Chapter Three

Examples

... Don't apply any model until you understand the simplifying assumptionwhich it is
based, and you can test their validity. Catch phrase: use only as dirdatedt limit yourself
to a single model: More than one model may be useful for understandiiegedif aspects of
the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70]

In this chapter we present a collection of examples spanmiagy different
fields of science and engineering. These examples will be usedghout the
text and in exercises to illustrate different concepts.tKimse readers may wish to
focus on only a few examples with which they have had the ntrast@xperience or
insight to understand the concepts of state, input, outpditignamics in a familiar
setting.

3.1 Cruise Control

The cruise control system of a car is a common feedback systeougtered in
everyday life. The system attempts to maintain a constantitglin the presence
of disturbances primarily caused by changes in the slopeadé The controller
compensates for these unknowns by measuring the speed@drthed adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figute Betv be
the speed of the car and the desired (reference) speed. The controller, which
typically is of the proportional-integral (Pl) type des@&ibbriefly in Chapter 1,
receives the signals ando, and generates a control signakhat is sent to an
actuator that controls the throttle position. The throttlélirn controls the torque
T delivered by the engine, which is transmitted through thergiand the wheels,
generating a forcé that moves the car. There are disturbance fofggdue to
variations in the slope of the road, the rolling resistane @aerodynamic forces.
The cruise controller also has a human—-machine interfadeattoavs the driver
to set and modify the desired speed. There are also functianslisconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engaresmission,
wheels and car body—and a detailed model can be very cortgaich spite of
this, the model required to design the cruise controllertEaguite simple.

To develop a mathematical model we start with a force balfordbe car body.
Letv be the speed of the cam the total mass (including passengeis)he force
generated by the contact of the wheels with the road,Frtie disturbance force
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torquéhat is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environmettt,asiaerodynamic
drag and gravitational forces on hills, the net force causes the car\e.fibe velocity

of the caro is measured by a control system that adjusts the throttle through an actuation
mechanism. A driver interface allows the system to be turned on andhaoffree reference
speed, to be established.

due to gravity, friction and aerodynamic drag. The equationation of the car is
simply

—=F - Fq. A
mdt d (3.1)

The forceF is generated by the engine, whose torque is proportionhktcete
of fuel injection, which is itself proportional to a contrsignal 0 < u < 1 that
controls the throttle position. The torque also depends gmerspeed. A simple
representation of the torque at full throttle is given by tivgue curve

T () =Tm(1—/f(wﬂm—1)2), (3.2)

where the maximum torquBg, is obtained at engine spees,. Typical parameters
are T, = 190 Nm,wny, = 420 rad/s (about 4000 RPM) arfd= 0.4. Letn be

the gear ratio and the wheel radius. The engine speed is related to the velocity

through the expression N
w = Fv =.onv,

and the driving force can be written as
nu
F = TT(C{)) = anUT((an)).

Typical values ofx, for gears 1 through 5 awe, = 40,0, = 25,03 = 16,04 = 12
andas = 10. The inverse o, has a physical interpretation as thigective wheel
radius. Figure 3.2 shows the torque as a function of engine speeddedmcle speed.
The figure shows that the effect of the gear is to “flatten” theuergurve so that
an almost full torque can be obtained almost over the whaedpange.

The disturbance forc&y has three major componentsy, the forces due to
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Figure 3.2: Torque curves for typical car engine. The graph on the left showsotigeie
generated by the engine as a function of the angular velocity of the engiile,the curve
on the right shows torque as a function of car speed for differemsgea

gravity; F, the forces due to rolling friction; anfe,, the aerodynamic drag. Letting
the slope of the road b, gravity gives the forcé~; = mgsind, as illustrated in
Figure 3.3a, wherg = 9.8 m/< is the gravitational constant. A simple model of
rolling friction is

Fr = mgG sgn),

whereC,; is the coefficient of rolling friction and sgn) is the sign ofo (4+1) or
zero ifo = 0. A typical value for the coefficient of rolling friction i€, = 0.01.
Finally, the aerodynamic drag is proportional to the squatbespeed:

1
Fa= Epcd Av?,
wherep isthe density of ailC4 is the shape-dependent aerodynamic drag coefficient
andAisthe frontal area of the car. Typical parametergase 1.3 kg/n¥, Cq = 0.32
andA = 2.4 nt.
Summarizing, we find that the car can be modeled by

M = 4T (o) — MGG SOT0) ~ 7pCaf® ~ mgsing, (3.9

where the functiorT is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velooityvhich is also the output. The
input is the signall that controls the throttle position, and the disturbancdhés
force Fq4, which depends on the slope of the road. The system is nonlieeause
of the torque curve, the gravity term and the nonlinear dattaraof rolling friction
and aerodynamic drag. There can also be variations in thengéees; e.g., the mass
of the car depends on the number of passengers and the loagldaeried in the
car.

We add to this model a feedback controller that attemptsgolage the speed
of the car in the presence of disturbances. We shall use air@pal-integral
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Figure 3.3: Car with cruise control encountering a sloping road. A schematic diaggam
shown in (a), and (b) shows the response in speed and throttle whereaoéld is encoun-
tered. The hill is modeled as a net change ofrdhill angled, with a linear change in the
angle betweeh = 5 andt = 6. The PI controller has proportional gairkis = 0.5, and the
integral gain is; = 0.1.

controller, which has the form

t
u(t) = kpe(t) + ki / e(r) dr.
0

This controller can itself be realized as an input/outputadygital system by defin-
ing a controller state and implementing the differential equation

dz

dt
whereu;, is the desired (reference) speed. As discussed briefly indpetthb, the
integrator (represented by the stajeensures that in steady state the error will be
driven to zero, even when there are disturbances or modedings. (The design of
PI1 controllers is the subject of Chapter 10.) Figure 3.3b shbesesponse of the
closed loop system, consisting of equations (3.3) and ,(8M&n it encounters a
hill. The figure shows that even if the hill is so steep that thettle changes from
0.17 to almost full throttle, the largest speed error istkas 1 m/s, and the desired
velocity is recovered after 20 s.

Many approximations were made when deriving the model (B 8&)ay seem
surprising that such a seemingly complicated system caasiithed by the simple
model (3.3). It is important to make sure that we restrict ugg of the model to
the uncertainty lemon conceptualized in Figure 2.15b. Theahigchot valid for
very rapid changes of the throttle because we have ignoeedigtails of the engine
dynamics, neither is it valid for very slow changes becabhseproperties of the
engine will change over the years. Nevertheless the modarisuseful for the
design of a cruise control system. As we shall see in lategpteing, the reason for
thisis the inherent robustness of feedback systems: etlenfiodel is not perfectly
accurate, we can use it to design a controller and make use ééédback in the

Ur - U, u= kp(l)r - U) + k| Z, (34)
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Figure 3.4: Finite state machine for cruise control system. The figure on the left show
some typical buttons used to control the system. The controller can be iof éour modes,
corresponding to the nodes in the diagram on the right. Transition betweendtes is
controlled by pressing one of the five buttons on the cruise control iotarfan, off, set,
resume or cancel.

controller to manage the uncertainty in the system.

The cruise control system also has a human—machine intdfatallows the
driver to communicate with the system. There are many diffiexays to implement
this system; one version is illustrated in Figure 3.4. Theesyishas four buttons:
on-off, set/decelerate, resume/accelerate and cancebgdration of the system
is governed by a finite state machine that controls the modésed®P| controller
and the reference generator. Implementation of contsodlad reference generators
will be discussed more fully in Chapter 10.

The use of control in automotive systems goes well beyondithpls cruise
control system described here. Applications include eomsscontrol, traction
control, power control (especially in hybrid vehicles) adhptive cruise control.
Many automotive applications are discussed in detail irbibak by Kiencke and
Nielsen [KNOOQ] and in the survey papers by Powers et al. [BPO®UP.N

3.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the fesatinat one of its key
properties is due to a feedback mechanism that is creatdeelmesign of the front
fork. A detailed model of a bicycle is complex because théesydas many degrees
of freedom and the geometry is complicated. However, a grealtof insight can
be obtained from simple models.

To derive the equations of motion we assume that the bicypdle on the hor-
izontal Xy plane. Introduce a coordinate system that is fixed to the l@oyith
the ¢-axis through the contact points of the wheels with the gdouhe 5-axis
horizontal and the-axis vertical, as shown in Figure 3.5. Lgtbe the velocity of
the bicycle at the rear whedd,the wheel basey the tilt angle and the steering
angle. The coordinate system rotates around the f@inith the angular veloc-
ity o = vod/b, and an observer fixed to the bicycle experiences forces dineto
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted gemum, as shown in
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Figure3.5: Schematic views of a bicycle. The steering anglkg &nd the roll angle ig. The
center of mass has heightand distance from a vertical through the contact poiRt of the
rear wheel. The wheel baselisand the trail ic.

the rear view in Figure 3.5b. To model the tilt, consider tiyarbody obtained when
the wheels, the rider and the front fork assembly are fixeddditycle frame. Let
m be the total mass of the systedhthe moment of inertia of this body with respect
to the-axis andD the product of inertia with respect to thig axes. Furthermore,
let the and¢ coordinates of the center of mass with respect to the reaelwhe
contact pointPy, bea andh, respectively. We havé ~ mh? andD = mah The
torques acting on the system are due to gravity and cerdtipetion. Assuming
that the steering angleis small, the equation of motion becomes
d’p  Dogdo . mvgh
e b i mghsing +
The termmghsing is the torque generated by gravity. The terms contaifiagd
its derivative are the torques generated by steering, Wwihtérm(Doo/b) do/dt
due to inertial forces and the terfmo3h/b) 6 due to centripetal forces.

The steering angle is influenced by the torque the rider apfgi¢ise handle
bar. Because of the tilt of the steering axis and the shaphleofront fork, the
contact point of the front wheel with the ro&d is behind the axis of rotation of the
front wheel assembly, as shown in Figure 3.5c. The distametween the contact
point of the front wheeP, and the projection of the axis of rotation of the front
fork assemblyP; is called thetrail. The steering properties of a bicycle depend
critically on the trail. A large trail increases stabilitytomakes the steering less
agile.

A consequence of the design of the front fork is that the stgeangleo is
influenced both by steering torgie and by the tilt of the frame. This means
that a bicycle with a front fork is #&edback systems illustrated by the block
diagram in Figure 3.6. The steering anglénfluences the tilt angle, and the
tilt angle influences the steering angle, giving rise to tmeutar causality that is
characteristic of reasoning about feedback. For a froktvath a positive trail, the

. (3.5)
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Figure 3.6: Block diagram of a bicycle with a front fork. The steering torque applietthéo
handlebars idT, the roll angle isp and the steering angle & Notice that the front fork
creates a feedback from the roll angl¢o the steering angléthat under certain conditions
can stabilize the system.

bicycle will steer into the lean, creating a centrifugati®that attempts to diminish
the lean. Under certain conditions, the feedback can dgtsialbilize the bicycle.
A crude empirical model is obtained by assuming that theko®can be modeled

as the static system
0=KkT —kop. (3.6)

This model neglects the dynamics of the front fork, the tioaerinteraction and
the fact that the parameters depend on the velocity. A marerate model, called
theWhipple modelis obtained using the rigid-body dynamics of the front fark
the frame. Assuming small angles, this model becomes

M [g] + Cug [f;] + (Ko + K203) [?] = [-?] ; (3.7)

where the elements of the22 matriceM, C, Ko andK, depend on the geometry
and the mass distribution of the bicycle. Note that this Hasra somewhat similar
to that of the spring—mass system introduced in Chapter gharfgalance systemin
Example 2.1. Even this more complex model is inaccurate bedhesnteraction
between the tire and the road is neglected; taking this intownt requires two
additional state variables. Again, the uncertainty lemmRigure 2.15b provides a
framework for understanding the validity of the model untlierse assumptions.

Interesting presentations on the development of the kécgod given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (3 was presented
in a paper by Whipple in 1899 [Whi99]. More details on bicyeledeling are given
in the paper [AKLO5], which has many references.

3.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementatidBlack’s feedback
amplifier. It is a universal component that is widely used f@tiumentation, con-
trol and communication. It is also a key element in analogmating. Schematic
diagrams of the operational amplifier are shown in Figure 3.&.arhplifier has one
inverting input ¢_), one noninverting inputy(.) and one outputvg). There are
also connections for the supply voltages,ande, , and a zero adjustment (offset
null). A simple model is obtained by assuming that the inputentsi _ andi,. are
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Figure 3.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all conmext{g) Only the
signal connections.

zero and that the output is given by the static relation

Uout = Sa&”min,vmax) (k(l)+ - 1)_)), (3-8)
where sat denotes the saturation function

a ifx<a
Satap(X) = 1x ifa<x<b (3.9)
b if x> b.

We assume that the galknis large, in the range of £810°, and the voltagesnin
andomax Satisfy
€ < Umin < Umax < €4

and hence are in the range of the supply voltages. More gequaels are obtained
by replacing the saturation function with a smooth funcisrshown in Figure 3.8.
For small input signals the amplifier characteristic (3.8inear:

vout = K(vy —v_) = —ko. (3.10)

Since the open loop gakiis very large, the range of input signals where the system
is linear is very small.

Dout
DUmax

Omin

Figure 3.8: Input/output characteristics of an operational amplifier. The differkinipat is
given byv, —v_. The output voltage is a linear function of the input in a small range around
0, with saturation aimin andomayx. In the linear regime the op amp has high gain.
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Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feledbaind
an operational amplifier and has a corresponding block diagramlib):esistordR; and R,
determine the gain of the ampilifier.

A simple amplifier is obtained by arranging feedback aroumrdbihisic opera-
tional amplifier as shown in Figure 3.9a. To model the feedbacgliier in the
linear range, we assume that the curiignt i_ + i, is zero and that the gain of
the amplifier is so large that the voltage= v_ — v, is also zero. It follows from
Ohm’s law that the currents through resist&sand R, are given by

V1 D2
RR R’
and hence the closed loop gain of the amplifier is
R
Y2 _ —Kei, where kg = = (3.11)
01 Ry

A more accurate model is obtained by continuing to negleetdinrentiy but
assuming that the voltageis small but not negligible. The current balance is then
V1 — 0 v — V2

Ry Ro

Assuming that the amplifier operates in the linear range aimgj @gjuation (3.10),
the gain of the closed loop system becomes
D2 R2 k Rl
ke 11 RIRI+R+kR (3.13)

If the open loop gairk of the operational amplifier is large, the closed loop gain
ko is the same as in the simple model given by equation (3.11fic&lthat the
closed loop gain depends only on the passive componenthandariations irk
have only a marginal effect on the closed loop gain. For exauifigx = 10° and
R,/ R = 100, a variation ok by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nicesthation of how feedback
can be used to make precise systems from uncertain comgoiettiis particular
case, feedback is used to trade high gain and low robustoeks\f gain and high
robustness. Equation (3.13) was the formula that inspiradiBivhen he invented
the feedback amplifier [Bla34] (see the quote at the beginairhapter 12).

It is instructive to develop a block diagram for the feedbaakplifier in Fig-
ure 3.9a. To do this we will represent the pure amplifier wifiuirv and outpub,

(3.12)
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around aratipesl
amplifier. The capacito€ is used to store charge and represents the integral of the input.

as one block. To complete the block diagram, we must deshobe depends on
v1 ando,. Solving equation (3.12) far gives

R, Ry Ri ( Ry )

v = 01+ Vp= ——| =01+
RI+R " Ri+R - R+R\R + 7

and we obtain the block diagram shown in Figure 3.9b. The diagfearly shows
that the system has feedback and that the gain frotoo is Ry /(R; + Ry), which
can also be read from the circuit diagram in Figure 3.9a. Ifidlo@ is stable and
the gain of the amplifier is large, it follows that the ereas small, and we find that
v2 = —(Rz/Ry)v1. Notice that the resistoR; appears in two blocks in the block
diagram. This situation is typical in electrical circuitsdait is one reason why
block diagrams are not always well suited for some types g$igal modeling.

The simple model of the amplifier given by equation (3.10) mtesiqualitative
insight, but it neglects the fact that the amplifier is a dyr@ahsystem. A more
realistic model is

dogyt

dt

The parametdrn that has dimensions of frequency and is calledythia-bandwidth
productof the amplifier. Whether a more complicated model is used r#pen
the questions to be answered and the required size of thetaimtg lemon. The
model (3.14) is still not valid for very high or very low fregocies since drift
causes deviations at low frequencies and there are adalidgnamics that appear
at frequencies close tm The model is also not valid for large signals—an upper
limitis given by the voltage of the power supply, typicaliythe range of 5-10 V—
neither is it valid for very low signals because of electrizaise. These effects can
be added, if needed, but increase the complexity of the aisaly

The operational amplifier is very versatile, and many diffessstems can be
built by combining it with resistors and capacitors. In faaty linear system can
be implemented by combining operational amplifiers withstess and capacitors.
Exercise 3.5 shows how a second-order oscillator is impléadeand Figure 3.10
shows the circuit diagram for an analog proportional-irdégontroller. To develop
a simple model for the circuit we assume that the cuiirgistzero and that the open
loop gaink is so large that the input voltageis negligible. The currertthrough
the capacitor is = Cdoc/dt, whereo is the voltage across the capacitor. Since

- _avou[ - bl). (314)
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the same current goes through the resiggrwe get

01 doc

'TR T A
which implies that

1 1 t
ve(t) = E/i(t) dt = @/0 v1(7)dz.

The output voltage is thus given by

t

va(t) = —Roi — v = —Ejol(t) =R [, O,
0

which is the input/output relation for a Pl controller.

The development of operational amplifiers was pioneered bypitkl[Lun05,
Phi48], and their usage is described in many textbooks (€B75]). Good infor-
mation is also available from suppliers [Jun02, Man02].

3.4 Computing Systems and Networks

The application of feedback to computing systems followsstrae principles as
the control of physical systems, but the types of measureard control inputs
that can be used are somewhat different. Measurementso(sgrse typically
related to resource utilization in the computing systemedwork and can include
quantities such as the processor load, memory usage ormdieadwidth. Control
variables (actuators) typically involve setting limits the resources available to a
process. This might be done by controlling the amount of mgnwisk space or
time that a process can consume, turning on or off processataying availability
of a resource or rejecting incoming requests to a servelegs@rocess modeling
for networked computing systems is also challenging, angiéeal models based
on measurements are often used when a first-principles n®det available.

Web Server Control

Web servers respond to requests from the Internet and gravidrmation in the
form of web pages. Modern web servers start multiple pr@sess respond to
requests, with each process assigned to a single sourtaafiirther requests are
received from that source for a predefined period of time. RsEethat are idle
become part of a pool that can be used to respond to new reqiliesprovide a
fast response to web requests, it is important that the wefersprocesses do not
overload the server’'s computational capabilities or egsha&simemory. Since other
processes may be running on the server, the amount of aegiledcessing power
and memory is uncertain, and feedback can be used to prowmte gerformance
in the presence of this uncertainty.
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Figure3.11: Feedback control of a web server. Connection requests arriveiopat queue,
where they are sent to a server process. A finite state machine kespsftthe state of the
individual server processes and responds to requests. A colgasithm can modify the
server’s operation by controlling parameters that affect its behastich as the maximum
number of requests that can be serviced at a single fWag@ i ent s) or the amount of
time that a connection can remain idle before it is droppéepAl i ve).

Figure 3.11 illustrates the use of feedback to modulate thexadipon of an
Apache web server. The web server operates by placing ingpoonnection re-
guests on a queue and then starting a subprocess to handistefipr each accepted
connection. This subprocess responds to requests from @ giveection as they
come in, alternating betweenBasy state and aMi t state. (Keeping the sub-
process active between requests is known apéhsistencef the connection and
provides a substantial reduction in latency to requestsfdtiple pieces of infor-
mation from a single site.) If no requests are received farfficiently long period
of time, controlled by th&eepAl i ve parameter, then the connection is dropped
and the subprocess enterslah e state, where it can be assigned another connec-
tion. A maximum ofvaxCl i ent s simultaneous requests will be served, with the
remainder remaining on the incoming request queue.

The parameters that control the server represent a tradeetffeen perfor-
mance (how quickly requests receive a response) and resosage (the amount
of processing power and memory used by the server). IncrgdgMaxC i ent s
parameter allows connection requests to be pulled off ofjtieie more quickly
but increases the amount of processing power and memorg tisagis required.
Increasing th&eepAl i ve timeout means that individual connections can remain
idle for alonger period of time, which decreases the prangd¢sad on the machine
butincreases the size of the queue (and hence the amoumeafquired for a user
to initiate a connection). Successful operation of a busyeseequires a proper
choice of these parameters, often based on trial and error.

To model the dynamics of this system in more detail, we craaliscrete-time
model with states given by the average processor lggdand the percentage
memory usagemem. 1he inputs to the system are taken as the maximum number
of clientsunyc and the keep-alive timey,. If we assume a linear model around the
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equilibrium point, the dynamics can be written as

XepdK+1] | _ [A A Xepu[K] B B Uka[ K]
[XmZn{k-l—l]] o [Ai AZ] [XmZn{k]] + [Bi Bz] [Umc[k] , (3.15)

where the coefficients of theandB matrices can be determined based on empirical
measurements or detailed modeling of the web server’s psotg and memory
usage. Using system identification, Diao et al. [DGH+02, HDRTddntified the
linearized dynamics as

A_ [ 0.54 —0.11] , B _ [—85 44

—4
~0.026 063 ~25 2.8] x 107

where the system was linearized about the equilibrium point
chu - 058, uka - 11 s Xmem - 055, Umc - 600

This model shows the basic characteristics that were destabove. Looking
first at theB matrix, we see that increasing tkeepAl i ve timeout (first column
of the B matrix) decreases both the processor usage and the menawy sisice
there is more persistence in connections and hence the spemds a longer time
waiting for a connection to close rather than taking on a neweconnection. The
MaxCl i ent s connectionincreases both the processing and memory eaggints.
Note that the largest effect on the processor load iskibepAl i ve timeout.
The A matrix tells us how the processor and memory usage evolvedgian of
the state space near the equilibrium point. The diagonalsteiescribe how the
individual resources return to equilibrium after a transimcrease or decrease.
The off-diagonal terms show that there is coupling betweertwo resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later exdespthat it can
be used to modify the parameters controlling the serverahtime and provide
robustness with respect to uncertainties in the load on #ehime. Similar types of
mechanisms have been used for other types of servers. Ipaiant to remember
the assumptions on the model and their role in determinirgyvtthe model is valid.
In particular, since we have chosen to use average quantier a given sample
time, the model will not provide an accurate representatwrhigh-frequency
phenomena.

Congestion Control

The Internet was created to obtain a large, highly decené@liefficient and ex-
pandable communication system. The system consists of e tangber of inter-
connected gateways. A message is split into several packéth are transmitted
over different paths in the network, and the packages aoinej to recover the
message at the receiver. An acknowledgment (“ack”) messaggnt back to the
sender when a packet is received. The operation of the systgoverned by a
simple but powerful decentralized control structure tred Bvolved over time.
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Figure 3.12: Internet congestion control. (a) Source computers send informati@uters,
which forward the information to other routers that eventually connecitogbeiving com-
puter. When a packet is received, an acknowledgment packet isagnthrough the routers
(not shown). The routers buffer information received from thersesi and send the data
across the outgoing link. (b) The equilibrium buffer sizdor a set ofN identical computers
sending packets through a single router with drop probability

The system has two control mechanisms cafestocols the Transmission
Control Protocol (TCP) for end-to-end network communicatiod ¢he Internet
Protocol (IP) for routing packets and for host-to-gateway ategay-to-gateway
communication. The current protocols evolved after sometapalar congestion
collapses occurred in the mid 1980s, when throughput uriéegly could drop by
a factor of 1000 [Jac95]. The control mechanism in TCP is basetbaserving
the number of packets in the loop from the sender to the recaivd back to the
sender. The sending rate is increased exponentially whee th@o congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we motlet¢ separate
elements of the system: the rate at which packets are semidibsidual sources
(computers), the dynamics of the queues in the links (reptmnd the admission
control mechanism for the queues. Figure 3.12a is a blockahagf the system.

The current source control mechanism on the Internet is a@wbknown
as TCP/Reno [LPDO02]. This protocol operates by sending packets¢geiver
and waiting to receive an acknowledgment from the receivat the packet has
arrived. If no acknowledgment is sent within a certain tiongeeriod, the packet
is retransmitted. To avoid waiting for the acknowledgmezfbbe sending the next
packet, Reno transmits multiple packets up to a fixédow around the latest
packetthat has been acknowledged. If the window lengthasemproperly, packets
at the beginning of the window will be acknowledged befome gsburce transmits
packets at the end of the window, allowing the computer tdinanusly stream
packets at a high rate.

To determine the size of the window to use, TCP/Reno uses adekdiech-
anism in which (roughly speaking) the window size is incesbigy 1 every time a
packet is acknowledged and the window size is cut in half wiearkets are lost.
This mechanism allows a dynamic adjustment of the window isizehich each
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computer acts in a greedy fashion as long as packets are delingred but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed byrithérsg the
dynamics of the window size. Suppose we h&Weomputers and let; be the
current window size (measured in number of packets) for thecomputer. Let
g represent the end-to-end probability that a packet will moped someplace
between the source and the receiver. We can model the dysaiibe window
size by the differential equation

% - (1_Qi)M+Qi(—ﬂri(t —),  h=— (3.16)
t Wi 2 Tj

wherer; is the end-to-end transmission time for a packet to reackdsrthtion and
the acknowledgment to be sent back and the resulting rate at which packets
are cleared from the list of packets that have been receiMeal first term in the
dynamics represents the increase in window size when a packeeived, and the
second term represents the decrease in window size wherket figtost. Notice
thatr; is evaluated at time— z;, representing the time required to receive additional
acknowledgments.

The link dynamics are controlled by the dynamics of the rogtezue and the
admission control mechanism for the queue. Assume that we lhdinks in the
network and uskto index the individual links. We model the queue in termshef t
current number of packets in the router’s butbeand assume that the router can
contain a maximum df nax packets and transmits packets at a catequal to the
capacity of the link. The buffer dynamics can then be written a

—s-a s= 3 nt-q) (3.17)
{i:leLi}

wherelL; is the set of links that are being used by sodmxﬁf is the time it takes a
packet from sourceto reach linkl ands is the total rate at which packets arrive
at link .

The admission control mechanism determines whether a giaekep is ac-
cepted by arouter. Since our model is based on the averagttmpsdn the network
and not the individual packets, one simple model is to asshatehe probability
that a packet is dropped depends on how full the buffepjiss m; (b, bmay). For
simplicity, we will assume for now thap = p/b (see Exercise 3.6 for a more
detailed model). The probability that a packet is droppedjaten link can be used
to determine the end-to-end probability that a packet isitogansmission:

g=1-[Ja-pm~>D pt-1d, (3.18)

lel; leL;

whereq? is the backward delay from linkto source and the approximation is
valid as long as the individual drop probabilities are smak use the backward
delay since this represents the time required for the aclatmment packet to be
received by the source.
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Together, equations (3.16), (3.17) and (3.18) represermaehof congestion
control dynamics. We can obtain substantial insight by icterg1g a special case
in which we haveN identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be éghan which case
the dynamics can be reduced to the form

dw; 1 pc2+w?) db N wj
_ - _ g = _ = 3.19
dt T 2 ’ dt g ¢ ‘ ’ ( )

wherew; e R,i =1, ..., N, are the window sizes for the sources of data, R is

the current buffer size of the routercontrols the rate at which packets are dropped
andc is the capacity of the link connecting the router to the cotapsu The variable

7 represents the amount of time required for a packet to beepsed by a router,
based on the size of the buffer and the capacity of the linkstuking z into the
equations, we write the state space dynamics as

N

dw; C w|2 db Cwij
More sophisticated models can be found in [HMTGOO, LPDO02]. .
The nominal operating point for the system can be found binggtt = b = 0:

N

c w? cwj
b7 ( + 2) 2.

Exploiting the fact that all of the source dynamics are id=adtiit follows that all
of thew; should be the same, and it can be shown that there is a unigilibggm
satisfying the equations
be Cre 1 3

Wie= =N W(Pbe) + (pbe) —1=0. (3.21)
The solution for the second equation is a bit messy but calyéesiietermined nu-
merically. A plot of its solution as a function of 12p?>N?) is shown in Figure 3.12b.
We also note that at equilibrium we have the following aaxdisil equalities:

B be Nuwe We

Te = = > e = Npe= prEa fe=—. (322)
C C Te

Figure 3.13 shows a simulation of 60 sources communicatingsa@ single
link, with 20 sources dropping out &t= 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Notethieabuffer size and
window sizes automatically adjust to match the capacityheflink.

A comprehensive treatment of computer networks is giveméntéxtbook by
Tannenbaum [Tan96]. A good presentation of the ideas behmaontrol prin-
ciples for the Internet is given by one of its designers, Varobson, in [Jac95].
F. Kelly [Kel85] presents an early effort on the analysistod system. The book
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Figure3.13: Internet congestion control fdt identical sources across a single link. As shown
on the left, multiple sources attempt to communicate through a router acsoggle link. An
“ack” packet sent by the receiver acknowledges that the messageeaeived; otherwise the
message packet is resent and the sending rate is slowed down atrite §de simulation
on the right is for 60 sources starting random rates, with 20 sourcppidgout at = 500
ms. The buffer size is shown at the top, and the individual source fiatésof the sources
are shown at the bottom.

by Hellerstein et al. [HDPTO04] gives many examples of the uséeeflback in
computer systems.

3.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig andieleiRohrer
for their design of thescanning tunneling microscop&he idea of the instrument
is to bring an atomically sharp tip so close to a conductingase that tunneling
occurs. An image is obtained by traversing the tip acrossahgple and measuring
the tunneling current as a function of tip position. This imien has stimulated
the development of a family of instruments that permit vigadion of surface
structure at the nanometer scale, including @h@mic force microscopéAFM),
where a sample is probed by a tip on a cantilever. An AFM canaipen two
modes. Intapping modehe cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. Inontact modehe cantilever is in contact with the
sample, and its bending is controlled by feedback. In boskesaontrol is actuated
by a piezo element that controls the vertical position ofdhetilever base (or the
sample). The control system has a direct influence on pictuatitgiand scanning
rate.

A schematic picture of an atomic force microscope is showkigare 3.14a. A
microcantilever with a tip having a radius of the order of 10 is placed close to
the sample. The tip can be moved vertically and horizontalggia piezoelectric
scanner. It is clamped to the sample surface by attractivelga\Waals forces and
repulsive Pauli forces. The cantilever tilt depends on tpedoaphy of the surface
and the position of the cantilever base, which is contraigdhe piezo element.
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Figure 3.14: Atomic force microscope. (a) A schematic diagram of an atomic forceamic
scope, consisting of a piezo drive that scans the sample under the AFMaiger reflects off
of the cantilever and is used to measure the detection of the tip throughbaméezbntroller.
(b) An AFM image of strands of DNA. (Image courtesy Veeco Instroteg

The tilt is measured by sensing the deflection of the laser bae@rg a photodiode.
The signal from the photodiode is amplified and sent to a cdatrthat drives
the amplifier for the vertical position of the cantilever. Bgntrolling the piezo
element so that the deflection of the cantilever is consthatsignal driving the
vertical deflection of the piezo element is a measure of thaiattorces between
the cantilever tip and the atoms of the sample. An image oftiniace is obtained
by scanning the cantilever along the sample. The resolutiakesit possible to
see the structure of the sample on the atomic scale, agalledtin Figure 3.14b,
which shows an AFM image of DNA.

The horizontal motion of an AFM is typically modeled as a sprimgss system
with low damping. The vertical motion is more complicated riiodel the system,
we start with the block diagram shown in Figure 3.15. Signalsdie easily acces-
sible are the input voltage to the power amplifier that drives the piezo element,
the voltagev applied to the piezo element and the output voltggd the signal

Sample topography

Piezo 7 Cantilever ¢ | Laser&
element - liev photodiode

Deflection reference

'

v Power | Y |D Al Y | Signal

amplifier [*—A|COMPUterp = amplifier [~

Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempsefo tke can-
tilever deflection equal to its reference value. Cantilever deflection isureshsamplified
and converted to a digital signal, then compared with its reference val@récting signal is
generated by the computer, converted to analog form, amplified ahtbska piezo element.
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Figure 3.16: Modeling of an atomic force microscope. (a) A measured step respdhe
top curve shows the voltageapplied to the drive amplifier (50 mV/div), the middle curve
is the outputV, of the power amplifier (500 mV/div) and the bottom curve is the output
of the signal amplifier (500 mV/div). The time scale is 25/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical postiamd the piezo
crystal.

amplifier for the photodiode. The controller is a PI controllmplemented by a
computer, which is connected to the system by analog-tivadi{@/D) and digital-
to-analog (D/A) converters. The deflection of the cantilevés also shown in the
figure. The desired reference value for the deflection is an iopilie computer.

There are several different configurations that have diftatgmamics. Here we
will discuss a high-performance system from [SAD+07] wheeedantilever base
is positioned vertically using a piezo stack. We begin th@etiag with a simple
experiment on the system. Figure 3.16a shows a step resplanseamner from the
input voltageu to the power amplifier to the output voltagef the signal amplifier
for the photodiode. This experiment captures the dynamitiseo€hain of blocks
fromutoy in the block diagram in Figure 3.15. Figure 3.16a shows thagystem
responds quickly but that there is a poorly damped oscilfatwode with a period
of about 35 ps. A primary task of the modeling is to understiedorigin of the
oscillatory behavior. To do so we will explore the system iorendetail.

The natural frequency of the clamped cantilever is typicadlyeral hundred
kilohertz, which is much higher than the observed oscdlavf about 30 kHz. As
a first approximation we will model it as a static system. Simeedeflections are
small, we can assume that the bendingf the cantilever is proportional to the
difference in height between the cantilever tip at the prantbthe piezo scanner. A
more accurate model can be obtained by modeling the castidéeva spring—mass
system of the type discussed in Chapter 2.

Figure 3.16a also shows that the response of the power amjdifiast. The
photodiode and the signal amplifier also have fast respomgbsam thus be mod-
eled as static systems. The remaining block is a piezo sysidnsuspension. A
schematic mechanical representation of the vertical matiche scanner is shown
in Figure 3.16b. We will model the system as two masses seguhlst an ideal
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piezo element. The mass; is half of the piezo system, and the mawssis the
other half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crgsakrates a force
F between the masses and that there is a dangoimghe spring. Let the positions
of the center of the masses beandz,. A momentum balance gives the following
model for the system:

dZZ]_

d222 dz
™ B

F, Mp—2 = —gp—2
2°de2 27dt

— k222 - F.

Let the elongation of the piezo elemdnt z; — z, be the control variable and
the heightz; of the cantilever base be the output. Eliminating the vaei&blin
equations (3.23) and substituting— | for z, gives the model

o2 d dl
208 L ko7 = my fracdldt? + o + kol (3.23)

(M1 + M)~z dt dt

Summarizing, we find that a simple model of the system is obtidigenodeling
the piezo by (3.23) and all the other blocks by static modetsoducing the linear
equations$ = ksu andy = k;z;, we now have a complete model relating the output
y to the control signall. A more accurate model can be obtained by introducing the
dynamics of the cantilever and the power amplifier. As in thevious examples,
the concept of the uncertainty lemon in Figure 2.15b provalésamework for
describing the uncertainty: the model will be accurate ughéofrequencies of the
fastest modeled modes and over a range of motion in whiclarimed stiffness
models can be used.

The experimental results in Figure 3.16a can be explainedtatialy as fol-
lows. When a voltage is applied to the piezo, it expandkbghe massn; moves
up and the mas®, moves down instantaneously. The system settles after aypoorl
damped oscillation.

Itis highly desirable to design a control system for theieafttmotion so that it
responds quickly with little oscillation. The instrumensdmer has several choices:
to accept the oscillation and have a slow response time sigii@ control system
that can damp the oscillations or to redesign the mechaoigs/é resonances of
higher frequency. The last two alternatives give a fastgraese and faster imaging.

Since the dynamic behavior of the system changes with theeptiep of the
sample, itis necessary to tune the feedback loop. In singptems this is currently
done manually by adjusting parameters of a PI controller. dlage interesting
possibilities for making AFM systems easier to use by intadg automatic tuning
and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic forceostopes.
The interaction of atoms close to surfaces is fundamentallio state physics, see
Kittel [Kit95]. The model discussed in this section is basadszhitter [Sch01].
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Figure 3.17: Abstraction used to compartmentalize the body for the purpose of desgrib
drug distribution (based on Teorell [Teo37]). The body is abstracyea tumber of com-
partments with perfect mixing, and the complex transport processeapgroximated by
assuming that the flow is proportional to the concentration differenceg icampartments.

The constant&; parameterize the rates of flow between different compartments.

3.6 Drug Administration

The phrase “Take two pills three times a day” is a recommeodatith which we
are all familiar. Behind this recommendation is a solutibam open loop control
problem. The key issue is to make sure that the concentrafiannoedicine in
a part of the body is sufficiently high to be effective but nothégh that it will
cause undesirable side effects. The control action is qgehtake two pills and
sampledgevery 8 hoursThe prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and wéitjet patient.

Drug administration is a control problem. To solve it we mustierstand how
a drug spreads in the body after it is administered. This tagitledpharmacoki-
netics is now a discipline of its own, and the models used are cal@apartment
modelsThey go back to the 1920s when Widmark modeled the propageattedco-
hol in the body [WT24]. Compartment models are now importanttie screening
of all drugs used by humans. The schematic diagram in FiguieilBustrates the
idea of a compartment model. The body is viewed as a numbermopadments
like blood plasma, kidney, liver and tissues that are seépdfay membranes. It is
assumed that there is perfect mixing so that the drug corat@nt is constant in
each compartment. The complex transport processes arexappted by assuming
that the flow rates between the compartments are proportiotia concentration
differences in the compartments.

To describe the effect of a drug it is necessary to know batlkdncentration
and how it influences the body. The relation between concémtratind its effect
eis typically nonlinear. A simple model is

Co
e= . 3.24
en < Emax (3.24)

The effect is linear for low concentrations, and it saturatasigh concentrations.
The relation can also be dynamic, and it is then cglledrmacodynamics
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Compartment Models

The simplest dynamic model for drug administration is olgediby assuming that
the drug is evenly distributed in a single compartment gifteas been administered
and that the drug is removed at a rate proportional to theestration. The com-
partments behave like stirred tanks with perfect mixing.dle¢ the concentration,
V the volume andj the outflow rate. Converting the description of the system int
differential equations gives the model

Vg—f =—qc, ¢c>0. (3.25)

This equation has the solutiait) = coe™9V = coe ¥, which shows that the
concentration decays exponentially with the time constasat V /q after an injec-

tion. The input is introduced implicitly as an initial conidit in the model (3.25).

More generally, the way the input enters the model dependsoanthe drug is

administered. For example, the input can be representedrassa flow into the

compartment where the drug is injected. A pill that is digedlcan also be inter-
preted as an input in terms of a mass flow rate.

The model (3.25) is called aane-compartment modet asingle-pool model
The parameteq/V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasman8&gsuring the con-
centration at a few times, the initial concentration canlit@imed by extrapolation.
If the total amount of injected substance is known, the va@ihcan then be de-
termined a3/ = m/cy; this volume is called thapparent volume of distribution
This volume is larger than the real volume if the concentratiothe plasma is
lower than in other parts of the body. The model (3.25) is vénpke, and there
are large individual variations in the parameters. The pataraV andq are often
normalized by dividing by the weight of the person. Typicatgameters for aspirin
areV = 0.2 L/kg andg = 0.01(L/h)/kg. These numbers can be compared with
a blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, areicetiular fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/ min/kg.

The simple one-compartment model captures the gross beloddoug distri-
bution, butitis based on many simplifications. Improved ni®dan be obtained by
considering the body as composed of several compartmeramigs of such sys-
tems are shown in Figure 3.18, where the compartments areseied as circles
and the flows by arrows.

Modeling will be illustrated using the two-compartment rebish Figure 3.18a.
We assume that there is perfect mixing in each compartmehtheat the transport
between the compartments is driven by concentration diffees. We further as-
sume that a drug with concentratiogis injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the outputcLabd
C, be the concentrations of the drug in the compartments and lahdV, be the
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Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compatrtme
model. Each compartment is labeled by its volume, and arrows indicatetheffthemical
into, out of and between compartments. (b) A system with six compartmeatsto study
the metabolism of thyroid hormone [God83]. The notatigndenotes the transport from
compartmeng to compartmeni.

volumes of the compartments. The mass balances for the comgrds are

dc
Vld—t1 =((C2 — C1) — QoC1 + Cou, €1 >0,
dc
Vzd—,[2 =qc1—C), ©€>0, (3.26)
y = Co.

Introducing the variableky = qo/ V1, ki = q/ V1, ko = q/ V. andby = ¢/ V1 and
using matrix notation, the model can be written as

%:: [_kokz_ ka _kliZ] c+ [%"] u  y= [o 1] X, (3.27)

Comparing this model with its graphical representation iguFeé 3.18a, we find
that the mathematical representation (3.27) can be wityenspection.

It should also be emphasized that simple compartment msdelsas the one in
equation (3.27) have a limited range of validity. Low-fregoglimits exist because
the human body changes with time, and since the compartnmiglruses average
concentrations, they will not accurately represent rapidnges. There are also
nonlinear effects that influence transportation betweerdngartments.

Compartment models are widely used in medicine, engingenitd environ-
mental science. An interesting property of these systeftiats/ariables like con-
centration and mass are always positive. An essential dtffiie compartment
modeling is deciding how to divide a complex system into cartpents. Com-
partment models can also be nonlinear, as illustrated ine¢iesection.
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Figure 3.19: Insulin—glucose dynamics. (a) Sketch of body parts involved in the alooitr
glucose. (b) Schematic diagram of the system. (c) Responses of iasdliglucose when
glucose in injected intravenously. From [PB86].

Insulin—glucose Dynamics

It is essential that the blood glucose concentration in thaéyls kept within a
narrow range (0.7-1.1 g/L). Glucose concentration is infladrimy many factors
like food intake, digestion and exercise. A schematic pectf the relevant parts
of the body is shown in Figures 3.19a and b.

There is a sophisticated mechanism that regulates glucosercwation. Glu-
cose concentration is maintained by the pancreas, whiaetsscthe hormones
insulin and glucagon. Glucagon is released into the bloedst when the glucose
levelis low. It acts on cells in the liver that release gluedasulin is secreted when
the glucose level is high, and the glucose level is loweredamsing the liver and
other cells to take up more glucose. In diseases like juselidbetes the pancreas
is unable to produce insulin and the patient must injectlinsoto the body to
maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are caatgdicdynamics
with time scales that range from seconds to hours have besamaa. Models of
different complexity have been developed. The models arediptested with data
from experiments where glucose is injected intravenoustyiasulin and glucose
concentrations are measured at regular time intervals.

A relatively simple model called thainimal modelvas developed by Bergman
and coworkers [Ber89]. This models uses two compartmentsrepresenting the
concentration of glucose in the bloodstream and the otlpeesenting the concen-
tration of insulin in the interstitial fluid. Insulin in the dbdstream is considered an
input. The reaction of glucose to insulin can be modeled bethetions

dxq dxo

— = —(p1+ X2)X1 + P10e, at

dt = —PaXz2 + Pa(U —ie), (3.28)
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wherege andie represent the equilibrium values of glucose and insuiins the
concentration of glucose and is proportional to the concentration of interstitial
insulin. Notice the presence of the tempx; in the first equation. Also notice
that the model does not capture the complete feedback locqube it does not
describe how the pancreas reacts to the glucose. Figure 8ht®¢s a fit of the
model to a test on a normal person where glucose was injecteénously at
timet = 0. The glucose concentration rises rapidly, and the pancesgponds
with a rapid spikelike injection of insulin. The glucose amdulin levels then
gradually approach the equilibrium values.

Models of the type in equation (3.28) and more complicatedetshaving many
compartments have been developed and fitted to experimextéalAl difficulty in
modeling is that there are significant variations in modeapeaters over time and
for different patients. For example, the paramgigin equation (3.28) has been
reported to vary with an order of magnitude for healthy imdisals. The models
have been used for diagnosis and to develop schemes foetiment of persons
with diseases. Attempts to develop a fully automatic aréifipancreas have been
hampered by the lack of reliable sensors.

The papers by Widmark and Tandberg [WT24] and Teorell [TeoB¥tkssics
in pharmacokinetics, which is now an established disogpliith many textbooks
[Dos68, Jac72, GP82]. Because of its medical importancenmwokinetics is
now an essential component of drug development. The bookdysRRig63] is a
good source for the modeling of physiological systems, ambee mathematical
treatment is given in [KS01]. Compartment models are dissigs[God83]. The
problem of determining rate coefficients from experimentthds discussed in
[BA70] and [God83]. There are many publications on the imstgiucose model.
The minimal model is discussed in [CT84, Ber89] and more readatences are
[MLKO6, FCF+06].

3.7 Population Dynamics

Population growth is a complex dynamic process that invdlvefteraction of one
or more species with their environment and the larger etesysThe dynamics of
population groups are interesting and important in marigidifit areas of social and
environmental policy. There are examples where new speaigstieen introduced
into new habitats, sometimes with disastrous results. Thnere also been attempts
to control population growth both through incentives anatigh legislation. In
this section we describe some of the models that can be usetitrstand how
populations evolve with time and as a function of their eowiments.

Logistic Growth Model

Let x be the population of a species at tilmé\ simple model is to assume that the
birth rates and mortality rates are proportional to thel fotgulation. This gives
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the linear model

dx

a:bx—dx:(b—d)x:rx, X >0, (3.29)
where birth ratd and mortality ratel are parameters. The model gives an expo-
nential increase ib > d or an exponential decreasehf< d. A more realistic
model is to assume that the birth rate decreases when théggiopus large. The

following modification of the model (3.29) has this property:

dx X

Tl rx(1— E)’ x >0, (3.30)
wherek is thecarrying capacityof the environment. The model (3.30) is called the
logistic growth model

Predator-Prey Models

A more sophisticated model of population dynamics inclubesffects of compet-
ing populations, where one species may feed on another. itiigisn, referred to

as thepredator—prey problenwas introduced in Example 2.3, where we developed
a discrete-time model that captured some of the featuresstafrical records of
lynx and hare populations.

In this section, we replace the difference equation modsd tisere with a more
sophisticated differential equation model. lkétt) represent the number of hares
(prey) and let (t) represent the number of lynxes (predator). The dynamicseof th
system are modeled as

dH:rH(l—ﬂ)—aHL H >0,

dt k c+H’ -

(3.31)
db _paHl 4 Lso
dt c+H

In the first equationy represents the growth rate of the haresepresents the
maximum population of the hares (in the absence of lynx@sgpresents the
interaction term that describes how the hares are dimidisisea function of the
lynx population and controls the prey consumption rate for low hare population.
In the second equatiot, represents the growth coefficient of the lynxes and
represents the mortality rate of the lynxes. Note that thhe dgnamics include a
term that resembles the logistic growth model (3.30).

Of particular interest are the values at which the poputatedues remain con-
stant, calledequilibrium points The equilibrium points for this system can be
determined by setting the right-hand side of the above @ngto zero. Letting
He andL¢ represent the equilibrium state, from the second equatmhave

. cd
Le=0 or H = _d (3.32)

Substituting this into the first equation, we have thatligr= 0 eitherHg = 0 or
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Figure3.20: Simulation of the predator—prey system. The figure on the left shows #egion

of the two populations as a function of time. The figure on the right showpdpalations
plotted against each other, starting from different values of the populdtie oscillation seen

in both figures is an example oflianit cycle The parameter values used for the simulations
area=3.2,b=0.6,c=50,d =0.56,k =125 and = 1.6.

He = k. For Le # 0, we obtain

rHe(c + He) (1 B E) _ber(abk—cd —dk)
k)T (ab- d)2k

Thus, we have three possible equilibrium poixgs= (L, H

B bl -l

whereH; andL} are given in equations (3.32) and (3.33). Note that the #quil
rium populations may be negative for some parameter vatwesesponding to a
nonachievable equilibrium point.

Figure 3.20 shows a simulation of the dynamics starting froseteof popu-
lation values near the nonzero equilibrium values. We sakfth this choice of
parameters, the simulation predicts an oscillatory pdfmuiaount for each species,
reminiscent of the data shown in Figure 2.6.

L: =

3.33
€ aHe ( )

Volume | of the two-volume set by J. D. Murray [Mur04] give abd coverage
of population dynamics.

Exercises

3.1 (Cruise control) Consider the cruise control example diesdrin Section 3.1.
Build a simulation that re-creates the response to a hillvehio Figure 3.3b and
show the effects of increasing and decreasing the mass céhtly 25%. Redesign
the controller (using trial and error is fine) so that it regita within 1% of the

desired speed within 3 s of encountering the beginning ohithe
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3.2 (Bicycle dynamics) Show that the dynamics of a bicycle frafmergby equa-
tion (3.5) can be approximated in state space form as

x| 0 1 Doo/(bJ)
X2| — |mgh/J O mo3h/(bJ)

y = [1 O]x

where the inputi is the steering anglé and the outpuy is the tilt anglep. What
do the stateg; andx, represent?

3.3 (Bicycle steering) Combine the bicycle model given by etue¢3.5) and the
model for steering kinematics in Example 2.8 to obtain a mdus#ldescribes the
path of the center of mass of the bicycle.

3.4 (Operational amplifier circuit) Consider the op amp circhibwn below.

v
O—AA——AW AN
Ry R, Ry

Ry
V1 = VMMTO
o
(&) —|— V3
O O

Show that the dynamics can be written in state space form as

1 1 0 1

dx | RiC: RiC RiCr B

Tl R 1 1 X+ . u,y_[O 1]x
Ra RCo R.C,

whereu = v; andy = v3. (Hint: Usev, andog as your state variables.)

3.5 (Operational amplifier oscillator) The op amp circuit showiolaeis an imple-
mentation of an oscillator.

(&) Ry Cy
i " H

Ry h R3 = Ry >
AWV AW
+ V2 + V3 + Vi

Show that the dynamics can be written in state space form as

0 Ry
ax Ri1RsCy
dt 1 ’
— 0
R,C,

where the state variables represent the voltages acrossjpaeitors<; = v; and
X2 = V2.
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3.6 (Congestion control using RED [LPW+02]) A number of improvenseran
be made to the model for Internet congestion control preseim Section 3.4.
To ensure that the router’s buffer size remains positivecaremodify the buffer
dynamics to satisfy

db |s—q b >0

dt  |saloe(s —c) b =0

In addition, we can model the drop probability of a packellasn how close we
are to the buffer limits, a mechanism known as random eatlyatien (RED):

0 a(t) < bllower
o =m) =1"" (t) — projorer biove" < a(t) < by
mri () — (1—-20%%%) B < at) < 20
1 a(t) > 20"
da
at —ac(a —b),
whereq,, """, bl“e" and p;'PP*" are parameters for the RED protocol.

Using the model above, write a simulation for the system and dirset of
parameter values for which there is a stable equilibriunmipand a set for which
the system exhibits oscillatory solutions. The followingssef parameters should
be explored:

N = 20,30, ..., 60, blo"e" = 40 pkts p =01,
c=8,9,...,15 pktyms b PP = 540 pkts o = 1074,
7 =5560,...,100 ms

3.7 (Atomic force microscope with piezo tube) A schematic dagrof an AFM
where the vertical scanner is a piezo tube with preloadisg@svn below.

yr_m

Ve
niy

ky |- 2

Show that the dynamics can be written as

2

d2z, mdl+cdl+k|
dt2 2de2 T Pde 2

Are there parameter values that make the dynamics pantigsianple?

2

dz
(Mg + my) + (CL+ Cz)d—tl + (k1 + k2)z1 =
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3.8 (Drug administration) The metabolism of alcohol in the body be modeled
by the nonlinear compartment model
do

dg
Vy,— = — ivs V| — = — —
bdt g(c —Cp) + G Idt q(c, — ) qmaXCo+C|

whereV, = 48 L andV, = 0.6 L are the apparent volumes of distribution of
body water and liver watec, andc are the concentrations of alcohol in the com-
partmentsg;, andqg are the injection rates for intravenous and gastrointaktin
intake,q = 1.5 L/min is the total hepatic blood flowmax = 2.75 mmol/min and
Co = 0.1 mmol/L. Simulate the system and compute the concentriatitwe blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

+qgi:

3.9 (Population dynamics) Consider the model for logistic gitogiven by equa-
tion (3.30). Show that the maximum growth rate occurs whersite of the pop-
ulation is half of the steady-state value.

3.10 (Fisheries management) The dynamics of a commercial fisherpeate-
scribed by the following simple model:

%( = f(x) —h(x,u), y=Dbh(x,u)—-cu

wherex is the total biomassf (x) = rx (1 — x/K) is the growth rate and(x, u) =
axuis the harvesting rate. The outpuis the rate of revenue, and the parameters
b andc are constants representing the price of fish and the cost afdisBhow that
there is an equilibrium where the steady-state biomassg is ¢/(ab). Compare
with the situation when the biomass is regulated to a cohstloe and find the
maximum sustainable return in that case.



