor drive in Exercis€.10 Design the dynamics of the block labeled “trajec-
tory generation” in Figur&.10so that the dynamics relating the outppto the
reference signal has the dynamics

d3Ym dZYm dym

—m = 7.

g@ Tam gz T ame - T amaym = amsr, (7.30)
with parametersm; = 2.5, ame = 2.5w% andagg = wS. Discuss how the largest
value of the feedforward signal for a unit step in the commsigdal depends on

Whn.

7.12(Whipple bicycle model) Consider the Whipple bicycle mogigen by equa-
tion (3.7) in Section3.2 A state feedback for the system was designed in Exer-
cise6.12 Design an observer and an output feedback for the system.

7.13(Discrete-time random walk) Suppose that we wish to estirttetgoosition @
of a particle that is undergoing a random walk in one dimemn§ie., along a line).
We model the position of the patrticle as

X[k+ 1] = x[K] 4 u[K],

wherex s the position of the particle ands a white noise processes WEH{ u[i]} =
0 andE{uiju[j]} = Rud(i — ). We assume that we can measxubject to ad-
ditive, zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the aatich function ok.

(b) Construct a Kalman filter to estimate the position of thetipla given the
noisy measurements of its position. Compute the steadg-sxpected value and
covariance of the error of your estimate.

(c) Suppose thaE{u[0]} = u # 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

7.14 (Kalman decomposition) Consider a linear system charaetby the ma-
trices

2 1 -1 2 2
1 -3 0 2 2

a=|1 T  5l oB=5] cz[o 1 -1 o], D=o0.
0 1 -1 -1 1

Construct a Kalman decomposition for the system. (Hint:tdrgliagonalize.)



Chapter Eight

Transfer Functions

The typical regulator system can frequently be described, in essentjadifférential equa-
tions of no more than perhaps the second, third or fourth order. . .ohtrast, the order of
the set of differential equations describing the typical negative feedbagiifeer used in
telephony is likely to be very much greater. As a matter of idle curiosity, ¢ eocnted to
find out what the order of the set of equations in an amplifier | had jusigded would have
been, if | had worked with the differential equations directly. It turnedtoute 55.

Hendrik Bode, 1960B0d6(d.

This chapter introduces the concept of ttamsfer functionwhich is a compact
description of the input/output relation for a linear systeCombining transfer
functions with block diagrams gives a powerful method foaldey with complex
linear systems. The relationship between transfer funstéom other descriptions
of system dynamics is also discussed.

8.1 Frequency Domain Modeling

Figure8.1is a block diagram for a typical control system, consistifig process
to be controlled and a controller that combines feedbackfeedforward. We
saw in the previous two chapters how to analyze and desigm sygiems using
state space descriptions of the blocks. As mentioned in €€hapan alternative
approach is to focus on the input/output characteristitse$ystem. Since it is the
inputs and outputs that are used to connect the systemspatteexpect that this
point of view would allow an understanding of the overall &ebr of the system.
Transfer functions are the main tool in implementing thigpof view for linear
systems.

The basic idea of the transfer function comes from lookinghatftequency
response of a system. Suppose that we have an input signéd frexiodic. Then
we can decompose this signal into the sum of a set of sinescanes,

u(t) = ;aksin(kwt) + by cogkat),
k=
where w is the fundamental frequency of the periodic input. Each eftdrms

in this input generates a corresponding sinusoidal outpustéady state), with
possibly shifted magnitude and phase. The gain and phasetafreguency are
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************************ |

| Reference Feedback d Process n
i shaping controller, dynamics
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Figure 8.1: A block diagram for a feedback control system. The reference kigisafed
through a reference shaping block, which produces the signal thdienithcked. The error
between this signal and the output is fed to a controller, which producdsphbéeto the
process. Disturbances and noise are included as external signadsiapubh and output of
the process dynamics.

determined by the frequency response given in equabi@4)
G(s) =C(sl—A)"1B+D, (8.1)

where we se$ = i(kw) for eachk = 1,...,0 andi = y/—1. If we know the steady-
state frequency respon€gs), we can thus compute the response to any (periodic)
signal using superposition.

The transfer function generalizes this notion to allow a bevaclass of input
signals besides periodic ones. As we shall see in the netsgethe transfer func-
tion represents the response of the system texaonential inpytu = €. It turns
out that the form of the transfer function is precisely thensaas that of equa-
tion (8.1). This should not be surprising since we derived equa®ol) by writing
sinusoids as sums of complex exponentials. Formally, #resfer function is the
ratio of the Laplace transforms of output and input, althoagk does not have
to understand the details of Laplace transforms in order tkenuse of transfer
functions.

Modeling a system through its response to sinusoidal andrexpial signals
is known adrequency domain modelinghis terminology stems from the fact that
we represent the dynamics of the system in terms of the gerestdrequencys
rather than the time domain varialileThe transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a paldidy convenient
representation in manipulating and analyzing complexalirffeedback systems.
As we shall see, there are many graphical representatidrensffer functions that
capture interesting properties of the underlying dynamicansfer functions also
make it possible to express the changes in a system becausedeling error,
which is essential when considering sensitivity to procestations of the sort
discussed in Chapté®. More specifically, using transfer functions, it is possiole
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analyze what happens when dynamic models are approximgtgedtic models or
when high-order models are approximated by low-order nsod&he consequence
is that we can introduce concepts that express the degréability of a system.

While many of the concepts for state space modeling and sisadpply di-
rectly to nonlinear systems, frequency domain analysiiegpprimarily to linear
systems. The notions of gain and phase can be generalizedliogar systems
and, in particular, propagation of sinusoidal signals digio a nonlinear system
can approximately be captured by an analog of the frequesgponse called the
describing function. These extensions of frequency respuiilt be discussed in
Section9.5.

8.2 Derivation of the Transfer Function

As we have seen in previous chapters, the input/output dipsaof a linear sys-
tem have two components: the initial condition responseth@dorced response.
In addition, we can speak of the transient properties of yiséesn and its steady-
state response to an input. The transfer function focuseseostéady-state forced
response to a given input and provides a mapping betweetsiapd their corre-
sponding outputs. In this section, we will derive the trandtinction in terms of
the exponential response of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, wed wiake use of a
special type of signal, called axponential signalpf the forme¥, wheres =
0 + 1w is a complex number. Exponential signals play an importdetirolinear
systems. They appear in the solution of differential equatiand in the impulse
response of linear systems, and many signals can be reprdsssnexponentials
or sums of exponentials. For example, a constant signahiglgie® with a = 0.
Damped sine and cosine signals can be represented by

el HO — gotdt — 9 (coswt + i sinwt),

whereo < 0 determines the decay rate. Fig@@ gives examples of signals that
can be represented by complex exponentials; many othealsigan be repre-
sented by linear combinations of these signals. As in the eisinusoidal signals,
we will allow complex-valued signals in the derivation tHialows, although in
practice we always add together combinations of signatsrésalt in real-valued
functions.

To investigate how a linear system responds to an expohéngiat u(t) = e
we consider the state space system

d
d—f[( = Ax+Bu, y = Cx+Du. (8.2)
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Figure 8.2: Examples of exponential signals. The top row corresponds to expalggnals

with a real exponent, and the bottom row corresponds to those with coexpexents. The
dashed line in the last two cases denotes the bounding envelope for ileta@ycsignals.

In each case, if the real part of the exponent is negative then thd diggays, while if the
real part is positive then it grows.

Let the input signal bei(t) = €% and assume that# Aj(A), j = 1,...,n, where
Aj(A) is the jth eigenvalue oA. The state is then given by

X(t) = efix( +/ ALTBEST (7 — eAlx(0 )+eAt/ els-ATR gy,
As we saw in SectioBb.3 if s# A (A), the integral can be evaluated and we get
X(t) = eMx(0) + (sl — A)~ (e(s' At _ I)B
= (x(0) — (51— A) 'B) + (s - A) 'Be"
The output of equatiorB(2) is thus
y(t) = Cx(t) + Du(t)
—ceM (x(O) ~(sl— A)-lB) + <C(s| ~A) B+ D) e, (8.3)

a linear combination of the exponential functioe® and €. The first term in
equation 8.3 is the transient response of the system. Recalldiatan be written
in terms of the eigenvalues @f (using the Jordan form in the case of repeated
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eigenvalues), and hence the transient response is a liogdnigation of terms of
the formeit, whereA; are eigenvalues d&. If the system is stable, thed' — 0
ast — o and this term dies away.

The second term of the outp&.8) is proportional to the input(t) = €. This
term is called thgure exponential responsk the initial state is chosen as

x(0) = (sl—A) 1B,

then the output consists of only the pure exponential respamd both the state
and the output are proportional to the input:

X(t) = (sl —A)~1Be' = (sl — A) " 1Bu(t),
y(t) = (C(sl —A)'B+D)e™ = (C(sl —A) !B+ D)u(t).

This is also the output we see in steady state, when the trassiepresented by
the first term in equatior8(3) have died out. The map from the input to the output,

Gyu(s) =C(sl—-A)'B+D, (8.4)

is thetransfer functionfrom u to y for the system§.2), and we can writg/(t) =
Gyu(s)u(t) for the case thati(t) = €. Compare with the definition of frequency
response given by equatiob.24).

An important point in the derivation of the transfer functies the fact that
we have restricted so thats # Aj(A), the eigenvalues oA. At those values of
s, we see that the response of the system is singular (sineé\ will fail to be
invertible). Ifs= A (A), the response of the system to the exponential inpuehit
is y = p(t)elit, wherep(t) is a polynomial of degree less than or equal to the
multiplicity of the eigenvalue\j (see Exercis@.2).

Example 8.1 Damped oscillator
Consider the response of a damped linear oscillator, whase space dynamics
were studied in Sectiof.3:

dx 0 o 0

Fii [—ab —ZZwo] X+ [kwo] u, y= [1 0) X. (8.5)
This system is stable if > 0, and so we can look at the steady-state response to
an inputu = e,

Gy(s) = C(sl—A) 'B= (1 0] [asb s+_262bab]l[k2b]
B 1

S+2({w —wp 0
= (2 o <32+2Zabs+wg[ o < ]) [kwo] (8.6)
2

_ kay
R+ 2{ s+ W
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To compute the steady-state response to a step functioretee-90 and we see

that
u=1 = y=Gy(Ou=k.

If we wish to compute the steady-state response to a sinuseidrrite
1 . .
u=sinwt = = (ie”'® —je'“®)
S )

= 2 (Gl -iwe ™ —iGp(ia)).

We can now write5(iw) in terms of its magnitude and phase,
. Koy i
G(iw) = “b 5, =Mée?
§? +2{ ans+ wh
where the magnitude (or gaiv) and phasé are given by
ko sinf -2l wow
M= ’ cosd  w2—?
(€~ w2+ (22 -

We can also make use of the fact ti&t—iw) is given by its complex conjugate

G*(iw), and it follows thatG(—iw) = Me '¢. Substituting these expressions into
our output equation, we obtain

)

PN N I SR T NP2
y_2<|(Me e i(Me?)e )
-M % (iefi(OJtJre) - iei(wt+9)) =M Sin((JJt + 9)
The responses to other signals can be computed by writingngus &s an appro-
priate combination of exponential responses and usingiitye O

Coordinate Changes

The matricesA, B andC in equation 8.2) depend on the choice of coordinate
system for the states. Since the transfer function relafes o outputs, it should
be invariant to coordinate changes in the state space. W 8hg, consider the
model 8.2) and introduce new coordinatedy the transformatioz = T x, where

T is a nonsingular matrix. The system is then described by

d ~ ~
d{ — T(Ax+BuU) = TAT !z+ TBu=: Az+ By,

y=Cx+Du=CT 'z+Du=:Cz+Du.

This system has the same form as equat®&8)( but the matriced\, B andC are

different: . . .
A=TAT 1 B=TB, C=CT % (8.7)
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Computing the transfer function of the transformed model get
G(s) =C(sl—A) !B+ D=CT *(sI-TAT ) 'TB+D
=C(T (sl - TAT*l)T)le+ D —C(s|—A)'B+D = G(s),

which is identical to the transfer functioB.4) computed from the system descrip-
tion (8.2). The transfer function is thus invariant to changes of therdimates in
the state space.

Another property of the transfer function is that it corresgs to the portion of
the state space dynamics that is both reachable and obkerialparticular, if
we make use of the Kalman decomposition (Seclid), then the transfer func-
tion depends only on the dynamics in the reachable and ddislersubspacg,
(Exercise8.7).

Transfer Functions for Linear Systems

Consider a linear input/output system described by therotbed differential equa-

tion n n—1 m m—1
gtﬁ’+a13tni'+-~+any= bo(;tr:+b1‘jw‘1‘+-~+bmu, 8.8)

whereu is the input andy is the output. This type of description arises in many
applications, as described briefly in Sectg; bicycle dynamics and AFM mod-
eling are two specific examples. Note that here we have gérentadur previous
system description to allow both the input and its derivegtito appear.

To determine the transfer function of the syste18), let the input beu(t) =
e, Since the system is linear, there is an output of the systamishalso an
exponential functiory(t) = yoe™. Inserting the signals into equatio8. ), we find

(" + a4+ +an)yoe™ = (bps"+ byt 4 by)e,
and the response of the system can be completely describ@eblpolynomials
as) =" +as - fay, b(s) = boS" +bis" 4+ by (8.9)

The polynomiah(s) is the characteristic polynomial of the ordinary diffeliaht
equation. Ifa(s) # 0, it follows that

b(s)
t) = yoe™t = ——~e. 8.10
y(t) = Yo a9 (8.10)
The transfer function of the systei®.9) is thus the rational function
b(s)
G(s) = —= 8.11
(s) a(s) (8.11)

where the polynomiala(s) andb(s) are given by equatior8(9). Notice that the
transfer function for the systen8.g) can be obtained by inspection since the co-
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Table 8.1: Transfer functions for some common ordinary differential equations

Type ODE Transfer Function
. 1
Integrator y=u <
Differentiator y=u s
1
First-order system y+{ay=u —
Y yray s+a
. . 1
Double integrator y=u 2
Damped oscillator y 27 wpy+ wfy = u .
£+ 2 wos+ wf
ki

PID controller y=Kkpu+kql+ki fu kp+kds+§

Time delay y(t) =ut—1) e’

efficients ofa(s) andb(s) are precisely the coefficients of the derivativesi@nd
y. The order of the transfer function is defined as the order of the denadmina
polynomial.

Equations 8.8)—(8.11) can be used to compute the transfer functions of many
simple ordinary differential equations. TalBel gives some of the more com-
mon forms. The first five of these follow directly from the anadyabove. For the
proportional-integral-derivative (PID) controller, we keause of the fact that the
integral of an exponential input is given b¥/s)e.

The last entry in Tabl8.1is for a pure time delay, in which the output is iden-
tical to the input at an earlier time. Time delays appear imyrgystems: typical
examples are delays in nerve propagation, communicatidnreass transport. A
system with a time delay has the input/output relation

y(t) =u(t—1). (8.12)

As before, let the input be(t) = €. Assuming that there is an output of the form
y(t) = yoe™ and inserting into equatio8(12, we get

y(t) = yoet = 5170 — e Tt — e STy(t).

The transfer function of a time delay is thGgs) = €', which is not a rational
function but is analytic except at infinity. (A complex furani is analytic in a
region if it has no singularities in the region.)

Example 8.2 Electrical circuit elements
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Figure 8.3: Stable amplifier based on negative feedback around an operatiopéfiam

The block diagram on the left shows a typical amplifier with low-frequeyan Ry /R;. If

we model the dynamic response of the op am@@s = ak/(s+ a), then the gain falls off at
frequencyw = aR1k/Ryp, as shown in the gain curves on the right. The frequency response
is computed fok = 107, a= 10 rad/sR, =10° Q, andR; = 1, 1%, 10* and 16 Q.

Modeling of electrical circuits is a common use of transterdtions. Consider, for
example, a resistor modeled by Ohm'’s l&w= IR, whereV is the voltage across
the resister is the current through the resistor aRds the resistance value. If we
consider current to be the input and voltage to be the outpetresistor has the
transfer functiorZ(s) = R. Z(s) is also called theampedancef the circuit element.
Next we consider an inductor whose input/output charasttelis given by

La =V.

Letting the current bé(t) = €, we find that the voltage ¥ (t) = Lse and the
transfer function of an inductor is thigs) = Ls. A capacitor is characterized by

av_,

dt ’
and a similar analysis gives a transfer function from curtervoltage ofZ(s) =
1/(Cs). Using transfer functions, complex electrical circuits e analyzed alge-
braically by using the complex impedanggs) just as one would use the resistance
value in a resistor network. O

Example 8.3 Operational amplifier circuit

To further illustrate the use of exponential signals, wesider the operational am-
plifier circuit introduced in SectioB.3and reproduced in Figui&3a The model
introduced in SectioB.3is a simplification because the linear behavior of the am-
plifier was modeled as a constant gain. In reality there argfgignt dynamics in
the amplifier, and the static model,; = —kv (equation 8.10) should therefore be
replaced by a dynamic model. In the linear range of the ampliie can model
the operational amplifier as having a steady-state frequersponse

Vout ak
— = = G(s). 1
v Ss+a G(s) (8.13)
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This response corresponds to a first-order system with timstaonl/a. The
parametek is called theopen loop gainand the producék is called thegain-
bandwidth produgttypical values for these parameters kre 10’ andak = 10'—
10° rad/s.

Since all of the elements of the circuit are modeled as beireal if we drive
the inputv;, with an exponential signa®, then in steady state all signals will be
exponentials of the same form. This allows us to manipulaetiuations describ-
ing the system in an algebraic fashion. Hence we can write

Vi—V . V—\Vo
RR R
using the fact that the current into the amplifier is very speadlwe did in Sec-

tion 3.3 Eliminatingv between these equations gives the following transfer func-
tion of the system

Vo - — RzG(S) — Rgak

Vi Ri+R+RiG(S) Riak+ (Ri+Rp)(s+a)
The low-frequency gain is obtained by settsig 0, hence

—kRy B &
(k+ DR+ Ry - R’
which is the result given by3(11) in Section3.3. The bandwidth of the amplifier

circuit is
Ri(k+1)+Ry aR71k
Ri+R> Ry’

where the approximation holds f8/R; > 1. The gain of the closed loop system
drops off at high frequencies &k/(w(R; + R2)). The frequency response of the
transfer function is shown in FiguR3bfor k=107, a= 10 rad/sR, = 10° Q and
Ri=1,1¢ 10*and 16 Q.

Note that in solving this example, we bypassed explicitliting the signals as
v = Vpe® and instead worked directly with assuming it was an exponential. This
shortcut is handy in solving problems of this sort and whemimaating block
diagrams. A comparison with Secti@3, where we made the same calculation
whenG(s) was a constant, shows analysis of systems using transfetidos is
as easy as using static systems. The calculations are thafsameesistance®;
andR; are replaced by impedances, as discussed in Exadrple O

and v, =-G(9)V, (8.14)

GV2V1 (O) =

%:

Although we have focused thus far on ordinary differentiqliaions, transfer@
functions can also be used for other types of linear syst&uesillustrate this
via an example of a transfer function for a partial differai¢quation.

Example 8.4 Heat propagation
Consider the problem of one-dimensional heat propagatiarsemi-infinite metal
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rod. Assume that the input is the temperature at one end anthi output is the
temperature at a point along the rod. l&¥i,t) be the temperature at position
and timet. With a proper choice of length scales and units, heat praiiayis
described by the partial differential equation

08 0%6

T (8.15)
and the point of interest can be assumed to lxavel. The boundary condition for
the partial differential equation is

8(0,t) = u(t).
To determine the transfer function we choose the input(gs= €. Assume that
there is a solution to the partial differential equationtef form6(x,t) = ((x)e™
and insert this into equatio® (L5 to obtain

d?y

SLII(X) - Wa
with boundary conditiony(0) = 1. This ordinary differential equation (with inde-
pendent variabl&) has the solution

W(X) = A€VS+Be VS,
Matching the boundary conditions givAs= 0 andB = 1, so the solution is
y(t) = 0(1,t) = P(1)et = e Vet = e Vou(t).

The system thus has the transfer funct®fs) = e V5. As in the case of a time
delay, the transfer function is not a rational function tsiain analytic function.
O

Gains, Poles and Zeros

The transfer function has many useful interpretations aedeatures of a transfer
function are often associated with important system prageerThree of the most
important features are the gain and the locations of thesgaoie zeros.

Thezero frequency gaionf a system is given by the magnitude of the transfer
function ats= 0. It represents the ratio of the steady-state value of tkgudwith
respect to a step input (which can be represented-as®™ with s= 0). For a state
space system, we computed the zero frequency gain in equatkf):

G(0)=D-CA 1B.
For a system written as a linear differential equation
dy d"ly dMu d™ 1y

g g T Ay =Po g by gy

+ -+ bmpu,
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if we assume that the input and output of the system are ausstaandug, then
we find thata,yo = bmUp. Hence the zero frequency gain is
_ Yo _ bm
U @
Next consider a linear system with the rational transfectiom

G(s) = @

a(s)

G(0) (8.16)

The roots of the polynomiad(s) are called theolesof the system, and the roots
of b(s) are called theerosof the system. Ifp is a pole, it follows thaf/(t) = e

is a solution of equation8(8) with u = 0 (the homogeneous solution). A pgte
corresponds to enodeof the system with corresponding modal solute The
unforced motion of the system after an arbitrary excitat®a weighted sum of
modes.

Zeros have a different interpretation. Since the pure exga@ienutput corre-
sponding to the inputi(t) = e with a(s) # 0 is G(s)e%, it follows that the pure
exponential output is zero l(s) = 0. Zeros of the transfer function thus block
transmission of the corresponding exponential signals.

For a state space system with transfer func@gs) = C(sl — A)~*B+D, the
poles of the transfer function are the eigenvalues of theixnatin the state space
model. One easy way to see this is to notice that the valu&sfis unbounded
whensis an eigenvalue of a system since this is precisely the gebiofs where
the characteristic polynomial (s) = det(sl — A) = 0 (and hencesl — A is non-
invertible). It follows that the poles of a state space gysteepend only on the
matrix A, which represents the intrinsic dynamics of the system. 8yetkat a
transfer function is stable if all of its poles have negat®al part.

To find the zeros of a state space system, we observe that theeazercomplex
numberss such that the inputi(t) = uge® gives zero output. Inserting the pure
exponential responsét) = xoe™ andy(t) = 0 in equation .2) gives

sy = Axpe™ + Buge™ 0= Ce'%g + Deuy,

which can be written as

(e 3 (3o

This equation has a solution with nonzeg) ug only if the matrix on the left does
not have full rank. The zeros are thus the valsisach that the matrix

[AES' g] (8.17)

loses rank.
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Figure 8.4: A pole zero diagram for a transfer function with zeros-&tand—1 and poles at
—3 and—2+2j. The circles represent the locations of the zeros, and the crossesdtieris
of the poles. A complete characterization requires we also specify thefgia system.

Since the zeros depend én B, C andD, they therefore depend on how the
inputs and outputs are coupled to the states. Notice inqodatti that if the matrix
B has full row rank, then the matrix in equatiod®.17) hasn linearly independent
rows for all values of. Similarly there aren linearly independent columns if the
matrix C has full column rank. This implies that systems where the im&ior C
is square and full rank do not have zeros. In particular itmsdhat a system has
no zeros if it is fully actuated (each state can be contraiidépendently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfertfanés through
apole zero diagramas shown in Figur8.4. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are mdtymbles or zeros at
a fixed location, these are often indicated with overlappirmgses or circles (or
other annotations). Poles in the left half-plane corresporatable modes of the
system, and poles in the right half-plane correspond toabhstmodes. We thus
call a pole in the left-half plane stable poleand a pole in the right-half plane an
unstable poleA similar terminology is used for zeros, even though thegeto
not directly relate to stability or instability of the systeNotice that the gain must
also be given to have a complete description of the trangfeation.

Example 8.5 Balance system

Consider the dynamics for a balance system, shown in FigiieThe transfer
function for a balance system can be derived directly froensthcond-order equa-
tions, given in Exampl@.1:

d?p d?e dp e [
Mt@ — mlw cos@+ca +m|sm6(a) =F,

d’p . d%0 . :
—mlcosGWJrJtW—mglsmGere =0.

If we assume tha and® are small, we can approximate this nonlinear system by
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(a) Cart—pendulum system (c) Pole zero diagram fdtl e

Figure 8.5: Poles and zeros for a balance system. The balance system (a) cauékedn
around its vertical equilibrium point by a fourth order linear system. Tdlegpand zeros for
the transfer functionBlgr andHpr are shown in (b) and (c), respectively.

a set of linear second-order differential equations,

d?p d?6  dp

T
d?p . d%0

e e

If we let F be an exponential signal, the resulting response satisfies
Ms*> p—mls® 6 +cs p=F,
%0 —mis’p+ys8 —mglo =0,

where all signals are exponential signals. The resultingsfea functions for the
position of the cart and the orientation of the pendulum arergby solving forp
and@ in terms off to obtain

de
+ VE —mgle = 0.

mls
Hor = (M¢J — m212)s3 + (yM + ¢d)s? + (cy — Mimgl)s— mglc’
oo ;s +ys—mgl
pF =

(Mg — m212)s? + (yM + ¢J)s® + (cy — Mimgl)s? — mglcs

where each of the coefficients is positive. The pole zero dmagr@r these two
transfer functions are shown in FiglBé& using the parameters from Examglg.
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(8) Gyu= G261 (b) Gyu=G1+ Gy Gy

©) Gyu= 1+ GG

Figure 8.6: Interconnections of linear systems. Series (a), parallel (b) antéekdc) con-
nections are shown. The transfer functions for the composite systembecderived by
algebraic manipulations assuming exponential functions for all signals.

If we assume the damping is small andset 0 andy = 0, we obtain

Mo — mi
oF = (Mt — mP12)s2 — Mymgl’
Js? —mgl

Hpr = :
PP (M — mPI2)s2 — Memg)
This gives nonzero poles and zeros at

_ ./ mgM _ ., /mgl
p=+ MtJt_mZIZNiz.Gs, z=+ 3 ~ +2.00.

We see that these are quite close to the pole and zero losatidiigure8.5. [

8.3 Block Diagrams and Transfer Functions

The combination of block diagrams and transfer functions @werful way to
represent control systems. Transfer functions relatiffgréint signals in the sys-
tem can be derived by purely algebraic manipulations of dwesfer functions of
the blocks usindlock diagram algebraTo show how this can be done, we will
begin with simple combinations of systems.

Consider a system that is a cascade combination of systetinghei transfer
functionsG(s) and Gy(s), as shown in Figur®.6a Let the input of the system
beu = €. The pure exponential output of the first block is the expoméstgnal
Gz1u, which is also the input to the second system. The pure expiahentput of
the second system is

y = G2(Gu) = (G2G1)u.
The transfer function of the series connection is tBus G,Gy, i.e., the product
of the transfer functions. The order of the individual tramdtinctions is due to
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the fact that we place the input signal on the right-hand eidiis expression,
hence we first multiply bys; and then byG,. Unfortunately, this has the opposite
ordering from the diagrams that we use, where we typicalixetibe signal flow
from left to right, so one needs to be careful. The orderingnigartant if eitheiGy
or Gy is a vector-valued transfer function, as we shall see in saxaeples.
Consider next a parallel connection of systems with thesterfunctionsG;
and G, as shown in Figur®.6h Letting u = € be the input to the system, the
pure exponential output of the first system is tlygr= Giu and the output of the
second system ¥ = G,u. The pure exponential output of the parallel connection

is thus
y = Giu+ Gou = (G1 + Go)u,

and the transfer function for a parallel connectiofsis- G; + G».

Finally, consider a feedback connection of systems withriduesfer functions
G: andG,, as shown in Figur8.6¢ Letu = € be the input to the systempe the
pure exponential output, ambe the pure exponential part of the intermediate sig-
nal given by the sum af and the output of the second block. Writing the relations
for the different blocks and the summation unit, we find

y=G1e e=u—Gyy.

Elimination ofe gives

Gy
y=Gi(u—Gyy) = (1+G1G)y=Giu = y= 1+Tlqu.
The transfer function of the feedback connection is thus
G1
G=—"~—.
1+ GGy

These three basic interconnections can be used as the basisrfputing transfer
functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figu8e7, which was given at the beginning of the chapter.
The system has three blocks representing a prdgesteedback controll€Z and a
feedforward controlleF. TogetherC andF define thecontrol lawfor the system.
There are three external signals: the reference (or comnigndlkr, the load
disturbancel and the measurement noiseA typical problem is to find out how
the errore is related to the signals d andn.

To derive the relevant transfer functions we assume thatigtials are expo-
nential signals, drop the arguments of signals and trafisfietions and trace the
signals around the loop. We begin with the signal in which weiaterested, in
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Figure 8.7: Block diagram of a feedback system. The inputs to the system are thenege
signalr, the process disturbanceand the measurement noiseThe remaining signals in
the system can all be chosen as possible outputs, and transfer furmetiobs used to relate
the system inputs to the other labeled signals.

this case the control errey given by
e=Fr—y.
The signal is the sum oh andn, wheren is the output of the process:
y=n+n, n =P(d+u), u==Ce
Combining these equations gives
e=Fr—y=Fr—(n+n)=Fr—(n+P(d+u))
=Fr— (n+P(d+Ce)),
and hence
e=Fr—n—Pd—PCe
Finally, solving this equation foe gives
~F . 1 . P
~ 1+PC  14+PC 1+PC
and the error is thus the sum of three terms, depending onrefleencer, the
measurement noigeand the load disturbanak The functions
~F G — -1 -
~ 14PC’ 14+ PC’ ~14+PC
are transfer functions from referencenoisen and disturbancd to the errore.

We can also derive transfer functions by manipulating tleelbdiagrams di-
rectly, as illustrated in Figur8.8. Suppose we wish to compute the transfer func-
tion between the referenceand the outpuy. We begin by combining the process
and controller blocks in Figur8.7 to obtain the diagram in Figur®.8a. We can
now eliminate the feedback loop using the algebra for a feekimterconnection
(Figure8.8b) and then use the series interconnection rule to obtain

_ PCF
T 14pC

e

d == Gerr + Genn + (:'»‘edd7 (818)

Ger Ged (8.19)

(8.20)
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Figure 8.8: Example of block diagram algebra. The results from multiplying the psoaed
controller transfer functions (from FiguBe7) are shown in (a). Replacing the feedback loop
with its transfer function equivalent yields (b), and finally multiplying the temaining
blocks gives the reference to output representation in (c).

Similar manipulations can be used to obtain the other trarigfections (Exer-
cise8.8).

The derivation illustrates an effective way to manipulated¢quations to obtain
the relations between inputs and outputs in a feedbackrayJtee general idea is
to start with the signal of interest and to trace signalsiagidbe feedback loop until
coming back to the signal we started with. With some practcgiations §.18
and 8.19 can be written directly by inspection of the block diagravetice, for
example, that all terms in equatioB.{9 have the same denominators and that the
numerators are the blocks that one passes through when djo@agjy from input
to output (ignoring the feedback). This type of rule can beluseompute transfer
functions by inspection, although for systems with muétifdedback loops it can
be tricky to compute them without writing down the algebraleitly.

Example 8.6 Vehicle steering

Consider the linearized model for vehicle steering intiatlin Examplé.12 In
Examples6.4 and 7.3 we designed a state feedback compensator and state esti-
mator for the system. A block diagram for the resulting colglystem is given in
Figure8.9. Note that we have split the estimator into two componeaig(s) and
Ggy(s), corresponding to its inputsandy. The controller can be described as the
sum of two (open loop) transfer functions

The first transfer functionGyy(s), describes the feedback term and the second,
Gur(s), describes the feedforward term. We call thepen looptransfer functions
because they represent the relationships between thdssigitlhout considering
the dynamics of the process (e.g., removittg) from the system description). To
derive these functions, we compute the transfer functiongdch block and then
use block diagram algebra.

We begin with the estimator, which takesandy as its inputs and produces
an estimatex."The dynamics for this process were derived in Exanfp@and are
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Figure 8.9: Block diagram for a steering control system. The control system is nkesigp
maintain the lateral position of the vehicle along a reference curve (I¢f) sTructure of the
control system is shown on the right as a block diagram of transfetifursc The estimator
consists of two components that compute the estimated»steden the combination of the
input u and outputy of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commandethgtaagleu.

given by R
dit( — (A—LC)%+ Ly + Bu,
2= (sl— (A—LC)) 'Bu+ (sl — (A—LC)) 'Ly.

Gsu G)?y

Using the expressions féy, B, C andL from Example7.3, we obtain

ys+1 l1s+15
L+ 115+15 F+1is+1,
G)A(U(S) = y G)“(y(s) = )
S+|1—V|2 los
L+l1s+1; L+1is+1,

wherel; andl, are the observer gains ampds the scaled position of the center
of mass from the rear wheels. The controller was a state fekdimampensator,
which can be viewed as a constant, multi-input, single-gtutiansfer function of
the formu = —KX.

We can now proceed to compute the transfer function for trezadivcontrol
system. Using block diagram algebra, we have

(s) = —KGyy(s) S(kal1 + kolp) + Kal
uy 1+ KGgy(s) 2+ 5(yky + ko +11) + kg + o+ kol g — ykol

and

ke ke (4 115+ 12)

G S) = = ,
ur(8) 1+KGgu(s)  S2+s(yki+ko+11) + kg + 1o+ kol1 — ykolo
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wherek; andk; are the state feedback gains dnds the reference gain.

Finally, we compute the full closed loop dynamics. We begirdbyiving the
transfer function for the proce$¥s). We can compute this directly from the state
space description of the dynamics, which was given in Exafbd2 Using that
description, we have

-1
_ _ -1 . s —1 yl ys+1
P(s) = Gyu(s) = C(sl —A)"1B+D = (1 o] [o ; ] [1] ==
The transfer function for the full closed loop system betwdeninputr and the
outputy is then given by
_ PGk k(ys+1)
1-P(s)Gyy(s) S+ (kiy+ko)s+ki
Note that the observer gaihsandl, do not appear in this equation. This is because
we are considering steady-state analysis and, in steat®y tte estimated state

exactly tracks the state of the system assuming perfect isiodde will return to
this example in Chaptdr2 to study the robustness of this particular approachl

Pole/Zero Cancellations

Because transfer functions are often polynomials,iit can sometimes happen
that the numerator and denominator have a common factochwdan be can-
celed. Sometimes these cancellations are simply algelmadifications, but in
other situations they can mask potential fragilities intin@del. In particular, if a
pole/zero cancellation occurs because terms in sepakdihat just happen to
coincide, the cancellation may not occur if one of the systerslightly perturbed.
In some situations this can result in severe differencesdmt the expected be-
havior and the actual behavior.

To illustrate when we can have pole/zero cancellationssiden the block dia-
gram in FigureB.7with F = 1 (no feedforward compensation) aBaindP given

by

Ne(S) Np(S)
S) = , S)=—"——.
¥ e "9 ae
The transfer function fromto eis then given by
1 de(s)dp(s)

Ger(S) = = .
er(S) 1+PC  de(s)dp(s) + ne(s)np(s)

If there are common factors in the numerator and denomimatilynomials, then

these terms can be factored out and eliminated from bothuheerator and de-

nominator. For example, if the controller has a zers-at—a and the process has
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a pole ats = —a, then we will have
(s+a)de(s)dp(s) 3 de(s)dp(s)
(s+a)de()dp(s) + (s+a)NL()Np(S)  de(S)dp(S) + Me(S)np(s)”

wheren;(s) anddj,(s) represent the relevant polynomials with the tesma fac-
tored out. In the case whexx 0O (so that the zero or pole is in the right half-plane),
we see that there is no impact on the transfer fundBgn

Suppose instead that we compute the transfer functiondrtme, which repre-
sents the effect of a disturbance on the error between theerefe and the output.
This transfer function is given by

Ger(s) =

de(s)np(s)
(s+a)de(s)dp(s) + (s+a)ng(s)np(s) '

Notice that ifa < 0, then the pole is in the right half-plane and the transfection
Geq is unstable Hence, even though the transfer function froto e appears to be
okay (assuming a perfect pole/zero cancellation), thesfeaufunction fromd to e
can exhibit unbounded behavior. This unwanted behaviopis&y of anunstable
pole/zero cancellation

It turns out that the cancellation of a pole with a zero can Bsunderstood in
terms of the state space representation of the systemsh&tsbity or observability
is lost when there are cancellations of poles and zeros (Ees8cl]). A conse-
quence is that the transfer function represents the dyrsaonily in the reachable
and observable subspace of a system (see Setthn

Ged(s) = —

Example 8.7 Cruise control

The input/output response from throttle to velocity for thmearized model for a
car has the transfer functi@®(s) = b/(s—a), a < 0. A simple (but not necessarily
good) way to design a PI controller is to choose the parameténg Pl controller
so that the controller zero at= —k; /kp cancels the process pole st a. The
transfer function from reference to velocity@s, (s) = bkp/(s+ bkp), and control
design is simply a matter of choosing the ginThe closed loop system dynamics
are of first order with the time constanttik,.

Figure8.10shows the velocity error when the car encounters an incindke
road slope. A comparison with the controller used in Figdu&b (reproduced in
dashed curves) shows that the controller based on poletaeellation has very
poor performance. The velocity error is larger, and it taklesg time to settle.

Notice that the control signal remains practically constftert = 15 even
if the error is large after that time. To understand what leagpwve will analyze
the system. The parameters of the systemaare—0.0101 andb = 1.32, and the
controller parameters akg = 0.5 andk; = 0.0051. The closed loop time constant
is 1/(bkp) = 2.5's, and we would expect that the error would settle in ahOws
(4 time constants). The transfer functions from road slopestocity and control
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Figure 8.10: Car with PI cruise control encountering a sloping road. The velocityr ésro
shown on the left and the throttle is shown on the right. Results with a Pl contvatle
kp = 0.5 andk; = 0.0051, where the process pale- —0.0101, is shown by solid lines, and
a controller withkp = 0.5 andk; = 0.5 is shown by dashed lines. Compare with Fig8ugh

signals are

bgs bk
(s—a)(s+ bkp)’ sk’
Notice that the canceled mode= a = —0.0101 appears iy but not inGyg.
The reason why the control signal remains constant is thatdhtoller has a zero
ats= —0.0101, which cancels the slowly decaying process mode. dlthiat the
error would diverge if the canceled pole was unstable. O

Gve(s) =

Gue(S)

The lesson we can learn from this example is that it is a bad tioldgy to
cancel unstable or slow process poles. A more detailed sismu of pole/zero
cancellations is given in Sectidi?.4

Algebraic Loops

When analyzing or simulating a system described by a bloagrdm, it is neces-
sary to form the differential equations that describe thmmete system. In many
cases the equations can be obtained by combining the differequations that
describe each subsystem and substituting variables. Thesprocedure cannot
be used when there are closed loops of subsystems that elatdikect connection
between inputs and outputs, known asaggebraic loop

To see what can happen, consider a system with two blockst-aftter non-
linear system, d

T =T, y=h), (8.21)

and a proportional controller described by- —ky. There is no direct term since
the functionh does not depend am In that case we can obtain the equation for
the closed loop system simply by replacimgy —kyin (8.21) to give

dx

a: f(X,—ky), y:h(X)
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Such a procedure can easily be automated using simple fommangulation.

The situation is more complicated if there is a direct terny.# h(x,u), then
replacingu by —ky gives

(;f[( = f(x,—ky), y = h(x, —ky).
To obtain a differential equation fog, the algebraic equatiop= h(x, —ky) must
be solved to givey = a(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to sajabirdic equations
to obtain the differential equations for the complete aystResolving algebraic
loops is a nontrivial problem because it requires the syrtsalution of alge-
braic equations. Most block diagram-oriented modelingyleages cannot handle
algebraic loops, and they simply give a diagnosis that soopd are present. In
the era of analog computing, algebraic loops were elimahateintroducing fast
dynamics between the loops. This created differential égpmtvith fast and slow
modes that are difficult to solve numerically. Advanced modelanguages like
Modelica use several sophisticated methods to resolvémgdoops.

8.4 The Bode Plot

The frequency response of a linear system can be computedtftransfer func-
tion by settings = iw, corresponding to a complex exponential

u(t) = €“* = coq wt) +isin(wt).

The resulting output has the form

y(t) = G(iw)d™ = Me(@+#) — Mcog wt + ¢) +iM sin(wt + ¢),
whereM and¢ are the gain and phase Gf
ImG(iw)
ReG(iw)
The phase o6 is also called thargumenbf G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single siids(sin or cos) is
amplified byM and phase-shifted b§. Note that— < ¢ < 11, so the arctangent
must be taken respecting the signs of the numerator and deatom It will often
be convenient to represent the phase in degrees rathetians. We will use the
notationZG(iw) for the phase in degrees and &(@w) for the phase in radians.
In addition, while we always take a@iw) to be in the rangé—r, 1], we will

take ZG(iw) to be continuous, so that it can take on values outside thgerah
—180° to 180'.

M= |G(iw)|, ¢ = arcta
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Figure 8.11:Bode plot of the transfer functid®(s) = 20+ 10/s+ 10s corresponding to an
ideal PID controller. The top plot is the gain curve and the bottom plot is theghurve.
The dashed lines show straight-line approximations of the gain curve amdtiesponding
phase curve.

The frequency respon$&iw) can thus be represented by two curves: the gain

curve and the phase curve. Tgan curvegives|G(iw)| as a function of frequency
w, and thephase curvagives ZG(iw). One particularly useful way of drawing
these curves is to use a log/log scale for the gain plot and/krlear scale for the
phase plot. This type of plot is calledBde plotand is shown in Figur8.11

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy &wictkand interpret.
Since the frequency scale is logarithmic, they cover theiehaf a linear system
over a wide frequency range.
Consider a transfer function that is a rational functionhaf torm
q$ZM©%©_
ay(s)ax(s)

We have

log|G(s)| = log|by(s)| +log|ba(s)| —log|ay(s)| —log|az(s)],

and hence we can compute the gain curve by simply adding didhsting gains
corresponding to terms in the numerator and denominatoile8iyn

ZG(8) = £by(s) + £by(s) — Zay(s) — Lay(s),
and so the phase curve can be determined in an analogousrfaSimce a poly-
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Figure 8.12:Bode plots of the transfer functios) = Kfork=-2,-1,0,1,2.0na log-
log scale, the gain curve is a straight line with sldpé&Jsing a log-linear scale, the phase
curves for the transfer functions are constants, with phase equat tol00

nomial can be written as a product of terms of the type
k, s s+ta $+2Jws+af,

it suffices to be able to sketch Bode diagrams for these ternesBblde plot of a
complex system is then obtained by adding the gains and plo&giee terms.

The simplest term in a transfer function is one of the fakmwherek > 0 if
the term appears in the numerator &nd O if the term is in the denominator. The
gain and phase of the term are given by

log|G(iw)| =klogw, ZG(iw)=90k.

The gain curve is thus a straight line with sldpand the phase curve is a constant
at 90 x k. The case whek= 1 corresponds to a differentiator and has slope 1 with
phase 90. The case whek = —1 corresponds to an integrator and has slefie
with phase—90°. Bode plots of the various powersloare shown in Figur8.12
Consider next the transfer function of a first-order systemgrgby
a

G(s) = sra

We have

— B'ji"a‘ . ZG(s)=Z(a)— L(s+a),

G(s)
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Figure 8.13: Bode plots for first- and second-order systems. (a) The first-sgstem

G(s) = a/(s+a) can be approximated by asymptotic curves (dashed) in both the gain and
the frequency, with the breakpoint in the gain curvevat a and the phase decreasing by 90
over afactor of 100 in frequency. (b) The second-order sySésn= wg/(SZJr 2 aps+ wg)

has a peak at frequeneyand then a slope of 2 beyond the peak; the phase decreases from
0° to —180°. The height of the peak and the rate of change of phase depending dartip-

ing ratiod (¢ =0.02,0.1, 0.2, 0.5 and 1.0 shown).

and hence
%)

log|G(iw)| = loga— % log(w? +a?), ZG(iw) = —LiOarctana.
The Bode plot is shown in Figur@.13a with the magnitude normalized by the
zero frequency gain. Both the gain curve and the phase carvbe&approximated
by the following straight lines

: 0 if w<a
log|G(iw)| ~
9lGliw)] {Ioga—logw if w>a,

0 if w<a/10
/G(iw) ~ ¢ —45—45(logw—loga) a/10< w < 10a
-90 if > 10a.

The approximate gain curve consists of a horizontal line ufpeiguencyw = a,
called thebreakpointor corner frequencyafter which the curve is a line of slope
—1 (on a log-log scale). The phase curve is zero up to frequapt9 and then
decreases linearly by 4&lecade up to frequency &0at which point it remains
constant at 90 Notice that a first-order system behaves like a constantofer |
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frequencies and like an integrator for high frequenciesnpgare with the Bode
plot in Figure8.12
Finally, consider the transfer function for a second-orgstem,

2

_ “o
G(S)_sz+zasz+w§’

for which we have
log|G(iw)| = 2logay — % log (w* + 20§ w?(2¢% — 1) + ),

Zgwow .

W5 — W2
The gain curve has an asymptote with zero slopediox y. For large val-
ues ofw the gain curve has an asymptote with slop2. The largest gaifQ =
max, |G(iw)| ~ 1/(2¢), called theQ-value is obtained forw ~ wy. The phase is
zero for low frequencies and approaches”1&® large frequencies. The curves
can be approximated with the following piecewise linearrespions

£G(iw) = —l—ioarcta

log|G(iw)| ~ 0 if W<

g - 2logwpy — 2logw  if w > w,
/Gliw) ~ 0 if w<
T 1-180 if w>> .

The Bode plot is shown in Figu&13h Note that the asymptotic approximation is
poor neaiw = ap and that the Bode plot depends strongly(omear this frequency.

Given the Bode plots of the basic functions, we can now skistetirequency
response for a more general system. The following exampistifites the basic
idea.

Example 8.8 Asymptotic approximation for a transfer function
Consider the transfer function given by

k(s+b)
G(s) = ,
(s) (s+a) (s +2{ wos+ wp)
The Bode plot for this transfer function appears in Fig8uB4 with the complete
transfer function shown as a solid line and the asymptofic@pmation shown as
a dashed line.
We begin with the gain curve. At low frequency, the magnitisdgiven by

kb
awp
When we reachw = a, the effect of the pole begins and the gain decreases with

a<k b« wy.
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Figure 8.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for
the transfer functioi®(s) = k(s+b)/(s+ a)(s? + 2 aps+ w?), wherea < b < ay. Each
segment in the gain and phase curves represents a separate pottienapproximation,
where either a pole or a zero begins to have effect. Each segmentagipheximation is a
straight line between these points at a slope given by the rules for comphéreffects of
poles and zeros.

slope—1. At w = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used tnatieffect of the
second-order pole is seen@at= ay, at which point the asymptote changes to slope
—2. We see that the gain curve is fairly accurate except ingg@n of the peak
due to the second-order pole (since for this casereasonably small).

The phase curve is more complicated since the effect of theepbtretches
out much further. The effect of the pole beginstat= a/10, at which point we
change from phase O to a slope -e#i5°/decade. The zero begins to affect the
phase atw = b/10, producing a flat section in the phase.@At 10a the phase
contributions from the pole end, and we are left with a slopg4d°/decade (from
the zero). At the location of the second-order pske,iwy, we get a jump in phase
of —180C°. Finally, atco = 10b the phase contributions of the zero end, and we are
left with a phase of-180 degrees. We see that the straight-line approximation fo
the phase is not as accurate as it was for the gain curve, doeg capture the
basic features of the phase changes as a function of freguenc O

The Bode plot gives a quick overview of a system. Since any bicgra be
decomposed into a sum of sinusoids, it is possible to viseidhe behavior of a
system for different frequency ranges. The system can beedew a filter that can
change the amplitude (and phase) of the input signals aiocpta the frequency
response. For example, if there are frequency ranges whergdin curve has
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(a) Low-pass filter (b) Band-pass filter (c) High-pass filter

Figure 8.15: Bode plots for low-pass, band-pass and high-pass filters. The topapéotae
gain curves and the bottom plots are the phase curves. Each systers foagsencies in a
different range and attenuates frequencies outside of that range.

constant slope and the phase is close to zero, the actiom afytem for signals
with these frequencies can be interpreted as a pure gaina8imior frequencies
where the slope is +1 and the phase close tg 8@ action of the system can be
interpreted as a differentiator, as shown in Fig8uE2

Three common types of frequency responses are shown in RigliseThe
system in Figure3.15ais called alow-pass filterbecause the gain is constant for
low frequencies and drops for high frequencies. Notice th@tphase is zero for
low frequencies and-180Q for high frequencies. The systems in Fig8té5band
c are called @and-pass filteandhigh-pass filteifor similar reasons.

To illustrate how different system behaviors can be reachftibee Bode plots
we consider the band-pass filter in Fig@&d5. For frequencies around = a,
the signal is passed through with no change in gain. Howéweirequencies well
below or well abovewy, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For fretjastbeloway /100
there is a phase lead of 9Q@and for frequencies above 1d§there is a phase lag
of 90°. These actions correspond to differentiation and integmati the signal in
these frequency ranges.

Example 8.9 Transcriptional regulation

Consider a genetic circuit consisting of a single gene. Wehwo study the re-
sponse of the protein concentration to fluctuations in the wRIjnamics. We
consider two cases: eonstitutive promotefno regulation) and self-repression
(negative feedback), illustrated in Figuel& The dynamics of the system are
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Figure 8.16: Noise attenuation in a genetic circuit. The open loop system (a) consists of a
constitutive promoter, while the closed loop circuit (b) is self-regulated nédpative feed-
back (repressor). The frequency response for each circuibigrsh (c).

given by dp
dt _a(p) Vm Vv dt _Bm 6pa
wherev is a disturbance term that affects mRNA transcription.
For the case of no feedback we havép) = ap, and the system has an equi-
librium point atme = ao/y, pe = Bao/(dy). The transfer function fromr to p is
given by

G- P
pu(S) (s+y)(s+9)
For the case of negative regulation, we have
a
(p) 11 kp' + ao,
and the equilibrium points satisfy
o N
%_Bpe7 1+km O_yrrb_Bpe'
The resulting transfer function is given by
kpa—t
GUy(s) = & . o= D0akPe
M = 5T y)(s+ 8)+ Bo (L+kp)?

Figure8.16cshows the frequency response for the two circuits. We sédttba
feedback circuit attenuates the response of the systenstiarlolnces with low-
frequency content but slightly amplifies disturbances ah lfigquency (compared
to the open loop system). Notice that these curves are vailasito the frequency
response curves for the op amp shown in FigRiBh O
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Figure 8.17: Frequency response of a preloaded piezoelectric drive for an aforoemi-
croscope. The Bode plot shows the response of the measurecetramsftion (solid) and
the fitted transfer function (dashed).

Transfer Functions from Experiments

The transfer function of a system provides a summary of thetioptput response
and is very useful for analysis and design. However, moddiiom first prin-
ciples can be difficult and time-consuming. Fortunately, @@ often build an
input/output model for a given application by directly medsg the frequency
response and fitting a transfer function to it. To do so, weyperthe input to the
system using a sinusoidal signal at a fixed frequency. Whewlgt&ate is reached,
the amplitude ratio and the phase lag give the frequencynsggfor the excitation
frequency. The complete frequency response is obtained bgEng over a range
of frequencies.

By using correlation techniques it is possible to deterntireefrequency re-
sponse very accurately, and an analytic transfer functionbe obtained from the
frequency response by curve fitting. The success of this apjprioas led to in-
struments and software that automate this process, cglecirum analyzerdVe
illustrate the basic concept through two examples.

Example 8.10 Atomic force microscope

To illustrate the utility of spectrum analysis, we considee dynamics of the
atomic force microscope, introduced in Sect®&b. Experimental determination
of the frequency response is particularly attractive fdg #ystem because its dy-
namics are very fast and hence experiments can be doneyidipical example

is given in FigureB.17, which shows an experimentally determined frequency re-
sponse (solid line). In this case the frequency responseh@amed in less than a
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@%

(a) Closed loop (b) Open loop (c) High gain

Figure 8.18: Light stimulation of the eye. In (a) the light beam is so large that it always
covers the whole pupil, giving closed loop dynamics. In (b) the light isi$ed into a beam
which is so narrow that it is not influenced by the pupil opening, givingrdpop dynamics.

In (c) the light beam is focused on the edge of the pupil opening, whishtheeffect of
increasing the gain of the system since small changes in the pupil openiegtarge effect
on the amount of light entering the eye. From St&8tab§.

second. The transfer function
B kw2 s Wl (s? + 2{1tnS+ w?) (S + 2{a0us+ wi)e™
2R (P + 2005+ 2) (P + 2{3wss + wE) (P + 205055+ WE)

with wy = 2rtfy and f; = 2.42 kHz,{; = 0.03, f, = 2.55kHz,{, = 0.03, f3 =
6.45 kHz,{3=0.042,f4=8.25 kHz,{4 = 0.025, f5 = 9.3 kHz,{5 = 0.032,1 = 10*s
andk =5, was fit to the data (dashed line). The frequencies assoeidtethe ze-

ros are located where the gain curve has minima, and thedneigs associated
with the poles are located where the gain curve has localmmeaxThe relative
damping ratios are adjusted to give a good fit to maxima andmanWhen a
good fit to the gain curve is obtained, the time delay is adjuigyive a good fit

to the phase curve. The piezo drive is preloaded, and a singuelnof its dynam-
ics is derived in Exercis8.7. The pole at 2.42 kHz corresponds to the trampoline
mode derived in the exercise; the other resonances arerhgites.

G(s)

O

Example 8.11 Pupillary light reflex dynamics
The human eye is an organ that is easily accessible for expetérit has a control
system that adjusts the pupil opening to regulate the ligiehisity at the retina.
This control system was explored extensively by Stark in th@0$9Sta6§.
To determine the dynamics, light intensity on the eye wagudasinusoidally and
the pupil opening was measured. A fundamental difficulty & the closed loop
system is insensitive to internal system parameters, slysas@f a closed loop
system thus gives little information about the internalgaies of the system.
Stark used a clever experimental technique that allowed himviestigate both
open and closed loop dynamics. He excited the system byngiiie intensity
of a light beam focused on the eye and measured pupil arelfysigaited in Fig-
ure8.18 By using a wide light beam that covers the whole pupil, thasaeement
gives the closed loop dynamics. The open loop dynamics wegenalal by using
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Figure 8.19: Sample curves from an open loop frequency response of the et)eafhef a
Bode plot for the open loop dynamics (right). The solid curve showsdd fite data using a
third-order transfer function with time delay. The dashed curve in theeBdat is the phase
of the system without time delay, showing that the delay is needed to pragsgtyre the
phase. (Figure redrawn from the data of Sts8ta6§.)

a narrow beam, which is small enough that it is not influencethbypupil open-
ing. The result of one experiment for determining open loopadgiyics is given

in Figure 8.19 Fitting a transfer function to the gain curve gives a good fit fo
G(s) = 0.17/(1+0.08s)%. This curve gives a poor fit to the phase curve as shown
by the dashed curve in Figu&19 The fit to the phase curve is improved by
adding a time delay, which leaves the gain curve unchangeig wtibstantially
modifying the phase curve. The final fit gives the model

B 0.17 0.5
©9=a70085°

The Bode plot of this is shown with solid curves in Fig@&49 Modeling of the

pupillary reflex from first principles is discussed in detai[K501]. O

Notice that for both the AFM drive and pupillary dynamics inist easy to de-
rive appropriate models from first principles. In practi¢és often fruitful to use a
combination of analytical modeling and experimental idfexttion of parameters.
Experimental determination of frequency response is lasactive for systems
with slow dynamics because the experiment takes a long time.

8.5 Laplace Transforms @

Transfer functions are conventionally introduced usinglae@ transforms, and in
this section we derive the transfer function using this faliem. We assume basic
familiarity with Laplace transforms; students who are naifear with them can
safely skip this section. A good reference for the matherahtnaterial in this
section is the classic book by Widdé&t{d41].
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Traditionally, Laplace transforms were used to computeaesgs of linear
systems to different stimuli. Today we can easily generagerésponses using
computers. Only a few elementary properties are neededafic lcontrol appli-
cations. There is, however, a beautiful theory for Laplacesfi@ms that makes
it possible to use many powerful tools from the theory of fiorts of a complex
variable to get deep insights into the behavior of systems.

Consider a functiorf (t), f : R™ — R, that is integrable and grows no faster
thane™' for some finitesy € R and larget. The Laplace transform magsto a
functionF = Zf : C — C of a complex variable. It is defined by

F(s):/omeStf(t)dt, Res > 5. (8.22)

The transform has some properties that makes it well suitetbad with linear
systems.
First we observe that the transform is linear because
Z(af +bg) = / e~Si(af(t) + bg(t)) dt
0 (8.23)
:a/o e St (t dt+b/ e Sig(t)dt = a2 f + by,

Next we calculate the Laplace transform of the derivative fofretion. We have

daf 1 g st ° /oo st _
- _/0 et/ (t)dt=e (1) +s [ e i(nat=~1(0) +s21,
where the second equality is obtained using integrationdoispWe thus obtain
f
'Z(ilt =sZf— f(0) =sF(s)— f(0). (8.24)

This formula is particularly simple if the initial conditisrare zero because it fol-
lows that differentiation of a function corresponds to nplitation of the trans-
form bys.

Since differentiation corresponds to multiplication §ywe can expect that
integration corresponds to division ByThis is true, as can be seen by calculating
the Laplace transform of an integral. Using integration biggave get

.z/ dr—/w e—st/tf(r)dr dt

st )
_< /f dr 1/ e ' f(1)dr,
SJo

t 1 1
z/o f(dr=_2f = ZF() (8.25)

hence
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Next consider a linear time-invariant system with zeroahistate. We saw in
Section5.3 that the relation between the inpuwiand the outpuy is given by the

convolution integral -
:/ h(t — T)u(t)dT
0

whereh(t) is the impulse response for the system. Taking the LaplaosftEam
of this expression, we have

Y(s):/ / *St/ h(t — T)u(t)dr dt

0
= / e Sh(t — 7)u(t)dr dt

_ / e STu(t)dr / e Sth(t)dt = H(s)U (9).
0 0

Thus, the input/output response is givenYyg) = H(s)U (s), whereH, U andY
are the Laplace transforms bf u andy. The system theoretic interpretation is
that the Laplace transform of the output of a linear system psoaluct of two
terms, the Laplace transform of the infduits) and the Laplace transform of the
impulse response of the systeaf{s). A mathematical interpretation is that the
Laplace transform of a convolution is the product of the tfamss of the functions
that are convolved. The fact that the formié&s) = H(s)U(s) is much simpler
than a convolution is one reason why Laplace transforms hawerbe popular in
engineering.

We can also use the Laplace transform to derive the trangifetifun for a state
space system. Consider, for example, a linear state spatarsgescribed by

dx
i Ax+Bu, y=Cx+Du.
Taking Laplace transformgnder the assumption that all initial values are zero

gives

sX(s) = AX(s)+BU(s) Y(s) =CX(s)+DU(s).
Elimination of X(s) gives
Y(s) = (C(sl ~A) B+ D)u (s). (8.26)

The transfer function i§(s) = C(sl — A) "B+ D (compare with equatior8(4)).

8.6 Further Reading

The idea of characterizing a linear system by its steadg-s¢&ponse to sinusoids
was introduced by Fourier in his investigation of heat cantidun in solids Fou07.
Much later, it was used by the electrical engineer Steinmétz wtroduced théw
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method for analyzing electrical circuits. Transfer funos were introduced via the
Laplace transform by Gardner Barn€&H42, who also used them to calculate the
response of linear systems. The Laplace transform was veyrtarg in the early
phase of control because it made it possible to find transiéatsibles (see, e.g.,
[JNP4T). Combined with block diagrams, transfer functions andlaee trans-
forms provided powerful techniques for dealing with compgystems. Calcu-
lation of responses based on Laplace transforms is less tampdoday, when
responses of linear systems can easily be generated usimguters. There are
many excellent books on the use of Laplace transforms ansféafunctions for
modeling and analysis of linear input/output systems. ificathl texts on control
such as PB04], [FPENO3 and [Oga0] are representative examples. Pole/zero
cancellation was one of the mysteries of early control thdois clear that com-
mon factors can be canceled in a rational function, but diatioas have system
theoretical consequences that were not clearly understotild<alman’s decom-
position of a linear system was introduc&HN63]. In the following chapters, we
will use transfer functions extensively to analyze st&p@ind to describe model
uncertainty.

Exercises

8.1 Let G(s) be the transfer function for a linear system. Show that if we ap
ply an inputu(t) = Asin(wt), then the steady-state output is given yay) =
|G(iw)|Asin(wt +argG(iw)). (Hint: Start by showing that the real part of a com-
plex number is a linear operation and then use this fact.)

8.2 Consider the system

X—ax+u
dt '

Compute the exponential response of the system and use tiesive the transfer
function fromu to x. Show that whers = a, a pole of the transfer function, the
response to the exponential inpuit) = €% is x(t) = €¥x(0) +te?.

8.3 (Inverted pendulum) A model for an inverted pendulum wasoihiced in
Example2.2 Neglecting damping and linearizing the pendulum arouedigright
position gives a linear system characterized by the matrice

0 1 0
A= [mgI/Jt 0], B= [1/Jt]’ c=(1 0. p=o
Determine the transfer function of the system.

8.4 (Solutions corresponding to poles and zeros) Consider ffezatitial equation

dny dn—ly dn—lu dn—2u

dtn dt”*l—’_"'—’_any:bldtn*l+b2dtn72+"'+bnu~
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(a) LetA be aroot of the characteristic polynomial
S+t fan=0.
Show that ifu(t) = 0, the differential equation has the solutig(h) = e’
(b) Letk be a zero of the polynomial
b(s) = b1 1+ 8" 2+ 4 by,

Show that if the input isu(t) = €, then there is a solution to the differential
equation that is identically zero.

8.5 (Operational amplifier) Consider the operational amplifi¢éraduced in Sec-
tion 3.3 and analyzed in Exampl@.3. A PI controller can be constructed using
an op amp by replacing the resistf with a resistor and capacitor in series, as
shown in Figure3.10 The resulting transfer function of the circuit is given by

1 kCs
Gle) =~ <R2+0s> ' <((k+ 1)RiC + RC)s+ 1) ’

wherek is the gain of the op amR; andR; are the resistances in the compensation
network andC is the capacitance.

(a) Sketch the Bode plot for the system under the assumptairk ti R, > R;.
You should label the key features in your plot, including ¢faén and phase at low
frequency, the slopes of the gain curve, the frequenciehitwhe gain changes
slope, etc.

(b) Suppose now that we include some dynamics in the ampliBesudined in
Example 8.1. This would involve replacing the g&iwith the transfer function

k
HE =157

Compute the resulting transfer function for the system, (ieplacek with H(s))
and find the poles and zeros assuming the following paramateesy

R
2100 k=10°, RC=1  T=00L

(c) Sketch the Bode plot for the transfer function in part (bing straight line
approximations and compare this to the exact plot of thestearfunction (using
MATLAB). Make sure to label the important features in your plot

8.6 (Transfer function for state space system) Consider tleatistate space sys-
tem

dx
i Ax+ Bu, y=Cx
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Show that the transfer function is
-1 -2 ...
G(S):b1§' +b2§l +-+bn
S+ays 1+ +ay

9

where

by=CB, b,=CAB+aCB, ..., by,=CA"™'B+a;CA"?B+---+a,_1CB
andA (s) = s"+a;s" 1+ .- +ay is the characteristic polynomial féx
8.7 (Kalman decomposition) Show that the transfer function ofsdéesn depend

only on the dynamics in the reachable and observable subsgabe Kalman
decomposition. (Hint: Consider the representation givweaduation 7.27).)

8.8 Using block diagram algebra, show that the transfer funstioomd to y and
ntoyin Figure8.7 are given by
P 1

Gy=-——  Gyp=——.
Y= 17PC M= 11PC

8.9 (Bode plot for a simple zero) Show that the Bode plot for tran$finction
G(s) = (s+a)/acan be approximated by

. 0 ifw<a
log|G(iw)| ~
glGliw)l {Iogw—loga if w> a,

0 if w<a/10
ZG(iw) ~ { 45+ 45(logw—loga) a/10< w < 10a
90 if > 10a.

8.10(Vectored thrust aircraft) Consider the lateral dynamita gectored thrust
aircraft as described in Examp®9. Show that the dynamics can be described
using the following block diagram:

r 6 % v 1
t 2 - - m< +cs X

Use this block diagram to compute the transfer functionsftg to 6 andx and
show that they satisfy

J —mgr
H0u1: g

r
EPR XM — 9.9/ 2 "

8.11 (Common poles) Corgs%er a closled r%%ﬁn%%er(f‘ﬁ) of the form airEig.7,

with F = 1 andP andC having a pole/zero cancellation. Show that if each syst

is written in state space form, the resulting closed loopesyss not reachable and

not observable.
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8.12(Congestion control) Consider the congestion control rhdescribed in Sec-
tion 3.4. Letw represent the individual window size for a setbidentical sources,

g represent the end-to-end probability of a dropped pabtkepresent the number

of packets in the router’s buffer angrepresent the probability that a packet is
dropped by the router. We writg = Nw to represent the total number of packets
being received from aM sources. Show that the linearized model can be described
by the transfer functions

G e G N
bw(S) = ————1 wq(S) = —m7

TSt e TS
where(we, be) is the equilibrium point for the syster is the steady-state round-
trip time andt; is the forward propagation time.

pr(S) =P,

8.13(Inverted pendulum with PD control) Consider the normalizeerted pen-
dulum system, whose transfer function is giverfigg) = 1/(s* — 1) (Exercises.3).
A proportional-derivative control law for this system heanisfer functiorC(s) =
Kp + kys (see TableB.1). Suppose that we choo§ks) = a(s— 1). Compute the
closed loop dynamics and show that the system has good ricackireference
signals but does not have good disturbance rejection pieper

8.14(Vehicle suspensiorHB90]) Active and passive damping are used in cars to
give a smooth ride on a bumpy road. A schematic diagram of witlra damping
system in shown in the figure below.

(Porter Class | race car driven by Todd Cuffaro)

This model is called guarter car modeland the car is approximated with two
masses, one representing one fourth of the car body and hiee @twheel. The
actuator exerts a forde between the wheel and the body based on feedback from
the distance between the body and the center of the wheeah{tleespacé.

Let xp, Xy andx; represent the heights of body, wheel and road measured from
their equilibria. A simple model of the system is given by News equations for
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the body and the wheel,

Mm¥p =F, My = —F + k(X —Xw),
wheremy is a quarter of the body massyy is the effective mass of the wheel
including brakes and part of the suspension systemufisprung magsandk; is
the tire stiffness. For a conventional damper consisting sppring and a damper,
we haveF = k(Xy — Xp) + c(Xw — Xp). For an active damper the forée can be
more general and can also depend on riding conditions. Ridetfort can be
characterized by the transfer functi@y from road heightx, to body acceler-
ationa = X,. Show that this transfer function has the prop&gy, (ic) = ki /My,

wherea = /ki/my (thetire hop frequency The equation implies that there are
fundamental limitations to the comfort that can be achievigd any damper.

8.15(Vibration absorber) Damping vibrations is a common engjiimg problem.
A schematic diagram of a damper is shown below:

TF
e T
5

cr =l kl%
my

T

The disturbing vibration is a sinusoidal force acting on nragsand the damper
consists of the massy, and the sprind,. Show that the transfer function from
disturbance force to height of the massmn, is

szz+ ko
Mmymps® + mpcyS® + (Myka + mp (kg +k2) )s? + kacis+ kiko
How should the massy and the stiffnes&, be chosen to eliminate a sinusoidal

oscillation with frequencyw. (More details are vibration absorbers is given in the
classic text by Den HartodJH85, pp. 87-93].)

GX]_F -



Chapter Nine

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tedti# fossessed the
advantages which he had predicted for it. In particular, its gain was constemhigh degree,
and it was linear enough so that spurious signals caused by the interaatitive various
channels could be kept within permissible limits. For best results the feleddetor u3 had
to be numerically much larger than unity. The possibility of stability with a feedfsator
larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 199%y[q56].

In this chapter we study how the stability and robustnessoskd loop systems
can be determined by investigating how sinusoidal signadiéfierent frequencies
propagate around the feedback loop. This technique allows usason about
the closed loop behavior of a system through the frequennyagtoproperties of
the open loop transfer function. The Nyquist stability tleeoris a key result that
provides a way to analyze stability and introduce measurdegrees of stability.

9.1 The Loop Transfer Function

Determining the stability of systems interconnected bylfeek can be tricky be-
cause each system influences the other, leading to potgrdiedllar reasoning.
Indeed, as the quote from Nyquist above illustrates, thawiehof feedback sys-
tems can often be puzzling. However, using the mathemdtaralework of trans-
fer functions provides an elegant way to reason about sustkrsg, which we call
loop analysis

The basic idea of loop analysis is to trace how a sinusoidab$jgropagates in
the feedback loop and explore the resulting stability bygtigating if the propa-
gated signal grows or decays. This is easy to do because tisrission of sinu-
soidal signals through a linear dynamical system is chariaed by the frequency
response of the system. The key result is the Nyquist stathorem, which pro-
vides a great deal of insight regarding the stability of deys Unlike proving sta-
bility with Lyapunov functions, studied in Chaptéythe Nyquist criterion allows
us to determine more than just whether a system is stablestahig. It provides a
measure of the degree of stability through the definition albisity margins. The
Nyquist theorem also indicates how an unstable systemgtheuthanged to make
it stable, which we shall study in detail in Chapté6s-12.
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r e u y B A
C(s) —= P(9) - —= —= LO

-1 = —1 |

(@) (b)

Figure 9.1: The loop transfer function. The stability of the feedback system (a) eateb
termined by tracing signals around the loop. Letting= PC represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected atainé A& has the
same magnitude and phase when it reaches point B.

Consider the system in Figu@la The traditional way to determine if the
closed loop system is stable is to investigate if the closegd tharacteristic poly-
nomial has all its roots in the left half-plane. If the prce@sid the controller have
rational transfer function®(s) = np(s)/dp(s) andC(s) = n¢(s)/dc(s), then the
closed loop system has the transfer function

__PC _ Np(S)Ne(s)

~ 1+PC  dp(s)de(s) + np(s)ne(s)’
and the characteristic polynomial is

A(S) = dp(s)dc(s) + np(s)ne(s).

To check stability, we simply compute the roots of the chinastic polynomial
and verify that they each have negative real part. This apgprizestraightforward
but it gives little guidance for design: it is not easy to tedlv the controller should
be modified to make an unstable system stable.

Nyquist's idea was to investigate conditions under whidtillzgions can occur
in a feedback loop. To study this, we introduce tbep transfer function [s) =
P(s)C(s), which is the transfer function obtained by breaking thedbeek loop,
as shown in Figur8.1h The loop transfer function is simply the transfer function
from the input at position A to the output at position B muigg by —1 (to account
for the usual convention of negative feedback).

We will first determine conditions for having a periodic okatibn in the loop.
Assume that a sinusoid of frequenay is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequeiay It seems reasonable
that an oscillation can be maintained if the signal at B hasime amplitude and
phase as the injected signal because we can then disconedtjected signal and
connect A to B. Tracing signals around the loop, we find thastgeals at A and
B are identical if

L(iawn) = —1, (9.1)

which then provides a condition for maintaining an osditlat The key idea of

Gyi(s)
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V Z e 7 Vv Vo
1. 2 1 ~—G(s) -
Z1 Z1+2o
o o)
(a) Amplifier circuit (b) Block diagram

Figure 9.2: Loop transfer function for an op amp. The op amp circuit (a) has aimam
transfer functionv,/v1 = Z»(s)/Z1(s), whereZ; andZ, are the impedances of the circuit
elements. The system can be represented by its block diagram (b} wkanow include
the op amp dynamids(s). The loop transfer function is = Z1G/(Z1 + Z5).

the Nyquist stability criterion is to understand when thas tiappen in a general
setting. As we shall see, this basic argument becomes mbtke suhen the loop
transfer function has poles in the right half-plane.

Example 9.1 Operational amplifier circuit

Consider the op amp circuit in Figuge2a whereZ; andZ, are the transfer func-
tions of the feedback elements from voltage to current. Tisefieedback because
voltagevs is related to voltage through the transfer functionG describing the op

amp dynamics and voltageis related to voltage, through the transfer function
Z1/(Z1+ Z2). The loop transfer function is thus

_ on
L+ 2

Assuming that the curremtis zero, the current through the elemeBtsandZ; is
the same, which implies

(9.2)

Solving forv gives
Ve ZoV1 + Z1Vo B Zovi — Z1Gv . Zo L

= =——=vi—Lv
21+ 2 21+ 2 G
Sincev,; = —Gvthe input/output relation for the circuit becomes
Z; L

Gupyy = TZ i+l
A block diagram is shown in Figur@.2h It follows from (9.1) that the condition
for oscillation of the op amp circuit is

. Z4(iw)G(iw)
Liw) = Z100) + (1) -1 (9.3)

O



9.2. THE NYQUIST CRITERION 289

One of the powerful concepts embedded in Nyquist’s appraastability anal-
ysis is that it allows us to study the stability of the feedbagstem by looking at
properties of the loop transfer function. The advantage afiglthis is that it is
easy to see how the controller should be chosen to obtainigedésop transfer
function. For example, if we change the gain of the contrptlee loop transfer
function will be scaled accordingly. A simple way to stabdlian unstable system
is then to reduce the gain so that thé& point is avoided. Another way is to in-
troduce a controller with the property that it bends the lbapsfer function away
from the critical point, as we shall see in the next sectioiffeBent ways to do
this, called loop shaping, will be developed and will be d&sed in Chaptekl.

9.2 The Nyquist Criterion

In this section we present Nyquist's criterion for deteriminthe stability of a
feedback system through analysis of the loop transfer imctVe begin by intro-
ducing a convenient graphical tool, the Nyquist plot, anashow it can be used
to ascertain stability.

The Nyquist Plot

We saw in the last chapter that the dynamics of a linear systambe represented
by its frequency response and graphically illustrated byedeBplot. To study the
stability of a system, we will make use of a different reprgagon of the fre-
quency response called\yquist plot The Nyquist plot of the loop transfer func-
tion L(s) is formed by tracings € C around the Nyquist “D contour,” consisting
of the imaginary axis combined with an arc at infinity connegtihe endpoints
of the imaginary axis. The contour, denoted as C, is illustrated in Figur®.3a
The image ofL(s) whens traversed™ gives a closed curve in the complex plane
and is referred to as the Nyquist plot fiofs), as shown in Figur®.3h Note that

if the transfer functiorlL(s) goes to zero as gets large (the usual case), then the
portion of the contour “at infinity” maps to the origin. Furthssre, the portion of
the plot corresponding t@ < 0 is the mirror image of the portion witte > O.

There is a subtlety in the Nyquist plot when the loop transterction has
poles on the imaginary axis because the gain is infinite atdkespTo solve this
problem, we modify the contodr to include small deviations that avoid any poles
on the imaginary axis, as illustrated in Fig@@&a(assuming a pole df(s) at the
origin). The deviation consists of a small semicircle to tigltrof the imaginary
axis pole location.

The condition for oscillation given in equatiof.{) implies that the Nyquist
plot of the loop transfer function go through the point —1, which is called
the critical point. Let w. represent a frequency at whietl (iaw:) = 180°, corre-
sponding to the Nyquist curve crossing the negative real dxiuitively it seems
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Figure 9.3: The Nyquist contouf and the Nyquist plot. The Nyquist contour (a) encloses
the right half-plane, with a small semicircle around any polels(sf on the imaginary axis
(illustrated here at the origin) and an arc at infinity, represente® by «. The Nyquist
plot (b) is the image of the loop transfer functibfs) whens traversed in the clockwise
direction. The solid line corresponds to > 0, and the dashed line @ < 0. The gain
and phase at the frequenayareg = |L(iw)| and¢ = ZL(iw). The curve is generated for
L(s) = 1.4e"S/(s+1)2.

reasonable that the system is stablg {iw:)| < 1, which means that the critical
point —1 is on the left-hand side of the Nyquist curve, as indicatefigure9.3h
This means that the signal at point B will have smaller amgétthan the in-
jected signal. This is essentially true, but there are ségeizleties that require
a proper mathematical analysis to clear up. We defer thelsl&tanow and state
the Nyquist condition for the special case whe(s) is a stable transfer function.

Theorem 9.1(Simplified Nyquist criterion) Let L(s) be the loop transfer function
for a negative feedback system (as shown in Figuie) and assume that L has
no poles in the closed right half-plan®¢s > 0) except for single poles on the
imaginary axis. Then the closed loop system is stable if ary ibthe closed
contour given by = {L(iw) : —o < w < o} C C has no net encirclements of the
critical point s= —1.

The following conceptual procedure can be used to deternhiaiethere are
no encirclements. Fix a pin at the critical pos¥= —1, orthogonal to the plane.
Attach a string with one end at the critical point and the ptitethe Nyquist plot.
Let the end of the string attached to the Nyquist curve tr&vére whole curve.
There are no encirclements if the string does not wind up opithehen the curve
is encircled.

Example 9.2 Third-order system
Consider a third-order transfer function
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Figure 9.4: Nyquist plot for a third-order transfer function. The Nyquist plot sists of a

trace of the loop transfer functidn(s) = 1/(s+a)3. The solid line represents the portion
of the transfer function along the positive imaginary axis, and the ddsiethe negative
imaginary axis. The outer arc of the D contour maps to the origin.

To compute the Nyquist plot we start by evaluating pointstanitmaginary axis
s=iw, which yields
L(ie) = 1 (a-iw)®*  a—3aw? ioo3—3a2w
- (iw+a)’  (@2+w?)d  (@+w?)d (a2+w?)d
This is plotted in the complex plane in Figude4, with the points corresponding
to w > 0 drawn as a solid line amd < 0 as a dashed line. Notice that these curves
are mirror images of each other.
To complete the Nyquist plot, we computés) for s on the outer arc of the

Nyquist D contour. This arc has the fosr= Ré? for R — . This gives
i 1
LR =— = 0 R .
(Re”) (Ree+a)3_> as R— o

Thus the outer arc of the contour maps to the origin on the Nyquist plot.

An alternative to computing the Nyquist plot explicitly sdetermine the plot
from the frequency response (Bode plot), which gives theistgurve fors= i cw,
w > 0. We start by plottind_(iw) from w = 0 to w = «, which can be read off
from the magnitude and phase of the transfer function. We et L (R€®) with
0 € [-m/2,11/2] andR — o, which almost always maps to zero. The remaining
parts of the plot can be determined by taking the mirror in@fdbe curve thus far
(normally plotted using a dashed line). The plot can then belé& with arrows
corresponding to a clockwise traversal around the D con(ibier same direction
in which the first portion of the curve was plotted).

Example 9.3 Third-order system with a pole at the origin
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Figure 9.5: Sketching Nyquist and Bode plots. The loop transfer functidr{s$ = 1/(s(s+

1)2). The large semicircle is the map of the small semicircle offtheontour around the
pole at the origin. The closed loop is stable because the Nyquist cursendbencircle the
critical point. The point where the phase+480° is marked with a circle in the Bode plot.

Consider the transfer function

k

L(s) = W’

where the gain has the nominal value 1. The Bode plot is shown in Figueba
The system has a single polesat 0 and a double pole at= —1. The gain curve
of the Bode plot thus has the slopd. for low frequencies, and at the double pole
s= 1 the slope changes te3. For smallswe havel ~ k/s, which means that the
low-frequency asymptote intersects the unit gain linevat k. The phase curve
starts at—90° for low frequencies, it is-180° at the breakpointv = 1 and it is
—270 at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquatt phown
in Figure9.5h It starts with a phase of90° for low frequencies, intersects the
negative real axis at the breakpoint= 1 wherel (i) = —0.5 and goes to zero along
the imaginary axis for high frequencies. The small half{eiaf thel" contour at
the origin is mapped on a large circle enclosing the right-plaine. The Nyquist
curve does not encircle the critical point, and it followsrfr the simplified Nyquist
theorem that the closed loop is stable. Sih¢e = —k/2, we find the system
becomes unstable if the gain is increasek $62 or beyond. O

The Nyquist criterion does not require thatiax)| < 1 for all a correspond-
ing to a crossing of the negative real axis. Rather, it sagsttie number of en-
circlements must be zero, allowing for the possibility ttiet Nyquist curve could
cross the negative real axis and cross back at magnitudategthan 1. The fact
that it was possible to have high feedback gains surprisee#nly designers of
feedback amplifiers, as mentioned in the quote in the beginiithis chapter.
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Figure 9.6: Internet congestion control. A set Nfsources using TCP/Reno send messages
through a single router with admission control (left). Link delays are iregifdr the forward
and backward directions. The Nyquist plot for the loop transfer fundgoshown on the
right.

One advantage of the Nyquist criterion is that it tells us fBoaystem is in-
fluenced by changes of the controller parameters. For exaihjgevery easy to
visualize what happens when the gain is changed since 8tisgales the Nyquist
curve.

Example 9.4 Congestion control
Consider the Internet congestion control system desciib8éction3.4. Suppose
we haveN identical sources and a disturbanteepresenting an external data
source, as shown in Figu@e6a We letw represent the individual window size for
a sourceq represent the end-to-end probability of a dropped padketpresent
the number of packets in the router’s buffer gmcepresent the probability that a
packet is dropped by the router. We wnitefor the total number of packets being
received from alN sources. We also include a time delay between the router and
the senders, representing the time delays between thersemtieeceiver.

To analyze the stability of the system, we use the transfestfons computed
in Exercise8.12

o 1 1
Gow(s) =

Y TS P —
TeS+e TfS wal(S) Oc(TeS+ CeWe)

where(we, be) is the equilibrium point for the systeri, is the number of sources,

Te is the steady-state round-trip time andis the forward propagation time. We

use Gy to represent the transfer function with the forward timeaglelemoved

since this is accounted for as a separate block in Figusa Similarly, Gyg =

Gig/N since we have pulled out the multipliiras a separate block as well.
The loop transfer function is given by

(e =pro
P st Oe(TeS+ CeWe)

pr(S) =p,

g Tes
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Using the fact thatje ~ 2N /w2 = 2N3/(1¢C)? andwe = be/N = Tec/N from equa-
tion (3.22, we can show that

L(s) = N c3rd
—P TeS+e 1S 2N3(ct2s+ 2N2)

Note that we have chosen the signlLdb) to use the same sign convention as in
Figure 9.1h The exponential term representing the time delay givesifgignt
phase abovev = 1/1¢, and the gain at the crossover frequency will determine
stability.

To check stability, we require that the gain be sufficienthaliat crossover. If
we assume that the pole due to the queue dynamics is sufficfastithat the TCP
dynamics are dominant, the gain at the crossover frequencygiven by

— [eS

c3rd PC?Te
2NSct2ax  2N2wy
Using the Nyquist criterion, the closed loop system will Instable if this quantity
is greater than 1. In particular, for a fixed time delay, theeyswill become un-
stable as the link capacityis increased. This indicates that the TCP protocol may
not be scalable to high-capacity networks, as pointed outdoy et al. LPDO0Z].
Exercise9.7 provides some ideas of how this might be overcome. O

lL(iax)|=p-N

Conditional Stability

Normally, we find that unstable systems can be stabilizedIgilmpreducing the
loop gain. There are, however, situations where a systemeatabilized by in-
creasing the gain. This was first encountered by electricahergs in the design
of feedback amplifiers, who coined the teconditional stability The problem was
actually a strong motivation for Nyquist to develop his thedVe will illustrate
by an example.

Example 9.5 Third-order system
Consider a feedback system with the loop transfer function
3(s+6)?

u$_3@+nz (9.4)
The Nyquist plot of the loop transfer function is shown in Fig@r7. Notice that
the Nyquist curve intersects the negative real axis twice. first intersection oc-
curs atL = —12 for w = 2, and the second at= —4.5 for w = 3. The intuitive
argument based on signal tracing around the loop in Fi§ukkis strongly mis-
leading in this case. Injection of a sinusoid with frequeBawyd/s and amplitude
1 at A gives, in steady state, an oscillation at B that is insghaith the input and
has amplitude 12. Intuitively it seems unlikely that clasif the loop will result
in a stable system. However, it follows from Nyquist’s stigpicriterion that the
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Figure 9.7: Nyquist curve for the loop transfer functiars) = The plot on the right

system is stable because there are no net encirclements afitical point. Note,
however, that if walecreasehe gain, then we can get an encirclement, implying
that the gain must be sufficiently large for stability. O

General Nyquist Criterion

Theorem9.1 requires thal (s) have no poles in the closed right half-plane. In
some situations this is not the case and a more general iesetjuired. Nyquist
originally considered this general case, which we sumraatza theorem.

Theorem 9.2(Nyquist’s stability theorem)Consider a closed loop system with
the loop transfer function (s) that has P poles in the region enclosed by the
Nyquist contour. Let N be the net number of clockwise enaretdgs of—1 by
L(s) when s encircles the Nyquist contduin the clockwise direction. The closed
loop system then has=2 N + P poles in the right half-plane.

The full Nyquist criterion states thatlif(s) hasP poles in the right half-plane,
then the Nyquist curve fok(s) should haveP counterclockwise encirclements
of —1 (so thatN = —P). In particular, thigequiresthat |L(icx)| > 1 for somec
corresponding to a crossing of the negative real axis. Casédbe taken to get the
right sign of the encirclements. The Nyquist contour has twdersed clockwise,
which means thatv moves from—o to o andN is positive if the Nyquist curve
winds clockwise. If the Nyquist curve winds counterclockeyi thenN will be
negative (the desired caseRit£ 0).

As in the case of the simplified Nyquist criterion, we use sreathicircles of
radiusr to avoid any poles on the imaginary axis. By letting> O, we can use
Theorem9.2to reason about stability. Note that the image of the smaticiecles
generates a section of the Nyquist curve whose magnitudeagies infinity,
requiring care in computing the winding number. When phottNyquist curves
on the computer, one must be careful to see that such polgsarerly handled,
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Figure 9.8: PD control of an inverted pendulum. (a) The system consists of a maisis th
balanced by applying a force at the pivot point. A proportional-dévigacontroller with
transfer functiorC(s) = k(s+ 2) is used to command based orf. (b) A Nyquist plot of
the loop transfer function for gaik= 1. There is one counterclockwise encirclement of the
critical point, givingN = —1 clockwise encirclements.

and often one must sketch those portions of the Nyquist glogind, being careful
to loop the right way around the poles.

Example 9.6 Stabilized inverted pendulum

The linearized dynamics of a normalized inverted pendulumbesrepresented by
the transfer functio(s) = 1/(s* — 1), where the input is acceleration of the pivot
and the output is the pendulum an@leas shown in Figur8.8 (Exercise8.3). We
attempt to stabilize the pendulum with a proportionalgsive (PD) controller
having the transfer functio@(s) = k(s+ 2). The loop transfer function is

k(s+2)
L(s) = 2 1

The Nyquist plot of the loop transfer function is shown in F®Qr8h We have
L(0) = —2k andL(«) = 0. If k > 0.5, the Nyquist curve encircles the critical point
s= —1in the counterclockwise direction when the Nyquist contpis encircled
in the clockwise direction. The number of encirclements issth = —1. Since
the loop transfer function has one pole in the right halfpl@® = 1), we find that

Z =N+ P =0 and the system is thus stable for- 0.5. If k < 0.5, there is no
encirclement and the closed loop will have one pole in thiet thglf-plane. O

Derivation of Nyquist’s Stability Theorem @

We will now prove the Nyquist stability theorem for a gendaoap transfer func-
tion L(s). This requires some results from the theory of complex végtfor
which the reader can consult Ahlfor81166]. Since some precision is needed in
stating Nyquist’s criterion properly, we will use a more tmanatical style of pre-
sentation. We also follow the mathematical convention afitimg encirclements
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in the counterclockwise direction for the remainder of gastion. The key result
is the following theorem about functions of complex varezbl

Theorem 9.3(Principle of variation of the argument).et D be a closed region

in the complex plane and I€tbe the boundary of the region. Assume the function
f:C — Cis analytic in D and orT", except at a finite number of poles and zeros.
Then thewinding numbem, is given by

1
— ~Arargf(z _p
Wn = 5 Arargf( 2m f ’

whereAr is the net variation in the angle When z traverses the confour the
counterclockwise direction, Z is the number of zeros in D Brid the number of
poles in D. Poles and zeros of multiplicity m are counted nedim

Proof. Assume thatz = ais a zero of multiplicitym. In the neighborhood of= a

we have
f(z) = (z—a)"9(2),

where the functiog is analytic and different from zero. The ratio of the derivati
of f to itself is then given by

f'lgg _ m d@
fz  z-a g2
and the second term is analyticat a. The functionf’/f thus has a single pole

atz= a with the residuem. The sum of the residues at the zeros of the function is
Z. Similarly, we find that the sum of the residues for the polesiks and hence

1 1
Zm/ l0g1(2)dz= -~ Ar logf (2).

2P=50 ) (2)
whereAr again denotes the variation along the contouWe have
log f(z) =log|f(z)| +iargf(2),
and since the variation ¢f (z)| around a closed contour is zero it follows that
Arlog f(z) =iArargf(z),

and the theorem is proved. O

)

This theorem is useful in determining the number of poles amdszof a func-
tion of complex variables in a given region. By choosing aprapriate closed
regionD with boundaryl”, we can determine the difference between the number
of poles and zeros through computation of the winding number

Theoremd.3can be used to prove Nyquist’s stability theorem by chooBiag
the Nyquist contour shown in FiguB3a which encloses the right half-plane. To
construct the contour, we start with part of the imaginarng axR < s< jRand a
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semicircle to the right with radiuR. If the functionf has poles on the imaginary
axis, we introduce small semicircles with radiio the right of the poles as shown
in the figure. The Nyquist contour is obtained by lettiRg+ « andr — 0. Note
that ™ has orientatioroppositethat shown in Figuré.3a (The convention in
engineering is to traverse the Nyquist contour in the claskwlirection since this
corresponds to moving upwards along the imaginary axisghvitiakes it easy to
sketch the Nyquist contour from a Bode plot.)

To see how we use the principle of variation of the argumenbtopute stabil-
ity, consider a closed loop system with the loop transfecfiom L(s). The closed
loop poles of the system are the zeros of the funcfi(s) = 1+ L(s). To find the
number of zeros in the right half-plane, we investigate tivedimg number of the
function f(s) = 1+ L(s) ass moves along the Nyquist contolrin the counter-
clockwisedirection. The winding number can conveniently be deterchifiem
the Nyquist plot. A direct application of Theore®n3 gives the Nyquist criterion,
taking care to flip the orientation. Since the image efll(s) is a shifted version
of L(s), we usually state the Nyquist criterion as net encirclesefthe—1 point
by the image ot (s).

9.3 Stability Margins

In practice it is not enough that a system is stable. There atsisbe some margins
of stability that describe how stable the system is and iisthess to perturba-
tions. There are many ways to express this, but one of the noosinon is the
use of gain and phase margins, inspired by Nyquist’s stalatiterion. The key
idea is that it is easy to plot the loop transfer functlgs). An increase in con-
troller gain simply expands the Nyquist plot radially. Arciease in the phase of
the controller twists the Nyquist plot. Hence from the Nygjuilot we can easily
pick off the amount of gain or phase that can be added withausiog the system
to become unstable.

Formally, thegain margin g, of a system is defined as the smallest amount that
the open loop gain can be increased before the closed lotgnsymes unstable.
For a system whose phase decreases monotonically as aofuétirequency
starting at 0, the gain margin can be computed based on the smallest fregue
where the phase of the loop transfer functiofs) is —180°. Let wy represent
this frequency, called thghase crossover frequenciyhen the gain margin for the
system is given by

1 (9.5)
I L lapo)] |
Similarly, thephase marginis the amount of phase lag required to reach the sta-
bility limit. Let wyc be thegain crossover frequencthe smallest frequency where

the loop transfer functioh(s) has unit magnitude. Then for a system with mono-
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Figure 9.9: Stability margins. The gain margay, and phase margigm, are shown on the the
Nyquist plot (a) and the Bode plot (b). The gain margin correspontietemallest increase
in gain that creates an encirclement, and the phase margin is the smadlegech phase
that creates an encirclement. The Nyquist plot also shows the stabilitymsaygvhich is
the shortest distance to the critical point.

tonically decreasing gain, the phase margin is given by
¢m = T+argL (iwyc). (9.6)

These margins have simple geometric interpretations on ot diagram
of the loop transfer function, as shown in Fig@®g where we have plotted the
portion of the curve corresponding to > 0. The gain margin is given by the in-
verse of the distance to the nearest point betwekand 0 where the loop transfer
function crosses the negative real axis. The phase marginesa jy the small-
est angle on the unit circle betweeri and the loop transfer function. When the
gain or phase is monotonic, this geometric interpretatgnees with the formulas
above.

A drawback with gain and phase margins is that it is necedsagive both of
them in order to guarantee that the Nyquist curve is not dilo$ke critical point.
An alternative way to express margins is by a single numheistability margin
Sm, Which is the shortest distance from the Nyquist curve tcctiteal point. This
number is related to disturbance attenuation, as will beudsed in Sectiohl.3

For many systems, the gain and phase margins can be detdrinime the
Bode plot of the loop transfer function. To find the gain mangin first find the
phase crossover frequenayc where the phase is180°. The gain margin is the
inverse of the gain at that frequency. To determine the phesgin we first de-
termine the gain crossover frequenay, i.e., the frequency where the gain of the
loop transfer function is 1. The phase margin is the phaseedbthp transfer func-
tion at that frequency plus 180Figure9.9billustrates how the margins are found
in the Bode plot of the loop transfer function. Note that tteelB plot interpretation



9.3. STABILITY MARGINS 300

=270 :
-1

10 10° 10!
Frequencyw [rad/s]

Figure 9.10: Stability margins for a third-order transfer function. The Nyquist plottoa
left allows the gain, phase and stability margins to be determined by megheidistances
of relevant features. The gain and phase margins can also be fedidhaf Bode plot on the
right.

of the gain and phase margins can be incorrect if there arépteuirequencies at
which the gain is equal to 1 or the phase is equat180°.

Example 9.7 Third-order system

Consider a loop transfer functidr(s) = 3/(s+ 1)3. The Nyquist and Bode plots
are shown in Figur®.10 To compute the gain, phase and stability margins, we
can use the Nyquist plot shown in Figl8€elQ This yields the following values:

Om = 2.67, om=41.7, Sm = 0.464
The gain and phase margins can also be determined from thedutde O

The gain and phase margins are classical robustness metsaitraave been
used for a long time in control system design. The gain magimeall defined if
the Nyquist curve intersects the negative real axis onceldgously, the phase
margin is well defined if the Nyquist curve intersects the wiitle at only one
point. Other more general robustness measures will bedinted in Chaptet 2.

Even if both the gain and phase margins are reasonable, ttersysay still
not be robust, as is illustrated by the following example.

Example 9.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function

(5) = 0.38(s? + 0.1s+ 0.55)
 s(s+1)(s?+0.06s+05)
A numerical calculation gives the gain margingas= 266, and the phase margin
is 70°. These values indicate that the system is robust, but the islyqurve is

still close to the critical point, as shown in Figugell The stability margin is
sn = 0.27, which is very low. The closed loop system has two resonates,
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Figure 9.11: System with good gain and phase margins but a poor stability margin. Nyquis
(a) and Bode (b) plots of the loop transfer function and step respahser (@ system with
good gain and phase margins but with a poor stability margin. The Nydoissipows on

the portion of the curve correspondingadn> 0.

one with damping ratid = 0.81 and the other witlf = 0.014. The step response
of the system is highly oscillatory, as shown in FigQr&lc O

The stability margin cannot easily be found from the Bode plothe loop
transfer function. There are, however, other Bode plotswilbgive sy; these will
be discussed in Chapt&R. In general, it is best to use the Nyquist plot to check
stability since this provides more complete informatioarttthe Bode plot.

When designing feedback systems, it will often be usefulefing the robust-
ness of the system using gain, phase and stability margireseliumbers tell us
how much the system can vary from our nominal model and sti$table. Rea-
sonable values of the margins are phase mapgip- 30°—60°, gain margingy, =
2-5 and stability margisy,, = 0.5-0.8.

There are also other stability measures, such adets®y margin which is the
smallest time delay required to make the system unstabidoBp transfer func-
tions that decay quickly, the delay margin is closely ralatethe phase margin,
but for systems where the gain curve of the loop transfertfondas several peaks
at high frequencies, the delay margin is a more relevant uneas

Example 9.9 Nanopositioning system for an atomic force microscope
Consider the system for horizontal positioning of the samplan atomic force
microscope. The system has oscillatory dynamics, and asimptlel is a spring—
mass system with low damping. The normalized transfer fands given by

2

_ Wy
P(S)_sz+25wo3+w5’

where the damping ratio typically is a very small number, &g 0.1.

(9.7)
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Figure 9.12:Nyquist and Bode plots of the loop transfer function for the AFM system (
with an integral controller. The frequency in the Bode plot is normalized. fjhe parame-
ters arel = 0.01 andk; = 0.008.

We will start with a controller that has only integral actidrhe resulting loop
transfer function is K oP
LS = gt

(+2{ s+ ap)’

wherek; is the gain of the controller. Nyquist and Bode plots of theplaransfer
function are shown in Figur@.12 Notice that the part of the Nyquist curve that is
close to the critical point-1 is approximately circular.

From the Bode plot in Figur8.12b, we see that the phase crossover frequency
iS wyc = &, which will be independent of the gaky. Evaluating the loop transfer
function at this frequency, we havdiwy) = —ki/(2{ wp), which means that the
stability margin issy = 1— ki /(2{ ax). To have a desired stability marginsf the
integral gain should be chosen as

ki = 2{ wo(1—sm).

Figure9.12shows Nyquist and Bode plots for the system with gain maggie-

2.5 and stability margirsy, = 0.6. The gain curve in the Bode plot is almost a
straight line for low frequencies and has a resonant peak &atwy. The gain
crossover frequency is approximately equakitorhe phase decreases monotoni-
cally from —90° to —270: it is equal to— 180" atw = wy. The curve can be shifted
vertically by changind;: increasing; shifts the gain curve upward and increases
the gain crossover frequency. Since the phaseli80’ at the resonant peak, it is
necessary that the peak not touch the |Ingw)| = 1. 0
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9.4 Bode’s Relations and Minimum Phase Systems

An analysis of Bode plots reveals that there appears to blatorebetween the
gain curve and the phase curve. Consider, for example, tlie Btots for the
differentiator and the integrator (shown in Fig@d2. For the differentiator the
slope is+1 and the phase is a constant2 radians. For the integrator the slope is
—1 and the phase is /2. For the first-order syste@(s) = s+ a, the amplitude
curve has the slope 0 for small frequencies and the stdp#or high frequencies,
and the phase is 0 for low frequencies ary@ for high frequencies.

Bode investigated the relations between the curves foesyswvith no poles
and zeros in the right half-plane. He found that the phaseunagiely given by
the shape of the gain curve, and vice versa:

argG(iwo) = g/o f(w)wdlogw% E M

dlogw 2 dlogw » (98)
wheref is the weighting kernel

W=wp

W+ o

w—wypl

The phase curve is thus a weighted average of the derivatitreeajain curve. If
the gain curve has constant slapehe phase curve has constant vatug 2.

Bode’s relations4.8) hold for systems that do not have poles and zeros in the
right half-plane. Such systems are caltethimum phase systerbscause systems
with poles and zeros in the right half-plane have a largeseleag. The distinction
is important in practice because minimum phase systemsaarereo control than
systems with a larger phase lag. We will now give a few exampl@onminimum
phase transfer functions.

The transfer function of a time delay ofunits isG(s) = e '. This transfer
function has unit gainG(iw)| = 1, and the phase is aB{iw) = —wt. The corre-
sponding minimum phase system with unit gain has the trafsfietionG(s) = 1.
The time delay thus has an additional phase lagof Notice that the phase lag
increases linearly with frequency. Figu#el 3ashows the Bode plot of the transfer
function. (Because we use a log scale for frequency, theeptadls off exponen-
tially in the plot.)

Consider a system with the transfer functi®(s) = (a—s)/(a+s) with a> 0,
which has a zere = a in the right half-plane. The transfer function has unit gain
|G(iw)| = 1, and the phase is aBfiw) = —2arctar{w/a). The corresponding
minimum phase system with unit gain has the transfer fundB¢s) = 1. Fig-
ure 9.13bshows the Bode plot of the transfer function. A similar asayof the
transfer functiorG(s) = (s+a)/(s— a) with a > 0, which has a pole in the right
half-plane, shows that its phase is &@w) = —2arctaria/w). The Bode plot is
shown in Figure.13c

f(w):—log‘
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Figure 9.13:Bode plots of systems that are not minimum phase. (a) Time Glgly=e 5T,
(b) system with a right half-plane (RHP) ze@{s) = (a—s)/(a+s) and (c) system with
right half-plane pole. The corresponding minimum phase system hasatiefer function
G(s) = lin all cases, the phase curves for that system are shown as dagsed lin

The presence of poles and zeros in the right half-plane inspeseere limita-
tions on the achievable performance. Dynamics of this tyyeellsl be avoided by
redesign of the system whenever possible. While the potemainsic properties
of the system and they do not depend on sensors and actuhawreros depend
on how inputs and outputs of a system are coupled to the siess can thus be
changed by moving sensors and actuators or by introduciwgseasors and ac-
tuators. Nonminimum phase systems are unfortunately qaitemon in practice.

The following example gives a system theoretic interpretatif the common
experience that it is more difficult to drive in reverse geat dlustrates some of
the properties of transfer functions in terms of their paled zeros.

Example 9.10 Vehicle steering
The nonnormalized transfer function from steering anglaterbl velocity for the
simple vehicle model is

avps+ V3
 bs
wherevy is the velocity of the vehicle aralb > 0 (see Exampl&.12). The transfer
function has a zero a = vp/a. In normal driving this zero is in the left half-
plane, but itis in the right half-plane when driving in reseg < 0. The unit step
response is

G(s)

2
t) = —+ -2,
yt) ="+,
The lateral velocity thus responds immediately to a steeramymand. For reverse
steeringvp is negative and the initial response is in the wrong directzobehavior
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Figure 9.14:Vehicle steering for driving in reverse. (a) Step responses fromiisgegngle to
lateral translation for a simple kinematics model when driving forwaegijeéd) and reverse
(solid). With rear-wheel steering the center of mass first moves in thagwlirection and
that the overall response with rear-wheel steering is significantly dézympared with that
for front-wheel steering. (b) Frequency response for drivingvéod (dashed) and reverse
(solid). Notice that the gain curves are identical, but the phase cundrifang in reverse
has nonminimum phase.

that is representative for nonminimum phase systems (tatimverse responge
Figure 9.14 shows the step response for forward and reverse drivinghign t
simulation we have added an extra pole with the time con3taotapproximately
account for the dynamics in the steering system. The parasnatea=b =1,
T =0.1, vg = 1 for forward driving andyg = —1 for reverse driving. Notice that
for t > to = a/Vo, wheretg is the time required to drive the distanagthe step
response for reverse driving is that of forward driving wiitle time delay. The
position of the zerap/a depends on the location of the sensor. In our calculation
we have assumed that the sensor is at the center of mass. Bhie #ee transfer
function disappears if the sensor is located at the rear wfibe difficulty with
zeros in the right half-plane can thus be visualized by aghbaxperiment where
we drive a car in forward and reverse and observe the latesitipn through a
hole in the floor of the car. O

9.5 Generalized Notions of Gain and Phase @

A key idea in frequency domain analysis is to trace the bemaifisinusoidal sig-
nals through a system. The concepts of gain and phase refg@ssrthe transfer
function are strongly intuitive because they describe #oge and phase relations
between input and output. In this section we will see how temx the concepts
of gain and phase to more general systems, including sonimeansystems. We
will also show that there are analogs of Nyquist's stabititiferion if signals are
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approximately sinusoidal.

System Gain

We begin by considering the case of a static linear systemAu, whereA is
a matrix whose elements are complex numbers. The matrix duesane to be
square. Let the inputs and outputs be vectors whose elenrerdsraplex numbers

and use the Euclidean norm
ull =/ Z[u2. (9.9)

ly[[? = u*AAu,

wherex denotes the complex conjugate transpose. The matéxis symmetric
and positive semidefinite, and the right-hand side is a qtiadoam. The square
root of eigenvalues of the matr‘A are all real, and we have

IVIIZ < Amax(A"A) Jul .

The gain of the system can then be defined as the maximum ratie oiutput to
the input over all possible inputs:

uffulf

The norm of the output is

The square root of the eigenvalues of the mai¥iR are called theingular values
of the matrixA, and the largest singular value is denotg@).

To generalize this to the case of an input/output dynamigstlesn, we need
to think of the inputs and outputs not as vectors of real nusbat as vectors of
signals For simplicity, consider first the case of scalar signals lahd¢he signal
space., be square-integrable functions with the norm

Julz= 1/ [ WP r.

This definition can be generalized to vector signals by reptattie absolute value
with the vector normd.9). We can now formally define the gain of a system taking
inputsu € L, and producing outputge Lo as

vl

Yy = sup (9.11)

uel, HUH ’
where sup is theupremumdefined as the smallest number that is larger than its
argument. The reason for using the supremum is that the maximay not be
defined foru € L,. This definition of the system gain is quite general and can even
be used for some classes of nonlinear systems, though ons ede careful
about how initial conditions and global nonlinearities hamdled.
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Figure 9.15: A feedback connection of two general nonlinear systeimandH,. The sta-
bility of the system can be explored using the small gain theorem.

The norm 0.11) has some nice properties in the case of linear systems. In
particular, given a single-input, single-output stableeéir system with transfer
functionG(s), it can be shown that the norm of the system is given by

v:sgp!G(iw)\ =[Gl (9.12)

In other words, the gain of the system corresponds to the palale of the fre-
quency response. This corresponds to our intuition that potiproduces the
largest output when we are at the resonant frequencies dfystem.||G||. is
called theinfinity normof the transfer functio(s).

This notion of gain can be generalized to the multi-input, trmtput case as
well. For a linear multivariable system with a real ratiotvahsfer function matrix
G(s) we can define the gain as

v =16l = supa(G(iw)) (9.13)

Thus we can combine the idea of the gain of a matrix with the aféhe gain of
a linear system by looking at the maximum singular value alldrequencies.

Small Gain and Passivity

For linear systems it follows from Nyquist's theorem that ttiosed loop is stable
if the gain of the loop transfer function is less than 1 fofedtjuencies. This result
can be extended to a larger class of systems by using the mooicthe system

gain defined in equatior9(11).

Theorem 9.4(Small gain theorem)Consider the closed loop system shown in
Figure9.15 where H and H are stable systems and the signal spaces are properly
defined. Let the gains of the systemsadd H, be y4 and y». Then the closed loop
system is input/output stableyfy, < 1, and the gain of the closed loop system is

__n
1-wy
Notice that if systembl; andH, are linear, it follows from the Nyquist stability
theorem that the closed loop is stable becausew < 1, the Nyquist curve is
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always inside the unit circle. The small gain theorem is thugxtension of the
Nyquist stability theorem.

Although we have focused on linear systems, the small gaiorém also holds
for nonlinear input/output systems. The definition of gaingoua&tion ©.11) holds
for nonlinear systems as well, with some care needed in hagnitiie initial condi-
tion.

The main limitation of the small gain theorem is that it does camsider the
phasing of signals around the loop, so it can be very consesvdo define the
notion of phase we require that there be a scalar productsdicare-integrable
functions this can be defined as

(wy) = [ umy(dr.
The phase& between two signals can now be defined as

(u,y) = [|ullllyl|cos(¢).

Systems where the phase between inputs and outputs isr9€ss for all inputs
are calledpassive systemét follows from the Nyquist stability theorem that a
closed loop linear system is stable if the phase of the loapsfer function is
between—rrandrt. This result can be extended to nonlinear systems as wedl. It i
called thepassivity theorenand is closely related to the small gain theorem. See
Khalil [Kha0] for a more detailed description.

Additional applications of the small gain theorem and itplegation to robust
stability are given in Chaptetr2.

Describing Functions @

For special nonlinear systems like the one shown in Figutéa which consists
of a feedback connection between a linear system and a statlnearity, it is
possible to obtain a generalization of Nyquist’s stabititiferion based on the idea
of describing functiong~ollowing the approach of the Nyquist stability condition
we will investigate the conditions for maintaining an oktibn in the system. If
the linear subsystem has low-pass character, its outpppi®gimately sinusoidal
even if its input is highly irregular. The condition for odation can then be found
by exploring the propagation of a sinusoid that correspaadse first harmonic.

To carry out this analysis, we have to analyze how a sinuksigaal propa-
gates through a static nonlinear system. In particular wesitigate how the first
harmonic of the output of the nonlinearity is related to gim(soidal) input. Let-
ting F represent the nonlinear function, we exp&{@*!) in terms of its harmon-
ics:

[o0)

F(ad”) = 3 Mn(a)dn @),
n=0
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Figure 9.16: Describing function analysis. A feedback connection between a statimnon
earity and a linear system is shown in (a). The linear system is charadtesiats transfer
functionL(s), which depends on frequency, and the nonlinearity by its describirgifum
N(a), which depends on the amplitudef its input. The Nyquist plot ok (iw) and the plot

of the —1/N(a) are shown in (b). The intersection of the curves represents a possilile lim
cycle.

whereMp(a) and ¢n(a) represent the gain and phase of tile harmonic, which
depend on the input amplitude since the functioms nonlinear. We define the
describing function to be the complex gain of the first harrapni

N(a) = My (a)e® @, (9.14)

The function can also be computed by assuming that the inpusisusoid and
using the first term in the Fourier series of the resulting outp

Arguing as we did when deriving Nyquist’s stability criteni, we find that an
oscillation can be maintained if

L(iw)N(a) = —1. (9.15)

This equation means that if we inject a sinusoid at A in FigdwEs the same
signal will appear at B and an oscillation can be maintaingadnnecting the
points. Equation4.15 gives two conditions for finding the frequenay of the
oscillation and its amplitude: the phase must be 180and the magnitude must
be unity. A convenient way to solve the equation is to ploto) and—1/N(a) on
the same diagram as shown in FigAr&&. The diagram is similar to the Nyquist
plot where the critical point-1 is replaced by the curve1l/N(a) anda ranges
from O toco.

It is possible to define describing functions for types of ispother than si-
nusoids. Describing function analysis is a simple methad,itbis approximate
because it assumes that higher harmonics can be neglecteslleBk treatments
of describing function techniques can be found in the teytatherton [Ath75
and Graham and McRueGM61].

Example 9.11 Relay with hysteresis
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Figure 9.17: Describing function analysis for a relay with hysteresis. The input/ougdat r
tion of the hysteresis is shown in (a) and the input with amplitage2, the output and its
first harmonic are shown in (b). The Nyquist plots of the transfertiond.(s) = (s+1)~*
and the negative of the inverse describing function for the relay vith3 andc = 1 are
shown in (c).

Consider a linear system with a nonlinearity consisting oélay with hystere-
sis. The output has amplitudeand the relay switches when the inputtig, as
shown in Figure9.17a Assuming that the input is = asin(wt), we find that
the output is zero ifa < ¢, and ifa > ¢, the output is a square wave with am-
plitude b that switches at timest = arcsir(c/a) + nrt. The first harmonic is then
y(t) = (4b/m)sin(wt — a), where siro = c¢/a. Fora > c the describing function

and its inverse are
4b ¢z ¢ 1 m/a?—c? . TC

N@ = (V12 1a) N@ 40 4
where the inverse is obtained after simple calculationsurgi§.17bshows the
response of the relay to a sinusoidal input with the first haimof the output
shown as a dashed line. Describing function analysis istitated in Figur®.17¢
which shows the Nyquist plot of the transfer functibfs) = 2/(s+ 1)* (dashed
line) and the negative inverse describing function of ayreldh b = 1 andc = 0.5.
The curves intersect fa = 1 andw = 0.77 rad's, indicating the amplitude and
frequency for a possible oscillation if the process and éh@yrare connected in a
a feedback loop. O

9.6 Further Reading

Nyquist’s original paper giving his now famous stabilityterion was published in
theBell Systems Technical Jourrial1932 Nyg32. More accessible versions are
found in the book BK64], which also includes other interesting early papers on
control. Nyquist's paper is also reprinted in an IEEE collectdof seminal papers
on control Bas0]. Nyquist usedt-1 as the critical point, but Bode changed it to
—1, which is now the standard notation. Interesting per$gesion early devel-
opments are given by BlacB[a77], Bode Bod6(J and BennettBen93. Nyquist
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did a direct calculation based on his insight into the prepiag of sinusoidal sig-
nals through systems; he did not use results from the thdayroplex functions.
The idea that a short proof can be given by using the principl@cation of the
argument is presented in the delightful book by MacCbhlag45. Bode made
extensive use of complex function theory in his bo&of45, which laid the
foundation for frequency response analysis where the matianinimum phase
was treated in detail. A good source for complex functiorotiiés the classic by
Ahlfors [Ahl66]. Frequency response analysis was a key element in the encerge
of control theory as described in the early texts by Jamds[@iNP47, Brown and
Campbell BC48 and Oldenburger@ld56], and it became one of the cornerstones
of early control theory. Frequency response methods undear@surgence when
robust control emerged in the 1980s, as will be discussedhapterl2.

Exercises

9.1 (Operational amplifier) Consider an op amp circuit with= Z, that gives
a closed loop system with nominally unit gain. Let the tran$fmction of the
operational amplifier be

kagap

GO = crarra)cra)

whereay, ay > a. Show that the condition for oscillation ks< a; +a, and com-
pute the gain margin of the system. Hint: Assuane 0.

9.2 (Atomic force microscope) The dynamics of the tapping modaroatomic
force microscope are dominated by the damping of the caatileibrations and
the system that averages the vibrations. Modeling theleaatias a spring—mass
system with low damping, we find that the amplitude of the \ibres decays as
exp(—{ wt), where( is the damping ratio ana is the undamped natural frequency
of the cantilever. The cantilever dynamics can thus be mddejethe transfer

function a
G(S) = <
s+a
wherea = { wy. The averaging process can be modeled by the input/outaitne|
1 rt
v = [ uwdy
T Jt—1

where the averaging time is a multipi®f the period of the oscillation72/ w. The
dynamics of the piezo scanner can be neglected in the firsbaippation because
they are typically much faster than A simple model for the complete system is
thus given by the transfer function

~a(l-e )
P(s) = st(s+a)
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Plot the Nyquist curve of the system and determine the gain moportional
controller that brings the system to the boundary of stbili

9.3 (Heat conduction) A simple model for heat conduction in adsi@ given by
the transfer function

P(s) = ke VS,
Sketch the Nyquist plot of the system. Determine the frequevitere the phase

of the process is-180° and the gain at that frequency. Show that the gain required
to bring the system to the stability boundarkis- €”.

9.4 (Vectored thrust aircraft) Consider the state space cbetrdesigned for the,
vectored thrust aircraft in Examplé&s8 and 7.5. The controller consists of tw

components: an optimal estimator to compute the state aytsiem from the out-
put and a state feedback compensator that computes thegimpotthe (estimated)
state. Compute the loop transfer function for the systemdatdrmine the gain,
phase and stability margins for the closed loop dynamics.

9.5 (Vehicle steering) Consider the linearized model for viehgteering with a
controller based on state feedback discussed in Exanl&he transfer functions
for the process and controller are given by

ys+1 S(kil1 +kal2) + kil
P(s)=——, C(s)= ,
() S3 S S+ s(yki + ko +11) + ki + 12+ kal 1 — ykol2
as computed in Examp&6. Let the process parameter fpe- 0.5 and assume that

the state feedback gains d&e= 1 andk, = 0.914 and that the observer gains are
1 =2.828 and, = 4. Compute the stability margins numerically.

9.6 (Stability margins for second-order systems) A process wtiygamics is
described by a double integrator is controlled by an ideal Blroller with the
transfer functiorC(s) = kys+ kp, where the gains arky = 2{ wp andkp = .
Calculate and plot the gain, phase and stability marginsfasaion ¢ .

9.7 (Congestion control in overload conditions) A strongly plified flow model
of a TCP loop under overload conditions is given by the loopdfer function

k
L(s) = ge‘sr,

where the queuing dynamics are modeled by an integratof, @fewindow con-

trol is a time delayr and the controller is simply a proportional controller. Ajora

difficulty is that the time delay may change significantly dgrithe operation of
the system. Show that if we can measure the time delay, it isiljeso choose a
gain that gives a stability margin gf, > 0.6 for all time delays.

9.8 (Bode’s formula) Consider Bode’s formul@.8) for the relation between gain
and phase for a transfer function that has all its singigarin the left half-plane.
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Plot the weighting function and make an assessment of thadregsies where the
approximation ar@ ~ (11/2)dlog|G|/dlogw is valid.

9.9 (Pacdk approximation to a time delay) Consider the transfer fonst
_l-s1/2
T l4sr/2
Show that the minimum phase properties of the transfer fonstare similar for

frequenciesv < 1/1. A long time delayr is thus equivalent to a small right half-
plane zero. The approximatiof.(6) is called a first-ordePade approximation

Gi(s) =€ 7, Go(s) =€ (9.16)

9.10(Inverse response) Consider a system whose input/outguimnse is modeled
by G(s) = 6(—s+ 1)/(s?> +5s+ 6), which has a zero in the right half-plane. Com-
pute the step response for the system, and show that thet gatpsiin the wrong
direction initially, which is also referred to as amverse response€Compare the
response to a minimum phase system by replacing the zere atwith a zero at
s=-1.

9.11(Describing function analysis) . Consider the system withltlock diagram
shown on the left below.

Y

R(-) —= P(s) .

cV

1 |

The blockR s a relay with hysteresis whose input/output responseowston the

right and the process transfer functionAgs) = e 3" /s. Use describing function
analysis to determine frequency and amplitude of possilvi tycles. Simulate
the system and compare with the results of the describingfiumanalysis.



Chapter Ten
PID Control

Based on a survey of over eleven thousand controllers in the refifiegicals and pulp and
paper industries, 97% of regulatory controllers utilize PID feedback.

L. Desborough and R. Miller, 200DM02].

This chapter treats the basic properties of proportionaigiral-derivative (PID)
control and the methods for choosing the parameters of theailers. We also
analyze the effects of actuator saturation and time dedayjrhportant features of
many feedback systems, and describe methods for compaméatithese effects.
Finally, we will discuss the implementation of PID controfieas an example of
how to implement feedback control systems using analoggitaticomputation.

10.1 Basic Control Functions

PID control, which was introduced in Secti@rband has been used in several ex-
amples, is by far the most common way of using feedback imnemging systems.

It appears in simple devices and in large factories with slaods of controllers.
PID controllers appear in many different forms: as stana@lontrollers, as part
of hierarchical, distributed control systems and builbietmbedded components.
Most PID controllers do not use derivative action, so theyusdhetrictly speaking
be called PI controllers; we will, however, use PID as a gerterin for this class
of controller. There is also growing evidence that PID cordppears in biological
systems YHSDO(.

Block diagrams of closed loop systems with PID controlleessirown in Fig-
ure 10.1 The control signal for the system in Figurd0.lais formed entirely
from the errore; there is no feedforward term (which would correspond;toin
the state feedback case). A common alternative in whichgtigmal and deriva-
tive action do not act on the reference is shown in Figlddh combinations of
the schemes will be discussed in Sectidht The command signal is called
the reference signal in regulation problems, orgbtpointin the literature of PID
control. The input/output relation for an ideal PID controldth error feedback
is

t de 1t de
U—kpe+k|/0 e(r)dr+kda_kp<e+f/o e(r)dT+Tda>. (10.1)
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Figure 10.1: Block diagrams of closed loop systems with ideal PID controllers. Both con
trollers have one output, the control sigoalThe controller in (a), which is based on error
feedback, has one input, the control ereet r —y. For this controller proportional, integral
and derivative action acts on the erese r —y. The two degree-of-freedom controller in (b)
has two inputs, the referencand the process outpytIntegral action acts on the error, but
proportional and derivative action act on the process output

The control action is thus the sum of three terms: proportiteedback, the in-
tegral term and derivative action. For this reason PID cdletowere originally
calledthree-term controllersThe controller parameters are the proportional gain
kp, the integral gairk; and the derivative gaiky. The time constant$; and Ty,
called integral time (constant) and derivative time (cangt are sometimes used
instead of the integral and derivative gains.

The controller £0.1) represents an idealized controller. It is a useful abstrac
tion for understanding the PID controller, but several modifans must be made
to obtain a controller that is practically useful. Beforealissing these practical
issues we will develop some intuition about PID control.

We start by considering pure proportional feedback. Figx@ashows the re-
sponses of the process output to a unit step in the referehoe for a system with
pure proportional control at different gain settings. le #bsence of a feedforward
term, the output never reaches the reference, and hencesvieftawith nonzero
steady-state error. Letting the process and the controdlee fransfer functions
P(s) andC(s), the transfer function from reference to output is

PC
T 1+PC
and thus the steady-state error for a unit step is
1
" 1+KkoP(0)
For the system in Figur#0.2awith gainsk, = 1, 2 and 5, the steady-state error is
0.5, 0.33 and 0.17. The error decreases with increasing lpairihe system also

Gyr (10.2)

1-Gyr(0)
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Figure 10.2: Responses to step changes in the reference value for a system withoa pro
tional controller (a), PI controller (b) and PID controller (c). The mex has the transfer
function P(s) = 1/(s+ 1), the proportional controller has parametkgs= 1, 2 and 5, the

Pl controller has parameteks = 1,k =0, 0.2, 0.5 and 1, and the PID controller has param-
eterskp = 2.5,kj = 1.5 andkq =0, 1, 2 and 4.

becomes more oscillatory. Notice in the figure that the iniiédue of the control
signal equals the controller gain.
To avoid having a steady-state error, the proportional ambe changed to

u(t) = kpe(t) + ug, (10.3)

whereug is a feedforward term that is adjusted to give the desireddststate
value. If we chooser; = r/P(0) = k-, then the output will be exactly equal to
the reference value, as it was in the state space case, edothdt there are no
disturbances. However, this requires exact knowledge @fptilocess dynamics,
which is usually not available. The paramatgr calledresetin the PID literature,
must therefore be adjusted manually.

As we saw in Sectio6.4, integral action guarantees that the process output
agrees with the reference in steady state and provides exmatitve to the feed-
forward term. Since this result is so important, we will pae/ia general proof.
Consider the controller given by equatidrO(1). Assume that there exists a steady
state withu = up ande = ey. It then follows from equationl(0.1) that

Uo = kpe()+kle0t7

which is a contradiction unlegg ork; is zero. We can thus conclude that with inte-
gral action the error will be zero if it reaches a steady stdtdice that we have not
made any assumptions about the linearity of the processeadigturbances. We
have, however assumed that an equilibrium exists. Usirgrat action to achieve
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Figure 10.3:Implementation of Pl and PD controllers. The block diagram in (a) shams h
integral action is implemented usipgsitive feedbaclith a first-order system, sometimes
called automatic reset. The block diagram in (b) shows how derivati@nazan be imple-
mented by taking differences between a static system and a first-osdensy

zero steady-state error is much better than using feedfdrwehich requires a
precise knowledge of process parameters.

The effect of integral action can also be understood fromueegy domain
analysis. The transfer function of the PID controller is

C(s) =kp+ 2 +kgs. (10.4)

The controller has infinite gain at zero frequen€y) = ), and it then follows
from equation 0.2 thatGy,(0) = 1, which implies that there is no steady-state
error for a step input.

Integral action can also be viewed as a method for genertitaéegedforward
term ug in the proportional controllerl0.3 automatically. One way to do this
is shown in Figurel0.33 where the controller output is low-pass-filtered and fed
back with positive gain. This implementation, call@gtomatic resetwas one of
the early inventions of integral control. The transfer fumciof the system in Fig-
ure10.3ais obtained by block diagram algebra; we have
1+sT kp

SRR
which is the transfer function for a PI controller.

The properties of integral action are illustrated in Figli®e2bfor a step input.
The proportional gain is constark; = 1, and the integral gains ake= 0, 0.2,
0.5 and 1. The cade = 0 corresponds to pure proportional control, with a steady-
state error of 50%. The steady-state error is eliminated vilitegral gain action
is used. The response creeps slowly toward the referencmfdhgalues ok; and
goes faster for larger integral gains, but the system alsorbes more oscillatory.

The integral gairk; is a useful measure for attenuation of load disturbances.
Consider a closed loop system under PID control and assurhéhthaystem is
stable and initially at rest with all signals being zero. Apg unit step disturbance
at the process input. After a transient the process outpeg tgozero and the con-
troller output settles at a value that compensates for teirtiance. It follows

Gue - kp
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from (10.1) that °
u(eo) = k /O e(t)dt.

The integrated error is thus inversely proportional to thegral gairk;. The inte-
gral gain is thus a measure of the effectiveness of distadattenuation. A large
gaink; attenuates disturbances effectively, but too large a gasgscillatory
behavior, poor robustness and possibly instability.

We now return to the general PID controller and consider tlecebf the
derivative ternmky. Recall that the original motivation for derivative feedkavas
to provide predictive or anticipatory action. Notice thhé tcombination of the
proportional and the derivative terms can be written as

de de
U= kpe+kig = kp(e+ Tda) = kp€p,

whereep(t) can be interpreted as a prediction of the error at timdy by linear
extrapolation. The prediction tinig = ky/kj is the derivative time constant of the
controller.

Derivative action can be implemented by taking the diffeeebetween the
signal and its low-pass filtered version as shown in Figl@e8h The transfer
function for the system is

Guels) = kp(l—

1 ) ky— > (10.5)

1+sTy/  Pl+4sTy
The system thus has the transfer funct®fs) = sTq/(1+ sTy), which approxi-
mates a derivative for low frequencigs| (< 1/Ty).

Figure10.2cillustrates the effect of derivative action: the systemdsiltatory
when no derivative action is used, and it becomes more dampé#ue derivative
gain is increased. Performance deteriorates if the derevgtin is too high. When
the input is a step, the controller output generated by thivatae term will be
an impulse. This is clearly visible in Figuldd®.2¢c The impulse can be avoided by
using the controller configuration shown in Figdr@.1b.

Although PID control was developed in the context of engimegapplications,
it also appears in nature. Disturbance attenuation by fegdm biological sys-
tems is often calleddaptation A typical example is the pupillary reflex discussed
in Example8.11, where it is said that the eye adapts to changing light intens
Analogously, feedback with integral action is called pergdaptationYHSDOQ.

In biological systems proportional, integral and deriataction is generated by
combining subsystems with dynamical behavior similarlymuat is done in en-

gineering systems. For example, Pl action can be generatdtebgteraction of

several hormoneE[SGKO03.

Example 10.1 PD action in the retina
The response of cone photoreceptors in the retina is an egamhglre proportional
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Figure 10.4: Schematic diagram of cone photoreceptors (C) and horizontal celis (He
retina. In the schematic diagram in (a), excitatory feedback is indicatedrbws and in-
hibitory feedback by circles. A block diagram is shown in (b) and the stspanse in (c).

and derivative action is generated by a combination of caneshorizontal cells.
The cones are the primary receptors stimulated by light, vinicurn stimulate the
horizontal cells, and the horizontal cells give inhibitgnegative) feedback to the
cones. A schematic diagram of the system is shown in FifjQréa The system
can be modeled by ordinary differential equations by regmmésg neuron signals
as continuous variables representing the average putsdmdiVil99] it is shown
that the system can be represented by the differential emsat

dxq 1 dx 1

H—i(—xl—kxﬁ'u), E:?h(Xl_Xz)’

whereu is the light intensity anc; andx, are the average pulse rates from the
cones and the horizontal cells. A block diagram of the systeshown in Fig-
ure 10.4h The step response of the system shown in Fid@rdcshows that the
system has a large initial response followed by a lower, tamsteady-state re-
sponse typical of proportional and derivative action. Theapeeters used in the
simulation arek = 4, T, = 0.025 andT,, = 0.08. O

10.2 Simple Controllers for Complex Systems

Many of the design methods discussed in previous chapteses the property
that the complexity of the controller is directly reflectedthge complexity of the
model. When designing controllers by output feedback ingidr&, we found for
single-input, single-output systems that the order of th@roller was the same as
the order of the model, possibly one order higher if integion was required.
Applying similar design methods for PID control will requitieat we have low-
order models of the processes to be able to easily analyzeghks.

Low-order models can be obtained from first principles. Anylgtasystem
can be modeled by a static system if its inputs are sufficiesitiw. Similarly a
first-order model is sufficient if the storage of mass, momertuenergy can be
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captured by only one variable; typical examples are thecitylof a car on a road,
angular velocity of a stiff rotational system, the level iteak and the concentra-
tion in a volume with good mixing. System dynamics are of secorder if the
storage of mass, energy and momentum can be captured byateovatiables;
typical examples are the position of a car on the road, theilizt@ion of stiff
satellites, the levels in two connected tanks and two-cotnyent models. A wide
range of techniques for model reduction are also availdbléis chapter we will
focus on design techniques where we simplify the models pituca the essential
properties that are needed for PID design.

We begin by analyzing the case of integral control. A stajpétesn can be con-
trolled by an integral controller provided that the reqaients on the closed loop
system are modest. To design the controller we assume thatatsfer function
of the process is a constalit= P(0). The loop transfer function under integral
control then becomesk; /s, and the closed loop characteristic polynomial is sim-
ply s+ Kk;. Specifying performance by the desired time constgnf the closed
loop system, we find that the integral gain is given by

ki = 1/(Tcl P(O))-

The analysis requires th@ be sufficiently large that the process transfer function
can be approximated by a constant.
For systems that are not well represented by a constant wairtan obtain
a better approximation by using the Taylor series expansfdhe loop transfer
function:
kiP(s) ki(P(0)+sP(0
ChoosingsP’'(0) = —0.5 gives a system with good robustness, as will be discussed

in Sectionl12.5 The controller gain is then given by
1
== 10.

and the expected closed loop time constaftjisz —P'(0)/P(0).

L kP(O)
S

Example 10.2 Integral control of AFM in tapping mode

A simplified model of the dynamics of the vertical motion of aomaic force
microscope in tapping mode was discussed in Exe&i&eThe transfer function
for the system dynamics is

_al-et)
P(s) = st(s+a)

wherea = {wy, T = 2rmn/wy and the gain has been normalized to 1. We have
P(0) =1 andP'(0) = —1/2—1/a, and it follows from (0.6) that the integral gain

)
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Figure 10.5: Integral control for AFM in tapping mode. An integral controller is desidgn
based on the slope of the process transfer function at 0. The congrioksrgood robustness
properties based on a very simple analysis.

can be chosen d¢ = a/(2+ at). Nyquist and Bode plots for the resulting loop
transfer function are shown in Figui®.5 O

A first-order system has the transfer function

P(S) L

T sta’
With a PI controller the closed loop system has the charatiepgolynomial

S(s+a) + bkys+ bk = &+ (a+ bkp)s+ bk

The closed loop poles can thus be assigned arbitrary valupsapgr choice of
the controller gains. Requiring that the closed loop sydtene the characteristic
polynomial

p(s) ="+ ars+ag,

we find that the controller parameters are

a—a ap

Kp = b ki = b (10.7)

If we require a response of the closed loop system that isesltwan that of the
open loop system, a reasonable choicejis- a+ a anda, = aa. If a response
faster than that of the open loop system is required, it isaceable to choose
a1 = 2wy anday = wg whereayn and { are undamped natural frequency and
damping ratio of the dominant mode. These choices have signifimpact on
the robustness of the system and will be discussed in SetZi@nAn upper limit

to wyp is given by the validity of the model. Large values@f will require fast
control actions, and actuators may saturate if the valueddarge. A first-order
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Figure 10.6: Cruise control using Pl feedback. The step responses for the arcoinput
illustrate the effect of parameteds= 1 anday on the response of a car with cruise control.
A change in road slope from°Go 4° is applied betweeh=5 and 6 s. (a) Responses for
wp=0.5andl =0.5, 1 and 2. Choosing = 1 gives no overshoot. (b) Responses{et 1
andap = 0.2, 0.5and 1.0.

model is unlikely to represent the true dynamics for higly@iencies. We illustrate
the design by an example.

Example 10.3 Cruise control using Pl feedback
Consider the problem of maintaining the speed of a car asds gip a hill. In
Example5.14we found that there was little difference between the lirzea non-
linear models when investigating PI control, provided thatthrottle did not reach
the saturation limits. A simple linear model of a car was giieExample5.11
d(v—ve)
dt
wherev is the velocity of the cany is the input from the engine arilis the slope
of the hill. The parameters wewe= 0.0101,b = 1.3203,g = 9.8, v = 20 and
Ue = 0.1616. This model will be used to find suitable parameters of a&lespeed
controller. The transfer function from throttle to velocitya first-order system.
Since the open loop dynamics is so slow, it is natural to spedifister closed loop
system by requiring that the closed loop system be of secotel with damping
ratio { and undamped natural frequenay. The controller gains are given by
(20.7).
Figure 10.6 shows the velocity and the throttle for a car that initiallpvas
on a horizontal road and encounters a hill with a slope°oatdtimet = 6s. To
design a PI controller we chooge= 1 to obtain a response without overshoot, as

= —a(V—Ve) +b(u—ue) — gb, (10.8)
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shown in Figurel0.6a The choice oty is a compromise between response speed
and control actions: a large value gives a fast responset beuires fast con-

trol action. The trade-off is illustrated in Figud®.6b The largest velocity error
decreases with increasingy, but the control signal also changes more rapidly. In
the simple modelX0.8) it was assumed that the force responds instantaneously to
throttle commands. For rapid changes there may be additignamics that have

to be accounted for. There are also physical limitationsea#te of change of the
force, which also restricts the admissible valuewf A reasonable choice @iy

is in the range 0.5-1.0. Notice in Figut®.6that even withcwy = 0.2 the largest
velocity error is only 1 m/s. O

A PI controller can also be used for a process with secondraggeamics, but
there will be restrictions on the possible locations of tlused loop poles. Using
a PID controller, it is possible to control a system of secordepin such a way
that the closed loop poles have arbitrary locations; seediSet0.2

Instead of finding a low-order model and designing contrslfer them, we
can also use a high-order model and attempt to place only ademinant poles.
An integral controller has one parameter, and it is posgiblgosition one pole.
Consider a process with the transfer functiR{s). The loop transfer function with
an integral controller i&(s) = kiP(s)/s. The roots of the closed loop characteristic
polynomial are the roots af+ kiP(s) = 0. Requiring thas = —a be a root, we find
that the controller gain should be chosen as

a
P
The poles= —a will be dominant ifais small. A similar approach can be applied
to Pl and PID controllers.

(10.9)

10.3 PID Tuning

Users of control systems are frequently faced with the tdsidjusting the con-
troller parameters to obtain a desired behavior. There arg mifferent ways to
do this. One approach is to go through the conventional stépsodeling and
control design as described in the previous section. Sire@tb controller has
so few parameters, a number of special empirical methods &lso been devel-
oped for direct adjustment of the controller parameters.firbetuning rules were
developed by Ziegler and NicholZIN42]. Their idea was to perform a simple
experiment, extract some features of process dynamics thhenexperiment and
determine the controller parameters from the features.
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Figure 10.7: Ziegler-Nichols step and frequency response experiments. Thetepites
sponse in (a) is characterized by the parametarsdt. The frequency response method (b)
characterizes process dynamics by the point where the Nyquist ofttve process transfer
function first intersects the negative real axis and the frequenaeyhere this occurs.

Ziegler—Nichols’ Tuning

In the 1940s, Ziegler and Nichols developed two methods fatroter tuning
based on simple characterization of process dynamics itirtteeand frequency
domains.

The time domain method is based on a measurement of part optreloop
unit step response of the process, as shown in Fij0réa The step response is
measured by applying a unit step input to the process anddiegathe response.
The response is characterized by parametexsd 1, which are the intercepts of
the steepest tangent of the step response with the coadiras. The parameter
T is an approximation of the time delay of the system afis the steepest slope
of the step response. Notice that it is not necessary to vt steady state is
reached to find the parameters, it suffices to wait until thearesp has had an
inflection point. The controller parameters are given in TAlBlA The parameters
were obtained by extensive simulation of a range of reptatiea processes. A
controller was tuned manually for each process, and an pttesas then made to
correlate the controller parameters watlndr.

In the frequency domain method, a controller is connectati¢qrocess, the
integral and derivative gains are set to zero and the prigpaitgain is increased
until the system starts to oscillate. The critical value & groportional gairk;
is observed together with the period of oscillatign It follows from Nyquist's
stability criterion that the loop transfer functien= k:P(s) intersects the critical
point at the frequencyx. = 21/T.. The experiment thus gives the point on the
Nyquist curve of the process transfer function where theseHag is 180, as
shown in Figurel0.7h

The Ziegler—Nichols methods had a huge impact when they wémadinced
in the 1940s. The rules were simple to use and gave initialitond for manual
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Table 10.1:Ziegler—Nichols tuning rules. (a) The step response methods give thmpters
in terms of the intercem and the apparent time delay(b) The frequency response method
gives controller parameters in termsapitical gain k: andcritical period Tc.

Type  kp T Ty Type  kp Ti Ty

P 1l/a P 0.5

PI 09/a 3 PI 0.4; 0.8T
PID 12/a 2 0.5r PID 0.6 0.5T¢ 0.125;
(a) Step response method (b) Frequency response method

tuning. The ideas were adopted by manufacturers of contsadite routine use.
The Ziegler—Nichols tuning rules unfortunately have two sevdrawbacks: too
little process information is used, and the closed loopesystthat are obtained
lack robustness.
The step response method can be improved significantly by cieairang the
unit step response by parametirsr andT in the model
K
P = 15sT
The parameters can be obtained by fitting the model to a measimedesponse.
Notice that the experiment takes a longer time than the @xpet in Figurel0.7a
because to determini€ it is necessary to wait until the steady state has been
reached. Also notice that the intercepin the Ziegler—Nichols rule is given by
a=Krt/T.
The frequency response method can be improved by measurimgpoints on
the Nyquist curve, e.g., the zero frequency d&ior the point where the process
has a 90 phase lag. This latter point can be obtained by connectingntegral
controller and increasing its gain until the system rea¢hesstability limit. The
experiment can also be automated by using relay feedbadkilldse discussed
later in this section.
There are many versions of improved tuning rules. As an tdisin we give
the following rules for PI control, based oAHO05]:

_ 0.15T|2—TO.35I' (OI.<9: ) k= 0.46TK—i;g.02T ((})(?;I ) 7

e s (10.10)

kp
(10.11)

om0z O (oac). k010,002 (056)

The values for the Ziegler—Nichols rule are given in parerdgheblotice that the
improved formulas typically give lower controller gainsaththe Ziegler—Nichols
method. The integral gain is higher for systems where the micsgare delay-
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Figure 10.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step resgmons
(b) for PI control of the vertical motion of an atomic force microscop&pping mode. The
averaging parameter i$= 20. Results with Ziegler—Nichols tuning are shown by dashed
lines, and modified Ziegler—Nichols tuning is shown by solid lines. The Nyglis of the
process transfer function is shown by dotted lines.

dominatedr > T.

Example 10.4 Atomic force microscope in tapping mode
A simplified model of the dynamics of the vertical motion of araic force
microscope in tapping mode was discussed in Exarb@l2 The transfer function

is normalized by choosing/a as the time unit. The normalized transfer function

'S 1—esh

PO= e+

whereT, = 2nma/wp = 2n7{ . The Nyquist plot of the transfer function is shown
in Figure10.8afor { = 0.002 andh = 20. The leftmost intersection of the Nyquist
curve with the real axis occurs at Re- —0.0461 forw = 13.1. The critical gain
is thusk. = 21.7 and the critical period i3. = 0.48. Using the Ziegler—Nichols
tuning rule, we find the parameteks = 8.87 andk; = 22.6 (T; = 0.384) for a PI
controller. With this controller the stability margin &, = 0.31, which is quite
small. The step response of the controller is shown in Fig0r&8 Notice in par-
ticular that there is a large overshoot in the control signal

The modified Ziegler—Nichols rule.0.11]) gives the controller parameteks=
3.47 andk; = 8.73 (T; = 0.459) and the stability margin becomgs= 0.61. The
step response with this controller is shown in Figl@e8 A comparison of the re-
sponses obtained with the original Ziegler—Nichols rulevghthat the overshoot
has been reduced. Notice that the control signal reachetesly-state value al-
most instantaneously. It follows from Examdl8.2that a pure integral controller
has the normalized gakp= 1/(2+T,) = 0.44. Comparing this with the gains of a
PI1 controller, we can conclude that a PI controller gives mugsttel performance
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Figure 10.9:Block diagram of a process with relay feedback (a) and typical sighal3 e
process outputis a solid line, and the relay outpuis a dashed line. Notice that the signals
u andy have opposite phases.

than a pure integral controller. O

Relay Feedback

The Ziegler—Nichols frequency response method increasegatineof a propor-
tional controller until oscillation to determine the cc#il gaink; and the corre-
sponding critical periody or, equivalently, the point where the Nyquist curve in-
tersects the negative real axis. One way to obtain thishimdtion automatically is
to connect the process in a feedback loop with a nonlineanesi¢ having a relay
function as shown in Figur0.9a For many systems there will then be an oscilla-
tion, as shown in Figur&0.9h where the relay outputis a square wave and the
process outpuy is close to a sinusoid. Moreover the input and the output ate o
of phase, which means that the system oscillates with ttieairperiodT., where
the process has a phase lag of 180otice that an oscillation with constant period
is established quickly.

The critical period is simply the period of the oscillatioro @etermine the
critical gain we expand the square wave relay output in aiEpseries. Notice
in the figure that the process output is practically sinuddiéaause the process
attenuates higher harmonics effectively. It is then sufficte consider only the
first harmonic component of the input. Lettidgoe the relay amplitude, the first
harmonic of the square wave input has amplitudér If ais the amplitude of the
process output, the process gain at the critical frequexey 211/ T¢ is |P(iw)| =
ma/(4d) and the critical gain is

4d
Cam
Having obtained the critical gaild; and the critical periods, the controller pa-

rameters can then be determined using the Ziegler—Nichlgls.mproved tuning
can be obtained by fitting a model to the data obtained fromelag experiment.

Ke (10.12)
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The relay experiment can be automated. Since the amplitudhe afcillation
is proportional to the relay output, it is easy to control yt ddjusting the relay
output.Automatic tuningbased on relay feedback is used in many commercial PID
controllers. Tuning is accomplished simply by pushing adwuthat activates relay
feedback. The relay amplitude is automatically adjustedetepkthe oscillations
sufficiently small, and the relay feedback is switched to a RiBtller as soon
as the tuning is finished.

10.4 Integrator Windup

Many aspects of a control system can be understood fronrimeedels. There are,
however, some nonlinear phenomena that must be taken intwaic These are
typically limitations in the actuators: a motor has limitgaeed, a valve cannot be
more than fully opened or fully closed, etc. For a system dipatrates over a wide
range of conditions, it may happen that the control variabéehes the actuator
limits. When this happens, the feedback loop is broken aedsyistem runs in
open loop because the actuator remains at its limit indegrghdof the process
output as long as the actuator remains saturated. The ihtegrawill also build
up since the error is typically nonzero. The integral term txedcontroller output
may then become very large. The control signal will then rensaiturated even
when the error changes, and it may take a long time beforentegrator and the
controller output come inside the saturation range. Theeamuence is that there
are large transients. This situation is referred togegrator windup illustrated in
the following example.

Example 10.5 Cruise control

The windup effect is illustrated in Figu®.10a which shows what happens when
a car encounters a hill that is so stee}) that the throttle saturates when the cruise
controller attempts to maintain speed. When encountehieglope at timé¢ =5,
the velocity decreases and the throttle increases to genmame torque. However,
the torque required is so large that the throttle saturateserror decreases slowly
because the torque generated by the engine is just a literlghan the torque
required to compensate for gravity. The error is large andrttegyral continues
to build up until the error reaches zero at time 30, but thdrotlar output is still
larger than the saturation limit and the actuator remaitsrated. The integral
term starts to decrease, and at time 45 and the velocitgseitiickly to the desired
value. Notice that it takes considerable time before thérotar output comes into
the range where it does not saturate, resulting in a largesbwet. O

There are many methods to avoid windup. One method is illestren Fig-
ure 10.11 the system has an extra feedback path that is generated dgunrey
the actual actuator output, or the output of a mathematicalahof the saturating
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Figure 10.10: Simulation of PI cruise control with windup (a) and anti-windup (b). The
figure shows the speethnd the throttlel for a car that encounters a slope that is so steep that
the throttle saturates. The controller output is a dashed line. The contrati@mpters are

kp = 0.5 andk; = 0.1. The anti-windup compensator eliminates the overshoot by preventing
the error for building up in the integral term of the controller.

actuator, and forming an error sigral as the difference between the output of
the controllerv and the actuator output The signales is fed to the input of the
integrator through gaik. The signaks is zero when there is no saturation and the
extra feedback loop has no effect on the system. When thatactsaturates, the
signales is fed back to the integrator in such a way teagoes toward zero. This
implies that controller output is kept close to the satoratimit. The controller
output will then change as soon as the error changes sigmgeglal windup is
avoided.

The rate at which the controller output is reset is governedhieyfeedback
gaink;; a large value ok; gives a short reset time. The paramé¢ezannot be too
large because measurement noise can then cause an uridessab A reasonable
choice is to choosl as a fraction of IT;. We illustrate how integral windup can
be avoided by investigating the cruise control system.

Example 10.6 Cruise control with anti-windup

Figure10.10bshows what happens when a controller with anti-windup idiegp
to the system simulated in Figulé).10a Because of the feedback from the ac-
tuator model, the output of the integrator is quickly reseatvalue such that the
controller output is at the saturation limit. The behaviatriastically different from
that in Figurel0.10aand the large overshoot is avoided. The tracking galin4s2

in the simulation. O
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Figure 10.11: PID controller with a filtered derivative and anti-windup. The input to the
integrator (¥s) consists of the error term plus a “reset” based on input saturatione If th
actuator is not saturated, then= u— v, otherwisees will decrease the integrator input to
prevent windup.

10.5 Implementation

There are many practical issues that have to be consideradimpémenting PID
controllers. They have been developed over time based otigaleexperience. In
this section we consider some of the most common. Similariderations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivatihas high gain for high-
frequency signals. This means that high-frequency measurenoise will gener-
ate large variations in the control signal. The effect of measient noise may be
reduced by replacing the terkgs by kqs/(1+ sT), which can be interpreted as
an ideal derivative of a low-pass filtered signal. For sredhie transfer function
is approximatelykys and for larges it is equal toky/Ts. The approximation acts
as a derivative for low-frequency signals and as a constintfgr high-frequency
signals. The filtering time is chosen &s= (kq/kp)/N, with N in the range 2-20.
Filtering is obtained automatically if the derivative is ilemented by taking the
difference between the signal and its filtered version as shiowigurel0.3b(see
equation 10.5).

Instead of filtering just the derivative, it is also possildeuse an ideal con-
troller and filter the measured signal. The transfer functibsuzh a controller
with a filter is then

1 1
=k 14+ —=+sT 10.1
C(s) p< +s'ﬁ+s d) 17sT 1 (ST 22 (10.13)

where a second-order filter is used.
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Setpoint Weighting

Figure 10.1 shows two configurations of a PID controller. The system in Fig-
ure 10.1ahas a controller witherror feedbackwhere proportional, integral and
derivative action acts on the error. In the simulation of Plintcollers in Fig-
ure10.2cthere is a large initial peak in the control signal, whichasised by the
derivative of the reference signal. The peak can be avoidetsing the controller

in Figure10.1h where proportional and derivative action acts only on tlee@ss
output. An intermediate form is given by

t
u:kp(Br—y)+k;/o (r(r)—y(r))dr+kd(yg:—gli/), (10.14)

where the proportional and derivative actions act on foast3 andy of the ref-
erence. Integral action has to act on the error to make satehb error goes to
zero in steady state. The closed loop systems obtained ferefit values of3
andy respond to load disturbances and measurement noise inrtteevgay. The
response to reference signals is different because it dsgemthe values @8 and
y, which are calledeference weighter setpoint weightsWe illustrate the effect
of setpoint weighting by an example.

Example 10.7 Cruise control with setpoint weighting

Consider the PI controller for the cruise control systemweetin Examplel0.3
Figure10.12shows the effect of setpoint weighting on the response o$ystem

to a reference signal. WitB = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to thetgration limit. There is no
overshoot with3 = 0 and the control signal is much smaller, clearly a much bette
drive comfort. The frequency responses gives another vigihveo$ame effect. The
parameteiB is typically in the range 0-1, angdis normally zero to avoid large
transients in the control signal when the reference is obéng O

The controller given by equatiori@.14 is a special case of the general con-
troller structure having two degrees of freedom, which weswksed in Sec-
tion 7.5.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different techgiel® Figurel0.13
shows how PI and PID controllers can be implemented by feediacknd oper-
ational amplifiers.

To show that the circuit in Figur&0.13 is a PID controller we will use the
approximate relation between the input voltagand the output voltage of the
operational amplifier derived in Exam®Be3,
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Figure 10.12: Time and frequency responses for PI cruise control with setpointhtie@
Step responses are shown in (a), and the gain curves of the frggesponses in (b). The
controller gains aré&p = 0.74 andk; = 0.19. The setpoint weights afe=0, 0.5 and 1, and

y=0.

In this equatiornZ; is the impedance between the negative input of the amplifier
and the input voltage, andZ; is the impedance between the zero input of the

amplifier and the output voltage The impedances are given by

Zy(s)

Ry

T 1+RCiS

1
Zz(S) =R+—

CzS7

and we find the following relation between the input voltegad the output volt-

(65}

(a) PI controller

a—

1
o——W——W—|—
Ry R,
€ ——o
u
O O

(b) PID controller

Figure 10.13:Schematic diagrams for Pl and PID controllers using op amps. Thatditcu
(a) uses a capacitor in the feedback path to store the integral of theTreocircuit in (b)
adds a filter on the input to provide derivative action.
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ageu:

L, R(I+RGY(1+RGCs)
ZT R RoCos '

This is the input/output relation for a PID controller of therfo(10.1) with pa-

rameters

RiC1 + R,C R1R.C.C
_ 1C1 + 22’ T = RiCy + RCy, T, = Aavi®1 0]

p .
The correspontlj:\:h%Zresults for a PI controller are obtain%h%ﬁ‘ﬁé3 3%2: 0 (re-
moving the capacitor).

u=

Computer Implementation

In this section we briefly describe how a PID controller may bplemented us-
ing a computer. The computer typically operates periodicallth signals from

the sensors sampled and converted to digital form by the Afiverter, and the
control signal computed and then converted to analog fomthi actuators. The
sequence of operation is as follows:

1. Wait for clock interrupt 4. Send output to the actuator
2. Read input from sensor 5. Update controller variables
3. Compute control signal 6. Repeat

Notice that an output is sent to the actuators as soon as\vaitahle. The time
delay is minimized by making the calculations in step 3 agtsé® possible and
performing all updates after the output is commanded. Thipks way of reducing
the latency is, unfortunately, seldom used in commercistiesys.

As an illustration we consider the PID controller in Figu@.11, which has
a filtered derivative, setpoint weighting and protectioniasfaintegral windup.
The controller is a continuous-time dynamical system. Tolémgnt it using a
computer, the continuous-time system has to be approxihiate discrete-time
system.

A block diagram of a PID controller with anti-windup is showrfigure10.11
The signalv is the sum of the proportional, integral and derivative ®ramd the
controller output is1 = sa{v), where sat is the saturation function that models the
actuator. The proportional terka(Br —y) is implemented simply by replacing the
continuous variables with their sampled versions. Hence

P(tk) = kp (Br(t) —y(t)), (10.15)

where{tx} denotes the sampling instants, i.e., the times when the e@mnpeads
its input. We leth represent the sampling time, so that; = tx -+ h. The integral
term is obtained by approximating the integral with a sum,

(12) = 180+ kinett) + 1

—(satv) —v), (10.16)
t
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whereT; = h/k; represents the anti-windup term. The filtered derivative tBris

given by the differential equation
dD :

Approximating the derivative with a backward differencees
D(t) — D(tc-1) y(t) — y(t-1)

T D) = —kg T
which can be rewritten as
Ts
D(ty) = T+h D(tc_1) — T +h (y(tk) — y(tk-1)) - (10.17)

The advantage of using a backward difference is that the peaify /(Ts + h)

is nonnegative and less than 1 for i 0, which guarantees that the difference
equation is stable. Reorganizing equatial®.{5—-(10.17, the PID controller can
be described by the following pseudocode:

% Preconpute controller coefficients
bi =ki *h

ad=Tf/ (Tf +h)

bd=kd/ ( Tf +h)

br=h/ Tt

% Control algorithm- nain |oop
while (running) {

r =adi n(chil) % read setpoint fromchl

y=adi n(ch2) % read process variable fromch2
P=kp=* (b*r-vy) % comput e proportional part
D=ad+*D- bd* (y-yol d) % update derivative part

v=P+| +D % conput e tenporary out put

u=sat (v, ul ow, uhi gh) % simul ate actuator saturation
daout (chl) % set anal og out put chl

| =1 +bi *(r-y)+br*(u-v) % updat e integral

yol d=y % update ol d process out put

sl eep(h) %wait until next update interval

}

Precomputation of the coefficiertt$ , ad, bd andbr saves computer time in
the main loop. These calculations have to be done only wheinadlem parameters
are changed. The main loop is executed once every samplifggip&he program
has three stategol d, | , andD. One state variable can be eliminated at the cost
of less readable code. The latency between reading the amgogand setting
the analog output consists of four multiplications, foudiéidns and evaluation
of thesat function. All computations can be done using fixed-point gitons
if necessary. Notice that the code computes the filtered atardvof the process
output and that it has setpoint weighting and anti-windugigation.
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10.6 Further Reading

The history of PID control is very rich and stretches back tolteginning of the
foundation of control theory. Very readable treatmentgaren by BennettBen79

Ben93 and Mindel Min02]. The Ziegler—Nichols rules for tuning PID controllers,

first presented in 1942ZN42], were developed based on extensive experiments
with pneumatic simulators and Vannevar Bush's differdraizlyzer at MIT. An
interesting view of the development of the Ziegler—Nichaoles is given in an in-
terview with Ziegler Bli90]. An industrial perspective on PID control is given in
[Bia99], [Shi9q§ and [YHI1] and in the papem)MO02] cited in the beginning of this
chapter. A comprehensive presentation of PID control isrgingAHO5]. Interac-

tive learning tools for PID control can be downloaded friottp://www.calerga.com/contri

Exercises

10.1 (Ideal PID controllers) Consider the systems representethdyplock dia-
grams in Figurel0.1 Assume that the process has the transfer fund®i@) =
b/(s+a) and show that the transfer functions frerto y are

B bkys? + bkys+ bk
(@) Gur(S) = {1 bky)? 1 (a+ bo)s b
bk
by G = :
(b} Cr(9) = T B9+ (a+ bo)s + b
Pick some parameters and compare the step responses oftdrasys

10.2 Consider a second-order process with the transfer function

b
P(s) = SP+ast+ap
The closed loop system with a PI controller is a third-ordeitesys Show that
it is possible to position the closed loop poles as long assthm of the poles
is —a;. Give equations for the parameters that give the closed ¢bapacteristic
polynomial
(s+ 00) (5> + 2otns+ 6.

10.3 Consider a system with the transfer functiefs) = (s+ 1)~2. Find an in-
tegral controller that gives a closed loop polesat —a and determine the value
of a that maximizes the integral gain. Determine the other pofethe system
and judge if the pole can be considered dominant. Compalethét value of the
integral gain given by equationi@.6).


http://www.calerga.com/contrib

EXERCISES 336

10.4 (Ziegler—Nichols tuning) Consider a system with transferction P(s) =
e °/s. Determine the parameters of P, Pl and PID controllers usirgjefieNichols
step and frequency response methods. Compare the paraleis obtained by
the different rules and discuss the results.

10.5 (Vehicle steering) Design a proportional-integral colirofor the vehicle
steering system that gives the closed loop characterigslympmial

$*+ 2008 + 20+ 5.

10.6 (Congestion control) A simplified flow model for TCP transmissie de-
rived in [HMTGOO, LPDO0Z. The linearized dynamics are modeled by the transfer

function b
Carl®) = (s an) (57 20)

which describes the dynamics relating the expected quewgthe to the ex-
pected packet drop. The parameters are given by = 2N?/(c12), ap = 1/Te
andb = ¢?/(2N). The parametec is the bottleneck capacity is the number of
sources feeding the link and is the round-trip delay time. Use the parameter val-
uesN = 75 sourcesC = 1250 packets/s angk = 0.15 and find the parameters of
a PI controller using one of the Ziegler—Nichols rules and teesponding im-
proved rule. Simulate the responses of the closed loop sgstémained with the
PI controllers.

—STe
)

10.7 (Motor drive) Consider the model of the motor drive in Exeec2s10. De-
velop an approximate second-order model of the system amd ts design an
ideal PD controller that gives a closed loop system with eigkres in{ wy &
iapy/1— 2. Add low-pass filtering as shown in equatiob0(13 and explore
how largewy can be made while maintaining a good stability margin. Siteula
the closed loop system with the chosen controller and coertparresults with the
controller based on state feedback in Exeréisel

10.8 Consider the system in Exerci$6.7investigate what happens if the second-
order filtering of the derivative is replace by a first-order filte

10.9(Tuning rules) Apply the Ziegler—Nichols and the modified tgrules to
design PI controllers for systems with the transfer funaion

e s e s

PL= - —eS,
1=—5 P, st 1’ Ps

Compute the stability margins and explore any patterns.

10.10 (Windup and anti-windup) Consider a PI controller of the fo@ts) =
1+ 1/s for a process with input that saturates wheh> 1, and whose linear
dynamics are given by the transfer functi®(s) = 1/s. Simulate the response of
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the system to step changes in the reference signal of magrit2 and 3. Repeat
the simulation when the windup protection scheme in Fiduxd 1is used.

10.11 (Windup protection by conditional integration) Many metschave been
proposed to avoid integrator windup. One method catledditional integration
is to update the integral only when the error is sufficientlanTo illustrate this
method we consider a system with PI control described by

dx, Je iflg<e
dt |0 if|g>ep,

d
% =, u = saty, (kpe+kixo),

wheree = r — x. Plot the phase portrait of the system for the parameter salue
kp =1,k =1,up =1 andey = 1 and discuss the properties of the system. The ex-
ample illustrates the difficulties of introducing ad hoc rnoeérities without care-

ful analysis.



Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with sipsiéteriora-
tions in another frequency range, and the price is higher if the plant is pe&n unstable.
This applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 198&03.

In this chapter we continue to explore the use of frequencyado techniques
with a focus on the design of feedback systems. We begin witbra thorough de-
scription of the performance specifications for control syst and then introduce
the concept of “loop shaping” as a mechanism for designimgrofers in the fre-
quency domain. We also introduce some fundamental liroitatio performance
for systems with time delays and right half-plane poles ardz

11.1 Sensitivity Functions

In the previous chapter, we considered the use of propattiotegral-derivative
(PID) feedback as a mechanism for designing a feedback dientfor a given
process. In this chapter we will expand our approach to dehkuricher repertoire
of tools for shaping the frequency response of the closepl $gstem.

One of the key ideas in this chapter is that we can design thavi@ of the
closed loop system by focusing on the open loop transfettifumcThis same ap-
proach was used in studying stability using the Nyquisedodh: we plotted the
Nyquist plot for theopenloop transfer function to determine the stability of the
closedloop system. From a design perspective, the use of loop asdbyas is
very powerful: since the loop transfer functionlis= PC, if we can specify the
desired performance in terms of propertied pfve can directly see the impact of
changes in the controll€. This is much easier, for example, than trying to rea-
son directly about the tracking response of the closed lgsfem, whose transfer
function is given byGy, = PC/(1+ PC).

We will start by investigating some key properties of thedtesck loop. A
block diagram of a basic feedback loop is shown in Fidulrd. The system loop is
composed of two components: the process and the contrbilercontroller itself
has two blocks: the feedback bloCkand the feedforward blodk. There are two
disturbances acting on the process, the load disturbdrasel the measurement
noisen. The load disturbance represents disturbances that devertitess away
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Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedora. Th
controller has a feedback blo€kand a feedforward block. The external signals are the
reference signal, the load disturbanceé and the measurement noiseThe process output
is n, and the control signal is.

from its desired behavior, while the measurement noiseesgmts disturbances
that corrupt information about the process given by the@snsn the figure, the
load disturbance is assumed to act on the process input. §hisimplification
since disturbances often enter the process in many diffarays, but it allows us
to streamline the presentation without significant loss okgality.

The process output is the real variable that we want to control. Control is
based on the measured siggalvhere the measurements are corrupted by mea-
surement noisa. The process is influenced by the controller via the contrdt var
ableu. The process is thus a system with three inputs—the contrightau, the
load disturbance and the measurement noise-and one output—the measured
signaly. The controller is a system with two inputs and one output. Tipaitis
are the measured signahnd the reference signgland the output is the control
signalu. Note that the control signalis an input to the process and the output of
the controller, and that the measured signa the output of the process and an
input to the controller.

The feedback loop in Figurgl.lis influenced by three external signals, the
referencer, the load disturbancd and the measurement noiseAny of the re-
maining signals can be of interest in controller designeaeling on the particular
application. Since the system is linear, the relations betwke inputs and the in-
teresting signals can be expressed in terms of the transfetibns. The following
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relations are obtained from the block diagram in Figltel:

PCF P 1
1+PC 1+PC 1+PC
y PCF P —PC
n 1+PC 11PC 1+PC| (,
CF 1 —C
VI = | 13pCc 1:1PC 1:PC [d] (11.1)
u CF  -PC -C n
e 1+PC 1+PC 1+PC
F P —1

1+PC 1+PC 14PC

In addition, we can write the transfer function for the evetween the reference
r and the output) (not an explicit signal in the diagram), which satisfies

1 PCF -P q PC
e=r-n=( 1+PC)r+ 1+pc 1P

There are several interesting conclusions we can draw fr@setlequations.
First we can observe that several transfer functions areame &ind that the ma-
jority of the relations are given by the following set of siansfer functions, which
we call theGang of Six

PCF PC P
= T=—"_ PS= —
1+ PC’ 1+PC’ 1+ PC’
+CF +c 1+ (11.2)
CFS=17pcc  “S~1ipc S~ 1ipc

The transfer functions in the first column give the respons@éefrocess output
and control signal to the reference signal. The second colyivas the response
of the control variable to the load disturbance and the nasd the final col-
umn gives the response of the process output to those twesirgatice that only
four transfer functions are required to describe how théesyseacts to load dis-
turbances and measurement noise, and that two additi@medfér functions are
required to describe how the system responds to referegialsi

The linear behavior of the system is determined by the sixstearfunctions
in equation 11.2, and specifications can be expressed in terms of thesedransf
functions. The special case wheEn= 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feediankthe error only and
the system is completely characterized by four transfectfans, namely, the four
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rightmost transfer functions in equatiohl(2, which have specific names:

1 sensitivity p load
S= ; PS= sensitivity
1+PC function 1+PC function
(11.3)
pc  complementary C noise
T= sensitivity CS= sensitivity
1+PC function 1+PC function

These transfer functions and their equivalent systems desldhe Gang of Four
The load sensitivity function is sometimes called the ingumisitivity function and
the noise sensitivity function is sometimes called the ougensitivity function.
These transfer functions have many interesting propettiasvtill be discussed
in detail in the rest of the chapter. Good insight into thesmerties is essential
in understanding the performance of feedback systems &optinposes of both
analysis and design.

Analyzing the Gang of Six, we find that the feedback contrdllenfluences
the effects of load disturbances and measurement noiseeNbat measurement
noise enters the process via the feedback. In Sedtbait will be shown that
the controller influences the sensitivity of the closed loogptocess variations.
The feedforward paif of the controller influences only the response to command
signals.

In Chapter9 we focused on the loop transfer function, and we found tlsat it
properties gave useful insights into the properties of &esysTo make a proper
assessment of a feedback system it is necessary to cortmdmoperties of all the
transfer functionsX1.2 in the Gang of Six or the Gang of Four, as illustrated in
the following example.

Example 11.1 The loop transfer function gives only limited insight

Consider a process with the transfer functi(s) = 1/(s—a) controlled by a PI
controller with error feedback having the transfer funet@is) = k(s—a)/s. The
loop transfer function i& = k/s, and the sensitivity functions are

_ PC :L PS_ P _ S

1+PC s+k’ 1+PC (s—a)(s+k)’
cS— C :k(s—a) 1 s

1+PC  s+k '’ 1+PC  s+k’

Notice that the factos— a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivitgtfon or the comple-
mentary sensitivity function. However, cancellation o flactor is very serious if

a > 0 since the transfer functiddSrelating load disturbances to process output is
then unstable. In particular, a small disturbad@an lead to an unbounded output,
which is clearly not desirable. 0
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EC |-

Figure 11.2: A more general representation of a feedback system. The propess iepre-
sents the control signal, which can be manipulated, and the processvingpitesents other
signals that influence the process. The process owtjsuthe vector of measured variables
andz are other signals of interest.

The system in Figur&l.1lrepresents a special case because it is assumed that
the load disturbance enters at the process input and thateheured output is the
sum of the process variable and the measurement noiserlizstes can enter in
many different ways, and the sensors may have dynamics. A& aiustract way
to capture the general case is shown in Figlte2 which has only two blocks
representing the proces$”) and the controller€’). The process has two inputs,
the control signali and a vector of disturbances and two outputs, the measured
signaly and a vector of signalsthat is used to specify performance. If we omit the
reference input, the system in Figurgél.1can be captured by choosing= (d,n)
andz= (n,v,e¢). The process transfer functio®? is a 5x 3 matrix, and the
controller transfer functiof® is a 1x 1 matrix; compare with Exerciskl.3

Processes with multiple inputs and outputs can also be cenesldy regarding
u andy as vectors. Representations at these higher levels obabetr are useful
for the development of theory because they make it possilftectis on fundamen-
tals and to solve general problems with a wide range of agipdios. However, care
must be exercised to maintain the coupling to the real-woolitrol problems we
intend to solve.

11.2 Feedforward Design

Most of our analysis and design tools up to this point haveised on the role of
feedback and its effect on the dynamics of the system. Fegdfdris a simple
and powerful technique that complements feedback. It canskee both to im-
prove the response to reference signals and to reduce #w effmeasurable dis-
turbances. Feedforward compensation admits perfect etioimof disturbances,
but it is much more sensitive to process variations thanlfaekicompensation. A
general scheme for feedforward was discussed in Se@tlasing Figure7.10

A simple form of feedforward for PID controllers was discu$$e Section10.5

The controller in Figurd 1.1also has a feedforward block to improve response to
command signals. An alternative version of feedforwarchms in Figurell.3
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Figure 11.3: Block diagram of a system with feedforward compensation for improeed

sponse to reference signals and measured disturbances (2 DOfR)syidtece feedforward

elements are preserfixn(s) sets the desired output valug,(s) generates the feedforward
commandy, andF4(s) attempts to cancel disturbances.

which we will use in this section to understand some of thddraffs between
feedforward and feedback.

Controllers with two degrees of freedom (feedforward aredifeack) have the
advantage that the response to reference signals can lpael@sndependently of
the design for disturbance attenuation and robustness. iérst consider the
response to reference signals, and we will therefore llyittssume that the load
disturbancel is zero. LetR,, represent the ideal response of the system to reference
signals. The feedforward compensator is characterized dyrémsfer functions
F. andFy. When the reference is changed, the transfer fundtiogenerates the
signalug, which is chosen to give the desired output when applied@4 ito the
process. Under ideal conditions the outgus then equal to, the error signal
is zero and there will be no feedback action. If there araudistnces or modeling
errors, the signalgy, andy will differ. The feedback then attempts to bring the
error to zero.

To make a formal analysis, we compute the transfer functiomfreference

input to process output:
P(CRn+Fy) _  PR—Fn

Cr(s) == e ~Fmt ipc
whereP = P,P;. The first term represents the desired transfer function. Té¢wnske
term can be made small in two ways. Feedforward compensatiome used to
makePF, — Fy, small, or feedback compensation can be used to makeQlarge.
Perfect feedforward compensation is obtained by choosing

F=m
Design of feedforward using transfer functions is thus g #mple task. Notice
that the feedforward compensat®rcontains an inverse model of the process dy-

(11.4)

(11.5)
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namics.

Feedback and feedforward have different properties. Fesdfdraction is ob-
tained by matching two transfer functions, requiring psedinowledge of the pro-
cess dynamics, while feedback attempts to make the errdt Byndividing it by
a large quantity. For a controller having integral actidrg toop gain is large for
low frequencies, and it is thus sufficient to make sure thattralition for ideal
feedforward holds at higher frequencies. This is easier thang to satisfy the
condition (L1.5 for all frequencies.

We will now consider reduction of the effects of the load alibanced in Fig-
ure 11.3 by feedforward control. We assume that the disturbanceabigrmea-
sured and that the disturbance enters the process dynanadsniown way (cap-
tured byP; andP,). The effect of the disturbance can be reduced by feeding the
measured signal through a dynamical system with the trafisietionFy. Assum-
ing that the referenceis zero, we can use block diagram algebra to find that the
transfer function from the disturbance to the process dusgpu

P(1+ FyPy)
1+PC
whereP = PP,. The effect of the disturbance can be reduced by makindrdP;

small (feedforward) or by making-& PC large (feedback). Perfect compensation
is obtained by choosing

Gya = (11.6)

Fa=—P 1, (11.7)

requiring inversion of the transfer functiéh.

As in the case of reference tracking, disturbance attematan be accom-
plished by combining feedback and feedforward control. Slow-frequency dis-
turbances can be eliminated by feedback, we require thefdsedforward only
for high-frequency disturbances, and the transfer funcigin equation 11.7)
can then be computed using an approximatioRdbr high frequencies.

Equations {1.5 and (L1.7) give analytic expressions for the feedforward com-
pensator. To obtain a transfer function that can be impléeaanithout difficulties
we require that the feedforward compensator be stable atdt thoes not require
differentiation. Therefore there may be constraints oniptsshoices of the de-
sired responsép,, and approximations are needed if the process has zeros in th
right half-plane or time delays.

Example 11.2 Vehicle steering

A linearized model for vehicle steering was given in Exant#e The normalized
transfer function from steering angdeto lateral deviatiory is P(s) = (ys+ 1) /s?.
For a lane transfer system we would like to have a nice regpwiteout overshoot,
and we therefore choose the desired responde,@ = a2/(s+ a)?, where the
response speed or aggressiveness of the steering is go\®ritee parameted.
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Figure 11.4: Feedforward control for vehicle steering. The plot on the left showdrdjec-
tory generated by the controller for changing lanes. The plots on thediight the lateral
deviationy (top) and the steering angé (bottom) for a smooth lane change control using
feedforward (based on the linearized model).

Equation (1.5 gives

£ Fm_ a’s?

TP (sl (st+a)?

which is a stable transfer function as longyas 0. Figurell.4shows the responses
of the system foa = 0.5. The figure shows that a lane change is accomplished in
about 10 vehicle lengths with smooth steering angles. Thyesirsteering angle
is slightly larger than 0.1 rad (. Using the scaled variables, the curve showing
lateral deviationsy(as a function ot) can also be interpreted as the vehicle path
(y as a function ok) with the vehicle length as the length unit. O

A major advantage of controllers with two degrees of freedbat combine
feedback and feedforward is that the control design proldambe split in two
parts. The feedback controll€rcan be designed to give good robustness and ef-
fective disturbance attenuation, and the feedforwardgzarte designed indepen-
dently to give the desired response to command signals.

11.3 Performance Specifications

A key element of the control design process is how we spebiydesired per-
formance of the system. It is also important for users to tstdad performance
specifications so that they know what to ask for and how to tegseem. Specifi-
cations are often given in terms of robustness to processtizars and responses
to reference signals and disturbances. They can be givenrrs tef both time
and frequency responses. Specifications for the step resfmreference signals
were given in Figuré.9in Section5.3 and in Sectior6.3. Robustness specifica-
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tions based on frequency domain concepts were provided itio8éx3 and will

be considered further in Chaptk?. The specifications discussed previously were
based on the loop transfer function. Since we found in Sedtiohthat a single
transfer function did not always characterize the propsitif the closed loop com-
pletely, we will give a more complete discussion of speciitrat in this section,
based on the full Gang of Six.

The transfer function gives a good characterization of theai behavior of a
system. To provide specifications it is desirable to captueecharacteristic prop-
erties of a system with a few parameters. Common featuresmer responses
are overshoot, rise time and settling time, as shown in Fi§i@eCommon fea-
tures of frequency responses are resonant peak, peak fi@gumin crossover
frequency and bandwidth. fesonant peaks a maximum of the gain, and the
peak frequency is the corresponding frequency. Gaie crossover frequendg
the frequency where the open loop gain is equal one. bEmelwidthis defined as
the frequency range where the closed loop gairig2 of the low-frequency gain
(low-pass), mid-frequency gain (band-pass) or high-feemqy gain (high-pass).
There are interesting relations between specifications iritiie and frequency
domains. Roughly speaking, the behavior of time respormwestiort times is re-
lated to the behavior of frequency responses at high frefje@gnand vice versa.
The precise relations are not trivial to derive.

Response to Reference Signals

Consider the basic feedback loop in Figlifel The response to reference signals
is described by the transfer functio, = PCF/(1+ PC) andGy, = CF/(1+
PC) (F = 1 for systems with error feedback). Notice that it is usefutonsider
both the response of the output and that of the control signgbarticular, the
control signal response allows us to judge the magnituderatedof the control
signal required to obtain the output response.

Example 11.3 Third-order system

Consider a process with the transfer functis) = (s+1)~2 and a PI controller
with error feedback having the gaiks= 0.6 andk; = 0.5. The responses are illus-
trated in Figurel1l.5 The solid lines show results for a proportional-integra) (Pl
controller with error feedback. The dashed lines show redaita controller with
feedforward designed to give the transfer funct®p = (0.5s+ 1)=3. Looking
at the time responses, we find that the controller with feeddod gives a faster
response with no overshoot. However, much larger contgoleds are required to
obtain the fast response. The largest value of the controbakig 8, compared to
1.2 for the regular PI controller. The controller with feedfard has a larger band-
width (marked witho) and no resonant peak. The transfer funci&p also has
higher gain at high frequencies. O
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Figure 11.5: Reference signal responses. The responses in process gupdtcontrol
signalu to a unit step in the reference sigmadre shown in (a), and the gain curvesG

and Gy, are shown in (b). Results with PI control with error feedback are shopvsolid
lines, and the dashed lines show results for a controller with a feedfdeanpensator.

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to coneptre output of the
closed loop system in FigutEl.1with the output of the corresponding open loop
system obtained by settil@®= 0. If we let the disturbances for the open and closed
loop systems be identical, the output of the closed loopesyss then obtained
simply by passing the open loop output through a system Wwithttansfer func-
tion S. The sensitivity function tells how the variations in theuitare influenced
by feedback (Exercisgl.7). Disturbances with frequencies such tf#iw)| < 1
are attenuated, but disturbances with frequencies su¢hStia)| > 1 are am-
plified by feedback. The maximum sensitivit§s, which occurs at the frequency
Whns IS thus a measure of the largest amplification of the disho&s. The max-
imum magnitude of (14 L) is also the minimum ofl+ L|, which is precisely
the stability margirsy defined in Sectio®.3, so thatMs = 1/sy. The maximum
sensitivity is therefore also a robustness measure.

If the sensitivity function is known, the potential imprewents by feedback
can be evaluated simply by recording a typical output andifilgeit through the
sensitivity function. A plot of the gain curve of the senstif function is a good
way to make an assessment of the disturbance attenuatiare @ie sensitivity
function depends only on the loop transfer function, itspernties can also be vi-
sualized graphically using the Nyquist plot of the loop &fan function. This is
illustrated in Figurel1l.6 The complex number % L(iw) can be represented as
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Figure 11.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function (a) can be used to calcuf@ tiperties of the
sensitivity function through the relatidd= 1/(1+L). The sensitivity crossover frequency
wsc and the frequencyams where the sensitivity has its largest value are indicated in the
sensitivity plot. The Nyquist plot (b) shows the same information in a diffeform. All
points inside the dashed circle have sensitivities greater than 1.

the vector from the point-1 to the pointL(iw) on the Nyquist curve. The sensi-
tivity is thus less than 1 for all points outside a circle witldius 1 and center at
—1. Disturbances with frequencies in this range are attenuay the feedback.

The transfer functiorGyq from load disturbance to process outpuy for the
system in Figurd.1.1is

P T
Gyd = 1+PC_PS_ c (11.8)

Since load disturbances typically have low frequencies,gitural to focus on the
behavior of the transfer function at low frequencies. Foystem withP(0) # 0
and a controller with integral action, the controller gaoeg to infinity for small

frequencies and we have the following approximation forlsma
T 1 s

Cc T CcT Kk’

wherek; is the integral gain. Since the sensitivity functiSigoes to 1 for largss,

we have the approximatid@yy ~ P for high frequencies.

Measurement noise, which typically has high frequenciesegates rapid vari-
ations in the control variable that are detrimental bec#tusgcause wear in many
actuators and can even saturate an actuator. It is thustampoo keep variations
in the control sighal due to measurement noise at reasofeMalis—a typical re-
quirement is that the variations are only a fraction of thenspf the control signal.
The variations can be influenced by filtering and by proper desfghe high-
frequency properties of the controller.

Gyd (11.9)
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Figure 11.7: Disturbance responses. The time and frequency responses espraatput/
to load disturbancd are shown in (a) and the responses of control sigialmeasurement
noisen are shown in (b).

The effects of measurement noise are captured by the trafusfetion from
the measurement noise to the control signal,

C T
=i pc=CS=p (11.10)

The complementary sensitivity function is close to 1 for lawdquencies @ <
wyc), andGyn can be approximated by1/P. The sensitivity function is close to 1
for high frequenciesc > wyc), andGyn can be approximated byC.

—Gun

Example 11.4 Third-order system

Consider a process with the transfer functifs) = (s+1)~2 and a proportional-
integral-derivative (PID) controller with gairkg = 0.6, ki = 0.5 andky = 2.0. We
augment the controller using a second-order noise filter Wit 0.1, so that its

transfer function is
kaS? + kps+k
C(s) =~ .
S(°T¢/2+sTi +1)

The system responses are illustrated in Fidulre. The response of the output to
a step in the load disturbance in the top part of Figlke7ahas a peak of 0.28 at
timet = 2.73 s. The frequency response in Figlile7ashows that the gain has a
maximum of 0.58 atv = 0.7 rad/s.

The response of the control signal to a step in measuremes# rshown in
Figure11.7h The high-frequency roll-off of the transfer functi@y(iw) is due
to filtering; without it the gain curve in Figurgl.7bwould continue to rise after
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20 rad's. The step response has a peak of 13-a0.08 s. The frequency response
has its peak 20 ab = 14 rad/s. Notice that the peak occurs far above the peak
of the response to load disturbances and far above the gassawer frequency
wyc = 0.78 rad/s. An approximation derived in Exerclde9gives maxCSiw)| ~
kq/Ts = 20, which occurs ao = v/2/Tyq = 14.1 rad/s. 0

11.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that itisdal on the loop trans-
fer function, which is related to the controller transfendtion throughL = PC.

It is thus easy to see how the controller influences the looystea function. To
make an unstable system stable we simply have to bend theidtymuve away
from the critical point.

This simple idea is the basis of several different design ouzlcollectively
calledloop shaping These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. Oneilpitigsis to determine
a loop transfer function that gives a closed loop system thi¢hdesired properties
and to compute the controller &= L/P. Another is to start with the process
transfer function, change its gain and then add poles arab zentil the desired
shape is obtained. In this section we will explore differ@aip-shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfection that gives good
performance and good stability margins. Figde8 shows a typical loop trans-
fer function. Good robustness requires good stability mar¢or good gain and
phase margins), which imposes requirements on the loopfenafunction around
the crossover frequencies,c and wyc. The gain ofL at low frequencies must be
large in order to have good tracking of command signals aradi gdgtenuation
of low-frequency disturbances. SinSe=1/(1+L), it follows that for frequencies
where|L| > 101 disturbances will be attenuated by a factor of 100 antt#ick&ing
error is less than 1%. It is therefore desirable to have alargssover frequency
and a steep (negative) slope of the gain curve. The gain atrleguéncies can
be increased by a controller with integral action, whichis®aalledlag compen-
sation To avoid injecting too much measurement noise into theesysthe loop
transfer function should have low gain at high frequenaidsch is calledhigh-
frequency roll-off The choice of gain crossover frequency is a compromise among
attenuation of load disturbances, injection of measurémeise and robustness.
Bode’s relations (see Secti®M) impose restrictions on the shape of the loop
transfer function. Equatior®(8) implies that the slope of the gain curve at gain
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Figure 11.8: Gain curve and sensitivity functions for a typical loop transfer functidme
plot on the left shows the gain curve and the plots on the right show theigéngunction
and complementary sensitivity function. The gain crossover frequagg and the slope
ngc of the gain curve at crossover are important parameters that degetineimobustness of
closed loop systems. At low frequency, a large magnitudé forovides good load distur-
bance rejection and reference tracking, while at high frequency b e gain is used to
avoid amplifying measurement noise.

crossover cannot be too steep. If the gain curve has a cosébae, we have the
following relation between slop&y. and phase margi¢m:

2m

This formula is a reasonable approximation when the gainecdoes not deviate
too much from a straight line. It follows from equatioh1(1]) that the phase
margins 30, 45’ and 60 correspond to the slopes5/3, —3/2 and—4/3.

Loop shaping is a trial-and-error procedure. We typicallytswith a Bode plot
of the process transfer function. We then attempt to shapletp transfer function
by changing the controller gain and adding poles and zertigtoontroller trans-
fer function. Different performance specifications are estdd for each controller
as we attempt to balance many different requirements bystidgucontroller pa-
rameters and complexity. Loop shaping is straightforwaoly to single-input,
single-output systems. It can also be applied to systentsamié input and many
outputs by closing the loops one at a time starting with tmetimost loop. The
only limitation for minimum phase systems is that large ghagsds and high con-
troller gains may be required to obtain closed loop systeiitts avfast response.
Many specific procedures are available: they all require éepee, but they also
give good insight into the conflicting requirements. Therefanelamental limita-
tions to what can be achieved for systems that are not miniphase; they will
be discussed in the next section.
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Figure 11.9: Frequency response for lead and lag compens&@s= k(s+a)/(s+ b).
Lead compensation (a) occurs wteex b and provides phase lead betweer- aandw = b.
Lag compensation (b) correspondsate- b and provides low-frequency gain. Pl control is
a special case of lag compensation and PD control is a special caselafdmpensation.
PI/PD frequency responses are shown by dashed curves.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfeiction of the process
and add simple compensators with the transfer function

s+a

C(s) = ks+ b (11.12)
The compensator is calledead compensataf a < b, and alag compensatoif
a > b. The PI controller is a special case of a lag compensatortwitld, and the
ideal PD controller is a special case of a lead compensathranit 0. Bode plots
of lead and lag compensators are shown in Fidur® Lag compensation, which
increases the gain at low frequencies, is typically usedniorove tracking per-
formance and disturbance attenuation at low frequenciesig@nsators that are
tailored to specific disturbances can be also designed, asshdexercisel1.1Q
Lead compensation is typically used to improve phase maifdjia.following ex-
amples give illustrations.

Example 11.5 Atomic force microscope in tapping mode

A simple model of the dynamics of the vertical motion of annaitoforce micro-

scope in tapping mode was given in Exerc&2 The transfer function for the

system dynamics is

a(l—e ™)
St(s+a)

P(s) =

wherea = {an, T = 21/ wp and the gain has been normalized to 1. A Bode plot

)
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Figure 11.10:Loop-shaping design of a controller for an atomic force microscopejirtg
mode. (a) Bode plots of the process (dashed), the loop transfardrfior an integral con-
troller with critical gain (dash-dotted) and a PI controller (solid) adjustedvi® igasonable
robustness. (b) Gain curves for the Gang of Four for the system.

of this transfer function for the parameters- 1 andt = 0.25 is shown in dashed
curves in Figurel1.10a To improve the attenuation of load disturbances we in-
crease the low-frequency gain by introducing an integratrdler. The loop trans-
fer function then becomds= kiP(s)/s, and we adjust the gain so that the phase
margin is zero, giving; = 8.3. Notice the increase of the gain at low frequencies.
The Bode plot is shown by the dash-dotted line in FigLitel Oa where the critical
point is indicated by. To improve the phase margin we introduce proportional
action and we increase the proportional gigirgradually until reasonable values
of the sensitivities are obtained. The vakie= 3.5 gives maximum sensitivity
Ms = 1.6 and maximum complementary sensitivif = 1.3. The loop transfer
function is shown in solid lines in FigurEl.10a Notice the significant increase of
the phase margin compared with the purely integral comtrétiash-dotted line).

To evaluate the design we also compute the gain curves afthsfer functions
in the Gang of Four. They are shown in Figdre 10b The peaks of the sensitivity
curves are reasonable, and the plotR& shows that the largest value BSis
0.3, which implies that the load disturbances are well atiéed. The plot 0€S
shows that the largest controller gain is 6. The controllerdngain of 3.5 at high
frequencies, and hence we may consider adding high-freguefi-off. O

A common problem in the design of feedback systems is thgitthee margin
is too small, and phadead must then be added to the system. If weaetb in
equation 11.12, we add phase lead in the frequency range between the pale/z
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Symbol  Description Value
m Vehicle mass 4.0 kg
J Vehicle inertia,¢3 axis  0.0475 kgrh
r Force moment arm 25.0cm
y c Damping coefficient 0.05 kgm/s
g Gravitational constant 9.8 nfls
(a) Simplified model (b) Parameter values

Figure 11.11:Roll control of a vectored thrust aircraft. (a) The roll an§lé controlled by
applying maneuvering thrusters, resulting in a moment generatésgl. [f{p) The table lists
the parameter values for a laboratory version of the system.

pair (and extending approximately £0n frequency in each direction). By appro-
priately choosing the location of this phase lead, we cawmigeoadditional phase
margin at the gain crossover frequency.

Because the phase of a transfer function is related to tpe siitthe magnitude,
increasing the phase requires increasing the gain of thettaasfer function over
the frequency range in which the lead compensation is apdlieExercisell.11
it is shown that the gain increases exponentially with theamhof phase lead. We
can also think of the lead compensator as changing the sfdbe transfer func-
tion and thus shaping the loop transfer function in the @esisregion (although
it can be applied elsewhere as well).

Example 11.6 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust aircsafch as the one il-
lustrated in Figurel1.11 Following Exercise8.10 we model the system with a
second-order transfer function of the form
r

P(S) - J§7
with the parameters given in Figue.11b We take as our performance speci-
fication that we would like less than 1% error in steady statklass than 10%
tracking error up to 10 rad/s.

The open loop transfer function is shown in Figdré.12a To achieve our
performance specification, we would like to have a gain ofatl&0 at a frequency
of 10 rad/s, requiring the gain crossover frequency to behajlzer frequency. We
see from the loop shape that in order to achieve the desiréatpeance we cannot
simply increase the gain since this would give a very low phaargin. Instead,
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Figure 11.12: Control design for a vectored thrust aircraft using lead compensafion
Bode plot for the open loop proceBsis shown in (a) and the loop transfer functibn=
PC using a lead compensator in (b). Note the phase lead in the crossoieT negrw =

100 rad/s.

we must increase the phase at the desired crossover frggquenc

To accomplish this, we use a lead compensdtdrl? with a= 2 andb = 50.
We then set the gain of the system to provide a large loop gaito the desired
bandwidth, as shown in Figuiel.12b We see that this system has a gain of greater
than 10 at all frequencies up to 10 rad/s and that it has mare 6F of phase

margin. O

The action of a lead compensator is essentially the sametasf tha derivative
portion of a PID controller. As described in Sectibd.5 we often use a filter for
the derivative action of a PID controller to limit the highe§uency gain. This same
effect is present in a lead compensator through the pae-di.

Equation (1.12 is a first-order compensator and can provide up to &0
phase lead. Larger phase lead can be obtained by using a-oigiegrlead com-
pensator (Exercis#l.17):

a<hb.

11.5 Fundamental Limitations

Although loop shaping gives us a great deal of flexibility irsigaing the closed
loop response of a system, there are certain fundamentis lon what can be
achieved. We consider here some of the primary performamigtions that can
occur because of difficult dynamics; additional limitatioakted to robustness are

considered in the next chapter.
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Right Half-Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to @ntihe limitations are
related to poles and zeros in the right half-plane and timiayde To explore the
limitations caused by poles and zeros in the right half-ghlae factor the process

transfer function as
P(S) = Pmp(S)Pap(s), (11.13)

wherePy,pis the minimum phase part afidp is the nonminimum phase part. The
factorization is normalized so thfsp(iw)| = 1, and the sign is chosen so tifap
has negative phase. The transfer functpis called arall-pass systerhecause
it has unit gain for all frequencies. Requiring that the gheargin bep,,, we get

argL (iwye) = argPap(iwyc) + argPmp(iwye) +argC(iwye) > — 1+ ¢m, (11.14)

whereC is the controller transfer function. Leyc be the slope of the gain curve
at the crossover frequency. Sinégp(iw)| = 1, it follows that

dlog|L(iw)]| dlog|Pnp(iw)C(iw)|
ngc = —_ =
dlogw dlogw
(A):(Abc (A):(Ahc

Assuming that the slopey is negative, it has to be larger thai2 for the system
to be stable. It follows from Bode’s relations, equati®rsj, that

argPmp(iw) +argC(iw) ~ ngcg .
Combining this with equatiorl(l.14 gives the following inequality for the allow-
able phase lag of the all-pass part at the gain crossoverdrey:

—argPap(itye) < mM— m+ ngcg = ¢. (11.15)

This condition, which we call thgain crossover frequency inequalishows that
the gain crossover frequency must be chosen so that the wmed the non-
minimum phase component is not too large. For systems wgh hbbustness
requirements we may choose a phase margin 6f (@@, = 17/3) and a slope
ngc = —1, which gives an admissible phase lag= 11/6 = 0.52 rad (30). For
systems where we can accept a lower robustness we may chpbsse@margin
of 45° (¢m = 11/4) and the slopeyc = —1/2, which gives an admissible phase lag
¢ = /2= 1.57 rad (90).

The crossover frequency inequality shows that nonminimuas@lcomponents
impose severe restrictions on possible crossover fredgegnit also means that
there are systems that cannot be controlled with sufficiextilgy margins. We
illustrate the limitations in a number of commonly encouatksituations.

Example 11.7 Zero in the right half-plane
The nonminimum phase part of the process transfer functioa &ystem with a
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right half-plane zero is s
Pap(s) = ——
ap(S) TS
wherez > 0. The phase lag of the nonminimum phase part is
: W
—argPap(iw) = 2arctar?.

Since the phase lag &, increases with frequency, the inequalify1 (15 gives
the following bound on the crossover frequency:

Wye < ztan(¢;/2). (11.16)

With ¢, = 11/3 we getwyc < 0.6z Slow right half-plane zerogzémall) therefore
give tighter restrictions on possible gain crossover fegguies than fast right half-
plane zeros. O

Time delays also impose limitations similar to those givgrzéros in the right
half-plane. We can understand this intuitively from the @agproximation
st 1-05st _ 2/T—s
1+05st 2/T+S
A long time delay is thus equivalent to a slow right half-pareroz= 2/1.

Example 11.8 Pole in the right half-plane
The nonminimum phase part of the transfer function for a systéth a pole in
the right half-plane is

_S+p
Pap(s) = . — D’
wherep > 0. The phase lag of the nonminimum phase part is

—argPap(iw) =2 arctamz,

and the crossover frequency inequality becomes

Wye > __P (11.17)

tan(¢/2)’
Right half-plane poles thus require that the closed loopesy$iave a sufficiently
high bandwidth. Withg; = 11/3 we getwyc > 1.7p. Fast right half-plane poles(
large) therefore give tighter restrictions on possiblegaossover frequencies than
slow right half-plane poles. The control of unstable systémgsoses minimum
bandwidth requirements for process actuators and sensors. O

We will now consider systems with a right half-plane zerand a right half-
plane polep. If p = z there will be an unstable subsystem that is neither reach-
able nor observable, and the system cannot be stabilizedSsetion7.5). We
can therefore expect that the system is difficult to controhé right half-plane
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Figure 11.13:Example limitations due to the gain crossover frequency inequality. The fig-
ures show the phase lag of the all-pass faBjgras a function of frequency. Since the phase
lag of P,y at the gain crossover frequency cannot be too large, it is necesselypose the
gain crossover frequency properly. All systems have a right Halieppole as = 1. The
system in (a) has zerosst 2, 5, 20 and 100 (solid lines) andst 0.5, 0.2, 0.05 and 0.01
(dashed lines). The system in (b) has time delays0.02 0.1, 0.5 and 1.

pole and zero are close. A straightforward way to use thesok@s frequency in-
equality is to plot the phase of the nonminimum phase faR{grof the process
transfer function. Such a plot, which can be incorporatechiordinary Bode plot,
will immediately show the permissible gain crossover freagies. An illustration
is given in Figurell.13 which shows the phase &%, for systems with a right
half-plane pole/zero pair and systems with a right halfiplpole and a time delay.
If we require that the phase lafg of the nonminimum phase factor be less than
90°, we must require that the ratiy p be larger than 6 or smaller than 1/6 for
systems with right half-plane poles and zeros and that theéymt pt be less than
0.3 for systems with a time delay and a right half-plane petice the symmetry
in the problem forz > p andz < p: in either case the zeros and the poles must be
sufficiently far apart (Exercisgl.12. Also notice that possible values of the gain
crossover frequenayyc are quite restricted.

Using the theory of functions of complex variables, it canshewn that for
systems with a right half-plane popeand a right half-plane zem(or a time delay
T7), any stabilizing controller gives sensitivity functiowith the property

p+z .
— sup|T (iw)| > e’.
g SWRT(w)
This result is proven in Exerciskl.13

As the examples above show, right half-plane poles and aago#icantly limit
the achievable performance of a system, hence one woultbléweoid these when-

ever possible. The poles of a system depend on the intrinsiardics of the sys-

sup|S(iw)| > (11.18)
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tem and are given by the eigenvalues of the dynamics matoia linear system.

Sensors and actuators have no effect on the poles; the onlyoaghyange poles

is to redesign the system. Notice that this does not imply tihatable systems
should be avoided. Unstable system may actually have aalyesitone example is
high-performance supersonic aircraft.

The zeros of a system depend on how the sensors and actuatcmuated to
the states. The zeros depend on all the mat¢ds C andD in a linear system.
The zeros can thus be influenced by moving the sensors andastaaby adding
sensors and actuators. Notice that a fully actuated syBtenh does not have any
zeros.

Example 11.9 Balance system
As an example of a system with both right half-plane poleszands, consider the
balance system with zero damping, whose dynamics are given b

Hoo — mi
OF = (M — m219)2 + mgIM’
—Js’>+mgl

(= (Mg — nPl2)? + mgIM) -

Assume that we want to stabilize the pendulum by using thepaesition as the
measured signal. The transfer function from the input férde the cart position
p has poles{0,0,++/mgIM /(M —n¥?12)} and zeros{++/mgl/3}. Using the
parameters in Example.7, the right half-plane pole is g = 2.68 and the zero
is atz= 2.09. Equation 11.18 then givegS(iw)| > 8, which shows that it is not
possible to control the system robustly.

The right half-plane zero of the system can be eliminated lapghng the out-
put of the system. For example, if we choose the output tespond to a position
at a distance along the pendulum, we haye- p—r sinf and the transfer function
for the linearized output becomes

(mlr — 3%)s? +mgl
(— (Mg — mPl2)? + mglM) -

If we chooser sufficiently large, thermlr — J > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary gefidne gain crossover
frequency inequality is then based just on the right hafplpole (Exampl&l.8).

If our admissible phase lag for the nonminimum phase papt is 45°, then our
gain crossover must satisfy

Hyr = Hpr —rHgr =

P _
Wyc > m = 6.48rad/s

If the actuators have sufficiently high bandwidth, e.g., adiaof 10 abovew, or
roughly 10 Hz, then we can provide robust tracking up to treégdiency. O
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Bode’s Integral Formula

In addition to providing adequate phase margin for robutibty, a typical con-
trol design will have to satisfy performance conditions loa $ensitivity functions
(Gang of Four). In particular, the sensitivity functi8e= 1/(1+ PC) represents the
disturbance attenuation and also relates the tracking etoathe reference signal:
we usually want the sensitivity to be small over the rangeexdiencies where we
want small tracking error and good disturbance attenuafidrasic problem is to
investigate ifS can be made small over a large frequency range. We will syart b
investigating an example.

Example 11.10 System that admits small sensitivities
Consider a closed loop system consisting of a first-orderga®and a proportional
controller. Let the loop transfer function be

k
L(s)=PC=——
(s) s+1’
where parametekis the controller gain. The sensitivity function is
s+1
§)=——
) s+1+k
and we have
. 1+ w?
[Siew)] = \/1+2k+ K24 w?’

This implies thatS(iw)| < 1 for all finite frequencies and that the sensitivity can be
made arbitrarily small for any finite frequency by makingufficiently large. [0

The system in Exampl#1.10is unfortunately an exception. The key feature
of the system is that the Nyquist curve of the process is cetalyl contained in
the right half-plane. Such systems are calpadsive and their transfer functions
are positive real For typical control systems there are severe constraimthe
sensitivity function. The following theorem, due to Bodegpyides insights into
the limits of performance under feedback.

Theorem 11.1(Bode’s integral formula) Assume that the loop transfer function
L(s) of a feedback system goes to zero faster thgmas s— o, and let $s)
be the sensitivity function. If the loop transfer functiaastpoles p in the right
half-plane, then the sensitivity function satisfies thaing integral:

/Iog|S(|w|dw /Iog’1+L ank (11.19)

Equation (1.19 implies that there are fundamental limitations to what can
be achieved by control and that control design can be vieweal r@distribution
of disturbance attenuation over different frequenciedrticular, this equation
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(a) Bode integral formula (b) Control design process

Figure 11.14:Interpretation of thevaterbed effecfThe function logS(iw)| is plotted versus
win linear scales in (a). According to Bode’s integral formula.(9, the area of logS(iw)|
above zero must be equal to the area below zero. Gunter Stein’s ettipn of design as a
trade-off of sensitivities at different frequencies is shown in (Br(f{Ste03).

shows that if the sensitivity function is made smaller famgdfrequencies, it must
increase at other frequencies so that the integral ofS0@)| remains constant.
This means that if disturbance attenuation is improved infoemguency range, it
will be worse in another, a property sometime referred thasvaterbed effectt
also follows that systems with open loop poles in the riglti-plane have larger
overall sensitivity than stable systems.

Equation (1.19 can be regarded asanservation lawif the loop transfer
function has no poles in the right half-plane, the equatiompkfies to

/0°°|0g|5(iw)|dw:o.

This formula can be given a nice geometric interpretationllastiated in Fig-
ure11.14 which shows lo¢S(iw)| as a function otv. The area over the horizontal
axis must be equal to the area under the axis when the fregieptotted on a
linear scale. Thus if we wish to make the sensitivity smaller up toesdaquency
wsc, We must balance this by increased sensitivity abmye Control system de-
sign can be viewed as trading the disturbance attenuatisona¢ frequencies for
disturbance amplification at other frequencies. Notice thatsystem in Exam-
ple 11.10violates the condition that lig;,. SL(S) = 0 and hence the integral for-
mula does not apply.

There is result analogous to equatidd (19 for the complementary sensitivity

function:
*log|T (iw)] 1
— ———dw= = 11.20
|2 my o (11.20)
where the summation is over all right half-plane zeros. ¢¢othat slow right half-

plane zeros are worse than fast ones and that fast righplaadé poles are worse
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(a) X-29 aircraft (b) Sensitivity analysis

Figure 11.15:X-29 flight control system. The aircraft makes use of forward swépgs and
a set of canards on the fuselage to achieve high maneuverability @}l€Rired sensitivity
for the closed loop system is shown in (b). We seek to use our contraritytto shape the
sensitivity curve so that we have low sensitivity (good performanced digequencyw, by
creating higher sensitivity up to our actuator bandwidgh

than slow ones.

Example 11.11 X-29 aircraft

As an example of the application of Bode’s integral formwa, present an anal-
ysis of the control system for the X-29 aircraft (see Figltel53, which has an
unusual configuration of aerodynamic surfaces that are weditp enhance its
maneuverability. This analysis was originally carried oytGunter Stein in his
article “Respect the UnstableS{e03, which is also the source of the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parasrtbtdrdescribe
the key properties of the system. The X-29 has longitudinabdyics that are very
similar to inverted pendulum dynamics (ExercB&) and, in particular, have a
pair of poles at approximatelp = +6 and a zero at = 26. The actuators that
stabilize the pitch have a bandwidthef = 40 rad/s and the desired bandwidth of
the pitch control loop isu; = 3 rad/s. Since the ratio of the zero to the pole is only
4.3, we may expect that it may be difficult to achieve the spetibos.

To evaluate the achievable performance, we search for aotdet such that
the sensitivity function is small up to the desired bandtvigihd not greater than
Ms beyond that frequency. Because of the Bode integral fornwéaknow that
Ms must be greater than 1 at high frequencies to balance thé semalitivity at
low frequency. We thus ask if we can find a controller that hasstiape shown
in Figure11.15bwith the smallest value d¥ls. Note that the sensitivity above the
frequencyw, is not specified since we have no actuator authority at thatiénecy.
However, assuming that the process dynamics fall off at friggpuency, the sen-
sitivity at high frequency will approach 1. Thus, we desirglésign a closed loop
system that has low sensitivity at frequencies betowand sensitivity that is not
too large betweeny and ws.

From Bode’s integral formula, we know that whatever congérolve choose,
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equation {1.19 must hold. We will assume that the sensitivity function iigeg

by "
: g w<w
s<|w>r={Mwl
S M§w§%7

corresponding to Figurgl1.15b If we further assume thdk (s)| < &/ w? for fre-
guencies larger than the actuator bandwidth, Bode’s iatéigrcomes

0 wa
/ Iog|S(iw)|dw:/ log|S(iw)|dw
0 0

WL wMg
= / log

0 ]
Evaluation of the integral gives w; + w,logMs = mp or

dw+ (wq — w1)logMs = 1.

Mg = elTP+@1)/@a

This formula tells us what the achievable valuevfwill be for the given control
specifications. In particular, using= 6, w1 = 3 andw, = 40 rad/s, we find that
Ms = 1.75, which means that in the range of frequencies betweeand w;,
disturbances at the input to the process dynamics (suchral will be amplified
by a factor of 175 in terms of their effect on the aircraft.

Another way to view these results is to compute the phaseimtrgt corre-
sponds to the given level of sensitivity. Since the peak sigitginormally occurs
at or near the crossover frequency, we can compute the phag@naorrespond-
ing to Mg = 1.75. As shown in Exercis&l1.14 the maximum achievable phase
margin for this system is approximately“3%vhich is below the usual design limit
of 45° in aerospace systems. The zereat26 limits the maximum gain crossover
that can be achieved. O

Derivation of Bode’s Formula g%

We now derive Bode’s integral formula (Theordrh.1). This is a technical section
that requires some knowledge of the theory of complex vaghn particular
contour integration. Assume that the loop transfer fumctias distinct poles at
s= px in the right half-plane and that(s) goes to zero faster thary4dfor large
values ofs.

Consider the integral of the logarithm of the sensitivitpdtionS(s) = 1/(1+
L(s)) over the contour shown in Figudel.16 The contour encloses the right half-
plane except for the poings= px where the loop transfer functidr(s) = P(s)C(s)
has poles and the sensitivity functi&s) has zeros. The direction of the contour
is counterclockwise.

The integral of the log of the sensitivity function aroundstbbntour is given
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Figure 11.16: Contour used to prove Bode’s theorem. For each right half-planevpele
create a path from the imaginary axis that encircles the pole as showroitbciutter we
have shown only one of the paths that enclose one right half-plane.

by
/r log(S(s)) ds— /iRIRIog(S(S))dS+ /R Iog(S(s))ds+Z /y log(S(s)) ds

:|1+|2—|—|3=O,

whereR is a large semicircle on the right angd is the contour starting on the
imaginary axis as = Im px and a small circle enclosing the pgbe. The integral
is zero because the function I8) is analytic inside the contour. We have

Ilz—i[ log(S(iw))d —2|/ log(|S(iw)|)dw

because the real part of I8 w) is an even function and the imaginary part is an
odd function. Furthermore we have

12~ [ log(S(s))ds= — [ log(1+L(s))ds~— [ L(s)ds

R

SinceL(s) goes to zero faster thary4dfor larges, the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integrhl. For this purpose we split the contour into three
partsX., yandX_, as indicated in Figur&l.16 We can then write the integral as

I3:/X+ IogS(s)ds+/ongS(s)ds+/x logS(s)ds

The contoury is a small circle with radius around the polgy. The magnitude of
the integrand is of the order logand the length of the path is®2 The integral
thus goes to zero as the radiugoes to zero. Sinc§(s) ~ k/(s— pk) close to the
pole, the argument d§(s) decreases byr2as the contour encircles the pole. On
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the contours{, andX_ we therefore have

Sx. =[S |, argSx. =argSx, —2m.

Hence
|Og(S(+) - |Og(S(7) = 2T[i,

and we get
/ IogS(s)ds+/ logS(s)ds= 2mi Rep.
Xy X_

Repeating the argument for all poleg in the right half plane, letting the small
circles go to zero and the large circle go to infinity gives

R
|1+I2+I3:—2i/ log|S(i)|dw+i ZZnRepk:O.
0

Since complex poles appear as complex conjugate JgiRepx = ¥k Pk, which
gives Bode’s formulal1.19.

11.6 Design Example

In this section we present a detailed example that illussrédte main design tech-
niques described in this chapter.

Example 11.12 Lateral control of a vectored thrust aircraft
The problem of controlling the motion of a vertical takeofiddanding (VTOL)
aircraft was introduced in Examp&9and in Examplel1.6 where we designed a
controller for the roll dynamics. We now wish to control thesgion of the aircraft,
a problem that requires stabilization of both the attitude e position.

To control the lateral dynamics of the vectored thrust aitciwe make use of
a “inner/outer” loop design methodology, as illustratedrigure11.17 This dia-
gram shows the process dynamics and controller dividedwiiccomponents: an
inner loopconsisting of the roll dynamics and control andarter loopconsist-
ing of the lateral position dynamics and controller. Thisataposition follows the
block diagram representation of the dynamics given in Exe&ilQ

The approach that we take is to design a contr@]dor the inner loop so that
the resulting closed loop syste provides fast and accurate control of the roll
angle for the aircraft. We then design a controller for thera position that uses
the approximation that we can directly control the roll ang$ an input to the dy-
namics controlling the position. Under the assumptiontiratynamics of the roll
controller are fast relative to the desired bandwidth oflétteral position control,
we can then combine the inner and outer loop controllersta gagle controller
for the entire system. As a performance specification for thtéreesystem, we
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Figure 11.17:Inner/outer control design for a vectored thrust aircraft. The innep k&
controls the roll angle of the aircraft using the vectored thrust. The daaercontrollerCy
commands the roll angle to regulate the lateral position. The procesmibymare decom-
posed into inner loopR) and outer loopR,) dynamics, which combine to form the full
dynamics for the aircraft.

would like to have zero steady-state error in the lateraltipos a bandwidth of
approximately 1 rad/s and a phase margin of.45

For the inner loop, we choose our design specification to geotfie outer loop
with accurate and fast control of the roll. The inner loop dyies are given by

r
J¥+cs
We choose the desired bandwidth to be 10 rad/s (10 times thiaé @uter loop)
and the low-frequency error to be no more than 5%. This spetificas satisfied
using the lead compensator of Examplie6designed previously, so we choose

S+a
C‘(S) - kﬂ?

The closed loop dynamics for the system satisfy

_ G, GR _GO-mgR)

1+CiR 1+CiR 1+GR
A plot of the magnitude of this transfer function is shown igiie11.18 and we
see thatH; ~ —mg= —39.2 is a good approximation up to 10 rad/s.

To design the outer loop controller, we assume the inner toticontrol is
perfect, so that we can talég as the input to our lateral dynamics. Following the
diagram shown in Exercis® 10 the outer loop dynamics can be written as

Hi(0)

P(s) = Hi (0)Ro(8) = 5.
where we replacel;(s) with H;(0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, thip@ximation may not

PI :HQU]_:

a=2, b=50 k=1

Hi
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Figure 11.18: Outer loop control design for a vectored thrust aircraft. (a) The dotgy
approximates the roll dynamics as a state gaimg. (b) The Bode plot for the roll dynamics,
indicating that this approximation is accurate up to approximately 10 rad/s.

be valid, and so we must verify this when we complete our aesig

Our control goal is now to design a controller that gives zteady-state error
in y and has a bandwidth of 1 rad/s. The outer loop process dynaarecgiven
by a second-order integrator, and we can again use a singuectanpensator to
satisfy the specifications. We also choose the design suthhihdoop transfer
function for the outer loop hgs,| < 0.1 for w > 10 rad/s, so that thid; dynamics
can be neglected. We choose the controller to be of the form

S+a
Cols) = k°s+ bo’
with the negative sign to cancel the negative sign in thegsscdynamics. To find
the location of the poles, we note that the phase lead flatierest @approximately
bo/10. We desire phase lead at crossover, and we desire th@weoss wyc =
1 rad/s, so this givels, = 10. To ensure that we have adequate phase lead, we must
chooses, such thab,/10 < 10a, < by, Which implies that, should be between
0.1 and 1. We choos® = 0.3. Finally, we need to set the gain of the system such
that at crossover the loop gain has magnitude 1. A simplailzion shows that
ko = 2 satisfies this objective. Thus, the final outer loop contrdimomes

s+0.3
Cols) = -2 s+10°

Finally, we can combine the inner and outer loop controllerd gerify that
the system has the desired closed loop performance. The Baodsyajuist plots
corresponding to Figurgl.17with inner and outer loop controllers are shown in
Figure11.19 and we see that the specifications are satisfied. In additeshaw
the Gang of Four in Figur&1.2Q and we see that the transfer functions between
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Figure 11.19: Inner/outer loop controller for a vectored thrust aircraft. The Bod¢ (alp
and Nyquist plot (b) for the transfer function for the combined inner @uter loop transfer
functions are shown. The system has a phase margin°cdt@@a gain margin of 6.2.

all inputs and outputs are reasonable. The sensitivity td thaturbance®Sis
large at low frequency because the controller does not maggrial action.

The approach of splitting the dynamics into an inner and aardabp is com-
mon in many control applications and can lead to simplergtesior complex
systems. Indeed, for the aircraft dynamics studied in tkésreple, it is very chal-
lenging to directly design a controller from the lateral ifios x to the inputu;.
The use of the additional measuremenBdjreatly simplifies the design because
it can be broken up into simpler pieces. O

11.7 Further Reading

Design by loop shaping was a key element in the early devedopof control, and
systematic design methods were developed; see James|$\aciadPhillips JNP47,
Chestnut and MayerdM51], Truxal [Tru55 and Thaler Tha89. Loop shap-
ing is also treated in standard textbooks such as FranklingeP@wd Emami-
Naeini [FPENO3, Dorf and Bishop PB04], Kuo and GolnaraghiKG02] and
Ogata Pga0]. Systems with two degrees of freedom were developed by Hzpor63,
who also discussed the limitations of poles and zeros inigfe half-plane. Fun-
damental results on limitations are given in Bo8®{45; more recent presenta-
tions are found in Goodwin, Graebe and Salga@&E0]. The treatment in Sec-
tion 11.5is based onAst0(. Much of the early work was based on the loop trans-
fer function; the importance of the sensitivity functiongaared in connection
with the development in the 1980s that resultetlindesign methods. A compact
presentation is given in the texts by Doyle, Francis and Tabaem DFT92 and
Zhou, Doyle and Glover4dDG96. Loop shaping was integrated with the robust
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Figure 11.20:Gang of Four for vectored thrust aircraft system.

control theory in McFarlane and Glovavi{590] and Vinnicombe Yin01]. Com-
prehensive treatments of control system design are givetaiiejowski Mac89
and Goodwin, Graebe and Salga®&3S0].

Exercises

11.1 Consider the system in Figufiel.1 Give all signal pairs that are related by
the transfer functions/A1+ PC), P/(1+ PC), C/(1+ PC) andPC/(1+ PC).

11.2 Consider the system in Exampld.1l Choose the parameteas= —1 and
compute the time and frequency responses for all the trafugfetions in the Gang
of Four for controllers wittk = 0.2 andk = 5.

11.3(Equivalence of Figure$l.1and11.2 Consider the system in Figufel.1
and let the outputs of interest lze= (n,v) and the major disturbances be=
(n,d). Show that the system can be represented by FitjluiZand give the matrix
transfer functions?” and%’. Verify that the elements of the closed loop transfer
functionH,, are the Gang of Four.

11.4 Consider the spring—mass system given By14), which has the transfer
function
P(s) = é.
m< +cs+k
Design a feedforward compensator that gives a responsecwitbtal damping

(=1).
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11.5(Sensitivity of feedback and feedforward) Consider theesysn Figurell.l
and letGy, be the transfer function relating the measured signalthe reference

r. Show that the sensitivities @y, with respect to the feedforward and feedback
transfer functiong andC are given bydG,/dF = CP/(1+ PC) anddG,/dC =
FP/(1+PC)2 = GyL/C.

11.6(Equivalence of controllers with two degrees of freedom) St the sys-
tems in Figuresl1.1 and 11.3 give the same responses to command signals if

11.7(Disturbance attenuation) Consider the feedback systemrsim Figurell.l
Assume that the reference signal is constantylebe the measured output when
there is no feedback ang; be the output with feedback. Show thé§(s) =
S(s)Yo1(S), whereSis the sensitivity function.

11.8 (Disturbance reduction through feedback) Consider a prokih which an
output variable has been measured to estimate the potimtéisturbance attenu-
ation by feedback. Suppose an analysis shows that it is pessitdesign a closed
loop system with the sensitivity function

s
)= —— .
S(s) FL+s+1

Estimate the possible disturbance reduction when the megslisturbance is
y(t) = 5sin(0.1t) + 3sin(0.17t) + 0.5c050.9t) + 0.1t.

11.9 Show that the effect of high frequency measurement noise @mcdahtrol
signal for the system in Examplel.4can be approximated by

kyqs
(sT§)2/2+sTy +1’

and that the largest value [@S(iw)| is kg /T which occurs forw = v/2/Ts.

CS~C=

11.10(Attenuation of low-frequency sinusoidal disturbancesgggral action elim-
inates constant disturbances and reduces low-frequenrtyriddnces because the
controller gain is infinite at zero frequency. A similar ideande used to reduce the
effects of sinusoidal disturbances of known frequeagyy using the controller

ksS
C(s) =kp+ .
&=k &+ 2{ asS+ W
This controller has the gai@s(iaw) = kp +ks/(2¢) for the frequencywy, which
can be large by choosing a small valuefof Assume that the process has the
transfer functiorP(s) = 1/s. Determine the Bode plot of the loop transfer function
and simulate the system. Compare the results with PI control.
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11.11 Consider a lead compensator with the transfer function
svk+ayn
o= (L2’
s+a

which has zero frequency gaB{0) = 1 and high-frequency gaid(e) = k. Show
that the gain required to give a given phase l¢ad

k= (1+2tar?(/n) +2tar(¢/n),/1+tar?(¢/n)>”,

and that limk = €29,
n—-o00

11.12 Consider a process with the loop transfer function
- ki,
S—p
with positivezandp. Show that the system is stablepiffz< k<1 or 1< k< p/z

and that the largest stability marginss, = |p—2z|/(p+ 2) is obtained fork =
2p/(p+z). Determine the pole/zero ratios that gives the stabilitygimes,, = 2/3.

L(s)

11.13 Prove the inequalities given by equatidi(1§. (Hint: Use the maximum@
modulus theorem.)

11.14(Phase margin formulas) Show that the relationship betweeptihse mar-
gin and the values of the sensitivity functions at gain avuesis given by

Stia)| = T (i) | = 5575

11.15(Stabilization of an inverted pendulum with visual feedaCknsider sta-
bilization of an inverted pendulum based on visual feedhestkg a video camera
with a 50-Hz frame rate. Let the effective pendulum length.bsssume that we
want the loop transfer function to have a slopengé = —1/2 at the crossover
frequency. Use the gain crossover frequency inequalitgterdhine the minimum
length of the pendulum that can be stabilized if we desireasemargin of 45

11.16 (Rear-steered bicycle) Consider the simple model of a Bcyt Equa-
tion (3.5, which has one pole in the right half-plane. The model is atd@ for
a bicycle with rear wheel steering, but the sign of the véyosithen reversed and
the system also has a zero in the right half-plane. Use tlhdises Exercisel1.12
to give a condition on the physical parameters that admitsraraller with the
stability marginsy,.

11.17Prove the formulaX1.20 for the complementary sensitivity. @



Chapter Twelve
Robust Performance

However, by building an amplifier whose gain is deliberately made, sayedibels higher
than necessary (10000 fold excess on energy basis), and then féseliogtput back on the
input in such a way as to throw away that excess gain, it has been foussibjmto effect
extraordinary improvement in constancy of amplification and freedom fron-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1981d434.

This chapter focuses on the analysis of robustness of fekdlyatems, a vast
topic for which we provide only an introduction to some of #® concepts. We
consider the stability and performance of systems whoseegsodynamics are
uncertain and derive fundamental limits for robust stab#ind performance. To
do this we develop ways to describe uncertainty, both in timenfof parameter
variations and in the form of neglected dynamics. We alseflgrimention some
methods for designing controllers to achieve robust paréorce.

12.1 Modeling Uncertainty

Harold Black’s quote above illustrates that one of the kegsusf feedback is to
provide robustness to uncertainty (“constancy of amplifoce]. It is one of the
most useful properties of feedback and is what makes it blest design feed-
back systems based on strongly simplified models.

One form of uncertainty in dynamical systemspiarametric uncertaintyin
which the parameters describing the system are unknownpigalyexample is
the variation of the mass of a car, which changes with the murabpassengers
and the weight of the baggage. When linearizing a nonlingstem, the parame-
ters of the linearized model also depend on the operatinditons. It is straight-
forward to investigate the effects of parametric uncetyagimply by evaluating
the performance criteria for a range of parameters. Suchcalaéibn reveals the
consequences of parameter variations. We illustrate byplsiexample.

Example 12.1 Cruise control

The cruise control problem was described in Sec8d and a Pl controller was
designed in Exampl&0.3 To investigate the effect of parameter variations, we
will choose a controller designed for a nominal operatingdititon correspond-
ing to masan = 1600 kg, fourth geard = 12) and speed, = 25 m/s; the con-
troller gains arek, = 0.72 andk; = 0.18. Figurel2.1ashows the velocity and
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Figure 12.1: Responses of the cruise control system to a slope increase(a) and the
eigenvalues of the closed loop system (b). Model parameters aré sver@ wide range.

the throttleu when encountering a hill with a°Zlope with masses in the range
1600< m< 2000 kg, gear ratios 3—%1(= 10, 12 and 16) and velocity 20v < 40
m/s. The simulations were done using models that were lineduaround the dif-
ferent operating conditions. The figure shows that there aiatians in the re-
sponse but that they are quite reasonable. The largest tyedwodr is in the range
of 0.2-0.6 m/s, and the settling time is about 15 s. The coatgolal is marginally
larger than 1 in some cases, which implies that the thrattielly open. A full
nonlinear simulation using a controller with windup prdteo is required if we
want to explore these cases in more detail. Figl#d bshows the eigenvalues of
the closed loop system for the different operating condgid he figure shows that
the closed loop system is well damped in all cases. O

This example indicates that at least as far as parametriaticars are con-
cerned, the design based on a simple nominal model will gitisfactory control.
The example also indicates that a controller with fixed paramsetan be used in
all cases. Notice that we have not considered operatingtiamsiin low gear and
at low speed, but cruise controllers are not typically usetthése cases.

Unmodeled Dynamics

It is generally easy to investigate the effects of paramefariations. However,
there are other uncertainties that also are importantsasisied at the end of Sec-
tion 2.3 The simple model of the cruise control system captures telglynamics
of the forward motion of the vehicle and the torque charésties of the engine
and transmission. It does not, for example, include a detaiodel of the engine
dynamics (whose combustion processes are extremely crjmmpl¢he slight de-
lays that can occur in modern electronically controlledieeg (as a result of the
processing time of the embedded computers). These neglewedanisms are
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Figure 12.2: Unmodeled dynamics in linear systems. Uncertainty can be represesited u
additive perturbations (left), multiplicative perturbations (middle) or beedk perturbations
(right). The nominal system B, andA, 6 = A/P andAyg, represent unmodeled dynamics.

calledunmodeled dynamics

Unmodeled dynamics can be accounted for by developing a camrglex
model. Such models are commonly used for controller devedmpniout substan-
tial effort is required to develop them. An alternative isrteestigate if the closed
loop system is sensitive to generic forms of unmodeled dycgrithe basic idea
is to describe the unmodeled dynamics by including a trarfisfection in the sys-
tem description whose frequency response is bounded betvage unspecified.
For example, we might model the engine dynamics in the cizosérol example
as a system that quickly provides the torque that is reqddbteugh the throt-
tle, giving a small deviation from the simplified model, whabsumed the torque
response was instantaneous. This technique can also berussghy instances
to model parameter variations, allowing a quite general@gugh to uncertainty
management.

In particular, we wish to explore if additional linear dynasimay cause dif-
ficulties. A simple way is to assume that the transfer functdthe process is
P(s) + A, whereP(s) is the nominal simplified transfer function aAdrepresents
the unmodeled dynamics in terms adlditive uncertainty Different representa-
tions of uncertainty are shown in Figut@.2

When Are Two Systems Similar? The Vinnicombe Metric gé?

A fundamental issue in describing robustness is to determiren two systems are
close. Given such a characterization, we can then attengégoribe robustness
according to how close the actual system must be to the madaider to still
achieve the desired levels of performance. This seeminglgcent problem is
not as simple as it may appear. A naive approach is to saywlasystems are
close if their open loop responses are close. Even if thissapp®tural, there are
complications, as illustrated by the following examples.

Example 12.2 Similar in open loop but large differences in closed &p
The systems with the transfer functions

PL(S) k k

o111 P9 eipETae (12.1)
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Figure 12.3: Determining when two systems are close. The plots in (a) show a situation
when the open loop responses are almost identical, but the closed kpmmses are very
different. The processes are given by equatitthl) with k= 100 andT = 0.025. The plots

in (b) show the opposite situation: the systems are different in open Idgnbilar in closed
loop. The processes are given by equatitih? with k = 100.

have very similar open loop responses for small valuds e illustrated in the top
plot in Figure12.3a which is plotted forT = 0.025 andk = 100. The differences
between the step responses are barely noticeable in the.fiheestep responses
with unit gain error feedback are shown in the bottom plot guiFé 12.3a Notice
that one closed loop system is stable and the other one ighlast O

Example 12.3 Different in open loop but similar in closed loop
Consider the systems
k k
Pi(s) = —— =—. 12.2
1(S) s+1’ F2(s) s—1 (122)
The open loop responses are very different becRusestable and® is unstable,

as shown in the top plot in FigureE2.3h Closing a feedback loop with unit gain
around the systems, we find that the closed loop transferiturscare

k k
Ti(s) = —— To(s) = ————
8= s 29 = grk—1
which are very close for large as shown in Figuré2.3h O

These examples show that if our goal is to close a feedback lbapay be

very misleading to compare the open loop responses of thersys
Inspired by these examples we introduce Yhenicombe metricwhich is a
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Figure 12.4: Geometric interpretation of(Pp,P,). At each frequency, the points on the
Nyquist curve forP; (solid) andP, (dashed) are projected onto a sphere of radius 1 sitting
at the origin of the complex plane. The projection of the pointilis shown. The distance
between the two systems is defined as the maximum distance between tlutigsjef
P1(iw) andP(iw) over all frequenciesv. The figure is plotted for the transfer functions
Pi(s) = 2/(s+1) andP,(s) = 2/(s—1). (Diagram courtesy G. Vinnicombe.)

distance measure that is appropriate for closed loop sgsteansider two systems
with the transfer function®;, andP,, and define

d(PL.P>) = sup IPl(}w) Po(iw)| S
0 /(1+[Piw)?) 1+ [Pa(iw)?)
which is a metric with the property € d(P;,P) < 1. The numbed(Py,P,) can

be interpreted as the difference between the complemesémsitivity functions
for the closed loop systems that are obtained with unit faekllaround? andP,;
see Exercis&2.3 The metric also has a nice geometric interpretation, assiow
Figure12.4 where the Nyquist plots d® andP, are projected onto a sphere with
radius 1 at the origin of the complex plane (called Riemann sphejePoints in
the complex plane are projected onto the sphere by a lineighrthe point and
the north pole (Figurd2.4). The distance (P, P,) is the longest chordal distance
between the projections & (iw) andP:(iw). The distance is small whe® and

P, are small or large, but it emphasizes the behavior aroundjaire crossover
frequency.

The distancel(Py, ) has one drawback for the purpose of comparing the be-
havior of systems under feedback Bf is perturbed continuously frora, to P,
there can be intermediate transfer functiénshered(Py,P) is 1 even ifd(Py, P,)
is small (see Exercisk2.4). To explore when this could happen, we observe that

(1+P(iw)Pi(—iw))(1+P(—iw)Pi(iw))
(1+[Piw)?)(1+ [P(iw)[?)

The right-hand side is zero, and herdi®;,P) = 1 if 1 + P(iw)Pi(—iw) = 0 for

somew. To explore when this could occur, we investigate the beairaot the

function 14 P(s)P1(—s) whenP is perturbed fronf; to P». If the functionsfi(s) =

(12.3)

1—d?(P,P) =
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1+ Pi(s)Pi(—s) andfz(s) = 1+ P»(s)Pi(—s) do not have the same number of zeros
in the right half-plane, there is an intermedi&such that 1 P(icw)Pi(—iw) =0
for somew. To exclude this case we introduce the geas all pairs(P;,P) such
that the functiond; = 1+ Pi(s)Pi(—s) and fa = 1+ Py(s)Pi(—s) have the same
number of zeros in the right half-plane.

The Vinnicombe metrior v-gap metricis defined as

d(P,P2), if (P,P)c@

12.4
1, otherwise ( )

O (P1,P2) = {
Vinnicombe VMin01] showed thad, (P;,P,) is a metric, he gave strong robustness
results based on the metric and he developed the theory $terag with many
inputs and many outputs. We illustrate its use by computiegrhetric for the
systems in the previous examples.

Example 12.4 Vinnicombe metric for Examplesl2.2and 12.3
For the systems in Exampl.2we have
1+k>—¢?
fi(s) =1+ Pu(s)Pi(—s) = B
1+ K+ 2sT+ (T2 1)s? - 28T — T2
fols) = 1+ P(gRi(=s) = (1-2)(1+2sT+°T2)

The function f; has one zero in the right half-plane. A numerical calcufatio
for k = 100 andT = 0.025 shows that the functiofy has the roots 46.3, -86.3,
—20.0+60.0i. Both functions have one zero in the right half-plane, allmwus to
compute the norm1R.4). For T = 0.025 this givesd, (P1,P;) = 0.98, which is a
quite large value. To have reasonable robustness Vinniesgtommended values
less than 1/3.

For the system in ExamplE2.3we have

2 _ — K2 —
1 R(OR (s = TS 1+5@ap@—12+§?§

These functions have the same number of zeros in the righplaie ifk > 1.
In this particular case the Vinnicombe metricdgPy, P,) = 2k/(1+k?) (Exer-
cise 12.4 and withk = 100 we getd, (Pi,P) = 0.02. Figure12.4 shows the
Nyquist curves and their projections for= 2. Notice thad(Py,P,) is very small
for smallk even though the closed loop systems are very different.thideefore
essential to consider the conditiofy, P,) € ¢, as discussed in Exercid€.4 [
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Figure 12.5:Robust stability using the Nyquist criterion. (a) This plot shows that thetesto
distance to the critical poirst, is a robustness measure. (b) This plot shows the Nyquist curve
of a nominal loop transfer function and its uncertainty caused by adgitaeess variations

A.

12.2 Stability in the Presence of Uncertainty

Having discussed how to describe uncertainty and the gityilaetween two sys-

tems, we now consider the problem of robust stability: Whan we show that

the stability of a system is robust with respect to procesgtrans? This is an

important question since the potential for instability reemf the main drawbacks
of feedback. Hence we want to ensure that even if we have smaalturacies in

our model, we can still guarantee stability and performance

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant wayttamg the effects
of uncertainty for linear systems. A simple criterion isttttee Nyquist curve be
sufficiently far from the critical point-1. Recall that the shortest distance from
the Nyquist curve to the critical point &, = 1/Ms, whereMs is the maximum
of the sensitivity function andy, is the stability margin introduced in Secti®rB.
The maximum sensitivitys or the stability margirs, is thus a good robustness
measure, as illustrated in Figut@.5a

We will now derive explicit conditions for permissible pexs uncertainties.
Consider a stable feedback system with a proéessid a controllelC. If the
process is changed fromto P+ A, the loop transfer function changes frd?c
to PC+ CA, as illustrated in Figurd2.5h If we have a bound on the size Af
(represented by the dashed circle in the figure), then themystmains stable
as long as the process variations never overlap-th@oint, since this leaves the
number of encirclements efl unchanged.

Some additional assumptions are required for the analykisltb Most impor-
tantly, we require that the process perturbatigrse stable so that we do not in-
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troduce any new right half-plane poles that would requirditazhal encirclements
in the Nyquist criterion.

We will now compute an analytical bound on the allowable psscdistur-
bances. The distance from the critical point to the loop transfer functioh is
|1+ L|. This means that the perturbed Nyquist curve will not reaehdtitical
point—1 provided thatCA| < |1+ L|, which implies
1+PC

C ‘ IT|

This condition must be valid for all points on the Nyquist ayrize, pointwise
for all frequencies. The condition for robust stability chng be written as

. 1
[oliw)| = ’P(ia))‘ < i)
Notice that the condition is conservative because it fafldmom Figurel2.5that
the critical perturbation is in the direction toward thetical point —1. Larger
perturbations can be permitted in the other directions.

The condition in equationl@.6 allows us to reason about uncertainty without
exact knowledge of the process perturbations. Namely, wevegfy stability for
any uncertaintyA that satisfies the given bound. From an analysis perspective,
this gives us a measure of the robustness for a given desmmvegsely, if we
require robustness of a given level, we can attempt to chowseontrollerC such
that the desired level of robustness is available (by astiagT be small) in the
appropriate frequency bands.

Equation (2.6 is one of the reasons why feedback systems work so well in
practice. The mathematical models used to design contr@rsgsare often simpli-
fied, and the properties of a process may change during oper&iuation12.6)
implies that the closed loop system will at least be stabiastibstantial variations
in the process dynamics.

It follows from equation 12.6 that the variations can be large for those fre-
guencies wher& is small and that smaller variations are allowed for frecues
whereT is large. A conservative estimate of permissible procesiatiens that
will not cause instability is given by

(12.5)

oy <| a1=[] <7

forall w > 0. (12.6)

|O(i

M’
whereM; is the largest value of the complementary sensitivity

’ 1
P|w

M; = sup\T iw)| = H (12.7)

1+PCH

The value ofM; is influenced by the design of the controller. For examples it i
shown in Exercisd2.5that if M; = 2 then pure gain variations of 50% or pure
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Figure 12.6:Robustness for a cruise controller. On the left the maximum relative &ff0|
(solid) and the absolute err@®|/|T| (dashed) for the process uncertaiftyThe Nyquist
curve is shown on the right as a solid line. The dashed circles show évhaiperturbations
in the process dynamicg)| = |P|/|T|, at the frequencie® = 0, 0.0142 and 0.05.

phase variations of 3Care permitted without making the closed loop system un-
stable.

Example 12.5 Cruise control
Consider the cruise control system discussed in Se&tibrThe model of the car
in fourth gear at speed 25 m/s is
1.38

9= s+00142
and the controller is a PI controller with gaikg = 0.72 andk; = 0.18. Fig-
ure 12.6 plots the allowable size of the process uncertainty usiegbibund in
equation 12.6). At low frequenciesT (0) = 1 and so the perturbations can be as
large as the original proces®( = |A/P| < 1). The complementary sensitivity has
its maximumM; = 1.14 atwn; = 0.35, and hence this gives the minimum allow-
able process uncertainty, with| < 0.87 or|A| < 3.47. Finally, at high frequencies,
T — 0 and hence the relative error can get very large. For exaraple= 5 we
have|T (iw)| = 0.195, which means that the stability requiremendis< 5.1. The
analysis clearly indicates that the system has good robsstand that the high-
frequency properties of the transmission system are nobritapt for the design
of the cruise controller.

Another illustration of the robustness of the system is mjiirethe right dia-
gram in Figurel2.6 which shows the Nyquist curve of the transfer function ef th
process and the uncertainty bourttls- |P|/|T| for a few frequencies. Note that
the controller can tolerate large amounts of uncertaintysifl maintain stability
of the closed loop. O

The situation illustrated in the previous example is typ@fainany processes:
moderately small uncertainties are required only arouedgdin crossover fre-
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Figure 12.7: lllustration of robustness to process perturbations. A system with additive
certainty (left) can be manipulated via block diagram algebra to one with mudtijiéc
uncertaintyd = A/P (center). Additional manipulations isolate the uncertainty in a manner
that allows application of the small gain theorem (right)
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guencies, but large uncertainties can be permitted at hagitlower frequencies.
A consequence of this is that a simple model that descriteepritcess dynamics
well around the crossover frequency is often sufficient f@igle Systems with
many resonant peaks are an exception to this rule becauggdbess transfer
function for such systems may have large gains for highequieacies also, as
shown for instance in Examp&9.

The robustness condition given by equati@2.6) can be given another inter-
pretation by using the small gain theorem (Theot@d). To apply the theorem
we start with block diagrams of a closed loop system with &jpleed process and
make a sequence of transformations of the block diagramigbkdte the block
representing the uncertainty, as shown in Figleer. The result is the two-block
interconnection shown in Figud®.7c, which has the loop transfer function

PC A
~1+PCP
Equation (2.6 implies that the largest loop gain is less than 1 and henee th
system is stable via the small gain theorem.
The small gain theorem can be used to check robust stabilityrfoertainty in
a variety of other situations. Tabl.1summarizes a few of the common cases;
the proofs (all via the small gain theorem) are left as egesti

Table 12.1:Conditions for robust stability for different types of uncertainty

Process Uncertainty Type  Robust Stability
P+A Additive ICHA| < 1
P(1+9) Multiplicative ITollw <1

P/(1+0qp-P)  Feedback [[PSp[leo < 1
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The following example illustrates that it is possible to dessystems that are
robust to parameter variations.

Example 12.6 Bode's ideal loop transfer function

A major problem in the design of electronic amplifiers is toabta closed loop
system that is insensitive to changes in the gain of the releict components.
Bode found that the loop transfer functitugs) = ks™, with 1 <n <5/3, was
an ideal loop transfer function. The gain curve of the Bode igl@ straight line
with slope—n and the phase is constant &af@w) = —nr/2. The phase margin
is thus¢m = 90(2—n)° for all values of the gairk and the stability margin is
sm = sinm(1—n/2). This exact transfer function cannot be realized with phglsic
components, but it can be approximated over a given frequamge with a ratio-
nal function (Exercisd2.7). An operational amplifier circuit that has the approx-
imate transfer functioi®(s) = k/(s+ a) is a realization of Bode’s ideal transfer
function withn =1, as described in Examp&3. Designers of operational am-
plifiers go to great efforts to make the approximation valiéroa wide frequency
range. 0

Youla Parameterization gé?

Since stability is such an essential property, it is usefuthiaracterize all con-
trollers that stabilize a given process. Such a representatihich is called &oula
parameterizationis very useful when solving design problems because it sittke
possible to search over all stabilizing controllers withthe need to test stability
explicitly.

We will first derive Youla’s parameterization for a stablegees with a rational
transfer functiorP. A system with the complementary sensitivity functidrcan
be obtained by feedforward control with the stable tranffiectionQ if T = PQ.
Notice thatT must have the same right half-plane zeroPasinceQ is stable.
Now assume that we want to implement the complementaryfaafsction T
by using unit feedback with the controll€:. SinceT = PC/(1+ PC) = PQ, it
follows that the controller transfer function is

C=

PO (12.8)

A straightforward calculation gives
S=1-PQ, PS=P(1-PQ), CS=0Q, T=PQ.

These transfer functions are all stabl®i&ndQ are stable and the controller given
by equation 12.8 is thus stabilizing. Indeed, it can be shown that all sizii
controllers are in the form given by equatict2(8 for some choice of). The
parameterization is illustrated by the block diagrams irukéd.2.8a
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Figure 12.8: Youla parameterization. Block diagrams of Youla parameterizationsdtatde
system (@) and an unstable system (b). Notice that the sigaalero in steady state.

A similar characterization can be obtained for unstableesys. Consider a
process with a rational transfer functiBs) = a(s) /b(s), wherea(s) andb(s) are
polynomials. By introducing a stable polynoméik), we can write

_b(s) _ B(s)
(s)= as) A’
whereA(s) = a(s)/c(s) andB(s) = b(s)/c(s) are stable rational functions. Simi-

larly we introduce the controlleZy(s) = Go(S)/Fo(S), whereFy(s) andGo(s) are
stable rational functions. We have

AR _ BR
D ARTBG T AR+ BG
 AG  BG
C0%= AR 1 BG 0= AR +BGy

The controlleiCy is stabilizing if and only if the rational functioAR, + BGy does
not have any zeros in the right half plane. ¢be a stable rational function and
consider the controller

' Go+ QA

C=F o8 (12.9)

The Gang of Four foP andC is

 AR+BGy’  AR+BGy’
oo AGo+QA  _ B(Go+QA
ARy +BGy AR +BGy

All these transfer functions are stable if the rational timt AR + BGy does not
have any zeros in the right half plane and the contr@lgiven by (2.9 is there-
fore stabilizing for any stabl®. A block diagram of the closed loop system with
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Figure 12.9:Block diagram of a basic feedback loop. The external signals areférenee
signalr, the load disturbanceé and the measurement noiseThe process output ig and

the control signal is1. The proces® may include unmodeled dynamics, such as additive
perturbations.

the controllerC is shown in Figurel2.8h Notice that the transfer functioQ ap-
pears affinely in the expressions for the Gang of Four, whickeig useful if we
want to determine the transfer functi@Qio obtain specific properties.

12.3 Performance in the Presence of Uncertainty

So far we have investigated the risk for instability and rabess to process un-
certainty. We will now explore how responses to load disindes, measurement
noise and reference signals are influenced by process wvasafio do this we will
analyze the system in Figufe.9 which is identical to the basic feedback loop
analyzed in Chaptetl.

Disturbance Attenuation

The sensitivity functiors gives a rough characterization of the effect of feedback
on disturbances, as was discussed in Sedtio® A more detailed characterization
is given by the transfer function from load disturbancesrticpss output:
P
Gr=1pc =P

Load disturbances typically have low frequencies, and iherdfore important
that the transfer function be small for low frequencies. frocesses with constant
low-frequency gain and a controller with integral action haxeGyq ~ s/k;. The
integral gairk; is thus a simple measure of the attenuation of load distedsan

To find out how the transfer functioByq is influenced by small variations in
the process transfer function we differentiat.L0 with respect td® yielding

dGyq _ 1 _ SP _ S%,
dP  (1+PC)2 P(1+PC) P

(12.10)
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and it follows that

ded dP
G SF (12.11)

The response to load disturbances is thus insensitive t@gso@riations for fre-
quencies wheréS(iw)| is small, i.e., for frequencies where load disturbances are
important.

A drawback with feedback is that the controller feeds measent noise into
the system. In addition to the load disturbance rejectibis, thus also important
that the control actions generated by measurement noiseoateo large. It fol-
lows from Figurel2.9that the transfer functio®,, from measurement noise to
controller output is given by

C T
Gun=-11pc= p (12.12)

Since measurement noise typically has high frequenciesahsfer functiorGyn
should not be too large for high frequencies. The loop trarfhection PC is
typically small for high frequencies, which implies th@at, ~ C for large s. To
avoid injecting too much measurement noise it is therefongortant thatC(s)
be small for larges. This property is calledhigh-frequency roll-off An example
is filtering of the measured signal in a PID controller to redtlee injection of
measurement noise; see Sectldna

To determine how the transfer functi@y, is influenced by small variations in
the process transfer, we differentiate equatitia12:

dGn d / C B C c— —T%
dP  dP\ 1+PC/ (1+PC)2 P
Rearranging the terms gives
dGyn dpP
=-T—. 12.13
Gur 5 ( )

Since the complementary sensitivity function is also smalltigh frequencies,
we find that process uncertainty has little influence on thestearfunctionGy, for
frequencies where measurements are important.

Reference Signal Tracking

The transfer function from reference to output is given by

PCF
_ —TE 12.14
Gyr 1+PC ’ ( )

which contains the complementary sensitivity functions&e how variations iR
affect the performance of the system, we differentiate eguél2.14 with respect
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Figure 12.10:Operational amplifier with uncertain dynamics. The circuit on the left is-mod
eled using the transfer functid(s) to capture its dynamic properties and it has a load at
the output. The block diagram on the right shows the input/output relationshie load is
represented as a disturbarttapplied at the output db(s).

to the process transfer function:
dG, CF  PCFC =~ CF Gy
dP  14+PC (1+PC)2 (14+PC2 TP’

and it follows that

dG, .dP
—s—. 12.15

The relative error in the closed loop transfer function thgsads the product of
the sensitivity function and the relative error in the pisgédn particular, it follows
from equation {2.15 that the relative error in the closed loop transfer funci®
small when the sensitivity is small. This is one of the usefaperties of feedback.

As in the last section, there are some mathematical assomsptihat are re-
quired for the analysis presented here to hold. As alreaatgdtwe require that
the perturbationé be small (as indicated by writingP). Second, we require that
the perturbations be stable, so that we do not introduce ewyright half-plane
poles that would require additional encirclements in thgNst criterion. Also, as
before, this condition is conservative: it allows for anytpebation that satisfies
the given bounds, while in practice the perturbations mambee restricted.

Example 12.7 Operational amplifier circuit
To illustrate the use of these tools, consider the perfooaanrf an op amp-based
amplifier, as shown in Figur#2.1Q We wish to analyze the performance of the
amplifier in the presence of uncertainty in the dynamic respasf the op amp
and changes in the loading on the output. We model the syssamg the block
diagram in Figurel2.10h which is based on the derivation in Exampld.
Consider first the effect of unknown dynamics for the operati@amplifier. If
we model the dynamics of the op ampvas= —G(s)v, then the transfer function
for the overall circuit is given by

G — R G(s)
YL R G(s)+ R /Ry +1°
We see that if5(s) is large over the desired frequency range, then the closgd lo
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system is very close to the ideal response Ry/R;. AssumingG(s) =b/(s+a),
whereb is the gain-bandwidth product of the amplifier, as discusseHxam-
ple 8.3, the sensitivity function and the complementary sensjtiitinction become
s+a ab
=, T = .
s+a+ab s+a+ab

The sensitivity function around the nominal values tells aw hhe tracking re-
sponse response varies as a function of process perturdatio

dG, _dP
=S
Gyr P

We see that for low frequencies, whe&e small, variations in the bandwidghor
the gain-bandwidth produttwill have relatively little effect on the performance
of the amplifier (under the assumption tlds sufficiently large).

To model the effects of an unknown load, we consider the mohddf a dis-
turbance at the output of the system, as shown in Fig@r&0b This disturbance
represents changes in the output voltage due to loadingteffEhe transfer func-
tion Gyg = Sgives the response of the output to the load disturbancewarske
that if Sis small, then we are able to reject such disturbances. Tisttiséy of Gyg
to perturbations in the process dynamics can be computeakingtthe derivative
of Gyq with respect tdP:

dGg = —C T dGyq dpP

dP ~A4PCZ~ PN T Gy P

Thus we see that the relative changes in the disturbancdiogjere roughly the
same as the process perturbations at low frequency (Whisrapproximately 1)
and drop off at higher frequencies. However, it is importanemember thab, 4
itself is small at low frequency, and so these variationglative performance may
not be an issue in many applications. O

12.4 Robust Pole Placement

In Chapters6 and 7 we saw how to design controllers by setting the locations
of the eigenvalues of the closed loop system. If we analyeeébulting system

in the frequency domain, the closed loop eigenvalues qooresto the poles of
the closed loop transfer function and hence these methedsften referred to as
design bypole placement

State space design methods, like many methods developedrfioksystem

design, do not explicitly take robustness into account.uchscases it is essen-
tial to always investigate the robustness because therseamingly reasonable
designs that give controllers with poor robustness. Watilie this by analyzing
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controllers designed by state feedback and observers. ©eed:loop poles can
be assigned to arbitrary locations if the system is obsésvaid reachable. How-
ever, if we want to have a robust closed loop system, the @oidszeros of the
process impose severe restrictions on the location of tieedlloop poles. Some
examples are first given; based on the analysis of these egamel then present
design rules for robust pole (eigenvalue) placement.

Slow Stable Process Zeros

We will first explore the effects of slow stable zeros, and wegimevith a simple
example.

Example 12.8 Vehicle steering
Consider the linearized model for vehicle steering in Exa8gb, which has the
transfer function 055+ 1

P(s) = g

A controller based on state feedback was designed in Exaérgland state feed-
back was combined with an observer in Examplé The system simulated in
Figure 7.8 has closed loop poles specified ay = 0.3, {c = 0.707, w, = 7 and
{o = 9. Assume that we want a faster closed loop system and chioselO,
{c=0.707,m0 = 20 and{, = 0.707. Using the state representation in Exan7p8
a pole placement design gives state feedback d¢airs100 andk, = —35.86 and
observer gaink, = 28.28 andl, = 400. The controller transfer function is

N —11516+ 40000

(s) = S +424s+66579°

Figure 12.11 shows Nyquist and Bode plots of the loop transfer functiore Th
Nyquist plot indicates that the robustness is poor sincéothyetransfer function is
very close to the critical point 1. The phase margin is and the stability margin

is sy = 0.077. The poor robustness shows up in the Bode plot, where the ga
curve hovers around the value 1 and the phase curve is cles&&@ for a wide
frequency range. More insight is obtained by analyzing #ressivity functions,
shown by solid lines in Figur#2.12 The maximum sensitivities aids = 13 and

M; = 12, indicating that the system has poor robustness.

At first sight it is surprising that a controller where the naoaliclosed system
has well damped poles and zeros is so sensitive to procdativas. We have an
indication that something is unusual because the contriodle a zero at = 3.5
in the right half-plane. To understand what happens, weimiéstigate the reason
for the peaks of the sensitivity functions.

Let the transfer functions of the process and the controler b

PO —ghe  C9 =3,
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Figure 12.11: Observer-based control of steering. The Nyquist plot (left) andeBaldt

(right) of the loop transfer function for vehicle steering with a controllesdabon state
feedback and an observer. The controller provides stable operhtibwith very low gain

and phase margin.

wherenp(s), nc(s), dp(s) anddc(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

~ pPC Np(S)ne(s)
~ 1+PC  dp(s)dc(S) +np(s)ne(s)’

The poles ofT (s) are the poles of the closed loop system and the zeros are given
by the zeros of the process and controller. Sketching the @aiwe of the com-
plementary sensitivity function we find th&{s) = 1 for low frequencies and that
T (iw)| starts to increase at its first zero, which is the process Zese-a-2. It
increases further at the controller zercsat 3.5, and it does not start to decrease
until the closed loop poles appearaat= 10 andw, = 20. We can thus conclude
that there will be a peak in the complementary sensitivitycfion. The magnitude
of the peak depends on the ratio of the zeros and the poles tfahsfer function.

The peak of the complementary sensitivity function can beéd@ebby assign-
ing a closed loop pole close to the slow process zero. We daevacthis by choos-
ing wx = 10 and{. = 2.6, which gives closed loop poles st —2 ands= —50.
The controller transfer function then becomes

36285+ 40000 s+1102
C(s)

- &2 +80.28s+15656 3628(s+ 2)(s+7828)°
The sensitivity functions are shown by dashed lines in Fig2r&2 The controller
gives the maximum sensitivitidds = 1.34 andVl; = 1.41, which give much better
robustness. Notice that the controller has a pole-at—2 that cancels the slow
process zero. The design can also be done simply by canchlkngldw stable
process zero and designing the controller for the simplifjestiesn. O

T(s)

One lesson from the example is that it is necessary to chdosectloop poles
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Figure 12.12:Sensitivity functions for observer-based control of vehicle steeflihg.com-
plementary sensitivity function (left) and the sensitivity function (right)tfer original con-
troller with ax. = 10, {c = 0.707, wp = 20, {, = 0.707 (solid) and the improved controller
with «w; = 10, {c = 2.6 (dashed).

that are equal to or close to slow stable process zeros. Antebson is that slow
unstable process zeros impose limitations on the achieveridwidth, as already
noted in Sectiori1.5

Fast Stable Process Poles

The next example shows the effect of fast stable poles.

Example 12.9 Fast system poles
Consider a PI controller for a first-order system, where thegss and the con-
troller have the transfer functiof¥s) = b/(s+a) andC(s) = kp + ki /s. The loop
transfer function is
b(kps+ ki)
L(s) = ——=
S(s+a)
and the closed loop characteristic polynomial is.
s(s+a) +b(kps+ki) = $>+ (a+bky)s+ kib

If we specify the desired closed loop poles should-ij® and—p,, we find that
the controller parameters are given by

)

_Pitp-a i
Kp = b , ki = b
The sensitivity functions are then
s(s+a) (PL+ P2 —@)S+ p1p2
S =—"——F— T(s) =
e YT srplste)

Assume that the process pel@ is much more negative than the closed loop poles
—p1 and—py, say,p1 < p2 < a. Notice that the proportional gain is negative and
that the controller has a zero in the right half-plana if p; + p2, an indication
that the system has bad properties.
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Figure 12.13: Gain curves for Bode plots of the sensitivity functi@tor designs with
p1 < p2 < a(left) anda < p1 < p2 (right). The solid lines are the true sensitivities, and the
dashed lines are the asymptotes.

Next consider the sensitivity function, which is 1 for higeduencies. Moving
from high to low frequencies, we find that the sensitivity Eeses at the pro-
cess poles= —a. The sensitivity does not decrease until the closed loopspoie
reached, resulting in a large sensitivity peak that is agpratelya/p,. The mag-
nitude of the sensitivity function is shown in Figut2.13fora=b =1, p1 = 0.05
andp, = 0.2. Notice the high-sensitivity peak. For comparison we alsow the
gain curve for the case when the closed loop pofas= 5, p, = 20) are faster
than the process pola & 1).

The problem with poor robustness can be avoided by choosieglosed loop
pole equal to the process pole, i.p2,= a. The controller gains then become

P1 ap
kp - b ’ kl - I )

which means that the fast process pole is canceled by a lentzero. The loop
transfer function and the sensitivity functions are

L=, gg=—>_, T(5=22

s’ S+ bky’ s+ bkp
The maximum sensitivities are now less than 1 for all freqiesnd\otice that this
is possible because the process transfer function goesd@gs 1. O

Design Rules for Pole Placement

Based on the insight gained from the examples, it is now plest obtain design
rules that give designs with good robustness. Considerxpeession 12.7) for
maximum complementary sensitivity, repeated here:

M; =sup|T(iw)| = H H

v =supT(iw)] = |l75e

Let ayc be the desired gain crossover frequency. Assume that tlhegsdas ze-
ros that are slower thamy.. The complementary sensitivity function is 1 for low
frequencies, and it increases for frequencies close tortheeps zeros unless there
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is a closed loop pole in the neighborhood. To avoid largeeslof the comple-
mentary sensitivity function we find that the closed loop eysshould therefore
have poles close to or equal to the slow stable zeros. Thissithanslow stable
zeros should be canceled by controller poles. Since unstabds cannot be can-
celed, the presence of slow unstable zeros means that ablégyain crossover
frequency must be smaller than the slowest unstable praeess

Now consider process poles that are faster than the desiiecgssover fre-
quency. Consider the expression for the maximum of the sé@tsfunction:

= |i5el
- 11+ PClle’

The sensitivity function is 1 for high frequencies. Movingrn high to low fre-
guencies, the sensitivity function increases at the fastgss poles. Large peaks
canresult unless there are closed loop poles close to theréaess poles. To avoid
large peaks in the sensitivity the closed loop system shitndcefore have poles
that match the fast process poles. This means that the denshbuld cancel the
fast process poles by controller zeros. Since unstable nmaatewt be canceled,
the presence of a fast unstable pole implies that the gagsover frequency must
be sufficiently large.

To summarize, we obtain the following simple rule for chogsclosed loop
poles: slow stable process zeros should be matched by s@sedlloop poles,
and fast stable process poles should be matched by fastidlmse poles. Slow
unstable process zeros and fast unstable process polesdrsgeere limitations.

Ms = sup|S(iw
w

Example 12.10 Nanopositioning system for an atomic force microspe

A simple nanopositioner was explored in ExampI8, where it was shown that
the system could be controlled using an integral controllbe performance of
the closed loop was poor because the gain crossover fregueas limited to
Wye = 2{ wo(1— sm). It can be shown that little improvement is obtained by using
a PI controller. To achieve improved performance, we willr¢fhere apply PID
control. For a modest performance increase, we will use ¢éls@d rule derived in
Examplel2.9that fast stable process poles should be canceled by dentzefos.
The controller transfer function should thus be chosen as

kas® +kps+k k& +2Cas+a?
C(S) = - < 2
S S a
wherea = wy, which givesk, = 2{k/a andkq = ki /a2.
Figure12.14shows the gain curves for the Gang of Four for a system designe
with ki = 0.5. A comparison with Figur®.12 shows that the bandwidth is in-
creased significantly fromyc = 0.01 to wyc = ki = 0.5. Since the process pole is
canceled, the system will, however, still be very sensitiMead disturbances with
frequencies close to the resonant frequency. The gain clir@é&Sbas a dip or a
notch at the resonant frequency, which implies that therotiat gain is very low

(12.16)
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Figure 12.14:Nanopositioning system control via cancellation of the fast process@ale.
plots for the Gang of Four for PID control with second-order filteriag.L7 are shown
by solid lines, and the dashed lines show results for an ideal PID contvatleout filter-
ing (12.16.

for frequencies around the resonance. The gain curve algesghat the system is
very sensitive to high-frequency noise. The system willlitee unusable because
the gain goes to infinity for high frequencies.

The sensitivity to high frequency noise can be remedied byifyiad the con-

troller to be
(5= ki +2las+a?
- sa?(1+sTs+(sTp)2/2)’

which has high-frequency roll-off. Selection of the consténfor the filter is a
compromise between attenuation of high-frequency measemrenoise and ro-
bustness. A large value 0% reduces the effects of sensor noise significantly, but
it also reduces the stability margin. Since the gain crossfreguency without
filtering isk;, a reasonable choice Tg¢ = 0.2/Ts, as shown by the solid curves in
Figure12.14 The plots of[CSiw)| and|S(iw)| show that the sensitivity to high-
frequency measurement noise is reduced dramatically atdabeof a marginal
increase of sensitivity. Notice that the poor attenuatibdisturbances with fre-
guencies close to the resonance is not visible in the seihsitinction because of
the exact cancellation of poles and zeros.

The designs thus far have the drawback that load disturbavitteBequencies
close to the resonance are not attenuated. We will now cenaidesign that ac-
tively attenuates the poorly damped modes. We start witldeal iPID controller
where the design can be done analytically, and we add haguéncy roll-off. The

(12.17)
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loop transfer function obtained with this controller is
(9= a2(kgS® + kps+ki)
 §(s?+2as+a?)
The closed loop system is of third order, and its charactepsiynomial is

(12.18)

S*+ (kg@® +20@)s* + (kp + 1)a’s+ kia?. (12.19)
A general third-order polynomial can be parameterized as
S®+ (Ao + 20 ) S + (14 2000 ) s+ Ao s. (12.20)

The parametergp and{ give the relative configuration of the poles, and the pa-
rameterwy gives their magnitudes, and therefore also the bandwidtiecgystem.

The identification of coefficients of equal powersith equation 12.19
gives a linear equation for the controller parameters, lwhis the solution

1+ 200l ) aow ap+20)wn 20
o= IR 1 g (e R

To obtain a design with active damping, it is necessary tattosed loop band-
width be at least as fast as the oscillatory modes. Adding-frigquency roll-off,
the controller becomes

(12.21)

kg kps+k
&= ST st 5mZD)

The valueT; = Ty/10= 0.1ky/k is a good value for the filtering time constant.

Figure 12.15 shows the gain curves of the Gang of Four for designs with
{ =0.707,a90 = 1 andwy = @, 2a and 4. The figure shows that the largest values
of the sensitivity function and the complementary sengyjtiftunction are small.
The gain curve folPSshows that the load disturbances are now well attenuated
over the whole frequency range, and attenuation increaigegnereasinguwy. The
gain curve forCSshows that large control signals are required to provideect
damping. The high gain @& Sfor high frequencies also shows that low-noise sen-
sors and actuators with a wide range are required. The lagges forCSare 19,
103 and 434 fowp = a, 2a and 4, respectively. There is clearly a trade-off be-
tween disturbance attenuation and controller gain. A coispa of Figuresl2.14
andl12.15illustrates the trade-offs between control action andudigtnce attenu-
ation for the designs with cancellation of the fast proceds pnd active damping.

0

(12.22)
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Figure 12.15: Nanopositioner control using active damping. Gain curves for the &éng
Four for PID control of the nanopositioner designed dgr= a (dash-dotted), 2 (dashed),
and 4 (solid). The controller has high-frequency roll-off and has beerigdes to give
active damping of the oscillatory mode. The different curves coardpo different choices
of magnitudes of the poles, parameterizeduyin equation 12.19.

12.5 Design for Robust Performance @

Control design is a rich problem where many factors have taken into account.
Typical requirements are that load disturbances shoulttbewated, the controller
should inject only a moderate amount of measurement ndiseputput should
follow variations in the command signal well and the closampl system should be
insensitive to process variations. For the system in Fig@r8these requirements
can be captured by specifications on the sensitivity funst®mand T and the
transfer functionsGyq, Gun, Gyr and Gy,. Notice that it is necessary to consider
at least six transfer functions, as discussed Secibd The requirements are
mutually conflicting, and it is necessary to make trade-offse attenuation of
load disturbances will be improved if the bandwidth is ims®ed, but so will the
noise injection.

It is highly desirable to have design methods that can gteeatwbust perfor-
mance. Such design methods did not appear until the late 1880%/ of these
design methods result in controllers having the same strei@s the controller
based on state feedback and an observer. In this sectionowiel@r brief review
of some of the techniques as a preview for those interestedoie specialized
study.

Quantitative Feedback Theory
Quantitative feedback theof@FT) is a graphical design method for robust loop
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Figure 12.16: Hall and Nichols charts. The Hall chart is a Nyquist plot with curves for
constant gain and phase of the complementary sensitivity funittidhe Nichols chart is the
conformal map of the Hall chart under the transformatiba logL (with the scale flipped).
The dashed curve is the line whefe(iw)| = 1, and the shaded region corresponding to
loop transfer functions whose complementary sensitivity changes byone thant10% is
shaded.

shaping that was developed by I. M. Horowitzdr91]. The idea is to first deter-
mine a controller that gives a complementary sensitivigt ik robust to process
variations and then to shape the response to referencdssignfeedforward. The
idea is illustrated in Figur@2.16a which shows the level curves of the comple-
mentary sensitivity functiom on a Nyquist plot. The complementary sensitivity
function has unit gain on the line Réw) = —0.5. In the neighborhood of this
line, significant variations in process dynamics only givederate changes in the
complementary transfer function. The shaded part of the figomesponds to the
region 09 < |T(iw)| < 1.1. To use the design method, we represent the uncertainty
for each frequency by a region and attempt to shape the laogfer function so
that the variation irT is as small as possible. The design is often performed using
the Nichols chart shown in Figud.16b

Linear Quadratic Control

One way to make the trade-off between the attenuation of dibstdrbances and
the injection of measurement noise is to design a contrtiirminimizes the loss

function 17
1= | (PO +pm)at

wherep is a weighting parameter as discussed in Sed@i@nThis loss function
gives a compromise between load disturbance attenuatidmliaturbance injec-
tion because it balances control actions against devitiothe output. If all state
variables are measured, the controller is a state feedlback Kx and it has the
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same form as the controller obtained by eigenvalue assigh(pele placement)

in Section6.2 However, the controller gain is obtained by solving an rojza-
tion problem. It has been shown that this controller is vetyust. It has a phase
margin of at least 60and an infinite gain margin. The controller is calletira

ear quadratic controlor LQ control because the process model is linear and the
criterion is quadratic.

When all state variables are not measured, the state cacdresteucted using
an observer, as discussed in Sectfod It is also possible to introduce process
disturbances and measurement noise explicitly in the madelto reconstruct
the states using a Kalman filter, as discussed briefly in SeZt#nrhe Kalman
filter has the same structure as the observer designed byaigerassignment in
Section7.3, but the observer gairlsare now obtained by solving an optimization
problem. The control law obtained by combining linear quadreontrol with a
Kalman filter is calledinear quadratic Gaussian contradr LQG control The
Kalman filter is optimal when the models for load disturbaremed measurement
noise are Gaussian.

It is interesting that the solution to the optimization desh leads to a con-
troller having the structure of a state feedback and an gbsérhe state feedback
gains depend on the parametperand the filter gains depend on the parameters in
the model that characterize process noise and measuregiea(see Section.4).
There are efficient programs to compute these feedback ands/ebgains.

The nice robustness properties of state feedback are un&bely lost when the
observer is added. It is possible to choose parametersitieatlgsed loop systems
with poor robustness, similar to Examdl.8 We can thus conclude that there is a
fundamental difference between using sensors for allstatd reconstructing the
states using an observer.

H. Control @

Robust control design is often callét}, control for reasons that will be explained
shortly. The basic ideas are simple, but the details are doatetl and we will
therefore just give the flavor of the results. A key idea isstitated in Figurd.2.17,
where the closed loop system is represented by two blockgrtitess” and the
controller ¢ as discussed in Sectidll.1l The process? has two inputs, the
control signalu, which can be manipulated by the controller, and the geizedhl
disturbancav, which represents all external influences, e.g., commamds@nd
disturbances. The process has two outputs, the generatized,evhich is a vec-
tor of error signals representing the deviation of signadanftheir desired values,
and the measured signalwhich can be used by the controller to computé&or

a linear system and a linear controller the closed loop sys&n be represented

by the linear system
z=H(P(s),C(s))w, (12.23)
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W—» —»Z d v n

z P
u > y

C |- —C

Figure 12.17:H., robust control formulation. The left figure shows a general reggion

of a control problem used in robust control. The inputepresents the control signal, the
input w represents the external influences on the system, the omiguthe generalized
error and the output is the measured signal. The right figure shows the special case of the
basic feedback loop in Figur2.9where the reference signal is zero. In this case we have
w= (n,d) andz= (y,—u).

which tells how the generalized errodepends on the generalized disturbanees
The control design problem is to find a control@such that the gain of the trans-
fer functionH is small even when the process has uncertainties. There ang ma
different ways to specify uncertainty and gain, giving tiselifferent designs. The
namesH; andH., control correspond to the nornijsl || and ||H ||c.

To illustrate the ideas we will consider a regulation prabfer a system where
the reference signal is assumed to be zero and the extegmalsiare the load
disturbancel and the measurement noiseas shown in Figur&2.17(right). The
generalized input isv = (—n,d). (The negative sign of is not essential but is
chosen to obtain somewhat nicer equations.) The generaized is chosen as
z=(n,v), wheren is the process output andis the part of the load disturbance
that is not compensated by the controller. The closed looesys thus modeled

by

1 P

_(y]) _[1+PC 1+PC nj n

= (2) - [T T (3 e (f). a2z
1+PC 1+PC

which is the same as equatial2(23. A straightforward calculation shows that

V(1+|P(iw)[?)(1+[Cliw)[?)
11+ P(iw)C(iw)| ’

[H(P,C))lle = sup (12.25)

There are numerical methods for finding a controller such|fH&P,C)||» < Y,
if such a controller exists. The best controller can then hmdoby iterating on
y. The calculations can be made by solvimgebraic Riccatiequations, e.g., by
using the commanti nf syn in MATLAB. The controller has the same order as
the process and the same structure as the controller bastaterfieedback and an
observer; see Figurg7and Theoren7.3,

Notice that if we minimizel|H(P,C)||», we make sure that the transfer func-
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tionsGyq = P/(1+ PC), representing the transmission of load disturbances to the
output, andGyn = —C/(1+ PC), representing how measurement noise is trans-
mitted to the control signal, are small. Since the sensjtisitd the complementary
sensitivity functions are also elementst{P,C), we have also guaranteed that
the sensitivities are less thanThe design methods thus balance performance and
robustness.

There are strong robustness results associated withilo@ntroller. It follows
from equations12.4) and (12.25 that

1
5 (P —-1/C)

The inverse of|H (P,C)||. is thus equal to the Vinnicombe distance betwBemd
—1/C and can therefore be interpreted ageaeralized stability margirCompare
this with sy, which we defined as the shortest distance between the Nyajurigs
of the loop transfer function and the critical potal. It also follows that if we find

a controllerC with ||H(P,C)||» < Y, then this controller will stabilize any process
P. such tha, (P,P.) <1/y.

[H(R.C)|[e = (12.26)

Disturbance Weighting

Minimizing the gain||H (P,C)||. means that the gains of all individual signal trans-
missions from disturbances to outputs are less thiam all frequencies of the in-
put signals. The assumption that the disturbances are gdqoadbrtant and that
all frequencies are also equally important is not very stiali recall that load
disturbances typically have low frequencies and measuremase is typically
dominated by high frequencies. It is straightforward to ifyothe problem so that
disturbances of different frequencies are given diffeeamphasis, by introducing
a weighting filter on the load disturbance as shown in Fidl®d.8 For example,
low-frequency load disturbances will be enhanced by cmgpéi as a low-pass
filter because the actual load disturbanceé/u.

By using block diagram manipulation as shown in Figi218 we find that
the system with frequency weighting is equivalent to theesyiswith no frequency
weighting in Figurel2.18and the signals are related through

1 P
7— [X] 1+PC 1+PC [”—]:H(ﬁ,c_)vv, (12.27)
u C PC d
11PC 1+PC

whereP = PW andC = W~1C. The problem of finding a controlleZ that min-
imizes the gain oH (P,C) is thus equivalent to the problem without disturbance
weighting; having obtaine@, the controller for the original system is thén=
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Figure 12.18:Block diagrams of a system with disturbance weighting. The left figure pro
vides a frequency weight on processes disturbances. Throughk dikogram manipulation,
this can be converted to the standard problem on the right.

WC. Notice that if we introduce the frequency weightMg= k/s, we will auto-
matically get a controller with integral action.

Limits of Robust Design

There is a limit to what can be achieved by robust design. lie gifithe nice prop-
erties of feedback, there are situations where the procasations are so large
that it is not possible to find a linear controller that givesohust system with
good performance. It is then necessary to use other typesndfatiers. In some
cases it is possible to measure a variable that is well aeglwith the process
variations. Controllers for different parameter values teen be designed and the
corresponding controller can be chosen based on the méasgral. This type of
control design is calledain schedulingThe cruise controller is a typical example
where the measured signal could be gear position and wel@&din scheduling
is the common solution for high-performance aircraft wheeheduling is done
based on Mach number and dynamic pressure. When using degdwding, it is
important to make sure that switches between the contsallemot create unde-
sirable transients (often referred tolasnpless transfér

If it is not possible to measure variables related to therpatars,automatic
tuningandadaptive controtan be used. In automatic tuning the process dynamics
are measured by perturbing the system, and a controlleeisdbsigned automat-
ically. Automatic tuning requires that parameters remainstant, and it has been
widely applied for PID control. It is a reasonable guess thahe future many
controllers will have features for automatic tuning. If pareters are changing, it
is possible to use adaptive methods where process dynareioseasured online.

12.6 Further Reading

The topic of robust control is a large one, with many articled #&xtbooks devoted
to the subject. Robustness was a central issue in classicabtas described in
Bode’s classical bookHod45. Robustness was deemphasized in the euphoria of
the development of design methods based on optimizationsffbeg robustness
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of controllers based on state feedback, shown by Andersdriverore JAM90Q],
contributed to the optimism. The poor robustness of outpedifack was pointed
out by RosenbrockRM71], Horowitz [Hor75 and Doyle Poy78§ and resulted
in a renewed interest in robustness. A major step forward thaglevelopment
of design methods where robustness was explicitly takem actount, such as
the seminal work of ZamesZpm81. Robust control was originally developed
using powerful results from the theory of complex variablbich gave con-
trollers of high order. A major breakthrough was made by Bp@lover, Khar-
gonekar and FranciDGKF89, who showed that the solution to the problem
could be obtained using Riccati equations and that a cdertrai low order could
be found. This paper led to an extensive treatmemt.otontrol, including books
by Francis Fra87, McFarlane and GloverJG9(], Doyle, Francis and Tannen-
baum PFT92, Green and LimebeedL95], Zhou, Doyle and Glover4DG94],
Skogestand and Postlethwai®H03 and Vinnicombe Yin01]. A major advan-
tage of the theory is that it combines much of the intuitianirservomechanism
theory with sound numerical algorithms based on numericaél algebra and op-
timization. The results have been extended to nonlineaesysby treating the
design problem as a game where the disturbances are gehbyad® adversary,
as described in the book by Basar and Bernh&B91]. Gain scheduling and
adaptation are discussed in the bookdsgrom and WittenmarkAWO08].

Exercises

12.1 Consider systems with the transfer functiéhs= 1/(s+ 1) andP, = 1/(s+
a). Show thatP; can be changed continuously B with bounded additive and
multiplicative uncertainty ifa > 0 but not ifa < 0. Also show that no restriction
onais required for feedback uncertainty.

12.2 Consider systems with the transfer functidhs= (s+1)/(s+1)? andP, =

(s+a)/(s+ 1)%. Show thatP, can be changed continuously B with bounded
feedback uncertainty & > 0 but not ifa < 0. Also show that no restriction axis

required for additive and multiplicative uncertainties.

12.3(Difference in sensitivity functions) L&t (P,C) be the complementary sensi-
tivity function for a system with proce$dand controlleiC. Show that

(PL—P)C
(1+PC)(1+PC)’
and derive a similar formula for the sensitivity function.

T(P,C) —T(P,C) =

12.4(The Riemann sphere) Consider systems with the transfetifumsd® = @
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k/(s+1) andP = k/(s—1). Show that

1, if k<1
O (PL,P) =1 2k

1+k?
Use the Riemann sphere to show geometrically &é&f,, P,) = 1 if k < 1. (Hint:
It is sufficient to evaluate the transfer function tor= 0.)

2k

d(P,P) = 112

otherwise

12.5(Stability margins) Consider a feedback loop with a processaacontroller
having transfer functionB andC. Assume that the maximum sensitivityNk = 2.
Show that the phase margin is at least 80d that the closed loop system will be
stable if the gain is changed by 50%.

12.6(Bode’s ideal loop transfer function) Make Bode and Nyqgplsts of Bode’s
ideal loop transfer function. Show that the phase margif,is=180°-90°n and
that the stability margin isy, = arcsinii(1—n/2).

12.7 Consider a process with the transfer functi{s) = k/(s(s+ 1)), where the
gain can vary between 0.1 and 10. A controller that is rolmutdse gain variations
can be obtained by finding a controller that gives the loopsfiarfunctionL(s) =
1/(sy/s). Suggest how the transfer function can be implemented byoajpating
it by a rational function.

12.8 (Smith predictor) TheSmith predictor a controller for systems with time
delays, is a special version of Figut®.8awith P(s) = e 3'Ry(s) andC(s) =
Co(s)/(1+Co(s)P(s)). The controllelCy(s) is designed to give good performance
for the proces$y(s). Show that the sensitivity functions are

141 e S)R(SICH(S) _ RS
=T REGE Y T I RE0E°

12.9 (Ideal delay compensator) Consider a process whose dysargca pure
time delay with transfer functio(s) = e 5. The ideal delay compensator is a
controller with the transfer functioB(s) = 1/(1— e3). Show that the sensitivity
functions arel (s) = e °andS(s) = 1— e ° and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

12.10(Vehicle steering) Consider the Nyquist curve in Figligell Explain why
part of the curve is approximately a circle. Derive a formiolathe center and the
radius and compare with the actual Nyquist curve.

12.11 Consider a process with the transfer function

Bls) (s+3)(s+200)
(8)= (s+1)(s?+ 10s+40)(s+40)°
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Discuss suitable choices of closed loop poles for a desagrgities dominant poles
with undamped natural frequency 1 and 10.

12.12(AFM nanopositioning system) Consider the design in Exardgld 0and
explore the effects of changing parametegsand{p.

12.13(H. control) Consider the matrik (P,C) in equation 12.24. Show that it
has the singular values

_ = V(A [Piw)]?)(1+][Cliw)?)
01=0,  02=0=SUp T B Cliw)]

Also show thato = 1/d, (P, —1/C), which implies that 1o is a generalization of
the closest distance of the Nyquist plot to the critical poin

12.14 Show that

= [H(P.C))llw-

o IP(ie) +1/Cliw)| 1
PO = A Pia P T yicioD TR

12.15 Consider the system

X _ —
;it:Ax+Bu: [ 11 8] X+ [all] u, y=Cx= (0 1] y.
Design a state feedback that gives(det- BK) = &% + 2{w.Ss+ w?, and an ob-
server with defsl — LC) = & + 2{owps+ w? and combine them using the sepa-
ration principle to get an output feedback. Choose the nigaleraluesa = 1.5,

w. =5, {.=0.6 andwy, = 10, {, = 0.6. Compute the eigenvalues of the perturbed
system when the process gain is increased by 2%. Also corttpateop transfer
function and the sensitivity functions. Is there a way towraeforehand that the
system will be highly sensitive?

12.16 (Robustness using the Nyquist criterion) Another view diust perfor-
mance can be obtained through appeal to the Nyquist criteltiet Snax(iw) rep-
resent a desired upper bound on our sensitivity functionwStihat the system
provides this level of performance subject to additive utaiety A if the follow-
ing inequality is satisfied:

. 1
1+0=]1+L+CAl> ———  forallw>0. 12.28
1+ =] | Sl @) (12.28)

Describe how to check this condition using a Nyquist plot.
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