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Chapter Three

Examples

... Don't apply any model until you understand the simplifying assumptionwhich it is
based, and you can test their validity. Catch phrase: use only as dirdatedt limit yourself
to a single model: More than one model may be useful for understandiiegedif aspects of
the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70]

In this chapter we present a collection of examples spanmiagy different
fields of science and engineering. These examples will be hsedghout the text
and in exercises to illustrate different concepts. Firstetireaders may wish to
focus on only a few examples with which they have had the mst pxperience
or insight to understand the concepts of state, input, awapd dynamics in a
familiar setting.

3.1 Cruise Control

The cruise control system of a car is a common feedback systeougtered in
everyday life. The system attempts to maintain a constantitglin the presence
of disturbances primarily caused by changes in the slopeadé The controller
compensates for these unknowns by measuring the speed@drthed adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figute Betv be
the speed of the car ang the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type des@&ibbriefly in Chapter 1,
receives the signalg andv; and generates a control signathat is sent to an
actuator that controls the throttle position. The throttiélirn controls the torque
T delivered by the engine, which is transmitted through trergand the wheels,
generating a forc& that moves the car. There are disturbance fofgedue to
variations in the slope of the road, the rolling resistane @aerodynamic forces.
The cruise controller also has a human—-machine interfadeattoavs the driver
to set and modify the desired speed. There are also functianslisconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engaresmission,
wheels and car body—and a detailed model can be very cortgaich spite of
this, the model required to design the cruise controllertEaguite simple.

To develop a mathematical model we start with a force balfordbe car body.
Let v be the speed of the canthe total mass (including passengefs}he force
generated by the contact of the wheels with the road Fgrile disturbance force
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torquéhat is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environmettt,asiaerodynamic
drag and gravitational forces on hills, the net force causes the carue.mMbe velocity of

the carv is measured by a control system that adjusts the throttle through an aciuetibn
anism. A driver interface allows the system to be turned on and off anetéeence speed

Vr to be established.

due to gravity, friction and aerodynamic drag. The equatifanation of the car is
simply
dv_ F—F (3.1)
mdt = d- .
The forceF is generated by the engine, whose torque is proportiondido t
rate of fuel injection, which is itself proportional to a dool signal 0< u <1
that controls the throttle position. The torque also dep@mdsngine speed. A

simple representation of the torque at full throttle is gy the torque curve

T(w) = Tm (1—ﬁ(a‘;’n—1>z>, (3.2)

where the maximum torquR, is obtained at engine spee#,. Typical parameters
areTym =190 Nm,wy, = 420 rad/s (about 4000 RPM) afid= 0.4. Letn be the gear
ratio andr the wheel radius. The engine speed is related to the veldeitygh the

expression

n
w = FV =. GnV,
and the driving force can be written as
nu
F= TT(w) = apuT(apv).

Typical values of, for gears 1 through 5 am;, = 40,a, = 25,03 = 16,04 =12
andas = 10. The inverse ofr, has a physical interpretation as thigective wheel
radius. Figure 3.2 shows the torque as a function of engine speed elndle
speed. The figure shows that the effect of the gear is to “flattemtdrque curve
so that an almost full torque can be obtained almost over ti@erspeed range.
The disturbance forc€y has three major components;, the forces due to
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Figure 3.2: Torque curves for typical car engine. The graph on the left showsotigeie
generated by the engine as a function of the angular velocity of the engiile,the curve
on the right shows torque as a function of car speed for differemsgea

gravity; F, the forces due to rolling friction; arfg, the aerodynamic drag. Letting
the slope of the road b&, gravity gives the forcéy = mgsing, as illustrated in
Figure 3.3a, wherg = 9.8 m/¢ is the gravitational constant. A simple model of
rolling friction is

F = mgG sgnv),

whereC; is the coefficient of rolling friction and sg@w) is the sign ofv (1) or
zero if v= 0. A typical value for the coefficient of rolling friction i€, = 0.01.
Finally, the aerodynamic drag is proportional to the squatbespeed:

Fa= %pCdszv

wherep is the density of airCy is the shape-dependent aerodynamic drag coef-
ficient andA is the frontal area of the car. Typical parameters@re 1.3 kg/n?¥,
Cq=0.32andA = 2.4 n?.

Summarizing, we find that the car can be modeled by

mgll = apuT(anV) —mgG sgnv) — %pCdsz — mgsiné, (3.3)
where the functiorT is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velogityvhich is also the output. The
input is the signal that controls the throttle position, and the disturbanciés
force Fy4, which depends on the slope of the road. The system is nonlimeeause
of the torque curve, the gravity term and the nonlinear dattaraof rolling friction
and aerodynamic drag. There can also be variations in thengtess; e.g., the
mass of the car depends on the number of passengers anddhmelog carried in
the car.

We add to this model a feedback controller that attemptsgolage the speed
of the car in the presence of disturbances. We shall use ai@pal-integral
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Figure 3.3: Car with cruise control encountering a sloping road. A schematic diaggam
shown in (a), and (b) shows the response in speed and throttle whereao§id is encoun-
tered. The hill is modeled as a net change ofrthill angle 8, with a linear change in the
angle betweeh =5 andt = 6. The PI controller has proportional gainkig= 0.5, and the
integral gain i; = 0.1.

controller, which has the form

u(t) = kpe(t) + ki /0t e(T)dr.

This controller can itself be realized as an input/outputasgital system by defin-
ing a controller state and implementing the differential equation

dz

dt
wherev; is the desired (reference) speed. As discussed briefly inddetitb, the
integrator (represented by the stayensures that in steady state the error will be
driven to zero, even when there are disturbances or modefiogs. (The design
of PI controllers is the subject of Chapter 10.) Figure 3.3wshtie response of
the closed loop system, consisting of equations (3.3) adq,(@hen it encounters
a hill. The figure shows that even if the hill is so steep that Hrettle changes
from 0.17 to almost full throttle, the largest speed errdess than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (B 8)ay seem
surprising that such a seemingly complicated system car&eritied by the sim-
ple model (3.3). It is important to make sure that we restiigtuse of the model
to the uncertainty lemon conceptualized in Figure 2.15b. Thdehis not valid
for very rapid changes of the throttle because we have ightbre details of the
engine dynamics, neither is it valid for very slow changesaose the properties
of the engine will change over the years. Nevertheless traems very useful for
the design of a cruise control system. As we shall see in tdiapters, the reason
for this is the inherent robustness of feedback systems:iétlee model is not per-
fectly accurate, we can use it to design a controller and makeof the feedback

Vi —V, u=Kp(vy —V) +kiz, (3.4)
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Figure 3.4: Finite state machine for cruise control system. The figure on the left show
some typical buttons used to control the system. The controller can be iof éour modes,
corresponding to the nodes in the diagram on the right. Transition betweendtes is
controlled by pressing one of the five buttons on the cruise control iotarfan, off, set,
resume or cancel.

in the controller to manage the uncertainty in the system.

The cruise control system also has a human—machine inteffatallows the
driver to communicate with the system. There are many diffeneays to imple-
ment this system; one version is illustrated in Figure 3.4. 3ywem has four
buttons: on-off, set/decelerate, resume/accelerate amzet The operation of the
system is governed by a finite state machine that controls taemof the Pl con-
troller and the reference generator. Implementation otrotlars and reference
generators will be discussed more fully in Chapter 10.

The use of control in automotive systems goes well beyondithpls cruise
control system described here. Applications include eomsscontrol, traction
control, power control (especially in hybrid vehicles) adhptive cruise control.
Many automotive applications are discussed in detail irbthek by Kiencke and
Nielsen [KNOO] and in the survey papers by Powers et al. [BP9®JPN

3.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the fesatinat one of its key
properties is due to a feedback mechanism that is createtiebgdsign of the
front fork. A detailed model of a bicycle is complex because system has many
degrees of freedom and the geometry is complicated. Howavgreat deal of
insight can be obtained from simple models.

To derive the equations of motion we assume that the bicpdkean the hori-
zontalxy plane. Introduce a coordinate system that is fixed to the ldayith the
&-axis through the contact points of the wheels with the gdotine n-axis hor-
izontal and thef-axis vertical, as shown in Figure 3.5. Lef be the velocity of
the bicycle at the rear whedd,the wheel basep the tilt angle and the steering
angle. The coordinate system rotates around the @ivith the angular veloc-
ity w = Vvpd /b, and an observer fixed to the bicycle experiences forces dieto
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted geihum, as shown
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Figure 3.5: Schematic views of a bicycle. The steering anglé,ignd the roll angle ig.
The center of mass has heidghand distance from a vertical through the contact poiR
of the rear wheel. The wheel basévjsand the trail isc.

in the rear view in Figure 3.5b. To model the tilt, consideriiggd body obtained
when the wheels, the rider and the front fork assembly are fizetie bicycle
frame. Letm be the total mass of the systednthe moment of inertia of this body
with respect to thé€ -axis andD the product of inertia with respect to th€ axes.
Furthermore, let thé and{ coordinates of the center of mass with respect to the
rear wheel contact poinBy, bea andh, respectively. We havé ~ mt? andD =
mah The torques acting on the system are due to gravity and petsafiaction.
Assuming that the steering anglds small, the equation of motion becomes
d? Dvo dd . mgh

Jdt"f — =5 gt = mahsing + TO
The termmghsing is the torque generated by gravity. The terms contaidiagd
its derivative are the torques generated by steering, Wwiéghterm(Dvp/b) dd /dt
due to inertial forces and the terfmih/b) & due to centripetal forces.

The steering angle is influenced by the torque the rider apfdi¢ise handle
bar. Because of the tilt of the steering axis and the shaphleofront fork, the
contact point of the front wheel with the ro&d is behind the axis of rotation of
the front wheel assembly, as shown in Figure 3.5c. The distarmmween the
contact point of the front whed®, and the projection of the axis of rotation of
the front fork assembl¥; is called thetrail. The steering properties of a bicycle
depend critically on the trail. A large trail increases gtglbut makes the steering
less agile.

A consequence of the design of the front fork is that the sigeangled is
influenced both by steering torqileand by the tilt of the fram&. This means
that a bicycle with a front fork is #&eedback systems illustrated by the block
diagram in Figure 3.6. The steering anglenfluences the tilt angl@, and the
tilt angle influences the steering angle, giving rise to tmeutar causality that is
characteristic of reasoning about feedback. For a froit ¥ath a positive trail,

5. (3.5)
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Figure 3.6: Block diagram of a bicycle with a front fork. The steering torque applietthéo
handlebars i§, the roll angle isp and the steering angle & Notice that the front fork
creates a feedback from the roll angl¢o the steering anglé that under certain conditions
can stabilize the system.

the bicycle will steer into the lean, creating a centrifuffate that attempts to
diminish the lean. Under certain conditions, the feedbarkaxctually stabilize the
bicycle. A crude empirical model is obtained by assuming titva blockB can be
modeled as the static system

5 =kiT —kop. (3.6)

This model neglects the dynamics of the front fork, the tioaerinteraction and
the fact that the parameters depend on the velocity. A mangrate model, called
theWhipple modelis obtained using the rigid-body dynamics of the front far
the frame. Assuming small angles, this model becomes

(2] con(8) roorkad (&) - (). e

where the elements of thex22 matricedM, C, Kg andK; depend on the geometry
and the mass distribution of the bicycle. Note that this Hasra somewhat similar
to that of the spring—mass system introduced in Chapter 2tendalance system
in Example 2.1. Even this more complex model is inaccurateusscthe interac-
tion between the tire and the road is neglected; takingidssiccount requires two
additional state variables. Again, the uncertainty lenmoRigure 2.15b provides a
framework for understanding the validity of the model untihese assumptions.

Interesting presentations on the development of the kBcgok given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (3was presented
in a paper by Whipple in 1899 [Whi99]. More details on bicyatedeling are
given in the paperﬁ{KLOS], which has many references.

3.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementatidBlack’s feedback
amplifier. It is a universal component that is widely used f@tiumentation, con-
trol and communication. It is also a key element in analogmating. Schematic
diagrams of the operational amplifier are shown in Figure 3.@. diplifier has
one inverting input\(_), one noninverting inputu; ) and one outputv,). There
are also connections for the supply voltages,ande,, and a zero adjustment
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Figure 3.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all conmext{g) Only the
signal connections.

(offset null). A simple model is obtained by assuming that itmput currents
andi, are zero and that the output is given by the static relation

Vout = Salty, ;. vinay) (k(vy —vo)), (3.8)

where sat denotes the saturation function

a ifx<a
Satap)(X) = ¢ x ifa<x<b (3.9)
b if x>h.

We assume that the galiris large, in the range of $81(, and the voltagesnn
andvpmax satisfy

€ < Vmin < Vmax < €4

and hence are in the range of the supply voltages. More aecomadels are ob-
tained by replacing the saturation function with a smootcfion as shown in
Figure 3.8. For small input signals the amplifier character{8t8) is linear:

Vout = K(V4 —v_) = —kv, (3.10)
Vout
Vmax
vV, —V_
Vmin

Figure 3.8: Input/output characteristics of an operational amplifier. The differkiniat is
given byv, —v_. The output voltage is a linear function of the input in a small range around
0, with saturation a¥yin andvmax. In the linear regime the op amp has high gain.
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Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feledbaiand
an operational amplifier and has a corresponding block diagramigb)€istor&; andR,
determine the gain of the ampilifier.

Since the open loop gakis very large, the range of input signals where the system
is linear is very small.

A simple amplifier is obtained by arranging feedback arourmdbifisic opera-
tional amplifier as shown in Figure 3.9a. To model the feedbaaglifier in the
linear range, we assume that the curiignt i_ + i, is zero and that the gain of
the amplifier is so large that the voltage- v_ — v, is also zero. It follows from
Ohm'’s law that the currents through resistB§sandR, are given by

i Ve
Ri R
and hence the closed loop gain of the amplifier is
Vo Ro
2 _ h =_Z, 3.11
" ket, — where kg R (3.11)

A more accurate model is obtained by continuing to negleetdinrentip but
assuming that the voltages small but not negligible. The current balance is then

Vi—V o V—\Vo

Ri R~

Assuming that the amplifier operates in the linear range aimg) @sjuation (3.10),
the gain of the closed loop system becomes

v R R
vi RiRi+R+kR

If the open loop gairk of the operational amplifier is large, the closed loop gain
ke is the same as in the simple model given by equation (3.11jic&lthat the
closed loop gain depends only on the passive componenthandariations irk
have only a marginal effect on the closed loop gain. For edarfigk = 10° and
R2/R1 =100, a variation ok by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nicesthation of how feedback
can be used to make precise systems from uncertain comgoiettiis particular
case, feedback is used to trade high gain and low robustoeks\f gain and high
robustness. Equation (3.13) was the formula that inspiradiBivhen he invented
the feedback amplifier [Bla34] (see the quote at the beginairi@hapter 12).

(3.12)

kel = — (3.13)
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Figure 3.10: Circuit diagram of a Pl controller obtained by feedback around aratipesal
amplifier. The capacitd is used to store charge and represents the integral of the input.

It is instructive to develop a block diagram for the feedbaahplifier in Fig-
ure 3.9a. To do this we will represent the pure amplifier wiguirv and output,
as one block. To complete the block diagram, we must deshdies depends on
v; andvs. Solving equation (3.12) for gives

Vv

Ry Ry Ri (R

R+ szl+ R1+R2V2 T Ri+Re (R1V1+V2>7
and we obtain the block diagram shown in Figure 3.9b. The dmagtaarly shows
that the system has feedback and that the gain frotavis Ry /(R1 + R2), which
can also be read from the circuit diagram in Figure 3.9a. Ifidlog is stable and
the gain of the amplifier is large, it follows that the ereds small, and we find that
v2 = —(Rz/R1)va. Notice that the resistdR; appears in two blocks in the block
diagram. This situation is typical in electrical circuitsdait is one reason why
block diagrams are not always well suited for some types g$jglal modeling.

The simple model of the amplifier given by equation (3.10) mtesiqualitative
insight, but it neglects the fact that the amplifier is a dyr@hsystem. A more

realistic model is
dVout

dt

The parametdr that has dimensions of frequency and is calledythia-bandwidth
productof the amplifier. Whether a more complicated model is used r#pen
the questions to be answered and the required size of thetaimtg lemon. The
model (3.14) is still not valid for very high or very low fregocies since drift
causes deviations at low frequencies and there are adalidgnamics that appear
at frequencies close tm The model is also not valid for large signals—an upper
limitis given by the voltage of the power supply, typicaltfythe range of 5-10 V—
neither is it valid for very low signals because of electritaise. These effects can
be added, if needed, but increase the complexity of the aisaly

The operational amplifier is very versatile, and many diffessistems can be
built by combining it with resistors and capacitors. In faaty linear system can
be implemented by combining operational amplifiers withstess and capacitors.
Exercise 3.5 shows how a second-order oscillator is impléadeand Figure 3.10
shows the circuit diagram for an analog proportional-ireegontroller. To de-
velop a simple model for the circuit we assume that the ctirgeis zero and that
the open loop gaik is so large that the input voltagds negligible. The current

— —a.Vout - bV (314)
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through the capacitor is= Cd\/dt, wherev is the voltage across the capacitor.
Since the same current goes through the resigtowe get

o v
SR T dt?
which implies that

Ve(t) = l/i(t)dt— 1/tv (1)dt
T “RCJ N
The output voltage is thus given by

: R 1
Vo(t) = —Roi — Ve = _ﬁivl(t) - @/0 v1(T)dT,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by itkl[Lun05,
Phi48], and their usage is described in many textbooks (€B75]). Good infor-
mation is also available from suppliers [Jun02, Man02].

3.4 Computing Systems and Networks

The application of feedback to computing systems followsstrae principles as
the control of physical systems, but the types of measuresraerd control inputs
that can be used are somewhat different. Measurementso(sgrse typically
related to resource utilization in the computing system emvork and can in-
clude quantities such as the processor load, memory usageveork bandwidth.
Control variables (actuators) typically involve settiimgits on the resources avail-
able to a process. This might be done by controlling the amoumtemory, disk
space or time that a process can consume, turning on or afeégsmng, delaying
availability of a resource or rejecting incoming requests: tserver process. Pro-
cess modeling for networked computing systems is alsoagithg, and empirical
models based on measurements are often used when a firspl@snoodel is not
available.

Web Server Control

Web servers respond to requests from the Internet and gravidrmation in the
form of web pages. Modern web servers start multiple preasess respond to
requests, with each process assigned to a single sourtaafiiither requests are
received from that source for a predefined period of time. RgmEethat are idle
become part of a pool that can be used to respond to new regiliesprovide a
fast response to web requests, it is important that the wefersprocesses do not
overload the server’'s computational capabilities or egsha&simemory. Since other
processes may be running on the server, the amount of aegiledcessing power
and memory is uncertain, and feedback can be used to prowwke gerformance
in the presence of this uncertainty.
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Figure3.11: Feedback control of a web server. Connection requests arriveiopat queue,
where they are sent to a server process. A finite state machine kespsftthe state of the
individual server processes and responds to requests. A colgaosithm can modify the
server’s operation by controlling parameters that affect its behastich as the maximum
number of requests that can be serviced at a single fWag@ i ent s) or the amount of
time that a connection can remain idle before it is droppéepAl i ve).

Figure 3.11 illustrates the use of feedback to modulate theradipon of an
Apache web server. The web server operates by placing ingpoonnection re-
guests on a queue and then starting a subprocess to handéstedpr each ac-
cepted connection. This subprocess responds to requestafgiven connection
as they come in, alternating betweeBusy state and &4i t state. (Keeping the
subprocess active between requests is known agdtsistencef the connection
and provides a substantial reduction in latency to requestsultiple pieces of
information from a single site.) If no requests are receifggdch sufficiently long
period of time, controlled by thEeepAl i ve parameter, then the connection is
dropped and the subprocess enterkdine state, where it can be assigned another
connection. A maximum ofaxC i ent s simultaneous requests will be served,
with the remainder remaining on the incoming request queue.

The parameters that control the server represent a tradeetffeen perfor-
mance (how quickly requests receive a response) and resaosage (the amount
of processing power and memory used by the server). InogdstMaxCl i ent s
parameter allows connection requests to be pulled off ofjtieie more quickly
but increases the amount of processing power and memorg tisagis required.
Increasing th&eepAl i ve timeout means that individual connections can remain
idle for a longer period of time, which decreases the prangdsad on the ma-
chine but increases the size of the queue (and hence the aofdime required
for a user to initiate a connection). Successful operatiom lmlisy server requires
a proper choice of these parameters, often based on triadramd

To model the dynamics of this system in more detail, we craaliscrete-time
model with states given by the average processor lggdand the percentage
memory usage&mnem The inputs to the system are taken as the maximum number
of clientsumc and the keep-alive timey,. If we assume a linear model around the
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equilibrium point, the dynamics can be written as

i) = (M Rz (i) + (B 2 () - 09

where the coefficients of th&andB matrices can be determined based on empiri-
cal measurements or detailed modeling of the web servertsegsing and memory
usage. Using system identification, Diao et al. [DGH+02, HDRT@ntified the
linearized dynamics as

_( 054 011 (-85 44 4
A= [—0.026 063]’ B= [—2.5 2.8] <107,

where the system was linearized about the equilibrium point
chu — 058, uka — 11 S Xmem — 0557 Umc — 600.

This model shows the basic characteristics that were destabove. Looking
first at theB matrix, we see that increasing tikeepAl i ve timeout (first col-
umn of theB matrix) decreases both the processor usage and the menagg us
since there is more persistence in connections and henseier spends a longer
time waiting for a connection to close rather than taking ovea active connec-
tion. TheMaxdCl i ent s connection increases both the processing and memory
requirements. Note that the largest effect on the procésadiis thekeepAl i ve
timeout. TheA matrix tells us how the processor and memory usage evolvesn a
gion of the state space near the equilibrium point. The diaggenms describe how
the individual resources return to equilibrium after a siant increase or decrease.
The off-diagonal terms show that there is coupling betweertwo resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later exdespthat it can
be used to modify the parameters controlling the serverahtime and provide
robustness with respect to uncertainties in the load on thehine. Similar types
of mechanisms have been used for other types of serversintpisrtant to re-
member the assumptions on the model and their role in deterghivhen the
model is valid. In particular, since we have chosen to useageequantities over
a given sample time, the model will not provide an accurapgegentation for
high-frequency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decené@diefficient and ex-
pandable communication system. The system consists of e tangber of inter-
connected gateways. A message is split into several packéth are transmitted
over different paths in the network, and the packages aoinesj to recover the
message at the receiver. An acknowledgment (“ack”) messaggnt back to the
sender when a packet is received. The operation of the systgoverned by a
simple but powerful decentralized control structure tred Bvolved over time.
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Figure 3.12: Internet congestion control. (a) Source computers send informati@uters,
which forward the information to other routers that eventually connecitogbeiving com-
puter. When a packet is received, an acknowledgment packet isagnthrough the routers
(not shown). The routers buffer information received from thersesi and send the data
across the outgoing link. (b) The equilibrium buffer skzefor a set ofN identical comput-
ers sending packets through a single router with drop probapility

The system has two control mechanisms capestocols the Transmission
Control Protocol (TCP) for end-to-end network communicatiod ¢he Internet
Protocol (IP) for routing packets and for host-to-gateway ategay-to-gateway
communication. The current protocols evolved after sometapalar congestion
collapses occurred in the mid 1980s, when throughput ureéegly could drop by
a factor of 1000 [Jac95]. The control mechanism in TCP is basetbaserving
the number of packets in the loop from the sender to the recaivd back to the
sender. The sending rate is increased exponentially whee th@o congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we motlet¢ separate
elements of the system: the rate at which packets are semidbsidual sources
(computers), the dynamics of the queues in the links (reptmd the admission
control mechanism for the queues. Figure 3.12a is a blockahagf the system.

The current source control mechanism on the Internet is @gobknown as
TCP/Reno [LPDO02]. This protocol operates by sending packets ¢oeiver and
waiting to receive an acknowledgment from the receivertti@packet has arrived.
If no acknowledgment is sent within a certain timeout pertbe packet is retrans-
mitted. To avoid waiting for the acknowledgment before segdhe next packet,
Reno transmits multiple packets up to a fixgihdowaround the latest packet that
has been acknowledged. If the window length is chosen piygpaickets at the be-
ginning of the window will be acknowledged before the soure@smits packets
at the end of the window, allowing the computer to continlypageam packets at
a high rate.

To determine the size of the window to use, TCP/Reno uses adekdiech-
anism in which (roughly speaking) the window size is incesbigy 1 every time a
packet is acknowledged and the window size is cut in half wiearkets are lost.
This mechanism allows a dynamic adjustment of the window isizehich each
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computer acts in a greedy fashion as long as packets are delingred but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed byritdérsg the
dynamics of the window size. Suppose we h&l/eomputers and lety; be the
current window size (measured in number of packets) foritihneomputer. Let
g represent the end-to-end probability that a packet will tmpped someplace
between the source and the receiver. We can model the dysaiibe window
size by the differential equation

Wi

r(t—T W
=g Tne-n), =
wherer; is the end-to-end transmission time for a packet to reackdsrhtion and
the acknowledgment to be sent back ani the resulting rate at which packets
are cleared from the list of packets that have been receiaal first term in the
dynamics represents the increase in window size when a packeceived, and
the second term represents the decrease in window size wpenkat is lost.
Notice thatr; is evaluated at time— 1, representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the rogtezue and the
admission control mechanism for the queue. Assume that welhlnks in the
network and usé to index the individual links. We model the queue in terms of
the current number of packets in the router’s bubieand assume that the router
can contain a maximum diff max packets and transmits packets at a tequal
to the capacity of the link. The buffer dynamics can then bétamrias

%?za—q, s= 3 r(t—17), (3.17)
{i: TeLi}

(3.16)

wherel; is the set of links that are being used by soulrarﬁI is the time it takes a
packet from sourceto reach linkl ands is the total rate at which packets arrive
atlink .

The admission control mechanism determines whether a giaekep is ac-
cepted by a router. Since our model is based on the averagétopsim the net-
work and not the individual packets, one simple model is suage that the proba-
bility that a packet is dropped depends on how full the buffep, = m (b, bmax)-
For simplicity, we will assume for now thag = piby (see Exercise 3.6 for a more
detailed model). The probability that a packet is dropped @iven link can be
used to determine the end-to-end probability that a paskest in transmission:

G=1-[]-p)~ 5 pt—1), (3.18)
leL; leL;
whererfiJ is the backward delay from linkto sourcel and the approximation is
valid as long as the individual drop probabilities are smak use the backward

delay since this represents the time required for the aclatmment packet to be
received by the source.
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Together, equations (3.16), (3.17) and (3.18) represeraehof congestion
control dynamics. We can obtain substantial insight by icterg1g a special case
in which we haveN identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be éghan which case
the dynamics can be reduced to the form

dw _1_pe@+wy) db_ew . _b (3.19)
dt 1 2 dt 41 c
wherew; € R, i = 1,...,N, are the window sizes for the sources of déta R
is the current buffer size of the routgy, controls the rate at which packets are
dropped and is the capacity of the link connecting the router to the cotagsu
The variabler represents the amount of time required for a packet to beepsec
by a router, based on the size of the buffer and the capacdihedink. Substituting
T into the equations, we write the state space dynamics as

dw ¢ w2 db Y ew
dt_b—pc<1+2 ; a—i;T—c. (3.20)
More sophisticated models can be found in [HMTGO0O0, LPDO02]. _

The nominal operating point for the system can be found bingeti = b= 0:

c w2 CJow
O_b—pc<1+2), O_i;T_C’

Exploiting the fact that all of the source dynamics are idsifiit follows that all
of thew; should be the same, and it can be shown that there is a unigilibbggm
satisfying the equations

be CTe

1 3

The solution for the second equation is a bit messy but catydasidetermined
numerically. A plot of its solution as a function of @p?N?) is shown in Fig-
ure 3.12b. We also note that at equilibrium we have the fafigvadditional equal-
ities:

be Nwe We

e c C7 qe pe p97 e Te

(3.22)

Figure 3.13 shows a simulation of 60 sources communicatingsa@ single
link, with 20 sources dropping out at= 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Notethiabuffer size and
window sizes automatically adjust to match the capacitheflink.

A comprehensive treatment of computer networks is giveméntéxtbook by
Tannenbaum [Tan96]. A good presentation of the ideas behmaontrol prin-
ciples for the Internet is given by one of its designers, Varobson, in [Jac95].
F. Kelly [Kel85] presents an early effort on the analysistod system. The book
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Figure 3.13: Internet congestion control faX identical sources across a single link. As
shown on the left, multiple sources attempt to communicate through a rautessa single
link. An “ack” packet sent by the receiver acknowledges that thesaggs was received,;
otherwise the message packet is resent and the sending rate is slowedtdbe source.
The simulation on the right is for 60 sources starting random rates, witbi#@es dropping
out att = 500 ms. The buffer size is shown at the top, and the individual soates for 6
of the sources are shown at the bottom.

by Hellerstein et al. [HDPTO04] gives many examples of the uséeflback in
computer systems.

3.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig andieleiRohrer
for their design of thescanning tunneling microscop&he idea of the instrument
is to bring an atomically sharp tip so close to a conductingase that tunneling
occurs. An image is obtained by traversing the tip acrossahgple and measuring
the tunneling current as a function of tip position. This imien has stimulated
the development of a family of instruments that permit vigadion of surface
structure at the nanometer scale, including dh@mic force microscopéAFM),
where a sample is probed by a tip on a cantilever. An AFM canaipen two
modes. Intapping modehe cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. Inontact modehe cantilever is in contact with the
sample, and its bending is controlled by feedback. In bosesaontrol is actuated
by a piezo element that controls the vertical position ofdhetilever base (or the
sample). The control system has a direct influence on pictuatitgiand scanning
rate.

A schematic picture of an atomic force microscope is shovkigare 3.14a. A
microcantilever with a tip having a radius of the order of X0 is placed close to
the sample. The tip can be moved vertically and horizontalggia piezoelectric
scanner. It is clamped to the sample surface by attractivelga\Waals forces and
repulsive Pauli forces. The cantilever tilt depends on tpedoaphy of the surface
and the position of the cantilever base, which is contraigdhe piezo element.
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Figure 3.14: Atomic force microscope. (a) A schematic diagram of an atomic forceamic
scope, consisting of a piezo drive that scans the sample under the AFMI&per reflects
off of the cantilever and is used to measure the detection of the tip througgdadck con-
troller. (b) An AFM image of strands of DNA. (Image courtesy Veecstiaments.)

The tilt is measured by sensing the deflection of the laser bsarg a photodiode.
The signal from the photodiode is amplified and sent to a cdatrthat drives
the amplifier for the vertical position of the cantilever. Bgntrolling the piezo
element so that the deflection of the cantilever is consthatsignal driving the
vertical deflection of the piezo element is a measure of thaiattorces between
the cantilever tip and the atoms of the sample. An image oftiniace is obtained
by scanning the cantilever along the sample. The resolutiakemit possible to
see the structure of the sample on the atomic scale, agalladtin Figure 3.14b,
which shows an AFM image of DNA.

The haorizontal motion of an AFM is typically modeled as a sprimgss sys-
tem with low damping. The vertical motion is more complicat&d model the
system, we start with the block diagram shown in Figure 3.1§n&s¢ that are
easily accessible are the input voltag® the power amplifier that drives the piezo
element, the voltage applied to the piezo element and the output voltagéthe
signal amplifier for the photodiode. The controller is a PI colfgr implemented
by a computer, which is connected to the system by analaligital (A/D) and
digital-to-analog (D/A) converters. The deflection of thetdawer ¢ is also shown
in the figure. The desired reference value for the deflection is@ut to the com-
puter.

There are several different configurations that have diftedgnamics. Here
we will discuss a high-performance system frorv&[:S\LO?] where the cantilever
base is positioned vertically using a piezo stack. We bdginnhodeling with a
simple experiment on the system. Figure 3.16a shows a stepss of a scanner
from the input voltage: to the power amplifier to the output voltagef the signal
amplifier for the photodiode. This experiment captures theadyns of the chain
of blocks fromutoy in the block diagram in Figure 3.15. Figure 3.16a shows that
the system responds quickly but that there is a poorly danygeilatory mode
with a period of about 35 ps. A primary task of the modelingisihderstand the
origin of the oscillatory behavior. To do so we will exploteetsystem in more
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Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempisefo tke can-
tilever deflection equal to its reference value. Cantilever deflection isurexsamplified
and converted to a digital signal, then compared with its reference valaerrécting sig-
nal is generated by the computer, converted to analog form, amplifetedeant to the piezo
element.

detail.

The natural frequency of the clamped cantilever is typicalyeral hundred
kilohertz, which is much higher than the observed oscdlatdf about 30 kHz.
As a first approximation we will model it as a static system. 8itiee deflections
are small, we can assume that the bendirgj the cantilever is proportional to the
difference in height between the cantilever tip at the pianiethe piezo scanner. A
more accurate model can be obtained by modeling the caettiéeva spring—mass
system of the type discussed in Chapter 2.

Figure 3.16a also shows that the response of the power amdifiast. The
photodiode and the signal amplifier also have fast respomsksam thus be mod-
eled as static systems. The remaining block is a piezo systi#mswspension.
A schematic mechanical representation of the vertical onotif the scanner is
shown in Figure 3.16b. We will model the system as two masgerated by an
ideal piezo element. The mass is half of the piezo system, and the masgsis
the other half of the piezo system plus the mass of the support

A simple model is obtained by assuming that the piezo crgemérates a force
F between the masses and that there is a dangimghe spring. Let the positions
of the center of the masses beandz,. A momentum balance gives the following
model for the system:

2 2
ml% = F, mz% = —Cz%—kzZz—F.
Let the elongation of the piezo elemdnt z; — z be the control variable and
the heightz; of the cantilever base be the output. Eliminating the vaei&bin
equations above and substituting- | for z gives the model

d’zy,  dz d? dl
(m1+mz)w+cZa+k2z1_ mz@Jrczaijzl. (3.23)

Summarizing, we find that a simple model of the system is obdiairyemod-
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Figure 3.16: Modeling of an atomic force microscope. (a) A measured step respdhg
top curve shows the voltageapplied to the drive amplifier (50 mV/div), the middle curve
is the outpud/, of the power amplifier (500 mV/div) and the bottom curve is the ouyput
of the signal amplifier (500 mV/div). The time scale is 25/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical postiamd the piezo
crystal.

eling the piezo by (3.23) and all the other blocks by statidet®. Introducing
the linear equations= kzu andy = ksz;, we now have a complete model relat-
ing the outputy to the control signall. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the powepldier. As in the
previous examples, the concept of the uncertainty lemongargi2.15b provides
a framework for describing the uncertainty: the model wéldccurate up to the
frequencies of the fastest modeled modes and over a rangetaimin which
linearized stiffness models can be used.

The experimental results in Figure 3.16a can be explainedtazly as fol-
lows. When a voltage is applied to the piezo, it expandkpthe massn moves
up and the mass, moves down instantaneously. The system settles after aypoorl
damped oscillation.

It is highly desirable to design a control system for the icaftmotion so
that it responds quickly with little oscillation. The instnent designer has sev-
eral choices: to accept the oscillation and have a slow resptime, to design a
control system that can damp the oscillations or to redebigmechanics to give
resonances of higher frequency. The last two alternatiwesaiaster response and
faster imaging.

Since the dynamic behavior of the system changes with theepiep of the
sample, itis necessary to tune the feedback loop. In sinygtems this is currently
done manually by adjusting parameters of a Pl controller. §lage interesting
possibilities for making AFM systems easier to use by intaidg automatic tun-
ing and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic forcestopes.
The interaction of atoms close to surfaces is fundamentallio state physics, see
Kittel [Kit95]. The model discussed in this section is basadsehitter [Sch01].
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Figure 3.17: Abstraction used to compartmentalize the body for the purpose of diesgrib
drug distribution (based on Teorell [Teo37]). The body is abstracyea tumber of com-
partments with perfect mixing, and the complex transport processeapgaroximated by
assuming that the flow is proportional to the concentration differenceg icampartments.
The constant&; parameterize the rates of flow between different compartments.

3.6 Drug Administration

The phrase “Take two pills three times a day” is a recommeodatith which we
are all familiar. Behind this recommendation is a solutibam open loop control
problem. The key issue is to make sure that the concentrafiannoedicine in
a part of the body is sufficiently high to be effective but nothégh that it will
cause undesirable side effects. The control action is qgethteke two pills and
sampledevery 8 hoursThe prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and wéitjiet patient.

Drug administration is a control problem. To solve it we mustlerstand how
a drug spreads in the body after it is administered. This taaitedpharmacoki-
netics is now a discipline of its own, and the models used are caltedpart-
ment modelsThey go back to the 1920s when Widmark modeled the propamatio
of alcohol in the body [WT24]. Compartment models are now intgd for the
screening of all drugs used by humans. The schematic diagrdigure 3.17 il-
lustrates the idea of a compartment model. The body is viewwea rumber of
compartments like blood plasma, kidney, liver and tisshie$ &re separated by
membranes. It is assumed that there is perfect mixing sahbatrug concentra-
tion is constant in each compartment. The complex transpocggses are approx-
imated by assuming that the flow rates between the compagrassproportional
to the concentration differences in the compartments.

To describe the effect of a drug it is necessary to know batlianhcentration
and how it influences the body. The relation between concémraand its effect
eis typically nonlinear. A simple model is

C
e= . 3.24
Co—i—CemaX ( )

The effect is linear for low concentrations, and it saturatgsigh concentrations.
The relation can also be dynamic, and it is then cglledrmacodynamics
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Compartment Models

The simplest dynamic model for drug administration is olgdiby assuming that
the drug is evenly distributed in a single compartment aftteas been adminis-
tered and that the drug is removed at a rate proportionaktaedhcentration. The
compartments behave like stirred tanks with perfect mixireg c be the concen-
tration, V the volume andj the outflow rate. Converting the description of the
system into differential equations gives the model

3? =-—-qc, c¢c>0. (3.25)

This equation has the solutiaft) = coe~9/V = cye !, which shows that the con-
centration decays exponentially with the time consfartV /q after an injection.
The input is introduced implicitly as an initial conditiontime model (3.25). More
generally, the way the input enters the model depends onledrtig is adminis-
tered. For example, the input can be represented as a massifitotkié compart-
ment where the drug is injected. A pill that is dissolved clsio de interpreted as
an input in terms of a mass flow rate.

The model (3.25) is called aane-compartment modet asingle-pool model
The parameteq/V is called the elimination rate constant. This simple model
often used to model the concentration in the blood plasman@&gsuring the con-
centration at a few times, the initial concentration canlit@ioed by extrapolation.
If the total amount of injected substance is known, the vaihtan then be de-
termined a8/ = m/cp; this volume is called thapparent volume of distribution
This volume is larger than the real volume if the concentratiothe plasma is
lower than in other parts of the body. The model (3.25) is vénpke, and there
are large individual variations in the parameters. The pataraV andq are often
normalized by dividing by the weight of the person. Typicatgameters for aspirin
areV = 0.2 L/kg andg = 0.01(L/h)/kg. These numbers can be compared with a
blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, an icetkular fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/min/kg.

The simple one-compartment model captures the gross beloddoug distri-
bution, but it is based on many simplifications. Improved ni®dan be obtained
by considering the body as composed of several compartirexamples of such
systems are shown in Figure 3.18, where the compartmentsaesented as cir-
cles and the flows by arrows.

Modeling will be illustrated using the two-compartment rebish Figure 3.18a.
We assume that there is perfect mixing in each compartmehthat the transport
between the compartments is driven by concentration difflees. We further as-
sume that a drug with concentratiogis injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the outputclabd
c2 be the concentrations of the drug in the compartments ang kndV, be the

S
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Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compatrtme
model. Each compartment is labeled by its volume, and arrows indicatetheffthemical
into, out of and between compartments. (b) A system with six compartmeatsto study
the metabolism of thyroid hormone [God83]. The notatigndenotes the transport from
compartmeng to compartmeni.

volumes of the compartments. The mass balances for the comerds are

dc
Vl(Tt1 = (|(C2 — C1) — CoC1 + CoU, c1 >0,
dc
Vzd—t2 —q(ci—c), ©2>0, (3.26)
y=~=Co.

Introducing the variableky = qo/Vi, k1 = q/V1, ko = q/V2 andby = ¢o/V1 and
using matrix notation, the model can be written as

%3: [_kokz_kl —kliz] c+ [%O] u, y= (O 1] C. (3.27)

Comparing this model with its graphical representation iguFeé 3.18a, we find
that the mathematical representation (3.27) can be wiityanspection.

It should also be emphasized that simple compartment msdelsas the one
in equation (3.27) have a limited range of validity. Low-foegcy limits exist be-
cause the human body changes with time, and since the comgrartnodel uses
average concentrations, they will not accurately repttasgid changes. There are
also nonlinear effects that influence transportation betvilee compartments.

Compartment models are widely used in medicine, engingenitd environ-
mental science. An interesting property of these systeftiats/ariables like con-
centration and mass are always positive. An essential dtffiie compartment
modeling is deciding how to divide a complex system into cartpents. Com-
partment models can also be nonlinear, as illustrated ine¢esection.
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Figure 3.19: Insulin—glucose dynamics. (a) Sketch of body parts involved in the alooitr
glucose. (b) Schematic diagram of the system. (c) Responses of iasdliglucose when
glucose in injected intravenously. From [PB86].

Insulin—glucose Dynamics

It is essential that the blood glucose concentration in thaykis kept within a
narrow range (0.7-1.1 g/L). Glucose concentration is infladrity many factors
like food intake, digestion and exercise. A schematic pe&uf the relevant parts
of the body is shown in Figures 3.19a and b.

There is a sophisticated mechanism that regulates glucosecwation. Glu-
cose concentration is maintained by the pancreas, whiatetescthe hormones
insulin and glucagon. Glucagon is released into the bloedst when the glucose
level is low. It acts on cells in the liver that release gleomsulin is secreted
when the glucose level is high, and the glucose level is ledidry causing the
liver and other cells to take up more glucose. In diseaseguikenile diabetes the
pancreas is unable to produce insulin and the patient mjesitimsulin into the
body to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are caatgdicdynamics
with time scales that range from seconds to hours have besamaa. Models of
different complexity have been developed. The models aredllp tested with
data from experiments where glucose is injected intravsiyoand insulin and
glucose concentrations are measured at regular time atserv

Arelatively simple model called thminimal modeWas developed by Bergman
and coworkers [Ber89]. This models uses two compartmenésrapresenting the
concentration of glucose in the bloodstream and the otlpeesenting the concen-
tration of insulin in the interstitial fluid. Insulin in the ®dstream is considered
an input. The reaction of glucose to insulin can be modeledhbtjuations

dX]_ .

d .
ar —(P1+X2)X1+ P1Ge, d—)iz = —p2Xo+ p3(U—ie), (3.28)
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wherege andie represent the equilibrium values of glucose and insulins the
concentration of glucose and is proportional to the concentration of interstitial
insulin. Notice the presence of the tepgx; in the first equation. Also notice
that the model does not capture the complete feedback locgube it does not
describe how the pancreas reacts to the glucose. Figure 8ht®¢s a fit of the
model to a test on a normal person where glucose was injecteyénously at
timet = 0. The glucose concentration rises rapidly, and the pancespsnds with
a rapid spikelike injection of insulin. The glucose and imsidvels then gradually
approach the equilibrium values.

Models of the type in equation (3.28) and more complicatediet®having
many compartments have been developed and fitted to expeaindema. A diffi-
culty in modeling is that there are significant variations iod®l parameters over
time and for different patients. For example, the paramptan equation (3.28)
has been reported to vary with an order of magnitude for heatidividuals. The
models have been used for diagnosis and to develop schem#weftreatment
of persons with diseases. Attempts to develop a fully autiwnaatificial pancreas
have been hampered by the lack of reliable sensors.

The papers by Widmark and Tandberg [WT24] and Teorell [TeoB¥tkssics
in pharmacokinetics, which is now an established disogpliith many textbooks
[Dos68, Jac72, GP82]. Because of its medical importancenmwokinetics is
now an essential component of drug development. The bookdysRRig63] is a
good source for the modeling of physiological systems, ambee mathematical
treatment is given in [KS01]. Compartment models are dissigs[God83]. The
problem of determining rate coefficients from experimentthds discussed in
[BA?O] and [God83]. There are many publications on the insglineose model.
The minimal model is discussed in [CT84, Ber89] and more readatences are
[MLKO6, FCF+06].

3.7 Population Dynamics

Population growth is a complex dynamic process that involliesnteraction of
one or more species with their environment and the largesystem. The dynam-
ics of population groups are interesting and important imyndifferent areas of
social and environmental policy. There are examples wherespecies have been
introduced into new habitats, sometimes with disastrogalt® There have also
been attempts to control population growth both througlemtiges and through
legislation. In this section we describe some of the modelsdan be used to un-
derstand how populations evolve with time and as a functidiner environments.

Logistic Growth Model

Let x be the population of a species at tilmé\ simple model is to assume that the
birth rates and mortality rates are proportional to thel totgoulation. This gives
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the linear model

dx

Fri bx—dx= (b—d)x=rx, x>0, (3.29)
where birth rateb and mortality rated are parameters. The model gives an ex-
ponential increase i > d or an exponential decreasehif< d. A more realistic
model is to assume that the birth rate decreases when théagiopus large. The

following modification of the model (3.29) has this property:
—=mx(1-3), x>0, (3.30)

wherek is the carrying capacityof the environment. The model (3.30) is called
thelogistic growth model

Predator—Prey Models

A more sophisticated model of population dynamics incluttheseffects of com-
peting populations, where one species may feed on anothssitlmtion, referred
to as thepredator—prey problemwas introduced in Example 2.3, where we devel-
oped a discrete-time model that captured some of the feaddifgistorical records
of lynx and hare populations.

In this section, we replace the difference equation mods tisere with a more
sophisticated differential equation model. lkéft) represent the number of hares
(prey) and leL (t) represent the number of lynxes (predator). The dynamicseof th
system are modeled as

d—H:rH (1—H) anL H >0,

dt k) c+H’ =
(3.31)
dL aHL
— =b—— —dL L>0.
dt bc+H dt, 20

In the first equationy represents the growth rate of the haresepresents the
maximum population of the hares (in the absence of lynx@espresents the in-
teraction term that describes how the hares are diminishadunction of the lynx
population anat controls the prey consumption rate for low hare populatioithe
second equatiot represents the growth coefficient of the lynxes dmdpresents
the mortality rate of the lynxes. Note that the hare dynaririchide a term that
resembles the logistic growth model (3.30).

Of particular interest are the values at which the poputatadues remain con-
stant, callecequilibrium points The equilibrium points for this system can be de-
termined by setting the right-hand side of the above equatio zero. LettindHe
andLe represent the equilibrium state, from the second equat®have

. cd
Le=0 or Hg = Bb_d (3.32)

Substituting this into the first equation, we have thatlige= 0 eitherHs = 0 or
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Figure 3.20: Simulation of the predator—prey system. The figure on the left showswa sim
lation of the two populations as a function of time. The figure on the right stibe pop-
ulations plotted against each other, starting from different values of apelation. The
oscillation seen in both figures is an example tifrdt cycle The parameter values used for
the simulations ara=3.2,b=0.6,c=50,d = 0.56,k = 125 andr = 1.6.

He = k. ForLe # 0, we obtain

- M(l— E) _ ber(abk—cd—dk)
N aHe N (ab—d)2k

L: (3.33)

k

Thus, we have three possible equilibrium poixgs= (Le, He):

() ) ()

whereHg andL; are given in equations (3.32) and (3.33). Note that the #xquil
rium populations may be negative for some parameter vatwesesponding to a
nonachievable equilibrium point.

Figure 3.20 shows a simulation of the dynamics starting frasatanf popula-
tion values near the nonzero equilibrium values. We sedahalis choice of pa-
rameters, the simulation predicts an oscillatory popatatiount for each species,
reminiscent of the data shown in Figure 2.6.

Volume | of the two-volume set by J. D. Murray [Mur04] give abd coverage
of population dynamics.

Exercises

3.1 (Cruise control) Consider the cruise control example diesdrin Section 3.1.
Build a simulation that re-creates the response to a hillvehio Figure 3.3b and
show the effects of increasing and decreasing the mass céhtly 25%. Redesign
the controller (using trial and error is fine) so that it regita within 1% of the

desired speed within 3 s of encountering the beginning ohilhe
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3.2 (Bicycle dynamics) Show that the dynamics of a bicycle frafmergby equa-
tion (3.5) can be approximated in state space form as

E X1 0 1 X1 i DVo/(bJ) u
dt {x2)] ~ (mghvd 0] (x mgh/(bJ) | =
y= [1 O] X,
where the inputi is the steering anglé and the outpuy is the tilt angle¢. What

do the statex; andx, represent?

3.3 (Bicycle steering) Combine the bicycle model given by emumef3.5) and the
model for steering kinematics in Example 2.8 to obtain a mtusldescribes the
path of the center of mass of the bicycle.

3.4 (Operational amplifier circuit) Consider the op amp circhibwn below.

2
O_M/V__Wv A‘/‘/‘v
R R, Ry,

Ry
V] C= J‘A/VTO
Vo
(&) —|— V3
(e} O

Show that the dynamics can be written in state space form as

1 1 0 1

dx B B R]_Cl B RaC]_ R1C1 _

i R 1 1 X+ . u, y_(O 1]x,
Ra RC; RoCo

whereu = vi andy = vs. (Hint: Usev, andvs as your state variables.)

3.5 (Operational amplifier oscillator) The op amp circuit showiolaeis an imple-
mentation of an oscillator.

(&) R4 C
H w !

Ry = R3 > Ry >
AV AW
+ V2 + V3 + Vi

Show that the dynamics can be written in state space form as

A
dix o R1RzCy1
dt 1 ’
——— 0
R.Co

where the state variables represent the voltages acrosaplaeitorss; = v; and
X2 = V.



EXERCISES 93

3.6 (Congestion control using RED [LPW+02]) A number of improvenseran
be made to the model for Internet congestion control preseim Section 3.4.
To ensure that the router’s buffer size remains positivecaremodify the buffer
dynamics to satisfy

dt | salpe(s—c) b =0

In addition, we can model the drop probability of a packellasn how close we
are to the buffer limits, a mechanism known as random eatigotien (RED):

dh_{a—q b >0

0 a (t) < blower
_m@)={PiO=A bjower bio"e" < ay(t) < b**
= ) i) — (120 PP < g (t) < 2677
1 a(t) > 2pPPe,
da
gt = e (a —by),

whereay, bPP®, blower and p;'PP®" are parameters for the RED protocol.

Using the model above, write a simulation for the system andl dirset of
parameter values for which there is a stable equilibriunmipand a set for which
the system exhibits oscillatory solutions. The followindgssef parameters should
be explored:

N = 20,30,...,60, blower = 40 pkts p = 0.1,
c=8,9,...,15 pktgms bi'PPe" =540 pkts a =104,
T =05560,...,100 ms

3.7 (Atomic force microscope with piezo tube) A schematic déagrof an AFM
where the vertical scanner is a piezo tube with preloadisdsvn below.

fr_m

v
ny

ky |- 2

Show that the dynamics can be written as

221 d21 d2| dl
W—i_ (Cl-i-Cz)E-i- (k1+k2)zl = mzﬁ-i-Cza +Kkol.

Are there parameter values that make the dynamics pantigsianple?

(M +np)
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3.8 (Drug administration) The metabolism of alcohol in the body be modeled
by the nonlinear compartment model

dg, dg C
Vba =q(C —Cp) + v, \Y at g(co—c) — qmaxCqu =+ gi,

whereV, = 48 L andV, = 0.6 L are the apparent volumes of distribution of body
water and liver water, andc are the concentrations of alcohol in the compart-
ments,dyy anddgi are the injection rates for intravenous and gastrointaistin
take,q = 1.5 L/min is the total hepatic blood flovgnax = 2.75 mmol/min and
co = 0.1 mmol/L. Simulate the system and compute the concentritiihre blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9 (Population dynamics) Consider the model for logistic gtogiven by equa-
tion (3.30). Show that the maximum growth rate occurs whersite of the pop-
ulation is half of the steady-state value.

3.10 (Fisheries management) The dynamics of a commercial fisherpeate-
scribed by the following simple model:

dx

dt
wherex s the total biomass,(x) = rx(1—x/k) is the growth rate ankl(x, u) = axu
is the harvesting rate. The outpuis the rate of revenue, and the parametglils
andc are constants representing the price of fish and the cost afdisBhow that
there is an equilibrium where the steady-state biomass4sc/(ab). Compare
with the situation when the biomass is regulated to a cohstloe and find the
maximum sustainable return in that case.

f(x) —h(x,u), y = bh(x,u) —cu



