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Chapter Four

Dynamic Behavior

It Don't Mean a Thing If It Ain't Got That Swing.
Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behalgymamical sys-
tems focused on systems modeled by nonlinear differerdigtons. This allows
us to consider equilibrium points, stability, limit cyclaad other key concepts in
understanding dynamic behavior. We also introduce sombatdstfor analyzing
the global behavior of solutions.

4.1 Solving Differential Equations

In the last two chapters we saw that one of the methods of rimgddi/namical
systems is through the use of ordinary differential equat©@DES). A state space,
input/output system has the form

31( = f(x,u), y=h(x,u), (4.1)
wherex= (x1,...,X,) € R"is the statey € RP is the input ang € RY is the output.
The smooth mapé : R" x RP — R"andh: R" x RP — RY represent the dynamics
and measurements for the system. In general, they can bmeanfunctions of
their arguments. We will sometimes focus on single-inpigle-output (SISO)
systems, for whiclp = q=1.

We begin by investigating systems in which the input has Ise¢to a function
of the statey = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equatin this case become

dx

5¢ = fxa(x) =FX). (4.2)

To understand the dynamic behavior of this system, we neeshatyze the
features of the solutions of equation (4.2). While in somepdé situations we can
write down the solutions in analytical form, often we mudy ren computational
approaches. We begin by describing the class of solutiarthifoproblem.

We say thatx(t) is a solution of the differential equation (4.2) on the time
intervaltp € Rtot; e R if

dx(t)

= F(x(t)) forallto <t <ts.
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A given differential equation may have many solutions. W# wiost often be
interested in thenitial value problem wherex(t) is prescribed at a given time
to € R and we wish to find a solution valid for dlituretimet > to.
We say thak(t) is a solution of the differential equation (4.2) with initialue
Xo € R"attg e R if
dx(t)

X(to) =% and T:F(x(t)) foralltg <t <ts.

For most differential equations we will encounter, thera isiquesolution that is
defined fortg < t < t¢. The solution may be defined for all tinte> tg, in which
case we takeés = . Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to thisrgly as the solution
of an ODE.

We will typically assume thap is equal to 0. In the case whéris independent
of time (as in equation (4.2)), we can do so without loss ofegelity by choosing
a new independent (time) variable=t —ty (Exercise 4.1).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of thenfor

G+ 2 apd + whq =0,
whereq is the displacement of the oscillator from its rest positibimese dynamics
are equivalent to those of a spring—mass system, as showneircigx 2.6. We
assume thaf < 1, corresponding to a lightly damped system (the reasorhfer t
particular choice will become clear later). We can rewtilis in state space form
by settingx; = g andx; = g/, giving
Xm o dXZ

== === -2 .
qr — W% at WoX1 — 2{ (X2

In vector form, the right-hand side can be written as
WpX2
F(X) = .
(x) [—woxl—ZZcuoxz]

The solution to the initial value problem can be written in anter of different
ways and will be explored in more detail in Chapter 5. Here iwgok/ assert that
the solution can be written as

1 .
xq(t) = e oot <x10coswdt + @(%ZX:[()—F X20) smwdt> ,

Xo(t) = e ¢! <Xzocoswdt - a])-d(ng10+ wod X20) Sinwdt> :

wherexo = (X10,X20) is the initial condition andwy = wp+/1— 2. This solution

can be verified by substituting it into the differential eqoat We see that the so-
lution is explicitly dependent on the initial condition,dit can be shown that this
solution is unique. A plot of the initial condition resporiseshown in Figure 4.1.
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Figure 4.1: Response of the damped oscillator to the initial condikgr- (1,0). The solu-
tion is unique for the given initial conditions and consists of an oscillatorytieoldior each
state, with an exponentially decaying magnitude.

We note that this form of the solution holds only fox0{ < 1, corresponding to
an “underdamped” oscillator. O

Without imposing some mathematical conditions on the fiondt, the differ- @
ential equation (4.2) may not have a solution fortalind there is no guarantee
that the solution is unique. We illustrate these possieditvith two examples.

Example 4.2 Finite escape time
Letx € R and consider the differential equation

dx 5
at =X 4.3)

with the initial conditionx(0) = 1. By differentiation we can verify that the func-
tion 1
)= —
Xt) =1

satisfies the differential equation and that it also satisfiedritial condition. A
graph of the solution is given in Figure 4.2a; notice that thietson goes to infinity
ast goes to 1. We say that this system liiméte escape timeThus the solution
exists only in the time interval €t < 1. O

Example 4.3 Nonunique solution
Letx € R and consider the differential equation

dx
— =2 4.4
at VX (4.4)
with initial conditionx(0) = 0. We can show that the function
0 fo<t<a
X(t) = 2
(t—a)- ift>a

satisfies the differential equation for all values of the paatera > 0. To see this,
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Figure 4.2: Existence and uniqueness of solutions. Equation (4.3) has a solutiorioonly
time t < 1, at which point the solution goes to, as shown in (a). Equation (4.4) is an
example of a system with many solutions, as shown in (b). For each vhlajene get a
different solution starting from the same initial condition.

we differentiatex(t) to obtain

dx_]0 fo<t<a
dt 2(t—a) ift>a,

and hencex= 2,/x for all t > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 4.2b. Notice that in this casedlae many solutions
to the differential equation. O

These simple examples show that there may be difficulties eviénsimple
differential equations. Existence and uniqueness can begigeed by requiring
that the functior have the property that for some fixed R,

IFO)—FW) <clx—y[ forallxy,

which is calledLipschitz continuity A sufficient condition for a function to be
Lipschitz is that the JacobiatF /dx is uniformly bounded for atk. The difficulty
in Example 4.2 is that the derivativ@F /dx becomes large for large and the
difficulty in Example 4.3 is that the derivativ~ /dx is infinite at the origin.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is importantriderstanding some
of the key concepts of stability in nonlinear dynamics. W# f@icus on an im-
portant class of systems known as planar dynamical sysfEmse systems have
two state variables € R?, allowing their solutions to be plotted in thgy,x,)
plane. The basic concepts that we describe hold more ggnaralican be used to
understand dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamicalesys with state
x € R? is to plot the phase portrait of the system, briefly introduice@hapter 2.
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Figure 4.3: Phase portraits. (a) This plot shows the vector field for a planar dyasyis-
tem. Each arrow shows the velocity at that point in the state space. (bpldhiacludes the
solutions (sometimes called streamlines) from different initial conditiorits the vector
field superimposed.

We start by introducing the concept ofvactor field For a system of ordinary

differential equations
S —Fi)
dt '

the right-hand side of the differential equation defines arex € R" a velocity
F(x) € R". This velocity tells us how changes and can be represented as a vector
F(x) e R".

For planar dynamical systems, each state corresponds totarpihe plane and
F(x) is a vector representing the velocity of that state. We cahtpese vectors
on a grid of points in the plane and obtain a visual image ofdyramics of the
system, as shown in Figure 4.3a. The points where the veloditie zero are of
particular interest since they define stationary points eflibw: if we start at such
a state, we stay at that state.

A phase portraitis constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a seiitidli conditions, we
plot the solution of the differential equation in the plak& This corresponds to
following the arrows at each point in the phase plane andidgthe resulting tra-
jectory. By plotting the solutions for several differenitial conditions, we obtain
a phase portrait, as show in Figure 4.3b. Phase portraitssresametimes called
phase plane diagrams

Phase portraits give insight into the dynamics of the systgshbwing the so-
lutions plotted in the (two-dimensional) state space oftfstem. For example, we
can see whether all trajectories tend to a single point asiticreases or whether
there are more complicated behaviors. In the example in €igid, corresponding
to a damped oscillator, the solutions approach the origimlianitial conditions.
This is consistent with our simulation in Figure 4.1, but ibals us to infer the
behavior for all initial conditions rather than a singletiai condition. However,
the phase portrait does not readily tell us the rate of chahfjee states (although
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a iode
for a class of balance systems in which we wish to keep a system uprightasa rocket (a).
Using a simplified model of an inverted pendulum (b), we can develomagoportrait that
shows the dynamics of the system (c). The system has multiple equilibriints pmarked

by the solid dots along the = 0 line.

this can be inferred from the lengths of the arrows in thearefatld plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a stages an equilibrium point for a dynamical system

dx

if F(Xe) = 0. If a dynamical system has an initial conditief®) = Xe, then it will

stay at the equilibrium poink(t) = xe for all t > 0, where we have takdp = 0.
Equilibrium points are one of the most important features df@amical sys-

tem since they define the states corresponding to constargtmgeconditions. A

dynamical system can have zero, one or more equilibriumtgoin

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figure 4.4, which is a gfdahtebalance system
we considered in Chapter 2. The inverted pendulum is a singbN&esion of the
problem of stabilizing a rocket: by applying forces at thedaf the rocket, we
seek to keep the rocket stabilized in the upright positiore $tate variables are
the anglef = x; and the angular velocitg6/dt = xo, the control variable is the
acceleratioru of the pivot and the output is the andle

For simplicity we assume thangl/J = 1 andl /J = 1, so that the dynamics
(equation (2.10)) become

dX_ X2
dt [sinxl—cszrucosxl] : (4-5)

This is a nonlinear time-invariant system of second orders $hme set of equa-
tions can also be obtained by appropriate normalizatiohesystem dynamics as
illustrated in Example 2.7.
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different iritiitions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) slacsingle solution
plotted as a function of time, with the limit cycle corresponding to a steady dswillaf
fixed amplitude.

We consider the open loop dynamics by setting 0. The equilibrium points
for the system are given by
I =1
o (07,

wheren=0,1,2,.... The equilibrium points fon even correspond to the pendu-
lum pointing up and those farodd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inpugsghown in Figure 4.4c.
The phase portrait shows2mt < x; < 21, so five of the equilibrium points are
shown. O

Nonlinear systems can exhibit rich behavior. Apart fromikdopa they can
also exhibit stationary periodic solutions. This is of grpedctical value in gen-
erating sinusoidally varying voltages in power systemsnogenerating periodic
signals for animal locomotion. A simple example is given ireExse 4.12, which
shows the circuit diagram for an electronic oscillator. Amalized model of the
oscillator is given by the equation

dx d

d—tl:xgthl(l—x%—x%), d—)iz
The phase portrait and time domain solutions are given in Eigus. The figure
shows that the solutions in the phase plane converge to@aniittajectory. In the
time domain this corresponds to an oscillatory solutiontidenatically the circle
is called dimit cycle More formally, we call an isolated solutiot) a limit cycle
of periodT > 0 if x(t+T) = x(t) forallt € R.

There are methods for determining limit cycles for secorstepsystems, but
for general higher-order systems we have to resort to caatipagl analysis. Com-
puter algorithms find limit cycles by searching for periodigjeéctories in state

=X +X%(1—x —x3). (4.6)
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Figure 4.6: lllustration of Lyapunov’s concept of a stable solution. The solutionesgmted
by the solid line is stable if we can guarantee that all solutions remain within acfube
diametere by choosing initial conditions sufficiently close the solution.

space that satisfy the dynamics of the system. In many sinststable limit cy-
cles can be found by simulating the system with differerttahconditions.

4.3 Stability

The stability of a solution determines whether or not sohgioearby the solution
remain close, get closer or move further away. We now giveradbdefinition of
stability and describe tests for determining whether atswius stable.

Definitions

Let x(t;a) be a solution to the differential equation with initial camah a. A
solution isstableif other solutions that start nearstay close tx(t; a). Formally,
we say that the solutiok(t;a) is stable if for alle > 0, there exists & > 0 such

that
Ib—al|l<d = ||x(t;b)—x(t;a)]| <& forallt>O0.

Note that this definition does not imply th&(t; b) approacheg(t;a) as time in-
creases but just that it stays nearby. Furthermore, the w@ildemay depend on
€, so that if we wish to stay very close to the solution, we mayetta start very,
very close § < ¢). This type of stability, which is illustrated in Figure 4.8,also
calledstability in the sense of Lyapund¥a solution is stable in this sense and the
trajectories do not converge, we say that the solutioreigrally stable

An important special case is when the solutidtta) = Xe is an equilibrium
solution. Instead of saying that the solution is stable, weply say that the equi-
librium point is stable. An example of a neutrally stableigqtium point is shown
in Figure 4.7. From the phase portrait, we see that if we stat the equilibrium
point, then we stay near the equilibrium point. Indeed, iig €xample, given any
¢ that defines the range of possible initial conditions, we @daply choosed = ¢
to satisfy the definition of stability since the trajectoréae perfect circles.

A solutionx(t; a) isasymptotically stablé it is stable in the sense of Lyapunov
and alsox(t;b) — x(t;a) ast — o for b sufficiently close taa. This corresponds
to the case where all nearby trajectories converge to thdessalution for large
time. Figure 4.8 shows an example of an asymptotically stadplelibrium point.
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium pointe at the origin is stable since all trajectories that
start neax stay neake.

Note from the phase portraits that not only do all trajeet®stay near the equi-
librium point at the origin, but that they also all approabh brigin ad gets large
(the directions of the arrows on the phase portrait show iteetibn in which the
trajectories move).

A solutionx(t; a) is unstablef it is not stable. More specifically, we say that a
solutionx(t;a) is unstable if given some > 0, there doesot exist ad > 0 such
that if ||b—a|| < 9, then||x(t;b) — x(t; a)|| < € for all t. An example of an unstable
equilibrium point is shown in Figure 4.9.

The definitions above are given without careful descriptiothefr domain of
applicability. More formally, we define a solution to kecally stable(or locally
asymptotically stableif it is stable for all initial conditionsc € B, (a), where

Br(a) = {x:[|lx—a] <r}

is a ball of radiug arounda andr > 0. A system isglobally stableif it is sta-
ble for all r > 0. Systems whose equilibrium points are only locally stalale c
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Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium poixy¢ at the origin is asymptotically stable
since the trajectories converge to this point as .
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point at the origin is unstable since not all trajectories
that start neare stay neawe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

have interesting behavior away from equilibrium pointswasexplore in the next
section.

For planar dynamical systems, equilibrium points have essigned names
based on their stability type. An asymptotically stableilogpium point is called
a sink or sometimes a®ttractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, @ saddle if
some trajectories lead to the equilibrium point and othesseraway (this is the
situation pictured in Figure 4.9). Finally, an equilibriumimpicthat is stable but not
asymptotically stable (i.e., neutrally stable, such asthein Figure 4.7) is called
acenter

Example 4.5 Congestion control
The model for congestion control in a network consistinglafientical computers
connected to a single router, introduced in Section 3.4 yvisrgby

dW—C—pc<1+W2>, @:NW—C—

2

wherew is the window size anflis the buffer size of the router. Phase portraits are
shown in Figure 4.10 for two different sets of parameter v@lireeach case we see
that the system converges to an equilibrium point in whi@htffer is below its
full capacity of 500 packets. The equilibrium size of the bufepresents a balance
between the transmission rates for the sources and theiapithe link. We see
from the phase portraits that the equilibrium points arergagtically stable since
all initial conditions result in trajectories that converp these points. O

dt b 2

Stability of Linear Systems

A linear dynamical system has the form

=A% X(0) =X, (4.7)
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Figure 4.10: Phase portraits for a congestion control protocol running iith 60 identical
source computers. The equilibrium values correspond to a fixed wiatitive source, which
results in a steady-state buffer size and corresponding transmist&oA faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

whereA € R™" is a square matrix, corresponding to the dynamics matrix of a
linear control system (2.6). For a linear system, the dtglaf the equilibrium at
the origin can be determined from the eigenvalues of theixnAtr

A(A) ={se C:defsl—A) =0}.

The polynomial dgsl — A) is the characteristic polynomiaénd the eigenvalues
are its roots. We use the notatiapfor the jth eigenvalue oA, so thatA; € A (A).
In generalA can be complex-valued, althoughAfis real-valued, then for any
eigenvalue), its complex conjugatd * will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stabdita linear system
depends only on the matri we find that stability is a property of the system. For
a linear system we can therefore talk about the stabilithefdystem rather than
the stability of a particular solution or equilibrium paint
The easiest class of linear systems to analyze are those wysteen matrices
are in diagonal form. In this case, the dynamics have the form
A 0
dx A2
i . X. (4.8)
0 An
It is easy to see that the state trajectories for this systenmdependent of each
other, so that we can write the solution in termsafdividual systems; = AjXx;.
Each of these scalar solutions is of the form

Xj (t) = €' (0).

We see that the equilibrium point = O is stable ifA; < 0 and asymptotically
stable ifA; <O.
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Another simple case is when the dynamics are in the bloclodialgiorm

o W 0 0
—w 01 0 0
dx SRR I
T 0 0 " : : .
0 0 Om  Wn
0 0 —Wm  Om

In this case, the eigenvalues can be shown tdjbe 0j +-iw;. We once again can
separate the state trajectories into independent sofufiimreach pair of states, and
the solutions are of the form

Xoj_1(t) = 71" (xj_1(0) coswjt + Xz} (0) sinwjt),
Xoj(t) = €71 (—X2j_1(0) sinwjt + X2 (0) coswjt),

wherej =1,2,....m. We see that this system is asymptotically stable if and only
if gj =ReA;j < 0. Itis also possible to combine real and complex eigensgailue
(block) diagonal form, resulting in a mixture of solutioristioe two types.

Very few systems are in one of the diagonal forms above, buesystems can
be transformed into these forms via coordinate transfaomst One such class of
systems is those for which the dynamics matrix has distmatiepeating) eigen-
values. In this case there is a matfixe R"™" such that the matrix AT 1 is
in (block) diagonal form, with the block diagonal elementsresponding to the
eigenvalues of the original matrix (see Exercise 4.14). If we choose new coordi-

natesz = Tx, then
dz

—=Tx=TAx=TAT 'z

dt
and the linear system has a (block) diagonal dynamics mattixthermore, the
eigenvalues of the transformed system are the same as ¢feabsystem since if
vis an eigenvector o, thenw = T vcan be shown to be an eigenvecto@fT .
We can reason about the stability of the original system byngahat x(t) =
T—1z(t), and so if the transformed system is stable (or asymptbtistdble), then
the original system has the same type of stability.

This analysis shows that for linear systems with distincemiglues, the sta-
bility of the system can be completely determined by exangjrthe real part of
the eigenvalues of the dynamics matrix. For more generaésys we make use
of the following theorem, proved in the next chapter:

Theorem 4.1(Stability of a linear system)The system

dx

— = AX

dt
is asymptotically stable if and only if all eigenvalues of IAhave a strictly neg-
ative real part and is unstable if any eigenvalue of A has &tyrpositive real

part.
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Example 4.6 Compartment model

Consider the two-compartment module for drug deliveryodtrced in Section 3.6.
Using concentrations as state variables and denotingadke\stctor by, the sys-
tem dynamics are given by

dx _[—ko—ki ki bo _

dt_[ ko “k X+ 1| y= [0 1] X,
where the inpuu is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measurgalioy We wish to

design a feedback control law that maintains a constantubgipen byy = yy.
We choose an output feedback control law of the form

u= _k(y_yd) + Ud,
whereuq is the rate of injection required to maintain the desiredcemtration
andk is a feedback gain that should be chosen such that the clospdystem is
stable. Substituting the control law into the system, weiabta

%_ —ko—k1 ki —bok bg N
dt_[ ko —ko X+ 1o (ug +Kyg) =: AX+ B,

y= (O 1] x=:Cx.

The equilibrium concentratior, € R? is given byxe = —A 1Bu and

_ boko
— CABUL= 2 (44 kyq).
Ye Ue k0k2+bok2k(ud+ Yd)

Choosinguq such thatye = y4 provides the constant rate of injection required to

maintain the desired output. We can now shift coordinatgdatoe the equilibrium
point at the origin, which yields (after some algebra)

dz_ (—ko—ki ki—bok .
dt ko —ko ?
wherez = X — Xe. We can now apply the results of Theorem 4.1 to determine the

stability of the system. The eigenvalues of the system aendiy the roots of the
characteristic polynomial

A(S) = S? + (ko + k1 + ko) s+ (kokz + bokak).

While the specific form of the roots is messy, it can be shownhtti&roots have
negative real part as long as the linear term and the cortstantare both positive
(Exercise 4.16). Hence the system is stable forkamO. O

Stability Analysis via Linear Approximation

An important feature of differential equations is that ibisen possible to deter-
mine the local stability of an equilibrium point by approxtng the system by a
linear system. The following example illustrates the bad&ai
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Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dysaamécgiven by

de_ (%
dt  |sinxg—yxo )’

where we have defined the statexas (6, 0). We first consider the equilibrium
point atx = (0, 0), corresponding to the straight-up position. If we assuraéttie
angle@ = x; remains small, then we can replacexsinvith x; and cox; with 1,
which gives the approximate system

dX_ X2 o 0O 1
G- (o) - 2 5)x (4.9)

Intuitively, this system should behave similarly to the ma@omplicated model
as long as«; is small. In particular, it can be verified that the equililoniyoint
(0,0) is unstable by plotting the phase portrait or computing therevalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable equititpoint at
x=(m,0). In this case we have to expandsirand cox; aroundx; = 71, according
to the expansions

sin(rm+0) = —sinB~ -0, cogm+6) = —cog0) ~ —1.

If we definez; = x; — randz; = xp, the resulting approximate dynamics are given

by
dZ_ Vi) B 0 1
g_ [_Zl_yzz] _ [_1 _y] ? (4.10)

Note thatz= (0,0) is the equilibrium point for this system and that it has thmea
basic form as the dynamics shown in Figure 4.8. Figure 4.11 shiwsvyphase por-
traits for the original system and the approximate systeyarat the corresponding
equilibrium points. Note that they are very similar, altgbunot exactly the same.
It can be shown that if a linear approximation has either gagtically stable or
unstable equilibrium points, then the local stability of thriginal system must be
the same (Theorem 4.3). O

More generally, suppose that we have a nonlinear system

dx

dt

that has an equilibrium point at. Computing the Taylor series expansion of the
vector field, we can write

% = F(xe) + ‘E (X—Xe) + higher-order terms iix — Xe).
dt O |y,

F(%)

SinceF (xe) = 0, we can approximate the system by choosing a new statélearia
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Figure 4.11: Comparison between the phase portraits for the full nonlinear systgrasda
its linear approximation around the origin (b). Notice that near the equilibgaimt at the
center of the plots, the phase portraits (and hence the dynamics) ars alerdical.

Z= X—Xe and writing

%E:Az, where A= dj . (4.11)

c?xxe

We call the system (4.11) thi@ear approximatiorof the original nonlinear system
or thelinearizationat Xe.

The fact that a linear model can be used to study the behaviarmafnlin-
ear system near an equilibrium point is a powerful one. Iddee can take this
even further and use a local linear approximation of a nealirsystem to design
a feedback law that keeps the system near its equilibriumtfdesign of dy-
namics). Thus, feedback can be used to make sure that sslugorain close to
the equilibrium point, which in turn ensures that the linepproximation used to
stabilize it is valid.

Linear approximations can also be used to understand théitgtabnonequi-
librium solutions, as illustrated by the following example

Example 4.8 Stable limit cycle
Consider the system given by equation (4.6),
dx
dt dt
whose phase portrait is shown in Figure 4.5. The differentjgbéion has a peri-
odic solution

d X1

=X+ x1(1— X2 —x3), = —x+Xx(1-x —x3),

X1(t) = X1(0) cost + x2(0) sint, (4.12)

with x2(0) +x5(0) = 1.
To explore the stability of this solution, we introduce potaordinates and
¢, which are related to the state variabkgsndx, by

X1 = rcosp, X2 =rsing.
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Differentiation gives the following linear equations foand¢:
X1 = rFcosp —rsing, Xp =fsing +r¢ cosp.
Solving this linear system farand¢ gives, after some calculation,

dr %_

—_ = —2 e
gt A g

Notice that the equations are decoupled; hence we can athlyztability of each
state separately.

The equation for has three equilibriar = 0, r = 1 andr = —1 (not realiz-
able since must be positive). We can analyze the stability of theselibgiai by
linearizing the radial dynamics with(r) = r(1—r?). The corresponding linear
dynamics are given by

dr _ oF
dt — or|,

where we have abused notation and usdd represent the deviation from the
equilibrium point. It follows from the sign of1 — 3r2) that the equilibriunt = 0

is unstable and the equilibrium= 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes to= 1 as time goes to infinity, but if the system
starts withr = 0, it will remain at the equilibrium for all times. This impBehat
all solutions to the original system that do not starkat X, = 0 will approach
the circlex? + x5 = 1 as time increases.

To show the stability of the full solution (4.12), we must @éstigate the be-
havior of neighboring solutions with different initial cditions. We have already
shown that the radiuswill approach that of the solution (4.12) as longé8) > O.
The equation for the angl¢ can be integrated analytically to gie(t) = —t +
#(0), which shows that solutions starting at different angpewill neither con-
verge nor diverge. Thus, the unit circleatracting, but the solution (4.12) is only
stable, not asymptotically stable. The behavior of the systeillustrated by the
simulation in Figure 4.12. Notice that the solutions apphd&e circle rapidly, but
that there is a constant phase shift between the solutions. O

-1

r=(1-3r2)r, re=0,1,

4.4 Lyapunov Stability Analysis

We now return to the study of the full nonlinear system

(;;( =F(x), xeR" (4.13)

Having defined when a solution for a nonlinear dynamical sgystestable, we
can now ask how to prove that a given solution is stable, asytioplly stable
or unstable. For physical systems, one can often argue aalitity based on
dissipation of energy. The generalization of that techniguarbitrary dynamical
systems is based on the use of Lyapunov functions in placeestg.
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Figure 4.12:Solution curves for a stable limit cycle. The phase portrait on the left shiost

the trajectory for the system rapidly converges to the stable limit cycle. fEntng points

for the trajectories are marked by circles in the phase portrait. The timaidgpiots on

the right show that the states do not converge to the solution but insteathinaconstant
phase error.

In this section we will describe techniques for determinting stability of so-
lutions for a nonlinear system (4.13). We will generally beerested in stability
of equilibrium points, and it will be convenient to assumattk = 0 is the equi-
librium point of interest. (If not, rewrite the equationsamew set of coordinates

Z=X—Xe.)

Lyapunov Functions

A Lyapunov function V. R" — R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, itesfind a nonnegative
function that always decreases along trajectories of te&enmy, we can conclude
that the minimum of the function is a stable equilibrium gdlocally).

To describe this more formally, we start with a few definitiode say that a
continuous functiorV is positive definitef V(x) > 0 for all x # 0 andV (0) = 0.
Similarly, a function isnegative definité V (x) < 0 for allx# 0 andVv (0) = 0. We
say that a functiolV is positive semidefinité V (x) > 0 for all x, butV(x) can be
zero at points other than just= 0.

To illustrate the difference between a positive definite fiomcand a positive
semidefinite function, suppose thet R? and let

Vilx) =3, Vo(X) =8 + 3.

BothV; andV, are always nonnegative. However, it is possibleMpto be zero
even ifx # 0. Specifically, if we sex= (0,c), wherec € R is any nonzero number,
thenVi(x) = 0. On the other hand/x(x) = 0 if and only ifx = (0,0). ThusV; is
positive semidefinite and, is positive definite.

We can now characterize the stability of an equilibrium poin= 0 for the
system (4.13).

Theorem 4.2(Lyapunov stability theorem)Let V be a nonnegative function on
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Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov functx) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system vaysbaus¥® (x)

to decrease along the trajectory.

R" and letV represent the time derivative of V along trajectories @& #ystem
dynamicqg4.13)

/ — ‘?7\/% — 07VF(X)

- oxdt  ox '

Let B = B, (0) be a ball of radius r around the origin. If there exists>r0 such
that V is positive definite and is negative semidefinite for allxBy, then x= 0
is locally stable in the sense of Lyapunov. If V is positiviinite andV is negative
definite in B, then x= 0is locally asymptotically stable.

If V satisfies one of the conditions above, we say that a (local)Lyapunov
functionfor the system. These results have a nice geometric intatjmet The
level curves for a positive definite function are the curveinge byV (x) = c,
¢ > 0, and for eacle this gives a closed contour, as shown in Figure 4.13. The
condition thatV (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories mioamnaller and smaller
values ofV and ifV is negative definite thenmust approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system
dx 2 «
dt  1+x
This system has equilibrium points)a& 1 andx = —2. We consider the equilib-
rium point atx = 1 and rewrite the dynamics usizg= x — 1:
dz 2
— =7
dt 2+z
which has an equilibrium point &= 0. Now consider the candidate Lyapunov
function

—1,
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which is globally positive definite. The derivative Uf along trajectories of the

system is given by )
z

21z
If we restrict our analysis to an interv8|, wherer < 2, then 2+z> 0 and we can
multiply through by 2+ zto obtain

22— (Z+2)(242=-2-32=-2(z+3)<0, zeB,r<2

It follows thatV(z) < Oforallze By, z# 0, and hence the equilibrium poxg= 1
is locally asymptotically stable. 0

V(2 =z

A slightly more complicated situation occursMfis negative semidefinite. In
this case it is possible th¥tx) = 0 whenx # 0, and hence could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum
A normalized model for a hanging pendulum is

ng[l = Xo, dd)iz = —sinxy,

wherex; is the angle between the pendulum and the vertical, withtigest;

corresponding to counterclockwise rotation. The equatasan equilibriunx; =

x2 = 0, which corresponds to the pendulum hanging straight ddaexplore the

stability of this equilibrium we choose the total energy dyapunov function:
1,

1 1
V(X) = 1—cosxg + éxg ~ éxf +5%

The Taylor series approximation shows that the function sitpe definite for
smallx. The time derivative o¥/ (x) is

V = X1 SiNXg + XoXo = X SiNXg — Xp Sinxg = 0.
Since this function is negative semidefinite, it follows frolyabunov’s theorem
that the equilibrium is stable but not necessarily asynigaby stable. When per-
turbed, the pendulum actually moves in a trajectory thatesponds to constant
energy. U

Lyapunov functions are not always easy to find, and they arainigue. In
many cases energy functions can be used as a starting peiwgsadone in Ex-
ample 4.10. It turns out that Lyapunov functions can alwag<fdund for any
stable system (under certain conditions), and hence onetimat if a system
is stable, a Lyapunov function exists (and vice versa). Re@sults using sum-
of-squares methods have provided systematic approachdmdong Lyapunov
systems [PPP02]. Sum-of-squares technigues can be applieddadhvariety of
systems, including systems whose dynamics are describgmlpgomial equa-
tions, as well as hybrid systems, which can have differentletsofor different
regions of state space.
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For a linear dynamical system of the form
dx
Z A
dt
it is possible to construct Lyapunov functions in a systeomaanner. To do so, we
consider quadratic functions of the form

V(x) = X" Px,

whereP € R™" is a symmetric matrix® = PT). The condition thaV be positive
definite is equivalent to the condition thRbe apositive definite matrix

x'Px>0, forallx#0,

which we write ad® > 0. It can be shown that P is symmetric, thet® is positive
definite if and only if all of its eigenvalues are real and pgsit

Given a candidate Lyapunov functiéf(x) = x" Px, we can now compute its
derivative along flows of the system:

_ovidx_

~ooxdt
The requirement that be negative definite (for asymptotic stability) becomes a
condition that the matrixQ be positive definite. Thus, to find a Lyapunov func-

tion for a linear system it is sufficient to choos®a> 0 and solve thé.yapunov
equation

X" (ATP+PA)Xx =: —x" Qx.

ATP+PA=—Q. (4.14)

This is a linear equation in the entries Bf and hence it can be solved using
linear algebra. It can be shown that the equation always rsadugion if all of
the eigenvalues of the matri are in the left half-plane. Moreover, the solution
P is positive definite ifQ is positive definite. It is thus always possible to find
a quadratic Lyapunov function for a stable linear system.Whkedefer a proof
of this until Chapter 5, where more tools for analysis of ingystems will be
developed.

Knowing that we have a direct method to find Lyapunov functitordinear
systems, we can now investigate the stability of nonlingatesns. Consider the
system

dx

dt
whereF (0) = 0 andF (x) contains terms that are second order and higher in the
elements ok. The functionAx is an approximation oF (x) near the origin, and
we can determine the Lyapunov function for the linear apipnaxion and investi-
gate if it is also a Lyapunov function for the full nonlineassgem. The following
example illustrates the approach.

F(x) =: Ax+F(x), (4.15)

Example 4.11 Genetic switch
Consider the dynamics of a set of repressors connectedhtgeet a cycle, as
shown in Figure 4.14a. The normalized dynamics for this systeme given in
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Figure 4.14: Stability of a genetic switch. The circuit diagram in (a) represents two ptein
that are each repressing the production of the other. The inp@sdu, interfere with this
repression, allowing the circuit dynamics to be modified. The equilibriumtgdor this
circuit can be determined by the intersection of the two curves shown.in (b)

Exercise 2.9:
dzz  u dzz  u

=7 =z
dr 14z dr 1+ Z

wherez; and z, are scaled versions of the protein concentrationand u are
parameters that describe the interconnection betweenethesgand we have set
the external inputs; andus, to zero.

The equilibrium points for the system are found by equatirggtitne deriva-
tives to zero. We define

(4.16)

u , df —pnu?
f(uy=-—— flluy=—=——=
(W 14u’ W du (1+um?’
and the equilibrium points are defined as the solutions of go@tons
7z = f(z), 2= f(z).

If we plot the curvegz, f(z)) and(f(z),2) on a graph, then these equations
will have a solution when the curves intersect, as shown inreig.14b. Because
of the shape of the curves, it can be shown that there willydvwe three solutions:
one atzye = e, ONe Withzie < 2 and one withezge > zpe. If U > 1, then we can
show that the solutions are given approximately by

1 1
ZeN M ZeN o nopi Ae=Ze  ZeNnp e (4.17)

To check the stability of the system, we writéu) in terms of its Taylor series
expansion aboule:

f(u) = f(Ue) + f'(Ue) - (U—Ug) + % ”(Ue) - (U— Ug)? + higher-order terms

where f’ represents the first derivative of the function, drfdthe second. Using
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these approximations, the dynamics can then be written as

dw (=1 f/(ze) =
a— [f/(zle) _i ]W+F(W)>

wherew = z— z is the shifted state arfé(w) represents quadratic and higher-order
terms.

We now use equation (4.14) to search for a Lyapunov func@hiwosingQ = |
and lettingP € R2*? have elementg;j, we search for a solution of the equation

-1 fi) (Pu P2 (Pu pr2) (-1 f) _ (-1 O

f; —1) | p2 P22 P12 P22 fi —1 0o -1}
wheref] = f'(z¢) andf) = '(ze). Note that we have sgb1 = p12 to forceP to
be symmetric. Multiplying out the matrices, we obtain

—2pu+2fipiz puf;—2pa+p2fi) _ (-1 O
P11f;—2p1a+ p2of]  —2p22+2f5p12 0o -1)°

which is a set ofinear equations for the unknowns;. We can solve these linear
equations to obtain

f12— 5 +2 . H+f P ff42
afhen 0 P amney PP A
To check tha¥ (w) = w' Pwis a Lyapunov function, we must verify the{(w) is
positive definite function or equivalently thBt> 0. SinceP is a 2x 2 symmetric
matrix, it has two real eigenvaludg andA, that satisfy
A1+ Az =traceP), A1-A2 =detP).

In order forP to be positive definite we must have tiiatandA, are positive, and
we thus require that
f12—2ff+ 5%+ 4 f12 28 f]+ 57 +4

4—Af1f) 16— 16f; f;
We see that tra¢®) = 4de{(P) and the numerator of the expressions is jigt-
f2)24+4 > 0, so it suffices to check the sign of-1f; 5. In particular, forP to be
positive definite, we require that
f/(Z]_e) f/(ZZe) <1

We can now make use of the expressionsffodefined earlier and evaluate at
the approximate locations of the equilibrium points detdireequation (4.17). For
the equilibrium points whereye # 2y, We can show that

P11 =—

tracdP) = > 0.

>0, detP)=

1 —unu™?l —un —(n-1) o
f'(z1e) ' (22e) = f/(“)f/(unfl) = (1N+Zn)2 ’ 11:—n(n—1) A

Usingn = 2 andu ~ 200 from Exercise 2.9, we see thid{z;e) f'(z¢) < 1 and
henceP is a positive definite. This implies th¥tis a positive definite function and
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Figure 4.15: Dynamics of a genetic switch. The phase portrait on the left shows that the
switch has three equilibrium points, corresponding to protein A having aecdration
greater than, equal to or less than protein B. The equilibrium point withl guogein con-
centrations is unstable, but the other equilibrium points are stable. The sonuta the

right shows the time response of the system starting from two differentlioaraditions.

The initial portion of the curve corresponds to initial concentratizi@$ = (1,5) and con-
verges to the equilibrium whem, < zp¢. At timet = 10, the concentrations are perturbed
by +2inz and—2 in zp, moving the state into the region of the state space whose solutions
converge to the equilibrium point whezg, < zse.

hence a potential Lyapunov function for the system. _
To determine if the system (4.16) is stable, we now compuge the equilib-
rium point. By construction,

V = w'(PA+ATP) W+ F T(w)Pw+ w'PF (w)
= —w'w+ FT(w)Pw+w'PF (w).

Since all terms irF are quadratic or higher order im, it follows thatF T(w)Pw
andw"PF (w) consist of terms that are at least third ordeminTherefore ifw is
sufficiently close to zero, then the cubic and higher-ordenmgewill be smaller
than the quadratic terms. Hence, sufficiently close'te 0,V is negative definite,
allowing us to conclude that these equilibrium points aréhlstable.

Figure 4.15 shows the phase portrait and time traces for ammysith u = 4,
illustrating the bistable nature of the system. When thigaintondition starts with
a concentration of protein B greater than that of A, the smfutonverges to the
equilibrium point at (approximately)l/u"1, u). If A is greater than B, then it
goes to(u, 1/u"1). The equilibrium point withz;e = zp¢ is unstable. 0

More generally, we can investigate what the linear apprakion tells about
the stability of a solution to a nonlinear equation. The fwilog theorem gives a
partial answer for the case of stability of an equilibriunino

Theorem 4.3. Consider the dynamical syste@.15)with F(0) = 0 andF such
thatlim ||F (x)||/||x|| — 0 as||x|| — O. If the real parts of all eigenvalues of A are
strictly less than zero, then.x= 0 is a locally asymptotically stable equilibrium
point of equatiorn(4.15)
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This theorem implies that asymptotic stability of the linapproximation im-
plies local asymptotic stability of the original nonlinear system. Thedrem is
very important for control because it implies that stalilian of a linear approxi-
mation of a nonlinear system results in a stable equilibrianthe nonlinear sys-
tem. The proof of this theorem follows the technique used innipla 4.11. A
formal proof can be found in [Kha01].

Krasovski—Lasalle Invariance Principle

For general nonlinear systems, especially those in symfmiin, it can be difficult
to find a positive definite functiod whose derivative is strictly negative definite.
The Krasovski—Lasalle theorem enables us to conclude thepstimstability of
an equilibrium point under less restrictive conditionanedy, in the case wheié
is negative semidefinite, which is often easier to constHimivever, it applies only
to time-invariant or periodic systems. This section makesafissome additional
concepts from dynamical systems; see Hahn [Hah67] or Klikdi#01] for a more
detailed description.
We will deal with the time-invariant case and begin by introishg a few more
definitions. We denote the solution trajectories of the timariant system
dx
dt
asx(t;a), which is the solution of equation (4.18) at titngtarting froma atty = 0.
The w limit setof a trajectoryx(t; a) is the set of all pointz € R" such that there
exists a strictly increasing sequence of timesuch thatx(t,;a) — zasn — oo.
A setM C R" is said to be amnvariant setif for all b € M, we havex(t;b) € M
for allt > 0. It can be proved that th® limit set of every trajectory is closed and
invariant. We may now state the Krasovski—Lasalle principle

F(X) (4.18)

Theorem 4.4(Krasovski—Lasalle principle)Let V: R" — R be a locally positive
definite function such that on the compactQet= {x € R": V(x) <r} we have

V(x) < 0. Define

S={xeQ:V(x)=0}.

As t— oo, the trajectory tends to the largest invariant set insidé.&; its w limit
set is contained inside the largest invariant set in S. Irtipatar, if S contains no
invariant sets other than x 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].

Lyapunov functions can often be used to design stabilizimgrollers, as is
illustrated by the following example, which also illusgathow the Krasovski—
Lasalle principle can be applied.

Example 4.12 Inverted pendulum
Following the analysis in Example 2.7, an inverted pendulamize described by
the following normalized model:

dxq dx .
— e 4.19
It X2, It SinX; + UCOSXy, ( )
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(a) Physical system (b) Phase portrait (c) Manifold view

Figure 4.16: Stabilized inverted pendulum. A control law applies a foucat the bottom
of the pendulum to stabilize the inverted position (a). The phase portragh(@ys that
the equilibrium point corresponding to the vertical position is stabilized. Thded region
indicates the set of initial conditions that converge to the origin. The ellipsesgmonds to a
level set of a Lyapunov functiow(x) for whichV (x) > 0 andV (x) < 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction ofutieragqn
point. The actual dynamics of the system evolve on a manifold (c).

wherex; is the angular deviation from the upright position ang the (scaled)
acceleration of the pivot, as shown in Figure 4.16a. The sy$i@snan equilib-
rium atx; = X = 0, which corresponds to the pendulum standing upright. This
equilibrium is unstable.

To find a stabilizing controller we consider the following dadate for a Lya-
punov function:

1 1 1
V(x) = (cosxg — 1) +a(1—cogxg) + éxg ~ (a— é)x§+ EX%'

The Taylor series expansion shows that the function is pesiefinite near the
origin if a > 0.5. The time derivative o¥ (x) is

V = —Xq Sinxy + 2a%; SiNXg COSXy + XoXo = X2(U4 2asinXy) COSX;.
Choosing the feedback law
U= —2asinx; — X» COSX1

gives _
V = —x5c08X;.

It follows from Lyapunov’s theorem that the equilibrium exhlly stable. However,
since the function is only negative semidefinite, we cannotkale asymptotic
stability using Theorem 4.2. However, note tilat 0 implies thatx, = 0 orx; =
T/2+NTT.
If we restrict our analysis to a small neighborhood of thgiorQ),, r < /2,
then we can define
S={(x1,%) € Q; : xp =0}
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and we can compute the largest invariant set in§ideor a trajectory to remain
in this set we must have, = 0 for all t and hencex(t) = 0 as well. Using the
dynamics of the system (4.19), we see thgt) = 0 andxz(t) = 0 impliesx;(t) =0
as well. Hence the largest invariant set insgis (x1,X2) = 0, and we can use the
Krasovski—Lasalle principle to conclude that the originasdlly asymptotically
stable. A phase portrait of the closed loop system is shoviaigare 4.16b.

In the analysis and the phase portrait, we have treated tie afthe pendulum
6 = x; as a real number. In facf, is an angle withd = 2T equivalent tof = 0.
Hence the dynamics of the system actually evolves maifold(smooth surface)
as shown in Figure 4.16c. Analysis of nonlinear dynamicalesys on manifolds
is more complicated, but uses many of the same basic idessriegl here. [

4.5 Parametric and Nonlocal Behavior

Most of the tools that we have explored are focused on thd luslsavior of a
fixed system near an equilibrium point. In this section weflyrimtroduce some
concepts regarding the global behavior of nonlinear systanad the dependence
of a system'’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear systeramestart by finding
the equilibrium points. We can then proceed to analyze tbal loehavior around
the equilibria. The behavior of a system near an equilibrivoimpis called the
local behavior of the system.

The solutions of the system can be very different far away fanrequilibrium
point. This is seen, for example, in the stabilized penduluixample 4.12. The
inverted equilibrium point is stable, with small osciltatis that eventually con-
verge to the origin. But far away from this equilibrium pothere are trajectories
that converge to other equilibrium points or even cases iithwthe pendulum
swings around the top multiple times, giving very long datibns that are topo-
logically different from those near the origin.

To better understand the dynamics of the system, we can arairé set of all
initial conditions that converge to a given asymptoticaligble equilibrium point.
This set is called theegion of attractionfor the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figuréb4.In general,
computing regions of attraction is difficult. However, evewe cannot determine
the region of attraction, we can often obtain patches ardbedtable equilibria
that are attracting. This gives partial information aboethihavior of the system.

One method for approximating the region of attraction i®tigh the use of
Lyapunov functions. Suppose thdtis a local Lyapunov function for a system
around an equilibrium pointy. Let Q, be a set on whicV (x) has a value less

thanr,
Qr ={xeR":V(x) <r},
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and suppose that(x) < 0 for all x € Q;, with equality only at the equilibrium
pointxp. ThenQ, is inside the region of attraction of the equilibrium poi&ince
this approximation depends on the Lyapunov function andhiovéce of Lyapunov
function is not unique, it can sometimes be a very conserastimate.

Itis sometimes the case that we can find a Lyapunov fundtisoch thav is
positive definite ani¥ is negative (semi-) definite for atle R". In many instances
it can then be shown that the region of attraction for the ldagium point is the
entire state space, and the equilibrium point is said tglbleally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Exapl2. The Lya-
punov function for the system was

1
V(x) = (cosxg — 1) +a(l—coxg) + EX%’
andV was negative semidefinite for alland nonzero wher; # +71/2. Hence
anyx such thatx;| < r7/2 andV (x) > 0 will be inside the invariant set defined by
the level curves o¥ (x). One of these level sets is shown in Figure 4.16b. [

Bifurcations

Another important property of nonlinear systems is howrthehavior changes as
the parameters governing the dynamics change. We can dtisdiy tthe context
of models by exploring how the location of equilibrium paintheir stability, their
regions of attraction and other dynamic phenomena, suchréisdycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

((j;[(:F(x,u), xeR", ueRK (4.20)

wherex is the state angl is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x,u) =0,

and asy is varied, the corresponding solutiorsg ) can also vary. We say that
the system (4.20) hadxfurcationat u = u* if the behavior of the system changes
qualitatively atu*. This can occur either because of a change in stability ty@e or
change in the number of solutions at a given valug of

Example 4.14 Predator—prey
Consider the predator—prey system described in SectiomBerdynamics of the
system are given by

dH < L > aHL dL

k

aHL
— " =rH - = —=b -
c+H’ dt c+H

i dL, (4.21)
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Figure 4.17: Bifurcation analysis of the predator—prey system. (a) Parametric stadiidity
gram showing the regions in parameter space for which the system is gtgtB&urcation
diagram showing the location and stability of the equilibrium point as a functi@ ©he
solid line represents a stable equilibrium point, and the dashed line refgresennstable
equilibrium point. The dashed-dotted lines indicate the upper and lowerdsdanthe limit
cycle at that parameter value (computed via simulation). The nominawalithe parame-
ters in the model ara=3.2,b=0.6,c=50,d = 0.56,k = 125 andr = 1.6.

whereH andL are the numbers of hares (prey) and lynxes (predatorspabd
¢, d, k andr are parameters that model a given predator—prey systeroritoes
in more detail in Section 3.7). The system has an equilibriumtgd He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behavithe system,
we choose to focus on two specific parameters of intesgdtie interaction coef-
ficient between the populations aoda parameter affecting the prey consumption
rate. Figure 4.17a is a numerically compufsdametric stability diagranshow-
ing the regions in the chosen parameter space for which thidle@m point is
stable (leaving the other parameters at their nominal gWge see from this fig-
ure that for certain combinations afindc we get a stable equilibrium point, while
at other values this equilibrium point is unstable.

Figure 4.17b is a numerically computbiurcation diagramfor the system. In
this plot, we choose one parameter to vaydnd then plot the equilibrium value
of one of the statesH) on the vertical axis. The remaining parameters are set to
their nominal values. A solid line indicates that the edpilim point is stable; a
dashed line indicates that the equilibrium point is ungtallote that the stability
in the bifurcation diagram matches that in the parametabibty diagram for
¢ = 50 (the nominal value) and varying from 1.35 to 4. For the predator—prey
system, when the equilibrium point is unstable, the sofutionverges to a stable
limit cycle. The amplitude of this limit cycle is shown by thaghed-dotted line in
Figure 4.17b. O

A particular form of bifurcation that is very common when tmtliing linear
systems is that the equilibrium remains fixed but the stgbiiftthe equilibrium
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Figure 4.18: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle velocitye system

is stable when all eigenvalues have negative real part (shaded y.€genplot in (b) shows
the locus of eigenvalues on the complex plane as the velowtyaried and gives a different
view of the stability of the system. This type of plot is calletbat locus diagram

changes as the parameters are varied. In such a case it &@imgvi® plot the
eigenvalues of the system as a function of the parameters. Bats are called
root locus diagramdecause they give the locus of the eigenvalues when param-
eters change. Bifurcations occur when parameter valuesuate that there are
eigenvalues with zero real part. Computing environment$ $tabVIEW, MAT-

LAB and Mathematica have tools for plotting root loci.

Example 4.15 Root locus diagram for a bicycle model

Consider the linear bicycle model given by equation (3. Féation 3.2. Introduc-
ing the state variables = ¢, xo = d, X3 = ¢ andx4 = & and setting the steering
torqueT = 0, the equations can be written as

ax 0 [
dt  (-MY(Ko+Kavd) —MICvp

wherel is a 2x 2 identity matrix andy is the velocity of the bicycle. Figure 4.18a
shows the real parts of the eigenvalues as a function of Wgldeigure 4.18b
shows the dependence of the eigenvalues arfi the velocityg. The figures show
that the bicycle is unstable for low velocities because twemvalues are in the
right half-plane. As the velocity increases, these eigemsgamove into the left
half-plane, indicating that the bicycle becomes selfiitalg. As the velocity is
increased further, there is an eigenvalue close to themdttigit moves into the right
half-plane, making the bicycle unstable again. Howeves, ¢igenvalue is small
and so it can easily be stabilized by a rider. Figure 4.18a stibat the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. O

]x::Ax,

Parametric stability diagrams and bifurcation diagrams geovide valuable
insights into the dynamics of a nonlinear system. It is Ugusdcessary to carefully
choose the parameters that one plots, including combihi@géatural parameters
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Figure 4.19: Headphones with noise cancellation. Noise is sensed by the exterior micro-
phone (a) and sent to a filter in such a way that it cancels the noise ttettgges the head
phone (b). The filter parameteasandb are adjusted by the controll@represents the input
signal to the headphones.

of the system to eliminate extra parameters when possildempQter programs
such aAUTO, LOCBI F andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations tostg feedback laws
that stabilize an equilibrium point and provide a desireckleof performance.
However, for some classes of problems the feedback comtrollist be nonlinear
to accomplish its function. By making use of Lyapunov fuaog we can often
design a nonlinear control law that provides stable belmaa®we saw in Exam-
ple 4.12.

One way to systematically design a nonlinear controlleo isdgin with a can-
didate Lyapunov functiol (x) and a control system= f(x,u). We say thaV/ (x)
is a control Lyapunov functiornf for every x there exists ai such thatV(x) =
%f(x, u) < 0. In this case, it may be possible to find a functim(x) such that
u = a(x) stabilizes the system. The following example illustratesapproach.

Example 4.16 Noise cancellation

Noise cancellation is used in consumer electronics anddastmial systems to re-
duce the effects of noise and vibrations. The idea is to lpgaliiuce the effect
of noise by generating opposing signals. A pair of headphavith noise can-
cellation such as those shown in Figure 4.19a is a typical plam schematic
diagram of the system is shown in Figure 4.19b. The system lamtarophones,
one outside the headphones that picks up exterior no&®d another inside the
headphones that picks up the sigaalvhich is a combination of the desired signal
and the external noise that penetrates the headphone. Tia B@m the exterior
microphone is filtered and sent to the headphones in such ahatit tancels the
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external noise that penetrates into the headphones. Thagtns of the filter are
adjusted by a feedback mechanism to make the noise sigrta internal micro-
phone as small as possible. The feedback is inherently reamllvecause it acts by
changing the parameters of the filter.

To analyze the system we assume for simplicity that the gafian of external
noise into the headphones is modeled by a first-order dynagyiseem described
by

dz
— = apz+bon, (4.22)
dt
wherezis the sound level and the parametays< 0 andbg are not known. Assume
that the filter is a dynamical system of the same type:

dw _ aw+ bn

dt '
We wish to find a controller that updatesand b so that they converge to the
(unknown) parameteid andbg. Introducex; = e=w-—2z X, =a—ap andxz =
b — bp; then

dx
d—tl = ap(W—2) + (a—ag)W+ (b— bo)n = agxg + XoW+ X3n. (4.23)
We will achieve noise cancellation if we can find a feedbackflanwchanging the

parameterga andb so that the erroe goes to zero. To do this we choose

1
V (X1, %2,X3) = E(orxﬂx%—kxg)
as a candidate Lyapunov function for (4.23). The derivativé &
V = ax1X1 + XoXo + XaXa = A @gX + Xa (X2 + QWX1 ) + X3(X3 + arnxy ).

Choosing
Xo = —OWXy = —AWe, X3 = —0nNx, = —aneg (4.24)

we find thatv = aagx? < 0, and it follows that the quadratic function will decrease
as long a2 = x; = w—2z# 0. The nonlinear feedback (4.24) thus attempts to
change the parameters so that the error between the sighth@noise is small.
Notice that feedback law (4.24) does not use the model (£22)citly.

A simulation of the system is shown in Figure 4.20. In the satiah we have
represented the signal as a pure sinusoid and the noiseaabli@nd noise. The fig-
ure shows the dramatic improvement with noise cancellaliba sinusoidal signal
is not visible without noise cancellation. The filter parametange quickly from
their initial valuesa = b = 0. Filters of higher order with more coefficients are used
in practice. O
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headpligne s
nal without noise cancellation, and the bottom left figure shows the sigttahaise cancel-
lation. The right figures show the parameta@ndb of the filter.

4.6 Further Reading

The field of dynamical systems has a rich literature that cheriaes the possi-
ble features of dynamical systems and describes how paiambanges in the
dynamics can lead to topological changes in behavior. Reéadiatroductions to
dynamical systems are given by Strogatz [Str94] and the hiijlistrated text
by Abraham and Shaw [AS82]. More technical treatments incAudronov, Vitt
and Khaikin [AVK87], Guckenheimer and Holmes [GH83] and \giits [Wig90].
For students with a strong interest in mechanics, the tex#rbold [Arn87] and
Marsden and Ratiu [MR94] provide an elegant approach usialg from differ-
ential geometry. Finally, good treatments of dynamical eyst methods in biol-
ogy are given by Wilson [Wil99] and Ellner and Guckenheimer (5 There
is a large literature on Lyapunov stability theory, incluglithe classic texts by
Malkin [Mal59], Hahn [Hah67] and Krasovski [Kra63]. We highrecommend
the comprehensive treatment by Khalil [Kha01].

Exercises

4.1 (Time-invariant systems) Show that if we have a solution ef differential
equation (4.1) given by(t) with initial conditionx(tg) = Xo, thenxX(1) = X(t —to)
is a solution of the differential equation

dx

& —F®

with initial conditionX{0) = xp, wheret =t —tp.

4.2 (Flow in a tank) A cylindrical tank has cross sectidim?, effective outlet
areaam? and inflowg, m3/s. An energy balance shows that the outlet velocity
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isv=/2ghm/s, whereg m/s* is the acceleration of gravity ards the distance
between the outlet and the water level in the tank (in met8ig)w that the system
can be modeled by

dh a 1
a = —K\/ Zgh+ qu, qcut - a\/ Zgh

Use the parametefs= 0.2,a= 0.01. Simulate the system when the inflow is zero
and the initial level ish = 0.2. Do you expect any difficulties in the simulation?

4.3 (Cruise control) Consider the cruise control system dbsedrin Section 3.1.
Generate a phase portrait for the closed loop system on flandr@ = 0), in third
gear, using a PI controller (witky, = 0.5 andk; = 0.1), m= 1000 kg and desired
speed 20 m/s. Your system model should include the effedstafating the input
between 0 and 1.

4.4 (Lyapunov functions) Consider the second-order system

dxq dx
_— = _— —b —
at axy, at X1 — CXo,
wherea, b, c > 0. Investigate whether the functions
1, 1, 1,1 b 2
Vi(X) = Kt 5%, Vo (X) = >+ E(Xz toa axl)

are Lyapunov functions for the system and give any condittbat must hold.

4.5 (Damped spring—mass system) Consider a damped spring-sysiesn with
dynamics _
md+ cq+kg= 0.
A natural candidate for a Lyapunov function is the total ggaf the system, given
by
1 1
V = Zmi? + Zko?.
o+ ket
Use the Krasovski—Lasalle theorem to show that the systesymjgtotically sta-
ble.

4.6 (Electric generator) The following simple model for an el@ogrenerator con-
nected to a strong power grid was given in Exercise 2.7:

d? EV .
The parameter b EV
max
= - _ 4.25
&= B, T Xm. (4.25)

is the ratio between the maximum deliverable poRgsx = EV /X and the me-
chanical poweRy.

(a) Considera as a bifurcation parameter and discuss how the equilibipe rak
ona.
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(b) Fora > 1, show that there is a center ¢ = arcsir{1l/a) and a saddle at
¢ = 1m— do.

(c) Show that ifP,/J = 1 there is a solution through the saddle that satisfies

;(%‘f)z—cp+¢o—acos¢—\/ﬂzo. (4.26)

Use simulation to show that the stability region is the iiaieof the area enclosed
by this solution. Investigate what happens if the systenm isquilibrium with a
value ofathat is slightly larger than 1 aralsuddenly decreases, corresponding to
the reactance of the line suddenly increasing.

4.7 (Lyapunov equation) Show that Lyapunov equation (4.14) gdnes a solu-
tion if all of the eigenvalues oA are in the left half-plane. (Hint: Use the fact that
the Lyapunov equation is linear rand start with the case whefehas distinct
eigenvalues.)

4.8 (Congestion control) Consider the congestion control lemmbdescribed in
Section 3.4. Confirm that the equilibrium point for the systsngiven by equa-
tion (3.21) and compute the stability of this equilibriumimtousing a linear ap-
proximation.

4.9 (Swinging up a pendulum) Consider the inverted penduluncudised in Ex-
ample 4.4, that is described by

6 = sinf +ucosb,

wheref is the angle between the pendulum and the vertical and theotsignal
uis the acceleration of the pivot. Using the energy function

V(6,6) =cosh — 1+ %92,

show that the state feedbaak= k(Vo —V)6cosh causes the pendulum to “swing
up” to the upright position.

4.10(Root locus diagram) Consider the linear system

dx 0 1 -1

dt_[O _3]x+[4]u, y_(l O]x,
with the feedbacki = —Kky. Plot the location of the eigenvalues as a function the
parametek.

4.11(Discrete-time Lyapunov function) Consider a nonlineacdete-time sys-
tem with dynamicx(k+ 1] = f(x[k]) and equilibrium poinke = 0. Suppose there
exists a smooth, positive definite funct®dn R" — R such thaV/ (f(x)) —V(x) <0
for x £ 0 and V(0) = 0. Show thate = 0 is (locally) asymptotically stable.

4.12 (Operational amplifier oscillator) An op amp circuit for anciietor was
shown in Exercise 3.5. The oscillatory solution for that lineicuit was stable
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but not asymptotically stable. A schematic of a modified dirthat has nonlinear
elements is shown in the figure below.

The modification is obtained by making a feedback around eaetatipnal am-
plifier that has capacitors using multipliers. The sigagk= V2 + V3 — V3 is the
amplitude error. Show that the system is modeled by

dvy . R4 1
dt RIRG 2T Rllclvl(v(z’ Vi-V2),

dV2 o 1 1
@ RG A Ry, 20

Show that, under suitable conditions on parameter valuegitbuit gives an os-
cillation with a stable limit cycle with amplitudey. (Hint: Use the results of Ex-
ample 4.8.)

Vi +

4.13(Self-activating genetic circuit) Consider the dynamica genetic circuit that
implementsself-activationthe protein produced by the gene is an activator for the
protein, thus stimulating its own production through pesifeedback. Using the
models presented in Example 2.13, the dynamics for the systarbe written as

dm__ap?
dt  14+kp?

for p,m> 0. Find the equilibrium points for the system and analyze tuall
stability of each using Lyapunov analysis.

d
+ap—ym, dffzﬁm—ép, (4.27)

4.14 (Diagonal systems) LeA € R"™" be a square matrix with real eigenvalues
A1,...,Aq and corresponding eigenvectess. . ., V.

(@) Show that if the eigenvalues are distin&t £ A;j for i # j), thenv; # v; for
i .

(b) Show that the eigenvectors form a basis i so that any vectok can be
written asx = 3 av; for aj € R.



130 CHAPTER 4. DYNAMIC BEHAVIOR

(c) LetT=|v1 vo ... vn] and show thaT ~*AT is a diagonal matrix of the
form (4.8).
(d) Show that if some of tha; are complex numbers, théncan be written as
N1 0
A= where N=AcR or /\i:[a w]‘
—-w o
0 Nk

in an appropriate set of coordinates.
This form of the dynamics of a linear system is often refercedsmodal form

4.15(Furuta pendulum) The Furuta pendulum, an inverted penduluarotating
arm, is shown to the left in the figure below.

0.5

Pendulum angl®/m
o

0 5 10 15 20
Angular velocityw

Consider the situation when the pendulum arm is spinning egnstant rate. The
system has multiple equilibrium points that depend on thgukam velocity w, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

JpB — Jpeh sin@cosh — myglsing = 0,

whereJ, is the moment of inertia of the pendulum with respect to it®pim, is
the pendulum mass,is the distance between the pivot and the center of mass of
the pendulum andy is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the conwlfip for stability of
each equilibrium point (in terms afy).
(b) Consider the angular velocity as a bifurcation parametel verify the bifur-
cation diagram given above. This is an example pitehfork bifurcation
4.16 (Routh-Hurwitz criterion) Consider a linear differentiafjuation with the
characteristic polynomial

M) =S tasta, A(s)=S+as +as+as.

Show that the system is asymptotically stable if and onlylifred coefficientsy;
are positive and ifyay > ag. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.



