Index

2, iii	analog computing, 51, 71, 250, 309	attractor (equilibrium point), 104
access control, <i>see</i> admission control acknowledgment (ack) packet, 77–79 activator, 16, 59, 129 active filter, 154, <i>see also</i> operational amplifier actuators, 4, 31, 51, 65, 81, 178, 224, 266, 284, 311, 324, 333–335, 337 effect on zeros, 284, 334 in computing systems, 75	analog implementation, controllers, 74, 263, 309–311 analog-to-digital converters, 4, 83, 224, 225, 311 analytic function, 236 anticipation, in controllers, 6, 24, 296, see also derivative action antiresonance, 156 anti-windup compensation, 306–307, 311, 312, 314	automatic reset, in PID control, 296 automatic tuning, 306, 373 automotive control systems, 6, 21, 51, 69, see also cruise control; vehicle steering autonomous differential equation, 29, see also time-invariant systems autonomous vehicles, 8, 20–21 autopilot, 6, 19
saturation, 50, 225, 300, 306–307, 311, 324 A/D converters, <i>see</i> analog-to-digital converters	Apache web server, 76, see also web server control apparent volume of distribution, 86, 94 Arbib, M. A., 167	balance systems, 35–37, 49, 170, 188, 241, 334, see also cart-pendulum system; inverted pendulum
adaptation, 297 adaptive control, 21, 373, 374	argument, of a complex number, 250	band-pass filter, 154, 155, 255, 256
additive uncertainty, 349, 353, 356, 376 admission control, 54, 63, 78, 79, 274	arrival rate (queuing systems), 55 artificial intelligence (AI), 12, 20	bandwidth, 155, 186, 322, 333 Bell Labs, 18, 290 Bennett, S., 25, 290, 312 bicycle dynamics, 69–71, 91,
advertising, 15 aerospace systems, 8–9, 18, 338, <i>see also</i> vectored	asymptotes, in Bode plot, 253, 254 asymptotic stability, 42, 102–106, 112, 114, 117,	123, 226 Whipple model, 71 bicycle model, for vehicle
thrust aircraft; X-29 aircraft	118, 120, 140	steering, 51–53 bicycledynamics
AFM, <i>see</i> atomic force microscope aircraft, <i>see</i> flight control	discrete-time systems, 165 atmospheric dynamics, <i>see</i> environmental science	Whipple model, 199 bifurcations, 121–124, 130, see also root locus plots
alcohol, metabolism of, 94 algebraic loops, 211, 249–250 aliasing, 225 all-pass transfer function, 331	atomic force microscopes, 3, 51, 81–84 contact mode, 81, 156, 199 horizontal positioning, 282,	biological circuits, 16, 45, 58–60, 129, 166, 256 genetic switch, 64, 114 repressilator, 59–60
alternating current (AC), 7, 155 amplifier, see operational amplifier amplitude ratio, see gain	366 system identification, 257 tapping mode, 81, 290, 299, 304, 328 with preloading, 93	biological systems, 1–3, 10, 15–16, 22, 25, 58–61, 126, 293, 297, see also biological circuits; drug administration; neural
		•

systems; population	capacitor, transfer function for,	systems, 9, 21, 298
dynamics	236	computed torque, 163
bistability, 22, 117	car, see automotive control	computer implementation,
Black, H. S., 18, 20, 71, 73,	systems	controllers, 224–226,
131, 267, 290, 347	carrying capacity, in	311–312
block diagonal systems, 106,	population models, 90	computer science, relationship
129, 139, 145, 149, 212	cart-pendulum system, 36,	to control, 5
block diagram algebra, 242,	172, see also balance	computer systems, control of,
245, 356	systems	12–14, 25, 39, 56, 57,
block diagrams, 1, 44–47, 238,	causal reasoning, 1, 70	75–81, 157, see also
242–247, 249	Cayley-Hamilton theorem,	queuing systems
control system, 4, 229, 244,	170, 199, 203	conditional integration, 314
315	center (equilibrium point), 104	conditional stability, 275
Kalman decomposition, 223	centrifugal governor, 2, 3, 6, 17	congestion control, 12, 77–80,
observable canonical form,	chain of integrators (normal	104, 273, 292, 313, see
205	form), 61, 173	also queuing systems
observer, 202, 210	characteristic polynomial, 105,	router dynamics, 93
observer-based control	199, 235, 240	consensus, 57
system, 213	for closed loop transfer	control
PID controllers, 293, 296,	function, 268	definition of, 3–5
311	observable canonical form,	early examples, 2, 5, 6, 8,
reachable canonical form,	205	11, 18, 21, 25, 296
172	output feedback controller,	fundamental limitations,
two degree-of-freedom	212, 213	283, 331–340, 343, 363,
controller, 219, 316, 358	reachable canonical form,	366, 373–374
Youla parameterization, 357	173, 175, 179, 198	history of, 25, 312
Bode, H., 229, 290, 343, 374	chemical systems, 9, 293, see	modeling for, 5, 31–32, 61,
Bode plots, 250–257, 283	also process control;	347
asymptotic approximation,	compartment models	successes of, 8, 25
253, 254, 264	chordal distance, 351	system, 3, 175, 213, 219,
low-, band-, high-pass	Chrysler autopilot, 6	224, 229, 316, 318, 358
filters, 256	circuits, see biological circuits;	using estimated state,
nonminimum phase systems,	electrical circuits	211–214, 370
284	classical control, xi, 374	control error, 23, 244, 294
of rational function, 251	closed loop, 1, 2, 4, 6, 162, 176, 183, 267, 268, 287,	control law, 4, 23, 24, 162,
sketching, 254	315	176, 179, 244 control Lyapunov function,
Bode's ideal loop transfer	versus open loop, 2, 269,	124
function, 355, 375	288, 315	control matrix, 34, 38
Bode's integral formula,	command signals, 4, 22, 220,	control signal, 31, 157, 293
335–340	293, <i>see also</i> reference	controllability, 197, see also
Bode's relations, 283, 326	signal; setpoint	reachability
Brahe, T., 28	compartment models, 85–89,	controlled differential
breakpoint, 253, 272	106, 151, 186, 203, 208,	equation, 29, 34, 235
Brockett, R. W., xii, 1, 163	227	convolution equation,
Bryson, A. E., 200	exercises, 164	145–147, 149, 150, 170,
bumpless transfer, 373	compensator, see control law	261
Bush, V., 312	complementary sensitivity	discrete-time, 165
	function, 317, 325, 336,	coordinate transformations,
calibration, versus feedback,	350, 354, 356, 360, 365,	106, 147–149, 173, 226,
10, 180, 195, 197	369, 375	234–235
Cannon, R. H., 61, 131	complexity, of control	to Jordan form, 139

to observable canonical delay compensation, 292, 375 direct term, 34, 38, 147, 211, form, 206 250 delay margin, 281 to reachable canonical form, discrete control, 56 delta function, see impulse 174, 175 function discrete-time systems, 38, 61, Coriolis forces, 36, 163 derivative action, 24, 25, 293, 128, 157, 165, 311 corner frequency, 253 296-298, 310, 330 Kalman filter for, 215 correlation matrix, 215, 216 filtering, 297, 308, 311, 312 linear quadratic regulator for, 192 cost function, 190 setpoint weighting, 309, 312 coupled spring-mass system, time constant, 294 disk drives, 64 142, 144, 148 versus lead compensator, disturbance attenuation, 4, covariance matrix, 215 176, 323–324, 358–359 critical gain, 303, 305 design of controllers for, describing functions, 288-290 319, 320, 326, 336, 345, critical period, 303, 305 design of dynamics, 18-20, 109, 124-125, 131, 167, critical point, 271, 273, 279, 280, 289, 290, 303, 352, 177, 182 fundamental limits, 336 353, 372 diabetes, see insulin-glucose in biological systems, 257, critically damped oscillator, dynamics 184 diagonal systems, 105, 139 integral gain as a measure crossover frequency, see gain Kalman decomposition for, of, 296, 324, 359 crossover frequency; 222 relationship to sensitivity phase crossover frequency transforming to, 106, 129, function, 323, 335, 345, crossover frequency inequality, 138 see gain crossover Dickmanns, E., 20 disturbance weighting, 372 frequency inequality disturbances, 4, 29, 32, 244, difference equations, 34, cruise control, 6, 17-18, 65-69 248, 315, 318, 319 37-41, 61, 157, 224, 312 Chrysler autopilot, 6 differential algebraic generalized, 371 control design, 196, 300, 309 equations, 33, see also random, 215 feedback linearization, 161 algebraic loops Dodson, B., 1 integrator windup, 306, 307 differential equations, 28, dominant eigenvalues (poles), linearization, 158 34-37, 95-98 187, 300, 301 pole/zero cancellation, 248 controlled, 29, 133, 235 double integrator, 137, 168, robustness, 17, 347, 348, 354 equilibrium points, 100-101 236 Curtiss seaplane, 19 existence and uniqueness of Doyle, J. C., xii, 343, 374 cybernetics, 11, see also solutions, 96-98 drug administration, 85-89, robotics first-order, 32, 298 94, 151, 186, see also compartment models isolated solution, 101 D/A converters, see periodic solutions, 101-102, duality, 207, 211 Dubins car, 53 digital-to-analog qualitative analysis, 98-102 dynamic compensator, 196, converters damped frequency, 184 second-order, 99, 183, 298 213 solutions, 95, 96, 133, 137, dynamic inversion, 163 damping, 28, 36, 41, 96, 265, 266 145, 263 dynamical systems, 1, 27, 95, damping ratio, 184, 185, 187, stability, see stability 98, 126 transfer functions for, 236 linear, 104, 131 188, 300 DARPA Grand Challenge, 20, differential flatness, 221 observer as a, 201 digital control systems, see state of, 175 stochastic, 215 DC gain, 155, see also zero computer implementation, frequency gain controllers uncertainty in, 347-349 dead zone, 23 digital-to-analog converters, 4, see also differential decision making, higher levels 83, 224, 225, 311 equations dynamics matrix, 34, 38, 105, of, 8, 12, 20 dimension-free variables, 48, delay, see time delay 61 142

Dyson, F., 27	bifurcations of, 121 discrete time, 62	see also band-pass filters; high-filters; low-pass
e-commerce, 13	for closed loop system, 176,	filters
e-mail server, control of, 39,	195	financial systems, see
157	for planar systems, 104	economic systems
economic systems, 14-15, 22,	region of attraction,	finite escape time, 97
62	119–121, 128	finite state machine, 69, 76
ecosystems, 16-17, 89, 181,	stability, 102	first-order systems, 134, 165,
see also predator-prey	error feedback, 5, 293, 294,	236, 252, 253
system	309, 317	fisheries management, 94
eigenvalue assignment, 176,	estimators, see oservers387	flatness, see differential
178, 180–182, 188, 212,	Euler integration, 41, 42	flatness
299, 313	exponential signals, 230–235,	flight control, 8, 18, 19, 52,
by output feedback, 213	239, 250	163
for observer design, 208	extended Kalman filter, 220	airspace management, 9
eigenvalues, 105, 114, 123,		F/A-18 aircraft, 8
142, 232	F/A-18 aircraft, 8	X-29 aircraft, 336
and Jordan form, 139–141,	Falb, P. L., 167	X-45 aircraft, 8
165	feedback, 1–3	see also vectored thrust
distinct, 128, 129, 138, 144,	as technology enabler, 3, 19	aircraft
222	drawbacks of, 3, 21, 308,	flow, of a vector field, 29, 99
dominant, 187	352, 359	flow in a tank, 126
effect on dynamic behavior,	in biological systems, 1–3,	flow model (queuing systems),
183, 185–187, 233	15–16, 25, 297, see also	54, 292, 313
for discrete-time systems,	biological circuits	flyball governor, see
165	in engineered systems, see	centrifugal governor
invariance under coordinate	control	force feedback, 10, 11
transformation, 106	in financial systems, 3	forced response, 133, 231
relationship to modes,	in nature, 3, 15–17, 89	Forrester, J. W., 15
142–145	positive, see positive	Fourier, J. B. J., 61, 262
relationship to poles, 239	feedback	frequency domain, 229-231,
relationship to stability, 117,	properties, 3, 5, 17-22, 315,	267, 285, 315
140, 141	320, 347	frequency response, 30, 43, 44,
eigenvectors, 106, 129, 142,	robustness through, 17	152–157, 230, 290, 303,
143	versus feedforward, 22, 296,	322
relationship to mode shape,	320	relationship to Bode plot,
143	feedback connection, 243, 287,	250
electric power, see power	288	relationship to Nyquist plot,
systems (electric)	feedback controller, 244, 315	270, 272
electrical circuits, 33, 45, 74,	feedback linearization,	second-order systems, 185,
131, 236, see also	161–163	256
operational amplifier	feedback loop, 4, 267, 315, 358	system identification using,
electrical engineering, 6–7,	feedback uncertainty, 349, 356	257
29–31, 155, 275	feedforward, 22, 219-222,	fully actuated systems, 240
elephant, modeling of an, 27	244, 315, 319, 321	fundamental limits, see
Elowitz, M. B., 59	Fermi, E., 27	control: fundamental
encirclement, 271, see also	filters	limitations
Nyquist criterion	active, 154	Furuta pendulum, 130
entertainment robots, 11, 12	for disturbance weighting,	
environmental science, 3, 9, 17	373	gain, 24, 43, 72, 153, 154, 186,
equilibrium points, 90, 100,	for measurement signals, 21,	230, 234, 239, 250, 279,
105, 132, 159, 168	225, 359	285–288, 347

 H_{∞} , 286, 287, 371 Horowitz, I. M., 226, 343, 369, integral action, 24-26, observer, see observer gain 195-198, 293, 295-296, of a system, 285 298, 324 human-machine interface, 65, reference, 195 for bias compensation, 227 state feedback, 176, 177, hysteresis, 23, 289 setpoint weighting, 309, 312 180, 195, 197 time constant, 294 integral gain, 24, 294, 296, 299 zero frequency, see zero identification, see system integrator windup, 225, frequency gain identification 306-307, 314 see also integral gain impedance, 236, 309 gain crossover frequency, 279, conditional integration, 314 implementation, controllers, 280, 322, 327, 332, 351, intelligent machines, see see analog 365 robotics implementation; computer internal model principle, 214, gain crossover frequency implementation inequality, 332, 334 221 impulse function, 146, 164, gain curve (Bode plot), Internet, 12, 13, 75, 77, 80, 93, 169 250-254, 283, 327 see also congestion impulse response, 135, 146, gain margin, 279-281 control 147, 261 from Bode plot, 280 Internet Protocol (IP), 77 inductor, transfer function for, reasonable values, 281 invariant set, 118, 121 236 gain scheduling, 220, 373 inverse model, 162, 219, 320 inertia matrix, 36, 163 gain-bandwidth product, 74, inverse response, 284, 292 infinity norm, 286, 372 237, 361 inverted pendulum, 37, 69, information systems, 12, Gang of Four, 317, 344, 358 100, 107, 118, 121, 128, 54-58, see also 130, 276, 337, see also Gang of Six, 317, 322 congestion control; web gene regulation, 16, 58, 59, balance systems server control 166, 256 initial condition, 96, 99, 102, genetic switch, 64, 114, 115 Jacobian linearization, 132, 137, 144, 215 global behavior, 103, 120-124 159-161 initial condition response, 133, Glover, K., 343, 374 Jordan form, 139-142, 164, 136-139, 142, 144, 147, glucose regulation, see 188 231 insulin-glucose dynamics initial value problem, 96 Golomb, S., 65 Kalman, R. E., 167, 197, 201, inner loop control, 340, 342 governor, see centrifugal 223, 226 input sensitivity function, see governor Kalman decomposition, load sensitivity function 222-224, 235, 262, 264 input/output models, 5, 29, 31, Kalman filter, 215-218, 226, H_{∞} control, 371–374, 376 132, 145–158, 229, 286, 370 Harrier AV-8B aircraft, 53 see also frequency extended, 220 heat propagation, 238 response; steady-state Heaviside, O., 163 Kalman-Bucy filter, 217 response; step response Heaviside step function, 150, Kelly, F. P., 80 and transfer functions, 261 Kepler, J., 28 163 and uncertainty, 51, 349 Hellerstein, J. L., 13, 25, 81 Keynes, J. M., 14 from experiments, 257 high-frequency roll-off, 326, Keynesian economic model, relationship to state space 359, 366 62, 166 models, 32, 95, 146 high-pass filter, 255, 256 Krasovski-Lasalle principle, steady-state response, 149 118 Hill function, 58 transfer function for, 235 Hoagland, M. B., 1 inputs, 29, 32 Hodgkin-Huxley equations, 60 LabVIEW, 123, 164 homeostasis, 3, 58 insect flight control, 46-47 lag, see phase lag instrumentation, 10-11, 71 homogeneous solution, 133, lag compensation, 326-328

insulin-glucose dynamics, 2,

88-89

Laplace transforms, xi,

259-262

136, 137, 239

Honeywell thermostat, 6

Laplacian matrix, 58	Lyapunov functions, 111–114,	minimum phase, 283, 290, 331
Lasalle's invariance principle,	120, 127, 164	modal form, 130, 145, 149
see Krasovski-Lasalle	design of controllers using,	Modelica, 33
principle	118, 124	modeling, 5, 27–33, 61, 65
lead, see phase lead	existence of, 113	control perspective, 31
lead compensation, 327–330,	Lyapunov stability analysis,	discrete control, 56
341, 345	43, 110–120, 126	discrete-time, 37–38,
limit cycle, 91, 101, 109, 111,	discrete time, 128	157–158
122, 288, 289		frequency domain, 229-231
linear quadratic control,	manifold, 120	from experiments, 47–48
190–194, 216, 226,	margins, see stability margins	model reduction, 5
369-371	Mars Exploratory Rovers, 11	normalization and scaling,
linear systems, 30, 34, 74, 104,	mass spectrometer, 11	48
131–164, 222, 231, 235,	materials science, 9	of uncertainty, 50-51
262, 286	Mathematica, 41, 123, 164	simplified models, use of,
linear time-invariant systems,	MATLAB, 26, 41, 123, 164,	32, 298, 348, 354, 355
30, 34, 134, 261	200	software for, 33, 160, 163
linearity, 133, 250	acker, 181, 211	state space, 34–43
linearization, 109, 117, 132,	dlqe, 216	uncertainty, see uncertainty
158–163, 220, 347	dlqr, 194	modes, 142–144, 239
Lipschitz continuity, 98	hinfsyn, 372	relationship to poles, 241
load disturbances, 315, 359,	jordan, 139	motion control systems,
see also disturbances	linmod, 160	51–54, 226
load sensitivity function, 317	lqr, 191	motors, electric, 64, 199, 228
local behavior, 103, 109, 117,	place, 181, 189, 211	multi-input, multi-output
120, 159	trim, 160	systems, 286, 318, 327,
locally asymptotically stable,	matrix exponential, 136–139,	see also input/output models
103	143, 145, 163, 164	multiplicative uncertainty, 349,
logistic growth model, 89, 90, 94	coordinate transformations,	356
loop analysis, 267, 315	Jordan form, 140	330
loop shaping, 270, 326–330,	second-order systems, 138,	nanopositioner (AFM), 282,
343, 369	164	366
design rules, 327	maximum complementary	natural frequency, 184, 300
fundamental limitations,	sensitivity, 354, 365	negative definite function, 111
331–340	maximum sensitivity, 323,	negative feedback, 18, 22, 73,
see also Bode's loop transfer	352, 366	176, 267, 297
function	measured signals, 31, 32, 34,	Nernst's law, 60
loop transfer function,	95, 201, 213, 225, 316,	networking, 12, 45, 80, see
267–270, 279, 280, 287,	318, 371	also congestion control
315, 318, 326, 329, 336,	measurement noise, 4, 21, 201,	neural systems, 11, 47, 60, 297
343, see also Bode's loop	203, 215, 217, 244, 308,	neutral stability, 102-104
transfer function	315–317, 326, 359	Newton, I., 28
Lotus Notes server, see e-mail	response to, 324–326, 359	Nichols, N. B., 163, 302, 343
server	mechanical systems, 31, 35,	Nichols chart, 369, 370
low-order models, 298	42, 51, 61, 163	Nobel Prize, 11, 14, 60, 61, 81
low-pass filter, 255, 256, 308	mechanics, 28–29, 31, 126,	noise, see disturbances;
LQ control, see linear	131	measurement noise
quadratic control	minimal model	noise attenuation, 257,
LTI systems, see linear	(insulin-glucose), 88, 89,	324–326
time-invariant systems		
Lyapunov equation, 114, 128	see also insulin-glucose dynamics	noise cancellation, 124 noise sensitivity function, 317

nonlinear systems, 31, 95, 98, static model, 72, 237 resonant peak; rise time; 101, 108, 110, 114, settling time optimal control, 190, 215, 217, 120-125, 202, 220, periodic solutions, see 370 286-288 order, of a system, 34, 235 differential equations; linear approximation, 109, ordinary differential equations, limit cycles 117, 159, 165, 347 see differential equations persistence, of a web system identification, 62 oscillator dynamics, 92, 96, connection, 76, 77 nonminimum phase, 283, 284, 97, 138, 184, 233, 236 Petri net, 45 292, 331-333, see also normal form, 63 pharmacokinetics, 85, 89, see inverse response also drug administration see also nanopositioner nonunique solutions (ODEs), phase, 43, 153, 154, 186, 230, (AFM); spring-mass 234, 250, 288, see also system normalized coordinates, minimum phase; outer loop control, 340-342 48-50, 63, 161 nonminimum phase output feedback, 211, 212, norms, 285-286 226, see also control: minimum vs. nonminimum, Nyquist, H., 267, 290 using estimated state; loop Nyquist criterion, 271, 273, phase crossover frequency, shaping; PID control 276, 278, 287, 288, 303 279, 280 output sensitivity function, see for robust stability, 352, 376 phase curve (Bode plot), noise sensitivity function Nyquist D contour, 270, 276 250-252, 254 outputs, see measured signals Nyquist plot, 270-271, 279, relationship to gain curve, overdamped oscillator, 184 303, 324, 370 283, 326 overshoot, 151, 176, 185, 322 phase lag, 153, 154, 256, 283, 332, 333 observability, 32, 201-202, Padé approximation, 292, 332 phase lead, 153, 256, 330, 345 222, 226 paging control (computing), 56 phase margin, 279, 280, 326, rank condition, 203 parallel connection, 243 329, 332, 346, 375 tests for, 202-203 parametric stability diagram, from Bode plot, 280 unobservable systems, 204, 122, 123 reasonable values, 281 222-223, 265 parametric uncertainty, 50, 347 phase portrait, 28, 29, 98-100, observability matrix, 203, 205 particle accelerator, 11 120 observable canonical form, particular solution, 133, 152, 204, 205, 226 Philbrick, G. A., 75 see also forced response observer gain, 207, 209-211, photoreceptors, 297 passive systems, 288, 336 physics, relationship to 213, 215-217 passivity theorem, 288 observers, 201, 206-209, 217, control, 5 patch clamp, 11 PI control, 17, 24, 65, 68, 296, 220 PD control, 296, 328 301, 327, 328 block diagram, 202, 210 see also Kalman filter peak frequency, 156, 322 first-order system, 299, 364 ODEs, see differential pendulum dynamics, 113, see PID control, 23-24, 235, also inverted pendulum equations 293-313, 330 perfect adaptation, 297 Ohm's law, 60, 73, 236 block diagram, 294, 296, on-off control, 23 performance, 76 308 open loop, 1, 2, 72, 168, 245, performance limitations, 331, computer implementation, 267, 306, 315, 323, 349 336, 365, 373 open loop gain, 237, 279, 322 due to right half-plane poles ideal form, 293, 313 and zeros, 283 implementation, 296, operational amplifiers, 71-75, 308-312 237, 309, 356 see also control: in biological systems, 297 circuits, 92, 154, 268, 360 fundamental limitations dynamic model, 74, 237 op amp implementation, performance specifications, 309-311 input/output characteristics, 151, 175, 315, 322-327, 358, see also overshoot; tuning, 302-306 72. oscillator using, 92, 128 see also derivative action; maximum sensitivity;

integral action pitchfork bifurcation, 130 planar dynamical systems, 99, 104, see also second-order systems pole placement, 176, 361, 365-366, see also eigenvalue assignment robust, 361 pole zero diagram, 240 pole/zero cancellations, 247-249, 265, 365, 366 poles, 239, 241 dominant, 301, see also dominant eigenvalues (poles) fast stable, 364, 366 pure imaginary, 270, 276 relationship to eigenvalues, 239 right half-plane, 241, 276, 283, 331, 333-334, 336, 346, 366 population dynamics, 89-91, 94, see also predator-prey system positive definite function, 111, 112, 114, 118 positive definite matrix, 114, 191 positive feedback, 16, 21-22, 129, 296 positive real (transfer function), 336 power of a matrix, 136 power systems (electric), 6–7, 63, 101, 127 predator-prey system, 38, 90-91, 121, 181 prediction, in controllers, 24, 220, 296, 375, see also derivative action prediction time, 297 principle of the argument, see variation of the argument, principle of process control, 9, 10, 13, 45 proportional control, 23, 24, 293, see also PID control proportional, integral, derivative control, see PID control

protocol, see congestion control; consensus pulse signal, 146, 147, 187, see also impulse function pupil response, 258, 297 pure exponential response, 232 Q-value, 63, 186, 254 quantitative feedback theory (OFT), 369 quarter car model, 265, 266 queuing systems, 54-56, 63 random process, 54, 215, 228 reachability, 32, 167-175, 197, 222 rank condition, 170 tests for, 169 unreachable systems, 171, 199, 222-223, 265 reachability matrix, 169, 173 reachable canonical form, 35, 172–175, 178, 180, 198 reachable set, 167 real-time systems, 5 reference signal, 23, 175, 176, 229, 244, 293, 309, 317, 319, see also command signals; setpoint effect on observer error, 212, 219, 224 response to, 322, 344 tracking, 175, 219, 220, 326, reference weighting, see setpoint weighting region of attraction, see equilibrium points: regions of attraction regulator, see control law relay feedback, 289, 305 Reno (protocol), see Internet; congestion control repressilator, 59-60 repressor, 16, 59, 64, 114, 166, reset, in PID control, 295, 296 resonant frequency, 186, 286 resonant peak, 156, 186, 322, 355

resource usage, in computing

systems, 13, 55, 57, 75, 76

response, see input/output models retina, 297, see also pupil response Riccati equation, 191, 217, 372, 374 Riemann sphere, 351 right half-plane poles and zeros, see poles: right half-plane; zeros: right half-plane rise time, 151, 176, 185, 322 robotics, 8, 11-12, 163 robustness, 16-18, 322, 349, 374 performance, 358-361, 369-374 stability, 352-358 using gain and phase margin, 281, 326 using maximum sensitivity, 323, 326, 353, 375, 376 using pole placement, 361-368 via gain and phase margin, 280 see also uncertainty roll-off, see high-frequency roll-off root locus diagram, 123 Routh-Hurwitz criterion, 130 rush-hour effect, 56, 64

saddle (equilibrium point), 104 sampling, 157, 224, 225, 311 saturation function, 45, 72, 311, see also actuators: saturation scaling, see normalized coordinates scanning tunneling microscope, 11, 81 schematic diagrams, 44, 45, 71 Schitter, G., 83, 84 second-order systems, 28, 164, 183-187, 200, 253, 301 Segway Personal Transporter, 35, 170 self-activation, 129 self-repression, 166, 256 semidefinite function, 111

sensitivity crossover	asymptotic stability, 102,	linear quadratic control
frequency, 324	106	state space, 28, 34-43, 175
sensitivity function, 317, 324,	conditional, 275	state vector, 34
325, 327, 336, 352, 360,	in the sense of Lyapunov,	steady-state gain, see zero
366	102	frequency gain
and disturbance attenuation,	local versus global, 103,	steady-state response, 26, 42,
323, 336, 345	110, 120, 121	149–157, 165, 176, 185,
sensor matrix, 34, 38	Lyapunov analysis, see	230, 231, 233, 257, 262
sensor networks, 57	Lyapunov stability	steam engines, 2, 17
sensors, 3, 4, 9, 202, 224, 284,	analysis	steering, see vehicle steering
311, 315, 318, 333, 334,	neutrally stable, 102, 104	Stein, G., xii, 1, 315, 337
371	of a system, 105	step input, 30, 135, 150, 239,
effect on zeros, 284, 334	of equilibrium points, 42,	302
in computing systems, 75	102, 104, 111, 117	step response, 30, 31, 47, 48,
see also measured signals	of feedback loop, see	135, 147, 150, 151, 176,
separation principle, 201, 213	Nyquist criterion	184, 185, 302
series connection, 242, 243	of limit cycles, 109	stochastic cooling, 11
service rate (queuing systems),	of linear systems, 104–107,	stochastic systems, 215, 217
55	113, 140	summing junction, 45
setpoint, 293	of solutions, 102, 110	superposition, 30, 133, 147,
setpoint weighting, 309, 312	of transfer functions, 240	164, 230
settling time, 151, 165, 176,	robust, see robust stability	supervisory control, see
185, 322	unstable solutions, 103	decision making: higher
similarity of two systems,	using eigenvalues, 117, 140,	levels of
349–352	141	supply chains, 14, 15
simulation, 40–42, 51	using linear approximation,	supremum (sup), 286
SIMULINK, 160	107, 117, 160	switching behavior, 22, 64,
single-input, single-output	using Routh-Hurwitz	117, 373
(SISO) systems, 95, 132,	criterion, 130	system identification, 47, 62,
133, 159, 204, 286	using state feedback,	257
singular values, 286, 287, 376	175–194	
sink (equilibrium point), 104	see also bifurcations;	tapping mode, see atomic
small gain theorem, 287–288,	equilibrium points	force microscope
355 Smith modiator 275	stability diagram, see	TCP/IP, see Internet;
Smith predictor, 375	parametric stability	congestion control
software tools for control, x	diagram	Teorell, T., 85, 89
solution (ODE), see	stability margin (quantity),	thermostat, 5, 6
differential equations: solutions	280, 281, 323, 346, 353, 372	three-term controllers, 293, <i>see</i> also PID control
Sony AIBO, 11, 12	reasonable values, 281	thrust vectored aircraft, see
source (equilibrium point), 104		vectored thrust aircraft
spectrum analyzer, 257	278–282, 291, 326	time constant, first-order
Sperry autopilot, 19	stable pole, 241	system, 165
spring-mass system, 28, 40,	stable zero, 241	time delay, 5, 13, 235, 236,
42, 43, 82, 127	Stark, L., 258	281, 283, 302, 311,
coupled, 144, 148	state, of a dynamical system,	332–334
generalized, 35, 71	28, 31, 34	compensation for, 375
identification, 47	state estimators, <i>see</i> observers	Padé approximation, 292,
normalization, 49, 63	state feedback, 167–197, 207,	332
see also oscillator dynamics	212, 219–221, 224–226,	time plot, 28
stability, 3, 5, 18, 19, 42, 98,	362, 370, see also	time-invariant systems, 30, 34,
102–120	eigenvalue assignment;	126, 134–135
102 120	organiana appropriately	120, 10 . 100

tracking, see reference signal: tracking trail (bicycle dynamics), 70 transcriptional regulation, see gene regulation transfer functions, 229–262 by inspection, 235 derivation using exponential signals, 231 derivation using Laplace transforms, 261 for control systems, 244, 264 for electrical circuits, 236 for time delay, 235 frequency response, 230, 250 from experiments, 257 irrational, 236, 239 linear input/output systems, 231, 235, 264 transient response, 42, 149, 151, 153, 168, 188, 231, 232 Transmission Control Protocol (TCP), 77 transportation systems, 8 Tsien, H. S., 11 tuning rules, 314, see Ziegler-Nichols tuning two degree-of-freedom control, 219, 294, 319, 321, 343, 344 uncertainty, 4, 17-18, 32,

50-51, 195, 347-352 component or parameter variation, 4, 50, 347 disturbances and noise, 4, 32, 175, 244, 315 unmodeled dynamics, 4, 50, 348, 353

see also additive uncertainty; feedback uncertainty; multiplicative uncertainty uncertainty band, 50 uncertainty lemon, 50, 51, 68, 74,84 underdamped oscillator, 97, 184, 185 unit step, 150 unmodeled dynamics, see uncertainty: unmodeled dynamics unstable pole, see poles: right half-plane unstable pole/zero cancellation, 248 unstable solution, for a dynamical system, 103, 104, 106, 141, 241 unstable zero, see zeros: right half-plane

principle of, 277, 290 vector field, 29, 99 vectored thrust aircraft, 53-54, 141, 191, 217, 264, 329, 340 vehicle steering, 51-53, 160, 177, 209, 214, 221, 245, 284, 291, 321, 362 ship dynamics, 51 vehicle suspension, 265, see also coupled spring-mass system vertical takeoff and landing, see vectored thrust aircraft vibration absorber, 266 Vinnicombe, G., 343, 351, 374 Vinnicombe metric, 349-352, 372 voltage clamp, 10, 61

variation of the argument,

waterbed effect, 336, 337 Watt governor, see centrifugal governor Watt steam engine, 3, 17 web server control, 75-77, 192 web site, companion, x Whipple, F. J. W., 71 Wiener, N., 11, 12 winding number, 277 window size (TCP), 78, 80, 104 windup, see integrator windup Wright, W., 18 Wright Flyer, 8, 19

X-29 aircraft, 336 X-45 aircraft, 8

Youla parameterization, 356-358

zero frequency gain, 155, 177, 180, 186, 239 zeros, 239 Bode plot for, 264 effect of sensors and actuators on, 284, 285, for a state space system, 240 right half-plane, 241, 283, 331-334, 336, 346, 365 signal-blocking property, slow stable, 362, 363, 365 Ziegler, J. G., 302, 312 Ziegler-Nichols tuning, 302-305, 312 frequency response, 303 improved method, 303

step response, 302