
Chapter Four
Dynamic Behavior

It Don’t Mean a Thing If It Ain’t Got That Swing.

Duke Ellington (1899–1974)

In this chapter we present a broad discussion of the behaviorof dynamical sys-
tems focused on systems modeled by nonlinear differential equations. This allows
us to consider equilibrium points, stability, limit cyclesand other key concepts in
understanding dynamic behavior. We also introduce some methods for analyzing
the global behavior of solutions.

4.1 Solving Differential Equations

In the last two chapters we saw that one of the methods of modeling dynamical
systems is through the use of ordinary differential equations (ODEs). A state space,
input/output system has the form

dx

dt
= f (x, u), y = h(x, u), (4.1)

wherex = (x1, . . . , xn) ∈ R
n is the state,u ∈ R

p is the input andy ∈ R
q is

the output. The smooth mapsf : R
n × R

p → R
n and h : R

n × R
p → R

q

represent the dynamics and measurements for the system. In general, they can be
nonlinear functions of their arguments. We will sometimes focus on single-input,
single-output (SISO) systems, for whichp = q = 1.

We begin by investigating systems in which the input has beenset to a function
of the state,u = α(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equations in this case become

dx

dt
= f (x, α(x)) =: F(x). (4.2)

To understand the dynamic behavior of this system, we need toanalyze the
features of the solutions of equation (4.2). While in some simple situations we can
write down the solutions in analytical form, often we must rely on computational
approaches. We begin by describing the class of solutions for this problem.

We say thatx(t) is a solution of the differential equation (4.2) on the time
intervalt0 ∈ R to t f ∈ R if

dx(t)

dt
= F(x(t)) for all t0 < t < t f .
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A given differential equation may have many solutions. We will most often be
interested in theinitial value problem, wherex(t) is prescribed at a given time
t0 ∈ R and we wish to find a solution valid for allfuturetime t > t0.

We say thatx(t) is a solution of the differential equation (4.2) with initial value
x0 ∈ R

n at t0 ∈ R if

x(t0) = x0 and
dx(t)

dt
= F(x(t)) for all t0 < t < t f .

For most differential equations we will encounter, there isauniquesolution that is
defined fort0 < t < t f . The solution may be defined for all timet > t0, in which
case we taket f = ∞. Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to this simply as the solution
of an ODE.

We will typically assume thatt0 is equal to 0. In the case whenF is independent
of time (as in equation (4.2)), we can do so without loss of generality by choosing
a new independent (time) variable,τ = t − t0 (Exercise 27).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of the form

q̈ + 2ζω0q̇ + ω2
0q = 0,

whereq is the displacement of the oscillator from its rest position. These dynamics
are equivalent to those of a spring–mass system, as shown in Exercise 12. We
assume thatζ < 1, corresponding to a lightly damped system (the reason for this
particular choice will become clear later). We can rewrite this in state space form
by settingx1 = q andx2 = q̇/ω0, giving

dx1

dt
= ω0x2,

dx2

dt
= −ω0x1 − 2ζω0x2.

In vector form, the right-hand side can be written as

F(x) =








ω0x2

−ω0x1 − 2ζω0x2







 .

The solution to the initial value problem can be written in a number of different
ways and will be explored in more detail in Chapter 5. Here we simply assert that
the solution can be written as

x1(t) = e−ζω0t

(

x10 cosωdt +
1

ωd
(ω0ζ x10 + x20) sinωdt

)

,

x2(t) = e−ζω0t

(

x20 cosωdt −
1

ωd
(ω2

0x10 + ω0ζ x20) sinωdt

)

,

wherex0 = (x10, x20) is the initial condition andωd = ω0

√

1 − ζ 2. This solution
can be verified by substituting it into the differential equation. We see that the
solution is explicitly dependent on the initial condition,and it can be shown that
this solution is unique. A plot of the initial condition response is shown in Figure 4.1.
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Figure 4.1: Response of the damped oscillator to the initial conditionx0 = (1, 0). The
solution is unique for the given initial conditions and consists of an oscillatorysolution for
each state, with an exponentially decaying magnitude.

We note that this form of the solution holds only for 0< ζ < 1, corresponding to
an “underdamped” oscillator. ∇

�
Without imposing some mathematical conditions on the function F , the differ-

ential equation (4.2) may not have a solution for allt , and there is no guarantee that
the solution is unique. We illustrate these possibilities with two examples.

Example 4.2 Finite escape time
Let x ∈ R and consider the differential equation

dx

dt
= x2 (4.3)

with the initial conditionx(0) = 1. By differentiation we can verify that the function

x(t) =
1

1 − t
(4.4)

satisfies the differential equation and that it also satisfies the initial condition. A
graph of the solution is given in Figure 4.2a; notice that the solution goes to infinity
as t goes to 1. We say that this system hasfinite escape time. Thus the solution
exists only in the time interval 0≤ t < 1. ∇

Example 4.3 Nonunique solution
Let x ∈ R and consider the differential equation

dx

dt
= 2

√
x

with initial conditionx(0) = 0. We can show that the function

x(t) =
{

0 if 0 ≤ t ≤ a

(t − a)2 if t > a

satisfies the differential equation for all values of the parametera ≥ 0. To see this,
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Figure 4.2:Existence and uniqueness of solutions. Equation (4.3) has a solution onlyfor time
t < 1, at which point the solution goes to∞, as shown in (a). Equation (4.4) is an example
of a system with many solutions, as shown in (b). For each value ofa, we get a different
solution starting from the same initial condition.

we differentiatex(t) to obtain

dx

dt
=

{

0 if 0 ≤ t ≤ a

2(t − a) if t > a,

and hencėx = 2
√

x for all t ≥ 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 4.2b. Notice that in this case there are many solutions
to the differential equation. ∇

These simple examples show that there may be difficulties even with simple
differential equations. Existence and uniqueness can be guaranteed by requiring
that the functionF have the property that for some fixedc ∈ R,

‖F(x) − F(y)‖ < c‖x − y‖ for all x, y,

which is calledLipschitz continuity. A sufficient condition for a function to be
Lipschitz is that the Jacobian∂F/∂x is uniformly bounded for allx. The difficulty
in Example 4.2 is that the derivative∂F/∂x becomes large for largex, and the
difficulty in Example 4.3 is that the derivative∂F/∂x is infinite at the origin.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is important in understanding some of
the key concepts of stability in nonlinear dynamics. We willfocus on an important
class of systems known as planar dynamical systems. These systems have two state
variablesx ∈ R

2, allowing their solutions to be plotted in the(x1, x2) plane. The
basic concepts that we describe hold more generally and can be used to understand
dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems with state
x ∈ R

2 is to plot the phase portrait of the system, briefly introducedin Chapter 2.
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Figure 4.3: Phase portraits. (a) This plot shows the vector field for a planar dynamical
system. Each arrow shows the velocity at that point in the state space. (b)This plot includes
the solutions (sometimes called streamlines) from different initial conditions, with the vector
field superimposed.

We start by introducing the concept of avector field. For a system of ordinary
differential equations

dx

dt
= F(x),

the right-hand side of the differential equation defines at every x ∈ R
n a velocity

F(x) ∈ R
n. This velocity tells us howx changes and can be represented as a vector

F(x) ∈ R
n.

For planar dynamical systems, each state corresponds to a point in the plane and
F(x) is a vector representing the velocity of that state. We can plot these vectors
on a grid of points in the plane and obtain a visual image of thedynamics of the
system, as shown in Figure 4.3a. The points where the velocities are zero are of
particular interest since they define stationary points of the flow: if we start at such
a state, we stay at that state.

A phase portraitis constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a set of initial conditions, we
plot the solution of the differential equation in the planeR

2. This corresponds to
following the arrows at each point in the phase plane and drawing the resulting tra-
jectory. By plotting the solutions for several different initial conditions, we obtain
a phase portrait, as show in Figure 4.3b. Phase portraits are also sometimes called
phase plane diagrams.

Phase portraits give insight into the dynamics of the system by showing the
solutions plotted in the (two-dimensional) state space of the system. For example,
we can see whether all trajectories tend to a single point as time increases or whether
there are more complicated behaviors. In the example in Figure 4.3, corresponding
to a damped oscillator, the solutions approach the origin for all initial conditions.
This is consistent with our simulation in Figure 4.1, but it allows us to infer the
behavior for all initial conditions rather than a single initial condition. However,
the phase portrait does not readily tell us the rate of changeof the states (although
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a model
for a class of balance systems in which we wish to keep a system upright, such as a rocket (a).
Using a simplified model of an inverted pendulum (b), we can develop a phase portrait that
shows the dynamics of the system (c). The system has multiple equilibrium points, marked
by the solid dots along thex2 = 0 line.

this can be inferred from the lengths of the arrows in the vector field plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a statexe is an equilibrium point for a dynamical system

dx

dt
= F(x)

if F(xe) = 0. If a dynamical system has an initial conditionx(0) = xe, then it will
stay at the equilibrium point:x(t) = xe for all t ≥ 0, where we have takent0 = 0.

Equilibrium points are one of the most important features of adynamical sys-
tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figure 4.4, which is a part of the balance system
we considered in Chapter 2. The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at the base of the rocket, we
seek to keep the rocket stabilized in the upright position. The state variables are
the angleθ = x1 and the angular velocitydθ/dt = x2, the control variable is the
accelerationu of the pivot and the output is the angleθ .

For simplicity we assume thatmgl/Jt = 1 andml/Jt = 1, so that the dynamics
(equation (2.10)) become

dx

dt
=









x2

sinx1 − cx2 + u cosx1







 . (4.5)

This is a nonlinear time-invariant system of second order. This same set of equa-
tions can also be obtained by appropriate normalization of the system dynamics as
illustrated in Example 2.7.
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different initial conditions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) shows a single solution
plotted as a function of time, with the limit cycle corresponding to a steady oscillation of
fixed amplitude.

We consider the open loop dynamics by settingu = 0. The equilibrium points
for the system are given by

xe =








±nπ

0







 ,

wheren = 0, 1, 2, . . . . The equilibrium points forn even correspond to the pendu-
lum pointing up and those forn odd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inputs)is shown in Figure 4.4c.
The phase portrait shows−2π ≤ x1 ≤ 2π , so five of the equilibrium points are
shown. ∇

Nonlinear systems can exhibit rich behavior. Apart from equilibria they can also
exhibit stationary periodic solutions. This is of great practical value in generating
sinusoidally varying voltages in power systems or in generating periodic signals
for animal locomotion. A simple example is given in Exercise 38, which shows the
circuit diagram for an electronic oscillator. A normalizedmodel of the oscillator is
given by the equation

dx1

dt
= x2 + x1(1 − x2

1 − x2
2),

dx2

dt
= −x1 + x2(1 − x2

1 − x2
2). (4.6)

The phase portrait and time domain solutions are given in Figure 4.5. The figure
shows that the solutions in the phase plane converge to a circular trajectory. In the
time domain this corresponds to an oscillatory solution. Mathematically the circle
is called alimit cycle. More formally, we call an isolated solutionx(t) a limit cycle
of periodT > 0 if x(t + T) = x(t) for all t ∈ R.

There are methods for determining limit cycles for second-order systems, but for
general higher-order systems we have to resort to computational analysis. Computer
algorithms find limit cycles by searching for periodic trajectories in state space that
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Figure 4.6: Illustration of Lyapunov’s concept of a stable solution. The solution represented
by the solid line is stable if we can guarantee that all solutions remain within a tubeof diameter
ǫ by choosing initial conditions sufficiently close the solution.

satisfy the dynamics of the system. In many situations, stable limit cycles can be
found by simulating the system with different initial conditions.

4.3 Stability

The stability of a solution determines whether or not solutions nearby the solution
remain close, get closer or move further away. We now give a formal definition of
stability and describe tests for determining whether a solution is stable.

Definitions

Let x(t ; a) be a solution to the differential equation with initial condition a. A
solution isstableif other solutions that start neara stay close tox(t ; a). Formally,
we say that the solutionx(t ; a) is stable if for allǫ > 0, there exists aδ > 0 such
that

‖b − a‖ < δ =⇒ ‖x(t ; b) − x(t ; a)‖ < ǫ for all t > 0.

Note that this definition does not imply thatx(t ; b) approachesx(t ; a) as time
increases but just that it stays nearby. Furthermore, the value ofδ may depend on
ǫ, so that if we wish to stay very close to the solution, we may have to start very,
very close (δ ≪ ǫ). This type of stability, which is illustrated in Figure 4.6, is also
calledstability in the sense of Lyapunov. If a solution is stable in this sense and the
trajectories do not converge, we say that the solution isneutrally stable.

An important special case is when the solutionx(t ; a) = xe is an equilibrium
solution. Instead of saying that the solution is stable, we simply say that the equi-
librium point is stable. An example of a neutrally stable equilibrium point is shown
in Figure 4.7. From the phase portrait, we see that if we start near the equilibrium
point, then we stay near the equilibrium point. Indeed, for this example, given any
ǫ that defines the range of possible initial conditions, we can simply chooseδ = ǫ

to satisfy the definition of stability since the trajectoriesare perfect circles.
A solutionx(t ; a) isasymptotically stableif it is stable in the sense of Lyapunov

and alsox(t ; b) → x(t ; a) ast → ∞ for b sufficiently close toa. This corresponds
to the case where all nearby trajectories converge to the stable solution for large time.
Figure 4.8 shows an example of an asymptotically stable equilibrium point. Note
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium pointxe at the origin is stable since all trajectories that
start nearxe stay nearxe.

from the phase portraits that not only do all trajectories stay near the equilibrium
point at the origin, but that they also all approach the origin ast gets large (the
directions of the arrows on the phase portrait show the direction in which the
trajectories move).

A solution x(t ; a) is unstableif it is not stable. More specifically, we say that
a solutionx(t ; a) is unstable if given someǫ > 0, there doesnot exist aδ > 0
such that if‖b − a‖ < δ, then‖x(t ; b) − x(t ; a)‖ < ǫ for all t . An example of an
unstable equilibrium point is shown in Figure 4.9.

The definitions above are given without careful description oftheir domain of
applicability. More formally, we define a solution to belocally stable(or locally
asymptotically stable) if it is stable for all initial conditionsx ∈ Br (a), where

Br (a) = {x : ‖x − a‖ < r }

is a ball of radiusr arounda andr > 0. A system isglobally stableif it is stable
for all r > 0. Systems whose equilibrium points are only locally stable can have
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Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium pointxe at the origin is asymptotically stable
since the trajectories converge to this point ast → ∞.
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium pointxe at the origin is unstable since not all trajectories
that start nearxe stay nearxe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

interesting behavior away from equilibrium points, as we explore in the next section.
For planar dynamical systems, equilibrium points have beenassigned names

based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes anattractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if
some trajectories lead to the equilibrium point and others move away (this is the
situation pictured in Figure 4.9). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as theone in Figure 4.7) is called
acenter.

Example 4.5 Congestion control
The model for congestion control in a network consisting ofN identical computers
connected to a single router, introduced in Section 3.4, is given by

dw

dt
=

c

b
− ρc

(

1 +
w2

2

)

,
db

dt
= N

wc

b
− c,

wherew is the window size andb is the buffer size of the router. Phase portraits are
shown in Figure 4.10 for two different sets of parameter values. In each case we see
that the system converges to an equilibrium point in which the buffer is below its
full capacity of 500 packets. The equilibrium size of the buffer represents a balance
between the transmission rates for the sources and the capacity of the link. We see
from the phase portraits that the equilibrium points are asymptotically stable since
all initial conditions result in trajectories that converge to these points. ∇

Stability of Linear Systems

A linear dynamical system has the form

dx

dt
= Ax, x(0) = x0, (4.7)
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Figure 4.10:Phase portraits for a congestion control protocol running withN = 60 identical
source computers. The equilibrium values correspond to a fixed windowat the source, which
results in a steady-state buffer size and corresponding transmission rate. A faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

where A ∈ R
n×n is a square matrix, corresponding to the dynamics matrix of a

linear control system (2.6). For a linear system, the stability of the equilibrium at
the origin can be determined from the eigenvalues of the matrix A:

λ(A) = {s ∈ C : det(s I − A) = 0}.

The polynomial det(s I − A) is thecharacteristic polynomialand the eigenvalues
are its roots. We use the notationλ j for the j th eigenvalue ofA, so thatλ j ∈ λ(A).
In generalλ can be complex-valued, although ifA is real-valued, then for any
eigenvalueλ, its complex conjugateλ∗ will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stability of a linear system
depends only on the matrixA, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whosesystem matrices
are in diagonal form. In this case, the dynamics have the form

dx

dt
=



























λ1 0
λ2

. . .

0 λn



























x. (4.8)

It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms ofn individual systemṡx j = λ j x j .
Each of these scalar solutions is of the form

x j (t) = eλ j t x(0).

We see that the equilibrium pointxe = 0 is stable ifλ j ≤ 0 and asymptotically
stable ifλ j < 0.
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Another simple case is when the dynamics are in the block diagonal form

dx

dt
=



































σ1 ω1 0 0
−ω1 σ1 0 0

0 0
. . .

...
...

0 0 σm ωm

0 0 −ωm σm



































x.

In this case, the eigenvalues can be shown to beλ j = σ j ± i ω j . We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2 j −1(t) = eσ j t
(

x2 j −1(0) cosω j t + x2 j (0) sinω j t
)

,

x2 j (t) = eσ j t
(

−x2 j −1(0) sinω j t + x2 j (0) cosω j t
)

,

where j = 1, 2, . . . , m. We see that this system is asymptotically stable if and only
if σ j = Reλ j < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems
can be transformed into these forms via coordinate transformations. One such class
of systems is those for which the dynamics matrix has distinct (nonrepeating)
eigenvalues. In this case there is a matrixT ∈ R

n×n such that the matrixT AT−1

is in (block) diagonal form, with the block diagonal elements corresponding to the
eigenvalues of the original matrixA (see Exercise 40). If we choose new coordinates
z = T x, then

dz

dt
= Tẋ = T Ax = T AT−1z

and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as the original system since
if v is an eigenvector ofA, thenw = Tv can be shown to be an eigenvector of
T AT−1. We can reason about the stability of the original system by noting that
x(t) = T−1z(t), and so if the transformed system is stable (or asymptotically
stable), then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stability
of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:

Theorem 4.1(Stability of a linear system). The system

dx

dt
= Ax

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative
real part and is unstable if any eigenvalue of A has a strictlypositive real part.

Example 4.6 Compartment model
Consider the two-compartment module for drug delivery introduced in Section 3.6.
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Using concentrations as state variables and denoting the state vector byx, the system
dynamics are given by

dx

dt
=









−k0 − k1 k1

k2 −k2







 x +








b0

0







 u, y =


0 1


 x,

where the inputu is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measured output y. We wish to
design a feedback control law that maintains a constant output given byy = yd.

We choose an output feedback control law of the form

u = −k(y − yd) + ud,

whereud is the rate of injection required to maintain the desired concentration and
k is a feedback gain that should be chosen such that the closed loop system is stable.
Substituting the control law into the system, we obtain

dx

dt
=









−k0 − k1 k1 − b0k
k2 −k2







 x +








b0

0







 ud =: Ax + Bud,

y =


0 1


 x =: Cx.

The equilibrium concentrationxe ∈ R
2 is given byxe = −A−1Bud and

ye = −C A−1Bud =
b0k2

k0k2 + b0k2k
ud.

Choosingud such thatye = yd provides the constant rate of injection required to
maintain the desired output. We can now shift coordinates toplace the equilibrium
point at the origin, which yields

dz

dt
=









−k0 − k1 k1 − b0k
k2 −k2







 z,

wherez = x − xe. We can now apply the results of Theorem 4.1 to determine the
stability of the system. The eigenvalues of the system are given by the roots of the
characteristic polynomial

λ(s) = s2 + (k0 + k1 + k2)s + (k0k2 + b0k2k).

While the specific form of the roots is messy, it can be shown that the roots are pos-
itive as long as the linear term and the constant term are bothpositive (Exercise 42).
Hence the system is stable for anyk > 0. ∇

Stability Analysis via Linear Approximation

An important feature of differential equations is that it isoften possible to determine
the local stability of an equilibrium point by approximating the system by a linear
system. The following example illustrates the basic idea.
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Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dx

dt
=









x2

sinx1 − γ x2







 ,

where we have defined the state asx = (θ, θ̇). We first consider the equilibrium
point atx = (0, 0), corresponding to the straight-up position. If we assume that the
angleθ = x1 remains small, then we can replace sinx1 with x1 and cosx1 with 1,
which gives the approximate system

dx

dt
=









x2

x1 − γ x2







 =








0 1
1 −γ







 x. (4.9)

Intuitively, this system should behave similarly to the more complicated model
as long asx1 is small. In particular, it can be verified that the equilibrium point
(0, 0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable equilibrium point at
x = (π, 0). In this case we have to expand sinx1 and cosx1 aroundx1 = π ,
according to the expansions

sin(π + θ) = − sinθ ≈ −θ, cos(π + θ) = − cos(θ) ≈ −1.

If we definez1 = x1 − π andz2 = x2, the resulting approximate dynamics are
given by

dz

dt
=









z2

−z1 − γ z2







 =








0 1
−1 −γ







 z. (4.10)

Note thatz = (0, 0) is the equilibrium point for this system and that it has the same
basic form as the dynamics shown in Figure 4.8. Figure 4.11 shows the phase por-
traits for the original system and the approximate system around the corresponding
equilibrium points. Note that they are very similar, although not exactly the same.
It can be shown that if a linear approximation has either asymptotically stable or
unstable equilibrium points, then the local stability of the original system must be
the same (Theorem 4.3). ∇

More generally, suppose that we have a nonlinear system

dx

dt
= F(x)

that has an equilibrium point atxe. Computing the Taylor series expansion of the
vector field, we can write

dx

dt
= F(xe) +

∂F

∂x

∣

∣

∣

∣

xe

(x − xe) + higher-order terms in(x − xe).

SinceF(xe) = 0, we can approximate the system by choosing a new state variable
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Figure 4.11:Comparison between the phase portraits for the full nonlinear systems (a) and
its linear approximation around the origin (b). Notice that near the equilibriumpoint at the
center of the plots, the phase portraits (and hence the dynamics) are almost identical.

z = x − xe and writing

dz

dt
= Az, where A =

∂F

∂x

∣

∣

∣

∣

xe

. (4.11)

We call the system (4.11) thelinear approximationof the original nonlinear system
or thelinearizationat xe.

The fact that a linear model can be used to study the behavior ofa nonlinear
system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equi-
librium point, which in turn ensures that the linear approximation used to stabilize
it is valid.

Linear approximations can also be used to understand the stability of nonequi-
librium solutions, as illustrated by the following example.

Example 4.8 Stable limit cycle
Consider the system given by equation (4.6),

dx1

dt
= x2 + x1(1 − x2

1 − x2
2),

dx2

dt
= −x1 + x2(1 − x2

1 − x2
2),

whose phase portrait is shown in Figure 4.5. The differential equation has a periodic
solution

x1(t) = x1(0) cost + x2(0) sint, (4.12)

with x2
1(0) + x2

2(0) = 1.
To explore the stability of this solution, we introduce polar coordinatesr and

ϕ, which are related to the state variablesx1 andx2 by

x1 = r cosϕ, x2 = r sinϕ.
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Differentiation gives the following linear equations forṙ andϕ̇:

ẋ1 = ṙ cosϕ − r ϕ̇ sinϕ, ẋ2 = ṙ sinϕ + r ϕ̇ cosϕ.

Solving this linear system foṙr andϕ̇ gives, after some calculation,

dr

dt
= r (1 − r 2),

dϕ

dt
= −1.

Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation forr has three equilibria:r = 0, r = 1 andr = −1 (not realiz-
able sincer must be positive). We can analyze the stability of these equilibria by
linearizing the radial dynamics withF(r ) = r (1 − r 2). The corresponding linear
dynamics are given by

dr

dt
=

∂F

∂r

∣

∣

∣

∣

re

r = (1 − 3r 2
e)r, re = 0, 1,

where we have abused notation and usedr to represent the deviation from the
equilibrium point. It follows from the sign of(1 − 3r 2

e) that the equilibriumr = 0
is unstable and the equilibriumr = 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes tor = 1 as time goes to infinity, but if the system
starts withr = 0, it will remain at the equilibrium for all times. This implies that
all solutions to the original system that do not start atx1 = x2 = 0 will approach
the circlex2

1 + x2
2 = 1 as time increases.

To show the stability of the full solution (4.12), we must investigate the behavior
of neighboring solutions with different initial conditions. We have already shown
that the radiusr will approach that of the solution (4.12) as long asr (0) > 0. The
equation for the angleϕ can be integrated analytically to giveϕ(t) = −t + ϕ(0),
which shows that solutions starting at different anglesϕ will neither converge nor
diverge. Thus, the unit circle isattracting, but the solution (4.12) is only stable, not
asymptotically stable. The behavior of the system is illustrated by the simulation
in Figure 4.12. Notice that the solutions approach the circlerapidly, but that there
is a constant phase shift between the solutions. ∇

4.4 Lyapunov Stability Analysis�

We now return to the study of the full nonlinear system

dx

dt
= F(x), x ∈ R

n. (4.13)

Having defined when a solution for a nonlinear dynamical system is stable, we
can now ask how to prove that a given solution is stable, asymptotically stable
or unstable. For physical systems, one can often argue aboutstability based on
dissipation of energy. The generalization of that techniqueto arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.
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Figure 4.12:Solution curves for a stable limit cycle. The phase portrait on the left shows that
the trajectory for the system rapidly converges to the stable limit cycle. The starting points
for the trajectories are marked by circles in the phase portrait. The time domain plots on the
right show that the states do not converge to the solution but instead maintaina constant phase
error.

In this section we will describe techniques for determiningthe stability of so-
lutions for a nonlinear system (4.13). We will generally be interested in stability
of equilibrium points, and it will be convenient to assume that xe = 0 is the equi-
librium point of interest. (If not, rewrite the equations ina new set of coordinates
z = x − xe.)

Lyapunov Functions

A Lyapunov function V: R
n → R is an energy-like function that can be used to

determine the stability of a system. Roughly speaking, if wecan find a nonnegative
function that always decreases along trajectories of the system, we can conclude
that the minimum of the function is a stable equilibrium point (locally).

To describe this more formally, we start with a few definitions. We say that a
continuous functionV is positive definiteif V(x) > 0 for all x 6= 0 andV(0) = 0.
Similarly, a function isnegative definiteif V(x) < 0 for all x 6= 0 andV(0) = 0.
We say that a functionV is positive semidefiniteif V(x) ≥ 0 for all x, but V(x)

can be zero at points other than justx = 0.
To illustrate the difference between a positive definite function and a positive

semidefinite function, suppose thatx ∈ R
2 and let

V1(x) = x2
1, V2(x) = x2

1 + x2
2.

Both V1 andV2 are always nonnegative. However, it is possible forV1 to be zero
even if x 6= 0. Specifically, if we setx = (0, c), wherec ∈ R is any nonzero
number, thenV1(x) = 0. On the other hand,V2(x) = 0 if and only if x = (0, 0).
ThusV1 is positive semidefinite andV2 is positive definite.

We can now characterize the stability of an equilibrium point xe = 0 for the
system (4.13).

Theorem 4.2(Lyapunov stability theorem). Let V be a nonnegative function on
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dx
dt

∂V
∂x

V(x) = c2
V(x) = c1 < c2

Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov functionV(x) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system will always causeV(x)

to decrease along the trajectory.

R
n and let V̇ represent the time derivative of V along trajectories of the system

dynamics(4.13):

V̇ =
∂V

∂x

dx

dt
=

∂V

∂x
F(x).

Let Br = Br (0) be a ball of radius r around the origin. If there exists r> 0 such
that V is positive definite anḋV is negative semidefinite for all x∈ Br , then x= 0
is locally stable in the sense of Lyapunov. If V is positive definite andV̇ is negative
definite in Br , then x= 0 is locally asymptotically stable.

If V satisfies one of the conditions above, we say thatV is a (local)Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined byV(x) = c,
c > 0, and for eachc this gives a closed contour, as shown in Figure 4.13. The
condition thatV̇(x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories moveto smaller and smaller
values ofV and if V̇ is negative definite thenx must approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system

dx

dt
=

2

1 + x
− x.

This system has equilibrium points atx = 1 andx = −2. We consider the equilib-
rium point atx = 1 and rewrite the dynamics usingz = x − 1:

dz

dt
=

2

2 + z
− z − 1,

which has an equilibrium point atz = 0. Now consider the candidate Lyapunov
function

V(z) =
1

2
z2,
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which is globally positive definite. The derivative ofV along trajectories of the
system is given by

V̇(z) = zż =
2z

2 + z
− z2 − z.

If we restrict our analysis to an intervalBr , wherer < 2, then 2+ z > 0 and we
can multiply through by 2+ z to obtain

2z − (z2 + z)(2 + z) = −z3 − 3z2 = −z2(z + 3) < 0, z ∈ Br , r < 2.

It follows that V̇(z) < 0 for all z ∈ Br , z 6= 0, and hence the equilibrium point
xe = 1 is locally asymptotically stable. ∇

A slightly more complicated situation occurs ifV̇ is negative semidefinite. In
this case it is possible thatV̇(x) = 0 whenx 6= 0, and hencex could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum
A normalized model for a hanging pendulum is

dx1

dt
= x2,

dx2

dt
= − sinx1,

wherex1 is the angle between the pendulum and the vertical, with positive x1

corresponding to counterclockwise rotation. The equation has an equilibriumx1 =
x2 = 0, which corresponds to the pendulum hanging straight down.To explore the
stability of this equilibrium we choose the total energy as aLyapunov function:

V(x) = 1 − cosx1 +
1

2
x2

2 ≈
1

2
x2

1 +
1

2
x2

2.

The Taylor series approximation shows that the function is positive definite for
smallx. The time derivative ofV(x) is

V̇ = ẋ1 sinx1 + ẋ2x2 = x2 sinx1 − x2 sinx1 = 0.

Since this function is positive semidefinite, it follows from Lyapunov’s theorem that
the equilibrium is stable but not necessarily asymptotically stable. When perturbed,
the pendulum actually moves in a trajectory that corresponds to constant energy.∇

Lyapunov functions are not always easy to find, and they are notunique. In many
cases energy functions can be used as a starting point, as wasdone in Example 4.10.
It turns out that Lyapunov functions can always be found for any stable system (un-
der certain conditions), and hence one knows that if a systemis stable, a Lyapunov
function exists (and vice versa). Recent results using sum-of-squares methods have
provided systematic approaches for finding Lyapunov systems[PPP02]. Sum-of-
squares techniques can be applied to a broad variety of systems, including systems
whose dynamics are described by polynomial equations, as well as hybrid systems,
which can have different models for different regions of state space.

For a linear dynamical system of the form

dx

dt
= Ax,
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it is possible to construct Lyapunov functions in a systematic manner. To do so, we
consider quadratic functions of the form

V(x) = xT Px,

whereP ∈ R
n×n is a symmetric matrix (P = PT ). The condition thatV be positive

definite is equivalent to the condition thatP be apositive definite matrix:

xT Px > 0, for all x 6= 0,

which we write asP > 0. It can be shown that ifP is symmetric, thenP is positive
definite if and only if all of its eigenvalues are real and positive.

Given a candidate Lyapunov functionV(x) = xT Px, we can now compute its
derivative along flows of the system:

V̇ =
∂V

∂x

dx

dt
= xT (AT P + P A)x =: −xT Qx.

The requirement thaṫV be negative definite (for asymptotic stability) becomes a
condition that the matrixQ be positive definite. Thus, to find a Lyapunov function
for a linear system it is sufficient to choose aQ > 0 and solve theLyapunov
equation:

AT P + P A = −Q. (4.14)

This is a linear equation in the entries ofP, and hence it can be solved using
linear algebra. It can be shown that the equation always has asolution if all of the
eigenvalues of the matrixA are in the left half-plane. Moreover, the solutionP is
positive definite ifQ is positive definite. It is thus always possible to find a quadratic
Lyapunov function for a stable linear system. We will defer aproof of this until
Chapter 5, where more tools for analysis of linear systems will be developed.

Knowing that we have a direct method to find Lyapunov functionsfor linear
systems, we can now investigate the stability of nonlinear systems. Consider the
system

dx

dt
= F(x) =: Ax + F̃(x), (4.15)

whereF(0) = 0 andF̃(x) contains terms that are second order and higher in the
elements ofx. The functionAx is an approximation ofF(x) near the origin, and we
can determine the Lyapunov function for the linear approximation and investigate if
it is also a Lyapunov function for the full nonlinear system.The following example
illustrates the approach.

Example 4.11 Genetic switch
Consider the dynamics of a set of repressors connected together in a cycle, as
shown in Figure 4.14a. The normalized dynamics for this systemwere given in
Exercise 15:

dz1

dτ
=

µ

1 + zn
2

− z1,
dz2

dτ
=

µ

1 + zn
1

− z2, (4.16)

wherez1 and z2 are scaled versions of the protein concentrations,n andµ are
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Figure 4.14:Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputsu1 andu2 interfere with this
repression, allowing the circuit dynamics to be modified. The equilibrium points for this
circuit can be determined by the intersection of the two curves shown in (b).

parameters that describe the interconnection between the genes and we have set the
external inputsu1 andu2 to zero.

The equilibrium points for the system are found by equating the time derivatives
to zero. We define

f (u) =
µ

1 + un
, f ′(u) =

d f

du
=

−µnun−1

(1 + un)2
,

and the equilibrium points are defined as the solutions of the equations

z1 = f (z2), z2 = f (z1).

If we plot the curves(z1, f (z1)) and( f (z2), z2) on a graph, then these equations
will have a solution when the curves intersect, as shown in Figure 4.14b. Because
of the shape of the curves, it can be shown that there will always be three solutions:
one atz1e = z2e, one withz1e < z2e and one withz1e > z2e. If µ ≫ 1, then we can
show that the solutions are given approximately by

z1e ≈ µ, z2e ≈
1

µn−1
; z1e = z2e; z1e ≈

1

µn−1
, z2e ≈ µ. (4.17)

To check the stability of the system, we writef (u) in terms of its Taylor series
expansion aboutue:

f (u) = f (ue) + f ′(ue) ·(u − ue) + f ′′(ue) ·(u − ue)
2 + higher-order terms,

where f ′ represents the first derivative of the function, andf ′′ the second. Using
these approximations, the dynamics can then be written as

dw

dt
=









−1 f ′(z2e)

f ′(z1e) −1







 w + F̃(w),

wherew = z−ze is the shifted state and̃F(w) represents quadratic and higher-order
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terms.
We now use equation (4.14) to search for a Lyapunov function.ChoosingQ = I

and lettingP ∈ R
2×2 have elementspi j , we search for a solution of the equation









−1 f ′
2

f ′
1 −1

















p11 p12

p12 p22







 +








p11 p12

p12 p22

















−1 f ′
1

f ′
2 −1







 =








−1 0
0 −1







 ,

where f ′
1 = f ′(z1e) and f ′

2 = f ′(z2e). Note that we have setp21 = p12 to forceP
to be symmetric. Multiplying out the matrices, we obtain









−2p11 + 2 f ′
2 p12 p11 f ′

1 − 2p12 + p22 f ′
2

p11 f ′
1 − 2p12 + p22 f ′

2 −2p22 + 2 f ′
1 p12







 =








−1 0
0 −1







 ,

which is a set oflinear equations for the unknownspi j . We can solve these linear
equations to obtain

p11 = −
f ′
1

2 − f ′
2 f ′

1 + 2

4( f ′
1 f ′

2 − 1)
, p12 = −

f ′
1 + f ′

2

4( f ′
1 f ′

2 − 1)
, p22 = −

f ′
2

2 − f ′
1 f ′

2 + 2

4( f ′
1 f ′

2 − 1)
.

To check thatV(w) = wT Pw is a Lyapunov function, we must verify thatV(w) is
positive definite function or equivalently thatP > 0. SinceP is a 2× 2 symmetric
matrix, it has two real eigenvaluesλ1 andλ2 that satisfy

λ1 + λ2 = trace(P), λ1 ·λ2 = det(P).

In order forP to be positive definite we must have thatλ1 andλ2 are positive, and
we thus require that

trace(P) =
f ′
1

2−2 f ′
2 f ′

1+ f ′
2

2 + 4

4−4 f ′
1 f ′

2

> 0, det(P) =
f ′
1

2−2 f ′
2 f ′

1+ f ′
2

2+4

16− 16 f ′
1 f ′

2

> 0.

We see that trace(P) = 4 det(P) and the numerator of the expressions is just
( f1 − f2)

2 + 4 > 0, so it suffices to check the sign of 1− f ′
1 f ′

2. In particular, for
P to be positive definite, we require that

f ′(z1e) f ′(z2e) < 1.

We can now make use of the expressions forf ′ defined earlier and evaluate at
the approximate locations of the equilibrium points derived in equation (4.17). For
the equilibrium points wherez1e 6= z2e, we can show that

f ′(z1e) f ′(z2e) ≈ f ′(µ) f ′(
1

µn−1
) =

−µnµn−1

(1 + µn)2
·
−µnµ−(n−1)2

1 + µ−n(n−1)
≈ n2µ−n2+n.

Usingn = 2 andµ ≈ 200 from Exercise 15, we see thatf ′(z1e) f ′(z2e) ≪ 1 and
henceP is a positive definite. This implies thatV is a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the system (4.16) is stable, we now computeV̇ at the equilibrium
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Figure 4.15:Dynamics of a genetic switch. The phase portrait on the left shows that theswitch
has three equilibrium points, corresponding to protein A having a concentration greater than,
equal to or less than protein B. The equilibrium point with equal protein concentrations is
unstable, but the other equilibrium points are stable. The simulation on the right shows the
time response of the system starting from two different initial conditions. The initial portion of
the curve corresponds to initial concentrationsz(0) = (1, 5) and converges to the equilibrium
wherez1e < z2e. At time t = 10, the concentrations are perturbed by+2 in z1 and−2 in z2,
moving the state into the region of the state space whose solutions converge tothe equilibrium
point wherez2e < z1e.

point. By construction,

V̇ = wT(P A+ ATP)w + F̃T(w)Pw + wTPF̃(w)

= −wTw + F̃T(w)Pw + wTPF̃(w).

Since all terms inF̃ are quadratic or higher order inw, it follows that F̃T(w)Pw

andwTPF̃(w) consist of terms that are at least third order inw. Therefore ifw
is sufficiently close to zero, then the cubic and higher-orderterms will be smaller
than the quadratic terms. Hence, sufficiently close tow = 0, V̇ is negative definite,
allowing us to conclude that these equilibrium points are both stable.

Figure 4.15 shows the phase portrait and time traces for a system withµ = 4,
illustrating the bistable nature of the system. When the initial condition starts with
a concentration of protein B greater than that of A, the solution converges to the
equilibrium point at (approximately)(1/µn−1, µ). If A is greater than B, then it
goes to(µ, 1/µn−1). The equilibrium point withz1e = z2e is unstable. ∇

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.

Theorem 4.3. Consider the dynamical system(4.15)with F(0) = 0 and F̃ such
that lim ‖F̃(x)‖/‖x‖ → 0 as‖x‖ → 0. If the real parts of all eigenvalues of A are
strictly less than zero, then xe = 0 is a locally asymptotically stable equilibrium
point of equation(4.15).

This theorem implies that asymptotic stability of the linearapproximation im-
plieslocalasymptotic stability of the original nonlinear system. The theorem is very
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important for control because it implies that stabilization of a linear approximation
of a nonlinear system results in a stable equilibrium for thenonlinear system. The
proof of this theorem follows the technique used in Example 4.11. A formal proof
can be found in [Kha01].

Krasovski–Lasalle Invariance Principle
��

For general nonlinear systems, especially those in symbolic form, it can be difficult
to find a positive definite functionV whose derivative is strictly negative definite.
The Krasovski–Lasalle theorem enables us to conclude the asymptotic stability of
an equilibrium point under less restrictive conditions, namely, in the case wherėV
is negative semidefinite, which is often easier to construct.However, it applies only
to time-invariant or periodic systems. This section makes use of some additional
concepts from dynamical systems; see Hahn [Hah67] or Khalil[Kha01] for a more
detailed description.

We will deal with the time-invariant case and begin by introducing a few more
definitions. We denote the solution trajectories of the time-invariant system

dx

dt
= F(x) (4.18)

asx(t : a), which is the solution of equation (4.18) at timet starting froma at
t0 = 0. Theω limit setof a trajectoryx(t ; a) is the set of all pointsz ∈ R

n such
that there exists a strictly increasing sequence of timestn such thatx(tn; a) → z
asn → ∞. A setM ⊂ R

n is said to be aninvariant setif for all b ∈ M , we have
x(t ; b) ∈ M for all t ≥ 0. It can be proved that theω limit set of every trajectory
is closed and invariant. We may now state the Krasovski–Lasalle principle.

Theorem 4.4(Krasovski–Lasalle principle). Let V : R
n → R be a locally positive

definite function such that on the compact set�r = {x ∈ R
n : V(x) ≤ r } we have

V̇(x) ≤ 0. Define
S = {x ∈ �r : V̇(x) = 0}.

As t → ∞, the trajectory tends to the largest invariant set inside S;i.e., itsω limit
set is contained inside the largest invariant set in S. In particular, if S contains no
invariant sets other than x= 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].
Lyapunov functions can often be used to design stabilizing controllers, as is

illustrated by the following example, which also illustrates how the Krasovski–
Lasalle principle can be applied.

Example 4.12 Inverted pendulum
Following the analysis in Example 2.7, an inverted pendulum can be described by
the following normalized model:

dx1

dt
= x2,

dx2

dt
= sinx1 + u cosx1, (4.19)
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Figure 4.16: Stabilized inverted pendulum. A control law applies a forceu at the bottom
of the pendulum to stabilize the inverted position (a). The phase portrait (b)shows that
the equilibrium point corresponding to the vertical position is stabilized. The shaded region
indicates the set of initial conditions that converge to the origin. The ellipse corresponds to a
level set of a Lyapunov functionV(x) for whichV(x) > 0 andV̇(x) < 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction of the equilibrium point.
The actual dynamics of the system evolve on a manifold (c).

wherex1 is the angular deviation from the upright position andu is the (scaled)
acceleration of the pivot, as shown in Figure 4.16a. The systemhas an equilib-
rium at x1 = x2 = 0, which corresponds to the pendulum standing upright. This
equilibrium is unstable.

To find a stabilizing controller we consider the following candidate for a Lya-
punov function:

V(x) = (cosx1 − 1) + a(1 − cos2 x1) +
1

2
x2

2 ≈
(

a −
1

2

)

x2
1 +

1

2
x2

2.

The Taylor series expansion shows that the function is positive definite near the
origin if a > 0.5. The time derivative ofV(x) is

V̇ = −ẋ1 sinx1 + 2aẋ1 sinx1 cosx1 + ẋ2x2 = x2(u + 2a sinx1) cosx1.

Choosing the feedback law

u = −2a sinx1 − x2 cosx1

gives
V̇ = −x2

2 cos2 x1.

It follows from Lyapunov’s theorem that the equilibrium is locally stable. However,
since the function is only negative semidefinite, we cannot conclude asymptotic
stability using Theorem 4.2. However, note thatV̇ = 0 implies thatx2 = 0 or
x1 = π/2 ± nπ .

If we restrict our analysis to a small neighborhood of the origin �r , r ≪ π/2,
then we can define

S = {(x1, x2) ∈ �r : x2 = 0}
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and we can compute the largest invariant set insideS. For a trajectory to remain
in this set we must havex2 = 0 for all t and hencėx2(t) = 0 as well. Using the
dynamics of the system (4.19), we see thatx2(t) = 0 andẋ2(t) = 0 impliesx1(t) =
0 as well. Hence the largest invariant set insideS is (x1, x2) = 0, and we can use the
Krasovski–Lasalle principle to conclude that the origin is locally asymptotically
stable. A phase portrait of the closed loop system is shown inFigure 4.16b.

In the analysis and the phase portrait, we have treated the angle of the pendulum
θ = x1 as a real number. In fact,θ is an angle withθ = 2π equivalent toθ = 0.
Hence the dynamics of the system actually evolves on amanifold(smooth surface)
as shown in Figure 4.16c. Analysis of nonlinear dynamical systems on manifolds
is more complicated, but uses many of the same basic ideas presented here. ∇

4.5 Parametric and Nonlocal Behavior
�

Most of the tools that we have explored are focused on the local behavior of a
fixed system near an equilibrium point. In this section we briefly introduce some
concepts regarding the global behavior of nonlinear systems and the dependence
of a system’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear system wecan start by finding
the equilibrium points. We can then proceed to analyze the local behavior around
the equilibria. The behavior of a system near an equilibrium point is called thelocal
behavior of the system.

The solutions of the system can be very different far away froman equilibrium
point. This is seen, for example, in the stabilized pendulum in Example 4.12. The
inverted equilibrium point is stable, with small oscillations that eventually converge
to the origin. But far away from this equilibrium point thereare trajectories that
converge to other equilibrium points or even cases in which the pendulum swings
around the top multiple times, giving very long oscillations that are topologically
different from those near the origin.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptoticallystable equilibrium point.
This set is called theregion of attractionfor the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figure 4.16b. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches aroundthe stable equilibria
that are attracting. This gives partial information about the behavior of the system.

One method for approximating the region of attraction is through the use of
Lyapunov functions. Suppose thatV is a local Lyapunov function for a system
around an equilibrium pointx0. Let�r be a set on whichV(x) has a value less than
r ,

�r = {x ∈ R
n : V(x) ≤ r },
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and suppose thaṫV(x) ≤ 0 for all x ∈ �r , with equality only at the equilibrium
point x0. Then�r is inside the region of attraction of the equilibrium point.Since
this approximation depends on the Lyapunov function and thechoice of Lyapunov
function is not unique, it can sometimes be a very conservative estimate.

It is sometimes the case that we can find a Lyapunov functionV such thatV is
positive definite anḋV is negative (semi-) definite for allx ∈ R

n. In this case it can
be shown that the region of attraction for the equilibrium point is the entire state
space, and the equilibrium point is said to begloballystable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Example 4.12. The Lyapunov
function for the system was

V(x) = (cosx1 − 1) + a(1 − cos2 x1) +
1

2
x2

2,

and V̇ was negative semidefinite for allx and nonzero whenx1 6= ±π/2. Hence
for any x such that|x2| < π/2, V(x) > 0 will be inside the invariant set defined
by the level curves ofV(x). One of these level sets is shown in Figure 4.16b.∇

Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context
of models by exploring how the location of equilibrium points, their stability, their
regions of attraction and other dynamic phenomena, such as limit cycles, vary based
on the values of the parameters in the model.

Consider a differential equation of the form

dx

dt
= F(x, µ), x ∈ R

n, µ ∈ R
k, (4.20)

wherex is the state andµ is a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

F(x, µ) = 0,

and asµ is varied, the corresponding solutionsxe(µ) can also vary. We say that the
system (4.20) has abifurcationat µ = µ∗ if the behavior of the system changes
qualitatively atµ∗. This can occur either because of a change in stability type ora
change in the number of solutions at a given value ofµ.

Example 4.14 Predator–prey
Consider the predator–prey system described in Section 3.7.The dynamics of the
system are given by

d H

dt
= r H

(

1 −
H

k

)

−
aH L

c + H
,

dL

dt
= b

aH L

c + H
− dL, (4.21)
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Figure 4.17: Bifurcation analysis of the predator–prey system. (a) Parametric stabilitydia-
gram showing the regions in parameter space for which the system is stable. (b) Bifurcation
diagram showing the location and stability of the equilibrium point as a function of a. The
solid line represents a stable equilibrium point, and the dashed line represents an unstable
equilibrium point. The dashed-dotted lines indicate the upper and lower bounds for the limit
cycle at that parameter value (computed via simulation). The nominal values of the parameters
in the model area = 3.2, b = 0.6, c = 50,d = 0.56,k = 125 andr = 1.6.

whereH andL are the numbers of hares (prey) and lynxes (predators) anda, b,
c, d, k andr are parameters that model a given predator–prey system (described
in more detail in Section 3.7). The system has an equilibrium point at He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behavior of the system, we
choose to focus on two specific parameters of interest:a, the interaction coefficient
between the populations andc, a parameter affecting the prey consumption rate.
Figure 4.17a is a numerically computedparametric stability diagramshowing the
regions in the chosen parameter space for which the equilibrium point is stable
(leaving the other parameters at their nominal values). We see from this figure that
for certain combinations ofa andc we get a stable equilibrium point, while at other
values this equilibrium point is unstable.

Figure 4.17b is a numerically computedbifurcation diagramfor the system. In
this plot, we choose one parameter to vary (a) and then plot the equilibrium value of
one of the states (H ) on the vertical axis. The remaining parameters are set to their
nominal values. A solid line indicates that the equilibriumpoint is stable; a dashed
line indicates that the equilibrium point is unstable. Notethat the stability in the
bifurcation diagram matches that in the parametric stability diagram forc = 50 (the
nominal value) anda varying from 1.35 to 4. For the predator–prey system, when
the equilibrium point is unstable, the solution converges to a stable limit cycle. The
amplitude of this limit cycle is shown by the dashed-dotted line in Figure 4.17b.

∇

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
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Figure 4.18:Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle velocityv. The system is
stable when all eigenvalues have negative real part (shaded region). The plot in (b) shows the
locus of eigenvalues on the complex plane as the velocityv is varied and gives a different
view of the stability of the system. This type of plot is called aroot locus diagram.

changes as the parameters are varied. In such a case it is revealing to plot the eigen-
values of the system as a function of the parameters. Such plots are calledroot
locus diagramsbecause they give the locus of the eigenvalues when parameters
change. Bifurcations occur when parameter values are such that there are eigenval-
ues with zero real part. Computing environments such LabVIEW,MATLAB and
Mathematica have tools for plotting root loci.

Example 4.15 Root locus diagram for a bicycle model
Consider the linear bicycle model given by equation (3.7) inSection 3.2. Introducing
the state variablesx1 = ϕ, x2 = δ, x3 = ϕ̇ andx4 = δ̇ and setting the steering
torqueT = 0, the equations can be written as

dx

dt
=











0 I

−M−1(K0 + K2v
2
0) −M−1Cv0











x =: Ax,

whereI is a 2× 2 identity matrix andv0 is the velocity of the bicycle. Figure 4.18a
shows the real parts of the eigenvalues as a function of velocity. Figure 4.18b
shows the dependence of the eigenvalues ofA on the velocityv0. The figures show
that the bicycle is unstable for low velocities because two eigenvalues are in the
right half-plane. As the velocity increases, these eigenvalues move into the left
half-plane, indicating that the bicycle becomes self-stabilizing. As the velocity is
increased further, there is an eigenvalue close to the origin that moves into the right
half-plane, making the bicycle unstable again. However, this eigenvalue is small
and so it can easily be stabilized by a rider. Figure 4.18a shows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. ∇

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters
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Figure 4.19:Headphones with noise cancellation. Noise is sensed by the exterior microphone
(a) and sent to a filter in such a way that it cancels the noise that penetratesthe head phone
(b). The filter parametersa andb are adjusted by the controller.S represents the input signal
to the headphones.

of the system to eliminate extra parameters when possible. Computer programs
such asAUTO, LOCBIF andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations to design feedback laws
that stabilize an equilibrium point and provide a desired level of performance.
However, for some classes of problems the feedback controller must be nonlinear to
accomplish its function. By making use of Lyapunov functions we can often design
a nonlinear control law that provides stable behavior, as wesaw in Example 4.12.

One way to systematically design a nonlinear controller is to begin with a
candidate Lyapunov functionV(x) and a control systeṁx = f (x, u). We say
that V(x) is acontrol Lyapunov functionif for every x there exists au such that
V̇(x) = ∂V

∂x f (x, u) < 0. In this case, it may be possible to find a functionα(x)

such thatu = α(x) stabilizes the system. The following example illustrates the
approach.

Example 4.16 Noise cancellation
Noise cancellation is used in consumer electronics and in industrial systems to
reduce the effects of noise and vibrations. The idea is to locally reduce the effect of
noise by generating opposing signals. A pair of headphones with noise cancellation
such as those shown in Figure 4.19a is a typical example. A schematic diagram of
the system is shown in Figure 4.19b. The system has two microphones, one outside
the headphones that picks up exterior noisen and another inside the headphones that
picks up the signale, which is a combination of the desired signal and the external
noise that penetrates the headphone. The signal from the exterior microphone is
filtered and sent to the headphones in such a way that it cancelsthe external noise
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that penetrates into the headphones. The parameters of the filter are adjusted by a
feedback mechanism to make the noise signal in the internal microphone as small
as possible. The feedback is inherently nonlinear because itacts by changing the
parameters of the filter.

To analyze the system we assume for simplicity that the propagation of external
noise into the headphones is modeled by a first-order dynamical system described
by

dz

dt
= a0z + b0n, (4.22)

wherez is the sound level and the parametersa0 < 0 andb0 are not known. Assume
that the filter is a dynamical system of the same type:

dw

dt
= aw + bn.

We wish to find a controller that updatesa and b so that they converge to the
(unknown) parametersa0 andb0. Introducex1 = e = w − z, x2 = a − a0 and
x3 = b − b0; then

dx1

dt
= a0(w − z) + (a − a0)w + (b − b0)n = a0x1 + x2w + x3n. (4.23)

We will achieve noise cancellation if we can find a feedback lawfor changing the
parametersa andb so that the errore goes to zero. To do this we choose

V(x1, x2, x3) =
1

2

(

αx2
1 + x2

2 + x2
3

)

as a candidate Lyapunov function for (4.23). The derivative of V is

V̇ = αx1ẋ1 + x2ẋ2 + x3ẋ3 = αa0x2
1 + x2(ẋ2 + αwx1) + x3(ẋ3 + αnx1).

Choosing

ẋ2 = −αwx1 = −αwe, ẋ3 = −αnx1 = −αne, (4.24)

we find thatV̇ = αa0x2
1 < 0, and it follows that the quadratic function will decrease

as long ase = x1 = w − z 6= 0. The nonlinear feedback (4.24) thus attempts to
change the parameters so that the error between the signal and the noise is small.
Notice that feedback law (4.24) does not use the model (4.22)explicitly.

A simulation of the system is shown in Figure 4.20. In the simulation we have
represented the signal as a pure sinusoid and the noise as broad band noise. The
figure shows the dramatic improvement with noise cancellation. The sinusoidal
signal is not visible without noise cancellation. The filter parameters change quickly
from their initial valuesa = b = 0. Filters of higher order with more coefficients
are used in practice. ∇
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Figure 4.20:Simulation of noise cancellation. The top left figure shows the headphone signal
without noise cancellation, and the bottom left figure shows the signal with noise cancellation.
The right figures show the parametersa andb of the filter.

4.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [Str94] and the highlyillustrated text by
Abraham and Shaw [AS82]. More technical treatments include Andronov, Vitt and
Khaikin [AVK87], Guckenheimer and Holmes [GH83] and Wiggins [Wig90]. For
students with a strong interest in mechanics, the texts by Arnold [Arn87] and Mars-
den and Ratiu [MR94] provide an elegant approach using toolsfrom differential
geometry. Finally, good treatments of dynamical systems methods in biology are
given by Wilson [Wil99] and Ellner and Guckenheimer [EG05]. There is a large lit-
erature on Lyapunov stability theory, including the classic texts by Malkin [Mal59],
Hahn [Hah67] and Krasovski [Kra63]. We highly recommend thecomprehensive
treatment by Khalil [Kha01].

Exercises

27 (Time-invariant systems) Show that if we have a solution of the differential
equation (4.1) given byx(t) with initial conditionx(t0) = x0, thenx̃(τ ) = x(t − t0)
is a solution of the differential equation

dx̃

dτ
= F(x̃)

with initial condition x̃(0) = x0, whereτ = t − t0.

28 (Flow in a tank) A cylindrical tank has cross sectionA m2, effective outlet
areaa m2 and inflowqin m3/s. An energy balance shows that the outlet velocity is
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v =
√

2gh m/s, whereg m/s2 is the acceleration of gravity andh is the distance
between the outlet and the water level in the tank (in meters). Show that the system
can be modeled by

dh

dt
= −

a

A

√

2gh −
1

A
qin, qout = a

√

2gh.

Use the parametersA = 0.2,a = 0.01. Simulate the system when the inflow is zero
and the initial level ish = 0.2. Do you expect any difficulties in the simulation?

29 (Cruise control) Consider the cruise control system described in Section 3.1.
Generate a phase portrait for the closed loop system on flat ground (θ = 0), in third
gear, using a PI controller (withkp = 0.5 andki = 0.1), m = 1000 kg and desired
speed 20 m/s. Your system model should include the effects ofsaturating the input
between 0 and 1.

30 (Lyapunov functions) Consider the second-order system

dx1

dt
= −ax1,

dx2

dt
= −bx1 − cx2,

wherea, b, c > 0. Investigate whether the functions

V1(x) =
1

2
x2

1 +
1

2
x2

2, V2(x) =
1

2
x2

1 +
1

2
(x2 +

b

c − a
x1)

2

are Lyapunov functions for the system and give any conditions that must hold.

31 (Damped spring–mass system) Consider a damped spring–masssystem with �
dynamics

mq̈ + cq̇ + kq = 0.

A natural candidate for a Lyapunov function is the total energy of the system, given
by

V =
1

2
mq̇2 +

1

2
kq2.

Use the Krasovski–Lasalle theorem to show that the system is asymptotically stable.

32 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise 13:

J
d2ϕ

dt2
= Pm − Pe = Pm −

EV

X
sinϕ.

The parameter

a =
Pmax

Pm
=

EV

X Pm
(4.25)

is the ratio between the maximum deliverable powerPmax = EV/X and the me-
chanical powerPm.

(a) Considera as a bifurcation parameter and discuss how the equilibria depend
ona.
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(b) For a > 1, show that there is a center atϕ0 = arcsin(1/a) and a saddle at
ϕ = π − ϕ0.

(c) Show that ifPm/J = 1 there is a solution through the saddle that satisfies

1

2

(dϕ

dt

)2
− ϕ + ϕ0 − a cosϕ −

√

a2 − 1 = 0. (4.26)

Use simulation to show that the stability region is the interior of the area enclosed
by this solution. Investigate what happens if the system is in equilibrium with a
value ofa that is slightly larger than 1 anda suddenly decreases, corresponding to
the reactance of the line suddenly increasing.

33(Lyapunov equation) Show that Lyapunov equation (4.14) always has a solution
if all of the eigenvalues ofA are in the left half-plane. (Hint: Use the fact that
the Lyapunov equation is linear inP and start with the case whereA has distinct
eigenvalues.)

34(Congestion control) Consider the congestion control problem described in Sec-
tion 3.4. Confirm that the equilibrium point for the system is given by equation (3.21)
and compute the stability of this equilibrium point using a linear approximation.

35 (Swinging up a pendulum) Consider the inverted pendulum, discussed in Ex-
ample 4.4, that is described by

θ̈ = sinθ + u cosθ,

whereθ is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function

V(θ, θ̇ ) = cosθ − 1 +
1

2
θ̇2,

show that the state feedbacku = k(V0 − V)θ̇ cosθ causes the pendulum to “swing
up” to the upright position.

36 (Root locus diagram) Consider the linear system

dx

dt
=









0 1
0 −3







 x +








−1
4







 u, y =


1 0


 x,

with the feedbacku = −ky. Plot the location of the eigenvalues as a function the
parameterk.

37 (Discrete-time Lyapunov function) Consider a nonlinear discrete-time system�
with dynamicsx[k + 1] = f (x[k]) and equilibrium pointxe = 0. Suppose there
exists a smooth, positive definite functionV : R

n → R such thatV( f (x))−V(x) <

0 for x 6= 0 and V(0) = 0. Show thatxe = 0 is (locally) asymptotically stable.

38(Operational amplifier oscillator) An op amp circuit for an oscillator was shown
in Exercise 21. The oscillatory solution for that linear circuit was stable but not
asymptotically stable. A schematic of a modified circuit thathas nonlinear elements
is shown in the figure below.
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The modification is obtained by making a feedback around each operational am-
plifier that has capacitors using multipliers. The signalae = v2

1 + v2
2 − v2

0 is the
amplitude error. Show that the system is modeled by

dv1

dt
=

R4

R1R3C1
v2 +

1

R11C1
v1(v

2
0 − v2

1 − v2
2),

dv2

dt
= −

1

R2C2
v1 +

1

R22C2
v2(v

2
0 − v2

1 − v2
2).

Show that the circuit gives an oscillation with a stable limitcycle with amplitude
v0. (Hint: Use the results of Example 4.8.)

39 (Self-activating genetic circuit) Consider the dynamics ofa genetic circuit that
implementsself-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example 2.13, the dynamics for the systemcan be written as

dm

dt
=

αp2

1 + kp2
+ α0 − γ m,

dp

dt
= βm − δp, (4.27)

for p, m ≥ 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

40 (Diagonal systems) LetA ∈ R
n×n be a square matrix with real eigenvalues

λ1, . . . , λn and corresponding eigenvectorsv1, . . . , vn.

(a) Show that if the eigenvalues are distinct (λi 6= λ j for i 6= j ), thenvi 6= v j for
i 6= j .

(b) Show that the eigenvectors form a basis forR
n so that any vectorx can be

written asx =
∑

αi vi for αi ∈ R.

(c) Let T =


v1 v2 . . . vn



 and show thatT−1AT is a diagonal matrix of

the form (4.8).
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(d) Show that if some of theλi are complex numbers, thenA can be written as

A =



















31 0
. . .

0 3k



















where 3i = λ ∈ R or 3i =








σ ω

−ω σ







 .

in an appropriate set of coordinates.

This form of the dynamics of a linear system is often referred to asmodal form.

41 (Furuta pendulum) The Furuta pendulum, an inverted pendulum ona rotating
arm, is shown to the left in the figure below.
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Consider the situation when the pendulum arm is spinning with constant rate. The
system has multiple equilibrium points that depend on the angular velocityω, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

Jpθ̈ − Jpω
2
0 sinθ cosθ − mpgl sinθ = 0,

whereJp is the moment of inertia of the pendulum with respect to its pivot, mp is
the pendulum mass,l is the distance between the pivot and the center of mass of
the pendulum andω0 is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the condition(s) for stability of each
equilibrium point (in terms ofω0).

(b) Consider the angular velocity as a bifurcation parameter and verify the bifur-
cation diagram given above. This is an example of apitchfork bifurcation.

42 (Routh-Hurwitz criterion) Consider a linear differentialequation with the char-
acteristic polynomial

λ(s) = s2 + a1s + a2, λ(s) = s3 + a1s
2 + a2s + a3.

Show that the system is asymptotically stable if and only if all the coefficientsai

are positive and ifa1a2 > a3. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.


