Index

access control, see admission control
acknowledgment (ack) packet, 77-79
activator, 16, 59, 129
active filter, 154 , see also operational amplifier
actuators, $4,31,51,65,81$, 178, 224, 266, 283, 311, 324, 333-335, 337
effect on zeros, 284, 334
in computing systems, 75
saturation, 50, 225, 300, 306-307, 311, 324
A/D converters, see analog-to-digital converters
adaptation, 297
adaptive control, 21, 373, 374
additive uncertainty, 349, 353, 356, 376
admission control, 54, 63, 78, 79, 274
advertising, 15
aerospace systems, $8-9,18$, 339 , see also vectored thrust aircraft; X-29 aircraft
AFM, see atomic force microscope
aircraft, see flight control
alcohol, metabolism of, 94
algebraic loops, 211, 249-250
aliasing, 225
all-pass transfer function, 331
alternating current (AC), 7, 155
amplifier, see operational amplifier
amplitude ratio, see gain
analog computing, 51, 71, 250, 309
analog implementation, controllers, 74, 263, 309-311
analog-to-digital converters, 4 , 82, 224, 225, 311
analytic function, 236
anticipation, in controllers, 6, 24, 296, see also derivative action
antiresonance, 156
anti-windup compensation, 307, 311, 312, 314
Apache web server, 76, see also web server control
apparent volume of distribution, 86, 94
Arbib, M. A., 167
argument, of a complex number, 250
arrival rate (queuing systems), 55
artificial intelligence (AI), 12, 20
asymptotes, in Bode plot, 253, 254
asymptotic stability, 42, 102-106, 112, 114, 117, $118,120,140$
discrete-time systems, 165
atmospheric dynamics, see environmental science
atomic force microscopes, 3 , 51, 81-84
contact mode, 81, 156, 199
horizontal positioning, 281, 366
system identification, 257
tapping mode, 81, 290, 299, 304, 328
with preloading, 93
attractor (equilibrium point), 104
automatic reset, in PID control, 296
automatic tuning, 306, 373
automotive control systems, 6, $22,51,69$, see also cruise control; vehicle steering
autonomous differential equation, 29, see also time-invariant systems autonomous vehicles, $8,20-21$
autopilot, 6, 19, 20
balance systems, 35-37, 49, $170,188,240,334$, see also cart-pendulum system; inverted pendulum
band-pass filter, $154,155,255$, 256
bandwidth, 155, 186, 322, 333
Bell Labs, 18, 290
Bennett, S., 25, 290, 312
bicycle dynamics, 69-71, 91, 123, 226
Whipple model, 71
bicycle model, for vehicle steering, 51-53
bicycledynamics Whipple model, 199
bifurcations, 121-124, 130, see also root locus plots
biological circuits, 16, 45, 58-60, 129, 166, 256
genetic switch, 64, 114
repressilator, 59-60
biological systems, $1-3,10$, $16,22,25,58-61,126$, 293, 297, see also biological circuits; drug administration; neural systems; population dynamics
bistability, 23, 117

Black, H. S., 18, 19, 71, 73, 131, 267, 290, 347
block diagonal systems, 106, $129,139,145,149,212$
block diagram algebra, 242, 245, 356
block diagrams, 1, 44-47, 238, 242-247, 249
control system, 4, 229, 244, 315
Kalman decomposition, 223
observable canonical form, 205
observer, 202, 210
observer-based control system, 213
PID controllers, 293, 296, 311
reachable canonical form, 172
two degree-of-freedom controller, 219, 316, 358
Youla parameterization, 357
Bode, H., 229, 290, 344, 374
Bode plots, 250-257, 282
asymptotic approximation, 253, 254, 264
low-, band-, high-pass filters, 256
nonminimum phase systems, 284
of rational function, 251
sketching, 254
Bode's ideal loop transfer function, 356, 375
Bode's integral formula, 335-337, 339-340
Bode's relations, 282, 283, 327
Brahe, T., 28
breakpoint, 253, 272
Brockett, R. W., xii, 1, 163
Bryson, A. E., 200
bumpless transfer, 373
Bush, V., 312
calibration, versus feedback, $10,180,195,197$
Cannon, R. H., 61, 131
capacitor, transfer function for, 236
car, see automotive control systems
carrying capacity, in population models, 90
cart-pendulum system, 36, 172, see also balance systems
causal reasoning, 1, 70
Cayley-Hamilton theorem, 170, 199, 203
center (equilibrium point), 104
centrifugal governor, $2,3,6$, 17
chain of integrators (normal form), 61, 173
characteristic polynomial, 105, 199, 235, 240
for closed loop transfer function, 268
observable canonical form, 205
output feedback controller, 212, 213
reachable canonical form, $173,175,179,198$
chemical systems, 9,293 , see also process control; compartment models
chordal distance, 351
Chrysler autopilot, 6
circuits, see biological circuits; electrical circuits
classical control, xi, 374
closed loop, 1, 2, 4, 6, 162, 176, 183, 267, 268, 287, 315
versus open loop, 2, 269, 288, 315
command signals, $4,22,220$, 293, see also reference signal; setpoint
compartment models, 85-89, $106,151,186,203,208$, 227
exercises, 164
compensator, see control law
complementary sensitivity function, $317,325,337$, 350, 354, 356, 360, 365, 369, 375
complexity, of control systems, 9, 21, 298
computed torque, 163
computer implementation,
controllers, 224-226, 311-312
computer science, relationship to control, 5
computer systems, control of, $12-14,25,39,56,57$, 75-81, 157, see also queuing systems
conditional integration, 314
conditional stability, 275
congestion control, 12, 77-80, 104, 273, 292, 313, see also queuing systems
router dynamics, 93
consensus, 57
control
definition of, 3-5
early examples, $2,5,6,8$, $10,18,22,25,296$
fundamental limitations, 283, 331-340, 344, 363, 366, 373-374
history of, 25, 312
modeling for, 5, 31-32, 61, 347
successes of, 8, 25
system, $3,175,213,219$, 224, 229, 316, 318, 358
using estimated state, 211-214, 370
control error, 23, 244, 294
control law, 4, 23, 24, 162, 176, 179, 244
control Lyapunov function, 124
control matrix, 34,38
control signal, 31, 157, 293
controllability, 197, see also reachability
controlled differential equation, 29, 34, 235
convolution equation, 145-147, 149, 150, 170, 261
discrete-time, 165
coordinate transformations, 106, 147-149, 173, 226, 234-235
to Jordan form, 139
to observable canonical form, 206
to reachable canonical form,

174, 175

Coriolis forces, 36,163
corner frequency, 253
correlation matrix, 215, 216
cost function, 190
coupled spring-mass system, 142, 144, 148
covariance matrix, 215
critical gain, 303, 305, 306
critical period, 303, 305
critical point, 271, 273, 279, 289, 290, 303, 352, 353, 372
critically damped oscillator, 184
crossover frequency, see gain crossover frequency; phase crossover frequency
crossover frequency inequality, see gain crossover frequency inequality
cruise control, 6, 17-18, 65-69
Chrysler autopilot, 6
control design, 196, 300, 309
feedback linearization, 162
integrator windup, 306, 307
linearization, 158
pole/zero cancellation, 248
robustness, 18, 347, 348, 354
Curtiss seaplane, 19, 20
cybernetics, 11, see also robotics

D/A converters, see digital-to-analog converters
damped frequency, 184
damping, 28, 36, 41, 96, 265, 266
damping ratio, 184, 185, 188, 300
DARPA Grand Challenge, 20, 21
DC gain, 155, see also zero frequency gain
dead zone, 23, 24
decision making, higher levels of, $8,12,19$
delay, see time delay
delay compensation, 292, 375
delay margin, 281
delta function, see impulse function
derivative action, $24,25,293$, 296-298, 310, 330
filtering, 297, 308, 311, 312
setpoint weighting, 309, 312
time constant, 294
versus lead compensator, 330
describing functions, 288-290
design of dynamics, 18-19, 109, 124-125, 131, 167, 177, 182
diabetes, see insulin-glucose dynamics
diagonal systems, 105, 139
Kalman decomposition for, 222
transforming to, 106, 129, 138
Dickmanns, E., 20
difference equations, 34 , $37-41,61,157,224,312$
differential algebraic equations, 33 , see also algebraic loops
differential equations, 28, 34-37, 95-98
controlled, 29, 133, 235
equilibrium points, 100-101
existence and uniqueness of solutions, 96-98
first-order, 32, 298
isolated solution, 101
periodic solutions, 101-102, 109
qualitative analysis, 98-102
second-order, 99, 183, 298
solutions, $95,96,133,137$, 145, 263
stability, see stability
transfer functions for, 236
differential flatness, 221
digital control systems, see computer implementation, controllers
digital-to-analog converters, 4 , $82,224,225,311$
dimension-free variables, 48 , 61
direct term, 34, 38, 147, 211,

250
discrete control, 56
discrete-time systems, 38,61 , 128, 157, 165, 311
Kalman filter for, 215
linear quadratic regulator for, 192
disk drives, 64
disturbance attenuation, 4 , 176, 323-324, 358-359
design of controllers for, $319,320,327,337,345$, 369
fundamental limits, 336
in biological systems, 257, 297
integral gain as a measure of, 296, 324, 359
relationship to sensitivity function, 323, 335, 345, 358
disturbance weighting, 372
disturbances, $4,29,32,244$, $248,315,318,319$
generalized, 371
random, 215
Dodson, B., 1
dominant eigenvalues (poles), 187, 300, 301
double integrator, 137, 168, 236
Doyle, J. C., xii, 344, 374
drug administration, 85-89, 94, 151, 186, see also compartment models
duality, 207, 211
Dubins car, 53
dynamic compensator, 196, 213
dynamic inversion, 163
dynamical systems, 1, 27, 95, 98, 126
linear, 104, 131
observer as a, 201
state of, 175
stochastic, 215
uncertainty in, 347-349
see also differential equations
dynamics matrix, $34,38,105$, 142
Dyson, F., 27
e-commerce, 13
e-mail server, control of, 39, 157
economic systems, 14-15, 22, 62
ecosystems, 16-17, 89, 181, see also predator-prey system
eigenvalue assignment, 176, 178, 180-182, 188, 212, 300, 313
by output feedback, 213
for observer design, 208
eigenvalues, $105,114,123$, 142, 232
and Jordan form, 139-141, 165
distinct, 128, 129, 138, 144, 222
dominant, 187
effect on dynamic behavior, 183, 185-187, 233
for discrete-time systems, 165
invariance under coordinate transformation, 106
relationship to modes, 142-145
relationship to poles, 239
relationship to stability, 117, 140, 141
eigenvectors, 106, 129, 142, 143
relationship to mode shape, 143
electric power, see power systems (electric)
electrical circuits, 33, 45, 74, 131, 236, see also operational amplifier
electrical engineering, 6-7, 29-31, 155, 275
elephant, modeling of an, 27
Elowitz, M. B., 59
encirclement, 271, see also Nyquist criterion
entertainment robots, 12
environmental science, 3, 9, 17
equilibrium points, 90,100 ,
$105,132,159,168$
bifurcations of, 121
discrete time, 62
for closed loop system, 176, 195
for planar systems, 104
region of attraction, 119-121, 128
stability, 102
error feedback, 5, 293, 294, 309, 317
estimators, see oservers 387
Euler integration, 41, 42
exponential signals, 230-235, 239, 250
extended Kalman filter, 220

F/A-18 aircraft, 8
Falb, P. L., 167
feedback, 1-3
as technology enabler, 3, 19
drawbacks of, 3, 21, 308, 352, 359
in biological systems, 1-3, $16,25,297$, see also biological circuits
in engineered systems, see control
in financial systems, 3
in nature, 3, 15-17, 89
positive, see positive feedback
properties, $3,5,17-23,315$, 320, 347
robustness through, 17
versus feedforward, 22, 296, 320
feedback connection, 243, 287, 288
feedback controller, 244, 315
feedback linearization, 161-163
feedback loop, 4, 267, 315, 358
feedback uncertainty, 349,356
feedforward, 22, 219-222, 244, 315, 319, 321
Fermi, E., 27
filters
active, 154
for disturbance weighting, 373
for measurement signals, 21, 225, 359
see also band-pass filters; high-filters; low-pass filters
financial systems, see economic systems
finite escape time, 97
finite state machine, 69, 76
first-order systems, 134, 165, 236, 252, 253
fisheries management, 94
flatness, see differential flatness
flight control, 8, 18, 19, 53, 163
airspace management, 9
F/A-18 aircraft, 8
X-29 aircraft, 337
X-45 aircraft, 8
see also vectored thrust aircraft
flow, of a vector field, 29, 99
flow in a tank, 126
flow model (queuing systems), 54, 292, 313
flyball governor, see centrifugal governor
force feedback, 10,11
forced response, 133, 231
Forrester, J. W., 15
Fourier, J. B. J., 61, 262
frequency domain, 229-231, 267, 285, 315
frequency response, $30,43,44$, 152-157, 230, 290, 303, 322
relationship to Bode plot, 250
relationship to Nyquist plot, 270, 272
second-order systems, 185, 256
system identification using, 257
fully actuated systems, 240
fundamental limits, see control: fundamental limitations
Furuta pendulum, 130
gain, $24,43,73,153,154,186$, 230, 234, 239, 250, 278, 285-288, 347
$H_{\infty}, 286,287,371$
observer, see observer gain
of a system, 285
reference, 195
state feedback, 176, 177,
180, 195, 197
zero frequency, see zero frequency gain
see also integral gain
gain crossover frequency, 279, 280, 322, 326, 332, 351, 365
gain crossover frequency inequality, 332, 334
gain curve (Bode plot), 250-254, 282, 326
gain margin, 278-281
from Bode plot, 279
reasonable values, 281
gain scheduling, 220, 373
gain-bandwidth product, 74 , 237, 361
Gang of Four, 317, 344, 358
Gang of Six, 317, 322
gene regulation, $16,58,59$, 166, 256
genetic switch, 64, 114, 115
global behavior, 103, 120-124
Glover, K., 344, 374
glucose regulation, see insulin-glucose dynamics
Golomb, S., 65
governor, see centrifugal governor
H_{∞} control, 371-374, 376
Harrier AV-8B aircraft, 53
heat propagation, 238
Heaviside, O., 163
Heaviside step function, 150, 163
Hellerstein, J. L., 13, 25, 81
high-frequency roll-off, 327, 359, 366
high-pass filter, 255, 256
Hill function, 58
Hoagland, M. B., 1
Hodgkin-Huxley equations, 60
homeostasis, 3,58
homogeneous solution, 133, 136, 137, 239
Honeywell thermostat, 6

Horowitz, I. M., 226, 343, 369, 374
human-machine interface, 65 , 69
hysteresis, 23, 24, 289
identification, see system identification
impedance, 236, 309
implementation, controllers, see analog implementation; computer implementation
impulse function, 146, 164, 169
impulse response, 135,146 , 147, 261
inductor, transfer function for, 236
inertia matrix, 36,163
infinity norm, 286, 372
information systems, 12 , 54-58, see also congestion control; web server control
initial condition, 96, 99, 102, $132,137,144,215$
initial condition response, 133, 136-139, 142, 144, 147, 231
initial value problem, 96
inner loop control, 341, 343
input sensitivity function, see load sensitivity function
input/output models, 5, 29, 31, 132, 145-158, 229, 286, see also frequency response; steady-state response; step response
and transfer functions, 261
and uncertainty, 51, 349
from experiments, 257
relationship to state space models, 32, 95, 146
steady-state response, 149
transfer function for, 235
inputs, 29, 32
insect flight control, 46-47
instrumentation, 10-11, 71
insulin-glucose dynamics, 2, 88-89
integral action, 24-26,
195-198, 293, 295-296, 298, 324
for bias compensation, 227
setpoint weighting, 309, 312
time constant, 294
integral gain, 24, 294, 296, 299
integrator windup, 225, 306-307, 314
conditional integration, 314
intelligent machines, see robotics
internal model principle, 214, 221
Internet, 12, 13, 75, 77, 80, 93, see also congestion control
Internet Protocol (IP), 77
invariant set, 118, 121
inverse model, 162, 219, 320
inverse response, 284, 292
inverted pendulum, 37, 69, $100,108,118,121,128$, $130,276,337$, see also balance systems

Jacobian linearization, 159-161
Jordan form, 139-142, 165, 188

Kalman, R. E., 167, 197, 201, 223, 226
Kalman decomposition, 222-224, 235, 262, 264
Kalman filter, 215-218, 226, 370
extended, 220
Kalman-Bucy filter, 217
Kelly, F. P., 80
Kepler, J., 28
Keynes, J. M., 14
Keynesian economic model, 62, 166
Krasovski-Lasalle principle, 118

LabVIEW, 123, 164
lag, see phase lag
lag compensation, 327,328
Laplace transforms, xi, 259-262

Laplacian matrix, 58
Lasalle's invariance principle, see Krasovski-Lasalle principle
lead, see phase lead
lead compensation, 328-331, 341, 346
limit cycle, 91, 101, 109, 111, 122, 288, 289
linear quadratic control, 190-194, 216, 226, 369-371
linear systems, $30,34,74,104$, 131-164, 222, 231, 235, 262, 286
linear time-invariant systems, 30, 34, 134, 261
linearity, 133, 250
linearization, 109, 117, 132, 158-163, 220, 347
Lipschitz continuity, 98
load disturbances, 315, 359, see also disturbances
load sensitivity function, 317
local behavior, 103, 109, 118, 120, 159
locally asymptotically stable, 103
logistic growth model, 89,90 , 94
loop analysis, 267, 315
loop shaping, 270, 326-331, 343, 369
design rules, 327
fundamental limitations, 331-340
see also Bode's loop transfer function
loop transfer function, 267-270, 278-280, 287, $315,318,326,327,329$, 336, 344, see also Bode's loop transfer function
Lotus Notes server, see e-mail server
low-order models, 298
low-pass filter, 255, 256, 308
LQ control, see linear quadratic control
LTI systems, see linear time-invariant systems
Lyapunov equation, 114, 128

Lyapunov functions, 111-114, 120, 127, 164
design of controllers using, 118, 124
existence of, 113
Lyapunov stability analysis, 43, 110-120, 126
discrete time, 128
manifold, 120
margins, see stability margins
Mars Exploratory Rovers, 11, 12
mass spectrometer, 10
materials science, 9
Mathematica, 41, 123, 164
MATLAB, 26, 41, 123, 164, 200
acker, 181, 211
dlqe, 216
dlqr, 194
hinfsyn, 372
jordan, 139
linmod, 160
lqr, 191
place, 181, 189, 211
trim, 160
matrix exponential, 136-139, $143,145,163,164$
coordinate transformations, 148
Jordan form, 140
second-order systems, 138, 164
maximum complementary sensitivity, 354, 365
maximum sensitivity, 323, 352, 366
measured signals, $31,32,34$, 95, 201, 213, 225, 316, 318, 371
measurement noise, $4,21,201$,
203, 215, 217, 244, 308, 315-317, 327, 359
response to, 324-326, 359
mechanical systems, 31,36 , 42, 51, 61, 163
mechanics, 28-29, 31, 126, 131
minimal model
(insulin-glucose), 88, 89,
see also insulin-glucose dynamics
minimum phase, 283, 290, 331
modal form, 130, 145, 149
Modelica, 33
modeling, 5, 27-33, 61, 65
control perspective, 31
discrete control, 56
discrete-time, 37-38, 157-158
frequency domain, 229-231
from experiments, 47-48
model reduction, 5
normalization and scaling, 48
of uncertainty, 50-51
simplified models, use of, 32, 298, 348, 354, 355
software for, 33, 160, 163
state space, 34-43
uncertainty, see uncertainty
modes, 142-144, 239
relationship to poles, 240
motion control systems, 51-54, 226
motors, electric, 64, 199, 228
multi-input, multi-output systems, 286, 318, 327, see also input/output models
multiplicative uncertainty, 349, 356
nanopositioner (AFM), 281, 366
natural frequency, 184, 300
negative definite function, 111
negative feedback, $18,22,73$, 176, 267, 297
Nernst's law, 60
networking, $12,45,80$, see also congestion control
neural systems, 10, 47, 60, 297
neutral stability, 102-104
Newton, I., 28
Nichols, N. B., 163, 302, 343
Nichols chart, 369, 370
Nobel Prize, 10, 11, 14, 61, 81
noise, see disturbances; measurement noise
noise attenuation, 257, 324-326
noise cancellation, 124
noise sensitivity function, 317
nonlinear systems, 31, 95, 98 , $101,108,110,114$, 120-125, 202, 220, 286-288
linear approximation, 109, $117,159,165,347$
system identification, 62
nonminimum phase, 283, 284, 292, 331-333, see also inverse response
nonunique solutions (ODEs), 97
normalized coordinates, 48-50, 63, 161
norms, 285-286
Nyquist, H., 267, 290
Nyquist criterion, 271, 273, 275, 278, 287, 288, 303
for robust stability, 352,376
Nyquist D contour, 270, 276
Nyquist plot, 270-271, 278, $279,303,324,370$
observability, 32, 201-202, 222, 226
rank condition, 203
tests for, 202-203
unobservable systems, 204, 222-223, 265
observability matrix, 203, 205
observable canonical form, 204, 205, 226
observer gain, 207, 209-211, 213, 215-217
observers, 201, 206-209, 217, 220
block diagram, 202, 210
see also Kalman filter
ODEs, see differential equations
Ohm's law, 60, 73, 236
on-off control, 23, 24
open loop, 1, 2, 73, 168, 245, 267, 306, 315, 323, 349
open loop gain, 237, 278, 322
operational amplifiers, 71-75, 237, 309, 356
circuits, $92,154,268,360$
dynamic model, 74, 237
input/output characteristics, 72
oscillator using, 92,128
static model, 72, 237
optimal control, 190, 215, 217, 370
order, of a system, 34,235
ordinary differential equations, see differential equations
oscillator dynamics, 92, 96, 97, 138, 184, 233, 236
normal form, 63
see also nanopositioner (AFM); spring-mass system
outer loop control, 341-343
output feedback, 211, 212, 226, see also control: using estimated state; loop shaping; PID control
output sensitivity function, see noise sensitivity function
outputs, see measured signals overdamped oscillator, 184
overshoot, 151, 176, 185, 322

Padé approximation, 292, 333
paging control (computing), 56
parallel connection, 243
parametric stability diagram, 122, 123
parametric uncertainty, 50, 347
particle accelerator, 11
particular solution, 133, 152, see also forced response
passive systems, 287,336
passivity theorem, 288
patch clamp, 10
PD control, 296, 328
peak frequency, 156,322
pendulum dynamics, 113, see also inverted pendulum
perfect adaptation, 297
performance, 76
performance limitations, 331, 336, 365, 373
due to right half-plane poles and zeros, 283
see also control: fundamental limitations
performance specifications, 151, 175, 315, 322-327,

358, see also overshoot; maximum sensitivity; resonant peak; rise time; settling time
periodic solutions, see differential equations; limit cycles
persistence, of a web connection, 76, 77
Petri net, 45
pharmacokinetics, 85,89 , see also drug administration
phase, $43,153,154,186,230$, 234, 250, 288, see also minimum phase; nonminimum phase
minimum vs. nonminimum, 283
phase crossover frequency, 279, 280
phase curve (Bode plot), 250-252, 254
relationship to gain curve, 282, 327
phase lag, 153, 154, 256, 283, 332, 333
phase lead, 153, 256, 330, 346
phase margin, 279, 280, 327, 329, 332, 346, 375
from Bode plot, 279
reasonable values, 281
phase portrait, 28, 29, 98-100, 120
Philbrick, G. A., 75
photoreceptors, 297
physics, relationship to control, 5
PI control, 17, 25, 65, 68, 296, 301, 328
first-order system, 300, 364
PID control, 24-25, 235, 293-313, 330
block diagram, 294, 296, 308
computer implementation, 311
ideal form, 293, 313
implementation, 296, 308-312
in biological systems, 297
op amp implementation, 309-311
tuning, 302-306
see also derivative action; integral action
pitchfork bifurcation, 130
planar dynamical systems, 99, 104, see also second-order systems
pole placement, 176, 361, 365-366, see also eigenvalue assignment robust, 361
pole zero diagram, 240
pole/zero cancellations, 247-249, 265, 365, 366
poles, 239, 240
dominant, 301, see also dominant eigenvalues (poles)
fast stable, 364, 366
pure imaginary, 270, 276
relationship to eigenvalues, 239
right half-plane, 240, 276, 283, 331, 333-334, 336, 346, 366
population dynamics, 89-91, 94, see also predator-prey system
positive definite function, 111, 112, 114, 118
positive definite matrix, 114, 191
positive feedback, 16, 21-23, 129, 296
positive real (transfer function), 336
power of a matrix, 136
power systems (electric), 6-7, 63, 101, 127
predator-prey system, 38, 90-91, 121, 181
prediction, in controllers, 24, 25, 220, 296, 375, see also derivative action
prediction time, 297
principle of the argument, see variation of the argument, principle of
process control, 9, 10, 13, 45
proportional control, 24, 293, see also PID control
proportional, integral,
derivative control, see PID control
protocol, see congestion control; consensus
pulse signal, 146, 147, 187, see also impulse function
pupil response, 258, 297
pure exponential response, 232
Q-value, 63, 186, 254
quantitative feedback theory (QFT), 369
quarter car model, 265
queuing systems, 54-56, 63
random process, $54,215,228$
reachability, 32, 167-175, 197, 222
rank condition, 170
tests for, 169
unreachable systems, 171, 199, 222-223, 265
reachability matrix, 169,173
reachable canonical form, 35 , 172-175, 178, 180, 198
reachable set, 167
real-time systems, 5
reference signal, $23,175,176$, 229, 244, 293, 309, 317, 319 , see also command signals; setpoint
effect on observer error, 212, 219, 224
response to, 322, 345
tracking, 175, 219, 220, 327, 360
reference weighting, see setpoint weighting
region of attraction, see equilibrium points: regions of attraction
regulator, see control law
relay feedback, 289, 305
Reno (protocol), see Internet; congestion control
repressilator, 59-60
repressor, 16, 59, 64, 114, 166, 257
reset, in PID control, 295, 296
resonant frequency, 186, 286
resonant peak, 156, 186, 322, 355
resource usage, in computing systems, $13,55,57,75,76$
response, see input/output models
retina, 297, see also pupil response
Riccati equation, 191, 217, 372, 374
Riemann sphere, 351
right half-plane poles and zeros, see poles: right half-plane; zeros: right half-plane
rise time, $151,176,185,322$
robotics, 8, 11-12, 163
robustness, 17-18, 322, 349, 374
performance, 358-361, 369-374
stability, 352-358
using gain and phase margin, 281, 326
using maximum sensitivity, 323, 326, 353, 375, 376
using pole placement, 361-368
via gain and phase margin, 280
see also uncertainty
roll-off, see high-frequency roll-off
root locus diagram, 123
Routh-Hurwitz criterion, 130
rush-hour effect, 55, 64
saddle (equilibrium point), 104
sampling, 157, 224, 225, 311
saturation function, 45,72 , 311, see also actuators: saturation
scaling, see normalized coordinates
scanning tunneling microscope, 11, 81
schematic diagrams, 44, 45, 71
Schitter, G., 84
second-order systems, 28, 164, 183-187, 200, 253, 301
Segway Personal Transporter, 35, 170
self-activation, 129
self-repression, 166, 256
semidefinite function, 111
sensitivity crossover frequency, 324
sensitivity function, 317 , 324-326, 336, 352, 360, 366
and disturbance attenuation, 323, 336, 345
sensor matrix, 34,38
sensor networks, 57
sensors, 3, 4, 9, 202, 224, 283, $311,315,318,333,334$, 371
effect on zeros, 284, 334
in computing systems, 75
see also measured signals
separation principle, 201, 213
series connection, 243
service rate (queuing systems),

55

setpoint, 293
setpoint weighting, 309, 312
settling time, $151,165,176$, 185, 322
similarity of two systems, 349-352
simulation, 40-42, 51
SIMULINK, 160
single-input, single-output (SISO) systems, 95, 132, 133, 159, 204, 286
singular values, 286, 287, 376
sink (equilibrium point), 104
small gain theorem, 287-288, 355
Smith predictor, 375
software tools for control, x
solution (ODE), see differential equations: solutions
Sony AIBO, 12
source (equilibrium point), 104
spectrum analyzer, 257
Sperry autopilot, 19
spring-mass system, 28, 40,
42, 43, 82, 127
coupled, 144, 148
generalized, 36,71
identification, 47
normalization, 49, 63
see also oscillator dynamics
stability, 3, 5, 18, 19, 42, 98, 102-120
asymptotic stability, 102, 106
conditional, 275
in the sense of Lyapunov, 102
local versus global, 103, 110, 120, 121
Lyapunov analysis, see Lyapunov stability analysis
neutrally stable, 102, 104
of a system, 105
of equilibrium points, 42 , $102,104,111,117$
of feedback loop, see Nyquist criterion
of limit cycles, 109
of linear systems, 104-107, 113, 140
of solutions, 102, 110
of transfer functions, 240
robust, see robust stability
unstable solutions, 103
using eigenvalues, 117, 140, 141
using linear approximation, 107, 117, 160
using Routh-Hurwitz criterion, 130
using state feedback, 175-194
see also bifurcations; equilibrium points
stability diagram, see parametric stability diagram
stability margin (quantity), 279, 281, 323, 346, 353 372
reasonable values, 281
stability margins (concept), 278-282, 291, 326
stable pole, 240
stable zero, 240
Stark, L., 258
state, of a dynamical system, 28, 31, 34
state estimators, see observers
state feedback, 167-197, 207, 212, 219-221, 224-226,

362, 370, see also eigenvalue assignment; linear quadratic control state space, 28, 34-43, 175
state vector, 34
steady-state gain, see zero frequency gain
steady-state response, 26, 42, 149-157, 165, 176, 185, 230, 231, 233, 257, 262
steam engines, 2,17
steering, see vehicle steering
Stein, G., xii, 1, 315, 337
step input, $30,135,150,239$, 302
step response, $30,31,47,48$, 135, 147, 150, 151, 176, 184, 185, 302
stochastic cooling, 11
stochastic systems, 215, 217
summing junction, 45
superposition, $30,133,147$, 164, 230
supervisory control, see decision making: higher levels of
supply chains, 15
supremum (sup), 286
switching behavior, 22,64 , 117, 373
system identification, 47, 62, 257
tapping mode, see atomic force microscope
TCP/IP, see Internet; congestion control
Teorell, T., 85, 89
thermostat, 5, 6
three-term controllers, 293, see also PID control
thrust vectored aircraft, see vectored thrust aircraft
time constant, first-order system, 165
time delay, 5, 13, 235, 236, 281, 283, 302, 311, 332-334
compensation for, 375
Padé approximation, 292, 332
time plot, 28
time-invariant systems, 30, 34, 126, 134-135
tracking, see reference signal: tracking
trail (bicycle dynamics), 70
transcriptional regulation, see gene regulation
transfer functions, 229-262
by inspection, 235
derivation using exponential signals, 231
derivation using Laplace transforms, 261
for control systems, 244, 264
for electrical circuits, 236
for time delay, 235
frequency response, 230, 250
from experiments, 257
irrational, 236, 239
linear input/output systems, 231, 235, 264
transient response, 42, 150, $151,153,168,188,231$, 232
Transmission Control Protocol (TCP), 77
transportation systems, 8
Tsien, H. S., 11
tuning rules, 314 , see
Ziegler-Nichols tuning
two degree-of-freedom control, 219, 294, 319, 321, 343, 345
uncertainty, 4, 17-18, 32,
50-51, 195, 347-352
component or parameter variation, 4, 50, 347
disturbances and noise, 4 ,
$32,175,244,315$
unmodeled dynamics, 4, 50, 348, 353
see also additive uncertainty; feedback uncertainty; multiplicative uncertainty
uncertainty band, 50
uncertainty lemon, $50,51,68$, 74, 84
underdamped oscillator, 97 , 184, 185
unit step, 150
unmodeled dynamics, see uncertainty: unmodeled dynamics
unstable pole, see poles: right half-plane
unstable pole/zero cancellation, 248
unstable solution, for a dynamical system, 103, 104, 106, 141, 240
unstable zero, see zeros: right half-plane
variation of the argument, principle of, 277, 290
vector field, 29, 99
vectored thrust aircraft, 53-54, 141, 191, 217, 264, 329, 340
vehicle steering, 51-53, 160, 177, 209, 214, 221, 245, 284, 291, 321, 362
ship dynamics, 51
vehicle suspension, 265, see also coupled spring-mass system
vertical takeoff and landing, see vectored thrust aircraft
vibration absorber, 266
Vinnicombe, G., 344, 351, 374

Vinnicombe metric, 349-352, 372
voltage clamp, $10,11,61$
waterbed effect, 336, 337
Watt governor, see centrifugal governor
Watt steam engine, 3, 17
web server control, 75-77, 192
web site, companion, x
Whipple, F. J. W., 71
Wiener, N., 11, 12
winding number, 277
window size (TCP), 78, 80, 104
windup, see integrator windup
Wright, W., 18
Wright Flyer, 8, 19
X-29 aircraft, 337
X-45 aircraft, 8
Youla parameterization, 356-358
zero frequency gain, 155,177 , 180, 186, 239
zeros, 239
Bode plot for, 264
effect of sensors and actuators on, 284, 334
for a state space system, 240
right half-plane, 240, 283, 331-334, 337, 346, 365
signal-blocking property, 239
slow stable, 362, 363, 365
Ziegler, J. G., 302, 312
Ziegler-Nichols tuning, 302-305, 312
frequency response, 303
improved method, 303
step response, 302

