Chapter Four
Dynamic Behavior

It Don't Mean a Thing If It Ain't Got That Swing.
Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behaithymamical sys-
tems focused on systems modeled by nonlinear differergizdttons. This allows
us to consider equilibrium points, stability, limit cyclead other key concepts in
understanding dynamic behavior. We also introduce someadstfor analyzing
the global behavior of solutions.

4.1 Solving Differential Equations

In the last two chapters we saw that one of the methods of rimgddi/namical
systems is through the use of ordinary differential equat®@DES). A state space,
input/output system has the form

d
= fw, y=heu, (4.1)
wherex = (Xi,...,Xy) € R" is the statey € RP is the input andy € RY is

the output. The smooth maps : R" x RP — R" andh : R" x RP —» RY
represent the dynamics and measurements for the systemnémal, they can be
nonlinear functions of their arguments. We will sometimasuls on single-input,
single-output (SISO) systems, for whigh=q = 1.

We begin by investigating systems in which the input has Ise¢to a function
of the statey = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equatin this case become

dx

g = 106a00) = F). (4.2)

To understand the dynamic behavior of this system, we neeshatyze the
features of the solutions of equation (4.2). While in somepe situations we can
write down the solutions in analytical form, often we mugdy ren computational
approaches. We begin by describing the class of solutiarntbiproblem.

We say thatx(t) is a solution of the differential equation (4.2) on the time
intervalt e Rtots e R if

dx(t)
dt

=FX(t)) forallty <t < ts.
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A given differential equation may have many solutions. W4 wiost often be
interested in thénitial value problem wherex(t) is prescribed at a given time
to € R and we wish to find a solution valid for dlituretimet > t,.

We say thak(t) is a solution of the differential equation (4.2) with inltielue
Xo € R" attp e R if

X(tp) = %o and % = F(x(t)) forallty <t < t;.

For most differential equations we will encounter, thera ismiquesolution that is
defined forty < t < t;. The solution may be defined for all tinhe> tg, in which
case we takés = oco. Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to thisrgly as the solution
of an ODE.

We will typically assume that is equal to 0. In the case whénis independent
of time (as in equation (4.2)), we can do so without loss ofegelity by choosing
a new independent (time) variable=t — ty (Exercise 27).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of thenfor

G + 20 wod + wiq = 0,

whereq is the displacement of the oscillator from its rest positibimese dynamics
are equivalent to those of a spring—mass system, as showneirtigx 12. We
assume that < 1, corresponding to a lightly damped system (the reasorhfer t
particular choice will become clear later). We can rewtitis in state space form
by settingx; = g andx, = /wo, giving

Xm % dXz
— =W _
dt 072> dt

In vector form, the right-hand side can be written as

F(x) = [ @02 ] .

—woX1 — 2(6()0X2

= —woX1 — 2(600X2.

The solution to the initial value problem can be written in aer of different
ways and will be explored in more detail in Chapter 5. Here ingly assert that
the solution can be written as

) 1 .
Xy (t) = e~¢! (Xlo coswqgt + — (wod X10 + X20) Slnwdt) ,
d
—wot 1 2 H
Xo(t) = €7 | X20C0Swyt — — (wyX10 + w0l X20) SiNewgt | ,
wWd

wherexg = (X10, X20) is the initial condition andvy = wo+/1 — ¢2. This solution

can be verified by substituting it into the differential eqoat We see that the
solution is explicitly dependent on the initial conditiaamd it can be shown that
this solution is unigue. A plot of the initial condition rempse is shown in Figure 4.1.



4.1. SOLVING DIFFERENTIAL EQUATIONS 97

1
X X,
1—-——--"2
-~
0.5r /’ \ 4
; \ L~
/ \ ’ %_\ P
0 , \ /(_\
\ ’ N v ~
\ / \ , ~_ -
\ / N /
—-0.5F \ =~ i
\ /
7

_1 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Timet [s]

State9(1, X,

Figure 4.1: Response of the damped oscillator to the initial conditign= (1, 0). The
solution is unique for the given initial conditions and consists of an oscillegolytion for
each state, with an exponentially decaying magnitude.

We note that this form of the solution holds only foO; < 1, corresponding to
an “underdamped” oscillator. \Y%

Without imposing some mathematical conditions on the fioncE, the differ- @
ential equation (4.2) may not have a solution fott aiind there is no guarantee that
the solution is unique. We illustrate these possibilitiéhwwo examples.

Example 4.2 Finite escape time
Letx € R and consider the differential equation

dx
T (4.3)
with the initial conditiorx(0) = 1. By differentiation we can verify that the function
1
X(t) = — 4.4
=7 (4.4)

satisfies the differential equation and that it also satishedriitial condition. A
graph of the solution is given in Figure 4.2a; notice that thlatgon goes to infinity
ast goes to 1. We say that this system lfimite escape timeThus the solution
exists only in the time interval & t < 1. \Y

Example 4.3 Nonunique solution
Let x € R and consider the differential equation

dx
— =2
dt VX
with initial conditionx(0) = 0. We can show that the function
X(t) = 0 2.n‘Ogtga
(t—a) ift>a

satisfies the differential equation for all values of the pagtera > 0. To see this,
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Figure 4.2: Existence and uniqueness of solutions. Equation (4.3) has a solutiofootifge

t < 1, at which point the solution goes to, as shown in (a). Equation (4.4) is an example
of a system with many solutions, as shown in (b). For each valig o get a different
solution starting from the same initial condition.

we differentiatex(t) to obtain

d_x_ 0 fo<t<a
dt |2t —a) ift> a,

and hence = 2,/x for all t > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 4.2b. Notice that in this casedlse many solutions
to the differential equation. \%

These simple examples show that there may be difficulties ewsnsimple
differential equations. Existence and uniqueness can begiged by requiring
that the functior= have the property that for some fixecE R,

IF(x) — FIl <clx—y]| forallx,y,

which is calledLipschitz continuity A sufficient condition for a function to be
Lipschitz is that the JacobiarF /ox is uniformly bounded for alk. The difficulty
in Example 4.2 is that the derivativid=/0x becomes large for large, and the
difficulty in Example 4.3 is that the derivativid-/0x is infinite at the origin.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is importantiderstanding some of
the key concepts of stability in nonlinear dynamics. We Widus on an important
class of systems known as planar dynamical systems. Thases/save two state
variablesx e R?, allowing their solutions to be plotted in tif&;, x,) plane. The
basic concepts that we describe hold more generally andecasdal to understand
dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamicalesys with state
x € R? is to plot the phase portrait of the system, briefly introduice@hapter 2.
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Figure 4.3: Phase portraits. (a) This plot shows the vector field for a planar dyaamic
system. Each arrow shows the velocity at that point in the state spadeigty)lot includes
the solutions (sometimes called streamlines) from different initial conditieitis the vector
field superimposed.

We start by introducing the concept ofvactor field For a system of ordinary
differential equations g
X
T F(x),
the right-hand side of the differential equation defines atyx € R" a velocity
F(x) € R". This velocity tells us how changes and can be represented as a vector
F(x) e R".

For planar dynamical systems, each state corresponds totarpihe plane and
F(x) is a vector representing the velocity of that state. We canhtpkese vectors
on a grid of points in the plane and obtain a visual image ofdyramics of the
system, as shown in Figure 4.3a. The points where the veloditie zero are of
particular interest since they define stationary points eflihw: if we start at such
a state, we stay at that state.

A phase portraitis constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a seiitidli conditions, we
plot the solution of the differential equation in the plak& This corresponds to
following the arrows at each point in the phase plane andidgthe resulting tra-
jectory. By plotting the solutions for several differenitial conditions, we obtain
a phase portrait, as show in Figure 4.3b. Phase portraitssvesametimes called
phase plane diagrams

Phase portraits give insight into the dynamics of the systgmhowing the
solutions plotted in the (two-dimensional) state spacéefdystem. For example,
we can see whether all trajectories tend to a single poiim@smcreases or whether
there are more complicated behaviors. In the example in €igid, corresponding
to a damped oscillator, the solutions approach the origimlianitial conditions.
This is consistent with our simulation in Figure 4.1, but ibals us to infer the
behavior for all initial conditions rather than a singletiai condition. However,
the phase portrait does not readily tell us the rate of chahtjee states (although
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a iode
for a class of balance systems in which we wish to keep a system uprightasa rocket (a).
Using a simplified model of an inverted pendulum (b), we can develomagoportrait that
shows the dynamics of the system (c). The system has multiple equilibriints pmarked

by the solid dots along the, = O line.

this can be inferred from the lengths of the arrows in thearefaeld plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a statgs an equilibrium point for a dynamical system

dx
Z_—F
T (X)

if F(Xe) = 0. If a dynamical system has an initial conditiof0) = X, then it will
stay at the equilibrium poink(t) = x for allt > 0, where we have takep = 0.

Equilibrium points are one of the most important features df@amical sys-
tem since they define the states corresponding to constaratimgeconditions. A
dynamical system can have zero, one or more equilibriumtgoin

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figure 4.4, which is a gfahtebalance system
we considered in Chapter 2. The inverted pendulum is a singbh#esion of the
problem of stabilizing a rocket: by applying forces at thedaf the rocket, we
seek to keep the rocket stabilized in the upright positiore $tate variables are
the angle = x; and the angular velocitgld /dt = x,, the control variable is the
acceleratioru of the pivot and the output is the angle

For simplicity we assume thatgl/J; = 1 andml/J; = 1, so that the dynamics
(equation (2.10)) become

dx N

dt ~ | sinx; — cx + ucosx;y (4-5)

This is a nonlinear time-invariant system of second orders $hme set of equa-
tions can also be obtained by appropriate normalizatiohesystem dynamics as
illustrated in Example 2.7.
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different iritiitions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) slacsingle solution
plotted as a function of time, with the limit cycle corresponding to a steady dswillaf
fixed amplitude.

We consider the open loop dynamics by setting 0. The equilibrium points
for the system are given by
. — [:I:nn]
€ O ]

wheren =0, 1, 2, . ... The equilibrium points fon even correspond to the pendu-
lum pointing up and those farodd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inpugsghown in Figure 4.4c.
The phase portrait shows2z < x; < 2z, so five of the equilibrium points are
shown. \Y%

Nonlinear systems can exhibit rich behavior. Apart fromildopia they can also
exhibit stationary periodic solutions. This is of great picad value in generating
sinusoidally varying voltages in power systems or in getigggperiodic signals
for animal locomotion. A simple example is given in ExerciSe8hich shows the
circuit diagram for an electronic oscillator. A normalizeddel of the oscillator is
given by the equation

% =%+ x1(1 - x¢ —x), % =X +X%l-x-x5).  (4.6)
The phase portrait and time domain solutions are given in Eigus. The figure
shows that the solutions in the phase plane converge to@aniittajectory. In the
time domain this corresponds to an oscillatory solutiontidenatically the circle
is called dimit cycle More formally, we call an isolated solutiott) a limit cycle
of periodT > 0if x(t + T) = x(t) forallt € R.

There are methods for determining limit cycles for secorakosystems, but for
general higher-order systems we have to resort to compottnalysis. Computer
algorithms find limit cycles by searching for periodic trages in state space that
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Figure 4.6: lllustration of Lyapunov’s concept of a stable solution. The solutionesgmted
by the solid line is stable if we can guarantee that all solutions remain within atdiemeter
€ by choosing initial conditions sufficiently close the solution.

satisfy the dynamics of the system. In many situations lstahit cycles can be
found by simulating the system with different initial cotidns.

4.3 Stability

The stability of a solution determines whether or not sohginearby the solution
remain close, get closer or move further away. We now giveradbdefinition of
stability and describe tests for determining whether atswius stable.

Definitions

Let x(t; a) be a solution to the differential equation with initial catiah a. A
solution isstableif other solutions that start nearstay close to(t; a). Formally,
we say that the solutior(t; a) is stable if for alle > 0, there exists & > 0 such

that
Ib—all < = |Ix(t;b) —x(t;a)|]| <e forallt > 0.

Note that this definition does not imply thatt; b) approachex(t; a) as time
increases but just that it stays nearby. Furthermore, theewaflo may depend on
€, SO that if we wish to stay very close to the solution, we mayeha start very,
very close § < €). This type of stability, which is illustrated in Figure 4.8,also
calledstability in the sense of Lyapund¥a solution is stable in this sense and the
trajectories do not converge, we say that the solutioreigrally stable

An important special case is when the solutidih; a) = Xe is an equilibrium
solution. Instead of saying that the solution is stable, wely say that the equi-
librium point is stable. An example of a neutrally stableigqtium point is shown
in Figure 4.7. From the phase portrait, we see that if we stat the equilibrium
point, then we stay near the equilibrium point. Indeed, iig €xample, given any
¢ that defines the range of possible initial conditions, we @aply choose) = ¢
to satisfy the definition of stability since the trajectoréae perfect circles.

A solutionx(t; a) isasymptotically stablé it is stable in the sense of Lyapunov
and alsx(t; b) — x(t; a) ast - oo for b sufficiently close t@. This corresponds
tothe case where all nearby trajectories converge to thiestalution for large time.
Figure 4.8 shows an example of an asymptotically stable ieguin point. Note
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium point, at the origin is stable since all trajectories that
start neaw, stay neake.

from the phase portraits that not only do all trajectoriey stear the equilibrium
point at the origin, but that they also all approach the or@st gets large (the
directions of the arrows on the phase portrait show the timedn which the
trajectories move).

A solutionx(t; a) is unstableif it is not stable. More specifically, we say that
a solutionx(t; a) is unstable if given some > 0, there doesot exist aé > 0
such that ifjb — a]| < 4, then||x(t; b) — x(t; a)|| < ¢ for all t. An example of an
unstable equilibrium point is shown in Figure 4.9.

The definitions above are given without careful descriptiothefr domain of
applicability. More formally, we define a solution to kecally stable(or locally
asymptotically stablgf it is stable for all initial conditions< € B, (a), where

Br(@ = {x:lx—al <r}

is a ball of radiug arounda andr > 0. A system igjlobally stableif it is stable
for allr > 0. Systems whose equilibrium points are only locally stable ltave

1
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Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium poirt at the origin is asymptotically stable
since the trajectories converge to this point as oc.
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point, at the origin is unstable since not all trajectories
that start neare stay neat.. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

interesting behavior away from equilibrium points, as welese in the next section.
For planar dynamical systems, equilibrium points have kmsigned names
based on their stability type. An asymptotically stableilguium point is called
a sink or sometimes amttractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, @ saddle if
some trajectories lead to the equilibrium point and othepsaraway (this is the
situation pictured in Figure 4.9). Finally, an equilibriumipicthat is stable but not
asymptotically stable (i.e., neutrally stable, such astiein Figure 4.7) is called
acenter

Example 4.5 Congestion control
The model for congestion control in a network consistinglaflentical computers
connected to a single router, introduced in Section 3.4 yisgby

dw_c_ C1+w2 db_NwC_C
dt b 2) dt b ’

wherew is the window size antd is the buffer size of the router. Phase portraits are
shown in Figure 4.10 for two different sets of parameter &lueeach case we see
that the system converges to an equilibrium point in whighlbffer is below its
full capacity of 500 packets. The equilibrium size of the bufiepresents a balance
between the transmission rates for the sources and theigapithe link. We see
from the phase portraits that the equilibrium points arevgsptically stable since
all initial conditions result in trajectories that converp these points. \%

Stability of Linear Systems
A linear dynamical system has the form
dx

— =A 0) = 4.7
T X, X(0) = Xo, 4.7)
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Figure 4.10:Phase portraits for a congestion control protocol running Wit 60 identical
source computers. The equilibrium values correspond to a fixed wiatitive source, which
results in a steady-state buffer size and corresponding transmist&oA faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

where A € R™" is a square matrix, corresponding to the dynamics matrix of a
linear control system (2.6). For a linear system, the dtglwf the equilibrium at
the origin can be determined from the eigenvalues of theixatr

A(A) = {se C:det(sl — A) =0}.

The polynomial deis| — A) is thecharacteristic polynomiadnd the eigenvalues
are its roots. We use the notatidpfor the jth eigenvalue ofp, so thatij € A(A).
In generall can be complex-valued, although A is real-valued, then for any
eigenvaluel, its complex conjugate* will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stabdita linear system
depends only on the matrix, we find that stability is a property of the system. For
a linear system we can therefore talk about the stabilithefdystem rather than
the stability of a particular solution or equilibrium paint

The easiest class of linear systems to analyze are those wystsen matrices
are in diagonal form. In this case, the dynamics have the form

A1 0
dx A2
-2 X. 4.8
dt " (48)
0 An
It is easy to see that the state trajectories for this systenmdependent of each
other, so that we can write the solution in term@afdividual systems; = 4;x;.
Each of these scalar solutions is of the form

X (t) = €"'x(0).

We see that the equilibrium point = 0O is stable if1; < 0 and asymptotically
stable if1; < O.
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Another simple case is when the dynamics are in the bloclodialgiorm

01 w1 0 0
dx_ Ter ‘ 0 0 «
dt 0 o . : : .

0 0 Om Om

O O _(Um O'm

In this case, the eigenvalues can be shown to;be ¢; £iw;. We once again can
separate the state trajectories into independent sofufiimreach pair of states, and
the solutions are of the form

Xoj—1(t) = €% (X2j-1(0) COSwjt 4 X2 (0) sinwjt),
X2j ) = et (—ng_l(O) sinwjt + Xgj (0) COSa)jt),

wherej =1, 2, ..., m. We see that this system is asymptotically stable if and only
if 0 = ReZj < 0. Itis also possible to combine real and complex eigengalue
(block) diagonal form, resulting in a mixture of solutioristiee two types.

Very few systems are in one of the diagonal forms above, huiessystems
can be transformed into these forms via coordinate tramsftions. One such class
of systems is those for which the dynamics matrix has distjnonrepeating)
eigenvalues. In this case there is a mairix R"*" such that the matrix AT!
is in (block) diagonal form, with the block diagonal elem®obrresponding to the
eigenvalues of the original matr&(see Exercise 40). If we choose new coordinates
z=TX, then dz

— = Tx=TAx=TAT !z
dt

and the linear system has a (block) diagonal dynamics mdtirhermore, the
eigenvalues of the transformed system are the same as tfieabigsystem since
if v is an eigenvector oA, thenw = Tov can be shown to be an eigenvector of
T AT~L. We can reason about the stability of the original system dtyng that
x(t) = T~1z(t), and so if the transformed system is stable (or asymptbtical
stable), then the original system has the same type of ityabil

This analysis shows that for linear systems with distinaeiglues, the stability
of the system can be completely determined by examining e¢haé part of the
eigenvalues of the dynamics matrix. For more general systemmake use of the
following theorem, proved in the next chapter:

Theorem 4.1(Stability of a linear system)The system

dx
A
at = X

is asymptotically stable if and only if all eigenvalues oflkave a strictly negative
real part and is unstable if any eigenvalue of A has a striptgitive real part.

Example 4.6 Compartment model
Consider the two-compartment module for drug deliveryadtrced in Section 3.6.
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Using concentrations as state variables and denotingateasctor by, the system
dynamics are given by

dx —ko—ki kg bo

E_[ K, —k X+ 0 u, y = [0 1]x,
where the inpuu is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measurguliby. We wish to

design a feedback control law that maintains a constanubgipen byy = yjy.
We choose an output feedback control law of the form

u = —Kk(y — ya) + Ug,

whereuyq is the rate of injection required to maintain the desiredcemtration and
k is a feedback gain that should be chosen such that the closedystemis stable.
Substituting the control law into the system, we obtain

dX_ —kg — kg kg — bok bo
E‘[ ka —k ¥t o

y = [O 1] X =: CX.

] Ug =: AX+ Bug,

The equilibrium concentratior. € R? is given byx. = —A~*Buy and

boka y

kokz + bokok

Choosingug such thaty, = yq provides the constant rate of injection required to
maintain the desired output. We can now shift coordinatg@éaice the equilibrium
point at the origin, which yields

d_Z_ —ko — k1 kg — bgk .
dt ko —ko i

wherez = x — X.. We can now apply the results of Theorem 4.1 to determine the
stability of the system. The eigenvalues of the system aendiy the roots of the
characteristic polynomial

A(s) = 5% + (Ko + k1 + k2)s + (Kokz + bok2K).

While the specific form of the roots is messy, it can be showtttigaroots are pos-
itive as long as the linear term and the constant term aregutitive (Exercise 42).
Hence the system is stable for any 0. \%

Ye = —CA™1Bug =

Stability Analysis via Linear Approximation

Animportant feature of differential equations is that ibfeen possible to determine
the local stability of an equilibrium point by approximaiithe system by a linear
system. The following example illustrates the basic idea.
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Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dysaamécgiven by

dx X2
dt ~ |sinxi—yx |’

where we have defined the statexas= (4, ). We first consider the equilibrium
point atx = (0, 0), corresponding to the straight-up position. If we assuraéttie
anglef = x; remains small, then we can replacesimwith x; and cos; with 1,
which gives the approximate system

dX_ X2 . 0 1
Tl [Xl_VXZ] = [1 —y] X. (4.9)

Intuitively, this system should behave similarly to the ma@omplicated model
as long as«; is small. In particular, it can be verified that the equililonigpoint
(0, 0) is unstable by plotting the phase portrait or computing therevalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable equititpoint at
X = (x,0). In this case we have to expand ginand cox; aroundx; = =,
according to the expansions

sin(z +60) = —sind ~ -0, coqn + ) = —cogl) ~ —1.

If we definez; = x; — = andz, = Xp, the resulting approximate dynamics are

given by
dz Z 0 1
— = = . 4.1
dt [-Zl-VZz] [-1 -y]z (+.10)

Note thatz = (0, 0) is the equilibrium point for this system and that it has thesa
basic form as the dynamics shown in Figure 4.8. Figure 4.11 shiwsvyphase por-
traits for the original system and the approximate systeyarat the corresponding
equilibrium points. Note that they are very similar, altgbunot exactly the same.
It can be shown that if a linear approximation has either gwgtically stable or
unstable equilibrium points, then the local stability of triginal system must be
the same (Theorem 4.3). \Y%

More generally, suppose that we have a nonlinear system

dx
— = F(X
T (x)
that has an equilibrium point at. Computing the Taylor series expansion of the

vector field, we can write
dx

oF
at F(Xe) + i (X — Xe) + higher-order terms iix — Xe).

Xe

SinceF (x¢) = 0, we can approximate the system by choosing a new statdiaria
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Figure 4.11: Comparison between the phase portraits for the full nonlinear systgrasda
its linear approximation around the origin (b). Notice that near the equilibgaimt at the
center of the plots, the phase portraits (and hence the dynamics) ars alerdical.

Z = X — Xe and writing

dz oF

T Az, where A= x Xe. (4.12)
We call the system (4.11) thi@ear approximatiorof the original nonlinear system
or thelinearizationat Xe.

The fact that a linear model can be used to study the behaviamohlinear
system near an equilibrium point is a powerful one. Indeezican take this even
further and use a local linear approximation of a nonlingatesn to design a feed-
back law that keeps the system near its equilibrium poinsiggeof dynamics).
Thus, feedback can be used to make sure that solutions refoa@to the equi-
librium point, which in turn ensures that the linear appnoation used to stabilize
it is valid.

Linear approximations can also be used to understand thiéitgtabnonequi-
librium solutions, as illustrated by the following example

Example 4.8 Stable limit cycle

Consider the system given by equation (4.6),
Xm dXZ
dt dt

whose phase portraitis shown in Figure 4.5. The differengjabéon has a periodic

solution

=X+ x1(1—x¢ — X), = —x1+ Xo(1—x¢ — X),

X1(t) = x1(0) cost + x»(0) sint, (4.12)

with x2(0) + x2(0) = 1.
To explore the stability of this solution, we introduce potaordinates and
@, which are related to the state variablgsandx, by

X1 =T COSp, X2 =T Sing.
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Differentiation gives the following linear equations foand¢:
Xy =rfCcosp —rgsing, X, =rSing +r¢ cosy.
Solving this linear system farandg gives, after some calculation,

dr 2 do

dt_r(l ro, T 1

Notice that the equations are decoupled; hence we can arthlyztability of each
state separately.

The equation for has three equilibriac = 0,r = 1 andr = —1 (not realiz-
able sinca must be positive). We can analyze the stability of theselibgiai by
linearizing the radial dynamics witR (r) = r (1 — r?). The corresponding linear
dynamics are given by

dr oF 2

i o rer =A-=-3rHr, re=0,1,
where we have abused notation and usdd represent the deviation from the
equilibrium point. It follows from the sign ofl — 3r2) that the equilibriunt =0
is unstable and the equilibrium= 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes to= 1 as time goes to infinity, but if the system
starts withr = 0, it will remain at the equilibrium for all times. This impBehat
all solutions to the original system that do not starkat x, = 0 will approach
the circlex? + x2 = 1 as time increases.

To show the stability of the full solution (4.12), we must@stigate the behavior
of neighboring solutions with different initial conditisnWe have already shown
that the radius will approach that of the solution (4.12) as longr&8) > 0. The
equation for the angle can be integrated analytically to giygt) = —t + ¢(0),
which shows that solutions starting at different anglesill neither converge nor
diverge. Thus, the unit circle &tracting but the solution (4.12) is only stable, not
asymptotically stable. The behavior of the system is ilhtetl by the simulation
in Figure 4.12. Notice that the solutions approach the ciagedly, but that there
is a constant phase shift between the solutions. \%

4.4 Lyapunov Stability Analysis

We now return to the study of the full nonlinear system

% = F(x), xeR" (4.13)

Having defined when a solution for a nonlinear dynamical sgstestable, we
can now ask how to prove that a given solution is stable, asytioplly stable
or unstable. For physical systems, one can often argue aalitity based on
dissipation of energy. The generalization of that techniguarbitrary dynamical
systems is based on the use of Lyapunov functions in placeestg.
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Figure 4.12:Solution curves for a stable limit cycle. The phase portrait on the left shiost
the trajectory for the system rapidly converges to the stable limit cycle. fHnng points
for the trajectories are marked by circles in the phase portrait. The timaidgiots on the
right show that the states do not converge to the solution but instead maictstant phase
error.

In this section we will describe techniques for determintimg stability of so-
lutions for a nonlinear system (4.13). We will generally heerested in stability
of equilibrium points, and it will be convenient to assumattk, = 0 is the equi-
librium point of interest. (If not, rewrite the equationsamew set of coordinates
Z=X—Xe.)

Lyapunov Functions

A Lyapunov function V. R" — R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, itesefind a nonnegative
function that always decreases along trajectories of te&enmy, we can conclude
that the minimum of the function is a stable equilibrium gdiocally).

To describe this more formally, we start with a few definitiode say that a
continuous functiorV is positive definitéf V (x) > 0 for all x # 0 andV (0) = 0.
Similarly, a function isnegative definitéf V(x) < 0 for all x £ 0 andV (0) = 0.
We say that a functioV is positive semidefinité V (x) > 0 for all x, butV (x)
can be zero at points other than just 0.

To illustrate the difference between a positive definite fiomcand a positive
semidefinite function, suppose that R? and let

Vi(x) = X2, Va(X) = xZ 4 x3.

Both V; andV, are always nonnegative. However, it is possibleVfpito be zero
even ifx # 0. Specifically, if we sex = (0, ¢), wherec € R is any nonzero
number, therV;(x) = 0. On the other hand/>(x) = 0 if and only ifx = (0, 0).
ThusV; is positive semidefinite and, is positive definite.

We can now characterize the stability of an equilibrium pein= 0 for the
system (4.13).

Theorem 4.2(Lyapunov stability theorem)Let V be a nonnegative function on
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Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov funchbix) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system vélsivause/ (x)

to decrease along the trajectory.

R" and letV represent the time derivative of V along trajectories & #ystem
dynamicg4.13) g

ovdx oV

=——=—F®X).

ox dt  ox )
Let B = B;(0) be a ball of radius r around the origin. If there existsr 0 such
that V is positive definite and is negative semidefinite for all« Br_, thenx=0
is locally stable in the sense of Lyapunov. If V is positiiinite andV is negative
definite in B, then x= 0is locally asymptotically stable.

If V satisfies one of the conditions above, we say tha a (local)Lyapunov
functionfor the system. These results have a nice geometric intatjmet The
level curves for a positive definite function are the curvefinge by V (x) = c,
¢ > 0, and for eacfe this gives a closed contour, as shown in Figure 4.13. The
condition thatV (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories ntowenaller and smaller
values ofV and ifV is negative definite thex must approach O.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system

dx 2 «

dt  1+x
This system has equilibrium pointsxat= 1 andx = —2. We consider the equilib-
rium point atx = 1 and rewrite the dynamics usiag= x — 1.

dz 2 ,

dt 24z ’
which has an equilibrium point & = 0. Now consider the candidate Lyapunov
function

1
V(z) = Ezz,
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which is globally positive definite. The derivative ®f along trajectories of the
system is given by 5
. z
V@ =z2zz=—""-72-12
242
If we restrict our analysis to an intervB}, wherer < 2, then 2+ z > 0 and we

can multiply through by 2+ z to obtain
22— (ZZ4+22+2=-22-322=-72(z+3) <0, zeB,r <2

It follows thatV(z) < O forall z € B;, z # 0, and hence the equilibrium point
Xe = 1 is locally asymptotically stable. \%

A slightly more complicated situation occurs\ifis negative semidefinite. In
this case itis possible thet(x) = 0 whenx # 0, and henc& could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum

A normalized model for a hanging pendulum is
dxq — dx
dat ~ 2 dt

where x; is the angle between the pendulum and the vertical, withtigesk,

corresponding to counterclockwise rotation. The equataman equilibriumx; =

X2 = 0, which corresponds to the pendulum hanging straight ddaexplore the

stability of this equilibrium we choose the total energy ayapunov function:

= —SinXxy,

1,1, 1,
V(X) =1—cosx; + Ex2 A Ex1 + Ex2.
The Taylor series approximation shows that the function sitpe definite for

smallx. The time derivative oV (x) is

V = X1 SiNX1 + XoXo = X SiNX; — X2 Sinxy = 0.
Since this function is positive semidefinite, it follows fromdpunov’s theorem that
the equilibrium is stable but not necessarily asymptdiicalble. When perturbed,
the pendulum actually moves in a trajectory that corresptmdonstant energyV

Lyapunov functions are not always easy to find, and they aremque. In many
cases energy functions can be used as a starting point, @wnas Example 4.10.
It turns out that Lyapunov functions can always be found fgrstable system (un-
der certain conditions), and hence one knows that if a systetable, a Lyapunov
function exists (and vice versa). Recent results using sf:aguares methods have
provided systematic approaches for finding Lyapunov sys{&R&02]. Sum-of-
squares techniques can be applied to a broad variety ofhsysiiecluding systems
whose dynamics are described by polynomial equations, khasveybrid systems,
which can have different models for different regions ofestpace.

For a linear dynamical system of the form

dx_

— = AX
dt

2
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it is possible to construct Lyapunov functions in a systécmaganner. To do so, we
consider quadratic functions of the form

V(x) = x" Px,

whereP e R"*" is a symmetric matrix® = PT). The condition tha¥ be positive
definite is equivalent to the condition thtbe apositive definite matrix

xTPx>0, forallx#0,

which we write as® > 0. It can be shown that P is symmetric, ther is positive
definite if and only if all of its eigenvalues are real and pgsit

Given a candidate Lyapunov functiah(x) = x" Px, we can now compute its
derivative along flows of the system:

_ ovdx

©oox dt
The requirement tha' be negative definite (for asymptotic stability) becomes a
condition that the matrixQ be positive definite. Thus, to find a Lyapunov function

for a linear system it is sufficient to chooseQa > 0 and solve thd.yapunov
equation

=X (ATP + PAX = —x' Qx.

ATP+PA=-Q. (4.14)

This is a linear equation in the entries Bf and hence it can be solved using
linear algebra. It can be shown that the equation always kakision if all of the
eigenvalues of the matriR are in the left half-plane. Moreover, the solutienis
positive definite ifQ is positive definite. Itis thus always possible to find a quadrat
Lyapunov function for a stable linear system. We will defgsraof of this until
Chapter 5, where more tools for analysis of linear systemivwideveloped.
Knowing that we have a direct method to find Lyapunov functifordinear

systems, we can now investigate the stability of nonlingatesns. Consider the
system

dx

dt
whereF (0) = 0 andF (x) contains terms that are second order and higher in the
elements ok. The functionAx is an approximation of (x) near the origin, and we
can determine the Lyapunov function for the linear appr@tion and investigate if
itis also a Lyapunov function for the full nonlinear systérhe following example
illustrates the approach.

F(x) =: AX+ F(X), (4.15)

Example 4.11 Genetic switch
Consider the dynamics of a set of repressors connectedhtagiet a cycle, as
shown in Figure 4.14a. The normalized dynamics for this systeme given in

Exercise 15:
ercise 15 dzl_ p dzz_ p

L I - _
dr 1+ 72 b dr 1+ 7]

wherez; and z, are scaled versions of the protein concentrationand ¢ are

Z3, (4 16)
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(a) Circuit diagram (b) Equilibrium points
Figure 4.14: Stability of a genetic switch. The circuit diagram in (a) represents two ptein
that are each repressing the production of the other. The inpw@sdu, interfere with this

repression, allowing the circuit dynamics to be modified. The equilibriumtgdor this
circuit can be determined by the intersection of the two curves shown.in (b)

parameters that describe the interconnection betweeretiesg@nd we have set the
external inputsl; andu, to zero.
The equilibrium points for the system are found by equatiegithe derivatives
to zero. We define
n—1
fw=-t" pu=2
14+un du (1+um?

and the equilibrium points are defined as the solutions of go@tons
Z] = f(Zz), Zy = f(Zl).

If we plot the curveqdz, f(z1)) and(f(z), z2) on a graph, then these equations
will have a solution when the curves intersect, as shown inréig.14b. Because
of the shape of the curves, it can be shown that there willydva three solutions:
one atzge = Zpe, One withzye < 75 and one withege > Zpe. If 1 > 1, then we can
show that the solutions are given approximately by
1 1
e N U, L™ 1 Z1e = Z2e; Z1e N F, Ze = U. (4-17)

To check the stability of the system, we writ€u) in terms of its Taylor series

expansion aboute:

f(u) = f(Ue) + f'(Ue) - (U—Ue) + f”(Ue) - (U — UE)? + higher-order terms

where f’ represents the first derivative of the function, ardthe second. Using
these approximations, the dynamics can then be written as

d_w_[ -1 f/(ZZe)]
dt | f'(ze) -1

wherew = z—zis the shifted state arfél(w) represents quadratic and higher-order

w + If(u)),
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terms.
We now use equation (4.14) to search for a Lyapunov func@boosingQ = |
and lettingP e R?*2 have elements;;, we search for a solution of the equation

-1 f ) [Pu Pe|  fPu pel -1 ] _[-1 0

fi =1} | P2 P22 P12 P22 f, -1 0o -1}°
where f{ = f'(z4e) and f; = f'(zz). Note that we have sgh; = p;» to force P
to be symmetric. Multiplying out the matrices, we obtain

—2p11+ 2f;p12 Purf] —2p1o+ p2fz| _ [-1 O
P11f{ — 2p12 + pa2f; —2p22+ 21 p12 0 -1

which is a set ofinear equations for the unknowns; . We can solve these linear
equations to obtain

f12— £/ +2 f{+ f; f,2 — £/ f5+2

p11=—ms plZ:_m’ P2z = — 4(f1f, -1

To check thaV (w) = w' Pw is a Lyapunov function, we must verify thelt(w) is
positive definite function or equivalently thRt> 0. SinceP is a 2x 2 symmetric
matrix, it has two real eigenvaluésg and 1, that satisfy

A+ A= trace(P), A1-Ar = det(P).

In order forP to be positive definite we must have thatand A, are positive, and
we thus require that

f2—2f,f/4+ 1,74+ 4 20, deP)— f12—21f5 1+ f57+4

tracgP) =
&«P) 4-4f1/f; 16— 161/ f,

> 0.

We see that trad®) = 4det(P) and the numerator of the expressions is just
(f1 — f2)2+4 > 0, so it suffices to check the sign of1 f; f,. In particular, for
P to be positive definite, we require that

f'(z1e) f'(22e) < 1.

We can now make use of the expressionsffodefined earlier and evaluate at
the approximate locations of the equilibrium points detireequation (4.17). For
the equilibrium points where;e # 75, we can show that

™t Y
T @t T e T

Usingn = 2 andu = 200 from Exercise 15, we see th&(z;e) f'(z2¢) < 1 and
henceP is a positive definite. This implies thdtis a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the system (4.16) is stable, we now compuaethe equilibrium

1
f(z10) (220) ~ 10 1)
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Figure 4.15:Dynamics of a genetic switch. The phase portrait on the left shows thewite
has three equilibrium points, corresponding to protein A having a coratemtigreater than,
equal to or less than protein B. The equilibrium point with equal protein extnations is
unstable, but the other equilibrium points are stable. The simulation on theskgtvs the
time response of the system starting from two different initial conditions ifiitial portion of
the curve corresponds to initial concentratia(® = (1, 5) and converges to the equilibrium
whereze < . Attimet = 10, the concentrations are perturbed{d¥ in z; and—2 in zp,
moving the state into the region of the state space whose solutions convérgetilibrium
point wherezye < Zze.

point. By construction,
V=uw"(PA+ AP)uw + F'(w)Pw + v PF (w)
=—w'w+ F'(w)Pw + w'PF(w).

Since all terms irF are quadratic or higher order in, it follows that F T(w) Pw
andwTPF (w) consist of terms that are at least third ordewinTherefore ifw
is sufficiently close to zero, then the cubic and higher-otdens will be smaller
than the quadratic terms. Hence, sufficiently close te 0, Vis negative definite,
allowing us to conclude that these equilibrium points arénlstable.

Figure 4.15 shows the phase portrait and time traces for ammysith 4 = 4,
illustrating the bistable nature of the system. When thigintondition starts with
a concentration of protein B greater than that of A, the smtutonverges to the
equilibrium point at (approximately)1/."1, x). If A is greater than B, then it
goes to(u, 1/u"1). The equilibrium point withz;e = 2z, is unstable. \%

More generally, we can investigate what the linear appraxion tells about
the stability of a solution to a nonlinear equation. The fwilog theorem gives a
partial answer for the case of stability of an equilibriunino

Theorem 4.3. Consider the dynamical systeh 15)with F(0) = 0 and F such
thatlim ||F (x)||/||x]| — Oas||x|| — O. If the real parts of all eigenvalues of A are
strictly less than zero, then.x= 0 is a locally asymptotically stable equilibrium
point of equation(4.15)

This theorem implies that asymptotic stability of the linegproximation im-
plieslocal asymptotic stability of the original nonlinear system. Tinedrem is very
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important for control because it implies that stabilizatas a linear approximation
of a nonlinear system results in a stable equilibrium forrtbelinear system. The
proof of this theorem follows the technique used in Exampld 4A formal proof
can be found in [KhaO1].

Krasovski—Lasalle Invariance Principle

For general nonlinear systems, especially those in symfaolin, it can be difficult
to find a positive definite functio whose derivative is strictly negative definite.
The Krasovski—Lasalle theorem enables us to conclude themstimstability of
an equilibrium point under less restrictive conditionsnedy, in the case wheré
is negative semidefinite, which is often easier to constHiivever, it applies only
to time-invariant or periodic systems. This section makesafssome additional
concepts from dynamical systems; see Hahn [Hah67] or Klikdi&01] for a more
detailed description.
We will deal with the time-invariant case and begin by introihg a few more

definitions. We denote the solution trajectories of the timariant system

dx

Tl F(x) (4.18)
asx(t : a), which is the solution of equation (4.18) at timetarting froma at
to = 0. Thew limit setof a trajectoryx(t; a) is the set of all pointz € R" such
that there exists a strictly increasing sequence of tigpesich thatx(t,; a) —» z
asn — oo. AsetM c R" is said to be amvariant setif for all b € M, we have
X(t;b) € M forallt > 0. It can be proved that the limit set of every trajectory
is closed and invariant. We may now state the Krasovski—leapahciple.

Theorem 4.4(Krasovski—Lasalle principle)Let V : R" — R be alocally positive
definite function such that on the compactQet= {x € R" : V(X) < r} we have
V(x) < 0. Define

S={xeQ :V(x) =0}

As t— oo, the trajectory tends to the largest invariant set insidé &; itsw limit
set is contained inside the largest invariant set in S. Irtipatar, if S contains no
invariant sets other than »x 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].

Lyapunov functions can often be used to design stabilizimgtrollers, as is
illustrated by the following example, which also illusgathow the Krasovski—
Lasalle principle can be applied.

Example 4.12 Inverted pendulum
Following the analysis in Example 2.7, an inverted pendulamize described by
the following normalized model:

dX]_

dx; .
5 = =2 = sinx; + U COSXy, (4.19)

dt
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Figure 4.16: Stabilized inverted pendulum. A control law applies a foucat the bottom
of the pendulum to stabilize the inverted position (a). The phase portragh(@ys that
the equilibrium point corresponding to the vertical position is stabilized. Thded region
indicates the set of initial conditions that converge to the origin. The ellipsesgmonds to a
level set of a Lyapunov functio (x) for whichV (x) > 0 andV (x) < 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction otiilileragn point.

The actual dynamics of the system evolve on a manifold (c).

wherex; is the angular deviation from the upright position and the (scaled)
acceleration of the pivot, as shown in Figure 4.16a. The sy$t@snan equilib-
rium atx; = X, = 0, which corresponds to the pendulum standing upright. This

equilibrium is unstable.
To find a stabilizing controller we consider the following dadate for a Lya-

punov function:
1.2 1 5 2
V (x) = (cosx; — 1) + a(1 — cos x1) + X5 ~ (a— é)xl +5%.

The Taylor series expansion shows that the function is pesitefinite near the
origin if a > 0.5. The time derivative oY (x) is

V = —X; SinXg 4+ 2ax%; SiNX; COSX1 4+ %X = Xo(U + 2aSiNX;) COSXy.

Choosing the feedback law
U = —2asinX; — Xp COSX1

gives .
V = —x3cos x;.

It follows from Lyapunov’s theorem that the equilibrium exhlly stable. However,
since the function is only negative semidefinite, we cannatkale asymptotic
stability using Theorem 4.2. However, note that= 0 implies thatx, = 0 or

X1 =rm/2+nx.
If we restrict our analysis to a small neighborhood of thgiorl),, r « 7/2,

then we can define
S={(X1, X2) € Q : X2 =0}
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and we can compute the largest invariant set inSideor a trajectory to remain
in this set we must have, = 0 for all t and hencex,(t) = 0 as well. Using the
dynamics of the system (4.19), we see thdt) = 0 andx,(t) = 0 impliesx,(t) =
0 as well. Hence the largest invariant set insgde (x;, x2) = 0, and we can use the
Krasovski—Lasalle principle to conclude that the originasdlly asymptotically
stable. A phase portrait of the closed loop system is shoviaigare 4.16b.

In the analysis and the phase portrait, we have treated tie afthe pendulum
6 = x; as a real number. In faai,is an angle withd = 2z equivalent t? = 0.
Hence the dynamics of the system actually evolves maifold(smooth surface)
as shown in Figure 4.16c. Analysis of nonlinear dynamicalesys on manifolds
is more complicated, but uses many of the same basic idessntesl here. V

4.5 Parametric and Nonlocal Behavior

Most of the tools that we have explored are focused on thd lwslsavior of a
fixed system near an equilibrium point. In this section weflyrimtroduce some
concepts regarding the global behavior of nonlinear systana the dependence
of a system'’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear systeramestart by finding
the equilibrium points. We can then proceed to analyze tbal loehavior around
the equilibria. The behavior of a system near an equilibriomfas called thdocal
behavior of the system.

The solutions of the system can be very different far away famnequilibrium
point. This is seen, for example, in the stabilized penduluixample 4.12. The
inverted equilibrium point is stable, with small osciltaris that eventually converge
to the origin. But far away from this equilibrium point thesee trajectories that
converge to other equilibrium points or even cases in whiehpendulum swings
around the top multiple times, giving very long oscillatsathat are topologically
different from those near the origin.

To better understand the dynamics of the system, we can arairé set of all
initial conditions that converge to a given asymptoticaligble equilibrium point.
This set is called theegion of attractionfor the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figuréb4.In general,
computing regions of attraction is difficult. However, evewe cannot determine
the region of attraction, we can often obtain patches ardbedtable equilibria
that are attracting. This gives partial information aboethihavior of the system.

One method for approximating the region of attraction i®tigh the use of
Lyapunov functions. Suppose thdtis a local Lyapunov function for a system
around an equilibrium poing. LetQ, be a set on whicN (x) has a value less than
r,

Q ={xeR":V(X) <r},
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and suppose that (x) < 0 for all x € Q, with equality only at the equilibrium
point Xo. ThenQ, is inside the region of attraction of the equilibrium poiBince
this approximation depends on the Lyapunov function andhioéce of Lyapunov
function is not unique, it can sometimes be a very consemvastimate.

It is sometimes the case that we can find a Lyapunov fundatiench thatv is
positive definite and/ is negative (semi-) definite for atl € R". In this case it can
be shown that the region of attraction for the equilibriuninpds the entire state
space, and the equilibrium point is said todiebally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Exa@d2. The Lyapunov
function for the system was

1
V(x) = (cosxy — 1) + a(l — cos' xy) + Exg,

andV was negative semidefinite for alland nonzero wher; # 4+ /2. Hence
for any x such thaix,| < z/2,V(x) > 0 will be inside the invariant set defined
by the level curves of (x). One of these level sets is shown in Figure 4.168.

Bifurcations

Another important property of nonlinear systems is howrthehavior changes as
the parameters governing the dynamics change. We can dtigdiyn tthe context
of models by exploring how the location of equilibrium pantheir stability, their
regions of attraction and other dynamic phenomena, su@imésycles, vary based
on the values of the parameters in the model.
Consider a differential equation of the form
dx

g =F0om, xe R", u € RX, (4.20)

wherex is the state and is a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

F(x, u) =0,

and asu is varied, the corresponding solutiong ) can also vary. We say that the

system (4.20) has bifurcationat ¢ = u* if the behavior of the system changes
qualitatively atu*. This can occur either because of a change in stability ty@e or
change in the number of solutions at a given valug of

Example 4.14 Predator—prey
Consider the predator—prey system described in SectiormBerdynamics of the
system are given by

dH ( H ) aHL dL aHL

R 1— — —_— =
dt k c+H’ dt bc+H

—dL, (4.21)
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Figure 4.17: Bifurcation analysis of the predator—prey system. (a) Parametric stadiidity
gram showing the regions in parameter space for which the system is ggtB&urcation
diagram showing the location and stability of the equilibrium point as a funcfi@ ®he
solid line represents a stable equilibrium point, and the dashed line refresennstable
equilibrium point. The dashed-dotted lines indicate the upper and lowerdsdanthe limit
cycle atthat parameter value (computed via simulation). The nomina@wvafihe parameters
in the model area = 3.2,b = 0.6,c = 50,d = 0.56,k = 125 and = 1.6.

whereH andL are the numbers of hares (prey) and lynxes (predatorspabd
¢, d, k andr are parameters that model a given predator—prey systeroritoes
in more detail in Section 3.7). The system has an equilibriumt@t He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behafibe system, we
choose to focus on two specific parameters of inteegsitie interaction coefficient
between the populations amgda parameter affecting the prey consumption rate.
Figure 4.17ais a numerically computgdrametric stability diagranshowing the
regions in the chosen parameter space for which the equitibpoint is stable
(leaving the other parameters at their nominal values). &gd®m this figure that
for certain combinations @& andc we get a stable equilibrium point, while at other
values this equilibrium point is unstable.

Figure 4.17b is a numerically computbiurcation diagramfor the system. In
this plot, we choose one parameter to vaygnd then plot the equilibrium value of
one of the states{) on the vertical axis. The remaining parameters are set io the
nominal values. A solid line indicates that the equilibripoint is stable; a dashed
line indicates that the equilibrium point is unstable. Ntftat the stability in the
bifurcation diagram matches that in the parametric stgallagram forc = 50 (the
nominal value) an@ varying from 1.35 to 4. For the predator—prey system, when
the equilibrium point is unstable, the solution converges stable limit cycle. The
amplitude of this limit cycle is shown by the dashed-dottieé in Figure 4.17b.

\Y%

A particular form of bifurcation that is very common when tmtliing linear
systems is that the equilibrium remains fixed but the stgbiiftthe equilibrium
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Figure 4.18: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle veloditye system is
stable when all eigenvalues have negative real part (shaded reffi@mplot in (b) shows the
locus of eigenvalues on the complex plane as the velacityvaried and gives a different
view of the stability of the system. This type of plot is calletbat locus diagram

changes as the parameters are varied. In such a case itaimgue plot the eigen-
values of the system as a function of the parameters. Such atetcalledoot
locus diagramsecause they give the locus of the eigenvalues when parnamete
change. Bifurcations occur when parameter values are batthere are eigenval-
ues with zero real part. Computing environments such LabVIEMTLAB and
Mathematica have tools for plotting root loci.

Example 4.15 Root locus diagram for a bicycle model

Considerthe linear bicycle model given by equation (3. 8gntion 3.2. Introducing
the state variable®; = ¢, X = 0, X3 = ¢ andxq = § and setting the steering
torqueT = 0, the equations can be written as

dx 0 I
dt | =M~%(Ko + Ka03) —M~1Coyg

wherel is a 2x 2 identity matrix andyg is the velocity of the bicycle. Figure 4.18a
shows the real parts of the eigenvalues as a function of wgldeigure 4.18b
shows the dependence of the eigenvalues of the velocityy. The figures show
that the bicycle is unstable for low velocities because twgemvalues are in the
right half-plane. As the velocity increases, these eigiel@samove into the left
half-plane, indicating that the bicycle becomes selffitahg. As the velocity is
increased further, there is an eigenvalue close to themitigit moves into the right
half-plane, making the bicycle unstable again. Howevas, ¢éigenvalue is small
and so it can easily be stabilized by a rider. Figure 4.18a stibat the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. \%

X =: AX

&

Parametric stability diagrams and bifurcation diagrams geovide valuable
insights into the dynamics of a nonlinear system. It is Uguscessary to carefully
choose the parameters that one plots, including combihi@géatural parameters
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Figure 4.19:Headphones with noise cancellation. Noise is sensed by the exterior tmc®p
(a) and sent to a filter in such a way that it cancels the noise that penétatesad phone
(b). The filter parametems andb are adjusted by the controllé.represents the input signal
to the headphones.

of the system to eliminate extra parameters when possildmpQter programs
such asAUTO, LOCBI F andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations tosdg feedback laws
that stabilize an equilibrium point and provide a desiregeleof performance.
However, for some classes of problems the feedback comtrallist be nonlinear to
accomplish its function. By making use of Lyapunov funciove can often design
a nonlinear control law that provides stable behavior, asavein Example 4.12.

One way to systematically design a nonlinear controllemibégin with a
candidate Lyapunov functiol (x) and a control system = f(x,u). We say
that V (x) is acontrol Lyapunov functioif for every x there exists al such that
V(x) = 2L f(x,u) < 0. In this case, it may be possible to find a functiofx)
such thatu = a(x) stabilizes the system. The following example illustrates th
approach.

Example 4.16 Noise cancellation

Noise cancellation is used in consumer electronics andduositrial systems to
reduce the effects of noise and vibrations. The idea is tdljoeduce the effect of
noise by generating opposing signals. A pair of headphoitbswise cancellation
such as those shown in Figure 4.19a is a typical example. Arsatiediagram of
the system is shown in Figure 4.19b. The system has two micrgshone outside
the headphones that picks up exterior nois@d another inside the headphones that
picks up the signag, which is a combination of the desired signal and the externa
noise that penetrates the headphone. The signal from theoextécrophone is
filtered and sent to the headphones in such a way that it cathee¢xternal noise
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that penetrates into the headphones. The parameters of ¢éheafidtadjusted by a
feedback mechanism to make the noise signal in the interitabphone as small
as possible. The feedback is inherently nonlinear becauszstby changing the
parameters of the filter.

To analyze the system we assume for simplicity that the gafian of external
noise into the headphones is modeled by a first-order dynagyiseem described
by

d_Z = apzZ + bgn, (422)
dt
wherezis the sound level and the paramet&ys< 0 andbg are not known. Assume
that the filter is a dynamical system of the same type:

dw
— =a bn.
at ot
We wish to find a controller that updatesandb so that they converge to the
(unknown) parametergy andby. Introducex; = e = w — z, X, = a — ap and
X3 = b — bg; then
Xm
T a(w —2) + (a—ag)w + (b — bp)n = agxy + Xow + X3N. (4.23)
We will achieve noise cancellation if we can find a feedbackflanchanging the
parameters. andb so that the erroe goes to zero. To do this we choose

1
V04, %o, Xa) = 5 (X + 5 + X3)
as a candidate Lyapunov function for (4.23). The derivative @s
V = aX1X1 + XoXo + X3X3 = Ola()Xf + Xz(Xz + O(LUXl) + X3(X3 + onxy).

Choosing
Xo = —qwX] = —awe, X3 = —aNX; = —ane, (4.24)

we find thatV = aagx? < 0, and it follows that the quadratic function will decrease
as long a® = x; = w — z # 0. The nonlinear feedback (4.24) thus attempts to
change the parameters so that the error between the sighth@noise is small.
Notice that feedback law (4.24) does not use the model (£23)citly.

A simulation of the system is shown in Figure 4.20. In the satiaoh we have
represented the signal as a pure sinusoid and the noise & lbeod noise. The
figure shows the dramatic improvement with noise cancefiafitne sinusoidal
signal is not visible without noise cancellation. The filtergraeters change quickly
from their initial valuesa = b = 0. Filters of higher order with more coefficients
are used in practice. \%
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Figure 4.20:Simulation of noise cancellation. The top left figure shows the headpligmed s
without noise cancellation, and the bottom left figure shows the signal wiglke cancellation.
The right figures show the parametarandb of the filter.

4.6 Further Reading

The field of dynamical systems has a rich literature that clarzes the possi-
ble features of dynamical systems and describes how patiarobainges in the
dynamics can lead to topological changes in behavior. Réadkatroductions to
dynamical systems are given by Strogatz [Str94] and the hifjbstrated text by
Abraham and Shaw [AS82]. More technical treatments includdrémov, Vitt and

Khaikin [AVK87], Guckenheimer and Holmes [GH83] and Wiggifwig90]. For

students with a strong interest in mechanics, the texts hpld{Arn87] and Mars-
den and Ratiu [MR94] provide an elegant approach using tioois differential

geometry. Finally, good treatments of dynamical systemsaukst in biology are
given by Wilson [Wil99] and Eliner and Guckenheimer [EGO5]. fiéhis a large lit-

erature on Lyapunov stability theory, including the classkts by Malkin [Mal59],

Hahn [Hah67] and Krasovski [Kra63]. We highly recommend ¢benprehensive
treatment by Khalil [KhaO1].

Exercises

27 (Time-invariant systems) Show that if we have a solution ef differential
equation (4.1) given by(t) with initial conditionx(tg) = X, thenX(z) = x(t —tp)
is a solution of the differential equation

dx

5 =F®

with initial conditionX(0) = Xo, wherer =t — to.

28 (Flow in a tank) A cylindrical tank has cross sectidnm?, effective outlet
areaa m? and inflowg;, m3/s. An energy balance shows that the outlet velocity is
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v = +/2gh m/s, whereg m/s? is the acceleration of gravity aridis the distance
between the outlet and the water level in the tank (in met8ig)w that the system
can be modeled by

—_— = ——F q|n, Qout = a\/ﬁ‘

Usethe parametetts =0.2,a=0.01. Slmulate the system when the inflow is zero
and the initial level i = 0.2. Do you expect any difficulties in the simulation?

29 (Cruise control) Consider the cruise control system dbedrin Section 3.1.
Generate a phase portrait for the closed loop system on flandri@ = 0), in third
gear, using a Pl controller (witk, = 0.5 andk; = 0.1), m = 1000 kg and desired
speed 20 m/s. Your system model should include the effedatafating the input
between 0 and 1.

30 (Lyapunov functions) Consider the second-order system

dxl— ax dxz_ bx; — cx:
dt - 19 dt - 1 23

wherea, b, ¢ > 0. Investigate whether the functions

1 1
=x3,  Va(x) = _Xl +5 ( 2+ X1)2

2
are Lyapunov functions for the system and give any condattbat must hold.

1
Vi(X) = X1 +

31 (Damped spring—mass system) Consider a damped spring-systesn with
dynamics
md + cq + kg = 0.
A natural candidate for a Lyapunov function is the total ggef the system, given
b
' V= g2+ Zkep
— MR
Use the Krasovski—Lasalle theorem to show that the systesyistotically stable.

32 (Electric generator) The following simple model for an el&ctrenerator con-
nected to a strong power grid was given in Exercise 13:

d? EV |
\]d—t(g = Pm— Pe= Pm—78|n(0.
The parameter
_ Prax _ EV (4.25)
~ Pn XPn '

is the ratio between the maximum deliverable powgs = EV/ X and the me-
chanical poweiPy,.

(a) Considera as a bifurcation parameter and discuss how the equilibipe
ona.
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(b) Fora > 1, show that there is a center@ = arcsin(l/a) and a saddle at
» =7n — Qo-
(c) Show thatifP,,/J = 1 there is a solution through the saddle that satisfies

1,/dp\2
E(d—f) — @ +¢pog—acosp —vaz—1=0. (4.26)

Use simulation to show that the stability region is the iimieof the area enclosed
by this solution. Investigate what happens if the systenm isquilibrium with a
value ofa that is slightly larger than 1 aralsuddenly decreases, corresponding to
the reactance of the line suddenly increasing.

33(Lyapunov equation) Show that Lyapunov equation (4.14) gbteas a solution

if all of the eigenvalues oA are in the left half-plane. (Hint: Use the fact that
the Lyapunov equation is linear iR and start with the case whefehas distinct
eigenvalues.)

34 (Congestion control) Consider the congestion control jgmolaescribed in Sec-
tion 3.4. Confirm that the equilibrium point for the systemiigeg by equation (3.21)
and compute the stability of this equilibrium point usingreelr approximation.

35 (Swinging up a pendulum) Consider the inverted penduluntudsed in Ex-
ample 4.4, that is described by

0 = sinf 4+ ucosh,
whered is the angle between the pendulum and the vertical and theotsignal
u is the acceleration of the pivot. Using the energy function
. 1.
V(0,0) =cosd —1+ 592,
show that the state feedbagk= k(Vy — V)@ cosd causes the pendulum to “swing
up” to the upright position.

36 (Root locus diagram) Consider the linear system

dx 0 1 -1

a:[o _3]x+[4]u, y:[l O]x,
with the feedbacki = —Kky. Plot the location of the eigenvalues as a function the
parametek.

37 (Discrete-time Lyapunov function) Consider a nonlineacdéte-time system
with dynamicsx[k + 1] = f(x[k]) and equilibrium point. = 0. Suppose there
exists a smooth, positive definite functign R" — R suchtha¥/ (f (x))—V(X) <

0 for x # 0 and V(0) = 0. Show that, = 0 is (locally) asymptotically stable.

38 (Operational amplifier oscillator) An op amp circuit for arcibigtor was shown
in Exercise 21. The oscillatory solution for that linear citouas stable but not
asymptotically stable. A schematic of a modified circuit theg nonlinear elements
is shown in the figure below.
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e ae

The modification is obtained by making a feedback around eaetratipnal am-
plifier that has capacitors using multipliers. The sigaak v? + v3 — 3 is the
amplitude error. Show that the system is modeled by

doy Ry 1 2_ .2 _ .2

dt = RRG 2 T Ruc, o T vi T v2):

dl)z 1 1

it - RG™T RuCh

Show that the circuit gives an oscillation with a stable ligyitle with amplitude
vo. (Hint: Use the results of Example 4.8.)

02(03 — 02 —v3).

39 (Self-activating genetic circuit) Consider the dynamicsafenetic circuit that

implementsself-activationthe protein produced by the gene is an activator for the

protein, thus stimulating its own production through pesifeedback. Using the

models presented in Example 2.13, the dynamics for the systarbe written as
dm ap? dp

for p, m > 0. Find the equilibrium points for the system and analyze tuall

stability of each using Lyapunov analysis.

40 (Diagonal systems) LeA € R"™ " be a square matrix with real eigenvalues
A1, ..., An @nd corresponding eigenvectars. . ., vy.

(a) Show that if the eigenvalues are distingt £ 4j fori # j), theno; # v; for
i # .

(b) Show that the eigenvectors form a basisfrso that any vectok can be
written asx = > ajv; for a; € R.

(c) LetT = [vl vy ... vn] and show thal ~tAT is a diagonal matrix of
the form (4.8).
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(d) Show that if some of thg; are complex numbers, thekcan be written as
A1 0
A= where Aj=1€R or Ai:[(7 w]
0 Ak
in an appropriate set of coordinates.
This form of the dynamics of a linear system is often referceddmodal form

41 (Furuta pendulum) The Furuta pendulum, an inverted penduluan romating
arm, is shown to the left in the figure below.

Pendulum anglé/z
o

0 5 10 15 20
Angular velocitym

Consider the situation when the pendulum arm is spinnin eonstant rate. The
system has multiple equilibrium points that depend on tlgukan velocityw, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

Jof — Jpwd sind cosh — mygl sing = 0,

whereJ, is the moment of inertia of the pendulum with respect to ®pim,, is
the pendulum mass,is the distance between the pivot and the center of mass of
the pendulum andy is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the condi{pfor stability of each
equilibrium point (in terms oéog).

(b) Consider the angular velocity as a bifurcation paramextel verify the bifur-
cation diagram given above. This is an example pitehfork bifurcation

42 (Routh-Hurwitz criterion) Consider a linear differentedjuation with the char-
acteristic polynomial
IS)=s>+as+ay, A(S) =S+ as® + aps+ as.

Show that the system is asymptotically stable if and onlylifte coefficientsy;
are positive and if;a, > ag. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.



