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Preface

This book provides an introduction to the basic principles &mols for the design
and analysis of feedback systems. It is intended to serveeasd audience of
scientists and engineers who are interested in undersigadd utilizing feedback
in physical, biological, information and social systems Néve attempted to keep
the mathematical prerequisites to a minimum while beingfcémnot to sacrifice
rigor in the process. We have also attempted to make use wifgga from a variety
of disciplines, illustrating the generality of many of tlets while at the same time
showing how they can be applied in specific application dogain

A major goal of this book is to present a concise and insightiew of the
current knowledge in feedback and control systems. The fieltbofrol started
by teaching everything that was known at the time and, as meawledge was
acquired, additional courses were developed to cover nelanigues. A conse-
guence of this evolution is that introductory courses haeained the same for
many years, and it is often necessary to take many individoaises in order to
obtain a good perspective on the field. In developing this baekhave attempted
to condense the current knowledge by emphasizing fundainsoricepts. We be-
lieve that itis important to understand why feedback isuis&d know the language
and basic mathematics of control and to grasp the key paredifjat have been
developed over the past half century. It is also importahietable to solve simple
feedback problems using back-of-the-envelope technjgoiescognize fundamen-
tal limitations and difficult control problems and to have alfr available design
methods.

This book was originally developed for use in an experimesualse at Caltech
involving students from a wide set of backgrounds. The cowsas offered to
undergraduates at the junior and senior levels in traditiengineering disciplines,
as well as first- and second-year graduate students in emgigead science. This
latter group included graduate students in biology, compsitience and physics.
Over the course of several years, the text has been classested at Caltech and
at Lund University, and the feedback from many students alidagues has been
incorporated to help improve the readability and accel#tsilof the material.

Because of its intended audience, this book is organizedslightly unusual
fashion compared to many other books on feedback and cohtrparticular, we
introduce a number of concepts in the text that are normabgnved for second-
year courses on control and hence often not available testadvho are not
control systems majors. This has been done at the expensetaihdeaditional
topics, which we felt that the astute student could learejrehdently and are often



X PREFACE

explored through the exercises. Examples of topics that we inaluded are non-
linear dynamics, Lyapunov stability analysis, the matsip@nential, reachability
and observability, and fundamental limits of performanod eobustness. Topics
that we have deemphasized include root locus techniqued/|dg compensation
and detailed rules for generating Bode and Nyquist plotsamdh

Several features of the book are designed to facilitate asfduction as a basic
engineering text and as an introduction for researcheratural, information and
social sciences. The bulk of the material is intended to bd usgardless of the
audience and covers the core principles and tools in theysinadnd design of
feedback systems. Advanced sections, marked by the “dangdrend” symbol
shown here, contain material that requires a slightly mechnical background,
of the sort that would be expected of senior undergraduatesdineering. A few
sections are marked by two dangerous bend symbols and ereled for readers
with more specialized backgrounds, identified at the begunoif the section. To
limit the length of the text, several standard results ardresions are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here napamion web site
has been developed and is available from the publisher'spagb:

http://www.cds.caltech.edumurray/amwiki

The web site contains a database of frequently asked questigmplemental exam-
ples and exercises, and lecture material for courses bagbisdext. The material is
organized by chapter and includes a summary of the majotgioithe text as well
as links to external resources. The web site also contairsotiree code for many
examples in the book, as well as utilities to implement tlohéques described in
the text. Most of the code was originally written using MATLAB-files but was
also tested with LabView MathScript to ensure compatibiliiyvboth packages.
Many files can also be run using other scripting languagesasi€ittave, SciLab,
SysQuake and Xmath.

The first half of the book focuses almost exclusively on statcspontrol
systems. We begin in Chapter 2 with a description of modefrghysical, biolog-
ical and information systems using ordinary differentiqliations and difference
equations. Chapter 3 presents a number of examples in sdaik demarily as a
reference for problems that will be used throughout the tesitowing this, Chap-
ter 4 looks at the dynamic behavior of models, including deding of stability
and more complicated nonlinear behavior. We provide ady@sections in this
chapter on Lyapunov stability analysis because we find thatiseful in a broad
array of applications and is frequently a topic that is nataduced until later in
one’s studies.

The remaining three chapters of the first half of the book focumear systems,
beginning with a description of input/output behavior inapker 5. In Chapter 6,
we formally introduce feedback systems by demonstratingdtate space control
laws can be designed. This is followed in Chapter 7 by matenabutput feed-
back and estimators. Chapters 6 and 7 introduce the key ptsnokreachability
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and observability, which give tremendous insight into theice of actuators and
sensors, whether for engineered or natural systems.

The second half of the book presents material that is oftesidered to be
from the field of “classical control.” This includes the tragsfunction, introduced
in Chapter 8, which is a fundamental tool for understandeedback systems.
Using transfer functions, one can begin to analyze thel#tati feedback systems
using frequency domain analysis, including the abilitygason about the closed
loop behavior of a system from its open loop characterislibss is the subject of
Chapter 9, which revolves around the Nyquist stabilityseran.

In Chapters 10 and 11, we again look at the design problenusiiog first
on proportional-integral-derivative (PID) controllersdaihien on the more general
process of loop shaping. PID control is by far the most comnesigh technique
in control systems and a useful tool for any student. The enamt frequency
domain design introduces many of the ideas of modern cotitealry, including
the sensitivity function. In Chapter 12, we combine the itsftom the second half
of the book to analyze some of the fundamental trade-offgdxen robustness and
performance. This is also a key chapter illustrating the pa@i/the techniques that
have been developed and serving as an introduction for nuwanaed studies.

The book is designed for use in a 10- to 15-week course in fekdbastems
that provides many of the key concepts needed in a varietysofpiines. For a
10-week course, Chapters 1-2, 4—6 and 8-11 can each bedavaraeek’s time,
with the omission of some topics from the final chapters. A neisurely course,
spread out over 14—15weeks, could cover the entire boak 2vieeks on modeling
(Chapters 2 and 3)—particularly for students without muatKkground in ordinary
differential equations—and 2 weeks on robust performaGtater 12).

The mathematical prerequisites for the book are modest akdeping with
our goal of providing an introduction that serves a broadienmk. We assume
familiarity with the basic tools of linear algebra, incladi matrices, vectors and
eigenvalues. These are typically covered in a sophomosd-teurse on the sub-
ject, and the textbooks by Apostol [Apo69], Arnold [Arn8fdaStrang [Str88]
can serve as good references. Similarly, we assume basidédgswof differential
eqguations, including the concepts of homogeneous anapkatisolutions for lin-
ear ordinary differential equations in one variable. Apbgipo69] and Boyce and
DiPrima [BDO04] cover this material well. Finally, we also makse of complex
numbers and functions and, in some of the advanced seciroms, detailed con-
cepts in complex variables that are typically covered iméjulevel engineering or
physics course in mathematical methods. Apostol [Apo6Btewart [Ste02] can
be used for the basic material, with Ahlfors [Ahl66], Maradad Hoffman [MH98]
or Saff and Snider [SS02] being good references for the more addanaterial.
We have chosen not to include appendices summarizing tlageis topics since
there are a number of good books available.

One additional choice that we felt was important was thedi@cinot to rely
on a knowledge of Laplace transforms in the book. While theé i by far the
most common approach to teaching feedback systems in emgigemany stu-
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dents in the natural and information sciences may lack tbessary mathematical
background. Since Laplace transforms are not required in ssgnéial way, we
have included them only in an advanced section intendecetthiings together
for students with that background. Of course, we make trelmes use ofransfer
functions which we introduce through the notion of response to exptaldnputs,
an approach we feel is more accessible to a broad array oitistesand engineers.
For classes in which students have already had Laplace dramsfit should be
quite natural to build on this background in the approprestetions of the text.
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback gokiemsve grow, respond
to stress and challenge, and regulate factors such as body temperafooel, pressure and
cholesterol level. The mechanisms operate at every level, from thedtiteraf proteins in
cells to the interaction of organisms in complex ecologies.

M. B. Hoagland and B. Dodsoithe Way Life Works1995 [HD95].

In this chapter we provide an introduction to the basic cphoéfeedbackand
the related engineering disciplineadntrol. We focus on both historical and current
examples, with the intention of providing the context forremt tools in feedback
and control. Much of the material in this chapter is adaptedhf[Mur03], and
the authors gratefully acknowledge the contributions aj&ddrockett and Gunter
Stein to portions of this chapter.

1.1 What Is Feedback?

A dynamical systeiis a system whose behavior changes over time, ofteninrespon
to external stimulation or forcing. The teri@edbackefers to a situation in which
two (or more) dynamical systems are connected together thatteach system
influences the other and their dynamics are thus stronglyledu@imple causal
reasoning about a feedback system is difficult because theysstm influences
the second and the second system influences the first, leadicgtolar argument.
This makes reasoning based on cause and effect tricky, amtbitessary to analyze
the system as awhole. A consequence of thisis that the tudieedback systems
is often counterintuitive, and it is therefore necessametort to formal methods
to understand them.

Figure 1.1 illustrates in block diagram form the idea of fesakb We often use

u y r u y
System 1——»| System 2 — System 1——»| System 2—»
(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used aguhefin
system 2, and the output of system 2 becomes the input of system tingr@&losed loop
system. (b) The interconnection between system 2 and system 1 is iraodethe system
is said to be open loop.



2 CHAPTER 1. INTRODUCTION
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugatigoven the
left consists of a set of flyballs that spread apart as the speed of gireeencreases. The
steam engine on the right uses a centrifugal governor (above andladttb&the flywheel)
to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip TEy8a8].)

the termsopen loopand closed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are inteecb@d in a cycle, as
shown in Figure 1.1a. If we break the interconnection, wertefthe configuration
as an open loop system, as shown in Figure 1.1b.

As the quote at the beginning of this chapter illustratesapnsource of exam-
ples of feedback systems is biology. Biological systemsenede of feedback in an
extraordinary number of ways, on scales ranging from mdésao cells to organ-
isms to ecosystems. One example is the regulation of gluodabe bloodstream
through the production of insulin and glucagon by the paagr&he body attempts
to maintain a constant concentration of glucose, which éslsy the body’s cells
to produce energy. When glucose levels rise (after eatingad,for example), the
hormone insulin is released and causes the body to storesghlecose in the liver.
When glucose levels are low, the pancreas secretes the herghacagon, which
has the opposite effect. Referring to Figure 1.1, we can @niver as system 1
and the pancreas as system 2. The output from the liver isticegg concentration
in the blood, and the output from the pancreas is the amounsolfin or glucagon
produced. The interplay between insulin and glucagon senosethroughout the
day helps to keep the blood-glucose concentration consaamibout 90 mg per
100 mL of blood.

An early engineering example of a feedback system is a éegligovernor,
in which the shaft of a steam engine is connected to a flybalhan@sm that is
itself connected to the throttle of the steam engine, astithtied in Figure 1.2. The
system is designed so that as the speed of the engine ine(pageaps because of a
lessening of the load on the engine), the flyballs spread apd# linkage causes the
throttle on the steam engine to be closed. This in turn slowsdbe engine, which
causes the flyballs to come back together. We can model thismsyas a closed
loop system by taking system 1 as the steam engine and sysdsith2 governor.
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When properly designed, the flyball governor maintains a teonispeed of the
engine, roughly independent of the loading conditions. Téwrifugal governor
was an enabler of the successful Watt steam engine, whidadftlee industrial
revolution.

Feedback has many interesting properties that can be egblimitdesigning
systems. As in the case of glucose regulation or the flybakguaw, feedback can
make a systemresilienttoward external influences. It carba&sised to create linear
behavior out of nonlinear components, a common approacleatrenics. More
generally, feedback allows a system to be insensitive lwoéixtiernal disturbances
and to variations in its individual elements.

Feedback has potential disadvantages as well. It can crgadendc instabilities
in a system, causing oscillations or even runaway behaioother drawback,
especially in engineering systems, is that feedback candante unwanted sensor
noise into the system, requiring careful filtering of signétiss for these reasons
that a substantial portion of the study of feedback systerdsvoted to developing
an understanding of dynamics and a mastery of techniqueggmgical systems.

Feedback systems are ubiquitous in both natural and engohegstems. Con-
trol systems maintain the environment, lighting and poweour buildings and
factories; they regulate the operation of our cars, cons@heetronics and manu-
facturing processes; they enable our transportation amghemications systems;
and they are critical elements in our military and spaceesyst For the most part
they are hidden from view, buried within the code of embeduétoprocessors,
executing their functions accurately and reliably. Feelliss also made it pos-
sible to increase dramatically the precision of instruraesutch as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintaingrtake chemical and
biological conditions through feedback. At the other endhef size scale, global
climate dynamics depend on the feedback interactions legtthe atmosphere, the
oceans, the land and the sun. Ecosystems are filled with exswidleedback due
to the complex interactions between animal and plant lifeerEhe dynamics of
economies are based on the feedback between individuat®goatations through
markets and the exchange of goods and services.

1.2 What Is Control?

The termcontrol has many meanings and often varies between communities. In
this book, we define control to be the use of algorithms anddfaeklin engineered
systems. Thus, control includes such examples as feedbaok ilo electronic am-
plifiers, setpoint controllers in chemical and materialscpssing, “fly-by-wire”
systems on aircraft and even router protocols that contafild flow on the Inter-

net. Emerging applications include high-confidence softwgséems, autonomous
vehicles and robots, real-time resource management systechbiologically en-
gineered systems. At its core, control isiaformationscience and includes the
use of information in both analog and digital representetio
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external disturbances

= System -
i Clock 1
| v $ v i
| D/IA |« Computer |« AD |« Filter |« :
e I ,,,,,,,,,,,,,,,,,,,, Controller |

operator input

Figure 1.3: Components of a computer-controlled system. The upper dasheéjp@sents
the process dynamics, which include the sensors and actuators in adulitiendynamical
system being controlled. Noise and external disturbances can pereudyilamics of the
process. The controller is shown in the lower dashed box. It consiatltdr and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a compiln@rimplements
the control algorithm. A system clock controls the operation of the contysijachronizing
the A/D, D/A and computing processes. The operator input is also fed tmthputer as an
external input.

A modern controller senses the operation of a system, casnpbagainst the
desired behavior, computes corrective actions based ondelnb the system’s
response to external inputs and actuates the system ta #féedesired change.
This basideedback loopf sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logic @msuring that the
dynamics of the closed loop system are stable (boundediostoes give bounded
errors) and that they have additional desired behaviordghsturbance attenua-
tion, fast responsiveness to changes in operating poijt, Bhese properties are
established using a variety of modeling and analysis teglas that capture the
essential dynamics of the system and permit the explorafipossible behaviors
in the presence of uncertainty, noise and component failure

Atypical example of a control system is shown in Figure 1.3.3dsic elements
of sensing, computation and actuation are clearly seenottenm control systems,
computation is typically implemented on a digital computequiring the use of
analog-to-digital (A/D) and digital-to-analog (D/A) coenters. Uncertainty enters
the system through noise in sensing and actuation subsyst&ternal disturbances
that affect the underlying system operation and uncertamachics in the system
(parameter errors, unmodeled effects, etc). The algoriiatcomputes the control
action as a function of the sensor values is often calledrdrol law. The system
can be influenced externally by an operator who introduwcgsmand signalso
the system.
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Control engineering relies on and shares tools from phy@gaamics and
modeling), computer science (information and software) @perations research
(optimization, probability theory and game theory), buisitalso different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control aeddi$iciplines is in
the modeling of physical systems, which is common acrossa#ls of engineering
and science. One of the fundamental differences betweemot@niented mod-
eling and modeling in other disciplines is the way in whictemctions between
subsystems are represented. Control relies on a type afaypput modeling that
allows many new insights into the behavior of systems, saalistiurbance attenu-
ation and stable interconnection. Model reduction, whesienpler (lower-fidelity)
description of the dynamics is derived from a high-fidelitydah is also naturally
described in an input/output framework. Perhaps most impdst modeling in a
control context allows the design adbustinterconnections between subsystems,
a feature that is crucial in the operation of all large engiad systems.

Control is also closely associated with computer sciermeeesiirtually all mod-
ern control algorithms for engineering systems are implaegkin software. How-
ever, control algorithms and software can be very diffefearh traditional com-
puter software because of the central role of the dynamitseogystem and the
real-time nature of the implementation.

1.3 Feedback Examples

Feedback has many interesting and useful properties. ItsigBessible to design

precise systems from imprecise components and to makearglguantities in a

system change in a prescribed fashion. An unstable systeimecstabilized using

feedback, and the effects of external disturbances candueed. Feedback also
offers new degrees of freedom to a designer by exploitingisgnactuation and

computation. In this section we survey some of the imporggplications and

trends for feedback in the world around us.

Early Technological Examples

The proliferation of control in engineered systems occupaharily in the latter
half of the 20th century. There are some important exceptsuch as the centrifugal
governor described earlier and the thermostat (Figure Jdés)gned at the turn of
the century to regulate the temperature of buildings.

The thermostat, in particular, is a simple example of feekibantrol that every-
one is familiar with. The device measures the temperaturéinlding, compares
that temperature to a desired setpoint and usefetdtback errobetween the two
to operate the heating plant, e.g., to turn heat on when thpdgature is too low
and to turn it off when the temperature is too high. This exalem captures the
essence of feedback, but it is a bit too simple even for a lmsice such as the
thermostat. Because lags and delays exist in the heating quta sensor, a good
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Movement Load
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(a) Honeywell thermostat, 1953 (b) Chrysler cruise control, 1958

Figure 1.4: Early control devices. (a) Honeywell T87 thermostat originally intrelimn
1953. The thermostat controls whether a heater is turned on by complaeircurrent tem-
perature in aroom to a desired value that is set using a dial. (b) Chrysise control system
introduced in the 1958 Chrysler Imperial [Row58]. A centrifugal goee is used to detect
the speed of the vehicle and actuate the throttle. The reference speediiedghrough an
adjustment spring. (Left figure courtesy of Honeywell Internatioimel,)

thermostat does a bit of anticipation, turning the heatidvefore the error actually
changes sign. This avoids excessive temperature swingsaligoof the heating
plant. This interplay between the dynamics of the processtendperation of the
controller is a key element in modern control systems design

There are many other control system examples that have geckelover the
years with progressively increasing levels of sophisiticatAn early system with
broad public exposure was tlhauise controloption introduced on automobiles in
1958 (see Figure 1.4b). Cruise control illustrates the dyadmahavior of closed
loop feedback systems in action—the slowdown error as tstesyclimbs a grade,
the gradual reduction of that error due to integral actiotméecontroller, the small
overshoot at the top of the climb, etc. Later control systemawomobiles such
as emission controls and fuel-metering systems have ahi@ajor reductions of
pollutants and increases in fuel economy.

Power Generation and Transmission

Access to electrical power has been one of the major driveteahnological
progress in modern society. Much of the early developmenbofrol was driven
by the generation and distribution of electrical power. tt@ns mission critical
for power systems, and there are many control loops in iddalipower stations.
Control is also important for the operation of the whole powetwork since it
is difficult to store energy and it is thus necessary to matduyoction to con-
sumption. Power management is a straightforward regulatioibnlem for a system
with one generator and one power consumer, but it is more wliffic a highly
distributed system with many generators and long distapetgeen consumption
and generation. Power demand can change rapidly in an uofakld manner and
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Figure 1.5: A small portion of the European power network. By 2008 Europeanepow
suppliers will operate a single interconnected network covering a regiomthe Arctic to
the Mediterranean and from the Atlantic to the Urals. In 2004 the installedrpeagmore
than 700 GW (7 10 W). (Source: UCTE [www.ucte.org])

combining generators and consumers into large networkesiggossible to share
loads among many suppliers and to average consumption amaimg customers.
Large transcontinental and transnational power systenss thavefore been built,
such as the one show in Figure 1.5.

Most electricity is distributed by alternating current (Aicause the transmis-
sion voltage can be changed with small power losses usingftramers. Alternating
current generators can deliver power only if the generatm@synchronized to the
voltage variations in the network. This means that the ratbedl generators in a
network must be synchronized. To achieve this with locakdéalized controllers
and a small amount of interaction is a challenging probleror&igic low-frequency
oscillations between distant regions have been observed vegional power grids
have been interconnected [KWO05].

Safety and reliability are major concerns in power systemerdmay be dis-
turbances due to trees falling down on power lines, liglgminequipment failures.
There are sophisticated control systems that attempt to tkeegpystem operating
even when there are large disturbances. The control actaonbesto reduce volt-
age, to break up the net into subnets or to switch off linespaveker users. These
safety systems are an essential element of power distsibatistems, but in spite
of all precautions there are occasionally failures in lagrg@er systems. The power
system is thus a nice example of a complicated distributstesywhere control is
executed on many levels and in many different ways.
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(a) F/A-18 “Hornet” (b) X-45 UCAV

Figure 1.6: Military aerospace systems. (a) The F/A-18 aircraft is one of the ficstyrtion
military fighters to use “fly-by-wire” technology. (b) The X-45 (UCAVnmanned aerial
vehicle is capable of autonomous flight, using inertial measuremenrsessd the global
positioning system (GPS) to monitor its position relative to a desired traje(Ritgtographs
courtesy of NASA Dryden Flight Research Center.)

Aerospace and Transportation

In aerospace, control has been a key technological catyatpdicing back to the
beginning of the 20th century. Indeed, the Wright brotheesarrectly famous
not for demonstrating simply powered flight tedntrolled powered flight. Their
early Wright Flyer incorporated moving control surfacegiieal fins and canards)
and warpable wings that allowed the pilot to regulate theraft's flight. In fact,
the aircraft itself was not stable, so continuous pilot ections were mandatory.
This early example of controlled flight was followed by a fasting success story
of continuous improvements in flight control technology,neurating in the high-
performance, highly reliable automatic flight control syssewe see in modern
commercial and military aircraft today (Figure 1.6).

Similar success stories for control technology have ocduimemany other
application areas. Early World War Il bombsights and fire aargervo systems
have evolved into today’s highly accurate radar-guidedsgurd precision-guided
weapons. Early failure-prone space missions have evolvedantine launch oper-
ations, manned landings on the moon, permanently mannee sfations, robotic
vehicles roving Mars, orbiting vehicles at the outer plargetd a host of commer-
cial and military satellites serving various surveillancemmunication, navigation
and earth observation needs. Cars have advanced from riyatwmegd mechani-
cal/pneumatic technology to computer-controlled operatif all major functions,
including fuel injection, emission control, cruise comttaraking and cabin com-
fort.

Current research in aerospace and transportation sysseimgestigating the
application of feedback to higher levels of decision makingluding logical regu-
lation of operating modes, vehicle configurations, paylaadigurations and health
status. These have historically been performed by humaratguer but today that
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Figure 1.7: Materials processing. Modern materials are processed underlbacefutrolled
conditions, using reactors such as the metal organic chemical vaposiden (MOCVD)
reactor shown on the left, which was for manufacturing supercondyttin films. Using
lithography, chemical etching, vapor deposition and other techniquamlex devices can
be built, such as the IBM cell processor shown on the right. (MOCVD incagetesy of Bob
Kee. IBM cell processor photograph courtesy Tom Way, IBM Caoafion; unauthorized use
not permitted.)

boundary is moving and control systems are increasingipgedn these functions.
Another dramatic trend on the horizon is the use of largeectibns of distributed
entities with local computation, global communication geations, little regularity
imposed by the laws of physics and no possibility of imposiaegtralized control
actions. Examples of this trend include the national airspaanagement problem,
automated highway and traffic management and command aneicfomtfuture
battlefields.

Materials and Processing

The chemical industry is responsible for the remarkable r@sxyin developing
new materials that are key to our modern society. In additidhe continuing need
to improve product quality, several other factors in thecpss control industry
are drivers for the use of control. Environmental statuteginae to place stricter
limitations on the production of pollutants, forcing thews sophisticated pollution
control devices. Environmental safety considerations Heseto the design of
smaller storage capacities to diminish the risk of majonuical leakage, requiring
tighter control on upstream processes and, in some caggsy sthains. And large
increases in energy costs have encouraged engineersda gésits that are highly
integrated, coupling many processes that used to opedspemdently. All of these
trends increase the complexity of these processes andrfioerpance requirements
for the control systems, making control system design esirgly challenging.
Some examples of materials-processing technology are simoiigure 1.7.

As in many other application areas, new sensor technologyeiating new
opportunities for control. Online sensors—including tabackscattering, video
microscopy and ultraviolet, infrared and Raman spectimgeeare becoming more
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Electrode
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Glass Pipette Controller |
Ion Channel — - .

Cell Membrane — y

Figure 1.8: The voltage clamp method for measuring ion currents in cells using fekdha
pipet is used to place an electrode in a cell (left and middle) and maintaiotéstial of the
cell at a fixed level. The internal voltage in the celbisand the voltage of the external fluid
is ve. The feedback system (right) controls the curremtto the cell so that the voltage drop
across the cell membraner = v; — ve is equal to its reference valukw,. The current is
then equal to the ion current.

robust and less expensive and are appearing in more mamurfi@girocesses. Many
of these sensors are already being used by current processlcgystems, but
more sophisticated signal-processing and control teciesigre needed to use more
effectively the real-time information provided by thesesars. Control engineers
also contribute to the design of even better sensors, whielstdl needed, for
example, in the microelectronics industry. As elsewhédre,dhallenge is making
use of the large amounts of data provided by these new seimsars effective
manner. In addition, a control-oriented approach to modele essential physics
of the underlying processes is required to understand théafmental limits on
observability of the internal state through sensor data.

Instrumentation

The measurement of physical variables is of prime interestience and engineer-
ing. Consider, for example, an accelerometer, where eatyuments consisted of
a mass suspended on a spring with a deflection sensor. Thei@nezisuch an
instrument depends critically on accurate calibratiorhefspring and the sensor.
There is also a design compromise because a weak spring ggvesamsitivity but
low bandwidth.

A different way of measuring acceleration is to dsece feedbackThe spring
is replaced by a voice coil that is controlled so that the mes®gins at a constant
position. The acceleration is proportional to the currentdlyh the voice coil. In
such aninstrument, the precision depends entirely on theaton of the voice coll
and does not depend on the sensor, which is used only as thmafdesignal. The
sensitivity/bandwidth compromise is also avoided. This whaysing feedback has
been applied to many different engineering fields and hadtegsin instruments
with dramatically improved performance. Force feedbacl$® used in haptic
devices for manual control.

Another important application of feedback is in instrunagion for biological
systems. Feedback is widely used to measure ion current$lsruseng a device
called avoltage clampwhich is illustrated in Figure 1.8. Hodgkin and Huxley used
the voltage clamp to investigate propagation of actioniu@és in the axon of the
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giant squid. In 1963 they shared the Nobel Prize in Medicirth &ccles for “their
discoveries concerning the ionic mechanisms involved aitation and inhibition

in the peripheral and central portions of the nerve cell nramé.” A refinement of
the voltage clamp called@atch clampmade it possible to measure exactly when a
single ion channelis opened or closed. This was developechgiind Sakmann,
who received the 1991 Nobel Prize in Medicine “for their digmwes concerning
the function of single ion channels in cells.”

There are many other interesting and useful applicationsexflfack in scien-
tific instruments. The development of the mass spectrometar &arly example.
In a 1935 paper, Nier observed that the deflection of ions d&pen both the
magnetic and the electric fields [Nie35]. Instead of keepiath lfields constant,
Nier let the magnetic field fluctuate and the electric field wadrotied to keep the
ratio between the fields constant. Feedback was implemeniegl vescuum tube
amplifiers. This scheme was crucial for the development of masstroscopy.

The Dutch engineer van der Meer invented a clever way to usthéei to
maintain a good-quality high-density beam in a particlesga@ator [MPTvdM80].
The idea is to sense particle displacement at one point inctederator and apply
a correcting signal at another point. This scheme, catedhastic coolingwas
awarded the Nobel Prize in Physics in 1984. The method was edskentthe
successful experiments at CERN where the existence of thelparW and Z
associated with the weak force was first demonstrated.

The 1986 Nobel Prize in Physics—awarded to Binnig and Rohrénéardesign
of the scanning tunneling microscope—is another exampda a@finovative use of
feedback. The key idea is to move a harrow tip on a cantileveaniacross a surface
and to register the forces on the tip [BR86]. The deflection eftir is measured
using tunneling. The tunneling current is used by a feedbgsties to control the
position of the cantilever base so that the tunneling ctiisstonstant, an example
of force feedback. The accuracy is so high that individuatstoan be registered.
A map of the atoms is obtained by moving the base of the caatileorizontally.
The performance of the control system is directly reflectetérimage quality and
scanning speed. This example is described in additionall detahapter 3.

Robotics and Intelligent Machines

The goal of cybernetic engineering, already articulatelderi940s and even before,
has been to implement systems capable of exhibiting hightipfeor “intelligent”
responses to changing circumstances. In 1948 the MIT maitieien Norbert
Wiener gave a widely read account of cybernetics [Wie48]. gkermmathematical
treatment of the elements of engineering cybernetics wesepted by H. S. Tsien
in 1954, driven by problems related to the control of miss[lEsi54]. Together,
these works and others of that time form much of the intali@ldbasis for modern
work in robotics and control.

Two accomplishments that demonstrate the successes oflthariethe Mars
Exploratory Rovers and entertainment robots such as the StB§,Ashown in
Figure 1.9. The two Mars Exploratory Rovers, launched by thePdepulsion
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Figure 1.9:Robotic systems. (a) Spirit, one of the two Mars Exploratory Rovers thdelhon
Mars in January 2004. (b) The Sony AIBO Entertainment Robot, otieedirst entertainment
robots to be mass-marketed. Both robots make use of feedback betgresors, actuators and
computation to function in unknown environments. (Photographs cqusfeket Propulsion
Laboratory and Sony Electronics, Inc.)

Laboratory (JPL), maneuvered on the surface of Mars for moredlyaars starting
in January 2004 and sent back pictures and measuremengsra@itliironment. The
Sony AIBO robot debuted in June 1999 and was the first “ententam” robot to be
mass-marketed by a major international corporation. Itpeaiscularly noteworthy
because of its use of artificial intelligence (Al) technokxjihat allowed it to act in
response to external stimulation and its own judgment. Tigtsdr level of feedback
is a key element in robotics, where issues such as obstamteance, goal seeking,
learning and autonomy are prevalent.

Despite the enormous progress in robotics over the lastcealfury, in many
ways the field is still in its infancy. Today’s robots still ekl simple behaviors
compared with humans, and their ability to locomote, intetrjgomplex sensory
inputs, perform higher-level reasoning and cooperatethegen teams is limited.
Indeed, much of Wiener’s vision for robotics and intelligenachines remains
unrealized. While advances are needed in many fields to achiey vision—
including advances in sensing, actuation and energy sterdlge opportunity to
combine the advances of the Al community in planning, adegtaand learning
with the technigues in the control community for modelingalgsis and design of
feedback systems presents a renewed path for progress.

Networks and Computing Systems

Control of networks is a large research area spanning mamgstancluding con-
gestion control, routing, data caching and power managerSeneral features of
these control problems make them very challenging. The damifeature is the
extremely large scale of the system; the Internet is probtiia largest feedback
control system humans have ever built. Another is the deaired nature of the
control problem: decisions must be made quickly and basbdborocal informa-
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Figure 1.10: A multitier system for services on the Internet. In the complete system shown
schematically in (a), users request information from a set of comgp(iter 1), which in turn
collect information from other computers (tiers 2 and 3). The individealer shown in (b)

has a set of reference parameters set by a (human) system opsititdeedback used to
maintain the operation of the system in the presence of uncertainty. (Badéellerstein et

al. [HDPTO04].)

tion. Stability is complicated by the presence of varyingetilags, as information
about the network state can be observed or relayed to clangronly after a delay,
and the effect of a local control action can be felt throudttloe network only after
substantial delay. Uncertainty and variation in the nekwtinrough network topol-
ogy, transmission channel characteristics, traffic demawddaaailable resources,
may change constantly and unpredictably. Other comptigagsues are the diverse
traffic characteristics—in terms of arrival statistics atie packet and flow time
scales—and the different requirements for quality of sertiat the network must
support.

Related to the control of networks is control of the servbas sit on these net-
works. Computers are key components of the systems of syuteb servers and
database servers used for communication, electronic cooemadvertising and
information storage. While hardware costs for computingehdecreased dramati-
cally, the cost of operating these systems has increasedibeof the difficulty in
managing and maintaining these complex interconnecteadrags The situation is
similar to the early phases of process control when feedwasKirst introduced to
control industrial processes. As in process control, tleegnteresting possibili-
ties for increasing performance and decreasing costs lyiageedback. Several
promising uses of feedback in the operation of computeesystare described in
the book by Hellerstein et al. [HDPTO04].

A typical example of a multilayer system for e-commerce ievah in Fig-
ure 1.10a. The system has several tiers of servers. The edge aecepts incom-
ing requests and routes them to the HTTP server tier where tleegassed and
distributed to the application servers. The processingiffardnt requests can vary
widely, and the application servers may also access exteenzers managed by
other organizations.

Control of an individual server in a layer is illustrated irgkie 1.10b. A quan-
tity representing the quality of service or cost of opematiesuch as response time,
throughput, service rate or memory usage—is measured otheuter. The con-
trol variables might represent incoming messages acceptiedities in the oper-
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ating system or memory allocation. The feedback loop thesgits to maintain
quality-of-service variables within a target range of esu

Economics

The economy is a large, dynamical system with many actorsergovents, orga-
nizations, companies and individuals. Governments cbtiiteoeconomy through
laws and taxes, the central banks by setting interest rates@npanies by setting
prices and making investments. Individuals control thenecay through purchases,
savings and investments. Many efforts have been made tolrtiesystem both
at the macro level and at the micro level, but this modelirgjffecult because the
system is strongly influenced by the behaviors of the diffeaetors in the system.

Keynes [Key36] developed a simple model to understandoalgamong gross
national product, investment, consumption and governspariding. One of Keynes’
observations was that under certain conditions, e.g.ndufhie 1930s depression,
an increase in the investment of government spending ceatttb a larger increase
in the gross national product. This idea was used by sevevargments to try to
alleviate the depression. Keynes’ ideas can be capturedshy@e model that is
discussed in Exercise 10.

A perspective on the modeling and control of economic systean be obtained
from the work of some economists who have received the S\&Rgesbank Prize
in Economics in Memory of Alfred Nobel, popularly called theldél Prize in
Economics. Paul A. Samuelson received the prize in 1970 fersthentific work
through which he has developed static and dynamic econdra@ry and actively
contributed to raising the level of analysis in economiesce.” Lawrence Klein
received the prize in 1980 for the development of large dyoalhmodels with
many parameters that were fitted to historical data [KG5%], @ model of the
U.S. economy in the period 1929-1952. Other researchersrhadeled other
countries and other periods. In 1997 Myron Scholes sharegrthe with Robert
Merton for a new method to determine the value of derivatifd®y ingredient was
a dynamic model of the variation of stock prices that is wydeded by banks and
investment companies. In 2004 Finn E. Kydland and Edward C. ¢atesthared
the economics prize “for their contributions to dynamic no@conomics: the time
consistency of economic policy and the driving forces beétinsiness cycles,” a
topic that is clearly related to dynamics and control.

One of the reasons why it is difficult to model economic systentkat there
are no conservation laws. A typical example is that the valua company as
expressed by its stock can change rapidly and erraticaltelare, however, some
areas with conservation laws that permit accurate mode@dmg example is the
flow of products from a manufacturer to a retailer as illugtah Figure 1.11. The
products are physical quantities that obey a conservaigrand the system can be
modeled by accounting for the number of products in the @ifieinventories. There
are considerable economic benefits in controlling supplynshso that products
are available to customers while minimizing products thmatia storage. The real
problems are more complicated than indicated in the figuraumsxthere may be
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Figure 1.11: Supply chain dynamics (after Forrester [For61]). Products flomftiee pro-
ducer to the customer through distributors and retailers as indicated bylithéres. There
are typically many factories and warehouses and even more distribntbrstailers. Multiple
feedback loops are present as each agent tries to maintain the pragreoiy level.

many different products, there may be different factories tre geographically
distributed and the factories may require raw material bassemblies.

Control of supply chains was proposed by Forrester in 19646[F and is now
growing in importance. Considerable economic benefits cavbbened by using
models to minimize inventories. Their use accelerated diiaaily when infor-
mation technology was applied to predict sales, keep trapkaglucts and enable
just-in-time manufacturing. Supply chain management hasibwted significantly
to the growing success of global distributors.

Advertising on the Internet is an emerging application afteal. With network-
based advertising it is easy to measure the effect of differarketing strategies
quickly. The response of customers can then be modeled, adtdek strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understandggregate behavior
in complex large-scale systems. This behavior emerges fnenmteraction of a

multitude of simpler systems with intricate patterns obimhation flow. Repre-

sentative examples can be found in fields ranging from embgyaio seismology.

Researchers who specialize in the study of specific compkris)s often develop
an intuitive emphasis on analyzing the role of feedback ifgrconnection) in

facilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domaiarts for the
analysis of various complex systems, the development @faaius methodology
that can discover and exploit common features and esserathkematical structure
is just beginning to emerge. Advances in science and teobgalre creating a new
understanding of the underlying dynamics and the impodahteedback in a wide
variety of natural and technological systems. We briefly gt three application
areas here.

Biological Systems#A major theme currently of interest to the biology commu-
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Figure 1.12: The wiring diagram of the growth-signaling circuitry of the mammalian
cell [HWO0O]. The major pathways that are thought to play a role in caageindicated
in the diagram. Lines represent interactions between genes and piiotéiescell. Lines
ending in arrowheads indicate activation of the given gene or pathwas énding in a
T-shaped head indicate repression. (Used with permission of Elsediead the authors.)

nity is the science of reverse (and eventually forward) eegiing of biological

control networks such as the one shown in Figure 1.12. Thera atide variety

of biological phenomena that provide a rich source of exaspf control, includ-

ing gene regulation and signal transduction; hormonal,umafogical and cardio-
vascular feedback mechanisms; muscular control and lotomactive sensing,
vision and proprioception; attention and consciousnass;population dynamics
and epidemics. Each of these (and many more) provide opptesito figure out

what works, how it works, and what we can do to affect it.

One interesting feature of biological systems is the fratjuse of positive feed-
back to shape the dynamics of the system. Positive feedbadikecased to create
switchlike behavior through autoregulation of a gene, arwi¢ate oscillations such
as those present in the cell cycle, central pattern gensrataircadian rhythm.

Ecosystemdn contrast to individual cells and organisms, emergenp@ries
of aggregations and ecosystems inherently reflect seletigmimanisms that act on
multiple levels, and primarily on scales well below that loé system as a whole.
Because ecosystems are complex, multiscale dynamicamsgsthey provide a
broad range of new challenges for the modeling and analy$tedback systems.
Recentexperience in applying tools from control and dyahsystems to bacterial
networks suggests that much of the complexity of these n&sms due to the
presence of multiple layers of feedback loops that provamist functionality
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to the individual cell. Yet in other instances, events at ¢b# level benefit the
colony at the expense of the individual. Systems level aisatyen be applied to
ecosystems with the goal of understanding the robustnesscbfsystems and the
extent to which decisions and events affecting individy&icses contribute to the
robustness and/or fragility of the ecosystem as a whole.

Environmental Sciencé.is now indisputable that human activities have altered
the environment on a global scale. Problems of enormous @xitylchallenge
researchers in this area, and first among these is to undgsarfieedback sys-
tems that operate on the global scale. One of the challengks/eloping such an
understanding is the multiscale nature of the problem, datiailed understanding
of the dynamics of microscale phenomena such as microbaalbgrganisms be-
ing a necessary component of understanding global pheramsach as the carbon
cycle.

1.4 Feedback Properties

Feedback is a powerful idea which, as we have seen, is usats&dly in natural
and technological systems. The principle of feedback is leinfgase correcting
actions on the difference between desired and actual peaftze. In engineering,
feedback has been rediscovered and patented many timesyrdiffarent contexts.
The use of feedback has often resulted in vast improvemesisstem capability,
and these improvements have sometimes been revolutiasdiscussed above.
The reason for this is that feedback has some truly remarlkabf@erties. In this
section we will discuss some of the properties of feedbaakdhn be understood
intuitively. This intuition will be formalized in subsequiechapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness tertaiaty. By mea-
suring the difference between the sensed value of a regudageal and its desired
value, we can supply a corrective action. If the system wguks some change that
affects the regulated signal, then we sense this change\atalforce the system
back to the desired operating point. This is precisely thecethat Watt exploited
in his use of the centrifugal governor on steam engines.

As an example of this principle, consider the simple feelllsgstem shown in
Figure 1.13. In this system, the speed of a vehicle is coetidlly adjusting the
amount of gas flowing to the engine. Simpmportional-integral(PI1) feedback
is used to make the amount of gas depend on both the error dretive current
and the desired speed and the integral of that error. The pltheright shows
the results of this feedback for a step change in the deseeldsand a variety of
different masses for the car, which might result from hawardjfferent number of
passengers or towing a trailer. Notice that independetisofrtass (which varies by
a factor of 3!), the steady-state speed of the vehicle ahappsoaches the desired
speed and achieves that speed within approximately 5 s. Tieyserformance of
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Figure 1.13: A feedback system for controlling the speed of a vehicle. In the blockaliag
on the left, the speed of the vehicle is measured and compared to theldgses within the
“Compute” block. Based on the difference in the actual and desiregtispéhe throttle (or
brake) is used to modify the force applied to the vehicle by the enginetdain and wheels.
The figure on the right shows the response of the control system tomanded change in
speed from 25 m/s to 30 m/s. The three different curves corredpdtiffiering masses of the
vehicle, between 1000 and 3000 kg, demonstrating the robustnessotidgle loop system
to a very large change in the vehicle characteristics.

the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide rolass is the nega-
tive feedback amplifier. When telephone communications weveloped, ampli-
fiers were used to compensate for signal attenuation in loeg.liA vacuum tube
was a component that could be used to build amplifiers. Distodaused by the
nonlinear characteristics of the tube amplifier togethehaitnplifier drift were
obstacles that prevented the development of line amplifagra fong time. A ma-
jor breakthrough was the invention of the feedback amplifiet927 by Harold S.
Black, an electrical engineer at Bell Telephone Laborasoiack usedegative
feedbackwhich reduces the gain but makes the amplifier insensitivartiations
in tube characteristics. This invention made it possibleuitdbstable amplifiers
with linear characteristics despite the nonlinearitiethefvacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a sySthrough feed-
back, we can alter the behavior of a system to meet the neeals application:
systems that are unstable can be stabilized, systems éstuggish can be made
responsive and systems that have drifting operating poiutsbe held constant.
Control theory provides a rich collection of techniquesnalgize the stability and
dynamic response of complex systems and to place bounds txeltavior of such
systems by analyzing the gains of linear and nonlinear ¢per¢hat describe their
components.

An example of the use of control in the design of dynamics cofem the area
of flight control. The following quote, from a lecture presahtyy Wilbur Wright
to the Western Society of Engineers in 1901 [McF53], illussélte role of control
in the development of the airplane:

Men already know how to construct wings or airplanes, whittem
driven through the air at sufficient speed, will not only sursthe
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o\ RO
Figure 1.14: Aircraft autopilot system. The Sperry autopilot (left) contained a sdbof
gyros coupled to a set of air valves that controlled the wing surfaces19h2 Curtiss used

an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able iatanalevel
flight as a mechanic walked on the wing (right) [Hug93].

weight of the wings themselves, but also that of the engind, af
the engineer as well. Men also know how to build engines arehsc

of sufficient lightness and power to drive these planes aaBusy
speed ... Inability to balance and steer still confrontsletiis of the
flying problem ... When this one feature has been worked ost, th
age of flying will have arrived, for all other difficulties are ofinor
importance.

The Wright brothers thus realized that control was a key iss@mable flight.
They resolved the compromise between stability and manehbiigy by building
an airplane, the Wright Flyer, that was unstable but manaier The Flyer had
a rudder in the front of the airplane, which made the plang weneuverable. A
disadvantage was the necessity for the pilot to keep adgitie rudder to fly the
plane: if the pilot let go of the stick, the plane would cragither early aviators
tried to build stable airplanes. These would have been etasilyt but because of
their poor maneuverability they could not be brought up theair. By using their
insight and skillful experiments the Wright brothers mauefirst successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, therg sti@ng motiva-
tion to find a mechanism that would stabilize an aircraft. Sudévace, invented by
Sperry, was based on the concept of feedback. Sperry used-atggpitized pendu-
lum to provide an indication of the vertical. He then arrashgéeedback mechanism
that would pull the stick to make the plane go up if it was pioigidown, and vice
versa. The Sperry autopilot was the first use of feedback in aatimal engineer-
ing, and Sperry won a prize in a competition for the safestamgin Paris in 1914.
Figure 1.14 shows the Curtiss seaplane and the Sperry autdpie autopilot is
a good example of how feedback can be used to stabilize aahlestystem and
hence “design the dynamics” of the aircratft.
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One of the other advantages of designing the dynamics of imeléyvthat it
allows for increased modularity in the overall system desBy using feedback
to create a system whose response matches a desired profigmede the
complexity and variability that may be present inside a gatesn. This allows us
to create more complex systems by not having to simultamgturee the responses
of a large number of interacting components. This was oneeatlvantages of
Black’s use of negative feedback in vacuum tube amplifieesrésulting device
had a well-defined linear input/output response that did epédd on the individual
characteristics of the vacuum tubes being used.

Higher Levels of Automation

A major trend in the use of feedback is its application to bighvels of situational
awareness and decision making. This includes not only toadit logical branch-
ing based on system conditions but also optimization, adi@pt, learning and even
higher levels of abstract reasoning. These problems aresiddimain of the arti-
ficial intelligence community, with an increasing role of @ynics, robustness and
interconnection in many applications.

One ofthe interesting areas of researchin higher levels@$obn is autonomous
control of cars. Early experiments with autonomous drivirgrevperformed by
Ernst Dickmanns, who in the 1980s equipped cars with camemother sen-
sors [Dic07]. In 1994 his group demonstrated autonomowsndyiwith human su-
pervision on a highway near Paris and in 1995 one of his carsedtutonomously
(with human supervision) from Munich to Copenhagen at spaddip to 175
km/hour. The car was able to overtake other vehicles and ehlangs automati-
cally.

This application area has been recently explored througb&iRPA Grand
Challenge, a series of competitions sponsored by the U.&rgment to build ve-
hicles that can autonomously drive themselves in desertidyah environments.
Caltech competed in the 2005 and 2007 Grand Challengesasioglified Ford E-
350 offroad van nicknamed “Alice.” It was fully automateaiciuding electronically
controlled steering, throttle, brakes, transmission gndion. Its sensing systems
included multiple video cameras scanning at 10-30 Hz, aklager ranging units
scanning at 10 Hz and an inertial navigation package capdpl®viding position
and orientation estimates at 5 ms temporal resolution. Coatpnal resources in-
cluded 12 high-speed servers connected together throughtdsiEthernet switch.
The vehicle is shown in Figure 1.15, along with a block diagrdnitsocontrol
architecture.

The software and hardware infrastructure that was develepatled the ve-
hicle to traverse long distances at substantial speedsstimtj, Alice drove itself
more than 500 km in the Mojave Desert of California, with thdity to follow dirt
roads and trails (if present) and avoid obstacles alongdtte Speeds of more than
50 km/h were obtained in the fully autonomous mode. Substiantiing of the al-
gorithms was done during desert testing, in part because tdick of systems-level
design tools for systems of this level of complexity. Othempetitors in the race
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Figure 1.15:DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the 2005 ar@i720
competitions and its networked control architecture [CFG+06]. Thebfeedsystem fuses
data from terrain sensors (cameras and laser range finders) tohetex digital elevation
map. This map is used to compute the vehicle’s potential speed over thatemnd an
optimization-based path planner then commands a trajectory for the véhifddow. A
supervisory control module performs higher-level tasks suchradling sensor and actuator
failures.

(including Stanford, which won the 2005 competition) usepbathms for adaptive
control and learning, increasing the capabilities of tisggtems in unknown en-
vironments. Together, the competitors in the Grand Chgéetemonstrated some
of the capabilities of the next generation of control systemd highlighted many
research directions in control at higher levels of decisi@king.

Drawbacks of Feedback

While feedback has many advantages, it also has some dresvi@@itief among
these is the possibility of instability if the system is na&s@yned properly. We
are all familiar with the effects opositive feedbackvhen the amplification on
a microphone is turned up too high in a room. This is an exampfeeazlback
instability, something that we obviously want to avoid. Tisigricky because we
must design the system not only to be stable under nominalittoms but also to
remain stable under all possible perturbations of the dycem

In addition to the potential for instability, feedback imaetly couples different
parts of a system. One common problem is that feedback affects measurement
noise into the system. Measurements must be carefully fily¢hat the actuation
and process dynamics do not respond to them, while at thetsa@ensuring that
the measurement signal from the sensor is properly couptedhe closed loop
dynamics (so that the proper levels of performance are aethje

Another potential drawback of control is the complexity ofteedding a control
system in a product. While the cost of sensing, computatimhegtuation has de-
creased dramatically in the past few decades, the fact narttzat control systems
are often complicated, and hence one must carefully bathecsosts and benefits.
An early engineering example of this is the use of micropssoebased feedback
systems in automobiles.The use of microprocessors in atiteapplications be-
gan in the early 1970s and was driven by increasingly striassions standards,
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which could be met only through electronic controls. Earlgteyns were expensive
and failed more often than desired, leading to frequenbeuost dissatisfaction. It
was only through aggressive improvements in technology tttea performance,
reliability and cost of these systems allowed them to be irsadransparent fash-
ion. Even today, the complexity of these systems is such thedifficult for an
individual car owner to fix problems.

Feedforward

Feedback is reactive: there must be an error before coreeatitions are taken.
However, in some circumstances it is possible to measurstardance before it
enters the system, and this information can then be use#eactarective action
before the disturbance has influenced the system. The efféloe afisturbance is
thus reduced by measuring it and generating a control sipaalcounteracts it.
This way of controlling a system is calléeledforward Feedforward is particularly
useful in shaping the response to command signals becaoseaad signals are
always available. Since feedforward attempts to match tgmeds, it requires good
process models; otherwise the corrections may have theygina or may be badly
timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward arwgoas to a market-
based economy versus a planned economy. In business, arfgardf strategy
corresponds to running a company based on extensive stratagning, while a
feedback strategy corresponds to a reactive approacholioglyj feedforward has
been suggested as an essential element for motion contrahians that is tuned
during training. Experience indicates that it is often adageous to combine feed-
back and feedforward, and the correct balance requireghihand understanding
of their respective properties.

Positive Feedback

In most of this text, we will consider the role okgative feedbackn which we
attempt to regulate the system by reacting to disturbamcasiay that decreases
the effect of those disturbances. In some systems, patlgudiological systems,
positive feedbackan play an important role. In a system with positive fee&tbac
the increase in some variable or signal leads to a situatievhich that quantity
is further increased through its dynamics. This has a deiiabi effect and is
usually accompanied by a saturation that limits the groithequantity. Although
often considered undesirable, this behavior is used igioal (and engineering)
systems to obtain a very fast response to a condition orlsigna

One example of the use of positive feedback is to create ingcdbehavior,
in which a system maintains a given state until some inputsas a threshold.
Hysteresis is often present so that noisy inputs near tlesliotd do not cause the
system to jitter. This type of behavior is callb@tability and is often associated
with memory devices.
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Figure 1.16: Input/output characteristics of on-off controllers. Each plot showsniiet on
the horizontal axis and the corresponding output on the vertical axial toh-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (@fe khat for on-off
control with hysteresis, the output depends on the value of past inputs.

1.5 Simple Forms of Feedback

The idea of feedback to make corrective actions based on fiieeettice between
the desired and the actual values of a quantity can be implisdé many different
ways. The benefits of feedback can be obtained by very simpdbée laws such
as on-off control, proportional control and proportiofiraiiegral-derivative control.
In this section we provide a brief preview of some of the tepiat will be studied
more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

U= Umax ife>0 (1.1)
Umin if e <0,
where thecontrol error e=r — y is the difference between the reference signal (or
command signal) and the output of the systeyrandu is the actuation command.
Figure 1.16a shows the relation between error and contrad.cldnitrol law implies
that maximum corrective action is always used.

The feedback in equation (1.1) is called-off control One of its chief advan-
tages is that it is simple and there are no parameters to eh@osoff control often
succeeds in keeping the process variable close to the mefgrsuch as the use of
a simple thermostat to maintain the temperature of a rootgpitally results in
a system where the controlled variables oscillate, whidftsn acceptable if the
oscillation is sufficiently small.

Notice that in equation (1.1) the control variable is not dadimnvhen the error
is zero. It is common to make modifications by introducing eith dead zone or
hysteresis (see Figure 1.16b and 1.16c).

PID Control

The reason why on-off control often gives rise to oscillasias that the system
overreacts since a small change in the error makes the edtuaiable change over
the full range. This effectis avoidedmoportional contro) where the characteristic
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of the controller is proportional to the control error for alhrerrors. This can be
achieved with the control law

Umax if e = €max
Umin if e < €nmin,

wherek, is the controller gaingmin = Umin/Kp andemax = Umax/ Kp. The interval
(emin, €max) IS called theproportional bandbecause the behavior of the controller
is linear when the error is in this interval:

u=xkp(r —y)=kpe if emin < €< €nax (1.3)

While avastimprovement over on-off control, proportiooahtrol has the draw-
back that the process variable often deviates from itseafar value. In particular,
if some level of control signal is required for the system tmtain a desired value,
then we must have # 0 in order to generate the requisite input.

This can be avoided by making the control action proportitm#ie integral of
the error:

u(t) = k; /0t e(r)dz. (1.4)

This control form is calledntegral control andk; is the integral gain. It can be
shown through simple arguments that a controller with irgkegction has zero
steady-state error (Exercise 5). The catch is that there nmisghways be a steady
state because the system may be oscillating.

An additional refinement is to provide the controller with anicipative abil-
ity by using a prediction of the error. A simple predictiongisen by the linear
extrapolation

de(t)

et + Tq) ~ e(t) + TdT’

which predicts the errofy time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be egpeel mathematically as

t
u(t) = kpe(t) + k; / e(r)dr + kd%
0

The control action is thus a sum of three terms: the past agsepted by the
integral of the error, the present as represented by theopgiopal term and the
future as represented by a linear extrapolation of the €ther derivative term).
This form of feedback is called@oportional-integral-derivative (P1D) controller
and its action is illustrated in Figure 1.17.

A PID controller is very useful and is capable of solving a widege of con-
trol problems. More than 95% of all industrial control prelnis are solved by
PID control, although many of these controllers are actyaibportional-integral
(PI) controllersbecause derivative action is often not included [DMO02]. Ehare
also more advanced controllers, which differ from PID coliérs by using more
sophisticated methods for prediction.

(1.5)
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Figure 1.17: Action of a PID controller. At timet, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedbaelsed on the integral

of the error up to time (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of changhefrror. Ty
represents the approximate amount of time in which the error is projemtedrd (see text).

1.6 Further Reading

The material in this section draws heavily from the reporthef Panel on Future
Directions on Control, Dynamics and Systems [Mur03]. Sevadditional papers
and reports have highlighted the successes of control [N&8@]new vistas in
control [Bro00, Kum01, Wis07]. The early development of e¢ohts described
by Mayr [May70] and in the books by Bennett [Ben86a, Ben86ldjich cover
the period 1800-1955. A fascinating examination of somehefdarly history
of control in the United States has been written by Mindellf®R]. A popular
book that describes many control concepts across a wides raihdisciplines is
Out of Controlby Kelly [Kel94]. There are many textbooks available thatalie
control systems in the context of specific disciplines. Fgireeers, the textbooks by
Franklin, Powell and Emami-Naeini [FPENO5], Dorf and Bishop [DB®4o and
Golnaraghi [KG02] and Seborg, Edgar and Mellichamp [SEMO04] adely used.
More mathematically oriented treatments of control théecjude Sontag [Son98]
and Lewis [Lew03]. The book by Hellerstein et al. [HDPTO04] prowdalescription
of the use of feedback control in computing systems. A nurableooks look at the
role of dynamics and feedback in biological systems, inicigdvilhorn [Mil66]
(now out of print), J. D. Murray [Mur04] and Eliner and Guckeier [EGO5].
The book by Fradkov [Fra07] and the tutorial article by Becheofec05] cover
many specific topics of interest to the physics community.

Exercises

1 (Eye motion) Perform the following experiment and explainy@sults: Holding
your head still, move one of your hands left and right in fr@intour face, following
it with your eyes. Record how quickly you can move your hanfizeyou begin
to lose track of it. Now hold your hand still and shake yourdlkt to right, once
again recording how quickly you can move before losing trafckour hand.
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2 ldentify five feedback systems that you encounter in youryelasr environment.
For each system, identify the sensing mechanism, actuaahanism and control
law. Describe the uncertainty with respect to which the et system provides
robustness and/or the dynamics that are changed througis¢hef feedback.

3 (Balance systems) Balance yourself on one foot with yous ej@sed for 15 s.
Using Figure 1.3 as a guide, describe the control systemmesgge for keeping you
from falling down. Note that the “controller” will differ fsm that in the diagram
(unless you are an android reading this in the far future).

4 (Cruise control) Download the MATLAB code used to produce dations for
the cruise control system in Figure 1.13 from the companion sie. Using trial
and error, change the parameters of the control law so thaitbrshoot in speed
is not more than 1 m/s for a vehicle with mams= 1000 kg.

5 (Integral action) We say that a system with a constant irgatthes steady state if
the output of the system approaches a constant value asrtareases. Show that
a controller with integral action, such as those given inatigns (1.4) and (1.5),
gives zero error if the closed loop system reaches steatiy sta

6 Search the web and pick an article in the popular press abaadback and
control system. Describe the feedback system using thartelogy given in the
article. In particular, identify the control system and cfédse (a) the underlying
process or system being controlled, along with the (b) sefspactuator and (d)
computational element. If the some of the information isawaiilable in the article,
indicate this and take a guess at what might have been used.



Chapter Two
System Modeling

... | asked Fermi whether he was not impressed by the agreemawtdre our calculated
numbers and his measured numbers. He replied, “How many arbifrargmeters did you use
for your calculations?” | thought for a moment about our cut-off prdaees and said, “Four.”
He said, “I remember my friend Johnny von Neumann used to say, witp&oameters | can
fit an elephant, and with five | can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for mesatospscattering to
Enrico Fermi in 1953 [Dys04].

A modelis a precise representation of a system’s dynaméatasanswer ques-
tions via analysis and simulation. The model we choose depemdhe questions
we wish to answer, and so there may be multiple models forggesitynamical sys-
tem, with different levels of fidelity depending on the phemora of interest. In this
chapter we provide an introduction to the concept of modedind present some
basic material on two specific methods commonly used in feddhad control
systems: differential equations and difference equations

2.1 Modeling Concepts

A modelis a mathematical representation of a physical, biologicahformation
system. Models allow us to reason about a system and maké&twad about
how a system will behave. In this text, we will mainly be irgsted in models of
dynamical systems describing the input/output behavi@ystems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which thectffef actions
do not occur immediately. For example, the velocity of a caesinot change
immediately when the gas pedal is pushed nor does the tetapeinaa room rise
instantaneously when a heater is switched on. Similarlyad&ehe does not vanish
right after an aspirin is taken, requiring time for it to taéect. In business systems,
increased funding for a development project does not iserezvenues in the short
term, although it may do so in the long term (if it was a goodestment). All
of these are examples of dynamical systems, in which thevilmhef the system
evolves with time.

In the remainder of this section we provide an overview of safithe key
concepts in modeling. The mathematical details introdueed are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring—mass system with nonlinear damping. The position of the massiteden
by g, with g = 0 corresponding to the rest position of the spring. The forces on the anas
generated by a linear spring with spring constaand a damper with force dependent on the
velocity g.

The Heritage of Mechanics

The study of dynamics originated in attempts to describegtéag motion. The
basis was detailed observations of the planets by TychoeBaak the results of
Kepler, who found empirically that the orbits of the plan&isild be well described
by ellipses. Newton embarked on an ambitious program tatexplain why the
planets move in ellipses, and he found that the motion coeld¥plained by his
law of gravitation and the formula stating that force equadss times acceleration.
In the process he also invented calculus and differentiahtons.

One of the triumphs of Newton’s mechanics was the obsenvétit the motion
of the planets could be predicted based on the current posiand velocities of
all planets. It was not necessary to know the past motion stdteof a dynamical
system is a collection of variables that completely chamts the motion of a
system for the purpose of predicting future motion. For desyisof planets the
state is simply the positions and the velocities of the pgan&/e call the set of all
possible states thstate space

A common class of mathematical models for dynamical systisnesdinary
differential equations (ODES). In mechanics, one of the f@stsuch differential
equations is that of a spring—mass system with damping:

mg + c(q) + kg = 0. (2.1)

This system is illustrated in Figure 2.1. The variafple R represents the position
of the massn with respect to its rest position. We use the notatjdo denote the
derivative ofg with respect to time (i.e., the velocity of the mass) grid represent
the second derivative (acceleration). The spring is asstongatisfy Hooke’s law,
which says that the force is proportional to the displacemnidme friction element
(damper) is taken as a nonlinear functia(d), which can model effects such as
stiction and viscous drag. The positigmnd velocityg represent the instantaneous
state of the system. We say that this system seeond-order systesince the
dynamics depend on the first two derivativesgjof

The evolution of the position and velocity can be describadgusither a time
plot or a phase portrait, both of which are shown in Figure 2tztime plot on
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Figure 2.2: lllustration of a state model. A state model gives the rate of change of tiee sta
as a function of the state. The plot on the left shows the evolution of the statiiaction of
time. The plot on the right shows the evolution of the states relative to eaeh wtith the
velocity of the state denoted by arrows.

the left, shows the values of the individual states as a fonctf time. Thephase
portrait, on the right, shows theector fieldfor the system, which gives the state
velocity (represented as an arrow) at every point in theestpaice. In addition,
we have superimposed the traces of some of the states fréenedif conditions.
The phase portrait gives a strong intuitive representatitimeoequation as a vector
field or a flow. While systems of second order (two states) carepeesented in
this way, unfortunately it is difficult to visualize equat®of higher order using
this approach.

The differential equation (2.1) is called antonomousystem because there
are no external influences. Such a model is natural for use @sti&l mechanics
because it is difficult to influence the motion of the planetanbmy examples, it
is useful to model the effects of external disturbances atrotied forces on the
system. One way to capture this is to replace equation (£.1) b

md +c(@) + kg =u, (2.2)

whereu represents the effect of external inputs. The model (2.2)llsa aforced

or controlled differential equatioft.implies that the rate of change of the state can
be influenced by the inpui(t). Adding the input makes the model richer and allows
new questions to be posed. For example, we can examine whegrioe external
disturbances have on the trajectories of a system. Or, isdke where the input
variable is something that can be modulated in a controllag we can analyze
whether it is possible to “steer” the system from one pointhia state space to
another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineg, where the design
of electronic amplifiers led to a focus on input/output bebavA system was
considered a device that transforms inputs to outputs|uesdrited in Figure 2.3.
Conceptually an input/output model can be viewed as a gaoi¢ tof inputs and
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Figure 2.3: lllustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the onthemight is its
representation as a block diagram.

outputs. Given an input signalt) over some interval of time, the model should
produce the resulting outpytt).

The input/output framework is used in many engineering dis@s since it
allows us to decompose a system into individual componesrisected through
their inputs and outputs. Thus, we can take a complicate@rmsystich as a radio
or a television and break it down into manageable pieces aadie receiver,
demodulator, amplifier and speakers. Each of these piecesdaohinputs and
outputs and, through proper design, these components cardoeonnected to
form the entire system.

The input/output view is particularly useful for the spedaikss oflinear time-
invariant systemsThis term will be defined more carefully later in this chapier,
roughly speaking a system is linear if the superpositiorlifaah) of two inputs
yields an output that is the sum of the outputs that wouldespond to individual
inputs being applied separately. A system is time-invaiiftie output response
for a given input does not depend on when that input is applied

Many electrical engineering systems can be modeled bytlitia-invariant
systems, and hence a large number of tools have been dedetopralyze them.
One such tool is thetep responsevhich describes the relationship between an
input that changes from zero to a constant value abruptlyefa isput) and the
corresponding output. As we shall see later in the text, thp esponse is very
useful in characterizing the performance of a dynamicaksysand it is often used
to specify the desired dynamics. A sample step responsevasim Figure 2.4a.

Another way to describe a linear time-invariant system igefresent it by its
response to sinusoidal input signals. This is calledfthguency responsand a
rich, powerful theory with many concepts and strong, usedslilts has emerged.
The results are based on the theory of complex variables arlddeapransforms.
The basic idea behind frequency response is that we can ctatypdbaracterize
the behavior of a system by its steady-state response teadal inputs. Roughly
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Figure 2.4: Input/output response of a linear system. The step response (&9 gmautput
of the system due to an input that changes from 0 to 1 at time 5 s. The frequency
response (b) shows the amplitude gain and phase change due to &sihinpat at different
frequencies.

speaking, this is done by decomposing any arbitrary sigrtal a linear combi-
nation of sinusoids (e.g., by using the Fourier transforng #nen using linearity
to compute the output by combining the response to the iddalifrequencies. A
sample frequency response is shown in Figure 2.4b.

The input/output view lends itself naturally to experimémtatermination of
system dynamics, where a system is characterized by recpitdi response to
particular inputs, e.g., a step or a set of sinusoids ovengeraf frequencies.

The Control View

When control theory emerged as a discipline in the 1940safipgoach to dy-
namics was strongly influenced by the electrical enginedjimgut/output) view.
A second wave of developments in control, starting in the 1850s, was inspired
by mechanics, where the state space perspective was useeméhgence of space
flight is a typical example, where precise control of the odjia spacecraft is
essential. These two points of view gradually merged intotwhtoday the state
space representation of input/output systems.

The development of state space models involved modifyingrtbdels from
mechanics to include external actuators and sensors dimingtimore general
forms of equations. In control, the model given by equat@2) was replaced by

Cotww, y=how, .3
wherex is a vector of state variables,is a vector of control signals angis a
vector of measurements. The tedm/dt represents the derivative pivith respect
to time, now considered a vector, ah@ndh are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimensionntechanical systems,
the state consists of the position and velocity of the sysserthaix = (q, ) inthe
case of adamped spring—mass system. Note that in the cfamtrallation we model



32 CHAPTER 2. SYSTEM MODELING

dynamics as first-order differential equations, but we vé# shat this can capture
the dynamics of higher-order differential equations byrappate definition of the
state and the mapk andh.

Adding inputs and outputs has increased the richness ofdlsical problems
and led to many new concepts. For example, it is natural taf aslssible statex
can be reached with the proper choicei¢feachability) and if the measurement
contains enough information to reconstruct the state (@hbdity). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view wag timergence of
disturbances and model uncertainty as critical elementsartheory. The simple
way of modeling disturbances as deterministic signalsdik@s and sinusoids has
the drawback that such signals cannot be predicted precisehore realistic ap-
proach is to model disturbances as random signals. This viexvgives a natural
connection between prediction and control. The dual viewamit/output repre-
sentations and state space representations are paitiausaful when modeling
uncertainty since state models are convenient to descnbenal model but un-
certainties are easier to describe using input/output teddéen via a frequency
response description). Uncertainty will be a constant gndmoughout the text and
will be studied in particular detail in Chapter 12.

An interesting observation in the design of control systésnhat feedback
systems can often be analyzed and designed based on corglasatple models.
The reason for this is the inherent robustness of feedbat&ragsHowever, other
uses of models may require more complexity and more accutasy example is
feedforward control strategies, where one uses a modektmprpute the inputs
that cause the system to respond in a certain way. Anotheissgstem validation,
where one wishes to verify that the detailed response ofytsies performs as it
was designed. Because of these different uses of modetscdnnmon to use a
hierarchy of models having different complexity and fidelity

Multidomain Modeling

Modeling is an essential element of many disciplines, taditions and methods
from individual disciplines can differ from each other, figstrated by the previous
discussion of mechanical and electrical engineering. Acdity in systems engi-
neering is that it is frequently necessary to deal with legfeneous systems from
many different domains, including chemical, electricakamanical and informa-
tion systems.

To model such multidomain systems, we start by partitiorangystem into
smaller subsystems. Each subsystem is represented by dalquations for mass,
energy and momentum, or by appropriate descriptions ofrimition processing
in the subsystem. The behavior at the interfaces is captyrdddxribing how the
variables of the subsystem behave when the subsystemdenmimected. These
interfaces act by constraining variables within the indidal subsystems to be equal
(such as mass, energy or momentum fluxes). The complete mddehisbtained
by combining the descriptions of the subsystems and th&factes.
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Using this methodology it is possible to build up librarigssabsystems that
correspond to physical, chemical and informational congpdgé The procedure
mimics the engineering approach where systems are buiit$udosystems that are
themselves built from smaller components. As experiengaiiged, the components
and their interfaces can be standardized and collecteddehibraries. In practice,
it takes several iterations to obtain a good library that barreused for many
applications.

State models or ordinary differential equations are noablétfor component-
based modeling of this form because states may disappear eameponents are
connected. This implies that the internal description of mgonent may change
when it is connected to other components. As an illustratierconsider two ca-
pacitors in an electrical circuit. Each capacitor has a stateesponding to the
voltage across the capacitors, but one of the states wapgisar if the capacitors
are connected in parallel. A similar situation happens with rotating inertias,
each of which is individually modeled using the angle of tioimand the angular
velocity. Two states will disappear when the inertias anegd by a rigid shaft.

This difficulty can be avoided by replacing differential eqoas bydifferential
algebraic equationswhich have the form

F(z,2) =0,

wherez € R". A simple special case is

x=1fxy), 9gxy=0, (2.4)

wherez = (x,y) andF = (X — f(X,Y), g(X, y)). The key property is that the
derivativezis not given explicitly and there may be pure algebraic retstbetween
the components of the vectar

The model (2.4) captures the examples of the parallel capa@nd the linked
rotating inertias. For example, when two capacitors ar@eoted, we simply add
the algebraic equation expressing that the voltages athessapacitors are the
same.

Modelicais a language that has been developed to support compoased-b
modeling. Differential algebraic equations are used as#sc description, and
object-oriented programming is used to structure the nsodiébdelica is used to
model the dynamics of technical systems in domains such akanéal, electri-
cal, thermal, hydraulic, thermofluid and control subsystdvtmdelica is intended
to serve as a standard format so that models arising in éiffetomains can be
exchanged between tools and users. A large set of free anahemial Modelica
component libraries are available and are used by a growimgper of people
in industry, research and academia. For further informagibout Modelica, see
http://www.modelica.org or Tiller [TilO1].
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2.2 State Space Models

In this section we introduce the two primary forms of modélsttwe use in this
text: differential equations and difference equationghBoake use of the notions
of state, inputs, outputs and dynamics to describe the ahafva system.

Ordinary Differential Equations

The state of a system is a collection of variables that sunzmdhe past of a
system for the purpose of predicting the future. For a plysigstem the state is
composed of the variables required to account for storageass, momentum and
energy. A key issue in modeling is to decide how accuratesy/dtorage has to be
represented. The state variables are gathered in a vectoR" called thestate
vector The control variables are represented by another vectorRP, and the
measured signal by the vectgre RY. A system can then be represented by the
differential equation

dx
5 = foaw, y = h(x, u), (2.5)

wheref : R" x RP - R"andh : R" x RP — RY are smooth mappings. We call
a model of this form &tate space model

The dimension of the state vector is called trder of the system. The sys-
tem (2.5) is calledime-invariantbecause the functiont andh do not depend
explicitly on timet; there are more general time-varying systems where the func
tions do depend on time. The model consists of two functidresfunctionf gives
the rate of change of the state vector as a function of gtated control, and the
functionh gives the measured values as functions of stataed controlu.

A system is called &near state space system if the functiohandh are linear
in X andu. A linear state space system can thus be represented by

d
d_)t( = AX + Bu, y = Cx+ Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said tmbar and
time-invariant or LTI for short. The matrixA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influenesattput directly.
A different form of linear differential equations, genezalg the second-order
dynamics from mechanics, is an equation of the form
n n—1
dy + a]_d _y
dtn din-1
wheret is the independent (time) variablg(t) is the dependent (output) variable
andu(t) is the input. The notatiody/dt* is used to denote thith derivative
of y with respect ta, sometimes also written ag¥. The controlled differential
equation (2.7) is said to be ath-order system. This system can be converted into

tootay=u (2.7)
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state space form by defining

35

X1 dn—ly/dtn—l
X dn—2y/dtn—2
X = . s
Xn—1 dy/dt
Xn ] y

and the state space equations become

—alxl—"'—anxn
+ s y=Xﬂ-
Xn 1 Xn 2
Xn—1

With the appropriate definitions @&, B, C and D, this equation is in linear state
space form.

An even more general system is obtained by letting the olnpuatlinear com-
bination of the states of the system, i.e.,

o C

[eNe)

y = bixg + boxa + - - - 4 by + du.

This system can be modeled in state space as

X1 [—a; —a, ... —a,_1 —a, 1
X2 1 0 .. 0 0 0
dlx|_-]o0o 1 0 0|xs|ofu
al z s (2.8)
x2] o o 10 0
y=[b b b4x+du

This particular form of a linear state space system is cabedhable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems

An example of a type of system that can be modeled using asdutiferential
equations is the class bélance system# balance system is a mechanical system
in which the center of mass is balanced above a pivot pointe®@mmon examples
of balance systems are shown in Figure 2.5. The Segway® Pers@mepbrter
(Figure 2.5a) uses a motorized platform to stabilize a pestanding on top of
it. When the rider leans forward, the transportation depiapels itself along the
ground but maintains its upright position. Another exanipéerocket (Figure 2.5b),
in which a gimbaled nozzle at the bottom of the rocket is useddabilize the body
of the rocket above it. Other examples of balance systenhsdadiumans or other
animals standing upright or a person balancing a stick an hiaed.
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(a) Segway (b) Saturn rocket (c) Cart—pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Satket @nd (c)
inverted pendulum on a cart. Each of these examples uses forcedattitia of the system
to keep it upright.

Balance systems are a generalization of the spring—maites1syse saw earlier.
We can write the dynamics for a mechanical system in the géfeam

M(@)4 + C(q, q) + K(q) = B(q)u,

where M (q) is the inertia matrix for the systeng(q, ) represents the Coriolis
forces as well as the damping,(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into theuhjcs. The
specific form of the equations can be derived using Newtoniaohanics. Note
that each of the terms depends on the configuration of themrsystnd that these
terms are often nonlinear in the configuration variables.

Figure 2.5¢ shows a simplified diagram for a balance systemstomgsof an
inverted pendulum on a cart. To model this system, we chaase wariables that
represent the position and velocity of the base of the sygpeand p, and the angle
and angular rate of the structure above the basadd. We letF represent the
force applied at the base of the system, assumed to be in tiehial direction
(aligned withp), and choose the position and angle of the system as outiits.
this set of definitions, the dynamics of the system can be ctedpising Newtonian
mechanics and have the form

(M+m) —mlcosd] [p cp+mlising6?]  [F 2.9)
—mlcost (J+ml?)| |4 + y0 —mglsing | — (0] '

whereM is the mass of the basm,andJ are the mass and moment of inertia of the
system to be balanceldis the distance from the base to the center of mass of the
balanced body; andy are coefficients of viscous friction amds the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space fgrdetining the
state ax = (p, 6, p, 0), the input as1 = F and the output ag = (p, 9). If we
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define the total mass and total inertia as

Mi=M+m, J=J+mlp?
the equations of motion then become

P
P . 4 .
d o | —mls0*+mgml?/I)sc —cp—ylmed +u
dt [p| ~ M — m(mI?/3)c; ’
0

—ml%sycyH? + Miglsy — cleyp — y (M/m)é + Icgu
J(M¢/m) —m(lcy)?

o~ (3]
where we have used the shorthapd= cosf andsy = sind.

In many cases, the anglewill be very close to 0, and hence we can use the
approximations sii ~ 0 and co® ~ 1. Furthermore, i) is small, we can
ignore quadratic and higher termsfinSubstituting these approximations into our
equations, we see that we are left withireear state space equation

D 0 0 1 0 D 0
d |s 0 0 0 1 2] 0
dt |[p| ~ |0 mAPg/u —cd/u —yHIm/u| | P T o |
0 [0 Mimgl/u —clm/u =y My/u ) L8 Im/u
_[r 000
Y=lo 1009
wherey = MyJ, — m?l2. \Y

Example 2.2 Inverted pendulum

A variation of the previous example is one in which the lomanf the base does

not need to be controlled. This happens, for example, if werdeeested only in
stabilizing a rocket’s upright orientation without wonngi about the location of
base of the rocket. The dynamics of this simplified system aengby

d [el—lmgl yé | I y=0 (2.10)
dt [0] ~ | —==sind — LH+ —coshul’ - '
J J J
wherey is the coefficient of rotational friction), = J + ml? andu is the force
applied at the base. This system is referred to asarted pendulum \%

Difference Equations

In some circumstances, it is more natural to describe thiigoo of a system at
discrete instants of time rather than continuously in titheve refer to each of
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these times by an integér= 0, 1, 2, ..., then we can ask how the state of the
system changes for ea&hJust as in the case of differential equations, we define
the state to be those sets of variables that summarize thefghs system for the
purpose of predicting its future. Systems described in traamer are referred to
asdiscrete-time systems

The evolution of a discrete-time system can be written in ¢t f

X[k + 1] = f(x[K], u[k]), y[k] = h(x[K], u[k]), (2.11)

wherex[k] € R" is the state of the system at tilkg(an integer)u[k] € RP is
the input andy[Kk] € RY is the output. As beforef andh are smooth mappings of
the appropriate dimension. We call equation (2.1djfeerence equatiosince it
tells us howx[k + 1] differs fromx[k]. The statex[k] can be either a scalar- or a
vector-valued quantity; in the case of the latter we wxitgk] for the value of the
jth state at timéx.

Just as in the case of differential equations, it is oftercdse that the equations
are linear in the state and input, in which case we can destirdsystem by

x[k + 1] = Ax[k] + Bulk],  y[k] = Cx[k] + Du[K].

As before, we refer to the matricés B, C andD as the dynamics matrix, the control
matrix, the sensor matrix and the direct term. The solutioa tifiear difference
equation with initial conditiorx[0] and inputu[0], ..., u[T] is given by
k—1
X[K] = A%+ > AI=IBU[]],
j=0
k—1
ylkl = CA'% + > CA“I'BU[j] + Du[K],
j=0

k> 0. (2.12)

Difference equations are also useful as an approximatialifiefrential equa-
tions, as we will show later.

Example 2.3 Predator—prey
As an example of a discrete-time system, consider a simptiehior a predator—
prey system. The predator—prey problem refers to an ecalbgystem in which
we have two species, one of which feeds on the other. This tfgsgsbem has
been studied for decades and is known to exhibit interestymgmics. Figure 2.6
shows a historical record taken over 90 years for a populatfdynxes versus a
population of hares [Mac37]. As can been seen from the gtaptannual records
of the populations of each species are oscillatory in nature

A simple model for this situation can be constructed usinigerdte-time model
by keeping track of the rate of births and deaths of each epdoettingH represent
the population of hares aridrepresent the population of lynxes, we can describe
the state in terms of the populations at discrete periodsa. tLettingk be the
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1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1
1845 1855 1865 1875 1885 1895 1905 1915 1925 1935
Figure 2.6: Predator versus prey. The photograph on the left shows a Canadiaarygl
a snowshoe hare, the lynx’s primary prey. The graph on the rightskiwe populations of
hares and lynxes between 1845 and 1935 in a section of the Canadigesjdtac37]. The

data were collected on an annual basis over a period of 90 yearso@Pdyoh copyright Tom
and Pat Leeson.)

discrete-time index (e.g., the month number), we can write

HIk + 1] = H[K] + b (U)H[K] — aL[K]H[K],
L[k + 1] = L[K] + cL[K]H[K] — d L[K],

whereb; (u) is the hare birth rate per unit period and as a function of twal f
supplyu, ds is the lynx mortality rate and andc are the interaction coefficients.
The interaction ternaL[k] H[k] models the rate of predation, which is assumed
to be proportional to the rate at which predators and preyt areeis hence given
by the product of the population sizes. The interaction tetrfk]H[k] in the
lynx dynamics has a similar form and represents the rate @f/thr of the lynx
population. This model makes many simplifying assumptiosgeh as the fact
that hares decrease in number only through predation byegsvbut it often is
sufficient to answer basic questions about the system.

To illustrate the use of this system, we can compute the nuwitignxes and
hares at each time point from some initial population. Thifise by starting with
X[0] = (Ho, Lo) and then using equation (2.13) to compute the populations in
the following period. By iterating this procedure, we camgmate the population
over time. The output of this process for a specific choice cdupaters and initial
conditions is shown in Figure 2.7. While the details of thewdation are different
from the experimental data (to be expected given the siitypti€our assumptions),
we see qualitatively similar trends and hence we can use tidehto help explore
the dynamics of the system. \%

(2.13)

Example 2.4 E-mail server

The IBM Lotus server is an collaborative software system thatinisters users’
e-mail, documents and notes. Client machines interact evithusers to provide
access to data and applications. The server also handlesadth@istrative tasks.
In the early development of the system it was observed tiegpénformance was
poor when the central processing unit (CPU) was overloadeause of too many
service requests, and mechanisms to control the load wereftine introduced.

The interaction between the client and the server is in thm fafrremote pro-
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Figure 2.7: Discrete-time simulation of the predator—prey model (2.13). Using tfeepeters
a=c=0.014,b (u) = 0.6 andd = 0.7 in equation (2.13), the period and magnitude of the
lynx and hare population cycles approximately match the data in Figure 2.6.

cedure calls (RPCs). The server maintains a log of statistiosropleted requests.
The total number of requests being served, caRe& (RPCs in server), is also
measured. The load on the server is controlled by a paranedted MaxUser s,
which sets the total number of client connections to theeseivhis parameter is
controlled by the system administrator. The server can bardeg as a dynami-
cal system withvaxUser s as the input andRl S as the output. The relationship
between input and output was first investigated by explotiregsteady-state per-
formance and was found to be linear.

In [HDPTO04] a dynamic model in the form of a first-order differerequation
is used to capture the dynamic behavior of this system. Usistgm identification
technigues, they construct a model of the form

y[k + 1] = ay[k] + bu[k],

whereu = MaxUsers — MaxUsers andy = RIS — RI'S. The parameters

a = 0.43 andb = 0.47 are parameters that describe the dynamics of the system
around the operating point, ahMixUser s = 165 andRl' S = 135 represent the
nominal operating point of the system. The number of requwesssaveraged over

a sampling period of 60 s. \%

Simulation and Analysis

State space models can be used to answer many questions.t@amolkt common,
as we have seen in the previous examples, involves preglittenevolution of the
system state from a given initial condition. While for simphodels this can be
done in closed form, more often it is accomplished throughmater simulation.
One can also use state space models to analyze the overallitredf the system
without making direct use of simulation.

Consider again the damped spring—mass system from Seclion2 this time
with an external force applied, as shown in Figure 2.8. We washredict the
motion of the system for a periodic forcing function, withigem initial condition,
and determine the amplitude, frequency and decay rate oégudting motion.
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Figure 2.8: A driven spring—mass system with damping. Here we use a linear damping
element with coefficient of viscous friction The mass is driven with a sinusoidal force of
amplitudeA.

We choose to model the system with a linear ordinary diffeaérequation.
Using Hooke’s law to model the spring and assuming that thepeéa exerts a force
that is proportional to the velocity of the system, we have

mg + cq + kqg=u, (2.14)

wherem is the massq is the displacement of the massjs the coefficient of
viscous frictionk is the spring constant andis the applied force. In state space
form, usingx = (q, ) as the state and choosigg= q as the output, we have

dx XT( y—x
— = c ul - = X1.
dt [ ——x+—

m m m

We see that this is a linear second-order differential egnatith one inpuu and
one outputy.

We now wish to compute the response of the system to an inpihiecform
u = Asinwt. Although it is possible to solve for the response analilticave
instead make use of a computational approach that does Igairréhe specific
form of this system. Consider the general state space system

Given the state at timet, we can approximate the value of the state at a short
timeh > 0 later by assuming that the rate of changé 6f, u) is constant over the
intervalt tot + h. This gives

X(t + h) = x(t) + hf(x(1), u(t)). (2.15)

Iterating this equation, we can thus solve %aas a function of time. This approxi-
mation is known as Euler integration and is in fact a diffeee@quation if we leh
represent the time increment and wei{é] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methaasEuler
integration, they still have some of the same basic tratke-of

Returning to our specific example, Figure 2.9 shows the restitemputing
x(t) using equation (2.15), along with the analytical compotat\We see that as
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Figure 2.9: Simulation of the forced spring—mass system with different simulation time
constants. The dashed line represents the analytical solution. The saliddpresent the
approximate solution via the method of Euler integration, using decreasipgizes.

h gets smaller, the computed solution converges to the exadian. The form
of the solution is also worth noticing: after an initial tsint, the system settles
into a periodic motion. The portion of the response after taegient is called the
steady-state responsge the input.

In addition to generating simulations, models can also led trs answer other
types of questions. Two that are central to the methods itbesiin this text concern
the stability of an equilibrium point and the input/outptgduency response. We
illustrate these two computations through the exampleswbalnd return to the
general computations in later chapters.

Returning to the damped spring—mass system, the equafiomstion with no
input forcing are given by

dx X2

—_— — k 2.1

dt [—EXZ — —X]_] ’ ( 6)
m m

wherex; is the position of the mass (relative to the rest positiorg mnis its
velocity. We wish to show that if the initial state of the srstis away from the
rest position, the system will return to the rest positioeragually (we will later
define this situation to mean that the rest positioasigmptotically stable While
we could heuristically show this by simulating many, mangiah conditions, we
seek instead to prove that this is true &myinitial condition.

To do so, we construct a functioh : R" — R that maps the system state to a
positive real number. For mechanical systems, a conveaiite is the energy of
the system,

1 1
V(X) = E|<xf + ém><§. (2.17)

If we look at the time derivative of the energy function, we seat
dv
dt

which is always either negative or zero. Henéex(t)) is never increasing and,

) . C k
= ki + MxeXe = kxxe +MXe(——xp — —x1) = —cX3,
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using a bit of analysis that we will see formally later, thdiindual states must
remain bounded.

If we wish to show that the states eventually return to thgioyiwe must use
a slightly more detailed analysis. Intuitively, we can @asss follows: suppose
that for some period of timey (x(t)) stops decreasing. Then it must be true that
V (x(t)) = 0, which in turn implies thak,(t) = 0 for that same period. In that
case xo(t) = 0, and we can substitute into the second line of equatior6)2adl
obtain

_ c k
0=X%Xy=——Xo — —X1 = —Xj.
m m m

Thus we must have thag also equals zero, and so the only time tW&k(t)) can
stop decreasing is if the state is at the origin (and hensestfstem is at its rest
position). Since we know that (x(t)) is never increasing (because < 0), we
therefore conclude that the origin is stable @oryinitial condition).

This type of analysis, called Lyapunov stability analyss;onsidered in detail
in Chapter 4. It shows some of the power of using models foattadysis of system
properties.

Another type of analysis that we can perform with models isdmpute the
output of a system to a sinusoidal input. We again considesphing—mass system,
but this time keeping the input and leaving the system inrtsimal form:

mg + cq + kq = u. (2.18)
We wish to understand how the system responds to a sinusojddlof the form
u(t) = Asinwt.

We will see how to do this analytically in Chapter 6, but fomnee make use of
simulations to compute the answer.

We first begin with the observation thagt) is the solution to equation (2.18)
with inputu(t), then applying an inputl(t) will give a solution 2j(t) (this is easily
verified by substitution). Hence it suffices to look at an inpithwnit magnitude,
A = 1. A second observation, which we will prove in Chapter 5hat the long-
term response of the system to a sinusoidal input is itseili@ssid at the same
frequency, and so the output has the form

q(t) = g(w) sin(wt + ¢ (w)),

whereg(w) is called thegain of the system ang(w) is called thephase(or phase
offset).

To compute the frequency response numerically, we can atmtihe system
at a set of frequencies,, ..., oy and plot the gain and phase at each of these
frequencies. An example of this type of computation is showigure 2.10.
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Figure 2.10: A frequency response (gain only) computed by measuring the respain
individual sinusoids. The figure on the left shows the response of/tera as a function of
time to a number of different unit magnitude inputs (at different fregies). The figure on
the right shows this same data in a different way, with the magnitude of $pemse plotted
as a function of the input frequency. The filled circles correspond tpaftécular frequencies
shown in the time responses.

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to haveedét representations
of the system that capture the essential features and maleviant details. In all
branches of science and engineering it is common practiaegsome graphical
description of systems, callethematic diagramsThey can range from stylistic
pictures to drastically simplified standard symbols. Theswipts make it possible
to get an overall view of the system and to identify the indinal components.
Examples of such diagrams are shown in Figure 2.11. Schemagjizains are useful
because they give an overall picture of a system, showifeydift subprocesses and
their interconnection and indicating variables that camla@ipulated and signals
that can be measured.

Block Diagrams

A special graphical representation calletlack diagramhas been developed in
control engineering. The purpose of a block diagram is to exsigk the information
flow and to hide details of the system. In a block diagram, iffiéprocess elements
are shown as boxes, and each box has inputs denoted by lithesrvaws pointing
toward the box and outputs denoted by lines with arrows goumgof the box.
The inputs denote the variables that influence a process, anoutputs denote
the signals that we are interested in or signals that influeticer subsystems.
Block diagrams can also be organized in hierarchies, winelieidual blocks may
themselves contain more detailed block diagrams.

Figure 2.12 shows some of the notation that we use for bloakaias. Signals
are represented as lines, with arrows to indicate inputeatmlits. The first diagram
is the representation for a summation of two signals. An tifguiput response is
represented as a rectangle with the system name (or matbahtscription) in
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Figure 2.11: Schematic diagrams for different disciplines. Each diagram is used ttélles
the dynamics of a feedback system: (a) electrical schematics forersgatem [Kun93], (b)
a biological circuit diagram for a synthetic clock circuit [ASMNO3], (Qracess diagram for
a distillation column [SEMO04] and (d) a Petri net description of a commtioicgrotocol.
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(d) Nonlinear map
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(f) Input/output system

Figure 2.12:Standard block diagram elements. The arrows indicate the the inputstgidsou
of each element, with the mathematical operation corresponding to thesdltatheled at the
output. The system block (f) represents the full input/output respdresdymamical system.
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Figure 2.13: A block diagram representation of the flight control system for an irfggng
against the wind. The mechanical portion of the model consists of thelyaigt dynamics
of the fly, the drag due to flying through the air and the forces genergtéuehwings. The
motion of the body causes the visual environment of the fly to changethainformation
is then used to control the motion of the wings (through the sensory mattemsy, closing
the loop.

the block. Two special cases are a proportional gain, whiethes the input by
a multiplicative factor, and an integrator, which outpute tntegral of the input
signal.

Figure 2.13 illustrates the use of a block diagram, in thig dasmodeling the
flight response of a fly. The flight dynamics of an insect are inbigdntricate,
involving careful coordination of the muscles within the fiyhaintain stable flight
in response to external stimuli. One known characterigtftes is their ability to
fly upwind by making use of the optical flow in their compound eges feedback
mechanism. Roughly speaking, the fly controls its orientasio that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose tralbdynamics
of the system into a series of interconnected subsystentddoky. Referring to
Figure 2.13, we can model the insect navigation system tirangnterconnection
of five blocks. The sensory motor system (a) takes the infoomditom the visual
system (e) and generates muscle commands that attempetalstdly so that the
point of contraction is centered. These muscle commandaxerted into forces
through the flapping of the wings (b) and the resulting aeradyin forces that are
produced. The forces from the wings are combined with the dratle fly (d) to
produce a net force on the body of the fly. The wind velocity enterough the
drag aerodynamics. Finally, the body dynamics (c) descrilvethe fly translates
and rotates as a function of the net forces that are appligdTtbe insect position,
speed and orientation are fed back to the drag aerodynamitsision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicatédysiem. For
example, the visual system of a fruit fly consists of two cowgitd compound eyes
(with about 700 elements per eye), and the sensory motarayss about 200,000
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neurons that are used to process information. A more ddthlteck diagram of
the insect flight control system would show the interconmastibetween these
elements, but here we have used one block to represent hawaten of the fly
affects the output of the visual system, and a second blaelptesent how the visual
field is processed by the fly’s brain to generate muscle commahdshoice of the
level of detail of the blocks and what elements to separabadifferent blocks often
depends on experience and the questions that one wantsterarsing the model.
One of the powerful features of block diagrams is their &pith hide information
about the details of a system that may not be needed to gaindersianding of
the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and acty#t@ralso possible to
obtain models of system dynamics from experiments on thegs The models
are restricted to input/output models since only theseadsgare accessible to
experiments, but modeling from experiments can also be gwdhlwith modeling
from physics through the use of feedback and interconnectio

A simple way to determine a system’s dynamics is to obsemedbponse to a
step change in the control signal. Such an experiment begissthing the control
signal to a constant value; then when steady state is esttaellithe control signal is
changed quickly to a new level and the output is observed. Xxergnent gives the
step response of the system, and the shape of the respoaseigaful information
about the dynamics. It immediately gives an indication efriésponse time, and it
tells if the system is oscillatory or if the response is monet

Example 2.5 Spring—mass system
Consider the spring—mass system from Section 2.1, whoserdgsare given by

mg + cq + kg = u. (2.19)

We wish to determine the constamts c andk by measuring the response of the
system to a step input of magnituég.
We will show in Chapter 6 that whee? < 4km, the step response for this
system from the rest configuration is given by
A/ 4km — c?
Fo ct, . ©d =5
qt) = m (1 - exp(—ﬁ) sin(wgt + (p)) ,

P = tan‘l (\/m) .

From the form of the solution, we see that the form of the respasm determined
by the parameters of the system. Hence, by measuring céetimres of the step
response we can determine the parameter values.

Figure 2.14 shows the response of the system to a step of mdghi§ = 20
N, along with some measurements. We start by noting thatdtlaelg-state position
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Figure 2.14: Step response for a spring—mass system. The magnitude of the stéfsinpu
Fo = 20 N. The period of oscillatiofl is determined by looking at the time between two
subsequent local maxima in the response. The period combined wittettysstate value
g(c0) and the relative decrease between local maxima can be used to estinpateatheters

in a model of the system.

of the mass (after the oscillations die down) is a functiothefspring constark
F
a(00) = . (2.20)

whereF is the magnitude of the applied forcEqo(= 1 for a unit step input). The
parameter 1k is called thegain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2 /4km— c?
= (2.21)

Finally, the rate of decay of the oscillations is given by tkpanential factor in the
solution. Measuring the amount of decay between two pea&ksiave

F F
log(a(ty) - ?0) —log(a(ts) — ?0) - %(t2 —t). (2.22)

Using this set of three equations, we can solve for the paesand determine
that for the step response in Figure 2.14 we have 250 kg,c ~ 60 N s/m and
k =~ 40 N/m. \%

Modeling from experiments can also be done using many oflgeaks. Si-
nusoidal signals are commonly used (particularly for systavith fast dynamics)
and precise measurements can be obtained by exploitingatbon techniques. An
indication of nonlinearities can be obtained by repeatixggeeiments with input
signals having different amplitudes.

Normalization and Scaling

Having obtained a model, it is often useful to scale the \wem by introducing
dimension-free variables. Such a procedure can often diripk equations for a
system by reducing the number of parameters and revea¢atiieg properties of
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the model. Scaling can also improve the numerical conditgmif the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose unitsech indepen-
dent variable and introduce new variables by dividing théatdes by the chosen
normalization unit. We illustrate the procedure with twaeples.

Example 2.6 Spring—mass system
Consider again the spring—mass system introduced e&tégtecting the damping,
the system is described by

mg + kq = u.

The model has two parameters and k. To normalize the model we introduce
dimension-free variables = g/l andr = wpt, wherewy = /k/m andl is the
chosen length scale. We scale forcerbioZ and introducer = u/(mlw3). The
scaled equation then becomes

d’x  d?q/! 1
e — —k =—

422 = oot~ miggl KaTW = x4,
which is the normalized undamped spring—mass system. &libiat the normalized
model has no parameters, while the original model had twarpateran andk.
Introducing the scaled, dimension-free state variabless x = g/l andz, =
dx/dz = q/(lwp), the model can be written as

ai =) =[5 o] [2]+ 2]

This simple linear equation describes the dynamics of anpgpmass system,
independent of the particular parameters, and hence g#/assight into the fun-
damental dynamics of this oscillatory system. To recoveptiysical frequency of
oscillation or its magnitude, we must invert the scaling \aeehapplied. \%

Example 2.7 Balance system
Consider the balance system described in Section 2.1. Nemedamping by
puttingc = 0 andy = 0 in equation (2.9), the model can be written as

dq d20 _da.2
(M + m)ﬁ - mIcos@W + mlsme(a) =F,
d%q ,.d%0 :
—mIcos@W +J+ml )W — mglsing = 0.

Letwo = v/mgl/(J + ml2), choose the length scalelatet the time scale be/ty,
choose the force scale @8l + m)lw? and introduce the scaled variables= wot,
x =@/l andu = F/((M + m)lw3). The equations then become

d?x d?0 do 2 d’x  d%9

—— — 0 COSH — sind{—) =u, —pcosd—+ — —sind =0,

dez~ * dz? ta (dr) p dz? + dr?
wherea = m/(M +m) andg = ml?/(J +ml?). Notice that the original model has
five parameterm, M, J, | andg but the normalized model has only two parameters
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relatiorestdpthe
dashed lines indicate the range of possible uncertainty. The uncertairip [E®D59] in

(b) is one way to capture uncertainty in dynamical systems emphasizirgiadel is valid

only in some amplitude and frequency ranges. In (c) a model is repies by a nominal
modelM and another moded representing the uncertainty analogous to the representation
of parameter uncertainty.

a andp. If M > mandml? > J, we geta &~ 0 andf ~ 1 and the model can be
approximated by

d?x d?9

— =u, —— —sinfd = ucosy.

dz2 dz2
The model can be interpreted as a mass combined with an idyestelulum driven
by the same input. \Y%

Model Uncertainty

Reducing uncertainty is one of the main reasons for usirgji@ek, and it is there-
fore important to characterize uncertainty. When makingsneements, there is a
good tradition to assign both a nominal value and a measuneadrtainty. It is
useful to apply the same principle to modeling, but unfaatety it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be cheniaed by a func-
tion, uncertainty can be expressed by an uncertainty barnliuasated in Fig-
ure 2.15a. At low signal levels there are uncertainties dusensor resolution,
friction and quantization. Some models for queuing systentells are based on
averages that exhibit significant variations for small papahs. At large signal
levels there are saturations or even system failures. Thals@nges where a model
is reasonably accurate vary dramatically between appicstbut it is rare to find
models that are accurate for signal ranges larger than 10

Characterization of the uncertainty of a dynamic model isimmore difficult.
We can try to capture uncertainties by assigning uncerégind parameters of the
model, but this is often not sufficient. There may be errors dyghenomena that
have been neglected, e.g., small time delays. In contralltieate test is how well
a control system based on the model performs, and time detaybe important.
There is also a frequency aspect. There are slow phenomemaasaging, that
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can cause changes or drift in the systems. There are alsdreiglency effects: a
resistor will no longer be a pure resistance at very highdeagies, and a beam
has stiffness and will exhibit additional dynamics whenjsabto high-frequency
excitation. Theuncertainty lemodGPD59] shown in Figure 2.15b is one way to
conceptualize the uncertainty of a system. Itillustrates & model is valid only in
certain amplitude and frequency ranges.

We will introduce some formal tools for representing unaierty in Chapter 12
using figures such as Figure 2.15c. These tools make use of tbeptai a transfer
function, which describes the frequency response of antfoptput system. For
now, we simply note that one should always be careful to neizegthe limits of
a model and not to make use of models outside their range dicapipity. For
example, one can describe the uncertainty lemon and thek thhenake sure that
signals remain in this region. In early analog computingysiesn was simulated
using operational amplifiers, and it was customary to givenadawhen certain
signal levels were exceeded. Similar features can be indlundgigital simulation.

2.4 Modeling Examples

In this section we introduce additional examples thatitaie some of the different
types of systems for which one can develop differential @qnaand difference

equation models. These examples are specifically chosen franga of different

fields to highlight the broad variety of systems to which fessakband control

concepts can be applied. A more detailed set of applicatlmatsserve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation ardiback to control the
movement of a mechanical system. Motion control systemgerdirom nanopo-

sitioning systems (atomic force microscopes, adaptiviEsptto control systems
for the read/write heads in a disk drive of a CD player, to nfiacturing systems

(transfer machines and industrial robots), to automotomrol systems (antilock
brakes, suspension control, traction control), to air grats flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model
A common problem in motion control is to control the trajegtof a vehicle
through an actuator that causes a change in the orientatisteering wheel on an
automobile and the front wheel of a bicycle are two examplessimilar dynamics
occur in the steering of ships or control of the pitch dynaaican aircraft. In many
cases, we can understand the basic behavior of these sybi@mgh the use of a
simple model that captures the basic kinematics of the syste

Consider a vehicle with two wheels as shown in Figure 2.16tl@purpose of
steering we are interested in a model that describes howetbeity of the vehicle
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead viewelhiale
with four wheels. The wheel basebsand the center of mass at a distaaderward of the
rear wheels. By approximating the motion of the front and rear pairshefelg by a single
front wheel and a single rear wheel, we obtain an abstraction calldiidyee modelshown
on the right. The steering angledsand the velocity at the center of mass has the amgle
relative the length axis of the vehicle. The position of the vehicle is givetxby) and the
orientation (heading) bg.

depends on the steering angldo be specific, consider the velocityat the center
of mass, a distanca from the rear wheel, and l&tbe the wheel base, as shown
in Figure 2.16. Lek andy be the coordinates of the center of masthe heading
angle and: the angle between the velocity vectaand the centerline of the vehicle.
Sinceb = rytand anda = r, tane, it follows that tam: = (a/b) tané and we get
the following relation between and the steering ange

0.(0) = arctar(

Assume that the wheels are rolling without slip and that thleaity of the rear
wheel isvg. The vehicle speed at its center of mass is vg/ cosa, and we find
that the motion of this point is given by

atan5>. (2.23)

d 0
d_)t( = v cos(a + 0) = vo—coségsj ),
(2.24)

%/ =vosin(a +0) = 00%.
To see how the angle is influenced by the steering angle, we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velogjidr, around the point
O. Hence 40 vo  vo
it 1. D tano. (2.25)

Equations (2.23)—(2.25) can be used to model an automohilertihe assump-
tions that there is no slip between the wheels and the roadhatdhe two front
wheels can be approximated by a single wheel at the centdreoddr. The as-
sumption of no slip can be relaxed by adding an extra statablat giving a more
realistic model. Such a model also describes the steeringndizs of ships as well
as the pitch dynamics of aircraft and missiles. It is alscsjiids to choose coor-
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Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) resits its

engine thrust downward so that it can “hover” above the ground.eSainfrom the engine
is diverted to the wing tips to be used for maneuvering. As shown in (bypehéhrust on
the aircraft can be decomposed into a horizontal fétcand a vertical forcd-, acting at a
distance from the center of mass.

dinates so that the reference point is at the rear wheelse§monding to setting
a = 0), a model often referred to as tBeibins car[Dub57].

Figure 2.16 represents the situation when the vehicle mavesafd and has
front-wheel steering. The case when the vehicle reversdstésned by changing
the sign of the velocity, which is equivalent to a vehicletwi¢ar-wheel steering.

\%

Example 2.9 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such asHheier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takbpffedirecting its
thrust downward and through the use of smaller maneuvehningters located on
its wings. A simplified model of the Harrier is shown in Figurdzh, where we
focus on the motion of the vehicle in a vertical plane throtigd wings of the
aircraft. We resolve the forces generated by the main dowhteiuster and the
maneuvering thrusters as a pair of forégandF, acting at a distanaebelow the
aircraft (determined by the geometry of the thrusters).

Let (x, y, #) denote the position and orientation of the center of mashtef t
aircraft. Letmbe the mass of the vehicléthe moment of inertigg the gravitational
constant and the damping coefficient. Then the equations of motion for ttécle
are given by

mX = F; cosd — Frsing — cXx,
my = F; sind + F, cosf — mg— cy, (2.26)
JO =rFq.

Itis convenient to redefine the inputs so that the origin iscanldrium point of the
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Figure 2.18:Schematic diagram of a queuing system. Messages arrive ataateare stored
in a queue. Messages are processed and removed from the quateq@iThe average size
of the queue is given by € R.

system with zero input. Letting; = F; andu, = F, — mg, the equations become

mX = —mgsing — cX + Uy Cos# — U, sing,

my = mg(cosf — 1) — cy + U3 Sind + U, cosY, (2.27)
J0 =ruj.
These equations describe the motion of the vehicle as a sekeftoupled second-
order differential equations. \%

Information Systems

Information systems range from communication systemsthkenternet to soft-
ware systems that manipulate data or manage enterprisesgderces. Feedback
is presentin all these systems, and designing strategissting, flow control and
buffer management is a typical problem. Many results in qugtheory emerged
from design of telecommunication systems and later fronelbgment of the In-
ternet and computer communication systems [BG87, Kle7583' HcManagement
of queues to avoid congestion is a central problem and wethélefore start by
discussing the modeling of queuing systems.

Example 2.10 Queuing systems

A schematic picture of a simple queue is shown in Figure 2. HjuRsts arrive
and are then queued and processed. There can be large variatiarrival rates
and service rates, and the queue length builds up when tivalaate is larger
than the service rate. When the queue becomes too larg&eserdenied using
an admission control policy.

The system can be modeled in many different ways. One way i®teheach
incoming request, which leads to an event-based model vilhestate is an integer
that represents the queue length. The queue changes wheuestragives or a
request is serviced. The statistics of arrival and serviaiggtypically modeled as
random processes. In many cases it is possible to determaitigtiss of quantities
like queue length and service time, but the computationdeaguite complicated.

A significant simplification can be obtained by usindglewv model Instead
of keeping track of each request we instead view service agdests as flows,
similar to what is done when replacing molecules by a contimwhen analyzing
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Figure 2.19: Queuing dynamics. (a) The steady-state queue length as a functign gf.
(b) The behavior of the queue length when there is a temporary overidhad system. The
solid line shows a realization of an event-based simulation, and the dasheshéws the
behavior of the flow model (2.29).

fluids. Assuming that the average queue length a continuous variable and that
arrivals and services are flows with rateand u, the system can be modeled by
the first-order differential equation
dx
a:l_ﬂ:l_ﬂmaxf(x)a x>0, (2.28)
where umax IS the maximum service rate arfdx) is a number between 0 and 1
that describes the effective service rate as a functionefjtteue length.
Itis natural to assume that the effective service rate dépen the queue length
because larger queues require more resources. In stedady&davef (x) =
A/ itmax, @aNd we assume that the queue length goes to zero ivhehnx goes to zero
and that it goes to infinity whe/ 1 max goes to 1. This implies thaft(0) = 0 and
that f (co) = 1. In addition, if we assume that the effective service raterdorates
monotonically with queue length, then the functib¢x) is monotone and concave.
A simple function that satisfies the basic requirementsis = x/(1+ x), which
gives the model
dx P X
a =A== ,UmaxX 1

This model was proposed by Agnew [Agn76]. It can be shown fretrival and
service processes are Poisson processes, the averageengthed given by equa-
tion (2.29) and that equation (2.29) is a good approximagien for short queue
lengths; see Tipper [TS90].
To explore the properties of the model (2.29) we will first istigate the equi-
librium value of the queue length when the arrival ratss constant. Setting the
derivatived x/dt to zero in equation (2.29) and solving forwe find that the queue
lengthx approaches the steady-state value
Xe = L (2.30)

Hmax — A
Figure 2.19a shows the steady-state queue length as a furaftio/ i« max the
effective service rate excess. Notice that the queue lengtkases rapidly aé

(2.29)
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Figure 2.20: Illustration of feedback in the virtual memory system of the IBM/370. (a¢ T
effect of feedback on execution times in a simulation, following [BG6&sits with no
feedback are shown with, and results with feedback with Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three statedbtamed based
on process measurements.

approachegmax. TOo have a queue length less than 20 requir@snax < 0.95. The
average time to service arequeskds= (X+1)/umax anditincreases dramatically
as/ approacheg max.

Figure 2.19b illustrates the behavior of the server in a Bigigerload situation.
The maximum service rate jgsnax = 1, and the arrival rate starts at= 0.5. The
arrival rate is increased tb = 4 at time 20, and it returns to = 0.5 at time 25.
The figure shows that the queue builds up quickly and clearsslewly. Since the
response time is proportional to queue length, it meansthieaquality of service
is poor for a long period after an overload. This behavior iedaherush-hour
effectand has been observed in web servers and many other questegisysuch
as automobile traffic.

The dashed line in Figure 2.19b shows the behavior of the flow mathéch
describes the average queue length. The simple model cajtelhavior qualita-
tively, but there are variations from sample to sample winmendqueue length is
short. \%

Many complex systems use discrete control actions. Sucaragstan be mod-
eled by characterizing the situations that correspond th €antrol action, as
illustrated in the following example.

Example 2.11 Virtual memory paging control

An early example of the use of feedback in computer systenssapplied in the
operating system OS/VS for the IBM 370 [BG68, Cro75]. The systeed virtual
memory, which allows programs to address more memory thalmyisically avail-
able as fast memory. Data in current fast memory (randonsaaoemory, RAM)
is accessed directly, but data that resides in slower me(dasly) is automatically
loaded into fast memory. The system is implemented in suchyahed it appears
to the programmer as a single large section of memory. Themsys¢rformed very
well in many situations, but very long execution times waneaintered in over-
load situations, as shown by the open circles in Figure 2.2Ba.difficulty was
resolved with a simple discrete feedback system. The lodtkeafdéntral processing
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Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor metvith
five nodes. In this network, node 1 communicates with node 2 and nodenghanicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the convergefibe consensus
protocol (2.31) to the average value of the initial conditions.

unit (CPU) was measured together with the number of page shetpgeen fast
memory and slow memory. The operating region was classifiegiag n one of
three states: normal, underload or overload. The norma &atharacterized by
high CPU activity, the underload state is characterized WwyQ®U activity and few
page replacements, the overload state has moderate to lolo@é&but many page
replacements; see Figure 2.20b. The boundaries betweergibagand the time
for measuring the load were determined from simulationsgugipical loads. The
control strategy was to do nothing in the normal load coaditio exclude a process
from memory in the overload condition and to allow a new pssocar a previously
excluded process in the underload condition. The crossegurd-2.20a show the
effectiveness of the simple feedback system in simulataeddoSimilar principles
are used in many other situations, e.g., in fast, on-chipeatemory. \%

Example 2.12 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications whergvare to collect
and aggregate information over a region of space using phelléiensors that are
connected together via a communications network. Examptésde monitoring
environmental conditions in a geographical area (or inaitlailding), monitoring
the movement of animals or vehicles and monitoring the nesoloading across
a group of computers. In many sensor networks the computdtiesources are
distributed along with the sensors, and it can be importarthie set of distributed
agents to reach a consensus about a certain property, Sheteasrage temperature
in a region or the average computational load among a setopaters.

We model the connectivity of the sensor network using a grapthh nodes
corresponding to the sensors and edges corresponding ¢éxi#tence of a direct
communications link between two nodes. We use the notatipto represent the
set of neighbors of a node For example, in the network shown in Figure 2.21a
N2 ={1,3,4,5} and N3 = {2, 4}.

To solve the consensus problem xebe the state of thigh sensor, correspond-
ing to that sensor’s estimate of the average value that wieyaing to compute. We
initialize the state to the value of the quantity measuredhieyindividual sensor.
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The consensus protocol (algorithm) can now be realized asahupdate law

xi[k+1]=x[Kl +7 D [k = x[K]). (2.31)
jeN;

This protocol attempts to compute the average by updatintptia state of each
agent based on the value of its neighbors. The combined dgsahall agents can
be written in the form

X[k + 1] = x[k] — 7 (D — A)X[K], (2.32)

where A is the adjacency matrix anB is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constdascribes the
rate at which the estimate of the average is updated basedfamation from
neighboring nodes. The matrix:= D — Ais called theLaplacianof the graph.
The equilibrium points of equation (2.32) are the set of statech thakg[k +
1] = x¢[K]. It can be shown thate = («, «, . .., ) is an equilibrium state for the
system, corresponding to each sensor having an identioakgsa for the average.
Furthermore, we can show thatis indeed the average value of the initial states.
Since there can be cycles in the graph, it is possible thattie of the system
could enter into an infinite loop and never converge to therdésionsensus state.
A formal analysis requires tools that will be introducecetan the text, but it can
be shown that for any connected graph we can always findwach that the states
of the individual agents converge to the average. A simutadiemonstrating this
property is shown in Figure 2.21b. \%

Biological Systems

Biological systems provide perhaps the richest sourceanftfack and control ex-
amples. The basic problem of homeostasis, in which a quasntdy as temperature
or blood sugar level is regulated to a fixed value, is but onlesiiany types of com-
plex feedback interactions that can occur in molecular nme&sh cells, organisms
and ecosystems.

Example 2.13 Transcriptional regulation
Transcription is the process by which messenger RNA (mRBE&gherated from a
segmentof DNA. The promoter region of a gene allows transoripo be controlled
by the presence of other proteins, which bind to the prom@gion and either
repress or activate RNA polymerase, the enzyme that preducemRNA transcript
from DNA. The mRNA is then translated into a protein accordimds nucleotide
sequence. This process is illustrated in Figure 2.22.

A simple model of the transcriptional regulation processhimugh the use
of a Hill function [dJ02, Mur04]. Consider the regulation afprotein A with a
concentration given by, and a corresponding mRNA concentratiog. Let B
be a second protein with concentratippthat represses the production of protein
A through transcriptional regulation. The resulting dynesrof p, andm, can be
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Figure 2.22:Biological circuitry. The cell on the left is a bovine pulmonary cell, stained s
that the nucleus, actin and chromatin are visible. The figure on the rigks$ gn overview
of the process by which proteins in the cell are made. RNA is transcribed DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by ameltg called

a ribosome.

written as

dmy Oab dpa
dt 1+ k:bpﬂab 00 = YaMay g = faMa — daPe, (2:33)

whereaa,+ 040 IS the unregulated transcription rajg represents the rate of degra-
dation of MRNA b, Kap andngy, are parameters that describe how B represses A,
[a represents the rate of production of the protein from itsesponding mRNA
andod, represents the rate of degradation of the protein A. The petexian,g de-
scribes the “leakiness” of the promoter, amg is called the Hill coefficient and
relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the ptaiuof another
protein rather than repressing it. In this case, the equsaitiave the form

dms  aabkappp™ dpa
at 11 Zab F;Dtr)]ab + 0ta0 — YaMa, at BaMa — Ja Pa, (2.34)

where the variables are the same as described previoudly.thit in the case of
the activator, ifpy is zero, then the production ratedigy (Versusoap + a9 for the
repressor). Ay gets large, the first term in the expressionrigy approaches 1
and the transcription rate becomes + a0 (Versusago for the repressor). Thus
we see that the activator and repressor act in oppositeofasiom each other.

As an example of how these models can be used, we consideroithel of a
“repressilator,” originally due to Elowitz and Leibler [ELOOThe repressilator is
a synthetic circuit in which three proteins each represshesmon a cycle. This is
shown schematically in Figure 2.23a, where the three protia TetR/ cl and
Lacl. The basic idea of the repressilator is that if TetR is@neghen it represses
the production ofi cl. If Acl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed, thercl is
no longer repressed, and so on. If the dynamics of the ciaceitiesigned properly,
the resulting protein concentrations will oscillate.

We can model this system using three copies of equation ), 288t A and
B replaced by the appropriate combination of TetR, cl and L&ké state of the
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Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagfahe o
repressilator, showing the layout of the genes in the plasmid that holds¢hé as well as
the circuit diagram (center). (b) A simulation of a simple model for theaggilator, showing
the oscillation of the individual protein concentrations. (Figure courtesklbwitz.)

system is then given by = (Mretr, Pretr, Mel> Pel> Miact, Prac)- Figure 2.23b
shows the traces of the three protein concentrations fanpetersy = 2,a = 0.5,
k=625x10% 0p=5x 104y =58x 1073, =012ands = 1.2 x 1073
with initial conditionsx(0) = (1, 0, 0, 200, 0, 0) (following [ELQO]). \%

Example 2.14 Wave propagation in neuronal networks

The dynamics of the membrane potential in a cell are a fundeherechanism

in understanding signaling in cells, particularly in news@nd muscle cells. The
Hodgkin—Huxley equations give a simple model for studyinggagation waves in

networks of neurons. The model for a single neuron has the form

C— = —Ina— Ik — lieak+ linputs
dt Na K leak input

whereV is the membrane potentid, is the capacitancéy, andl are the current
caused by the transport of sodium and potassium across theaabrane | jgax
is a leakage current arlghy, is the external stimulation of the cell. Each current
obeys Ohm’s law, i.e.,

I =g(V - E),

where g is the conductance and is the equilibrium voltage. The equilibrium
voltage is given by Nernst's law,

RT Ce
E= nF log G’
whereRis Boltzmann’s constant, is the absolute temperatufejs Faraday’s con-
stant,n is the charge (or valence) of the ion anjéindc, are the ion concentrations
inside the cell and in the external fluid. At 2C we haveRT/F = 20 mV.
The Hodgkin—Huxley model was originally developed as a méapsedict the
gquantitative behavior of the squid giant axon [HH52]. Hoitigknd Huxley shared
the 1963 Nobel Prize in Physiology (along with J. C. Eccles) falgsis of the
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electrical and chemical events in nerve cell dischargesvohage clamp described
in Section 1.3 was a key element in Hodgkin and Huxley’s expenis. \Y%

2.5 Further Reading

Modeling is ubiquitous in engineering and science and hasghistory in applied
mathematics. For example, the Fourier series was intratiogd-ourier when he
modeled heat conduction in solids [FouO7]. Models of dyr@nfiave been de-
veloped in many different fields, including mechanics [Arn@I53], heat con-
duction [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, EllI9djbotics [MLS94,
SV89], circuits [Gui63], power systems [Kun93], acoustiBelb4] and microme-
chanical systems [Sen01]. Control theory requires moddliogn many differ-
ent domains, and most control theory texts contain sevégters on modeling
using ordinary differential equations and difference digms (see, for example,
[FPENO5]). A classic book on the modeling of physical systerapgeeially me-
chanical, electrical and thermofluid systems, is Cannon (@priThe book by
Aris[Ari94] is highly original and has a detailed discugsaf the use of dimension-
free variables. Two of the authors’ favorite books on maugtf biological systems
are J. D. Murray [Mur04] and Wilson [Wil99].

Exercises

7 (Chain ofintegrators form) Consider the linear ordinaffedential equation (2.7).
Show that by choosing a state space representationxyithy, the dynamics can
be written as

0 1 0 0
. . 0
A=]|0 w0 =], C:[l .0 0].
o ... 0 1 :
—ap —an-1 —ap 1

This canonical form is called th&hain of integratorgorm.

8 (Inverted pendulum) Use the equations of motion for a baaystem to derive
a dynamic model for the inverted pendulum described in Exar@# and verify
that for smalld the dynamics are approximated by equation (2.10).

9 (Disrete-time dynamics) Consider the following discrétee system
X[k + 1] = AX[K] + Bu[k], y[k] = CXx[k],

where

_Ix _ |aun a2 _ |0 —
X_[XZ]’ A_[O azz]’ B_[ll, C_[l o].
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In this problem, we will explore some of the properties o$ttliscrete-time system
as a function of the parameters, the initial conditions duednputs.

(a) For the case whesm, = 0 andu = O, give a closed form expression for the
output of the system.

(b) Adiscrete system is iaquilibriumwhenx[k + 1] = x[k] for all k. Letu =r

be a constant input and compute the resulting equilibriumtgor the system.
Show that if|a; | < 1 for alli, all initial conditions give solutions that converge to
the equilibrium point.

(c) Write a computer program to plot the output of the systenesponse to a unit
step inputu[k] = 1,k > 0. Plot the response of your system wifld] = 0 andA
given bya;; = 0.5,a;, = 1 anday, = 0.25.

10 (Keynesian economics) Keynes’ simple model for an econangyvien by
Y[k] = C[K] + I [K] + G[K],

whereY, C, | andG are gross national product (GNP), consumption, investment
and government expenditure for ydaiConsumption and investment are modeled
by difference equations of the form

Clk+1]=aY[k], I[k+ 1] =Db(C[k+ 1] - C[k]),

wherea andb are parameters. The first equation implies that consumptiveases
with GNP but that the effect is delayed. The second equatipfiésthat investment
is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

1
l1-a
where the parameter/ (1 — a) is the Keynes multiplier (the gain fromor G to
Y). With a = 0.25 an increase of government expenditure will result in aftdd

increase of GNP. Also show that the model can be written a®tlosving discrete-
time state model:

(T = oo a) [THd) + ) st

Y[K] = C[K] + I [K] + G[K].

Ye: (|e+Ge):

11 (Least squares system identification) Consider a nonlinéfareintial equation
that can be written in the form

dx i ()
— = D aili(X),
dt &

where f;(x) are known nonlinear functions and are unknown, but constant,
parameters. Suppose that we have measurements (or esfiofdtes full statex
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at time instantd,, t, ..., ty, with N > M. Show that the parametess can be
determined by finding the least squares solution to a lineaatéan of the form
Ha = b,

wherea € RM is the vector of all parameters amtl € RN*M andb € RN are
appropriately defined.

12 (Normalized oscillator dynamics) Consider a damped sprimass system with
dynamics
md + cq + kg = F.

Let wp = +/k/m be the natural frequency agd= c/(2~/km) be the damping
ratio.

(&) Show that by rescaling the equations, we can write therdigsin the form
G + 2¢ wod + whg = w3, (2.35)

whereu = F/k. This form of the dynamics is that of a linear oscillator wititural
frequencywy and damping ratig.

(b) Show that the system can be further normalized and wiiitt&me form

d d
ﬁ = 27y, ﬁ = —Z]_—ZCZZ—FZ). (236)
dr dr

The essential dynamics of the system are governed by a siaglpidg parameter
¢. The Q-valuedefined axQ = 1/2¢ is sometimes used instead.af

13 (Electric generator) An electric generator connected toangtpower grid can
be modeled by a momentum balance for the rotor of the gemerato

d?p
dt?
whereJ is the effective moment of inertia of the generagothe angle of rotation,
Pm the mechanical power that drives the generdgis the active electrical power,
E the generator voltag¥, the grid voltage ani the reactance of the line. Assuming
that the line dynamics are much faster than the rotor dyrankic = VI =
(EV/X) sing, wherel is the current component in phase with the volt&gandg

is the phase angle between voltagesndV . Show that the dynamics of the electric
generator have a normalized form that is similar to the dyoamf a pendulum
with forcing at the pivot.

EV .

14 (Admission control for a queue) Consider the queuing systiescribed in
Example 2.10. The long delays created by temporary overlaaube reduced by
rejecting requests when the queue gets large. This allowestgjthat are accepted
to be serviced quickly and requests that cannot be accontewda receive a
rejection quickly so that they can try another server. Gigrsan admission control
system described by

dx

— = AU —
dt ,UmaxX+1:

u= Sak(),l)(k(l' — X)), (237)
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where the controller is a simple proportional control wiitusation (sah,») defined

by equation (3.9)) and is the desired (reference) queue length. Use a simulation
to show that this controller reduces the rush-hour effedteplain how the choice
of r affects the system dynamics.

15(Biological switch) A genetic switch can be formed by cortirggtwo repressors
together in a cycle as shown below.

u1_|g />,_u2 ﬁ -

LUZ

Using the models from Example 2.13—assuming that the pasmate the same
for both genes and that the mRNA concentrations reach sgtatyquickly—show
that the dynamics can be written in normalized coordinages a

dz H dz H

=717, " 4a-—nu, - =

dr 1+27) dr 1+27]
wherez; andz, are scaled versions of the protein concentrations andrtieedcale
has also been changed. Show that 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like behavithe system.

— Zp — U2, (238)

16 (Motor drive) Consider a system consisting of a motor dgviwo masses that
are connected by a torsional spring, as shown in the diagedoavb

?1 ®2

— Motor

@ @2
Ji I
This system can represent a motor with a flexible shaft thagégi@ioad. Assuming

that the motor delivers a torque that is proportional to tieemt, the dynamics of
the system can be described by the equations

d? d d
J1_¢21 "'C(ﬂ - ﬂ) + k(g1 —92) = ki I,
d2(02 dp, dos '
g T e ~ap) TRz — e =To

Similar equations are obtained for a robot with flexible armg fam the arms of
DVD and optical disk drives.

Derive a state space model for the system by introducing riber(alized)
state variables; = @1, X2 = @2, X3 = w1/we, aNdX4 = w2 /wg, Wherewy =
VK1 + J)/(JI1dp) is the undamped natural frequency of the system when the
control signal is zero.




Chapter Three

Examples

... Don't apply any model until you understand the simplifying assumptionwhich it is
based, and you can test their validity. Catch phrase: use only as dirdatedt limit yourself
to a single model: More than one model may be useful for understandiiegedif aspects of
the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70]

In this chapter we present a collection of examples spanmiagy different
fields of science and engineering. These examples will be usedghout the
text and in exercises to illustrate different concepts.tKimse readers may wish to
focus on only a few examples with which they have had the ntrast@xperience or
insight to understand the concepts of state, input, outpditignamics in a familiar
setting.

3.1 Cruise Control

The cruise control system of a car is a common feedback systeougtered in
everyday life. The system attempts to maintain a constantitglin the presence
of disturbances primarily caused by changes in the slopeadé The controller
compensates for these unknowns by measuring the speed@drthed adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figute Betv be
the speed of the car and the desired (reference) speed. The controller, which
typically is of the proportional-integral (Pl) type des@&ibbriefly in Chapter 1,
receives the signals ando, and generates a control signakhat is sent to an
actuator that controls the throttle position. The throttlélirn controls the torque
T delivered by the engine, which is transmitted through thergiand the wheels,
generating a forcé that moves the car. There are disturbance fofggdue to
variations in the slope of the road, the rolling resistane @aerodynamic forces.
The cruise controller also has a human—-machine interfadeattoavs the driver
to set and modify the desired speed. There are also functianslisconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engaresmission,
wheels and car body—and a detailed model can be very cortgaich spite of
this, the model required to design the cruise controllertEaguite simple.

To develop a mathematical model we start with a force balfordbe car body.
Letv be the speed of the cam the total mass (including passengeis)he force
generated by the contact of the wheels with the road,Frtie disturbance force
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torquéhat is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environmettt,asiaerodynamic
drag and gravitational forces on hills, the net force causes the car\e.fibe velocity

of the caro is measured by a control system that adjusts the throttle through an actuation
mechanism. A driver interface allows the system to be turned on andhaoffree reference
speed, to be established.

due to gravity, friction and aerodynamic drag. The equationation of the car is
simply

—=F - Fq. A
mdt d (3.1)

The forceF is generated by the engine, whose torque is proportionhktcete
of fuel injection, which is itself proportional to a contrsignal 0 < u < 1 that
controls the throttle position. The torque also depends gmerspeed. A simple
representation of the torque at full throttle is given by tivgue curve

T () =Tm(1—/f(wﬂm—1)2), (3.2)

where the maximum torquBg, is obtained at engine spees,. Typical parameters
are T, = 190 Nm,wny, = 420 rad/s (about 4000 RPM) arfd= 0.4. Letn be

the gear ratio and the wheel radius. The engine speed is related to the velocity

through the expression N
w = Fv =.onv,

and the driving force can be written as
nu
F = TT(C{)) = anUT((an)).

Typical values ofx, for gears 1 through 5 awe, = 40,0, = 25,03 = 16,04 = 12
andas = 10. The inverse o, has a physical interpretation as thigective wheel
radius. Figure 3.2 shows the torque as a function of engine speeddedmcle speed.
The figure shows that the effect of the gear is to “flatten” theuergurve so that
an almost full torque can be obtained almost over the whaedpange.

The disturbance forc&y has three major componentsy, the forces due to
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Figure 3.2: Torque curves for typical car engine. The graph on the left showsotigeie
generated by the engine as a function of the angular velocity of the engiile,the curve
on the right shows torque as a function of car speed for differemsgea

gravity; F, the forces due to rolling friction; anfe,, the aerodynamic drag. Letting
the slope of the road b, gravity gives the forcé~; = mgsind, as illustrated in
Figure 3.3a, wherg = 9.8 m/< is the gravitational constant. A simple model of
rolling friction is

Fr = mgG sgn),

whereC,; is the coefficient of rolling friction and sgn) is the sign ofo (4+1) or
zero ifo = 0. A typical value for the coefficient of rolling friction i€, = 0.01.
Finally, the aerodynamic drag is proportional to the squatbespeed:

1
Fa= Epcd Av?,
wherep isthe density of ailC4 is the shape-dependent aerodynamic drag coefficient
andAisthe frontal area of the car. Typical parametergase 1.3 kg/n¥, Cq = 0.32
andA = 2.4 nt.
Summarizing, we find that the car can be modeled by

M = 4T (o) — MGG SOT0) ~ 7pCaf® ~ mgsing, (3.9

where the functiorT is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velooityvhich is also the output. The
input is the signall that controls the throttle position, and the disturbancdhés
force Fq4, which depends on the slope of the road. The system is nonlieeause
of the torque curve, the gravity term and the nonlinear dattaraof rolling friction
and aerodynamic drag. There can also be variations in thengéees; e.g., the mass
of the car depends on the number of passengers and the loagldaeried in the
car.

We add to this model a feedback controller that attemptsgolage the speed
of the car in the presence of disturbances. We shall use air@pal-integral
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Figure 3.3: Car with cruise control encountering a sloping road. A schematic diaggam
shown in (a), and (b) shows the response in speed and throttle whereaoéld is encoun-
tered. The hill is modeled as a net change ofrdhill angled, with a linear change in the
angle betweeh = 5 andt = 6. The PI controller has proportional gairkis = 0.5, and the
integral gain is; = 0.1.

controller, which has the form

t
u(t) = kpe(t) + ki / e(r) dr.
0

This controller can itself be realized as an input/outputadygital system by defin-
ing a controller state and implementing the differential equation

dz

dt
whereu;, is the desired (reference) speed. As discussed briefly indpetthb, the
integrator (represented by the stajeensures that in steady state the error will be
driven to zero, even when there are disturbances or modedings. (The design of
PI1 controllers is the subject of Chapter 10.) Figure 3.3b shbesesponse of the
closed loop system, consisting of equations (3.3) and ,(8M&n it encounters a
hill. The figure shows that even if the hill is so steep that thettle changes from
0.17 to almost full throttle, the largest speed error istkas 1 m/s, and the desired
velocity is recovered after 20 s.

Many approximations were made when deriving the model (B 8&)ay seem
surprising that such a seemingly complicated system caasiithed by the simple
model (3.3). It is important to make sure that we restrict ugg of the model to
the uncertainty lemon conceptualized in Figure 2.15b. Theahigchot valid for
very rapid changes of the throttle because we have ignoeedigtails of the engine
dynamics, neither is it valid for very slow changes becabhseproperties of the
engine will change over the years. Nevertheless the modarisuseful for the
design of a cruise control system. As we shall see in lategpteing, the reason for
thisis the inherent robustness of feedback systems: etlenfiodel is not perfectly
accurate, we can use it to design a controller and make use ééédback in the

Ur - U, u= kp(l)r - U) + k| Z, (34)
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resume

Figure 3.4: Finite state machine for cruise control system. The figure on the left show
some typical buttons used to control the system. The controller can be iof éour modes,
corresponding to the nodes in the diagram on the right. Transition betweendtes is
controlled by pressing one of the five buttons on the cruise control iotarfan, off, set,
resume or cancel.

controller to manage the uncertainty in the system.

The cruise control system also has a human—machine intdfatallows the
driver to communicate with the system. There are many diffiexays to implement
this system; one version is illustrated in Figure 3.4. Theesyishas four buttons:
on-off, set/decelerate, resume/accelerate and cancebgdration of the system
is governed by a finite state machine that controls the modésed®P| controller
and the reference generator. Implementation of contsodlad reference generators
will be discussed more fully in Chapter 10.

The use of control in automotive systems goes well beyondithpls cruise
control system described here. Applications include eomsscontrol, traction
control, power control (especially in hybrid vehicles) adhptive cruise control.
Many automotive applications are discussed in detail irbibak by Kiencke and
Nielsen [KNOOQ] and in the survey papers by Powers et al. [BPO®UP.N

3.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the fesatinat one of its key
properties is due to a feedback mechanism that is creatdeelmesign of the front
fork. A detailed model of a bicycle is complex because théesydas many degrees
of freedom and the geometry is complicated. However, a grealtof insight can
be obtained from simple models.

To derive the equations of motion we assume that the bicypdle on the hor-
izontal Xy plane. Introduce a coordinate system that is fixed to the l@oyith
the ¢-axis through the contact points of the wheels with the gdouhe 5-axis
horizontal and the-axis vertical, as shown in Figure 3.5. Lgtbe the velocity of
the bicycle at the rear whedd,the wheel basey the tilt angle and the steering
angle. The coordinate system rotates around the f@inith the angular veloc-
ity o = vod/b, and an observer fixed to the bicycle experiences forces dineto
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted gemum, as shown in
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Figure 3.5: Schematic views of a bicycle. The steering anglkg &nd the roll angle ig. The
center of mass has heightand distance from a vertical through the contact poiRt of the
rear wheel. The wheel baselisand the trail ic.

the rear view in Figure 3.5b. To model the tilt, consider tiyarbody obtained when
the wheels, the rider and the front fork assembly are fixeddditycle frame. Let
m be the total mass of the systedhthe moment of inertia of this body with respect
to the-axis andD the product of inertia with respect to thig axes. Furthermore,
let the and¢ coordinates of the center of mass with respect to the reaelwhe
contact pointPy, bea andh, respectively. We havé ~ mh? andD = mah The
torques acting on the system are due to gravity and cerdtipetion. Assuming
that the steering angleis small, the equation of motion becomes
d’p  Dogdo . mvgh
e b i mghsing +
The termmghsing is the torque generated by gravity. The terms contaifiagd
its derivative are the torques generated by steering, Wwihtérm(Doo/b) do/dt
due to inertial forces and the terfmo3h/b) 6 due to centripetal forces.

The steering angle is influenced by the torque the rider apfgi¢ise handle
bar. Because of the tilt of the steering axis and the shaphleofront fork, the
contact point of the front wheel with the ro&d is behind the axis of rotation of the
front wheel assembly, as shown in Figure 3.5c. The distametween the contact
point of the front wheeP, and the projection of the axis of rotation of the front
fork assemblyP; is called thetrail. The steering properties of a bicycle depend
critically on the trail. A large trail increases stabilitytomakes the steering less
agile.

A consequence of the design of the front fork is that the stgeangleo is
influenced both by steering torgie and by the tilt of the frame. This means
that a bicycle with a front fork is #&edback systems illustrated by the block
diagram in Figure 3.6. The steering anglénfluences the tilt angle, and the
tilt angle influences the steering angle, giving rise to tmeutar causality that is
characteristic of reasoning about feedback. For a froktvath a positive trail, the

. (3.5)
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= Fork = Frame

Figure 3.6: Block diagram of a bicycle with a front fork. The steering torque applietthéo
handlebars idT, the roll angle isp and the steering angle & Notice that the front fork
creates a feedback from the roll angl¢o the steering angléthat under certain conditions
can stabilize the system.

bicycle will steer into the lean, creating a centrifugati®that attempts to diminish
the lean. Under certain conditions, the feedback can dgtsialbilize the bicycle.
A crude empirical model is obtained by assuming that theko®can be modeled

as the static system
0=KkT —kop. (3.6)

This model neglects the dynamics of the front fork, the tioaerinteraction and
the fact that the parameters depend on the velocity. A marerate model, called
theWhipple modelis obtained using the rigid-body dynamics of the front fark
the frame. Assuming small angles, this model becomes

M [g] + Cug [f;] + (Ko + K203) [?] = [-?] ; (3.7)

where the elements of the22 matriceM, C, Ko andK, depend on the geometry
and the mass distribution of the bicycle. Note that this Hasra somewhat similar
to that of the spring—mass system introduced in Chapter gharfgalance systemin
Example 2.1. Even this more complex model is inaccurate bedhesnteraction
between the tire and the road is neglected; taking this intownt requires two
additional state variables. Again, the uncertainty lemmRigure 2.15b provides a
framework for understanding the validity of the model untlierse assumptions.

Interesting presentations on the development of the kécgod given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (3 was presented
in a paper by Whipple in 1899 [Whi99]. More details on bicyeledeling are given
in the paper [AKLO5], which has many references.

3.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementatidBlack’s feedback
amplifier. It is a universal component that is widely used f@tiumentation, con-
trol and communication. It is also a key element in analogmating. Schematic
diagrams of the operational amplifier are shown in Figure 3.&.arhplifier has one
inverting input ¢_), one noninverting inputy(.) and one outputvg). There are
also connections for the supply voltages,ande, , and a zero adjustment (offset
null). A simple model is obtained by assuming that the inputentsi _ andi,. are
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Figure 3.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all conmext{g) Only the
signal connections.

zero and that the output is given by the static relation

Uout = Sa&”min,vmax) (k(l)+ - 1)_)), (3-8)
where sat denotes the saturation function

a ifx<a
Satap(X) = 1x ifa<x<b (3.9)
b if x> b.

We assume that the galknis large, in the range of £810°, and the voltagesnin
andomax Satisfy
€ < Umin < Umax < €4

and hence are in the range of the supply voltages. More gequaels are obtained
by replacing the saturation function with a smooth funcisrshown in Figure 3.8.
For small input signals the amplifier characteristic (3.8inear:

vout = K(vy —v_) = —ko. (3.10)

Since the open loop gakiis very large, the range of input signals where the system
is linear is very small.

Dout
DUmax

Omin

Figure 3.8: Input/output characteristics of an operational amplifier. The differkinipat is
given byv, —v_. The output voltage is a linear function of the input in a small range around
0, with saturation aimin andomayx. In the linear regime the op amp has high gain.
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Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feledbaiand
an operational amplifier and has a corresponding block diagramlib):esistordR; and R,
determine the gain of the ampilifier.

A simple amplifier is obtained by arranging feedback aroumrdbihisic opera-
tional amplifier as shown in Figure 3.9a. To model the feedbacgliier in the
linear range, we assume that the curiignt i_ + i, is zero and that the gain of
the amplifier is so large that the voltage= v_ — v, is also zero. It follows from
Ohm’s law that the currents through resist&sand R, are given by

V1 D2
RR R’
and hence the closed loop gain of the amplifier is
R
Y2 _ —Kei, where kg = = (3.11)
01 Ry

A more accurate model is obtained by continuing to negleetdinrentiy but
assuming that the voltageis small but not negligible. The current balance is then
V1 — 0 v — V2

Ry Ro

Assuming that the amplifier operates in the linear range aimgj @gjuation (3.10),
the gain of the closed loop system becomes
D2 R2 k Rl
ke 11 RIRI+R+kR (3.13)

If the open loop gairk of the operational amplifier is large, the closed loop gain
ko is the same as in the simple model given by equation (3.11fic&lthat the
closed loop gain depends only on the passive componenthandariations irk
have only a marginal effect on the closed loop gain. For exauifigx = 10° and
R,/ R = 100, a variation ok by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nicesthation of how feedback
can be used to make precise systems from uncertain comgoiettiis particular
case, feedback is used to trade high gain and low robustoeks\f gain and high
robustness. Equation (3.13) was the formula that inspiradiBivhen he invented
the feedback amplifier [Bla34] (see the quote at the beginairhapter 12).

It is instructive to develop a block diagram for the feedbaakplifier in Fig-
ure 3.9a. To do this we will represent the pure amplifier wifiuirv and outpub,

(3.12)
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around aratipesl
amplifier. The capacito€ is used to store charge and represents the integral of the input.

as one block. To complete the block diagram, we must deshobe depends on
v1 ando,. Solving equation (3.12) far gives

R, Ry Ri ( Ry )

v = 01+ Vp= ——| =01+
RI+R " Ri+R - R+R\R + 7

and we obtain the block diagram shown in Figure 3.9b. The diagfearly shows
that the system has feedback and that the gain frotoo is Ry /(R; + Ry), which
can also be read from the circuit diagram in Figure 3.9a. Ifidlo@ is stable and
the gain of the amplifier is large, it follows that the ereas small, and we find that
v2 = —(Rz/Ry)v1. Notice that the resistoR; appears in two blocks in the block
diagram. This situation is typical in electrical circuitsdait is one reason why
block diagrams are not always well suited for some types g$igal modeling.

The simple model of the amplifier given by equation (3.10) mtesiqualitative
insight, but it neglects the fact that the amplifier is a dyr@ahsystem. A more
realistic model is

dogyt

dt

The parametdrn that has dimensions of frequency and is calledythia-bandwidth
productof the amplifier. Whether a more complicated model is used r#pen
the questions to be answered and the required size of thetaimtg lemon. The
model (3.14) is still not valid for very high or very low fregocies since drift
causes deviations at low frequencies and there are adalidgnamics that appear
at frequencies close tm The model is also not valid for large signals—an upper
limitis given by the voltage of the power supply, typicaliythe range of 5-10 V—
neither is it valid for very low signals because of electrizaise. These effects can
be added, if needed, but increase the complexity of the aisaly

The operational amplifier is very versatile, and many diffessstems can be
built by combining it with resistors and capacitors. In faaty linear system can
be implemented by combining operational amplifiers withstess and capacitors.
Exercise 21 shows how a second-order oscillator is impleade@ind Figure 3.10
shows the circuit diagram for an analog proportional-irdégontroller. To develop
a simple model for the circuit we assume that the cuiirgistzero and that the open
loop gaink is so large that the input voltageis negligible. The currertthrough
the capacitor is = Cdoc/dt, whereo is the voltage across the capacitor. Since

- _avou[ - bl). (314)
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the same current goes through the resiggrwe get

01 doc

'TR T A
which implies that

1 1 t
ve(t) = E/i(t) dt = @/0 v1(7)dz.

The output voltage is thus given by

t

va(t) = —Roi — v = —Ejol(t) =R [, O,
0

which is the input/output relation for a Pl controller.

The development of operational amplifiers was pioneered bypitkl[Lun05,
Phi48], and their usage is described in many textbooks (€B75]). Good infor-
mation is also available from suppliers [Jun02, Man02].

3.4 Computing Systems and Networks

The application of feedback to computing systems followsstrae principles as
the control of physical systems, but the types of measureard control inputs
that can be used are somewhat different. Measurementso(sgrse typically
related to resource utilization in the computing systemedwork and can include
quantities such as the processor load, memory usage ormdieadwidth. Control
variables (actuators) typically involve setting limits the resources available to a
process. This might be done by controlling the amount of mgnwisk space or
time that a process can consume, turning on or off processataying availability
of a resource or rejecting incoming requests to a servelegs@rocess modeling
for networked computing systems is also challenging, angiéeal models based
on measurements are often used when a first-principles n®det available.

Web Server Control

Web servers respond to requests from the Internet and gravidrmation in the
form of web pages. Modern web servers start multiple pr@sess respond to
requests, with each process assigned to a single sourtaafiirther requests are
received from that source for a predefined period of time. RsEethat are idle
become part of a pool that can be used to respond to new reqiliesprovide a
fast response to web requests, it is important that the wefersprocesses do not
overload the server’'s computational capabilities or egsha&simemory. Since other
processes may be running on the server, the amount of aegiledcessing power
and memory is uncertain, and feedback can be used to prowmte gerformance
in the presence of this uncertainty.
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Figure 3.11:Feedback control of a web server. Connection requests arriveiopat queue,
where they are sent to a server process. A finite state machine kespsftthe state of the
individual server processes and responds to requests. A colgasithm can modify the
server’s operation by controlling parameters that affect its behastich as the maximum
number of requests that can be serviced at a single fWag@ i ent s) or the amount of
time that a connection can remain idle before it is droppéepAl i ve).

Figure 3.11 illustrates the use of feedback to modulate thexadipon of an
Apache web server. The web server operates by placing ingpoonnection re-
guests on a queue and then starting a subprocess to handistefipr each accepted
connection. This subprocess responds to requests from @ giveection as they
come in, alternating betweenBasy state and aMi t state. (Keeping the sub-
process active between requests is known apéhsistencef the connection and
provides a substantial reduction in latency to requestsfdtiple pieces of infor-
mation from a single site.) If no requests are received farfficiently long period
of time, controlled by th&eepAl i ve parameter, then the connection is dropped
and the subprocess enterslah e state, where it can be assigned another connec-
tion. A maximum ofvaxCl i ent s simultaneous requests will be served, with the
remainder remaining on the incoming request queue.

The parameters that control the server represent a tradeetffeen perfor-
mance (how quickly requests receive a response) and resosage (the amount
of processing power and memory used by the server). IncrgdgMaxC i ent s
parameter allows connection requests to be pulled off ofjtieie more quickly
but increases the amount of processing power and memorg tisagis required.
Increasing th&eepAl i ve timeout means that individual connections can remain
idle for alonger period of time, which decreases the prangd¢sad on the machine
butincreases the size of the queue (and hence the amoumeafquired for a user
to initiate a connection). Successful operation of a busyeseequires a proper
choice of these parameters, often based on trial and error.

To model the dynamics of this system in more detail, we craaliscrete-time
model with states given by the average processor lggdand the percentage
memory usagemem. 1he inputs to the system are taken as the maximum number
of clientsunyc and the keep-alive timey,. If we assume a linear model around the
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equilibrium point, the dynamics can be written as

XepdK+1] | _ [A A Xepu[K] B B Uka[ K]
[XmZn{k-l—l]] o [Ai AZ] [XmZn{k]] + [Bi Bz] [Umc[k] , (3.15)

where the coefficients of theandB matrices can be determined based on empirical
measurements or detailed modeling of the web server’s psotg and memory
usage. Using system identification, Diao et al. [DGH+02, HDRTddntified the
linearized dynamics as

A_ [ 0.54 —0.11] , B _ [—85 44

—4
~0.026 063 ~25 2.8] x 107

where the system was linearized about the equilibrium point
chu - 058, uka - 11 s Xmem - 055, Umc - 600

This model shows the basic characteristics that were destabove. Looking
first at theB matrix, we see that increasing tkeepAl i ve timeout (first column
of the B matrix) decreases both the processor usage and the menawy sisice
there is more persistence in connections and hence the spemds a longer time
waiting for a connection to close rather than taking on a neweconnection. The
MaxCl i ent s connectionincreases both the processing and memory eaggints.
Note that the largest effect on the processor load iskibepAl i ve timeout.
The A matrix tells us how the processor and memory usage evolvedgian of
the state space near the equilibrium point. The diagonalsteiescribe how the
individual resources return to equilibrium after a transimcrease or decrease.
The off-diagonal terms show that there is coupling betweertwo resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later exdespthat it can
be used to modify the parameters controlling the serverahtime and provide
robustness with respect to uncertainties in the load on #ehime. Similar types of
mechanisms have been used for other types of servers. Ipaiant to remember
the assumptions on the model and their role in determinirgyvtthe model is valid.
In particular, since we have chosen to use average quantier a given sample
time, the model will not provide an accurate representatwrhigh-frequency
phenomena.

Congestion Control

The Internet was created to obtain a large, highly decené@liefficient and ex-
pandable communication system. The system consists of e tangber of inter-
connected gateways. A message is split into several packéth are transmitted
over different paths in the network, and the packages aoinej to recover the
message at the receiver. An acknowledgment (“ack”) messaggnt back to the
sender when a packet is received. The operation of the systgoverned by a
simple but powerful decentralized control structure tred Bvolved over time.
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Figure 3.12:Internet congestion control. (a) Source computers send informati@uters,
which forward the information to other routers that eventually connecitogbeiving com-
puter. When a packet is received, an acknowledgment packet isagnthrough the routers
(not shown). The routers buffer information received from thersesi and send the data
across the outgoing link. (b) The equilibrium buffer sizdor a set ofN identical computers
sending packets through a single router with drop probability

The system has two control mechanisms cafestocols the Transmission
Control Protocol (TCP) for end-to-end network communicatiod ¢he Internet
Protocol (IP) for routing packets and for host-to-gateway ategay-to-gateway
communication. The current protocols evolved after sometapalar congestion
collapses occurred in the mid 1980s, when throughput uriéegly could drop by
a factor of 1000 [Jac95]. The control mechanism in TCP is basetbaserving
the number of packets in the loop from the sender to the recaivd back to the
sender. The sending rate is increased exponentially whee th@o congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we motlet¢ separate
elements of the system: the rate at which packets are semidibsidual sources
(computers), the dynamics of the queues in the links (reptmnd the admission
control mechanism for the queues. Figure 3.12a is a blockahagf the system.

The current source control mechanism on the Internet is a@wbknown
as TCP/Reno [LPDO02]. This protocol operates by sending packets¢geiver
and waiting to receive an acknowledgment from the receivat the packet has
arrived. If no acknowledgment is sent within a certain tiongeeriod, the packet
is retransmitted. To avoid waiting for the acknowledgmezfbbe sending the next
packet, Reno transmits multiple packets up to a fixédow around the latest
packetthat has been acknowledged. If the window lengthasemproperly, packets
at the beginning of the window will be acknowledged befome gsburce transmits
packets at the end of the window, allowing the computer tdinanusly stream
packets at a high rate.

To determine the size of the window to use, TCP/Reno uses adekdiech-
anism in which (roughly speaking) the window size is incesbigy 1 every time a
packet is acknowledged and the window size is cut in half wiearkets are lost.
This mechanism allows a dynamic adjustment of the window isizehich each
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computer acts in a greedy fashion as long as packets are delingred but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed byrithérsg the
dynamics of the window size. Suppose we h&Weomputers and let; be the
current window size (measured in number of packets) for thecomputer. Let
g represent the end-to-end probability that a packet will moped someplace
between the source and the receiver. We can model the dysaiibe window
size by the differential equation

% - (1_Qi)M+Qi(—ﬂri(t —),  h=— (3.16)
t Wi 2 Tj

wherer; is the end-to-end transmission time for a packet to reackdsrthtion and
the acknowledgment to be sent back and the resulting rate at which packets
are cleared from the list of packets that have been receiMeal first term in the
dynamics represents the increase in window size when a packeeived, and the
second term represents the decrease in window size wherket figtost. Notice
thatr; is evaluated at time— z;, representing the time required to receive additional
acknowledgments.

The link dynamics are controlled by the dynamics of the rogtezue and the
admission control mechanism for the queue. Assume that we lhdinks in the
network and uskto index the individual links. We model the queue in termshef t
current number of packets in the router’s butbeand assume that the router can
contain a maximum df nax packets and transmits packets at a catequal to the
capacity of the link. The buffer dynamics can then be written a

—s-a s= 3 nt-q) (3.17)
{i:leLi}

wherelL; is the set of links that are being used by sodmxﬁf is the time it takes a
packet from sourceto reach linkl ands is the total rate at which packets arrive
at link .

The admission control mechanism determines whether a giaekep is ac-
cepted by arouter. Since our model is based on the averagttmpsdn the network
and not the individual packets, one simple model is to asshatehe probability
that a packet is dropped depends on how full the buffepjiss m; (b, bmay). For
simplicity, we will assume for now thap = p/by (see Exercise 22 for a more
detailed model). The probability that a packet is droppedjaten link can be used
to determine the end-to-end probability that a packet isitogansmission:

g=1-[Ja-p~>D pt-1d. (3.18)

leL; leL;

whereq? is the backward delay from linkto source and the approximation is
valid as long as the individual drop probabilities are smak use the backward
delay since this represents the time required for the aclatmyment packet to be
received by the source.
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Together, equations (3.16), (3.17) and (3.18) represermaehof congestion
control dynamics. We can obtain substantial insight by icterg1g a special case
in which we haveN identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be éghan which case
the dynamics can be reduced to the form

dw; 1 pc2+w?) db N wj
_ - _ g = _ = 3.19
dt T 2 ’ dt g ¢ ‘ ’ ( )

wherew; e R,i =1, ..., N, are the window sizes for the sources of data, R is

the current buffer size of the routercontrols the rate at which packets are dropped
andc is the capacity of the link connecting the router to the cotapsu The variable

7 represents the amount of time required for a packet to beepsed by a router,
based on the size of the buffer and the capacity of the linkstuking z into the
equations, we write the state space dynamics as

N

dw; C w|2 db Cwij
More sophisticated models can be found in [HMTGOO, LPDO02]. .
The nominal operating point for the system can be found binggtt = b = 0:

N

c w? cwj
b7 ( + 2) 2.

Exploiting the fact that all of the source dynamics are id=adtiit follows that all
of thew; should be the same, and it can be shown that there is a unigilibggm
satisfying the equations
be Cre 1 3

Wie= =N W(Pbe) + (pbe) —1=0. (3.21)
The solution for the second equation is a bit messy but calyéesiietermined nu-
merically. A plot of its solution as a function of 12p?>N?) is shown in Figure 3.12b.
We also note that at equilibrium we have the following aaxdisil equalities:

B be Nuwe We

Te = = > e = Npe= prEa fe=—. (322)
C C Te

Figure 3.13 shows a simulation of 60 sources communicatingsa@ single
link, with 20 sources dropping out &t= 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Notethieabuffer size and
window sizes automatically adjust to match the capacityheflink.

A comprehensive treatment of computer networks is giveméntéxtbook by
Tannenbaum [Tan96]. A good presentation of the ideas behmaontrol prin-
ciples for the Internet is given by one of its designers, Varobson, in [Jac95].
F. Kelly [Kel85] presents an early effort on the analysistod system. The book
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Figure 3.13:Internet congestion control fdt identical sources across a single link. As shown
on the left, multiple sources attempt to communicate through a router acsoggle link. An
“ack” packet sent by the receiver acknowledges that the messageeaeived; otherwise the
message packet is resent and the sending rate is slowed down atrite §de simulation
on the right is for 60 sources starting random rates, with 20 sourcppidgout at = 500
ms. The buffer size is shown at the top, and the individual source fiatésof the sources
are shown at the bottom.

by Hellerstein et al. [HDPTO04] gives many examples of the uséeeflback in
computer systems.

3.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig andieleiRohrer
for their design of thescanning tunneling microscop&he idea of the instrument
is to bring an atomically sharp tip so close to a conductingase that tunneling
occurs. An image is obtained by traversing the tip acrossahgple and measuring
the tunneling current as a function of tip position. This imien has stimulated
the development of a family of instruments that permit vigadion of surface
structure at the nanometer scale, including @h@mic force microscopéAFM),
where a sample is probed by a tip on a cantilever. An AFM canaipen two
modes. Intapping modehe cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. Inontact modehe cantilever is in contact with the
sample, and its bending is controlled by feedback. In boskesaontrol is actuated
by a piezo element that controls the vertical position ofdhetilever base (or the
sample). The control system has a direct influence on pictuatitgiand scanning
rate.

A schematic picture of an atomic force microscope is showkigare 3.14a. A
microcantilever with a tip having a radius of the order of 10 is placed close to
the sample. The tip can be moved vertically and horizontalggia piezoelectric
scanner. It is clamped to the sample surface by attractivelga\Waals forces and
repulsive Pauli forces. The cantilever tilt depends on tpedoaphy of the surface
and the position of the cantilever base, which is contraigdhe piezo element.
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Figure 3.14: Atomic force microscope. (a) A schematic diagram of an atomic forceanic
scope, consisting of a piezo drive that scans the sample under the AFMaiger reflects off
of the cantilever and is used to measure the detection of the tip throughbaméezbntroller.
(b) An AFM image of strands of DNA. (Image courtesy Veeco Instroteg

The tilt is measured by sensing the deflection of the laser bae@rg a photodiode.
The signal from the photodiode is amplified and sent to a cdatrthat drives
the amplifier for the vertical position of the cantilever. Bgntrolling the piezo
element so that the deflection of the cantilever is consthatsignal driving the
vertical deflection of the piezo element is a measure of thaiattorces between
the cantilever tip and the atoms of the sample. An image oftiniace is obtained
by scanning the cantilever along the sample. The resolutiakesit possible to
see the structure of the sample on the atomic scale, agalledtin Figure 3.14b,
which shows an AFM image of DNA.

The horizontal motion of an AFM is typically modeled as a sprimgss system
with low damping. The vertical motion is more complicated riiodel the system,
we start with the block diagram shown in Figure 3.15. Signalsdie easily acces-
sible are the input voltage to the power amplifier that drives the piezo element,
the voltagev applied to the piezo element and the output voltggd the signal

Sample topography

Piezo 7 Cantilever ¢ | Laser&
element - liev photodiode

Deflection reference

'

v Power | Y |D Al Y | Signal

amplifier [*—A|COMPUterp = amplifier [~

Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempsefo tke can-
tilever deflection equal to its reference value. Cantilever deflection isureshsamplified
and converted to a digital signal, then compared with its reference val@récting signal is
generated by the computer, converted to analog form, amplified ahtbska piezo element.
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Figure 3.16: Modeling of an atomic force microscope. (a) A measured step respdhge
top curve shows the voltageapplied to the drive amplifier (50 mV/div), the middle curve
is the outputV, of the power amplifier (500 mV/div) and the bottom curve is the output
of the signal amplifier (500 mV/div). The time scale is 25/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical postiamd the piezo
crystal.

amplifier for the photodiode. The controller is a PI controllmplemented by a
computer, which is connected to the system by analog-tivadi{@/D) and digital-
to-analog (D/A) converters. The deflection of the cantilevés also shown in the
figure. The desired reference value for the deflection is an iopilie computer.

There are several different configurations that have diftatgmamics. Here we
will discuss a high-performance system from [SAD+07] wheeedantilever base
is positioned vertically using a piezo stack. We begin th@etiag with a simple
experiment on the system. Figure 3.16a shows a step resplanseamner from the
input voltageu to the power amplifier to the output voltagef the signal amplifier
for the photodiode. This experiment captures the dynamitiseo€hain of blocks
fromutoy in the block diagram in Figure 3.15. Figure 3.16a shows thagystem
responds quickly but that there is a poorly damped oscilfatwode with a period
of about 35 ps. A primary task of the modeling is to understiedorigin of the
oscillatory behavior. To do so we will explore the system iorendetail.

The natural frequency of the clamped cantilever is typicadlyeral hundred
kilohertz, which is much higher than the observed oscdlavf about 30 kHz. As
a first approximation we will model it as a static system. Simeedeflections are
small, we can assume that the bendingf the cantilever is proportional to the
difference in height between the cantilever tip at the prantbthe piezo scanner. A
more accurate model can be obtained by modeling the castidéeva spring—mass
system of the type discussed in Chapter 2.

Figure 3.16a also shows that the response of the power amjdifiast. The
photodiode and the signal amplifier also have fast respomgbsam thus be mod-
eled as static systems. The remaining block is a piezo sysidnsuspension. A
schematic mechanical representation of the vertical matiche scanner is shown
in Figure 3.16b. We will model the system as two masses seguhlst an ideal
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piezo element. The mass; is half of the piezo system, and the mawssis the
other half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crgsakrates a force
F between the masses and that there is a dangoimghe spring. Let the positions
of the center of the masses beandz,. A momentum balance gives the following
model for the system:

dZZ]_

d222 dz
™ B

F, Mp—2 = —gp—2
2°de2 27dt

— k222 - F.

Let the elongation of the piezo elemdnt z; — z, be the control variable and
the heightz; of the cantilever base be the output. Eliminating the vaei&blin
equations (3.23) and substituting— | for z, gives the model

o2 d dl
208 L ko7 = my fracdldt? + o + kol (3.23)

(M1 + M)~z dt dt

Summarizing, we find that a simple model of the system is obtidigenodeling
the piezo by (3.23) and all the other blocks by static modetsoducing the linear
equations$ = ksu andy = k;z;, we now have a complete model relating the output
y to the control signall. A more accurate model can be obtained by introducing the
dynamics of the cantilever and the power amplifier. As in thevious examples,
the concept of the uncertainty lemon in Figure 2.15b provalésamework for
describing the uncertainty: the model will be accurate ughéofrequencies of the
fastest modeled modes and over a range of motion in whiclarimed stiffness
models can be used.

The experimental results in Figure 3.16a can be explainedtatialy as fol-
lows. When a voltage is applied to the piezo, it expandkbghe massn; moves
up and the mas®, moves down instantaneously. The system settles after aypoorl
damped oscillation.

Itis highly desirable to design a control system for theieafttmotion so that it
responds quickly with little oscillation. The instrumensdmer has several choices:
to accept the oscillation and have a slow response time sigii@ control system
that can damp the oscillations or to redesign the mechaoigs/é resonances of
higher frequency. The last two alternatives give a fastgraese and faster imaging.

Since the dynamic behavior of the system changes with theeptiep of the
sample, itis necessary to tune the feedback loop. In singptems this is currently
done manually by adjusting parameters of a PI controller. dlage interesting
possibilities for making AFM systems easier to use by intadg automatic tuning
and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic forceostopes.
The interaction of atoms close to surfaces is fundamentallio state physics, see
Kittel [Kit95]. The model discussed in this section is basadszhitter [Sch01].
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Figure 3.17: Abstraction used to compartmentalize the body for the purpose of desgrib
drug distribution (based on Teorell [Teo37]). The body is abstracyea tumber of com-
partments with perfect mixing, and the complex transport processeapgroximated by
assuming that the flow is proportional to the concentration differenceg icampartments.

The constant&; parameterize the rates of flow between different compartments.

3.6 Drug Administration

The phrase “Take two pills three times a day” is a recommeodatith which we
are all familiar. Behind this recommendation is a solutibam open loop control
problem. The key issue is to make sure that the concentrafiannoedicine in
a part of the body is sufficiently high to be effective but nothégh that it will
cause undesirable side effects. The control action is qgehtake two pills and
sampledgevery 8 hoursThe prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and wéitjet patient.

Drug administration is a control problem. To solve it we mustierstand how
a drug spreads in the body after it is administered. This tagitledpharmacoki-
netics is now a discipline of its own, and the models used are cal@apartment
modelsThey go back to the 1920s when Widmark modeled the propageattedco-
hol in the body [WT24]. Compartment models are now importanttie screening
of all drugs used by humans. The schematic diagram in FiguieilBustrates the
idea of a compartment model. The body is viewed as a numbermopadments
like blood plasma, kidney, liver and tissues that are seépdfay membranes. It is
assumed that there is perfect mixing so that the drug corat@nt is constant in
each compartment. The complex transport processes arexappted by assuming
that the flow rates between the compartments are proportiotia concentration
differences in the compartments.

To describe the effect of a drug it is necessary to know batlkdncentration
and how it influences the body. The relation between concémtratind its effect
eis typically nonlinear. A simple model is

Co
e= . 3.24
en < Emax (3.24)

The effect is linear for low concentrations, and it saturatasigh concentrations.
The relation can also be dynamic, and it is then cglledrmacodynamics
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Compartment Models

The simplest dynamic model for drug administration is olgediby assuming that
the drug is evenly distributed in a single compartment gifteas been administered
and that the drug is removed at a rate proportional to theestration. The com-
partments behave like stirred tanks with perfect mixing.dle¢ the concentration,
V the volume andj the outflow rate. Converting the description of the system int
differential equations gives the model

Vg—f =—qc, ¢c>0. (3.25)

This equation has the solutiait) = coe™9V = coe ¥, which shows that the
concentration decays exponentially with the time constasat V /q after an injec-

tion. The input is introduced implicitly as an initial conidit in the model (3.25).

More generally, the way the input enters the model dependsoanthe drug is

administered. For example, the input can be representedrassa flow into the

compartment where the drug is injected. A pill that is digedlcan also be inter-
preted as an input in terms of a mass flow rate.

The model (3.25) is called aane-compartment modet asingle-pool model
The parameteq/V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasman8&gsuring the con-
centration at a few times, the initial concentration canlit@imed by extrapolation.
If the total amount of injected substance is known, the va@ihcan then be de-
termined a3/ = m/cy; this volume is called thapparent volume of distribution
This volume is larger than the real volume if the concentratiothe plasma is
lower than in other parts of the body. The model (3.25) is vénpke, and there
are large individual variations in the parameters. The pataraV andq are often
normalized by dividing by the weight of the person. Typicatgameters for aspirin
areV = 0.2 L/kg andg = 0.01(L/h)/kg. These numbers can be compared with
a blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, areicetiular fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/ min/kg.

The simple one-compartment model captures the gross beloddoug distri-
bution, butitis based on many simplifications. Improved ni®dan be obtained by
considering the body as composed of several compartmeramigs of such sys-
tems are shown in Figure 3.18, where the compartments areseied as circles
and the flows by arrows.

Modeling will be illustrated using the two-compartment rebish Figure 3.18a.
We assume that there is perfect mixing in each compartmehtheat the transport
between the compartments is driven by concentration diffees. We further as-
sume that a drug with concentratiogis injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the outputcLabd
C, be the concentrations of the drug in the compartments and lahdV, be the
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Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compatrtme
model. Each compartment is labeled by its volume, and arrows indicatetheffthemical
into, out of and between compartments. (b) A system with six compartmeatsto study
the metabolism of thyroid hormone [God83]. The notatigndenotes the transport from
compartmeng to compartmeni.

volumes of the compartments. The mass balances for the comgrds are

dc
Vld—t1 =((C2 — C1) — QoC1 + Cou, €1 >0,
dc
Vzd—,[2 =qc1—C), ©€>0, (3.26)
y = Co.

Introducing the variableky = qo/ V1, ki = q/ V1, ko = q/ V. andby = ¢/ V1 and
using matrix notation, the model can be written as

%:: [_kokz_ ka _kliZ] c+ [%"] u  y= [o 1] X, (3.27)

Comparing this model with its graphical representation iguFeé 3.18a, we find
that the mathematical representation (3.27) can be wityenspection.

It should also be emphasized that simple compartment msdelsas the one in
equation (3.27) have a limited range of validity. Low-fregoglimits exist because
the human body changes with time, and since the compartnmiglruses average
concentrations, they will not accurately represent rapidnges. There are also
nonlinear effects that influence transportation betweerdngartments.

Compartment models are widely used in medicine, engingenitd environ-
mental science. An interesting property of these systeftiats/ariables like con-
centration and mass are always positive. An essential dtffiie compartment
modeling is deciding how to divide a complex system into cartpents. Com-
partment models can also be nonlinear, as illustrated ine¢iesection.
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Figure 3.19: Insulin—glucose dynamics. (a) Sketch of body parts involved in the alooitr
glucose. (b) Schematic diagram of the system. (c) Responses of iasdliglucose when
glucose in injected intravenously. From [PB86].

Insulin—glucose Dynamics

It is essential that the blood glucose concentration in thaéyls kept within a
narrow range (0.7-1.1 g/L). Glucose concentration is infladrimy many factors
like food intake, digestion and exercise. A schematic pectf the relevant parts
of the body is shown in Figures 3.19a and b.

There is a sophisticated mechanism that regulates glucosercwation. Glu-
cose concentration is maintained by the pancreas, whiaetsscthe hormones
insulin and glucagon. Glucagon is released into the bloedst when the glucose
levelis low. It acts on cells in the liver that release gluedasulin is secreted when
the glucose level is high, and the glucose level is loweredamsing the liver and
other cells to take up more glucose. In diseases like juselidbetes the pancreas
is unable to produce insulin and the patient must injectlinsoto the body to
maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are caatgdicdynamics
with time scales that range from seconds to hours have besamaa. Models of
different complexity have been developed. The models arediptested with data
from experiments where glucose is injected intravenoustyiasulin and glucose
concentrations are measured at regular time intervals.

A relatively simple model called thainimal modelvas developed by Bergman
and coworkers [Ber89]. This models uses two compartmentsrepresenting the
concentration of glucose in the bloodstream and the otlpeesenting the concen-
tration of insulin in the interstitial fluid. Insulin in the dbdstream is considered an
input. The reaction of glucose to insulin can be modeled bethetions

dxq dxo

— = —(p1+ X2)X1 + P10e, at

dt = —PaXz2 + Pa(U —ie), (3.28)
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wherege andie represent the equilibrium values of glucose and insuiins the
concentration of glucose and is proportional to the concentration of interstitial
insulin. Notice the presence of the tempx; in the first equation. Also notice
that the model does not capture the complete feedback locqube it does not
describe how the pancreas reacts to the glucose. Figure 8ht®¢s a fit of the
model to a test on a normal person where glucose was injecteénously at
timet = 0. The glucose concentration rises rapidly, and the pancesgponds
with a rapid spikelike injection of insulin. The glucose amdulin levels then
gradually approach the equilibrium values.

Models of the type in equation (3.28) and more complicatedetshaving many
compartments have been developed and fitted to experimextéalAl difficulty in
modeling is that there are significant variations in modeapeaters over time and
for different patients. For example, the paramgigin equation (3.28) has been
reported to vary with an order of magnitude for healthy imdisals. The models
have been used for diagnosis and to develop schemes foetiment of persons
with diseases. Attempts to develop a fully automatic aréifipancreas have been
hampered by the lack of reliable sensors.

The papers by Widmark and Tandberg [WT24] and Teorell [TeoB¥tkssics
in pharmacokinetics, which is now an established disogpliith many textbooks
[Dos68, Jac72, GP82]. Because of its medical importancenmwokinetics is
now an essential component of drug development. The bookdysRRig63] is a
good source for the modeling of physiological systems, ambee mathematical
treatment is given in [KS01]. Compartment models are dissigs[God83]. The
problem of determining rate coefficients from experimentthds discussed in
[BA70] and [God83]. There are many publications on the imstgiucose model.
The minimal model is discussed in [CT84, Ber89] and more readatences are
[MLKO6, FCF+06].

3.7 Population Dynamics

Population growth is a complex dynamic process that invdlvefteraction of one
or more species with their environment and the larger etesysThe dynamics of
population groups are interesting and important in marigidifit areas of social and
environmental policy. There are examples where new speaigstieen introduced
into new habitats, sometimes with disastrous results. Thnere also been attempts
to control population growth both through incentives anatigh legislation. In
this section we describe some of the models that can be usetitrstand how
populations evolve with time and as a function of their eowiments.

Logistic Growth Model

Let x be the population of a species at tilmé\ simple model is to assume that the
birth rates and mortality rates are proportional to thel fotgulation. This gives
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the linear model

dx

a:bx—dx:(b—d)x:rx, X >0, (3.29)
where birth ratd and mortality ratel are parameters. The model gives an expo-
nential increase ib > d or an exponential decreasehf< d. A more realistic
model is to assume that the birth rate decreases when théggiopus large. The

following modification of the model (3.29) has this property:

dx X

Tl rx(1— E)’ x >0, (3.30)
wherek is thecarrying capacityof the environment. The model (3.30) is called the
logistic growth model

Predator-Prey Models

A more sophisticated model of population dynamics inclubesffects of compet-
ing populations, where one species may feed on another. itiigisn, referred to

as thepredator—prey problenwas introduced in Example 2.3, where we developed
a discrete-time model that captured some of the featuresstafrical records of
lynx and hare populations.

In this section, we replace the difference equation modsd tisere with a more
sophisticated differential equation model. lkétt) represent the number of hares
(prey) and let (t) represent the number of lynxes (predator). The dynamicseof th
system are modeled as

dH:rH(l—ﬂ)—aHL H >0,

dt k c+H’ -

(3.31)
db _paHl 4 Lso
dt c+H

In the first equationy represents the growth rate of the haresepresents the
maximum population of the hares (in the absence of lynx@sgpresents the
interaction term that describes how the hares are dimidisisea function of the
lynx population and controls the prey consumption rate for low hare population.
In the second equatiot, represents the growth coefficient of the lynxes and
represents the mortality rate of the lynxes. Note that thhe dgnamics include a
term that resembles the logistic growth model (3.30).

Of particular interest are the values at which the poputatedues remain con-
stant, calledequilibrium points The equilibrium points for this system can be
determined by setting the right-hand side of the above @ngto zero. Letting
He andL¢ represent the equilibrium state, from the second equatmhave

. cd
Le=0 or H = _d (3.32)

Substituting this into the first equation, we have thatligr= 0 eitherHg = 0 or
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Figure 3.20:Simulation of the predator—prey system. The figure on the left shows #egion

of the two populations as a function of time. The figure on the right showpdpalations
plotted against each other, starting from different values of the populdtie oscillation seen

in both figures is an example oflianit cycle The parameter values used for the simulations
area=3.2,b=0.6,c=50,d =0.56,k =125 and = 1.6.

He = k. For Le # 0, we obtain

rHe(c + He) (1 B E) _ber(abk—cd —dk)
k)T (ab- d)2k

Thus, we have three possible equilibrium poixgs= (L, H

B bl -l

whereH; andL} are given in equations (3.32) and (3.33). Note that the #quil
rium populations may be negative for some parameter vatwesesponding to a
nonachievable equilibrium point.

Figure 3.20 shows a simulation of the dynamics starting froseteof popu-
lation values near the nonzero equilibrium values. We sakfth this choice of
parameters, the simulation predicts an oscillatory pdfmuiaount for each species,
reminiscent of the data shown in Figure 2.6.

L: =

3.33
€ aHe ( )

Volume | of the two-volume set by J. D. Murray [Mur04] give abd coverage
of population dynamics.

Exercises

17 (Cruise control) Consider the cruise control example diesedrin Section 3.1.
Build a simulation that re-creates the response to a hillvehio Figure 3.3b and
show the effects of increasing and decreasing the mass céhtly 25%. Redesign
the controller (using trial and error is fine) so that it regita within 1% of the

desired speed within 3 s of encountering the beginning ohithe
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18 (Bicycle dynamics) Show that the dynamics of a bicycle frarvermgby equa-
tion (3.5) can be approximated in state space form as

x| 0 1 Doo/(bJ)
X2| — |mgh/J O mo3h/(bJ)

y = [1 O]x

where the inputi is the steering anglé and the outpuy is the tilt anglep. What
do the stateg; andx, represent?

19 (Bicycle steering) Combine the bicycle model given by etum¢3.5) and the
model for steering kinematics in Example 2.8 to obtain a mdus#ldescribes the
path of the center of mass of the bicycle.

20 (Operational amplifier circuit) Consider the op amp circhibwn below.

O— WA —T— WV AN
R R, Ry

Ry
V1 = VMMTO
o
(&) —|— V3
O O

Show that the dynamics can be written in state space form as

1 1 0 1

dx | RiC: RiC RiCr B

Tl R 1 1 X+ . u,y_[O 1]x
Ra RCo R.C,

whereu = v; andy = v3. (Hint: Usev, andog as your state variables.)

21 (Operational amplifier oscillator) The op amp circuit showfoteis an imple-
mentation of an oscillator.

(&) Ry Cy
i " H

Ry h R3 = Ry >
AWV AW
+ V2 + V3 + Vi

Show that the dynamics can be written in state space form as

0 Ry
ax Ri1RsCy
dt 1 ’
— 0
R,C,

where the state variables represent the voltages acrossjpaeitors<; = v; and
X2 = V2.
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22 (Congestion control using RED [LPW+02]) A number of improvensetan
be made to the model for Internet congestion control preseim Section 3.4.
To ensure that the router’s buffer size remains positivecaremodify the buffer
dynamics to satisfy

db |s—q b >0

dt  |saloe(s —c) b =0

In addition, we can model the drop probability of a packellasn how close we
are to the buffer limits, a mechanism known as random eatlyatien (RED):

0 a(t) < bllower
o =m) =1"" (t) — projorer biove" < a(t) < by
mri () — (1—-20%%%) B < at) < 20
1 a(t) > 20"
da
at —ac(a —b),
whereq,, """, bl“e" and p;'PP*" are parameters for the RED protocol.

Using the model above, write a simulation for the system and dirset of
parameter values for which there is a stable equilibriunmipand a set for which
the system exhibits oscillatory solutions. The followingssef parameters should
be explored:

N = 20,30, ..., 60, blo"e" = 40 pkts p =01,
c=8,9,...,15 pktyms b PP = 540 pkts o = 1074,
7 =5560,...,100 ms

23 (Atomic force microscope with piezo tube) A schematic deagrof an AFM
where the vertical scanner is a piezo tube with preloadisg@svn below.

yr_m

Ve
niy

ky |- 2

Show that the dynamics can be written as

2

d2z, mdl+cdl+k|
dt2 2de2 T Pde 2

Are there parameter values that make the dynamics pantigsianple?

2

dz
(Mg + my) + (CL+ Cz)d—tl + (k1 + k2)z1 =
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24 (Drug administration) The metabolism of alcohol in the body be modeled
by the nonlinear compartment model
do dg
Vp— = —C ios Vi— =0g(c, —¢) —

bdt Q(CI b)+Q| Idt q(b CI) qmaXCo+C|
whereV, = 48 L andV, = 0.6 L are the apparent volumes of distribution of
body water and liver watec, andc are the concentrations of alcohol in the com-
partmentsg;, andqg are the injection rates for intravenous and gastrointaktin
intake,q = 1.5 L/min is the total hepatic blood flowmax = 2.75 mmol/min and
Co = 0.1 mmol/L. Simulate the system and compute the concentriatitwe blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

+qgi:

25 (Population dynamics) Consider the model for logistic gtogiven by equa-
tion (3.30). Show that the maximum growth rate occurs whersite of the pop-
ulation is half of the steady-state value.

26 (Fisheries management) The dynamics of a commercial fishetyecdescribed
by the following simple model:

%( = f(x) —h(x,u), y=Dbh(x,u)—-cu

wherex is the total biomassf (x) = rx (1 — x/K) is the growth rate and(x, u) =
axuis the harvesting rate. The outpuis the rate of revenue, and the parameters
b andc are constants representing the price of fish and the cost afdisBhow that
there is an equilibrium where the steady-state biomassg is ¢/(ab). Compare
with the situation when the biomass is regulated to a cohstloe and find the
maximum sustainable return in that case.



Chapter Four
Dynamic Behavior

It Don't Mean a Thing If It Ain't Got That Swing.
Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behaithymamical sys-
tems focused on systems modeled by nonlinear differergizdttons. This allows
us to consider equilibrium points, stability, limit cyclead other key concepts in
understanding dynamic behavior. We also introduce someadstfor analyzing
the global behavior of solutions.

4.1 Solving Differential Equations

In the last two chapters we saw that one of the methods of rimgddi/namical
systems is through the use of ordinary differential equat®@DES). A state space,
input/output system has the form

d
= fw, y=heu, (4.1)
wherex = (Xi,...,Xy) € R" is the statey € RP is the input andy € RY is

the output. The smooth maps : R" x RP — R" andh : R" x RP —» RY
represent the dynamics and measurements for the systemnémal, they can be
nonlinear functions of their arguments. We will sometimasuls on single-input,
single-output (SISO) systems, for whigh=q = 1.

We begin by investigating systems in which the input has Ise¢to a function
of the statey = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equatin this case become

dx

g = 106a00) = F). (4.2)

To understand the dynamic behavior of this system, we neeshatyze the
features of the solutions of equation (4.2). While in somepe situations we can
write down the solutions in analytical form, often we mugdy ren computational
approaches. We begin by describing the class of solutiarntbiproblem.

We say thatx(t) is a solution of the differential equation (4.2) on the time
intervalt e Rtots e R if

dx(t)
dt

=FX(t)) forallty <t < ts.
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A given differential equation may have many solutions. W4 wiost often be
interested in thénitial value problem wherex(t) is prescribed at a given time
to € R and we wish to find a solution valid for dlituretimet > t,.

We say thak(t) is a solution of the differential equation (4.2) with inltielue
Xo € R" attp e R if

X(tp) = %o and % = F(x(t)) forallty <t < t;.

For most differential equations we will encounter, thera ismiquesolution that is
defined forty < t < t;. The solution may be defined for all tinhe> tg, in which
case we takés = oco. Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to thisrgly as the solution
of an ODE.

We will typically assume that is equal to 0. In the case whénis independent
of time (as in equation (4.2)), we can do so without loss ofegelity by choosing
a new independent (time) variable=t — ty (Exercise 27).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of thenfor

G + 20 wod + wiq = 0,

whereq is the displacement of the oscillator from its rest positibimese dynamics
are equivalent to those of a spring—mass system, as showneirtigx 12. We
assume that < 1, corresponding to a lightly damped system (the reasorhfer t
particular choice will become clear later). We can rewtitis in state space form
by settingx; = g andx, = /wo, giving

Xm % dXz
— =W _
dt 072> dt

In vector form, the right-hand side can be written as

F(x) = [ @02 ] .

—woX1 — 2(6()0X2

= —woX1 — 2(600X2.

The solution to the initial value problem can be written in aer of different
ways and will be explored in more detail in Chapter 5. Here ingly assert that
the solution can be written as

) 1 .
Xy (t) = e~¢! (Xlo coswqgt + — (wod X10 + X20) Slnwdt) ,
d
—wot 1 2 H
Xo(t) = €7 | X20C0Swyt — — (wyX10 + w0l X20) SiNewgt | ,
wWd

wherexg = (X10, X20) is the initial condition andvy = wo+/1 — ¢2. This solution

can be verified by substituting it into the differential eqoat We see that the
solution is explicitly dependent on the initial conditiaamd it can be shown that
this solution is unigue. A plot of the initial condition rempse is shown in Figure 4.1.
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Figure 4.1: Response of the damped oscillator to the initial conditign= (1, 0). The
solution is unique for the given initial conditions and consists of an oscillegolytion for
each state, with an exponentially decaying magnitude.

We note that this form of the solution holds only foO; < 1, corresponding to
an “underdamped” oscillator. \Y%

Without imposing some mathematical conditions on the fioncE, the differ- @
ential equation (4.2) may not have a solution fott aiind there is no guarantee that
the solution is unique. We illustrate these possibilitiéhwwo examples.

Example 4.2 Finite escape time
Letx € R and consider the differential equation

dx
T (4.3)
with the initial conditiorx(0) = 1. By differentiation we can verify that the function
1
X(t) = — 4.4
=7 (4.4)

satisfies the differential equation and that it also satishedriitial condition. A
graph of the solution is given in Figure 4.2a; notice that thlatgon goes to infinity
ast goes to 1. We say that this system lfimite escape timeThus the solution
exists only in the time interval & t < 1. \Y

Example 4.3 Nonunique solution
Let x € R and consider the differential equation

dx
— =2
dt VX
with initial conditionx(0) = 0. We can show that the function
X(t) = 0 2.n‘Ogtga
(t—a) ift>a

satisfies the differential equation for all values of the pagtera > 0. To see this,
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Figure 4.2: Existence and uniqueness of solutions. Equation (4.3) has a solutiofootifge

t < 1, at which point the solution goes to, as shown in (a). Equation (4.4) is an example
of a system with many solutions, as shown in (b). For each valig o get a different
solution starting from the same initial condition.

we differentiatex(t) to obtain

d_x_ 0 fo<t<a
dt |2t —a) ift> a,

and hence = 2,/x for all t > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 4.2b. Notice that in this casedlse many solutions
to the differential equation. \%

These simple examples show that there may be difficulties ewsnsimple
differential equations. Existence and uniqueness can begiged by requiring
that the functior= have the property that for some fixecE R,

IF(x) — FIl <clx—y]| forallx,y,

which is calledLipschitz continuity A sufficient condition for a function to be
Lipschitz is that the JacobiarF /ox is uniformly bounded for alk. The difficulty
in Example 4.2 is that the derivativid=/0x becomes large for large, and the
difficulty in Example 4.3 is that the derivativid-/0x is infinite at the origin.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is importantiderstanding some of
the key concepts of stability in nonlinear dynamics. We Widus on an important
class of systems known as planar dynamical systems. Thases/save two state
variablesx e R?, allowing their solutions to be plotted in tif&;, x,) plane. The
basic concepts that we describe hold more generally andecasdal to understand
dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamicalesys with state
x € R? is to plot the phase portrait of the system, briefly introduice@hapter 2.
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Figure 4.3: Phase portraits. (a) This plot shows the vector field for a planar dyaamic
system. Each arrow shows the velocity at that point in the state spadeigty)lot includes
the solutions (sometimes called streamlines) from different initial conditieitis the vector
field superimposed.

We start by introducing the concept ofvactor field For a system of ordinary
differential equations g
X
T F(x),
the right-hand side of the differential equation defines atyx € R" a velocity
F(x) € R". This velocity tells us how changes and can be represented as a vector
F(x) e R".

For planar dynamical systems, each state corresponds totarpihe plane and
F(x) is a vector representing the velocity of that state. We canhtpkese vectors
on a grid of points in the plane and obtain a visual image ofdyramics of the
system, as shown in Figure 4.3a. The points where the veloditie zero are of
particular interest since they define stationary points eflihw: if we start at such
a state, we stay at that state.

A phase portraitis constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a seiitidli conditions, we
plot the solution of the differential equation in the plak& This corresponds to
following the arrows at each point in the phase plane andidgthe resulting tra-
jectory. By plotting the solutions for several differenitial conditions, we obtain
a phase portrait, as show in Figure 4.3b. Phase portraitssvesametimes called
phase plane diagrams

Phase portraits give insight into the dynamics of the systgmhowing the
solutions plotted in the (two-dimensional) state spacéefdystem. For example,
we can see whether all trajectories tend to a single poiim@smcreases or whether
there are more complicated behaviors. In the example in €igid, corresponding
to a damped oscillator, the solutions approach the origimlianitial conditions.
This is consistent with our simulation in Figure 4.1, but ibals us to infer the
behavior for all initial conditions rather than a singletiai condition. However,
the phase portrait does not readily tell us the rate of chahtjee states (although
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a iode
for a class of balance systems in which we wish to keep a system uprightasa rocket (a).
Using a simplified model of an inverted pendulum (b), we can develomagoportrait that
shows the dynamics of the system (c). The system has multiple equilibriints pmarked

by the solid dots along the, = O line.

this can be inferred from the lengths of the arrows in thearefaeld plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a statgs an equilibrium point for a dynamical system

dx
Z_—F
T (X)

if F(Xe) = 0. If a dynamical system has an initial conditiof0) = X, then it will
stay at the equilibrium poink(t) = x for allt > 0, where we have takep = 0.

Equilibrium points are one of the most important features df@amical sys-
tem since they define the states corresponding to constaratimgeconditions. A
dynamical system can have zero, one or more equilibriumtgoin

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figure 4.4, which is a gfahtebalance system
we considered in Chapter 2. The inverted pendulum is a singbh#esion of the
problem of stabilizing a rocket: by applying forces at thedaf the rocket, we
seek to keep the rocket stabilized in the upright positiore $tate variables are
the angle = x; and the angular velocitgld /dt = x,, the control variable is the
acceleratioru of the pivot and the output is the angle

For simplicity we assume thatgl/J; = 1 andml/J; = 1, so that the dynamics
(equation (2.10)) become

dx N

dt ~ | sinx; — cx + ucosx;y (4-5)

This is a nonlinear time-invariant system of second orders $hme set of equa-
tions can also be obtained by appropriate normalizatiohesystem dynamics as
illustrated in Example 2.7.
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different iritiitions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) slacsingle solution
plotted as a function of time, with the limit cycle corresponding to a steady dswillaf
fixed amplitude.

We consider the open loop dynamics by setting 0. The equilibrium points
for the system are given by
. — [:I:nn]
€ O ]

wheren =0, 1, 2, . ... The equilibrium points fon even correspond to the pendu-
lum pointing up and those farodd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inpugsghown in Figure 4.4c.
The phase portrait shows2z < x; < 2z, so five of the equilibrium points are
shown. \Y%

Nonlinear systems can exhibit rich behavior. Apart fromildopia they can also
exhibit stationary periodic solutions. This is of great picad value in generating
sinusoidally varying voltages in power systems or in getigggperiodic signals
for animal locomotion. A simple example is given in ExerciSe8hich shows the
circuit diagram for an electronic oscillator. A normalizeddel of the oscillator is
given by the equation

% =%+ x1(1 - x¢ —x), % =X +X%l-x-x5).  (4.6)
The phase portrait and time domain solutions are given in Eigus. The figure
shows that the solutions in the phase plane converge to@aniittajectory. In the
time domain this corresponds to an oscillatory solutiontidenatically the circle
is called dimit cycle More formally, we call an isolated solutiott) a limit cycle
of periodT > 0if x(t + T) = x(t) forallt € R.

There are methods for determining limit cycles for secorakosystems, but for
general higher-order systems we have to resort to compottnalysis. Computer
algorithms find limit cycles by searching for periodic trages in state space that
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Figure 4.6: lllustration of Lyapunov’s concept of a stable solution. The solutionesgmted
by the solid line is stable if we can guarantee that all solutions remain within atdiemeter
€ by choosing initial conditions sufficiently close the solution.

satisfy the dynamics of the system. In many situations lstahit cycles can be
found by simulating the system with different initial cotidns.

4.3 Stability

The stability of a solution determines whether or not sohginearby the solution
remain close, get closer or move further away. We now giveradbdefinition of
stability and describe tests for determining whether atswius stable.

Definitions

Let x(t; a) be a solution to the differential equation with initial catiah a. A
solution isstableif other solutions that start nearstay close to(t; a). Formally,
we say that the solutior(t; a) is stable if for alle > 0, there exists & > 0 such

that
Ib—all < = |Ix(t;b) —x(t;a)|]| <e forallt > 0.

Note that this definition does not imply thatt; b) approachex(t; a) as time
increases but just that it stays nearby. Furthermore, theewaflo may depend on
€, SO that if we wish to stay very close to the solution, we mayeha start very,
very close § < €). This type of stability, which is illustrated in Figure 4.8,also
calledstability in the sense of Lyapund¥a solution is stable in this sense and the
trajectories do not converge, we say that the solutioreigrally stable

An important special case is when the solutidih; a) = Xe is an equilibrium
solution. Instead of saying that the solution is stable, wely say that the equi-
librium point is stable. An example of a neutrally stableigqtium point is shown
in Figure 4.7. From the phase portrait, we see that if we stat the equilibrium
point, then we stay near the equilibrium point. Indeed, iig €xample, given any
¢ that defines the range of possible initial conditions, we @aply choose) = ¢
to satisfy the definition of stability since the trajectoréae perfect circles.

A solutionx(t; a) isasymptotically stablé it is stable in the sense of Lyapunov
and alsx(t; b) — x(t; a) ast - oo for b sufficiently close t@. This corresponds
tothe case where all nearby trajectories converge to thiestalution for large time.
Figure 4.8 shows an example of an asymptotically stable ieguin point. Note
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium point, at the origin is stable since all trajectories that
start neaw, stay neake.

from the phase portraits that not only do all trajectoriey stear the equilibrium
point at the origin, but that they also all approach the or@st gets large (the
directions of the arrows on the phase portrait show the timedn which the
trajectories move).

A solutionx(t; a) is unstableif it is not stable. More specifically, we say that
a solutionx(t; a) is unstable if given some > 0, there doesot exist aé > 0
such that ifjb — a]| < 4, then||x(t; b) — x(t; a)|| < ¢ for all t. An example of an
unstable equilibrium point is shown in Figure 4.9.

The definitions above are given without careful descriptiothefr domain of
applicability. More formally, we define a solution to kecally stable(or locally
asymptotically stablgf it is stable for all initial conditions< € B, (a), where

Br(@ = {x:lx—al <r}

is a ball of radiug arounda andr > 0. A system igjlobally stableif it is stable
for allr > 0. Systems whose equilibrium points are only locally stable ltave

1
X1 = Xo
0.5 d Xp = —X1 = X
0
y ><—N
-0.5 <
_l ! _1 1 1 1 1
-1 -05 0 0.5 1 0 2 4 6 8 10

X Timet

Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium poirt at the origin is asymptotically stable
since the trajectories converge to this point as oc.
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point, at the origin is unstable since not all trajectories
that start neare stay neat.. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

interesting behavior away from equilibrium points, as welese in the next section.
For planar dynamical systems, equilibrium points have kmsigned names
based on their stability type. An asymptotically stableilguium point is called
a sink or sometimes amttractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, @ saddle if
some trajectories lead to the equilibrium point and othepsaraway (this is the
situation pictured in Figure 4.9). Finally, an equilibriumipicthat is stable but not
asymptotically stable (i.e., neutrally stable, such astiein Figure 4.7) is called
acenter

Example 4.5 Congestion control
The model for congestion control in a network consistinglaflentical computers
connected to a single router, introduced in Section 3.4 yisgby

dw_c_ C1+w2 db_NwC_C
dt b 2) dt b ’

wherew is the window size antd is the buffer size of the router. Phase portraits are
shown in Figure 4.10 for two different sets of parameter &lueeach case we see
that the system converges to an equilibrium point in whighlbffer is below its
full capacity of 500 packets. The equilibrium size of the bufiepresents a balance
between the transmission rates for the sources and theigapithe link. We see
from the phase portraits that the equilibrium points arevgsptically stable since
all initial conditions result in trajectories that converp these points. \%

Stability of Linear Systems
A linear dynamical system has the form
dx

— =A 0) = 4.7
T X, X(0) = Xo, 4.7)
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Figure 4.10:Phase portraits for a congestion control protocol running Wit 60 identical
source computers. The equilibrium values correspond to a fixed wiatitive source, which
results in a steady-state buffer size and corresponding transmist&oA faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

where A € R™" is a square matrix, corresponding to the dynamics matrix of a
linear control system (2.6). For a linear system, the dtglwf the equilibrium at
the origin can be determined from the eigenvalues of theixatr

A(A) = {se C:det(sl — A) =0}.

The polynomial deis| — A) is thecharacteristic polynomiadnd the eigenvalues
are its roots. We use the notatidpfor the jth eigenvalue ofp, so thatij € A(A).
In generall can be complex-valued, although A is real-valued, then for any
eigenvaluel, its complex conjugate* will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stabdita linear system
depends only on the matrix, we find that stability is a property of the system. For
a linear system we can therefore talk about the stabilithefdystem rather than
the stability of a particular solution or equilibrium paint

The easiest class of linear systems to analyze are those wystsen matrices
are in diagonal form. In this case, the dynamics have the form

A1 0
dx A2
-2 X. 4.8
dt " (48)
0 An
It is easy to see that the state trajectories for this systenmdependent of each
other, so that we can write the solution in term@afdividual systems; = 4;x;.
Each of these scalar solutions is of the form

X (t) = €"'x(0).

We see that the equilibrium point = 0O is stable if1; < 0 and asymptotically
stable if1; < O.
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Another simple case is when the dynamics are in the bloclodialgiorm

01 w1 0 0
dx_ Ter ‘ 0 0 «
dt 0 o . : : .

0 0 Om Om

O O _(Um O'm

In this case, the eigenvalues can be shown to;be ¢; £iw;. We once again can
separate the state trajectories into independent sofufiimreach pair of states, and
the solutions are of the form

Xoj—1(t) = €% (X2j-1(0) COSwjt 4 X2 (0) sinwjt),
X2j ) = et (—ng_l(O) sinwjt + Xgj (0) COSa)jt),

wherej =1, 2, ..., m. We see that this system is asymptotically stable if and only
if 0 = ReZj < 0. Itis also possible to combine real and complex eigengalue
(block) diagonal form, resulting in a mixture of solutioristiee two types.

Very few systems are in one of the diagonal forms above, huiessystems
can be transformed into these forms via coordinate tramsftions. One such class
of systems is those for which the dynamics matrix has distjnonrepeating)
eigenvalues. In this case there is a mairix R"*" such that the matrix AT!
is in (block) diagonal form, with the block diagonal elem®obrresponding to the
eigenvalues of the original matr&(see Exercise 40). If we choose new coordinates
z=TX, then dz

— = Tx=TAx=TAT !z
dt

and the linear system has a (block) diagonal dynamics mdtirhermore, the
eigenvalues of the transformed system are the same as tfieabigsystem since
if v is an eigenvector oA, thenw = Tov can be shown to be an eigenvector of
T AT~L. We can reason about the stability of the original system dtyng that
x(t) = T~1z(t), and so if the transformed system is stable (or asymptbtical
stable), then the original system has the same type of ityabil

This analysis shows that for linear systems with distinaeiglues, the stability
of the system can be completely determined by examining e¢haé part of the
eigenvalues of the dynamics matrix. For more general systemmake use of the
following theorem, proved in the next chapter:

Theorem 4.1(Stability of a linear system)The system

dx
A
at = X

is asymptotically stable if and only if all eigenvalues oflkave a strictly negative
real part and is unstable if any eigenvalue of A has a striptgitive real part.

Example 4.6 Compartment model
Consider the two-compartment module for drug deliveryadtrced in Section 3.6.
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Using concentrations as state variables and denotingateasctor by, the system
dynamics are given by

dx —ko—ki kg bo

E_[ K, —k X+ 0 u, y = [0 1]x,
where the inpuu is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measurguliby. We wish to

design a feedback control law that maintains a constanubgipen byy = yjy.
We choose an output feedback control law of the form

u = —Kk(y — ya) + Ug,

whereuyq is the rate of injection required to maintain the desiredcemtration and
k is a feedback gain that should be chosen such that the closedystemis stable.
Substituting the control law into the system, we obtain

dX_ —kg — kg kg — bok bo
E‘[ ka —k ¥t o

y = [O 1] X =: CX.

] Ug =: AX+ Bug,

The equilibrium concentratior. € R? is given byx. = —A~*Buy and

boka y

kokz + bokok

Choosingug such thaty, = yq provides the constant rate of injection required to
maintain the desired output. We can now shift coordinatg@éaice the equilibrium
point at the origin, which yields

d_Z_ —ko — k1 kg — bgk .
dt ko —ko i

wherez = x — X.. We can now apply the results of Theorem 4.1 to determine the
stability of the system. The eigenvalues of the system aendiy the roots of the
characteristic polynomial

A(s) = 5% + (Ko + k1 + k2)s + (Kokz + bok2K).

While the specific form of the roots is messy, it can be showtttigaroots are pos-
itive as long as the linear term and the constant term aregutitive (Exercise 42).
Hence the system is stable for any 0. \%

Ye = —CA™1Bug =

Stability Analysis via Linear Approximation

Animportant feature of differential equations is that ibfeen possible to determine
the local stability of an equilibrium point by approximaiithe system by a linear
system. The following example illustrates the basic idea.
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Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dysaamécgiven by

dx X2
dt ~ |sinxi—yx |’

where we have defined the statexas= (4, ). We first consider the equilibrium
point atx = (0, 0), corresponding to the straight-up position. If we assuraéttie
anglef = x; remains small, then we can replacesimwith x; and cos; with 1,
which gives the approximate system

dX_ X2 . 0 1
Tl [Xl_VXZ] = [1 —y] X. (4.9)

Intuitively, this system should behave similarly to the ma@omplicated model
as long as«; is small. In particular, it can be verified that the equililonigpoint
(0, 0) is unstable by plotting the phase portrait or computing therevalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable equititpoint at
X = (x,0). In this case we have to expand ginand cox; aroundx; = =,
according to the expansions

sin(z +60) = —sind ~ -0, coqn + ) = —cogl) ~ —1.

If we definez; = x; — = andz, = Xp, the resulting approximate dynamics are

given by
dz Z 0 1
— = = . 4.1
dt [-Zl-VZz] [-1 -y]z (+.10)

Note thatz = (0, 0) is the equilibrium point for this system and that it has thesa
basic form as the dynamics shown in Figure 4.8. Figure 4.11 shiwsvyphase por-
traits for the original system and the approximate systeyarat the corresponding
equilibrium points. Note that they are very similar, altgbunot exactly the same.
It can be shown that if a linear approximation has either gwgtically stable or
unstable equilibrium points, then the local stability of triginal system must be
the same (Theorem 4.3). \Y%

More generally, suppose that we have a nonlinear system

dx
— = F(X
T (x)
that has an equilibrium point at. Computing the Taylor series expansion of the

vector field, we can write
dx

oF
at F(Xe) + i (X — Xe) + higher-order terms iix — Xe).

Xe

SinceF (x¢) = 0, we can approximate the system by choosing a new statdiaria



4.3. STABILITY 109

i N

2 g ) 29 )
—l\ -1 /
-2 -2
0 /2 T 3r/2 2% - —r/2 0 /2 T
X1 Z;
(a) Nonlinear model (b) Linear approximation

Figure 4.11: Comparison between the phase portraits for the full nonlinear systgrasda
its linear approximation around the origin (b). Notice that near the equilibgaimt at the
center of the plots, the phase portraits (and hence the dynamics) ars alerdical.

Z = X — Xe and writing

dz oF

T Az, where A= x Xe. (4.12)
We call the system (4.11) thi@ear approximatiorof the original nonlinear system
or thelinearizationat Xe.

The fact that a linear model can be used to study the behaviamohlinear
system near an equilibrium point is a powerful one. Indeezican take this even
further and use a local linear approximation of a nonlingatesn to design a feed-
back law that keeps the system near its equilibrium poinsiggeof dynamics).
Thus, feedback can be used to make sure that solutions refoa@to the equi-
librium point, which in turn ensures that the linear appnoation used to stabilize
it is valid.

Linear approximations can also be used to understand thiéitgtabnonequi-
librium solutions, as illustrated by the following example

Example 4.8 Stable limit cycle

Consider the system given by equation (4.6),
Xm dXZ
dt dt

whose phase portraitis shown in Figure 4.5. The differengjabéon has a periodic

solution

=X+ x1(1—x¢ — X), = —x1+ Xo(1—x¢ — X),

X1(t) = x1(0) cost + x»(0) sint, (4.12)

with x2(0) + x2(0) = 1.
To explore the stability of this solution, we introduce potaordinates and
@, which are related to the state variablgsandx, by

X1 =T COSp, X2 =T Sing.
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Differentiation gives the following linear equations foand¢:
Xy =rfCcosp —rgsing, X, =rSing +r¢ cosy.
Solving this linear system farandg gives, after some calculation,

dr 2 do

dt_r(l ro, T 1

Notice that the equations are decoupled; hence we can arthlyztability of each
state separately.

The equation for has three equilibriac = 0,r = 1 andr = —1 (not realiz-
able sinca must be positive). We can analyze the stability of theselibgiai by
linearizing the radial dynamics witR (r) = r (1 — r?). The corresponding linear
dynamics are given by

dr oF 2

i o rer =A-=-3rHr, re=0,1,
where we have abused notation and usdd represent the deviation from the
equilibrium point. It follows from the sign ofl — 3r2) that the equilibriunt =0
is unstable and the equilibrium= 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes to= 1 as time goes to infinity, but if the system
starts withr = 0, it will remain at the equilibrium for all times. This impBehat
all solutions to the original system that do not starkat x, = 0 will approach
the circlex? + x2 = 1 as time increases.

To show the stability of the full solution (4.12), we must@stigate the behavior
of neighboring solutions with different initial conditisnWe have already shown
that the radius will approach that of the solution (4.12) as longr&8) > 0. The
equation for the angle can be integrated analytically to giygt) = —t + ¢(0),
which shows that solutions starting at different anglesill neither converge nor
diverge. Thus, the unit circle &tracting but the solution (4.12) is only stable, not
asymptotically stable. The behavior of the system is ilhtetl by the simulation
in Figure 4.12. Notice that the solutions approach the ciagedly, but that there
is a constant phase shift between the solutions. \%

4.4 Lyapunov Stability Analysis

We now return to the study of the full nonlinear system

% = F(x), xeR" (4.13)

Having defined when a solution for a nonlinear dynamical sgstestable, we
can now ask how to prove that a given solution is stable, asytioplly stable
or unstable. For physical systems, one can often argue aalitity based on
dissipation of energy. The generalization of that techniguarbitrary dynamical
systems is based on the use of Lyapunov functions in placeestg.
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Figure 4.12:Solution curves for a stable limit cycle. The phase portrait on the left shiost
the trajectory for the system rapidly converges to the stable limit cycle. fHnng points
for the trajectories are marked by circles in the phase portrait. The timaidgiots on the
right show that the states do not converge to the solution but instead maictstant phase
error.

In this section we will describe techniques for determintimg stability of so-
lutions for a nonlinear system (4.13). We will generally heerested in stability
of equilibrium points, and it will be convenient to assumattk, = 0 is the equi-
librium point of interest. (If not, rewrite the equationsamew set of coordinates
Z=X—Xe.)

Lyapunov Functions

A Lyapunov function V. R" — R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, itesefind a nonnegative
function that always decreases along trajectories of te&enmy, we can conclude
that the minimum of the function is a stable equilibrium gdiocally).

To describe this more formally, we start with a few definitiode say that a
continuous functiorV is positive definitéf V (x) > 0 for all x # 0 andV (0) = 0.
Similarly, a function isnegative definitéf V(x) < 0 for all x £ 0 andV (0) = 0.
We say that a functioV is positive semidefinité V (x) > 0 for all x, butV (x)
can be zero at points other than just 0.

To illustrate the difference between a positive definite fiomcand a positive
semidefinite function, suppose that R? and let

Vi(x) = X2, Va(X) = xZ 4 x3.

Both V; andV, are always nonnegative. However, it is possibleVfpito be zero
even ifx # 0. Specifically, if we sex = (0, ¢), wherec € R is any nonzero
number, therV;(x) = 0. On the other hand/>(x) = 0 if and only ifx = (0, 0).
ThusV; is positive semidefinite and, is positive definite.

We can now characterize the stability of an equilibrium pein= 0 for the
system (4.13).

Theorem 4.2(Lyapunov stability theorem)Let V be a nonnegative function on
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v
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Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov funchbix) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system vélsivause/ (x)

to decrease along the trajectory.

R" and letV represent the time derivative of V along trajectories & #ystem
dynamicg4.13) g

ovdx oV

=——=—F®X).

ox dt  ox )
Let B = B;(0) be a ball of radius r around the origin. If there existsr 0 such
that V is positive definite and is negative semidefinite for all« Br_, thenx=0
is locally stable in the sense of Lyapunov. If V is positiiinite andV is negative
definite in B, then x= 0is locally asymptotically stable.

If V satisfies one of the conditions above, we say tha a (local)Lyapunov
functionfor the system. These results have a nice geometric intatjmet The
level curves for a positive definite function are the curvefinge by V (x) = c,
¢ > 0, and for eacfe this gives a closed contour, as shown in Figure 4.13. The
condition thatV (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories ntowenaller and smaller
values ofV and ifV is negative definite thex must approach O.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system

dx 2 «

dt  1+x
This system has equilibrium pointsxat= 1 andx = —2. We consider the equilib-
rium point atx = 1 and rewrite the dynamics usiag= x — 1.

dz 2 ,

dt 24z ’
which has an equilibrium point & = 0. Now consider the candidate Lyapunov
function

1
V(z) = Ezz,
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which is globally positive definite. The derivative ®f along trajectories of the
system is given by 5
. z
V@ =z2zz=—""-72-12
242
If we restrict our analysis to an intervB}, wherer < 2, then 2+ z > 0 and we

can multiply through by 2+ z to obtain
22— (ZZ4+22+2=-22-322=-72(z+3) <0, zeB,r <2

It follows thatV(z) < O forall z € B;, z # 0, and hence the equilibrium point
Xe = 1 is locally asymptotically stable. \%

A slightly more complicated situation occurs\ifis negative semidefinite. In
this case itis possible thet(x) = 0 whenx # 0, and henc& could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum

A normalized model for a hanging pendulum is
dxq — dx
dat ~ 2 dt

where x; is the angle between the pendulum and the vertical, withtigesk,

corresponding to counterclockwise rotation. The equataman equilibriumx; =

X2 = 0, which corresponds to the pendulum hanging straight ddaexplore the

stability of this equilibrium we choose the total energy ayapunov function:

= —SinXxy,

1,1, 1,
V(X) =1—cosx; + Ex2 A Ex1 + Ex2.
The Taylor series approximation shows that the function sitpe definite for

smallx. The time derivative oV (x) is

V = X1 SiNX1 + XoXo = X SiNX; — X2 Sinxy = 0.
Since this function is positive semidefinite, it follows fromdpunov’s theorem that
the equilibrium is stable but not necessarily asymptdiicalble. When perturbed,
the pendulum actually moves in a trajectory that corresptmdonstant energyV

Lyapunov functions are not always easy to find, and they aremque. In many
cases energy functions can be used as a starting point, @wnas Example 4.10.
It turns out that Lyapunov functions can always be found fgrstable system (un-
der certain conditions), and hence one knows that if a systetable, a Lyapunov
function exists (and vice versa). Recent results using sf:aguares methods have
provided systematic approaches for finding Lyapunov sys{&R&02]. Sum-of-
squares techniques can be applied to a broad variety ofhsysiiecluding systems
whose dynamics are described by polynomial equations, khasveybrid systems,
which can have different models for different regions ofestpace.

For a linear dynamical system of the form

dx_

— = AX
dt

2
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it is possible to construct Lyapunov functions in a systécmaganner. To do so, we
consider quadratic functions of the form

V(x) = x" Px,

whereP e R"*" is a symmetric matrix® = PT). The condition tha¥ be positive
definite is equivalent to the condition thtbe apositive definite matrix

xTPx>0, forallx#0,

which we write as® > 0. It can be shown that P is symmetric, ther is positive
definite if and only if all of its eigenvalues are real and pgsit

Given a candidate Lyapunov functiah(x) = x" Px, we can now compute its
derivative along flows of the system:

_ ovdx

©oox dt
The requirement tha' be negative definite (for asymptotic stability) becomes a
condition that the matrixQ be positive definite. Thus, to find a Lyapunov function

for a linear system it is sufficient to chooseQa > 0 and solve thd.yapunov
equation

=X (ATP + PAX = —x' Qx.

ATP+PA=-Q. (4.14)

This is a linear equation in the entries Bf and hence it can be solved using
linear algebra. It can be shown that the equation always kakision if all of the
eigenvalues of the matriR are in the left half-plane. Moreover, the solutienis
positive definite ifQ is positive definite. Itis thus always possible to find a quadrat
Lyapunov function for a stable linear system. We will defgsraof of this until
Chapter 5, where more tools for analysis of linear systemivwideveloped.
Knowing that we have a direct method to find Lyapunov functifordinear

systems, we can now investigate the stability of nonlingatesns. Consider the
system

dx

dt
whereF (0) = 0 andF (x) contains terms that are second order and higher in the
elements ok. The functionAx is an approximation of (x) near the origin, and we
can determine the Lyapunov function for the linear appr@tion and investigate if
itis also a Lyapunov function for the full nonlinear systérhe following example
illustrates the approach.

F(x) =: AX+ F(X), (4.15)

Example 4.11 Genetic switch
Consider the dynamics of a set of repressors connectedhtagiet a cycle, as
shown in Figure 4.14a. The normalized dynamics for this systeme given in

Exercise 15:
ercise 15 dzl_ p dzz_ p

L I - _
dr 1+ 72 b dr 1+ 7]

wherez; and z, are scaled versions of the protein concentrationand ¢ are

Z3, (4 16)
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(a) Circuit diagram (b) Equilibrium points
Figure 4.14: Stability of a genetic switch. The circuit diagram in (a) represents two ptein
that are each repressing the production of the other. The inpw@sdu, interfere with this

repression, allowing the circuit dynamics to be modified. The equilibriumtgdor this
circuit can be determined by the intersection of the two curves shown.in (b)

parameters that describe the interconnection betweeretiesg@nd we have set the
external inputsl; andu, to zero.
The equilibrium points for the system are found by equatiegithe derivatives
to zero. We define
n—1
fw=-t" pu=2
14+un du (1+um?

and the equilibrium points are defined as the solutions of go@tons
Z] = f(Zz), Zy = f(Zl).

If we plot the curveqdz, f(z1)) and(f(z), z2) on a graph, then these equations
will have a solution when the curves intersect, as shown inréig.14b. Because
of the shape of the curves, it can be shown that there willydva three solutions:
one atzge = Zpe, One withzye < 75 and one withege > Zpe. If 1 > 1, then we can
show that the solutions are given approximately by
1 1
e N U, L™ 1 Z1e = Z2e; Z1e N F, Ze = U. (4-17)

To check the stability of the system, we writ€u) in terms of its Taylor series

expansion aboute:

f(u) = f(Ue) + f'(Ue) - (U—Ue) + f”(Ue) - (U — UE)? + higher-order terms

where f’ represents the first derivative of the function, ardthe second. Using
these approximations, the dynamics can then be written as

d_w_[ -1 f/(ZZe)]
dt | f'(ze) -1

wherew = z—zis the shifted state arfél(w) represents quadratic and higher-order

w + If(u)),
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terms.
We now use equation (4.14) to search for a Lyapunov func@boosingQ = |
and lettingP e R?*2 have elements;;, we search for a solution of the equation

-1 f ) [Pu Pe|  fPu pel -1 ] _[-1 0

fi =1} | P2 P22 P12 P22 f, -1 0o -1}°
where f{ = f'(z4e) and f; = f'(zz). Note that we have sgh; = p;» to force P
to be symmetric. Multiplying out the matrices, we obtain

—2p11+ 2f;p12 Purf] —2p1o+ p2fz| _ [-1 O
P11f{ — 2p12 + pa2f; —2p22+ 21 p12 0 -1

which is a set ofinear equations for the unknowns; . We can solve these linear
equations to obtain

f12— £/ +2 f{+ f; f,2 — £/ f5+2

p11=—ms plZ:_m’ P2z = — 4(f1f, -1

To check thaV (w) = w' Pw is a Lyapunov function, we must verify thelt(w) is
positive definite function or equivalently thRt> 0. SinceP is a 2x 2 symmetric
matrix, it has two real eigenvaluésg and 1, that satisfy

A+ A= trace(P), A1-Ar = det(P).

In order forP to be positive definite we must have thatand A, are positive, and
we thus require that

f2—2f,f/4+ 1,74+ 4 20, deP)— f12—21f5 1+ f57+4

tracgP) =
&«P) 4-4f1/f; 16— 161/ f,

> 0.

We see that trad®) = 4det(P) and the numerator of the expressions is just
(f1 — f2)2+4 > 0, so it suffices to check the sign of1 f; f,. In particular, for
P to be positive definite, we require that

f'(z1e) f'(22e) < 1.

We can now make use of the expressionsffodefined earlier and evaluate at
the approximate locations of the equilibrium points detireequation (4.17). For
the equilibrium points where;e # 75, we can show that

™t Y
T @t T e T

Usingn = 2 andu = 200 from Exercise 15, we see th&(z;e) f'(z2¢) < 1 and
henceP is a positive definite. This implies thdtis a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the system (4.16) is stable, we now compuaethe equilibrium

1
f(z10) (220) ~ 10 1)
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Figure 4.15:Dynamics of a genetic switch. The phase portrait on the left shows thewite
has three equilibrium points, corresponding to protein A having a coratemtigreater than,
equal to or less than protein B. The equilibrium point with equal protein extnations is
unstable, but the other equilibrium points are stable. The simulation on theskgtvs the
time response of the system starting from two different initial conditions ifiitial portion of
the curve corresponds to initial concentratia(® = (1, 5) and converges to the equilibrium
whereze < . Attimet = 10, the concentrations are perturbed{d¥ in z; and—2 in zp,
moving the state into the region of the state space whose solutions convérgetilibrium
point wherezye < Zze.

point. By construction,
V=uw"(PA+ AP)uw + F'(w)Pw + v PF (w)
=—w'w+ F'(w)Pw + w'PF(w).

Since all terms irF are quadratic or higher order in, it follows that F T(w) Pw
andwTPF (w) consist of terms that are at least third ordewinTherefore ifw
is sufficiently close to zero, then the cubic and higher-otdens will be smaller
than the quadratic terms. Hence, sufficiently close te 0, Vis negative definite,
allowing us to conclude that these equilibrium points arénlstable.

Figure 4.15 shows the phase portrait and time traces for ammysith 4 = 4,
illustrating the bistable nature of the system. When thigintondition starts with
a concentration of protein B greater than that of A, the smtutonverges to the
equilibrium point at (approximately)1/."1, x). If A is greater than B, then it
goes to(u, 1/u"1). The equilibrium point withz;e = 2z, is unstable. \%

More generally, we can investigate what the linear appraxion tells about
the stability of a solution to a nonlinear equation. The fwilog theorem gives a
partial answer for the case of stability of an equilibriunino

Theorem 4.3. Consider the dynamical systeh 15)with F(0) = 0 and F such
thatlim ||F (x)||/||x]| — Oas||x|| — O. If the real parts of all eigenvalues of A are
strictly less than zero, then.x= 0 is a locally asymptotically stable equilibrium
point of equation(4.15)

This theorem implies that asymptotic stability of the linegproximation im-
plieslocal asymptotic stability of the original nonlinear system. Tinedrem is very
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important for control because it implies that stabilizatas a linear approximation
of a nonlinear system results in a stable equilibrium forrtbelinear system. The
proof of this theorem follows the technique used in Exampld 4A formal proof
can be found in [KhaO1].

Krasovski—Lasalle Invariance Principle

For general nonlinear systems, especially those in symfaolin, it can be difficult
to find a positive definite functio whose derivative is strictly negative definite.
The Krasovski—Lasalle theorem enables us to conclude themstimstability of
an equilibrium point under less restrictive conditionsnedy, in the case wheré
is negative semidefinite, which is often easier to constHiivever, it applies only
to time-invariant or periodic systems. This section makesafssome additional
concepts from dynamical systems; see Hahn [Hah67] or Klikdi&01] for a more
detailed description.
We will deal with the time-invariant case and begin by introihg a few more

definitions. We denote the solution trajectories of the timariant system

dx

Tl F(x) (4.18)
asx(t : a), which is the solution of equation (4.18) at timetarting froma at
to = 0. Thew limit setof a trajectoryx(t; a) is the set of all pointz € R" such
that there exists a strictly increasing sequence of tigpesich thatx(t,; a) —» z
asn — oo. AsetM c R" is said to be amvariant setif for all b € M, we have
X(t;b) € M forallt > 0. It can be proved that the limit set of every trajectory
is closed and invariant. We may now state the Krasovski—leapahciple.

Theorem 4.4(Krasovski—Lasalle principle)Let V : R" — R be alocally positive
definite function such that on the compactQet= {x € R" : V(X) < r} we have
V(x) < 0. Define

S={xeQ :V(x) =0}

As t— oo, the trajectory tends to the largest invariant set insidé &; itsw limit
set is contained inside the largest invariant set in S. Irtipatar, if S contains no
invariant sets other than »x 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].

Lyapunov functions can often be used to design stabilizimgtrollers, as is
illustrated by the following example, which also illusgathow the Krasovski—
Lasalle principle can be applied.

Example 4.12 Inverted pendulum
Following the analysis in Example 2.7, an inverted pendulamize described by
the following normalized model:

dX]_

dx; .
5 = =2 = sinx; + U COSXy, (4.19)

dt
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Figure 4.16: Stabilized inverted pendulum. A control law applies a foucat the bottom
of the pendulum to stabilize the inverted position (a). The phase portragh(@ys that
the equilibrium point corresponding to the vertical position is stabilized. Thded region
indicates the set of initial conditions that converge to the origin. The ellipsesgmonds to a
level set of a Lyapunov functio (x) for whichV (x) > 0 andV (x) < 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction otiilileragn point.

The actual dynamics of the system evolve on a manifold (c).

wherex; is the angular deviation from the upright position and the (scaled)
acceleration of the pivot, as shown in Figure 4.16a. The sy$t@snan equilib-
rium atx; = X, = 0, which corresponds to the pendulum standing upright. This

equilibrium is unstable.
To find a stabilizing controller we consider the following dadate for a Lya-

punov function:
1.2 1 5 2
V (x) = (cosx; — 1) + a(1 — cos x1) + X5 ~ (a— é)xl +5%.

The Taylor series expansion shows that the function is pesitefinite near the
origin if a > 0.5. The time derivative oY (x) is

V = —X; SinXg 4+ 2ax%; SiNX; COSX1 4+ %X = Xo(U + 2aSiNX;) COSXy.

Choosing the feedback law
U = —2asinX; — Xp COSX1

gives .
V = —x3cos x;.

It follows from Lyapunov’s theorem that the equilibrium exhlly stable. However,
since the function is only negative semidefinite, we cannatkale asymptotic
stability using Theorem 4.2. However, note that= 0 implies thatx, = 0 or

X1 =rm/2+nx.
If we restrict our analysis to a small neighborhood of thgiorl),, r « 7/2,

then we can define
S={(X1, X2) € Q : X2 =0}
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and we can compute the largest invariant set inSideor a trajectory to remain
in this set we must have, = 0 for all t and hencex,(t) = 0 as well. Using the
dynamics of the system (4.19), we see thdt) = 0 andx,(t) = 0 impliesx,(t) =
0 as well. Hence the largest invariant set insgde (x;, x2) = 0, and we can use the
Krasovski—Lasalle principle to conclude that the originasdlly asymptotically
stable. A phase portrait of the closed loop system is shoviaigare 4.16b.

In the analysis and the phase portrait, we have treated tie afthe pendulum
6 = x; as a real number. In faai,is an angle withd = 2z equivalent t? = 0.
Hence the dynamics of the system actually evolves maifold(smooth surface)
as shown in Figure 4.16c. Analysis of nonlinear dynamicalesys on manifolds
is more complicated, but uses many of the same basic idessntesl here. V

4.5 Parametric and Nonlocal Behavior

Most of the tools that we have explored are focused on thd lwslsavior of a
fixed system near an equilibrium point. In this section weflyrimtroduce some
concepts regarding the global behavior of nonlinear systana the dependence
of a system'’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear systeramestart by finding
the equilibrium points. We can then proceed to analyze tbal loehavior around
the equilibria. The behavior of a system near an equilibriomfas called thdocal
behavior of the system.

The solutions of the system can be very different far away famnequilibrium
point. This is seen, for example, in the stabilized penduluixample 4.12. The
inverted equilibrium point is stable, with small osciltaris that eventually converge
to the origin. But far away from this equilibrium point thesee trajectories that
converge to other equilibrium points or even cases in whiehpendulum swings
around the top multiple times, giving very long oscillatsathat are topologically
different from those near the origin.

To better understand the dynamics of the system, we can arairé set of all
initial conditions that converge to a given asymptoticaligble equilibrium point.
This set is called theegion of attractionfor the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figuréb4.In general,
computing regions of attraction is difficult. However, evewe cannot determine
the region of attraction, we can often obtain patches ardbedtable equilibria
that are attracting. This gives partial information aboethihavior of the system.

One method for approximating the region of attraction i®tigh the use of
Lyapunov functions. Suppose thdtis a local Lyapunov function for a system
around an equilibrium poing. LetQ, be a set on whicN (x) has a value less than
r,

Q ={xeR":V(X) <r},
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and suppose that (x) < 0 for all x € Q, with equality only at the equilibrium
point Xo. ThenQ, is inside the region of attraction of the equilibrium poiBince
this approximation depends on the Lyapunov function andhioéce of Lyapunov
function is not unique, it can sometimes be a very consemvastimate.

It is sometimes the case that we can find a Lyapunov fundatiench thatv is
positive definite and/ is negative (semi-) definite for atl € R". In this case it can
be shown that the region of attraction for the equilibriuninpds the entire state
space, and the equilibrium point is said todiebally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Exa@d2. The Lyapunov
function for the system was

1
V(x) = (cosxy — 1) + a(l — cos' xy) + Exg,

andV was negative semidefinite for alland nonzero wher; # 4+ /2. Hence
for any x such thaix,| < z/2,V(x) > 0 will be inside the invariant set defined
by the level curves of (x). One of these level sets is shown in Figure 4.168.

Bifurcations

Another important property of nonlinear systems is howrthehavior changes as
the parameters governing the dynamics change. We can dtigdiyn tthe context
of models by exploring how the location of equilibrium pantheir stability, their
regions of attraction and other dynamic phenomena, su@imésycles, vary based
on the values of the parameters in the model.
Consider a differential equation of the form
dx

g =F0om, xe R", u € RX, (4.20)

wherex is the state and is a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

F(x, u) =0,

and asu is varied, the corresponding solutiong ) can also vary. We say that the

system (4.20) has bifurcationat ¢ = u* if the behavior of the system changes
qualitatively atu*. This can occur either because of a change in stability ty@e or
change in the number of solutions at a given valug of

Example 4.14 Predator—prey
Consider the predator—prey system described in SectiormBerdynamics of the
system are given by

dH ( H ) aHL dL aHL

R 1— — —_— =
dt k c+H’ dt bc+H

—dL, (4.21)



122 CHAPTER 4. DYNAMIC BEHAVIOR

200 150
Unstable
150F
oo b
€100 Stable H e
!
50F \/ R
50 1 N
Unstable P R
e i
0 1 1 1 1 1 0 1 M L 1
15 2 2.5 3 3.5 4 2 4 6 8
a a
(a) Stability diagram (b) Bifurcation diagram

Figure 4.17: Bifurcation analysis of the predator—prey system. (a) Parametric stadiidity
gram showing the regions in parameter space for which the system is ggtB&urcation
diagram showing the location and stability of the equilibrium point as a funcfi@ ®he
solid line represents a stable equilibrium point, and the dashed line refresennstable
equilibrium point. The dashed-dotted lines indicate the upper and lowerdsdanthe limit
cycle atthat parameter value (computed via simulation). The nomina@wvafihe parameters
in the model area = 3.2,b = 0.6,c = 50,d = 0.56,k = 125 and = 1.6.

whereH andL are the numbers of hares (prey) and lynxes (predatorspabd
¢, d, k andr are parameters that model a given predator—prey systeroritoes
in more detail in Section 3.7). The system has an equilibriumt@t He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behafibe system, we
choose to focus on two specific parameters of inteegsitie interaction coefficient
between the populations amgda parameter affecting the prey consumption rate.
Figure 4.17ais a numerically computgdrametric stability diagranshowing the
regions in the chosen parameter space for which the equitibpoint is stable
(leaving the other parameters at their nominal values). &gd®m this figure that
for certain combinations @& andc we get a stable equilibrium point, while at other
values this equilibrium point is unstable.

Figure 4.17b is a numerically computbiurcation diagramfor the system. In
this plot, we choose one parameter to vaygnd then plot the equilibrium value of
one of the states{) on the vertical axis. The remaining parameters are set io the
nominal values. A solid line indicates that the equilibripoint is stable; a dashed
line indicates that the equilibrium point is unstable. Ntftat the stability in the
bifurcation diagram matches that in the parametric stgallagram forc = 50 (the
nominal value) an@ varying from 1.35 to 4. For the predator—prey system, when
the equilibrium point is unstable, the solution converges stable limit cycle. The
amplitude of this limit cycle is shown by the dashed-dottieé in Figure 4.17b.

\Y%

A particular form of bifurcation that is very common when tmtliing linear
systems is that the equilibrium remains fixed but the stgbiiftthe equilibrium
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Figure 4.18: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle veloditye system is
stable when all eigenvalues have negative real part (shaded reffi@mplot in (b) shows the
locus of eigenvalues on the complex plane as the velacityvaried and gives a different
view of the stability of the system. This type of plot is calletbat locus diagram

changes as the parameters are varied. In such a case itaimgue plot the eigen-
values of the system as a function of the parameters. Such atetcalledoot
locus diagramsecause they give the locus of the eigenvalues when parnamete
change. Bifurcations occur when parameter values are batthere are eigenval-
ues with zero real part. Computing environments such LabVIEMTLAB and
Mathematica have tools for plotting root loci.

Example 4.15 Root locus diagram for a bicycle model

Considerthe linear bicycle model given by equation (3. 8gntion 3.2. Introducing
the state variable®; = ¢, X = 0, X3 = ¢ andxq = § and setting the steering
torqueT = 0, the equations can be written as

dx 0 I
dt | =M~%(Ko + Ka03) —M~1Coyg

wherel is a 2x 2 identity matrix andyg is the velocity of the bicycle. Figure 4.18a
shows the real parts of the eigenvalues as a function of wgldeigure 4.18b
shows the dependence of the eigenvalues of the velocityy. The figures show
that the bicycle is unstable for low velocities because twgemvalues are in the
right half-plane. As the velocity increases, these eigiel@samove into the left
half-plane, indicating that the bicycle becomes selffitahg. As the velocity is
increased further, there is an eigenvalue close to themitigit moves into the right
half-plane, making the bicycle unstable again. Howevas, ¢éigenvalue is small
and so it can easily be stabilized by a rider. Figure 4.18a stibat the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. \%

X =: AX

&

Parametric stability diagrams and bifurcation diagrams geovide valuable
insights into the dynamics of a nonlinear system. It is Uguscessary to carefully
choose the parameters that one plots, including combihi@géatural parameters
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Figure 4.19:Headphones with noise cancellation. Noise is sensed by the exterior tmc®p
(a) and sent to a filter in such a way that it cancels the noise that penétatesad phone
(b). The filter parametems andb are adjusted by the controllé.represents the input signal
to the headphones.

of the system to eliminate extra parameters when possildmpQter programs
such asAUTO, LOCBI F andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations tosdg feedback laws
that stabilize an equilibrium point and provide a desiregeleof performance.
However, for some classes of problems the feedback comtrallist be nonlinear to
accomplish its function. By making use of Lyapunov funciove can often design
a nonlinear control law that provides stable behavior, asavein Example 4.12.

One way to systematically design a nonlinear controllemibégin with a
candidate Lyapunov functiol (x) and a control system = f(x,u). We say
that V (x) is acontrol Lyapunov functioif for every x there exists al such that
V(x) = 2L f(x,u) < 0. In this case, it may be possible to find a functiofx)
such thatu = a(x) stabilizes the system. The following example illustrates th
approach.

Example 4.16 Noise cancellation

Noise cancellation is used in consumer electronics andduositrial systems to
reduce the effects of noise and vibrations. The idea is tdljoeduce the effect of
noise by generating opposing signals. A pair of headphoitbswise cancellation
such as those shown in Figure 4.19a is a typical example. Arsatiediagram of
the system is shown in Figure 4.19b. The system has two micrgshone outside
the headphones that picks up exterior nois@d another inside the headphones that
picks up the signag, which is a combination of the desired signal and the externa
noise that penetrates the headphone. The signal from theoextécrophone is
filtered and sent to the headphones in such a way that it cathee¢xternal noise
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that penetrates into the headphones. The parameters of ¢éheafidtadjusted by a
feedback mechanism to make the noise signal in the interitabphone as small
as possible. The feedback is inherently nonlinear becauszstby changing the
parameters of the filter.

To analyze the system we assume for simplicity that the gafian of external
noise into the headphones is modeled by a first-order dynagyiseem described
by

d_Z = apzZ + bgn, (422)
dt
wherezis the sound level and the paramet&ys< 0 andbg are not known. Assume
that the filter is a dynamical system of the same type:

dw
— =a bn.
at ot
We wish to find a controller that updatesandb so that they converge to the
(unknown) parametergy andby. Introducex; = e = w — z, X, = a — ap and
X3 = b — bg; then
Xm
T a(w —2) + (a—ag)w + (b — bp)n = agxy + Xow + X3N. (4.23)
We will achieve noise cancellation if we can find a feedbackflanchanging the
parameters. andb so that the erroe goes to zero. To do this we choose

1
V04, %o, Xa) = 5 (X + 5 + X3)
as a candidate Lyapunov function for (4.23). The derivative @s
V = aX1X1 + XoXo + X3X3 = Ola()Xf + Xz(Xz + O(LUXl) + X3(X3 + onxy).

Choosing
Xo = —qwX] = —awe, X3 = —aNX; = —ane, (4.24)

we find thatV = aagx? < 0, and it follows that the quadratic function will decrease
as long a® = x; = w — z # 0. The nonlinear feedback (4.24) thus attempts to
change the parameters so that the error between the sighth@noise is small.
Notice that feedback law (4.24) does not use the model (£23)citly.

A simulation of the system is shown in Figure 4.20. In the satiaoh we have
represented the signal as a pure sinusoid and the noise & lbeod noise. The
figure shows the dramatic improvement with noise cancefiafitne sinusoidal
signal is not visible without noise cancellation. The filtergraeters change quickly
from their initial valuesa = b = 0. Filters of higher order with more coefficients
are used in practice. \%
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Figure 4.20:Simulation of noise cancellation. The top left figure shows the headpligmed s
without noise cancellation, and the bottom left figure shows the signal wiglke cancellation.
The right figures show the parametarandb of the filter.

4.6 Further Reading

The field of dynamical systems has a rich literature that clarzes the possi-
ble features of dynamical systems and describes how patiarobainges in the
dynamics can lead to topological changes in behavior. Réadkatroductions to
dynamical systems are given by Strogatz [Str94] and the hifjbstrated text by
Abraham and Shaw [AS82]. More technical treatments includdrémov, Vitt and

Khaikin [AVK87], Guckenheimer and Holmes [GH83] and Wiggifwig90]. For

students with a strong interest in mechanics, the texts hpld{Arn87] and Mars-
den and Ratiu [MR94] provide an elegant approach using tioois differential

geometry. Finally, good treatments of dynamical systemsaukst in biology are
given by Wilson [Wil99] and Eliner and Guckenheimer [EGO5]. fiéhis a large lit-

erature on Lyapunov stability theory, including the classkts by Malkin [Mal59],

Hahn [Hah67] and Krasovski [Kra63]. We highly recommend ¢benprehensive
treatment by Khalil [KhaO1].

Exercises

27 (Time-invariant systems) Show that if we have a solution ef differential
equation (4.1) given by(t) with initial conditionx(tg) = X, thenX(z) = x(t —tp)
is a solution of the differential equation

dx

5 =F®

with initial conditionX(0) = Xo, wherer =t — to.

28 (Flow in a tank) A cylindrical tank has cross sectidnm?, effective outlet
areaa m? and inflowg;, m3/s. An energy balance shows that the outlet velocity is
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v = +/2gh m/s, whereg m/s? is the acceleration of gravity aridis the distance
between the outlet and the water level in the tank (in met8ig)w that the system
can be modeled by

—_— = ——F q|n, Qout = a\/ﬁ‘

Usethe parametetts =0.2,a=0.01. Slmulate the system when the inflow is zero
and the initial level i = 0.2. Do you expect any difficulties in the simulation?

29 (Cruise control) Consider the cruise control system dbedrin Section 3.1.
Generate a phase portrait for the closed loop system on flandri@ = 0), in third
gear, using a Pl controller (witk, = 0.5 andk; = 0.1), m = 1000 kg and desired
speed 20 m/s. Your system model should include the effedatafating the input
between 0 and 1.

30 (Lyapunov functions) Consider the second-order system

dxl— ax dxz_ bx; — cx:
dt - 19 dt - 1 23

wherea, b, ¢ > 0. Investigate whether the functions

1 1
=x3,  Va(x) = _Xl +5 ( 2+ X1)2

2
are Lyapunov functions for the system and give any condattbat must hold.

1
Vi(X) = X1 +

31 (Damped spring—mass system) Consider a damped spring-systesn with
dynamics
md + cq + kg = 0.
A natural candidate for a Lyapunov function is the total ggef the system, given
b
' V= g2+ Zkep
— MR
Use the Krasovski—Lasalle theorem to show that the systesyistotically stable.

32 (Electric generator) The following simple model for an el&ctrenerator con-
nected to a strong power grid was given in Exercise 13:

d? EV |
\]d—t(g = Pm— Pe= Pm—78|n(0.
The parameter
_ Prax _ EV (4.25)
~ Pn XPn '

is the ratio between the maximum deliverable powgs = EV/ X and the me-
chanical poweiPy,.

(a) Considera as a bifurcation parameter and discuss how the equilibipe
ona.
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(b) Fora > 1, show that there is a center@ = arcsin(l/a) and a saddle at
» =7n — Qo-
(c) Show thatifP,,/J = 1 there is a solution through the saddle that satisfies

1,/dp\2
E(d—f) — @ +¢pog—acosp —vaz—1=0. (4.26)

Use simulation to show that the stability region is the iimieof the area enclosed
by this solution. Investigate what happens if the systenm isquilibrium with a
value ofa that is slightly larger than 1 aralsuddenly decreases, corresponding to
the reactance of the line suddenly increasing.

33(Lyapunov equation) Show that Lyapunov equation (4.14) gbteas a solution

if all of the eigenvalues oA are in the left half-plane. (Hint: Use the fact that
the Lyapunov equation is linear iR and start with the case whefehas distinct
eigenvalues.)

34 (Congestion control) Consider the congestion control jgmolaescribed in Sec-
tion 3.4. Confirm that the equilibrium point for the systemiigeg by equation (3.21)
and compute the stability of this equilibrium point usingreelr approximation.

35 (Swinging up a pendulum) Consider the inverted penduluntudsed in Ex-
ample 4.4, that is described by

0 = sinf 4+ ucosh,
whered is the angle between the pendulum and the vertical and theotsignal
u is the acceleration of the pivot. Using the energy function
. 1.
V(0,0) =cosd —1+ 592,
show that the state feedbagk= k(Vy — V)@ cosd causes the pendulum to “swing
up” to the upright position.

36 (Root locus diagram) Consider the linear system

dx 0 1 -1

a:[o _3]x+[4]u, y:[l O]x,
with the feedbacki = —Kky. Plot the location of the eigenvalues as a function the
parametek.

37 (Discrete-time Lyapunov function) Consider a nonlineacdéte-time system
with dynamicsx[k + 1] = f(x[k]) and equilibrium point. = 0. Suppose there
exists a smooth, positive definite functign R" — R suchtha¥/ (f (x))—V(X) <

0 for x # 0 and V(0) = 0. Show that, = 0 is (locally) asymptotically stable.

38 (Operational amplifier oscillator) An op amp circuit for arcibigtor was shown
in Exercise 21. The oscillatory solution for that linear citouas stable but not
asymptotically stable. A schematic of a modified circuit theg nonlinear elements
is shown in the figure below.
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e ae

The modification is obtained by making a feedback around eaetratipnal am-
plifier that has capacitors using multipliers. The sigaak v? + v3 — 3 is the
amplitude error. Show that the system is modeled by

doy Ry 1 2_ .2 _ .2

dt = RRG 2 T Ruc, o T vi T v2):

dl)z 1 1

it - RG™T RuCh

Show that the circuit gives an oscillation with a stable ligyitle with amplitude
vo. (Hint: Use the results of Example 4.8.)

02(03 — 02 —v3).

39 (Self-activating genetic circuit) Consider the dynamicsafenetic circuit that

implementsself-activationthe protein produced by the gene is an activator for the

protein, thus stimulating its own production through pesifeedback. Using the

models presented in Example 2.13, the dynamics for the systarbe written as
dm ap? dp

for p, m > 0. Find the equilibrium points for the system and analyze tuall

stability of each using Lyapunov analysis.

40 (Diagonal systems) LeA € R"™ " be a square matrix with real eigenvalues
A1, ..., An @nd corresponding eigenvectars. . ., vy.

(a) Show that if the eigenvalues are distingt £ 4j fori # j), theno; # v; for
i # .

(b) Show that the eigenvectors form a basisfrso that any vectok can be
written asx = > ajv; for a; € R.

(c) LetT = [vl vy ... vn] and show thal ~tAT is a diagonal matrix of
the form (4.8).
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(d) Show that if some of thg; are complex numbers, thekcan be written as
A1 0
A= where Aj=1€R or Ai:[(7 w]
0 Ak
in an appropriate set of coordinates.
This form of the dynamics of a linear system is often referceddmodal form

41 (Furuta pendulum) The Furuta pendulum, an inverted penduluan romating
arm, is shown to the left in the figure below.

Pendulum anglé/z
o

0 5 10 15 20
Angular velocitym

Consider the situation when the pendulum arm is spinnin eonstant rate. The
system has multiple equilibrium points that depend on tlgukan velocityw, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

Jof — Jpwd sind cosh — mygl sing = 0,

whereJ, is the moment of inertia of the pendulum with respect to ®pim,, is
the pendulum mass,is the distance between the pivot and the center of mass of
the pendulum andy is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the condi{pfor stability of each
equilibrium point (in terms oéog).

(b) Consider the angular velocity as a bifurcation paramextel verify the bifur-
cation diagram given above. This is an example pitehfork bifurcation

42 (Routh-Hurwitz criterion) Consider a linear differentedjuation with the char-
acteristic polynomial
IS)=s>+as+ay, A(S) =S+ as® + aps+ as.

Show that the system is asymptotically stable if and onlylifte coefficientsy;
are positive and if;a, > ag. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.



Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For examplesthtéon between
force on a spring and displacement of the spring is always nonlinear te stegree. The
relation between current through a resistor and voltage drop acrosksd deviates from a
straight-line relation. However, if in each case the relatioméasonablylinear, then it will
be found that the system behavior will be very close to that obtained bynaggan ideal,
linear physical element, and the analytical simplification is so enormousitbahake linear
assumptions wherever we can possibly do so in good conscience.

Robert H. CannorDynamics of Physical Systeyi®67 [Can03].

In Chapters 2—4 we considered the construction and anaty<sigferential
equation models for dynamical systems. In this chapter weiafize our results to
the case of linear, time-invariant input/output systemag €entral concepts are the
matrix exponential and the convolution equation, througicivwe can completely
characterize the behavior of a linear system. We also dessdme properties of
the input/output response and show how to approximate areamlsystem by a
linear one.

5.1 Basic Definitions

We have seen several instances of linear differential @sin the examples in the
previous chapters, including the spring—mass system (ddrogcillator) and the
operational amplifier in the presence of small (nonsatugaiimput signals. More
generally, many dynamical systems can be modeled accybgtihear differential
equations. Electrical circuits are one example of a broabsaésystems for which
linear models can be used effectively. Linear models aretatsadly applicable in
mechanical engineering, for example, as models of smaihtiems from equilibria
in solid and fluid mechanics. Signal-processing systemajdiirady digital filters of
the sortused in CD and MP3 players, are another source of gaogxes, although
these are often best modeled in discrete time (as describenbie detail in the
exercises).

In many cases, wereatesystems with a linear input/output response through
the use of feedback. Indeed, it was the desire for lineariehthat led Harold
S. Black to the invention of the negative feedback amplifiem@édgt all modern
signal processing systems, whether analog or digital @ex#idfack to produce linear
or near-linear input/output characteristics. For thestesys, it is often useful to
represent the input/output characteristics as lineagrigg the internal details
required to get that linear response.
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For other systems nonlinearities cannot be ignored, eslbeitione cares about
the global behavior of the system. The predator—prey prolidepme example of
this: to capture the oscillatory behavior of the interdefstt populations we must
include the nonlinear coupling terms. Other examples ohelswitching behavior
and generating periodic motion for locomotion. Howeveryd care about what
happens near an equilibrium point, it often suffices to appraie the nonlinear
dynamics by their local linearization, as we already exgdidsriefly in Section 4.3.
The linearization is essentially an approximation of thelmear dynamics around
the desired operating point.

Linearity

We now proceed to define linearity of input/output systemsafanmally. Consider
a state space system of the form

d_x = f(x,u), y = h(x, u), (5.1)
dt

wherex € R", u € RP andy € RY. As in the previous chapters, we will usually
restrict ourselves to the single-input, single-outpuedagtakingp = q = 1. We
also assume that all functions are smooth and that for amabf®class of inputs
(e.g., piecewise continuous functions of time) the sohgiof equation (5.1) exist
for all time.

It will be convenient to assume that the origin= 0, u = 0 is an equilibrium
point for this systemX = 0) and thath(0, 0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose txatue) #= (0, 0) is an equilibrium point
of the system with outpwe = h(Xe, Ue). Then we can define a new set of states,
inputs and outputs,

X=X—=Xe, UO=U—Ue, Y=Y—VYe

and rewrite the equations of motion in terms of these vagbl

d .
af(: f(X 4+ Xe, G+ Ug) =: (X, 0),
¥ =X+ Xe, 0+ Ue) — Ye =t h(X, 0).

In the new set of variables, the origin is an equilibrium pauith output 0, and
hence we can carry out our analysis in this set of variablase@e have obtained
our answers in this new set of variables, we simply “traesl#tem back to the
original coordinates using = X + Xe, U = 0 + Ug andy = y + Ve.

Returning to the original equations (5.1), now assumindpeuit loss of gener-
ality that the origin is the equilibrium point of interestewvrite the outputy(t)
corresponding to the initial conditiof(0) = Xg and inputu(t) asy(t; Xo, u). Using
this notation, a system is said to bdirgear input/output systeni the following
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Figure 5.1: Superposition of homogeneous and particular solutions. The firstirowssthe
input, state and output corresponding to the initial condition responsesetioad row shows
the same variables corresponding to zero initial condition but nonzeub. ipe third row
is the complete solution, which is the sum of the two individual solutions.

conditions are satisfied:
() Yyt axi+ Xz, 0) = ay(t; X1, 0) + By(t; X2, 0),
(i) y(t; axo, ou) = ay(t; Xo, 0) + Jy(t; O, u), (5.2)
(i) y(t; 0,dus + yuz) = dy(t; 0,us) + y y(t; 0, uz).

Thus, we define a system to be linear if the outputs are joinibali in the initial
condition responsé@i = 0) and the forced responge(0) = 0). Property (iii) is a
statement of therinciple of superpositionthe response of a linear system to the
sum of two inputau; andus, is the sum of the outputg andy, corresponding to
the individual inputs.

The general form of a linear state space system is

%:Ax+ Bu, y =Cx+ Du, (5.3)
whereA € R™", B € R™P, C € R*"andD e RY*P. In the special case of a
single-input, single-output systerB,is a column vectorC is a row vector and

is scalar. Equation (5.3) is a system of linear first-ordeeddhtial equations with
inputu, statex and outpuly. It is easy to show that given solutiorg(t) andx,(t)
for this set of equations, they satisfy the linearity coiodis.

We definexy (1) to be the solution with zero input (the@mogeneous solutipn
and the solutiorx,(t) to be the solution with zero initial condition (@articular
solution). Figure 5.1 illustrates how these two individual soluticas be superim-
posed to form the complete solution.
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It is also possible to show that if a finite-dimensional dynaahisystem is
input/output linear in the sense we have described, it canys be represented
by a state space equation of the form (5.3) through an appteprhoice of state
variables. In Section 5.2 we will give an explicit solutionegfuation (5.3), but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first-order differential equation

% =ax+u y =X

dt ’ ’

with x(0) = Xq. Letu; = Asinwit andu, = B cosw,t. The homogeneous solution
is xp(t) = e*'xg, and two particular solutions witk(0) = 0 are
—1€* + w1 coswit + asinwat

a2+ of
!l — acoswot + wy Sinwot
a2 + w3 )

Xpl(t) =-A

b

a
Xp2(t) =B

Suppose that we now choog€0) = aXg andu = u; + U,. Then the resulting
solution is the weighted sum of the individual solutions:

Awq Ba

a2+ w? + a2+a)§)

w1 COSw1t + asinwit 5 —acoswot + wy Sinwot
a2+ w? + a2 + w3 ’

X(t) = e™ (axo +
(5.4)

To see this, substitute equation (5.4) into the differéeation. Thus, the prop-
erties of a linear system are satisfied. \%

Time Invariance

Time invariancds an important concept that is used to describe a systemewhos
properties do not change with time. More precisely, for aetimvariant system if
the inputu(t) gives outpuy(t), then if we shift the time at which the inputis applied
by a constant amout u(t + a) gives the outpuy(t + a). Systems that are linear
and time-invariant, often callddr'| systemshave the interesting property that their
response to an arbitrary input is completely charactergettheir response to step
inputs or their response to short “impulses.”

To explore the consequences of time invariance, we first ctertpe response
to a piecewise constant input. Assume that the systemiilinit rest and consider
the piecewise constant input shown in Figure 5.2a. The inmijLmaps at time;,
and its values after the jumps aréy). The input can be viewed as a combination
of steps: the first step at tinighas amplitudei(ty), the second step at tintehas
amplitudeu(t;) — u(tp), etc.

Assuming that the system is initially at an equilibrium gddigo that the initial
condition response is zero), the response to the input cabta@ed by superim-
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant sigrize cap-
resented as a sum of step signals (a), and the resulting output is the soenindividual
outputs (b).

posing the responses to a combination of step inputsHL(et be the response to
a unit step applied at time 0. The response to the first steprsHite — to)u(to),

the response to the second stepig — tl)(u(tl) - u(to)), and we find that the
complete response is given by

y(t) = H(t — to)u(to) + H(t — t) (u(tz) — u(to)) + - - -
= (H(t —t)) — H(t —t))u(to) + (H(t —t1) — H(t —tp))u(ty) + - - -
=D oo(H(t —ty) — H(t — thy1)u(t)
S H(E = t) = H(t — ths1)

thy1 — Iy

U(tn) (tn+1 - tn)-

=
Il
o

An example of this computation is shown in Figure 5.2b.

The response to a continuous input signal is obtained by datkia limit as
thy1 — th — 0, which gives

y(t) = /Ot H'(t — 7)u(zr)dr, (5.5)

whereH’ is the derivative of the step response, also calledrtipilse response
The response of a linear time-invariant system to any inputicas be computed
from the step response. Notice that the output depends ortlyeoinput since we
assumed the system was initially at redqt)) = 0. We will derive equation (5.5)
in a slightly different way in the Section 5.3.
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5.2 The Matrix Exponential

Equation (5.5) shows that the output of a linear system carritewas an integral
over the inputsu(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial conditioWge begin by exploring

the initial condition response using the matrix exponéntia

Initial Condition Response

Although we have shown that the solution of a linear set ded#htial equations
defines a linear input/output system, we have not fully comgbthie solution of the
system. We begin by considering the homogeneous responssjponding to the
system

dx
at (5.6)
For thescalardifferential equation
dx
— = ax, xeR, aeR,
dt

the solution is given by the exponential
x(t) = €?'x(0).

We wish to generalize this to the vector case, whebecomes a matrix. We define
thematrix exponentiahs the infinite series

1 2 3
—|+x+2x+ 1y Zk. (5.7)

whereX € R™" is a square matrix antis then x n identity matrix. We make
use of the notation

XO=1, X?=XX, X"=Xx"1x,

which defines what we mean by the “power” of a matrix. Equatioi)(& easy to
remember since it is just the Taylor series for the scalaoegptial, applied to the
matrix X. It can be shown that the series in equation (5.7) conveayesy matrix
X € R™" in the same way that the normal exponential is defined for aalasc
aeR.

ReplacingX in equation (5.7) byAt, wheret € R, we find that

At _ | +At+}A2t2+£A3t3+-~: i:iA"tk
2 3! k! ’

and differentiating this expression with respect gives

1 1
At 2 3:2 k4 k t
—eM = A+ A%+ A+ = A Atk = At 5.8
It + AT+ + E_ k! (5.8)
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Multiplying by x(0) from the right, we find thak(t) = eA'x(0) is the solution
to the differential equation (5.6) with initial condition(0). We summarize this
important result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6)is given by
x(t) = e*x(0).

Notice that the form of the solution is exactly the same asatar equations,
but we must put the vectot(0) on the right of the matrixAt.

The form of the solution immediately allows us to see that thetson is linear
in the initial condition. In particular, ikn1 (1) is the solution to equation (5.6) with
initial conditionx(0) = Xp1 andxp2(t) with initial condition x(0) = Xg, then the
solution with initial conditionx(0) = aXo1 + SXoz IS given by

x(t) = el (OCX01 + ﬂon) = (aeAtxm + ﬂeAtxog) = aXn(t) + Sxn2(t).
Similarly, we see that the corresponding output is given by

y(t) = CxX(t) = ayni(t) + Syn2(1),

whereyn (t) andyh,(t) are the outputs corresponding®q (t) andxpa(t).
We illustrate computation of the matrix exponential by twamples.

Example 5.2 Double integrator
A very simple linear system that is useful in understandiagi®concepts is the
second-order system given by

4=u, y=4q.

This system is called double integratobecause the inputis integrated twice to
determine the output.
In state space form, we write= (q, ) and

dx [0 1 X + 0 y
dt |0 O 1]
The dynamics matrix of a double integrator is
01
210 9]
and we find by direct calculation th&f = 0 and hence

1t
At
© —[o 1

Thus the homogeneous solutian=£ 0) for the double integrator is given by
X(t) = 1 t] [x(0)] _ [x(0) + tx2(0)
10 1) | O] X2(0) ’
y(t) = x1(0) + tx2(0).
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Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring—magssywith zero damping,
is

4+ wig =u.

Putting the system into state space form, the dynamics nfatrikis system can
be written as

A 0 wo and  eAt — CO§cuot Sinwgt ‘
—wg O —Sinwpt  coSwgt

This expression foe*! can be verified by differentiation:

d _ [—wosinwot o COSwot ]

_e .
dt —mo COSwot  —wg SINwgt

_ 0 o co§th Sinwot _ A
—wg O —Sinwot  coSwot

The solution is then given by

x(t) = e*x(0) = [

cosmot  Sinawgt x1(0)
—Sinwgt  coswopt x2(0) | -

If the system has damping,
G + 20 woq + w5d = U,
the solution is more complicated, but the matrix exponénta be shown to be

Ceiwdt _ Ce_iwdt eiwdt + e—i(udt eiwdt _ e—iwdt
+ e
oonct 2/2-1 2 2/2-1
e—iwdt _ eiwdt Ce_iwdt _ Ceiwdt eia)dt + e—i(/)dt

— -
2/2 -1 2/2 -1 2

wherewq = wp/(2 — 1. Note thatwg and,/¢2 — 1 can be either real or complex,
but the combinations of terms will always yield a real valaethe entries in the
matrix exponential. \%

Animportant class of linear systems are those that can heeciea into diagonal
form. Suppose that we are given a system

dx
A
at - X

such that all the eigenvalues éfare distinct. It can be shown (Exercise 40) that
we can find an invertible matriX such thafl AT~ is diagonal. If we choose a set
of coordinateg = T X, then in the new coordinates the dynamics become

dz dx
=T =TAx=TAT 12
dt dt

By construction ofT, this system will be diagonal.
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Now consider a diagonal matriA and the correspondinith power of At,
which is also diagonal:

1 0 2Ktk 0
A A2 (A= 2Kt | ’
0 e 0 ' Ktk
It follows from the series expansion that the matrix expaia¢is given by
gt 0
eAt — e)»Zt '
0 et

A similar expansion can be done in the case where the eigewalre complex,
using a block diagonal matrix, similar to what was done in Bect.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transfomtkalgonal form. They
can, however, be transformed to a closely related formeddheJordan form in
which the dynamics matrix has the eigenvalues along theodelg\When there are
equal eigenvalues, there may be 1's appearing in the s@genial indicating that
there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it cenwritten
as

b O 0 O A1 0 0
0O » 0O 0 O 0 4 1 0
J=|: ... |, where J =
0 O J-1 O 0 0 A1
0 O 0 K 0 0 0
(5.9)

Each matrixJ; is called aJordan block and ; for that block corresponds to an
eigenvalue ofl. Afirst-order Jordan block can be represented as a systenstngs

of an integrator with feedback A Jordan block of higher order can be represented
as series connections of such systems, as illustrated ime=g8.

Theorem 5.2(Jordan decompositionAny matrix Ae R"™" can be transformed
into Jordan form with the eigenvalues of A determiningn the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Ski&8%pecial
case where the eigenvalues are distinct is examined in Eeet6. O

Converting a matrix into Jordan form can be complicatedicalgh MATLAB
can do this conversion for numerical matrices usingjtbe dan function. The
structure of the resulting Jordan form is particularly resging since there is no
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X1 X1 X2 X1 X2 X2

J J J J J J

Vel g B g

Figure 5.3:Representations of linear systems where the dynamics matrices aaa Btocks.
A first-order Jordan block can be represented as an integrator withdek4, as shown on
the left. Second- and third-order Jordan blocks can be representatias connections of
integrators with feedback, as shown on the right.

requirement that the individua|’s be unique, and hence for a given eigenvalue we
can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the mataix be computed
in terms of the Jordan blocks:

e 0 ... O
J .
= |0 ©” e (5.10)
: .0
0O ... 0 ek

This follows from the block diagonal form aof. The exponentials of the Jordan
blocks can in turn be written as

2 n—1 5
1t 5 ... —(;_1)!
n-2
0 1 t ... g «
elt=1. 1 - | et (5.11)
0 ... 0 1

When there are multiple eigenvalues, the invariant sulespassociated with
each eigenvalue correspond to the Jordan blocks of thexwatiNote that may be
complex, in which case the transformatibthat converts a matrix into Jordan form
will also be complex. Wheri has a nonzero imaginary component, the solutions
will have oscillatory components since

ettt — 7! (coswt + i sinwt).

We can now use these results to prove Theorem 4.1, which gtateise equilibrium
pointxe = 0 of a linear system is asymptotically stable if and only if Re< 0.

Proof of Theorem 4.1LetT € C"™" be an invertible matrix that transformsinto
Jordan formJ = T AT~. Using coordinateg = T x, we can write the solution
z(t) as

z(t) = e’'z(0).
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Since any solutior(t) can be written in terms of a solutialt) with z(0) = T x(0),
it follows that it is sufficient to prove the theorem in the tséormed coordinates.
The solutiorz(t) can be written in terms of the elements of the matrix exponen-
tial. From equation (5.11) these elements all decay to zerartwtraryz(0) if and
only if Re; < 0. Furthermore, if any,; has positive real part, then there exists an
initial conditionz(0) such that the corresponding solution increases withoutdou
Since we can scale this initial condition to be arbitrarilyadiit follows that the
equilibrium point is unstable if any eigenvalue has positeal part. 0

The existence of a canonical form allows us to prove many ptigseof linear
systems by changing to a set of coordinates in whichAthsatrix is in Jordan form.
We illustrate this in the following proposition, which follvs along the same lines
as the proof of Theorem 4.1.

Proposition 5.3. Suppose that the system

dx

— = AX

dt
has no eigenvalues with strictly positive real part and omenomre eigenvalues
with zero real part. Then the system is stable if and only if Joelan blocks

corresponding to each eigenvalue with zero real part ardasdd x 1) blocks.

Proof. See Exercise 48b. O

The following example illustrates the use of the Jordan form.

Example 5.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft suchatsiescribed in Exam-
ple 2.9. Suppose that we choase= u, = 0 so that the dynamics of the system
become

24 h
Z5
dz Zs
— = . 5.12
dt —gsinzz— gz |’ (12)
—g(coszz—1) — = 25
O P

wherez = (x,, 6, X, ¥, 8). The equilibrium points for the system are given by
setting the velocities, y andé to zero and choosing the remaining variables to
satisfy

—gsinzze =0

— Z =0,=0.
—g(coszze—1) =0 Se— Ve

This corresponds to the upright orientation for the aircidéite thatx. andy, are
not specified. This is because we can translate the systemwo(ameght) position
and still obtain an equilibrium point.



142 CHAPTER 5. LINEAR SYSTEMS

_ — _

o o Bl o e

(a) Mode 1 (b) Mode 2

Figure 5.4: Modes of vibration for a system consisting of two masses connectedingsp
In (a) the masses move left and right in synchronization in (b) they rnawvard or against
each other.

To compute the stability of the equilibrium point, we comgptlie linearization
using equation (4.11):

(0 O O 1 0 )
00 O 0 1 0
A—ﬁ 10 0 O 0 0 1
T oz 2 0 0 —g —-c¢/m 0 ol
0 0 O 0O —-c¢/m O
00 O 0 0 0

The eigenvalues of the system can be computed as
A(A) =1{0,0,0,0, —c/m, —c/m}.

We see that the linearized system is not asymptoticallylestsibce not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense olgapwe must
make use of the Jordan form. It can be shown that the JordandbA is given by

0lo 0 o] o 0
0[0 1 0 0 0
olo o 1 o 0
J=10l0 0 0o o 0
0/0 0 O|—-c/m| O
| 0|0 0 Of O |—-c/m |

Since the second Jordan block has eigenvalue 0 and is not egigpnvalue, the
linearization is unstable. \%

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a pescrof the types of
behavior the system can exhibit. For oscillatory systeims t¢rmmodeis often
used to describe the vibration patterns that can occur. €igut illustrates the
modes for a system consisting of two masses connected mgspfdne pattern is
when both masses oscillate left and right in unison, andremas when the masses
move toward and away from each other.

The initial condition response of a linear system can be @mrith terms of a
matrix exponential involving the dynamics matéx The properties of the matrii
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Figure 5.5: The notion of modes for a second-order system with real eigenvalhedeft
figure shows the phase portrait and the modes corresponding to selthianstart on the
eigenvectors (bold lines). The corresponding time functions are sbhawvime right.

therefore determine the resulting behavior of the systawerGa matrixA e R"™",
recall thatv is an eigenvector of with eigenvaluel if

Av = iv.

In generall ando may be complex-valued, althoughA¥fis real-valued, then for
any eigenvalué. its complex conjugate* will also be an eigenvalue (with* as
the corresponding eigenvector).

Suppose first that andv are a real-valued eigenvalue/eigenvector pair&or
If we look at the solution of the differential equation fof0) = v, it follows from
the definition of the matrix exponential that

1 2t2 :
ey = (I +At+§A2t2+---)v =U+MU+TU+--- = e'ly.

The solution thus lies in the subspace spanned by the eigenv€be eigenvalue
A describes how the solution varies in time, and this solusaften called anode
of the system. (In the literature, the term “mode” is als@pftised to refer to the
eigenvalue rather than the solution.)

If we look at the individual elements of the vectorando, it follows that

X € o
X; (t) N e’ul)j N j ’

and hence the ratios of the components of the gtate constants for a (real) mode.
The eigenvector thus gives the “shape” of the solution andsis @alled amode
shapeof the system. Figure 5.5 illustrates the modes for a secodersystem
consisting of a fast mode and a slow mode. Notice that the statables have the
same sign for the slow mode and different signs for the fastano

The situation is more complicated when the eigenvaludsare complex. Since
A has real elements, the eigenvalues and the eigenvectarsrapex conjugates
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A =0 iwando = u=iw, which implies that

v+0* v —0*
= , w = . .
2 2
Making use of the matrix exponential, we have
ey = e (u+iw) = &' ((ucosat — w sinwt) + i (Usinwt + w coswt)),

from which it follows that

1 .

e’u = —(eAtu + eAtv*) = u€' coswt — we’t sinwt,
2
1 .

ey = E(eAtD — eAto*) = u€"' sinwt + we! coswt.

A solution with initial conditions in the subspace spanngdhe real paru and
imaginary parto of the eigenvector will thus remain in that subspace. Thetsoiu
will be a logarithmic spiral characterized lbyandw. We again call the solution
corresponding td a mode of the system, amdthe mode shape.

If a matrix A hasn distinct eigenvalueg,, ..., 4,, then the initial condition
response can be written as a linear combination of the mddesee this, suppose
for simplicity that we have all real eigenvalues with cop@sding unit eigenvectors
v1, ..., 0n. From linear algebra, these eigenvectors are linearly imdaent, and
we can write the initial conditior (0) as

X(0) = a101 + a2v2 + - - - + anvn.
Using linearity, the initial condition response can be teritas
X(t) = @161 + 026/ vy + - - - + an€ oy,

Thus, the response is a linear combination of the modes ofytera, with the

amplitude of the individual modes growing or decaying's The case for distinct
complex eigenvalues follows similarly (the case for notidet eigenvalues is more
subtle and requires making use of the Jordan form discuss$lee previous section).

Example 5.5 Coupled spring—mass system
Consider the spring—mass system shown in Figure 5.4, buttivittaddition of
dampers on each mass. The equations of motion of the system are

My = —2Kaqy — cd1 + Kap, mMalz = Kop — 2k — CQp.

In state space form, we define the state t& be (g1, 02, d1, G2), and we can rewrite
the equations as

0 0 1 0 ]

0 0 0 1
dx | 2k k c 5 |«
dd | m m m '

k& 5 _C

m m m ]
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We now define a transformatian= T x that puts this system into a simpler form.
Letz; = 2(th + %), 2o = 21, 25 = 3(01 — Gp) andz, = 73, so that

1 1 0 0
1o 0 1 1

Z=Tx= 511 -1 0 o X.
0O 0 1 -1
In the new coordinates, the dynamics become
0 1 0 0]
k
dz |™m m 2 0©
- = Z,
dt 0 0 0 1
k
o o -X_¢
L m mA

and we see that the system is in block diagonahfoda) form.

In the z coordinates, the states andz, parameterize one mode with eigen-
valuesi =~ c/(2vkm) + i /k/m, and the stategsz and z, another mode with
A~ ¢/(2+/3km) £ i ./3k/m. From the form of the transformatioh we see that
these modes correspond exactly to the modes in Figure 5.4jdang;, andg, move
either toward or against each other. The real and imaginaty p&the eigenvalues
give the decay rates and frequencie& for each mode. \%

5.3 Input/Output Response

In the previous section we saw how to compute the initial domdresponse using
the matrix exponential. In this section we derive the coattoh equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (&epeated here:
d
d—’t( — AX+Bu,  y=Cx+Du. (5.13)

Using the matrix exponential, the solution to equation $p.dan be written as
follows.

Theorem 5.4. The solution to the linear differential equati¢®.13)is given by
t
x(t) = e*x(0) +/ A= Bu(r)dr. (5.14)
0

Proof. To prove this, we differentiate both sides and use the ptp§&r8) of the
matrix exponential. This gives
dx

t
e A x(0) +/ A9 Bu(r)dr + Bu(t) = Ax + Bu,
0
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(a) Pulse and impulse functions (b) Pulse and impulse responses

Figure 5.6: Pulse response and impulse response. (a) The rectangles shosvgfulgdth

5, 25 and 08, each with total area equal to 1. The arrow denotes an imp@$elefined

by equation (5.17). The corresponding pulse responses for a fgstmm with eigenvalues

A = {—0.08,—0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of durati8n 0

which proves the result. Notice that the calculation is esaky the same as for
proving the result for a first-order equation. O

It follows from equations (5.13) and (5.14) that the inputfut relation for a
linear system is given by
t
y(t) = Ce*x(0) +/ CerBu(r)dr + Du(t). (5.15)
0
It is easy to see from this equation that the output is joititiear in both the
initial conditions and the state, which follows from thedarity of matrix/vector
multiplication and integration.

Equation (5.15) is called trmnvolution equatiorand it represents the general
form of the solution of a system of coupled linear differahquations. We see
immediately that the dynamics of the system, as charaetkhy the matrixA, play
a critical role in both the stability and performance of tiistem. Indeed, the matrix
exponential describdsthwhat happens when we perturb the initial condition and
how the system responds to inputs.

Another interpretation of the convolution equation can lvergusing the concept
of theimpulse responsef a system. Consider the application of an input signal
u(t) given by the following equation:

0 t<O
ut) =pt)y=11/e 0<t<e (5.16)
0 t>e

This signal is goulseof duratione and amplitude e, as illustrated in Figure 5.6a.
We define anmpulsed(t) to be the limit of this signal as — 0:

3(t) = lim pe(t). (5.17)
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This signal, sometimes calleddelta function,is not physically achievable but
provides a convenient abstraction in understanding theorese of a system. Note
that the integral of an impulse is 1:

t t t
/5(‘[)dr=/ lim pg(t)drzlim/ pe(t) dz
0 0 e—0 e¢—>0 0
:Iim/l/edrzl t>0.
0

e—0
In particular, the integral of an impulse over an arbitgashort period of time is
identically 1.
We define thémpulse responsef a systenh(t) to be the output corresponding
to having an impulse as its input:

t
h(t) :/0 Ce=IBs(r)dr = CEMB, (5.18)

where the second equality follows from the fact ) is zero everywhere except
the origin and its integral is identically 1. We can now wtfte convolution equation
in terms of the initial condition response, the convolutidrthe impulse response
and the input signal, and the direct term:

t
y(t) = CeMx(0) +/ h(t — 7)u(z) dz + Du(t). (5.19)
0

One interpretation of this equation, explored in Exercisdgthat the response of
the linear system is the superposition of the response tofanité set of shifted
impulses whose magnitudes are given by the inpi. This is essentially the
argument used in analyzing Figure 5.2 and deriving equabds).(Note that the
second termin equation (5.19) is identical to equation)(asid it can be shown that
the impulse response is formally equivalent to the dereadif the step response.

The use of pulses as approximations of the impulse functiso pitovides a
mechanism for identifying the dynamics of a system from daigure 5.6b shows
the pulse responses of a system for different pulse widtbhsicl that the pulse
responses approach the impulse response as the pulse wikhazero. As a
general rule, if the fastest eigenvalue of a stable systemndsd part—omax, then a
pulse of lengttr will provide a good estimate of the impulse respongeifax < 1.
Note that for Figure 5.6, a pulse widthof= 1 s givesomax = 0.62 and the pulse
response is already close to the impulse response.

Coordinate Invariance

The components of the input vectoand the output vectorare given by the chosen
inputs and outputs of amodel, but the state variables depetiek coordinate frame
chosen to represent the state. This choice of coordinatestafhe values of the
matricesA, B andC that are used in the model. (The direct tebms not affected
since it maps inputs to outputs.) We now investigate somhetbnsequences of
changing coordinate systems.
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— 41 — 42
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b k . % u(t) = sin wt

k k

Figure 5.7: Coupled spring mass system. Each mass is connected to two springs Witsstif
k and a viscous damper with damping coefficienThe mass on the right is drive through a
spring connected to a sinusoidally varying attachment.

Introduce new coordinates by the transformatiorz = Tx, whereT is an
invertible matrix. It follows from equation (5.3) that

dz ~ =
g; = T(Ax+ Bu) = TAT 'z4+ TBu=: Az+ By,

y=Cx+Du=CT'z+ Du=:Cz+ Du.

The transformed system has the same form as equation (5t3hebmatricesA,
B andC are different:

A=TAT! B=TB, C=cCTL (5.20)

There are often special choices of coordinate systems thatad to see a particular
property of the system, hence coordinate transformatiande used to gain new
insight into the dynamics.

We can also compare the solution of the system in transfoguedlinates to
that in the original state coordinates. We make use of aniitapoproperty of the
exponential map,

eT ST1! — TeST_l,

which can be verified by substitution in the definition of the mnxagéxponential.
Using this property, it is easy to show that

_ t 3
x(t) =T~ 'z(t) = TeMTx(0) + T‘l/ eAt=0 Bu(r) dr.
0

From this form of the equation, we see that if it is possibleramsformA into

a form A for which the matrix exponential is easy to compute, we canthat
computation to solve the general convolution equationHentntransformed state
x by simple matrix multiplications. This technique is illestied in the following
example.

Example 5.6 Coupled spring—mass system

Consider the coupled spring—mass system shown in Figurd Be7input to this
system is the sinusoidal motion of the end of the rightmoshgpand the output
is the position of each masg, andg,. The equations of motion are given by

My = —2Kagy — cds + Kap, maGz = kap — 2k — ¢4z + ku.
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In state space form, we define the state ta be (g1, 02, 41, ¢2), and we can rewrite
the equations as

(0 0 1 0 0
0 0 0 1 0
dx 2k k c
—=]-— - ——= 0 |X+[0]u
dt m m m K
k 2k 0 c =
L' m m m m

This is a coupled set of four differential equations and iseqcdmplicated to solve
in analytical form.

The dynamics matrix is the same as in Example 5.5, and we cameis®or-
dinate transformation defined there to put the system in nfodal:

[0 1 0 0 ) 0 ]
k C
ke 0 k
dz_ m m 2m
- lo o o 1|*F| o Y™
3k
0 o = _° _L
m m ] L 2m}

Note that the resulting matrix equations are block diaganal hence decoupled.
We can solve for the solutions by computing the solutionswaf $ets of second-
order systems represented by the stétesz,) and(zs, z4). Indeed, the functional
form of each set of equations is identical to that of a singléeng—mass system.
(The explicit solution is derived in Section 6.3.)

Once we have solved the two sets of independent second-egdations, we
can recover the dynamics in the original coordinates byrtmgthe state transfor-
mation and writingx = T~'z. We can also determine the stability of the system
by looking at the stability of the independent second-orystems. \Y%

Steady-State Response

Given a linear input/output system
dx

— = AX+ Bu,
at = F

the general form of the solution to equation (5.21) is givgnthe convolution
equation:

y =Cx+ Du, (5.21)

t
y(t) = Ce’x(0) +/ CceM'=9Bu(r)dz + Du(t).
0

We see from the form of this equation that the solution casisisan initial condition
response and an input response.

The input response, corresponding to the last two terms iedhation above,
itself consists of two components—thiansient responsand thesteady-state
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Figure 5.8: Transient versus steady-state response. The input to a linear sysieows in
(a), and the corresponding output wikk0) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

responseThe transient response occurs in the first period of time #iteinput
is applied and reflects the mismatch between the initial ¢mmdand the steady-
state solution. The steady-state response is the portidreafutput response that
reflects the long-term behavior of the system under the giveuts. For inputs that
are periodic the steady-state response will often be pieriadd for constant inputs
the response will often be constant. An example of the tesnisind the steady-state
response for a periodic input is shown in Figure 5.8.

A particularly common form of input is step inputwhich represents an abrupt
change in input from one value to anothemAit step(sometimes called the Heav-
iside step function) is defined as

0t=0
U_S(t)_[l t> 0.
Thestep responsef the system (5.21) is defined as the outy(j starting from zero
initial condition (or the appropriate equilibrium pointy@given a step input. We
note that the step inputis discontinuous and hence is nctigaily implementable.
However, it is a convenient abstraction that is widely usestudying input/output
systems.

We can compute the step response to a linear system usingmirelation

equation. Settingk(0) = 0 and using the definition of the step input above, we
have

t t
y(t) :/ ceM=IBu(r)dr + Du(t) = C/ eAt-IBdr + D
0 0

t

= C/ e~ Bdo + D =C (A 'eVB)[’, + D
0

=CAe"B-CA B+ D.

If A has eigenvalues with negative real part (implying that thegim is a stable
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and stasaly-s
value give the key performance properties of the signal.

equilibrium point in the absence of any input), then we cavrite the solution as

yt)=CA'e"B+D-CA™'B, t>0. (5.22)

transient steady-state

The first term is the transient response and decays to zéresasc. The second
term is the steady-state response and represents the V¥ahe @utput for large
time.

A sample step response is shown in Figure 5.9. Several termssatewhen
referring to a step response. Theady-state valuegyof a step response is the
final level of the output, assuming it converges. Tise time T is the amount of
time required for the signal to go from 10% of its final value @® of its final
value. Itis possible to define other limits as well, but in tho®k we shall use these
percentages unless otherwise indicated. Glershoot M is the percentage of the
final value by which the signal initially rises above the finaluea This usually
assumes that future values of the signal do not overshodirthlevalue by more
than this initial transient, otherwise the term can be amdig. Finally, thesettling
time T is the amount of time required for the signal to stay within @®ts final
value for all future times. The settling time is also somesmiefined as reaching 1%
or 5% of the final value (see Exercise 49). In general these ipeaftce measures
can depend on the amplitude of the input step, but for lingstems the last three
guantities defined above are independent of the size of the ste

Example 5.7 Compartment model

Consider the compartment model illustrated in Figure 5.XDdescribed in more
detail in Section 3.6. Assume that a drug is administered Ingtemt infusion in
compartmen¥; and that the drug has its effect in compartméntTo assess how
quickly the concentration in the compartment reaches gtstate we compute the
step response, which is shown in Figure 5.10b. The step respemglite slow,
with a settling time of 39 min. Itis possible to obtain thesgte-state concentration
much faster by having a faster injection rate initially, &aswn in Figure 5.10c.
The response of the system in this case can be computed byrmombivo step
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Figure 5.10:Response of acompartment model to a constant drug infusion. A Sifiagleam
of the system is shown in (a). The step response (b) shows the rateagfrtoation buildup
in compartment 2. In (c) a pulse of initial concentration is used to spedteugsponse.

responses (Exercise 45). \Y%

Another common input signal to a linear system is a sinuswid Combination
of sinusoids). Thé&requency responssd an input/output system measures the way in
which the system responds to a sinusoidal excitation onfiteioputs. As we have
already seen for scalar systems, the particular solutieocésted with a sinusoidal
excitation is itself a sinusoid at the same frequency. Hemeean compare the
magnitude and phase of the output sinusoid to the input. generally, if a system
has a sinusoidal output response at the same frequencyiaptiiéorcing, we can
speak of the frequency response of the system.

To see this in more detail, we must evaluate the convolutipmton (5.15) for
u = coswt. This turns out to be a very messy calculation, but we can msg®t
the fact that the system is linear to simplify the derivatibmparticular, we note
that

coswt = %(ei‘"t + e‘“”t).

Since the system is linear, it suffices to compute the respdribe gystem to the
complex inputu(t) = €' and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding1oi wt ands = —iwt.

Applying the convolution equation to the input= €% we have

t
y(t) = CeMx(0) + / CeAt-DBeTdr 1 Det
0
t
= CeMx(0) + CeAt/ eS'=A"Bdr + De’,
0

If we assume that none of the eigenvaluesfAc@re equal ts = =+iw, then the
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matrixs| — Ais invertible, and we can write
y(t) = CeMx(0) + CeM ((sl — A)leI=Ar B) ‘; + De®
— CeMx(0) + Cer(sl — A)‘l(e(s"A)t _ I)B + Det
= CeMx(0) + C(sl — A)~te'B — CeM(sl — A)IB + De™,
and we obtain

y(®) =Ce"(x(0) - (s1 - A'B) + (C(sI - A'B+ D). (5.23)

transient steady-state

Notice that once again the solution consists of both a tesmigiomponent and a
steady-state component. The transient component decagsdadf zhe system is
asymptotically stable and the steady-state componenbgoptional to the (com-
plex) inputu = €3,
We can simplify the form of the solution slightly further lgwriting the steady-
state response as
ySS(t) — Meiﬁest — Me(st—i—i@),

where _
Me? =C(sl — AB+D (5.24)

andM and@ represent the magnitude and phase of the complex nu@ysdr—
A)"1B + D. Whens = iw, we say thaitM is thegain andé is the phaseof the
system at a given forcing frequeney Using linearity and combining the solutions
fors = +iwands = —iw, we can show that if we have aninpu A, sin(wt+ )
and an outpuy = Ay sin(wt + ¢), then

A
gain(w) = = =M,  phaséw) =g -y =0.

u

The steady-state solution for a sinusaie= coswt is now given by
Vss(t) = M coqwt + 9).

If the phasé is positive, we say that the outplgiadsthe input, otherwise we say
it lagsthe input.

A sample sinusoidal response is illustrated in Figure 5.Tha. dashed line
shows the input sinusoid, which has amplitude 1. The outpussiid is shown as a
solid line and has a different amplitude plus a shifted ph&ke gain is the ratio of
the amplitudes of the sinusoids, which can be determinedédsnsnring the height
of the peaks. The phase is determined by comparing the ratieedgime between
zero crossings of the input and output to the overall perfdd@sinusoid:

0=—27 .20
T
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Figure 5.11: Response of a linear system to a sinusoid. (a) A sinusoidal input ofitndgn
A, (dashed) gives a sinusoidal output of magnitéggsolid), delayed byA T seconds. (b)
Frequency response, showing gain and phase. The gain is giver Iogtit of the output
amplitude to the input amplitud®) = A,/A,. The phase lag is given ly= -2z AT/T,
it is negative for the case shown because the output lags the input.

A convenient way to view the frequency response is to plot tieevgain and
phase in equation (5.24) depend @r(throughs = iw). Figure 5.11b shows an
example of this type of representation.

Example 5.8 Active band-pass filter

Consider the op amp circuit shown in Figure 5.12a. We can eénie dynamics of
the system by writing theodal equationswhich state that the sum of the currents
at any node must be zero. Assuming that= v, = 0, as we did in Section 3.3,

we have

01 — 02 do, do, o do do ) do,
0=—p=-Cigl> 0=Cig’+ é +Cogs 0=Col ﬁz ~Cig-
Choosingv, andoz as our states and using the first and last equations, we obtain

d1)2 D1 — U2 d1)3 —03 L1 — L2
dt - RC,’ dt  RC; RC;’
Rewriting these in linear state space form, we obtain
1 1
?T)t( o R PR R FTR [0 1x 29
RIC: R, RiCy

wherex = (vy, v3), U = v andy = vs.
The frequency response for the system can be computed usiag@y(5.24):

R, R.C;s
Ri(1+ Rlcls)(l + R,Cy9) ’

The magnitude and phase are plotted in Figure 5.12Rfoe 100Q, R, = 5 kQ
andC; = C, = 100 uF. We see that the circuit passes through signals with

S=iw.

Me’ =C(sl — A B+ D=
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp witiR@o
filters arranged to provide a band-pass filter. The plot in (b) showsaimeemd phase of the
filter as a function of frequency. Note that the phase starts ath9@to the negative gain of
the operational amplifier.

frequencies at about 10 rad/s, but attenuates frequeneiew b rad/s and above
50 rad/s. At 0.1 rad/s the input signal is attenuated by 20.05). This type of
circuit is called aband-pass filtessince it passes through signals in the band of
frequencies between 5 and 50 rad/s. \%

As in the case of the step response, a number of standardiesfe defined
for frequency responses. The gain of a system &t 0 is called thezero frequency
gainand corresponds to the ratio between a constant input arsieady output:

Mo = —-CA™ B+ D.

The zero frequency gain is well defined onlyAfs invertible (and, in particular, if

it does not have eigenvalues at 0). Itis also important te tiwt the zero frequency
gain is a relevant quantity only when a system is stable ath@utorresponding
equilibrium point. So, if we apply a constant input= r, then the corresponding
equilibrium pointxe = —A~!Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero fegly gain is often called
the DC gain DC stands for direct current and reflects the common separafi
signals in electrical engineering into a direct currentdZfeequency) term and an
alternating current (AC) term.)

The bandwidthwy, of a system is the frequency range over which the gain has
decreased by no more than a factor p{/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the bandwidth isftequency where
the gain has decreased by\12 from the zero frequency gain. For systems that
attenuate low frequencies but pass through high frequenttie reference gain
is taken as the high-frequency gain. For a system such asathafass filter in
Example 5.8, bandwidth is defined as the range of frequencieseithe gain is
larger than 1./2 of the gain at the center of the band. (For Example 5.8 thidavou
give a bandwidth of approximately 50 rad/s.)
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dyioarof an
atomic force microscope in contact mode. The plot in (b) shows the gaiphase for the
piezo stack. The response contains two frequency peaks at ressnafrthe system, along
with an antiresonance at = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

Another important property of the frequency response isrés®nant peak
M, the largest value of the frequency response, anghétad frequency,,, the
frequency where the maximum occurs. These two propertiesideshe frequency
of the sinusoidal input that produces the largest possiltieud and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomicdamicroscope in
contact mode, discussed in Section 3.5. The basic dynamiagiveme by equa-
tion (3.23). The piezo stack can be modeled by a second-oyders with un-
damped natural frequeneys and damping ratigs. The dynamics are then de-
scribed by the linear system

0 1 0 0 0
dx | =ko/(Mi+mp) —Co/(Mi+mp) 1/my 0 4+ 0 u
dt 0 0 0 w3 0 ’
0 0 —w3 —2{36&)3 w3
y= mp m1ka m;C; 1 0] X,
Mp+m; LMy +my mp+mp

where the input signal is the drive signal to the amplifier dreddutput is the elon-
gation of the piezo. The frequency response of the systenoigrsim Figure 5.13b.
The zero frequency gain of the systenMg = 1. There are two resonant poles with
peaksM;; = 2.12 atwmr1 = 238 krad's andM;, = 4.29 atom, = 746 krad's.
The bandwidth of the system, defined as the lowest frequencyewthe gain is
V2 less than the zero frequency gaingis = 292 krad's. There is also a dip in
the gainMy = 0.556 forwmg = 268 krad's. This dip, called aantiresonancgis
associated with a dip in the phase and limits the performareEn the system is
controlled by simple controllers, as we will see in Chapt@r 1 \%
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Sampling

It is often convenient to use both differential and differerequations in modeling
and control. For linear systems it is straightforward to$&farm from one to the
other. Consider the general linear system described bytiegua.13) and assume
that the control signal is constant over a sampling inteo¥aonstant lengtin. It
follows from equation (5.14) of Theorem 5.4 that

t+h
x(t + h) = eA"x(t) +/ : e*"~"Bu(k) dr = dx(t) + Tu(t), (5.26)
t

where we have assumed that the discontinuous control sgyeahtinuous from
the right. The behavior of the system at the sampling timeskh is described by
the difference equation

X[k + 1] = Ox[K] + Tu[k],  y[K] = CX[K] + DulK]. (5.27)

Notice that the difference equation (5.27) is an exact sspr&tion of the behavior
of the system at the sampling instants. Similar expressiansalso be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.26) to (5.27) is callsampling The relations be-
tween the system matrices in the continuous and sampledsemiations are as
follows:

h 1 h -1
o=e" I = /eASds B, A=-log®, B= /eAtdt T.
(/) &*ds) 700 (/, ¢
(5.28)
Notice that if A is invertible, we have

r=A"e"-1).

All continuous-time systems can be sampled to obtain aelisg¢ime version,
but there are discrete-time systems that do not have a canfatime equivalent.
The precise condition is that the matrdx cannot have real eigenvalues on the
negative real axis.

Example 5.10 IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotusesewere
obtained as the discrete-time system

ylk + 1] = ay[K] + bu[k],

wherea = 0.43,b = 0.47 and the sampling period s = 60 s. A differential

equation model is needed if we would like to design contratems based on
continuous-time theory. Such a model is obtained by applgqgation (5.28);
hence

h
and we find that the difference equation can be interpretecdamaled version of

h -1
A='992 _ 50141 B= (/ eAtdt) b= 00116
0
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the ordinary differential equation

d
d_>t‘ — —0.0141X + 0.0114.

5.4 Linearization

As described at the beginning of the chapter, a common sadrieear system

models is through the approximation of a nonlinear systera liyear one. These
approximations are aimed at studying the local behavior ®fsdem, where the
nonlinear effects are expected to be small. In this sect®digcuss how to locally
approximate a system by its linearization and what can lwead@ut the approxi-
mation in terms of stability. We begin with an illustratioftbe basic concept using
the cruise control example from Chapter 3.

Example 5.11 Cruise control
The dynamics for the cruise control system were derived ini@eét1 and have
the form

m% = anuT (anv) — MgG sgn) — %pCU Av? — mgsind, (5.29)
where the first term on the right-hand side of the equationaésahce generated
by the engine and the remaining three terms are the rollinidn, aerodynamic
drag and gravitational disturbance force. There is an dxitilin (ve, Ug) When the
force applied by the engine balances the disturbance forces

To explore the behavior of the system near the equilibriumwildinearize the
system. A Taylor series expansion of equation (5.29) ard@equilibrium gives

d(v — ve)

T = a(v — ve) — by(@ — b¢) + b(u — ue) + higher order terms, (5.30)

where

a— ue(er]T’(anve) — pC, Ave
N m

anT(anUe)

, by = gcosbe, b= (5.31)
Notice that the term corresponding to rolling friction gppaars ifv # 0. For a car
in fourth gear withoe = 25 m/s,f. = 0 and the numerical values for the car from
Section 3.1, the equilibrium value for the throttleiis= 0.1687 and the parameters
area = —0.0101,b = 1.32 andc = 9.8. This linear model describes how small
perturbations in the velocity about the nominal speed eviitime.

Figure 5.14 shows a simulation of a cruise controller witkedinand nonlinear
models; the differences between the linear and nonlineateiscare small, and
hence the linearized model provides a reasonable appragima \%
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controltes geek, = 0.5

andk; = 0.1.

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, sirgiéput nonlinear system

dx
a:f(x,u), xeR", ueR,

y=hxu), yeR,

(5.32)

with an equilibrium point ak = Xe, U = Ue. Without loss of generality we can
assume that, = 0 andue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thdocal behavior of the system around the equilibrium pdiat ue),
we suppose that — x. andu — ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared wigh(tower-order) linear
terms. This is roughly the same type of argument that is useshwie do small-
angle approximations, replacing gitwith & and co® with 1 for 0 near zero.

As we did in Chapter 4, we define a new set of state varighl@swell as inputs
v and outputso:

Z=X— Xe, D =U-— U, w =Y — h(Xe, Ug).

These variables are all close to zero when we are near théemum point, and so
in these variables the nonlinear terms can be thought otdsigimer-order terms in
a Taylor series expansion of the relevant vector fields (asgufor now that these
exist).
Formally, theJacobian linearizatiorof the nonlinear system (5.32) is
dz

rri Az+ Bo, w = Cz+ Do, (5.33)



160 CHAPTER 5. LINEAR SYSTEMS

where

of of oh oh
oX ou

8X a u (Xe, ue)

(Xe,Ue) (Xe,Ue) (Xe,Ue)

The system (5.33) approximates the original system (5.32nwte are near the
equilibrium point about which the system was linearizedingsrheorem 4.3, if
the linearization is asymptotically stable, then the abriim point X, is locally
asymptotically stable for the full nonlinear system.

It is important to note that we can define the linearization fgtem only near
an equilibrium point. To see this, consider a polynomiateys

dx
dt —ao+611X+<':12X +613X + U,

whereag # 0. A set of equilibrium points for this system is given 0§, Ue) =
(Xe, —80 — a1Xe — apX2 — a3x2), and we can linearize around any of them. Suppose
that we try to linearize around the origin of the systera- 0, u = 0. If we drop
the higher-order terms ir, then we get
dx

= aix + u,
at =ay+ X+

which isnotthe Jacobian linearization & # 0. The constant term must be kept,
and itis not presentin (5.33). Furthermore, even if we kepttimstant term in the
approximate model, the system would quickly move away frioisippoint (since it

is “driven” by the constant terrag), and hence the approximation could soon fail
to hold.

Software for modeling and simulation frequently has faetitfor performing
linearization symbolically or numerically. The MATLAB commenr i mfinds the
equilibrium, and i nnod extracts linear state space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering

Consider the vehicle steering system introduced in Examjle The nonlinear
equations of motion for the system are given by equatior3}2(2.25) and can
be written as

v cos(a(d) + 0) atans
D) sm(a @O+, 4@ =arcta ;
dt [ ] 2 tané r( b )

wherex, y and @ are the position and orientation of the center of mass of the
vehicle,og is the velocity of the rear wheds,is the distance between the front and
rear wheels and is the angle of the front wheel. The functierio) is the angle
between the velocity vector and the vehicle’s length axis.

We are interested in the motion of the vehicle about a sttdigl path ¢ = 6)
with fixed velocityog # 0. To find the relevant equilibrium point, we first et 0
and we see that we must hae= 0, corresponding to the steering wheel being
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straight. This also yieldg = 0. Looking at the first two equations in the dynamics,
we see that the motion in they direction is by definitiomot at equilibrium since
E2 4 2 = v¢ # 0. Therefore we cannot formally linearize the full model.
Suppose instead that we are concerned with the lateral aeviatthe vehicle
from a straight line. For simplicity, we l& = 0, which corresponds to driving
along thex axis. We can then focus on the equations of motion inyttend
directions. With some abuse of notation we introduce theesta= (y, ) and
u = J. The system is then in standard form with

v Sin(a(U) + X2) anu

b

f(x,u) = , a(u) = arctar(at ) h(x, u) = X.

Vo
— tanu
b
The equilibrium point of interest is given by= (0, 0) andu = 0. To compute the

linearized model around this equilibrium point, we makeafdbe formulas (5.34).
A straightforward calculation yields

A— ﬁ _ 0 oo B — ﬁ . al)()/b
- OX | x=0 ~ 10 0} o ou | x=0 - l)o/b ’
u=0 u=0
oh oh
c=2| =[10, ©bp=%] =o
OX | x=0 ou | x=0
u=0 u=0
and the linearized system
dx
i AXx + Bu, y =Cx+ Du (5.35)

thus provides an approximation to the original nonlinearaiyics.

The linearized model can be simplified further by introduciogmalized vari-
ables, as discussed in Section 2.3. For this system, we chio@seheel basé
as the length unit and the unit as the time required to trawgheel base. The
normalized state is thus= (x1/b, X»), and the new time variable is = vot/b.
The model (5.35) then becomes

dz [z +yu] [0 1 y _

a_[ U =10 ol 2+ |71 Y y_[l O]z, (5.36)
wherey = a/b. The normalized linear model for vehicle steering with ngoshg
wheels is thus a linear system with only one parameter. \%

Feedback Linearization

Another type of linearization is the use of feedback to contree dynamics of a
nonlinear system into those of a linear one. We illustragelhsic idea with an
example.

Example 5.13 Cruise control
Consider again the cruise control system from Example 5.hbser dynamics are



162 CHAPTER 5. LINEAR SYSTEMS

Linearized dynamics

I

I

r € | Linear | ¥ ! (x.0) U |Nonlineaq Y
. - - L2

Controller[ " |*%? Process| |
L T

I
|
T |

—] |-

Figure 5.15: Feedback linearization. A nonlinear feedback of the fore o (x, v) is used
to modify the dynamics of a nonlinear process so that the responsehmimputo to the
outputy is linear. A linear controller can then be used to regulate the system’s dy:iam

given in equation (5.29):
do 1 2 .
ma = opuT (anv) — MgG sgnv) — EpCdAD — mgsing.
If we chooseu as a feedback law of the form

u u’ +mgG sgnv) + %pCD Al)z) , (5.37)

B 1
~ onT (anv) (

then the resulting dynamics become

do
m— =u+d 5.38
gt - ute (5-38)
whered = —mgsind is the disturbance force due the slope of the road. If we

now define a feedback law for (such as a proportional-integral-derivative [PID]
controller), we can use equation (5.37) to compute the finaltithat should be
commanded.

Equation (5.38) is a linear differential equation. We hawseasally “inverted”
the nonlinearity through the use of the feedback law (5.8fjs requires that we
have an accurate measurement of the vehicle velacig well as an accurate
model of the torque characteristics of the engine, geansatirag and friction
characteristics and mass of the car. While such a model igemarally available
(remembering that the parameter values can change), if sigrda good feedback
law for u’, then we can achieve robustness to these uncertainties. \%

More generally, we say that a system of the form

dx

dt - f(X, U), y_ h(X)a
is feedback linearizabld@ we can find a control lawu = « (X, ») such that the
resulting closed loop system is input/output linear witputw and outputy, as
shown in Figure 5.15. To fully characterize such systems yste the scope of
this text, but we note that in addition to changes in the iniietgeneral theory also
allows for (nonlinear) changes in the states that are useggoribe the system,
keeping only the input and output variables fixed. More deilthis process can
be found in the textbooks by Isidori [Isi95] and Khalil [KhEO



5.5. FURTHER READING 163

One case that comes up relatively frequently, and is hencehwspecial mention,@
is the set of mechanical systems of the form

M(@)4 + C(q, q) = B(Q)u.

Hereq € R" is the configuration of the mechanical systelh(q) € R™" is

the configuration-dependent inertia mati®(q, g) € R" represents the Coriolis
forces and additional nonlinear forces (such as stiffnassfiaction) andB(q) <
R"P is the input matrix. Ifp = n, then we have the same number of inputs and
configuration variables, and if we further have tB4t|) is an invertible matrix for

all configurationgy, then we can choose

u=B"Yq)(M(@v - C(q,q). (5.39)
The resulting dynamics become

M@4=M@» = (=vo,

which is a linear system. We can now use the tools of linearesygheory to
analyze and design control laws for the linearized systemgembering to apply
equation (5.39) to obtain the actual input that will be aggblio the system.

This type of control is common in robotics, where it goes by tiaene of
computed torqueand in aircraft flight control, where it is calletiynamic inver-
sion Some modeling tools like Modelica can generate the codehririverse
model automatically. One caution is that feedback linedion can often cancel
out beneficial terms in the natural dynamics, and hence it beisised with care.
Extensions that do not require complete cancellation ofineatities are discussed
in Khalil [Kha01] and Krsti¢ et al. [KKK95].

5.5 Further Reading

The majority of the material in this chapter is classical aad be found in most
books on dynamics and control theory, including early warkscontrol such as
James, Nichols and Phillips [JNP47] and more recent textbso&is as Dorf and
Bishop [DB04], Franklin, Powell and Emami-Naeini [FPENO5] and tag@ga01].
An excellent presentation of linear systems based on theixr@tponential is
given in the book by Brockett [Bro70], a more comprehengigatiment is given by
Rugh [Rug95] and an elegant mathematical treatment is giv8ontag [Son98].
Material on feedback linearization can be found in booksaniinear control theory
such as Isidori [Isi95] and Khalil [Kha01]. The idea of chdeaizing dynamics by
considering the responses to step inputs is due to Heayiwmdaso introduced an
operator calculus to analyze linear systems. The unit stdperefore also called
theHeaviside step functiodnalysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of latknathematical rigor,
as described in the biography by Nahin [Nah88]. The difficaliieere cleared up
later by the mathematician Laurent Schwartz who develapsibution theory
in the late 1940s. In engineering, linear systems havettoadily been analyzed
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using Laplace transforms as described in Gardner and Ba@iR42]. Use of
the matrix exponential started with developments of cdritreory in the 1960s,
strongly stimulated by a textbook by Zadeh and Desoer [ZD63F bf matrix
technigues expanded rapidly when the powerful methodsroknmie linear algebra
were packaged in programs like LabVIEW, MATLAB and Mathematica.

Exercises

43 (Response to the derivative of a signal) Show tha(if) is the output of a
linear system corresponding to input), then the output corresponding to an
input u(t) is given byy(t). (Hint: Use the definition of the derivativei(t) =
limeo(y(t +€) — y()/e)

44 (Impulse response and convolution) Show that a sigftalcan be decomposed
in terms of the impulse functiod(t) as

ut) = /Ot ot —7)u(r)dr

and use this decomposition plus the principle of superiposio show that the
response of a linear system to an inpdt) (assuming a zero initial condition) can
be written as

t
y© = [ ht = ouedr,
0
whereh(t) is the impulse response of the system.

45 (Pulse response for a compartment model) Consider the ctmgrar model
given in Example 5.7. Compute the step response for the symtelhcompare it
with Figure 5.10b. Use the principle of superposition to categhe response to
the 5 s pulse input shown in Figure 5.10c. Use the parametaesk = 0.1,
ki =0.1,k, = 0.5 andbg = 1.5.

46 (Matrix exponential for second-order system) Assume ¢hat1 and letwy =

woy/1 — 2. Show that
—é’a)o d ] t =

—qg —( o

[ e ¢@t cospgt €@t sinpgt

ex . )
P —e @t sinpgt e ¢t coswqt

47 (Lyapunov function for a linear system) Consider a lineatesnx = Ax with
Rek; < O for all eigenvalued; of the matrixA. Show that the matrix

P=/ AT QeM dr
0

defines a Lyapunov function of the forsh(x) = x' Px.

48 (Nondiagonal Jordan form) Consider a linear system withrdaloform that is
non-diagonal.
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() Prove Proposition 5.3 by showing that if the system coataireal eigenvalue
A = 0 with a nontrivial Jordan block, then there exists an ihitizndition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvaludsRél = 0 by
using the block Jordan form

3=

oo o’
ocoor
o8 R, O

0
—Q
0
0

49 (Rise time for a first-order system) Consider a first-orderesystf the form
dx _ X+u =X
fdt T ’ y=>x
We say that the parameters thetime constantor the system since the zero input
system approaches the originexd/*. For a first-order system of this form, show

that the rise time for a step response of the system is appat&ly 2, and that
1%, 2%, and 5% settling times approximately correspondsén, 4z and & .

50 (Discrete-time systems) Consider a linear discrete-tipséesn of the form
X[k + 1] = Ax[k] + Bu[K], y[k] = Cx[Kk] + Du[k].

(a) Show that the general form of the output of a discrete-limear system is
given by the discrete-time convolution equation:

k—1
y[k] = CAX[0] + > CA<I'BU[j] + Dulk].
j=0

(b) Show that a discrete-time linear system is asymptoticaéible if and only if
all the eigenvalues oA have a magnitude strictly less than 1.

(c) Letu[k] = sin(wk) represent an oscillatory input with frequenoy< =z (to
avoid “aliasing”). Show that the steady-state componenhefresponse has gain
M and phasé, where

Me? = C(e”l — A)"'B + D.

(d) Show that if we have a nonlinear discrete-time system
x[K] = f(x[k],ulkD), X[kl €eR" ueR,
y[kl = h(x[K], u[k]), yeR,

then we can linearize the system around an equilibrium gainue) by defining
the matricesA, B, C andD as in equation (5.34).
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51 (Keynesian economics) Consider the following simple Keyaie macroeco-
nomic model in the form of a linear discrete-time systemulsed in Exercise 50:

Clt +1] C[t
[lu-+1]] [ab b ab] [IH]] [ab]cﬂq
YIt] = CIt] + 1 [t] + GIt].

Determine the eigenvalues of the dynamics matrix. Whenteartagnitudes of
the eigenvalues less than 1? Assume that the system is iibeigun with constant
values capital spendin@, investment and government expenditu. Explore

what happens when government expenditure increases by W6éothe values
a=0.25andb =0.5.

52 Consider a scalar system

dx
=1-x3+u.
at +

Compute the equilibrium points for the unforced systen=(0) and use a Taylor
series expansion around the equilibrium point to compugditiearization. \Verify
that this agrees with the linearization in equation (5.33).

53 (Transcriptional regulation) Consider the dynamics of mggie circuit that im-
plementsself-repressiorthe protein produced by a gene is arepressor for that gene,
thus restricting its own production. Using the models pnése in Example 2.13,

the dynamics for the system can be written as

dm a dp
—_— = = ) 4

dt ~ 14 kp? at ~ Pm=op. (5.40)
whereu is a disturbance term that affects RNA transcription em¢ > 0. Find
the equilibrium points for the system and use the lineardggthmics around each
equilibrium point to determine the local stability of theuddprium point and the
step response of the system to a disturbance.

+050—Vm—u’



Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage olamesnaccumula-
tion of past causes. We must, of course, demand that the set of irgttesX be sufficiently
rich to carry all information about the past history &f to predict the effect of the past upon
the future. We do not insist, however, that the state isghstsuch information although this
is often a convenient assumption.

R.E.Kalman, P.L. Falband M. A. Arbiippics in Mathematical System Thedt969 [KFAG9].

This chapter describes how the feedback of a system’s stateeazsed to shape
the local behavior of a system. The concept of reachabilitytieduced and used
to investigate how to design the dynamics of a system thr@sgignment of its
eigenvalues. In particular, it will be shown that underagrtonditions it is possible
to assign the system eigenvalues arbitrarily by apprapfestdback of the system
state.

6.1 Reachability

One of the fundamental properties of a control system is wéeof points in the
state space can be reached through the choice of a contubl itjurns out that the
property of reachability is also fundamental in undersiagdhe extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of thersyaihd focusing on
the evolution of the state, given by

dx
2 _ Ax+ B 6.1
T X+ Bu, (6.1)

wherex € R", u € R, Ais ann x n matrix andB a column vector. A fundamental
question is whether it is possible to find control signals sb &my point in the state
space can be reached through some choice of input. To stigjynh define the
reachable seR(xg, < T) as the set of all points; such that there exists an input

u(t), 0 <t < T that steers the system froxi0) = Xo to X(T) = X, as illustrated
in Figure 6.1a.

Definition 6.1 (Reachability) A linear system iseachabléf for any xg, x; € R"
there exists a > 0 andu: [0, T] — R such that the corresponding solution
satisfiex(0) = xg andx(T) = X;.
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4
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R, < T) ¢

(a) Reachable set (b) Reachability through control

Figure 6.1: The reachable set for a control system. Th&&gety, < T) shown in (a) is the set
of points reachable fromy in time less thaT . The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontakarand the control
inputs drawn as vertical arrows. The set of achievable equilibrium piEirite x axis. By
setting the control inputs as a function of the state, it is possible to steer teensicsthe
origin, as shown on the sample path.

The definition of reachability addresses whether it is possibteach all points
in the state space inteansientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrientp of the system
(since we can remain at those points once we get there). Thaf aéitpossible
equilibria for constant controls is given by

= {Xe : AXe + bue = 0 for someu, € R}.

This means that possible equilibria lie in a one- (or posdiligjher) dimensional
subspace. If the matriA is invertible, this subspace is spanned4yB.
The following example provides some insight into the poditids.

Example 6.1 Double integrator
Consider a linear system consisting of a double integrattwse dynamics are
given by

dxq dx

at =2 dt
Figure 6.1b shows a phase portrait of the system. The open jowndcs (| = 0)
are shown as horizontal arrows pointed to the right¢or- 0 and to the left for
X2 < 0. The control input is represented by a double-headed amdlaei vertical
direction, corresponding to our ability to set the valuepfThe set of equilibrium
points€ corresponds to the, axis, withue = 0.

Suppose first that we wish to reach the origin from an initialdition (a, 0).
We can directly move the state up and down in the phase plah&dmust rely
on the natural dynamics to control the motion to the left agttr If a > 0, we
can move the origin by first setting < 0, which will causex, to become negative.
Oncex, < 0, the value of; will begin to decrease and we will move to the left.
After a while, we can set, to be positive, moving, back toward zero and slowing
the motion in thex; direction. If we bringx, > 0, we can move the system state in
the opposite direction.
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Figure 6.1b shows a sample trajectory bringing the systememtigin. Note
that if we steer the system to an equilibrium point, it is flolgsto remain there
indefinitely (sincex; = 0 whenx, = 0), but if we go to any other point in the state
space, we can pass through the point only in a transientafashi \Y%

To find general conditions under which a linear system is ralleh we will
first give a heuristic argument based on formal calculatiatfsimpulse functions.
We note that if we can reach all points in the state space ¢fresome choice of
input, then we can also reach all equilibrium points.

Testing for Reachability
When the initial state is zero, the response of the system toputu(t) is given
by t
x(t) = / e*"t=IBu(r) dr. (6.2)
0

If we choose the input to be a impulse functié) as defined in Section 5.3, the

state becomes .
A(t—r) dxs At
Xs= | € Bo(r)dr = — = e™B.
0 dt

(Note that the state changes instantaneously in resporibe tmpulse.) We can
find the response to the derivative of an impulse function kintathe derivative
of the impulse response (Exercise 43):

X5 = d%
T:
Continuing this process and using the linearity of the systle input
u(t) = a1(t) + azg(t) + a35(t) 4+ .+ ang(n—l)(t)
gives the state

X(t) = 01e™B + a2 AN B + a3 A2eMB + - - - 4 0, AT 1B,

= AMB.

Taking the limit ag goes to zero through positive values, we get

lim x(t) = a1B 4+ a2 AB + a3A?B + - - - + an A" 1B.
t—>0+
On the right is a linear combination of the columns of the iRatr
W, = [B AB --. An—ls]. (6.3)

To reach an arbitrary point in the state space, we thus rethat there ara linear
independent columns of the matih, . The matrixW; is called thereachability
matrix.

An input consisting of a sum of impulse functions and themasives is a very
violent signal. To see that an arbitrary point can be reaghigtdsmoother signals
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we can make use of the convolution equation. Assuming tleainitial condition
is zero, the state of a linear system is given by

t t
x(t) = / eI Bu(r)dr = / eMBu(t — 7)dr.
0

0
It follows from the theory of matrix functions, specificallgg Cayley—Hamilton
theorem (see Exercise 63), that

e = lag(r) + Aaa(r) + -+ + A" a1 (1),

whereq; () are scalar functions, and we find that
t

t
x(t) = B/o ao(zt)ut —7)dr + AB/O ar(t)ut — 7)dr

t
4o+ An_lB/ an_1()u(t — r)dr.
0

Again we observe that the right-hand side is a linear contioinaf the columns
of the reachability matri¥\; given by equation (6.3). This basic approach leads to
the following theorem.

Theorem 6.1(Reachability rank condition)A linear system is reachable if and
only if the reachability matrix Wis invertible.

The formal proof of this theorem is beyond the scope of this bex follows
along the lines of the sketch above and can be found in modtsboo linear
control theory, such as Callier and Desoer [CD91] or Lewis [08}vWe illustrate
the concept of reachability with the following example.

Example 6.2 Balance system
Consider the balance system introduced in Example 2.1 awinsimoFigure 6.2.
Recall that this system is a model for a class of examplesicivithe center of mass
is balanced above a pivot point. One example is the SegwayiRérB@nsporter
shown in Figure 6.2a, about which a natural question to askétlver we can move
from one stationary point to another by appropriate appticeof forces through
the wheels.

The nonlinear equations of motion for the system are giverguaton (2.9)

and repeated here:
(M +m)p—mlcos#d = —cp — mlsing 6% + F, (6.4)
(J + ml?®)d — mlcost p = —y O + mglsinb. '

For simplicity, we takec = y = 0. Linearizing around the equilibrium point
Xe = (P, 0, 0, 0), the dynamics matrix and the control matrix are

0 0 1 0 0
A 0 0 0 1 B 0
— o mA%g/x 0 O] o INY

0 Mimgl/u 0 O Im/u
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(a) Segway (b) Cart-pendulum system

Figure 6.2: Balance system. The Segway Personal Transporter shown on i(exsmple
of a balance system that uses torque applied to the wheels to keep the piidgt.uA
simplified diagram for a balance system is shown in (b). The system t®on§smassn on
arod of lengtH connected by a pivot to a cart with maels

wherey = M J, — m?12, My = M +mandJ, = J +ml2. The reachability matrix
is

0 J/u 0 gl®md/ 2
0 [ 0 [2m? M)/ u?
W — m/u O gl“m(m+ M)/ u (6.5)
J/w 0O gI°m*/u 0
Im/u 0  @’m?(m+ M)/ u? 0
The determinant of this matrix is
g2|4r-n4
dettW;) = ——— #0,
") w7

and we can conclude that the system is reachable. This inthiésve can move

the system from any initial state to any final state and, inigaer, that we can

always find an input to bring the system from an initial stat@tequilibrium point.
\Y%

It is useful to have an intuitive understanding of the medran that make a
system unreachable. An example of such a system is given urd=i§3. The
system consists of two identical systems with the same ir@@letrly, we cannot
separately cause the first and the second systems to do sognditiérent since
they have the same input. Hence we cannot reach arbitraegstand so the system
is not reachable (Exercise 56).

More subtle mechanisms for nonreachability can also odeurexample, if
there is a linear combination of states that always remainstant, then the system
is not reachable. To see this, suppose that there exists weciarH such that

d

0= &Hx= H(Ax + Bu), forallu.
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Figure 6.3: An unreachable system. The cart—pendulum system shown on thedefshrayle
input that affects two pendula of equal length and mass. Since thesfaffeeting the two
pendula are the same and their dynamics are identical, it is not possiblsttardly control

the state of the system. The figure on the right is a block diagram repaésanof this
situation.

ThenH is in the left null space of botl andB and it follows that
mM:H[B AB ... N*B]:Q

Hence the reachability matrix is not full rank. In this cageye have an initial
conditionxy and we wish to reach a staxg for which Hxg # HX;, then since
Hx(t) is constant, no inpui can move fromxg to X .

Reachable Canonical Form

As we have already seen in previous chapters, it is oftenezvent to change
coordinates and write the dynamics of the system in the fwamed coordinates
z = T x. One application of a change of coordinates is to conversteayinto a
canonical form in which it is easy to perform certain typesdlysis.

A linear state space system isregachable canonical fornf its dynamics are
given by

(—a; —a, —az ... —ay 1
1 0 0 .. 0 0
z_1o 1 0o ... 0 |z4]0fu
dt : TR : (6.6)
| 0 1 0 0
y=[b b, by ”.b42+du

A block diagram for a system in reachable canonical form ashin Figure 6.4.
We see that the coefficients that appear in Ah@nd B matrices show up directly
in the block diagram. Furthermore, the output of the system ssmple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable wigabform is given
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d bl b2 bn—l bn
u \2/ f Z f Z L f Zn—1 f Zn
-1 a a an—1 an
' ' '

Figure 6.4: Block diagram for a system in reachable canonical form. The indiVistates
of the system are represented by a chain of integrators whose inridiepn the weighted
values of the states. The output is given by an appropriate combinatibe sf/stem input
and other states.

by

n-1

As) =s"+as" 4+ a_1S+ an. (6.7)

The reachability matrix also has a relatively simple strrestu

1 —a al-a
0 1 —aa .-
w=[B AB .. AviB]=[: ]

*  *

|
*

0O O 0 -1

wheresx indicates a possibly nonzero term. This matrix is full ramcsi no col-
umn can be written as a linear combination of the others lsecatithe triangular
structure of the matrix.

We now consider the problem of changing coordinates sudtitiealynamics
of a system can be written in reachable canonical form.AeB represent the
dynamics of a given system ard B be the dynamics in reachable canonical form.
Suppose that we wish to transform the original system intohalale canonical
form using a coordinate transformatiar= T X. As shown in the last chapter, the
dynamics matrix and the control matrix for the transformgstesm are

A=TAT!, B=TB
The reachability matrix for the transformed system then bexo

wr=[é AB ... A”—lé].
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Transforming each element individually, we have
AB=TAT!TB=TAB,
A’B = (TAT H2TB=TAT 'TAT'TB=TA’B,

A'B=TA"B,
and hence the reachability matrix for the transformed sysse
W=T[B AB .- A™B| =Tw. (6.8)
SinceW, is invertible, we can thus solve for the transformatibrihat takes the
system into reachable canonical form:
T=ww?1
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx a 0
il A LRSI

We wish to find the transformation that converts the systeargdchable canonical

form: a a 1
Al —a 5
23] ey

The coefficientsa; anda, can be determined from the characteristic polynomial
for the original system:

a; = —2a,

A(s) = det(sl — A) =2 — 2as+ (a® + 0°) = ,
=04+ w".

The reachability matrix for each system is

. 0 w YR 1 —a
w2 w3 r)
The transformatiom becomes
I —(a1+a)o 1 (a/w 1
T=WwW1l= =
o [ 1/w 0 | 1/w 0]

and hence the coordinates

[21] Ty — [aX1><20;; X7

put the system in reachable canonical form. \Y%

We summarize the results of this section in the followingtieen.
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d
Controller Process
X = AX+ Bu
r — y
y=Cx+ Du

Figure 6.5: A feedback control system with state feedback. The controller useystens
statex and the reference inputto command the process through its inputWe model
disturbances via the additive inpait

Theorem 6.2 (Reachable canonical formLet A and B be the dynamics and
control matrices for a reachable system. Then there existsstormation z= T x
such that in the transformed coordinates the dynamics antt@anatrices are in
reachable canonical forr(6.6)and the characteristic polynomial for A is given by

det(sl — A) =s"+a;s" 1+ ... +a,_1S+ an.

One important implication of this theorem is that for anyategble system, we
can assume without loss of generality that the coordinatestasen such that the
system is in reachable canonical form. This is particulaskgful for proofs, as we
shall see later in this chapter. However, for high-ordetesys, small changes in
the coefficients; can give large changes in the eigenvalues. Hence, the fgacha
canonical form is not always well conditioned and must belwgi¢gh some care.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variablasghrmits prediction
of the future development of a system. We now explore the @fedesigning
the dynamics of a system through feedback of the state. WexsgLlme that the
system to be controlled is described by a linear state madehas a single input
(for simplicity). The feedback control law will be developstép by step using a
single idea: the positioning of closed loop eigenvalueseisigd locations.

State Space Controller Structure

Figure 6.5 is a diagram of a typical control system using dtdback. The full
system consists of the process dynamics, which we take fodur] the controller
elementK andk;, the reference input (or command signagnd process distur-
bancedl. The goal of the feedback controller is to regulate the outpthie system
y such that it tracks the reference input in the presence tiiri@nces and also
uncertainty in the process dynamics.

An important element of the control design is the perforneasigecification.
The simplest performance specification is that of stabilitythe absence of any
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disturbances, we would like the equilibrium point of theteys to be asymptotically
stable. More sophisticated performance specifications&ylgiinvolve giving de-
sired properties of the step or frequency response of thersysuch as specifying
the desired rise time, overshoot and settling time of the stsponse. Finally, we
are often concerned with the disturbance attenuation piepeof the system: to
what extent can we experience disturbance ingusd still hold the outpuy near
the desired value?
Consider a system described by the linear differential tgua

3_? — Ax+Bu,  y=Cx+Duy, (6.9)

where we have ignored the disturbance sigh&dr now. Our goal is to drive the
outputy to a given reference valueand hold it there. Notice that it may not be
possible to maintain all equilibria; see Exercise 61.

We begin by assuming that all components of the state vectomaasured.
Since the state at tintecontains all the information necessary to predict the itur
behavior of the system, the most general time-invariantroblaw is a function of
the state and the reference input:

u=a(x,r).
If the feedback is restricted to be linear, it can be written a
u=—Kx+kr, (6.10)

wherer is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in FiguseThe negative
sign is a convention to indicate that negative feedbackasitirmal situation. The
closed loop system obtained when the feedback (6.10) issaiiplthe system (6.9)

is given b
g y dx
at = (A—-BK)x + Bkr. (6.11)

We attempt to determine the feedback gHirso that the closed loop system has
the characteristic polynomial

p(s) ="+ piS"t + - + Pr_1S+ P (6.12)

This control problem is called tredgenvalue assignment problempole placement
problem(we will define poles more formally in Chapter 8).

Note thatk, does not affect the stability of the system (which is detaeediby
the eigenvalues oA — BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the aldsep system are given
by

Xe=—(A—BK)™Bkr, Yo=Cx+ Due,

hencek, should be chosen such that= r (the desired output value). Sinkeis
a scalar, we can easily solve to show thdDit= 0 (the most common case),

k- =—1/(C(A— BK)™'B). (6.13)
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Notice thatk; is exactly the inverse of the zero frequency gain of the cdsep
system. The solution fob # 0 is left as an exercise.

Using the gainK andk;, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to condtauch a state feedback
control law, we begin with a few examples that provide som&ddiatuition and
insights.

Example 6.4 Vehicle steering
In Example 5.12 we derived a normalized linear model for Vetsteering. The
dynamics describing the lateral deviation were given by

_|o1 _ |
a=loo] e i)
C= [1 0] , D=0
The reachability matrix for the system is thus
_ _|r 1
W,_[B AB] = [1 0].

The system is reachable since W¢t= —1 # 0.

We now want to design a controller that stabilizes the dyearand tracks a
given reference valueof the lateral position of the vehicle. To do this we introduc
the feedback

U=—KXx+kr =—kix; —kxo+Kktr,

and the closed loop system becomes

d_X_ 3 . —ykl 1—Vk2 ka
dt_(A BK)X+Bl<fr—[_k1 —ky ]X+[kr ]r, (6.14)

y=Cx+Du=[1 0]x.
The closed loop system has the characteristic polynomial

Ss+yk yke—1

det(sl — A+ BK):det[ K, stk

] ISz+(yk1+k2)S—+- kl.

Suppose that we would like to use feedback to design the dyisashthe system
to have the characteristic polynomial
p(S) = S* + 20cwcS + 2.

Comparing this polynomial with the characteristic polynahof the closed loop
system, we see that the feedback gains should be chosen as

ki = a)g, ko = 2¢corc — ycog.
Equation (6.13) givek: = k; = »?2, and the control law can be written as

U=ki(r — X1) — kaXo = 02(r — X1) — (e — y 02)%a.
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Figure 6.6: State feedback control of a steering system. Step responses obtétinedmy
trollers designed witly, = 0.7 andw, = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increagindut that largeo. also give large initial control
actions. Step responses obtained with a controller designedwwith 1 and¢, = 0.5, 0.7
and 1 are shown in (b).

The step responses for the closed loop system for differduesaf the design
parameters are shown in Figure 6.6. The effectvgfis shown in Figure 6.6a,
which shows that the response speed increases with incgaasiThe responses
for o = 0.5 and 1 have reasonable overshoot. The settling time is alBocarl
lengths foro. = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths forwe = 1. The control signad is large initially and goes to zero as time
increases because the closed loop dynamics have an intedtae initial value of
the control signal i& = w?r, and thus the achievable response time is limited by
the available actuator signal. Notice in particular thenthtic increase in control
signal whenw. changes from 1 to 2. The effect gf is shown in Figure 6.6b. The
response speed and the overshoot increase with decreasimgirgd). Using these
plots, we conclude that reasonable values of the desigmedeas are to have,
inthe range of 0.5to 1 and ~ 0.7. \%

The example of the vehicle steering system illustrates hate $eedback can
be used to set the eigenvalues of a closed loop system toeaybialues.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the paeasrad the system are
the coefficients of the characteristic polynomial. It is #fere natural to consider
systems in this form when solving the eigenvalue assignpretiem.
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Consider a system in reachable canonical form, i.e,

—a; —a& —az ... —a 1
dz 1 0 o ... O 0
—=AZ+BU= 0 1 0 0 z+ |:|u
dt : S 0 (6.15)
0 1 0 0

It follows from(6.7) that the open loop system has the char&tic polynomial
det(sl — A) =s"+a;s" 1+ ... +a,_1S+ an.

Before making a formal analysis we can gain some insight bgstigating the
block diagram of the system shown in Figure 6.4. The charatiegolynomial is
given by the parametesg in the figure. Notice that the parameégican be changed
by feedback from state, to the inputu. It is thus straightforward to change the
coefficients of the characteristic polynomial by state femttb

Returning to equations, introducing the control law

U= —-Kz+kr = —kjzs —kozo — - - - — knzn + k1, (6.16)

the closed loop system becomes

[—a; —k; —a,—k, —ag—ks ... —a,—k, Kr
| o 1 o T o ||l
dt . T ’

0 1 0 0
y = :bn by b1] 2.

(6.17)
The feedback changes the elements of the first row oftheatrix, which corre-
sponds to the parameters of the characteristic polynoiftia.closed loop system
thus has the characteristic polynomial

S+ (@ + k)S" !+ (@2 + k)8 P 4+ 4 (@n-1+ Ka-1)S + 8 + K.
Requiring this polynomial to be equal to the desired closeg lpolynomial
p(s) ="+ pis" M + - + pr1S+ po,
we find that the controller gains should be chosen as
|21=p1—611, I22:p2—a2, r<n=pn—<’:1n-

This feedback simply replaces the parameggns the system (6.17) by;. The
feedback gain for a system in reachable canonical form & thu

K=[p-a p-a - p-a). (6.18)
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To have zero frequency gain equal to unity, the parametshould be chosen
as
o =ntha_ P
bn bn

(6.19)

Notice that it is essential to know the precise values ofipatarsa, andby, in order
to obtain the correct zero frequency gain. The zero frequgagyis thus obtained
by precise calibration. This is very different from obtaigihe correct steady-state
value by integral action, which we shall see in later sestion

Eigenvalue Assignment

We have seen through the examples how feedback can be usesdign the dy-

namics of a system through assignment of its eigenvaluesolVe the problem in
the general case, we simply change coordinates so that stensys in reachable
canonical form. Consider the system

%( = Ax+ Bu, y = Cx+ Du. (6.20)

We can change the coordinates by a linear transformatien T x so that the

transformed system is in reachable canonical form (6.1&) skch a system the
feedback is given by equation (6.16), where the coefficierdsgaven by equa-
tion (6.18). Transforming back to the original coordinages the feedback

U=—-Kz+kr=—-KTx+kr.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedbadBdnsider the system
given by equatioli6.20) with one input and one output. L&ts) = s" + a;s" 1 +
-+ 4+ an_1S + a, be the characteristic polynomial of A. If the system is redobé,
then there exists a feedback

u=—-Kx+kr
that gives a closed loop system with the characteristicrmiyial
p(S) ="+ P15+ + proaS+ o
and unity zero frequency gain between r and y. The feedbaokiggiven by
K:KT:[pl_al Po—ay --- pn—an] W Wt (6.21)

where a are the coefficients of the characteristic polynomial of tegtrix A and
the matrices WandW; are given by
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1 a3 & an—1
0 1 & an_2
Wo=[B AB - ATIB|, W= :
o o0 --- 1 a
0O 0 O 1

The reference gain is given by
k- =—-1/(C(A- BK)'B).

For simple problems, the eigenvalue assignment problembeasolved by
introducing the elementk of K as unknown variables. We then compute the
characteristic polynomial

A(s) = det(s| — A+ BK)

and equate coefficients of equal powers td the coefficients of the desired char-
acteristic polynomial

ps) =s"+ pis" -+ po1S+ p.

This gives a system of linear equations to deternkjin@he equations can always
be solved if the system is reachable, exactly as we did in Elag.

Equation (6.21), which is called Ackermann’s formula [AckAZCk85], can
be used for numeric computations. It is implemented in theTM#B function
acker. The MATLAB function pl ace is preferable for systems of high order
because it is better conditioned numerically.

Example 6.5 Predator—prey

Consider the problem of regulating the population of an gstesn by modulating
the food supply. We use the predator—prey model introduce®eiction 3.7. The
dynamics for the system are given by

dH H\  aHL
an _ H{1-") - H >0
ar — W ( k) cxn =Y
db _p3Hl 4l Lso

dt c+H

We choose the following nominal parameters for the systelmciwcorrespond to
the values used in previous simulations:

a=32, b=0.6, c¢=50,
d=056, k=125 r =16

We take the parameter corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a foodreedor the hares.
This is reflected in our model by the terim+ u) in the first equation. We choose
the number of lynxes as the output of our system.

To control this system, we first linearize the system aroumdetuilibrium
point of the systen(He, L¢), which can be determined numerically to ke ~
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(20.6, 29.5). This yields a linear dynamical system

d A 0.13 -0.93 V4} 17.2 . y4)

at 22]—[0.57 0 ] [22]+[ 0 ]”’ w=[o 1 [z2 :
wherez; = L — Lg, zZ2 = H — Hg ando = u. It is easy to check that the system
is reachable around the equilibriufr ») = (0O, 0), and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system regjlialancing the
ability to modulate the input against the natural dynamidafie system. This can
be done by the process of trial and error or by using some ahibre systematic
techniques discussed in the remainder of the text. For nevgimply choose the

desired closed loop eigenvalues to bé at {—0.1, —0.2}. We can then solve for
the feedback gains using the techniques described earhiah results in

K = [0.025 —0.052] .

Finally, we solve for the reference galp, using equation (6.13) to obtakp =
0.002.
Putting these steps together, our control law becomes

v =—-Kz+Kkr.

In order to implement the control law, we must rewrite it @sihe original coordi-
nates for the system, yielding

U=Ue— KX —Xe) + ke (r — Vo)

= (0025 ~0052] [t' —206

_ 29.5] + 0.002(r — 29.5).

This rule tells us how much we should modulageas a function of the current
number of lynxes and hares in the ecosystem. Figure 6.7a shewsulation of

the resulting closed loop system using the parameters dedinede and starting
with an initial population of 15 hares and 20 lynxes. Note tha system quickly
stabilizes the population of lynxes at the reference value-(30). A phase portrait
of the system is given in Figure 6.7b, showing how other inttiemditions converge
to the stabilized equilibrium population. Notice that tly@mdmics are very different
from the natural dynamics (shown in Figure 3.20). \%

The results of this section show that we can use state feedbatsign the
dynamics of a system, under the strong assumption that wemeasure all of the
states. We shall address the availability of the statesaméxt chapter, when we
consider output feedback and state estimation. In addifibeorem 6.3, which
states that the eigenvalues can be assigned to arbitraatidos, is also highly
idealized and assumes that the dynamics of the process@maka high precision.
The robustness of state feedback combined with state estisnatconsidered in
Chapter 12 after we have developed the requisite tools.
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Figure 6.7: Simulation results for the controlled predator—prey system. The population
lynxes and hares as a function of time is shown in (a), and a phaseipfrtthe controlled
system is shown in (b). Feedback is used to make the population statlle-at20.6 and

e = 20.

6.3 State Feedback Design

The location of the eigenvalues determines the behaviomredtitised loop dynam-
ics, and hence where we place the eigenvalues is the maigndeéscision to be
made. As with all other feedback design problems, thereradetoffs among the
magnitude of the control inputs, the robustness of the sysiteperturbations and
the closed loop performance of the system. In this sectioexeenine some of
these trade-offs starting with the special case of secoddraystems.

Second-Order Systems

One class of systems that occurs frequently in the analpsisiasign of feedback
systems is second-order linear differential equationsaBse of their ubiquitous
nature, it is useful to apply the concepts of this chapteh&d specific class of
systems and build more intuition about the relationshipveen stability and per-
formance.

The canonical second-order system is a differential equatiche form

4 + 20 woq + w5q = kadu, y=q. (6.22)
In state space form, this system can be represented as
dx 0 wo 0
= [_wo _26600] X + [ka] u,  y= [1 o] X. (6.23)

The eigenvalues of this system are given by

A= —(woEJwd((?—1),

and we see that the origin is a stable equilibrium poiriyif> 0 ands > 0. Note
that the eigenvalues are complex’if< 1 and real otherwise. Equations (6.22)
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and (6.23) can be used to describe many second-order systeinging damped
oscillators, active filters and flexible structures, as showthé examples below.

The form of the solution depends on the valug pWhich is referred to as the
damping ratiofor the system. If” > 1, we say that the systemaserdampegdand
the natural response & 0) of the system is given by

X10 + X20 _ oX10+ X20 _
BX10 Ograt _ #X10F %20 gt
p—a p—a

wherea = wo( ++/¢? — 1) andf = wo(¢ — /(% — 1). We see that the response
consists of the sum of two exponentially decaying signéfs#+ 1, then the system

is critically dampedand solution becomes
y(t) = €7 (Xq0 + (X0 + C @oX10)t).

Note that this is still asymptotically stable as longgs> 0, although the second
term in the solution is increasing with time (but more slowhan the decaying
exponential that is multiplying it).

Finally, if 0 < ¢ < 1, then the solution is oscillatory and equation (6.22) id sa
to beunderdampedThe parametany is referred to as theatural frequencyf the
system, stemming from the fact that for snalkhe eigenvalues of the system are
approximatelyl = —¢wp + jwo. The natural response of the system is given by

yt) =

1 .
y(t) = g ¢t (xlo coswgt + (@xlo + —xzo) smwdt) ,
wq wq

wherewy = woy/1— (2 is called thedamped frequencyFor ¢ <« 1, wg ~ wy
defines the oscillation frequency of the solution amgves the damping rate relative
10 wyp.

Because of the simple form of a second-order system, it isiplesto solve
for the step and frequency responses in analytical form. dheisn for the step
response depends on the magnitudg:of

_c
V1-=¢2

yt) =k (1—e L+ wot)), =1

y(t) = k(l — e7¢! coswgt — g ¢t Sina)dt), c<l

1 » (6.24)
— _ = ¢ —wot ((—4/¢?=1)
y(t) = k (1 2( =t 1)emntV
1 ;
S _q)e et/
+2(\/¢‘2—1 1)e )’ ¢>1

where we have takex(0) = 0. Note that for the lightly damped case & 1) we
have an oscillatory solution at frequenoy.

Step responses of systems with= 1 and different values aof are shown in
Figure 6.8. The shape of the response is determined, land the speed of the
response is determined ly (included in the time axis scaling): the response is
faster ifwg is larger.
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Figure 6.8: Step response for a second-order system. Normalized step respdios the
system (6.23) for =0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizoigakan scaled units
wot; higher values ofu, result in a faster response (rise time and settling time).

Inaddition to the explicit form of the solution, we can aleorgoute the properties
of the step response that were defined in Section 5.3. For egatogompute the
maximum overshoot for an underdamped system, we rewriteutpt as

y(t) = k(l - ﬁe‘m‘ sin(wgt + go)), (6.25)

wherep = arccog . The maximum overshoot will occur at the first time in which
the derivative ofy is zero, which can be shown to be

Mp = e7¢/V1=¢,
Similar computations can be done for the other charactesisfia step response.

Table 6.1 summarizes the calculations.
The frequency response for a second-order system can alsanimited ex-

Table 6.1: Properties of the step response for a second-order system with & 1.

Property Value c=05 ¢=1//2 (=1
Steady-state value k k k k
Rise time T =1/wp -€/¥  18/wy 2.2/wq 2.7 /awo
Overshoot M, =e "V 16% 4% 0%

Settling time (2%) Ts~ 4/ wo 8.0/wy  5.9/wp 5.8/wq
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Figure 6.9:Frequency response of a second-order system (6.23). (aMalger as a function
of ¢. (b) Frequency response as a functiog ofhe upper curve shows the gain ralilg and
the lower curve shows the phase shiffor small; there is a large peak in the magnitude of
the frequency response and a rapid change in phase centesed af. As ¢ is increased,
the magnitude of the peak drops and the phase changes more smobilegié and -180.

plicitly and is given by
kw% ka)g

Mel? = =
(iw)2+2¢wp(iw) + 0f  ©f —o? + 2if oo

A graphical illustration of the frequency response is giweRigure 6.9. Notice the

resonant peak that increases with decreagirighe peak is often characterized by

is Q-value defined axQ = 1/2¢. The properties of the frequency response for a

second-order system are summarized in Table 6.2.

Example 6.6 Drug administration
To illustrate the use of these formulas, consider the twogrtment model for
drug administration, described in Section 3.6. The dynanfitseosystem are

dc [—-ko—ki ki bo .
a_[ K —kZ]C+[O u, y_[O 1]x,

wherec; andc, are the concentrations of the drug in each compartnkerit,=
0,...,2 andby are parameters of the systemis the flow rate of the drug into

Table 6.2: Properties of the frequency response for a second-order systard w ¢ < 1.

Property Value ¢ =01 ¢=05 ¢=1/v2
Zero frequency gain Mg k k k
Bandwidth wp 154wg 1.27wg wo

Resonant peak gain M, 1.54k 127k k
Resonant frequency wm, wo 0.707w9 O
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Figure 6.10: Open loop versus closed loop drug administration. Comparison betwagn d
administration using a sequence of doses versus continuously monttegingncentrations
and adjusting the dosage continuously. In each case, the concentratampieximately)
maintained at the desired level, but the closed loop system has substansaiat@bility

in drug concentration.

compartment 1 anglis the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in eachartment, and we
would like to design a feedback law to maintain the output givan reference
valuer.

We choosg” = 0.9 to minimize the overshoot and choose the rise time to be
T, = 10 min. Using the formulas in Table 6.1, this gives a valuedgr= 0.22.
We can now compute the gain to place the eigenvalues at tbagidm. Setting
u=—Kx+ kr, the closed loop eigenvalues for the system satisfy

A(s) = —0.198 0.0959.

Choosingk; = —0.2027 andk, = 0.2005 gives the desired closed loop behavior.
Equation (6.13) gives the reference ghjin= 0.0645. The response of the con-
troller is shown in Figure 6.10 and compared with an open laagiegy involving
administering periodic doses of the drug. \%

Higher-Order Systems

Our emphasis so far has considered only second-order syskmhigher-order
systems, eigenvalue assignment is considerably more dliffespecially when
trying to account for the many trade-offs that are preseatfeedback design.
One of the other reasons why second-order systems play suchpeortant
role in feedback systems is that even for more complicatetsys the response is
often characterized by theiominant eigenvaluego define these more precisely,
consider a system with eigenvalugs j = 1, ..., n. We define thelamping ratio
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for a complex eigenvalug to be

—Rel
1Al

We say that a complex conjugate pair of eigenvalies’ is adominant pairif it
has the lowest damping ratio compared with all other eigergof the system.

Assuming that a system is stable, the dominant pair of e&jaag tends to be
the most important element of the response. To see thismasthat we have a
system in Jordan form with a simple Jordan block correspanth the dominant
pair of eigenvalues:

A
dz 2
24 J2 z+ Bu =Cz
T + ) y

J

(Note that the state may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of thparses from each
of the individual Jordan subsystems. As we see from Figurefér§ < 1 the
subsystem with the slowest response is precisely the ohelvdtsmallest damping
ratio. Hence, when we add the responses from each of thedndivsubsystems,
it is the dominant pair of eigenvalues that will be the priynfactor after the initial
transients due to the other terms in the solution die outl&\this simple analysis
does not always hold (e.g., if some nondominant terms hagenaoefficients
because of the particular form of the system), it is oftercéee that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment i ttie system be
reachable. In practice there are many other constraintsulsecthe selection of
eigenvalues has a strong effect on the magnitude and rateaafje of the control
signal. Large eigenvalues will in general require large argignals as well as
fast changes of the signals. The capability of the actuatdifsherefore impose
constraints on the possible location of closed loop eiderga These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance sya$esm example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whgeamics were given
in Example 6.2. The dynamics are given by

0 0 1 0 0
A |0 0 0 1 o 0
|0 mAPg/u —cd/u —ydim/u|’ Y
0 Mimgl/u —clm/u =y Mi/u Im/

whereM; = M 4+m, J = J + ml?, u = MJ, — m??2 and we have left andy
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nonzero. We use the following parameters for the systemidsponding roughly
to a human being balanced on a stabilizing cart):

M =10 kg m=80kg c¢c=0.1Ns/m
J =100 kg nt/s, | =1m, y =0.01Nms

The eigenvalues of the open loop dynamics are given4y0, 4.7, —1.94+2.7i.
We have verified already in Example 6.2 that the system is rééshand hence
we can use state feedback to stabilize the system and prawigsired level of
performance.

To decide where to place the closed loop eigenvalues, wethaté¢he closed
loop dynamics will roughly consist of two components: a sefast dynamics
that stabilize the pendulum in the inverted position andtatslower dynamics
that control the position of the cart. For the fast dynamies look to the natural
period of the pendulum (in the hanging-down position), whi given bywy =
vmgl/(J + ml2) ~ 2.1 rad/s. To provide a fast response we choose a dampiag rati
of ¢ = 0.5 and try to place the first pair of eigenvaluesiab ~ —¢wo £ wo ~
—1 + 2i, where we have used the approximation t{idt— ;2 ~ 1. For the slow
dynamics, we choose the damping ratio to bétd provide a small overshoot and
choose the natural frequency to b i give arise time of approximately 5 s. This
gives eigenvalues; 4 = —0.35+ 0.35i.

The controller consists of a feedback on the state and a fieealfd gain for the
reference input. The feedback gain is given by

g=9.8m/s.

K = [—15.6 1730 —50.1 443] ,

which can be computed using Theorem 6.3 or using the MATIpABce com-
mand. The feedforward gain ks = —1/(C(A — BK)™'B) = —15.5. The step
response for the resulting controller (applied to the liizeal system) is given in
Figure 6.11a. While the step response gives the desiredatbastics, the input
required (bottom left) is excessively large, almost thieees the force of gravity
at its peak.

To provide a more realistic response, we can redesign thiatien to have
slower dynamics. We see that the peak of the input force saruthe fast time scale,
and hence we choose to slow this down by a factor of 3, leatieglamping ratio
unchanged. We also slow down the second set of eigenvalitbshe intuition that
we should move the position of the cart more slowly than weikta the pendulum
dynamics. Leaving the damping ratio for the slow dynamicsanged at 0 and
changing the frequency to 1 (corresponding to a rise timgpfaimately 10 s),
the desired eigenvalues become

A ={-0.33+£0.66i, —0.18+ 0.18}.

The performance of the resulting controller is shown in Figufelb. \%

As we see from this example, it can be difficult to determine nette place
the eigenvalues using state feedback. This is one of theipailrionitations of this
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Figure 6.11: State feedback control of a balance system. The step response mifalleo
designed to give fast performance is shown in (a). Although the nsspoharacteristics
(top left) look very good, the input magnitude (bottom left) is very large. #s laggressive
controller is shown in (b). Here the response time is slowed down, but e magnitude
is much more reasonable. Both step responses are applied to the lidebnizenics.

approach, especially for systems of higher dimension.ragdtcontrol techniques,
such as the linear quadratic regulator problem discusseil @@ one approach
that is available. One can also focus on the frequency regpion performing the
design, which is the subject of Chapters 8-12.

Linear Quadratic Regulators

As an alternative to selecting the closed loop eigenvaloations to accomplish a
certain objective, the gains for a state feedback controdia instead be chosen is
by attempting to optimize a cost function. This can be paldityuseful in helping
balance the performance of the system with the magnitudeeoiinputs required
to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problemone of the
most common optimal control problems. Given a multi-inpogar system

dx
a:Ax+Bu, x e R", ueRP,

we attempt to minimize the quadratic cost function

J= /Oo (x"Qux 4+ u" Quu) dt, (6.26)
0

whereQy > 0 andQ, > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimensions. This cost function represetreda-off between the
distance of the state from the origin and the cost of the obimput. By choosing
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the matriceQy and Q,, we can balance the rate of convergence of the solutions
with the cost of the control.
The solution to the LQR problem is given by a linear control ldihe form

u=-Q;'B"Px,
whereP € R™" is a positive definite, symmetric matrix that satisfies the &égoa
PA+A"P-PBQ'BTP + Q,=0. (6.27)

Equation (6.27) is called thalgebraic Riccati equatioand can be solved numer-
ically (e.g., using thé gr command in MATLAB).

One of the key questions in LQR design is how to choose the we@hand
Qu. To guarantee that a solution exists, we must h@ye> 0 andQ, > 0. In
addition, there are certain “observability” conditions Qg that limit its choice.
Here we assum@®, > 0 to ensure that solutions to the algebraic Riccati equation
always exist.

To choose specific values for the cost function weightsandQ,,, we must use
our knowledge of the system we are trying to control. A patéidy simple choice
is to use diagonal weights

01 0 p1 0
QX = T . s QU = ’ .
0 qn o pn

For this choice ofQ« andQ,, the individual diagonal elements describe how much
each state and input (squared) should contribute to thealbvarst. Hence, we
can take states that should remain small and attach highghtwelues to them.
Similarly, we can penalize an input versus the states and iojnts through choice

of the corresponding input weigjat

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the system (2.26), writtestate space form as

2 0
0
Z5
dz_ Z6 1 0 1
Fri —gsin@—%zzl + | 5 cos0 Fp— Zsind F,
—gcosd — £z L sind F1 + = cost F
0 r
R

(see Example 5.4). The system parametersnare: 4 kg, J = 0.0475 kg m,
r =0.25m,g = 9.8 m/¢, ¢ = 0.05 N s/m, which corresponds to a scaled model
of the system. The equilibrium point for the system is giverFpy= 0, F, = mg
andze = (Xe, Ye, 0,0, 0, 0). To derive the linearized model near an equilibrium
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point, we compute the linearization according to equat®i4):

(0 0 O 1 0 0) [ O 0 ]
00 O 0 1 0 0 0
A— 00 O 0 0 1 B — 0 0
~ 10 0 —g —-c¢/m 0 0] I “11l/m 0 |’
00 O 0 —c/m O 0 1I/m
0 0 O 0 0 0 (r/J 0 |
(1 0 0 0 0 Q (0 O
C:_o10000’ D:_oo]'
Lettingz = z — ze ando = U — U, the linearized system is given by
dz
at + bo, y

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, vite wre cost function
as

3= / (@ Quz+ 0T Qo )dt,
0

wherez = z— z, andv = U — U represent the local coordinates around the desired
equilibrium point(ze, ue). We begin with diagonal matrices for the state and input
costs:

1 00 0 0 Q
01 00O0O
001000 10
“=loo0oo0 10 0" Q":[o 1]‘
0 00OO0T10
(0 0 0 0 0 1
This gives a control law of the form = —K z, which can then be used to derive

the control law in terms of the original variables:
U=10+Ue=—K(Z— Z) + Ue.

As computed in Example 5.4, the equilibrium points haye= (0, mg) andz, =

(Xe, Ye, 0,0, 0, 0). The response of the controller to a step change in the desired
position is shown in Figure 6.12a. The response can be tunedljogtimg the
weights in the LQR cost. Figure 6.12b shows the response ir thiezction for
different choices of the weight. \%

Linear quadratic regulators can also be designed for destiree systems, as
illustrated by the following example.

Example 6.9 Web server control

Consider the web server example given in Section 3.4, whaseeete-time model
for the system was given. We wish to design a control law tk& the server
parameters so that the average server processor load isanaahat a desired
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Figure 6.12: Step response for a vectored thrust aircraft. The plot in (a) shows &inely
positions of the aircraft when it is commanded to move 1 m in each diredtidiv) the x
motion is shown for control weights = 1, 1%, 10*. A higher weight of the input term in
the cost function causes a more sluggish response.

level. Since other processes may be running on the servewdheserver must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 6\/&.focus on
the special case where we wish to control only the processar lising both the
KeepAl i ve andMaxC i ent s parameters. We also include a “disturbance” on
the measured load that represents the use of the procegslag by other processes
running on the server. The system has the same basic strastilvegeneric control
system in Figure 6.5, with the variation that the disturbasrters after the process
dynamics.

The dynamics of the system are given by a set of differencetiemqsaof the
form

X[k + 1] = AX[K] + BUlK],  YcpdK] = CepuX[K] + depul K],

wherex = (Xcpu, Xmem) IS the statey = (Uka, Umc) is the inputdc,, is the processing
load from other processes on the computer ygglis the total processor load.
We choose our controller to be a state feedback controlldreoform

u=—K [ pru] + krrcpu,

Xmem

Feedback d
Precompensation Controller Server
cpu € u n y
— k C - P -
—1 |-

Figure 6.13: Feedback control of a web server. The controller sets the values efdhe
server parameters based on the difference between the nominalgters. (determined by
k.r) and the current loag,,. The disturbance represents the load due to other processes
running on the server. Note that the measurement is taken after thebdisterso that we
measure the total load on the server.
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whererp, is the desired processor load. Note that we have used theurseas
processor loag,, instead of the state to ensure that we adjust the systemtmpera
based on the actual load. (This modification is necessary becdithe nonstandard
way in which the disturbance enters the process dynamics.)

The feedback gain matriX can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, tivégftost function given

by
_[5 0 _ [1/502 0
Qu= [o 1]’ Q“—[ 0 1/1000’-]'

The cost function for the stat®, is chosen so that we place more emphasis on
the processor load versus the memory use. The cost functiaindanputsQ,

is chosen so as to normalize the two inputs, witkezpAl i ve timeout of 50 s
having the same weightad/axCl i ent s value of 1000. These values are squared
since the cost associated with the inputs is givemb@,u. Using the dynamics

in Section 3.4 and thél gr command in MATLAB, the resulting gains become

« _ [-223 101
= | 3827 777]"

As in the case of a continuous-time control system, the eefar gaink; is
chosen to yield the desired equilibrium point for the syst8ettingx[k + 1] =
X[K] = Xe, the steady-state equilibrium point and output for a giwfanence input
r are given by

Xe = (A— BK)Xe + Bkr, Ve = CXe.

This is a matrix differential equation in whidh is a column vector that sets the
two inputs values based on the desired reference. If we tekddsired output to
be of the formy, = (r, 0), then we must solve

[é] =C(A—BK —1)"'Bk.

Solving this equation fok., we obtain

o~ (cm-r-e)” (3] - 222

The dynamics of the closed loop system are illustrated in Ei§ur4. We apply
a change in load ofi;,, = 0.3 at timet = 10 s, forcing the controller to adjust
the operation of the server to attempt to maintain the deédoad at 057. Note
that both thekeepAl i ve andMaxCl i ent s parameters are adjusted. Although
the load is decreased, it remains approximately 0.2 ab@vddhkired steady state.
(Better results can be obtained using the techniques ofeakiesection.) \%
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Figure 6.14:Web server with LQR control. The plotin (a) shows the state of the systelerun

a change in external load appliedkat= 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce tha effthe disturbance

by approximately 40%.

6.4 Integral Action

Controllers based on state feedback achieve the corredysttate response to
command signals by careful calibration of the gairHowever, one of the primary
uses of feedback is to allow good performance in the presehcmcertainty,
and hence requiring that we have@tactmodel of the process is undesirable. An
alternative to calibration is to make use of integral feetthan which the controller
uses an integrator to provide zero steady-state error. T$ie bancept of integral
feedback was given in Section 1.5 and in Section 3.1; here wdda@ more
complete description and analysis.

The basic approach in integral feedback is to create a stige controller
that computes the integral of the error signal, which is teed as a feedback term.
We do this by augmenting the description of the system withva statez:

d [x Ax + Bu Ax + Bu
TEN e B Coa B
The statez is seen to be the integral of the difference between the ttualkautput
y and desired output Note that if we find a compensator that stabilizes the system,
then we will necessarily have= 0 in steady state and henge-=r in steady state.

Given the augmented system, we design a state space centrothe usual
fashion, with a control law of the form

u=—-Kx—-kz+kr, (6.29)

whereK is the usual state feedback terinjs the integral term anl, is used to
set the nominal input for the desired steady state. The negudquilibrium point
for the system is given as

Xe=—(A—BK)"B(kr —kiZ).

Note that the value df, is not specified but rather will automatically settle to the
value that makeg = y — r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of teeip values ofA,
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B andK as long as the system is stable (which can be done througb@gie
choice ofK andk;).
The final compensator is given by

dz
= —Kx—k r —=y-r
LI X |Z+k|'3 dt y >

where we have now included the dynamics of the integratoagspthe specifica-
tion of the controller. This type of compensator is known dg@amic compensator
since it has its own internal dynamics. The following exaniiilistrates the basic
approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in SectitraBd considered fur-
therin Example 5.11. The linearized dynamics of the processwaran equilibrium
pointwe, Ue are given by

dx

a:ax—bge+bw, Y =10 =X+ ve,

wherex = v —ve, w = U—Ug, Mis the mass of the car adds the angle of the road.
The constana depends on the throttle characteristic and is given in Exabyll.
If we augment the system with an integrator, the processrdigssbecome

dx dz
a:ax_bge+bw, a: _Ur:Ue+X_Ur,

or, in state space form,

)18 [ ][9]0

Note that when the system is at equilibrium, we have that 0, which implies
that the vehicle speed = ve + X should be equal to the desired reference speed
vy . Our controller will be of the form

dz

Friml Al u=—kpx —kiz+kor,

and the gaingp, ki andk; will be chosen to stabilize the system and provide the
correct input for the reference speed.
Assume that we wish to design the closed loop system to havehtiracteristic
polynomial
A(S) = s+ ;S + ay.

Setting the disturbancg = 0, the characteristic polynomial of the closed loop
system is given by
det(sl — (A— BK)) = s* + (bkp — a)s + bk,
and hence we set
a+a
k, =
p b ’

k=-=, k=-1/(C(A-BK)'B)= %.
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Figure 6.15:Velocity and throttle for a car with cruise control based on proportioreslied)
and PI control (solid). The PI controller is able to adjust the throttle to cosgte for the
effect of the hill and maintain the speed at the reference valug €f25 m/s.

The resulting controller stabilizes the system and henegbid = y — v, to zero,
resulting in perfect tracking. Notice that even if we haverab error in the values
of the parameters defining the system, as long as the clospaigenvalues are
still stable, then the tracking error will approach zero. Jltive exact calibration
required in our previous approach (usikg is not needed here. Indeed, we can
even choosg&; = 0 and let the feedback controller do all of the work.

Integral feedback can also be used to compensate for comBsinrbances.
Figure 6.15 shows the results of a simulation in which the caoenters a hill
with angled = 4° att = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that thevetotsty converges
to the reference speed. This ability to handle constant riiafices is a general
property of controllers with integral feedback (see Exer&ig). \%

6.5 Further Reading

The importance of state models and state feedback was déstirsthe seminal
paper by Kalman [Kal60], where the state feedback gain wéasdd by solving
an optimization problem that minimized a quadratic losscfiom. The notions
of reachability and observability (Chapter 7) are also dud&alman [Kal61b]
(see also [Gil63, KHN63]). Kalman defines controllabilitydareachability as the
ability to reach the origin and an arbitrary state, respebttiKFA69]. We note that
in most textbooks the term “controllability” is used insdeaf “reachability,” but
we prefer the latter term because it is more descriptivesfuhdamental property
of being able to reach arbitrary states. Most undergradieateooks on control
contain material on state space systems, including, fanple Franklin, Powell
and Emami-Naeini [FPENO5] and Ogata [Oga01l]. Friedland’s te&ld&ri04]
covers the material in the previous, current and next chapt@nsiderable detail,
including the topic of optimal control.



198 CHAPTER 6. STATE FEEDBACK

Exercises

54 (Double integrator) Consider the double integrator. Findeggwise constant
control strategy that drives the system from the origin togtatex = (1, 1).

55 (Reachability from nonzero initial state) Extend the argohie Section 6.1 to
show that if a system is reachable from an initial state ab zieis reachable from
a nonzero initial state.

56 (Unreachable systems) Consider the system shown in Fig8réAgite the
dynamics of the two systems as

dx dz
— = AX+ Bu — = Az+ Bu.
at TR g +

If x andz have the same initial condition, they will always have thmeastate
regardless of the input that is applied. Show that this veslahe definition of
reachability and further show that the reachability makixis not full rank.

57 (Integral feedback for rejecting constant disturbances)ditier a linear system
of the form

dx
a:Ax+Bu+Fd, y = CX

whereuis ascalar and is a disturbance that enters the system through a distuebanc
vectorF € R". Assume that the matriR is invertible and the zero frequency gain
C A~!B is nonzero. Show that integral feedback can be used to comiecius a
constant disturbance by giving zero steady-state outpot even wherd # 0.

58 (Rear-steered bicycle) A simple model for a bicycle wasmglyg equation (3.5)
in Section 3.2. A model for a bicycle with rear-wheel steeiimg@btained by re-
versing the sign of the velocity in the model. Determine thieditions under which
this systems is reachable and explain any situations inlwthie system is not
reachable.

59 (Characteristic polynomial for reachable canonical fo8hpw that the char-
acteristic polynomial for a system in reachable canonigahfis given by equa-
tion (6.7) and that

d"z, d"-1z dz _d™ Ry

am + a1 dt—1 + --‘+an—1a +anZ = dtnk’
wherez, is thekth state.

60 (Reachability matrix for reachable canonical form) Comsia system in reach-
able canonical form. Show that the inverse of the reachgqlildtrix is given by

(1 a a - an )
0 1 -+ An-1

Wil=1]0 0 1

r

: t. g
(0 0 0 --- 1
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61 (Non-maintainable equilibria) Consider the normalizeddeloof a pendulum
on a cart
d?x d?0
az ~ " de
wherex is cart position and is pendulum angle. Can the angle= 6, for 6y # 0
be maintained?

=-0+u,

62 (Eigenvalue assignment for unreachable system) Considetygiem

dx 0 1 1
a:[o 0]x+[0]u, y=[1 O]x,
with the control law
U= —kix; — koo + K.

Show that eigenvalues of the system cannot be assigned tmayhbialues.

63 (Cayley—Hamilton theorem) L&k € R™*" be a matrix with characteristic poly-
nomial 1(s) = det(s| — A) = s" + a;s" 1 + - - + a,_1S + a,. Assume that the
matrix A can be diagonalized and show that it satisfies

AA) = A"+ a A" a1 A+ anl =0,

Use the result to show th#&, k > n, can be rewritten in terms of powers Afof
order less than.

64 (Motor drive) Consider the normalized model of the motovein Exercise 16.
Using the following normalized parameters,

J; =10/9, J, =10, c=0.1, k=1, ki =1,

verify that the eigenvalues of the open loop system af 80.05+ i. Design a
state feedback that gives a closed loop system with eigeesal, —1 and—1+i.
This choice implies that the oscillatory eigenvalues wilvizell damped and that
the eigenvalues at the origin are replaced by eigenvaluéseonegative real axis.
Simulate the responses of the closed loop system to stepehanthe command
signal ford, and a step change in a disturbance torque on the second rotor.

65 (Whipple bicycle model) Consider the Whipple bicycle mogiken by equa-
tion (3.7) in Section 3.2. Using the parameters from the comngpaweb site, the
model is unstable at the velocity= 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 130+ 4.60i. Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 addt i. Simulate the response of
the system to a step change in the steering reference of €ad02
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66 (Atomic force microscope) Consider the model of an AFM in eahtmode
given in Example 5.9:

0 1 0 0 0
dx | —ke/(Mi+mp) —Co/(Mi+my) 1/my 0 X+ 0 y
dt 0 0 0 w3 o™
0 0 —w3 —2{3603 w3
y= ma mko myCp 1 0] .
mp+my LmMp+mey mg+m;

Use the MATLAB scriptaf m dat a. mfrom the companion web site to generate the
system matrices.

(a) Compute the reachability matrix of the system and nuradyi determine its
rank. Scale the model by using milliseconds instead of secasiime units. Repeat
the calculation of the reachability matrix and its rank.

(b) Find a state feedback controller that gives a closed lgstem with complex
poles having damping ratio 0.707. Use the scaled model éocdmputations.

(c) Compute state feedback gains using linear quadratitraoiExperiment by
using different weights. Compute the gains tar= g = 0,93 = g2 = 1 and
p1 = 0.1 and explain the result. Chooge= g, = gz = g4 = 1 and explore what
happens to the feedback gains and closed loop eigenvaliwes yau change:.
Use the scaled system for this computation.

67 Consider the second-order system

d?y dy du
— 4+ 05—= =a— .
a2 T Pq YT g T

Let the initial conditions be zero.

(&) Show that the initial slope of the unit step response Biscuss what it means
whena < 0.

(b) Show that there are points on the unit step response thahariant witha.
Discuss qualitatively the effect of the paramedtam the solution.

(c) Simulate the system and explore the effea oh the rise time and overshoot.

68 (Bryson’s rule) Bryson and Ho [BH75] have suggested th@faihg method for
choosing the matrice®, andQ, in equation (6.26). Start by choosiqy andQ,

as diagonal matrices whose elements are the inverses ajubess of the maxima

of the corresponding variables. Then modify the elementdtain a compromise
among response time, damping and control effort. Applyriéshod to the motor
drive in Exercise 64. Assume that the largest values ofgthend ¢, are 1, the
largest values op; andg, are 2 and the largest control signal is 10. Simulate the
closed loop system fap,(0) = 1 and all other states are initialized to 0. Explore
the effects of different values of the diagonal elementJgrandQ,.



Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages:utatign of the
“best approximation”x(t;) of the state from knowledge ofty fort < t; and computation of
u(ty) givenx(ty).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 1960 [K3I6

In this chapter we show how to use output feedback to modiéydynamics
of the system through the use of observers. We introducedheept of observ-
ability and show that if a system is observable, it is posstblrecover the state
from measurements of the inputs and outputs to the systenth&¥eshow how to
design a controller with feedback from the observer stateimdportant concept is
the separation principle quoted above, which is also provld structure of the
controllers derived in this chapter is quite general andisined by many other
design methods.

7.1 Observability

In Section 6.2 of the previous chapter it was shown that it issjiide to find a

state feedback law that gives desired closed loop eigessglwovided that the
system is reachable and that all the states are measurechdyr situations, it

is highly unrealistic to assume that all the states are nmmedsin this section we
investigate how the state can be estimated by using a mativatmaodel and a
few measurements. It will be shown that computation of thé&stcan be carried
out by a dynamical system called abserver

Definition of Observability

Consider a system described by a set of differential equsitio

% = Ax+ Bu, y =Cx+ Du, (7.1)

wherex € R" is the statey € RP the input andy € RY the measured output. We
wish to estimate the state of the system from its inputs amplubs, as illustrated

in Figure 7.1. In some situations we will assume that theranig one measured
signal, i.e., that the signalis a scalar and tha&t is a (row) vector. This signal may
be corrupted by noise, although we shall start by considering the noise-free.case
We write X for the state estimate given by the observer.
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n

Process
u Xx=Ax+Bu| Y X
- Observer —

y=Cx+ Du

A

Figure 7.1: Block diagram for an observer. The observer uses the processursezenty
(possibly corrupted by nois@) and the inputi to estimate the current state of the process,
denotedk.

Definition 7.1 (Observability) A linear system i®bservabléf forany T > Oitis
possible to determine the state of the systdifi) through measurements gft)
andu(t) on the interval [0T].

The definition above holds for nonlinear systems as well, aaddbults dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many importaptieations, even
outside feedback systems. If a system is observable, tieea &éne no “hidden” dy-
namics inside it; we can understand everything that is goimtiprough observation
(over time) of the inputs and outputs. As we shall see, thblpro of observability
is of significant practical interest because it will detereniha set of sensors is
sufficient for controlling a system. Sensors combined with theraatical model
can also be viewed as a “virtual sensor” that gives inforamaéibout variables that
are not measured directly. The process of reconciling ssginain many sensors
with mathematical models is also callsensor fusion

Testing for Observability

When discussing reachability in the last chapter, we négethe output and fo-
cused on the state. Similarly, it is convenient here to ilytiaeglect the input and
focus on the autonomous system

dx

dt
We wish to understand when it is possible to determine the &tam observations
of the output.

The output itself gives the projection of the state on vediwasare rows of the
matrix C. The observability problem can immediately be solved if tlarm C is
invertible. If the matrix is not invertible, we can take detives of the output to
obtain

AX, y=CXx. (7.2)

dy dx
— =C— =CAXx
dt =~ dt %

From the derivative of the output we thus get the projectiotihefstate on vectors
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that are rows of the matri€ A. Proceeding in this way, we get

y C
y CA
y | =| S~ |x (7.3)
[y cA-1
We thus find that the state can be determined ifabhservability matrix
C
CA

W,=| CA (7.4)

C An—l

hasn independent rows. It turns out that we need not consideranyadives higher
thann — 1 (this is an application of the Cayley—Hamilton theorem |[fEise 63]).

The calculation can easily be extended to systems with inpuesstate is then
given by a linear combination of inputs and outputs and thigiher derivatives.
The observability criterion is unchanged. We leave this easan exercise for the
reader.

In practice, differentiation of the output can give largeoes when there is
measurement noise, and therefore the method sketched sbowe particularly
practical. We will address this issue in more detail in thetisection, but for now
we have the following basic result.

Theorem 7.1(Observability rank condition)A linear system of the forify.1) is
observable if and only if the observability matrix ¥ full rank.

Proof. The sufficiency of the observability rank condition followstrin the analysis@
above. To prove necessity, suppose that the system is albdebut\\, is not full
rank. Leto € R", v # 0, be a vector in the null space W, so thatWyo = 0. If
we letx(0) = o be the initial condition for the system and choase: 0, then the
output is given byy(t) = Ce*'v. Sincee” can be written as a power seriesAn
and sinceA" and higher powers can be rewritten in terms of lower powews (@fy
the Cayley—Hamilton theorem), it follows that the outputl Wwe identically zero
(the reader should fill in the missing steps if this is not gleldowever, if both the
input and output of the system are 0, then a valid estimateso$tate iX = 0 for
all time, which is clearly incorrect sinog0) = v # 0. Hence by contradiction we
must have that\, is full rank if the system is observable. O

Example 7.1 Compartment model
Consider the two-compartment model in Figure 3.18a, butasgshat the concen-
tration in the first compartment can be measured. The systeps@ided by the
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Figure 7.2: An unobservable system. Two identical subsystems have outputs thtatstdher
to form the overall system output. The individual states of the subsystenotbe determined
since the contributions of each to the output are not distinguishable. Thet cliagram on
the right is an example of such a system.

linear system

de [-ko—ki ki bo .
a_[ K —kz]C+[0 u, y = [1 O]x.

The first compartment represents the drug concentration ibltioel plasma, and
the second compartment the drug concentration in the tisheee it is active. To

determine if it is possible to find the concentration in theusscompartment from
a measurement of blood plasma, we investigate the obsétyalbithe system by

forming the observability matrix

C 1 0
o= [ca] = [t )

The rows are linearly independentkif # 0, and under this condition it is thus
possible to determine the concentration of the drug in thieeacompartment from
measurements of the drug concentration in the blood. \%

It is useful to have an understanding of the mechanisms th#&er system
unobservable. Such a system is shown in Figure 7.2. The systemmisosed of
two identical systems whose outputs are added. It seenitiviatyclear that itis not
possible to deduce the states from the output since we cdedate the individual
output contributions from the sum. This can also be seen fityrfiexercise 70).

Observable Canonical Form

As in the case of reachability, certain canonical forms lélluseful in studying ob-
servability. A linear single-input, single-output stap@mse system is inbservable
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Figure 7.3: Block diagram of a system in observable canonical form. The states sy#tem
are represented by individual integrators whose inputs are a weight@uation of the next
integrator in the chain, the first state (rightmost integrator) and the systam ifhe output
is a combination of the first state and the input.

canonical formif its dynamics are given by

[ —ay 10 0 b1
—a 0 1 0 o))
dz_f . z+| : |u
dt | = N
—-an-1 0 O 1 Pn-1
| —a, 0 0 0 b
y=[1 00 - 0]z+Du

The definition can be extended to systems with many inputs;nhedifference is
that the vector multiplyingi is replaced by a matrix.

Figure 7.3 is a block diagram for a system in observable caabform. As
in the case of reachable canonical form, we see that the deefidn the system
description appear directly in the block diagram. The charéstic polynomial for
a system in observable canonical form is

n-1

A8) =s"+as" "+ +a,_1S+ an. (7.5)

It is possible to reason about the observability of a systeabservable canonical
form by studying the block diagram. If the inputand the outpuy are available,
the statez; can clearly be computed. Differentiatizg, we obtain the input to the
integrator that generates and we can now obtam = z;+a;2; —b;u. Proceeding
in this way, we can compute all states. The computation wallyéver, require that
the signals be differentiated.

To check observability more formally, we compute the obakeility matrix for
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a system in observable canonical form, which is given by

1 0O 0 ... 0
—ap 1 0O ... 0

W, = -2 —ap —a 1 ol .
* * o1

where * represents an entry whose exact value is not impoitae rows of this
matrix are linearly independent (since it is lower triaregyl and henca\, is
full rank. A straightforward but tedious calculation shothat the inverse of the
observability matrix has a simple form given by

1 0 o -.- 0

a 1 o --- 0

Wo—l — ao aq 1 ... 0
-1 82 a3 --- 1

As inthe case of reachability, it turns out that if a systeotiservable then there
always exists a transformatidnthat converts the system into observable canonical
form. This is useful for proofs since it lets us assume thatstesy is in reachable
canonical form without any loss of generality. The reachableonical form may
be poorly conditioned numerically.

7.2 State Estimation

Having defined the concept of observability, we now returnh® question of
how to construct an observer for a system. We will look foresleers that can be
represented as a linear dynamical system that takes thesiapd outputs of the
system we are observing and produces an estimate of thersystate. That is,
we wish to construct a dynamical system of the form

dx

— = FX 4+ Gu+ Hy,

dt + + Ay
whereu andy are the input and output of the original system &nd R" is an
estimate of the state with the property ti@t) — x(t) ast — oo.

The Observer
We consider the system in equation (7.1) witlset to zero to simplify the expo-
sition:

d
d_)t( = AX+ Bu, y =Cx. (7.6)
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We can attempt to determine the state simply by simulatiegetiuations with the
correct input. An estimate of the state is then given by

dx R
i AX 4 Bu. (7.7)
To find the properties of this estimate, introduce the estonarrork = x — X. It
follows from equations (7.6) and (7.7) that

dx .

T AX.
If matrix A has all its eigenvalues in the left half-plane, the ekavill go to zero,
and hence equation (7.7) is a dynamical system whose ouipuweyes to the state
of the system (7.6).

The observer given by equation (7.7) uses only the procesgsinfhe measured
signal does notappear in the equation. We must also reqairthe system be stable,
and essentially our estimator converges because the $tad¢éhahe observer and
the estimator are going zero. This is not very useful in a cbdesign context since
we want to have our estimate converge quickly to a nonzete stathat we can
make use of it in our controller. We will therefore attempttodify the observer
so that the output is used and its convergence propertiesecdasigned to be fast
relative to the system'’s dynamics. This version will alsokfor unstable systems.

Consider the observer

% = AX+ Bu+ L(y — CX). (7.8)

This can be considered as a generalization of equation [#eédback from the
measured outputis provided by adding the térfy— CX), which is proportional to
the difference between the observed output and the outpdigted by the observer.
It follows from equations (7.6) and (7.8) that

dx -

T (A—=LOX.
If the matrix L can be chosen in such a way that the makix LC has eigen-
values with negative real parts, the erkowill go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a statedback and
finding the observer. State feedback design by eigenvalugrasent is equivalent
to finding a matrixk so thatA— BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrso thatA — LC has
given eigenvalues. Since the eigenvalues of a matrix andhitspose are the same
we can establish the following equivalences:

Ao AT, BoCl, KoL, Wow.

The observer design problem s theal of the state feedback design problem. Using
the results of Theorem 6.3, we get the following theorem oroies design.
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Theorem 7.2(Observer design by eigenvalue assignme@®nsider the system
given by

dx

qi Ax+ Bu, y=Cx, (7.9)
with one input and one output. L&fs) = s" + a;s"* + - - - + a,_1S + a, be the
characteristic polynomial for A. If the system is obserealthen the dynamical
system

% = AX 4+ Bu+ L(y — CX) (7.10)
is an observer for the system, with L chosen as
Pr—a

L= woi, | P2 R % (7.11)
Pn - an

and the matrices \Wand W, given by

(1 0 0o .- 0 0O
C a 1 o .- 0 O
CA - dp g 1 0 0
VVo - . 5 Wo - .
CA™t a2 @n-3 an-s 10
[@h-1 @2 a3 ... a 1]

The resulting observer errok = x — X is governed by a differential equation
having the characteristic polynomial

ps) =s"+ pis" T+ - + pp.

The dynamical system (7.10) is called aloserverfor (the states of) the sys-
tem (7.9) because it will generate an approximation of theestof the system from
its inputs and outputs. This form of an observer is a much meeéuliform than
the one given by pure differentiation in equation (7.3).

Example 7.2 Compartment model
Consider the compartment model in Example 7.1, which is cbarized by the

matrices
| —ko—ki ki | bo _
A_[ ” —kz]’ B_[O], C_[l o].

The observability matrix was computed in Example 7.1, whereoveluded that
the system was observablekif £ 0. The dynamics matrix has the characteristic
polynomial

s+ko+ki kg

A(s) = det[ —k S+ ko

] = &% 4 (Ko + Ky + ko)s + koko.



7.2. STATE ESTIMATION 209

actual |
- — — estimated

o o
[6) )]
T

0.4"” \S ~ T
0.3p N 1

Concentratiorey, ¢, [g/L]
/

o o
= N
=

i

1

OO
N
~F
o

Timet [min]

Figure 7.4: Observer for a two compartment system. A two compartment modebvgrsbn
the left. The observer measures the input concentratenmd output concentration= c; to
determine the compartment concentrations, shown on the right. Theomaerdrations are
shown by solid lines and the estimates generated by the observer byl diasise

Let the desired characteristic polynomial of the observes®e p;s + p,, and
equation (7.1) gives the observer gain

L O]_llpl—ko—kl—kz

1 0] 1
—ko—ki kg ko+ki+k 1 P2 — Kok
_ p1 — ko — ki — ko

(P2 — pika + kiko +K3)/ky |

Notice that the observability conditidky # 0 is essential. The behavior of the
observer is illustrated by the simulation in Figure 7.4b.ibtow the observed
concentrations approach the true concentrations. \%

The observer is a dynamical system whose inputs are the griogaegu and the
process outpuwy. The rate of change of the estimate is composed of two ternes. On
term, AX + Bu, is the rate of change computed from the model Witubstituted
for x. The other terml.(y — ¥), is proportional to the differena= y — y between
measured output and its estimat§ = CX. The observer gaih is a matrix that
tells how the erroeis weighted and distributed among the states. The obsemgr th
combines measurements with a dynamical model of the sy#duack diagram
of the observer is shown in Figure 7.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introddice elements of the
observer gairL as unknown parameters and solve for the values required/¢o gi
the desired characteristic polynomial, as illustratechanfbllowing example.

Example 7.3 Vehicle steering
The normalized linear model for vehicle steering derived iafBgles 5.12 and 6.4
gives the following state space model dynamics relatirgyédipath deviatioly to
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|
|
|
|
|
|
<>

Figure 7.5: Block diagram of the observer. The observer takes the signat&lu as inputs
and produces an estimate Notice that the observer contains a copy of the process model
that is driven byy — y through the observer gain.

steering angle:

3—?: [8 é] X+ [ji] u, y = [1 0] X. (7.12)

Recall that the state; represents the lateral path deviation and thaepresents
the turning rate. We will now derive an observer that usessifsgem model to
determine the turning rate from the measured path deviation

The observability matrix is

10
WO:[O 1]:

i.e., the identity matrix. The system is thus observable,thacigenvalue assign-
ment problem can be solved. We have

!
A-LC= [_|2 0],

which has the characteristic polynomial

S+|1 -1

det(sl — A+ LC) :det[ |
2 S

] =Sz+|13+|2.

Assuming that we want to have an observer with the charatitepiolynomial
$*+ pis+ P2 = S + 2ow0S + 0,

the observer gains should be chosen as

l1 = p1 = 200w, 2= po =2

The observer is then
dx

A o\ 0 1] . Y |1 A
a_Ax+Bu+L(y—Cx)_[0 O]x+[1]u+[|2](y—x1).
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Figure 7.6: Simulation of an observer for a vehicle driving on a curvy road (lefie ®bserver
has an initial velocity error. The plots on the middle show the lateral deviatiche lateral
velocity x, by solid lines and their estimatég andx, by dashed lines. The plots on the right
show the estimation errors.

A simulation of the observer for a vehicle driving on a curegd is simulated in
Figure 7.6. The vehicle length is the time unit in the normaizedel. The figure
shows that the observer error settles in about 3 vehicleheng \%

For systems of high order we have to use numerical calcustidhe duality
between the design of a state feedback and the design of arvebmeans that the
computer algorithms for state feedback can also be usedhéooliserver design;
we simply use the transpose of the dynamics matrix and theubutatrix. The
MATLAB commandacker , which essentially is a direct implementation of the
calculations given in Theorem 7.2, can be used for systentsamé output. The
MATLAB commandpl ace can be used for systems with many outputs. It is also
better conditioned numerically.

7.3 Control Using Estimated State

In this section we will consider a state space system of tira fo

dX—Ax—i- Bu
dt ’

Notice that we have assumed that there is no direct term isytiiem D = 0).
This is often a realistic assumption. The presence of a diegct in combination
with a controller having proportional action creates arehlgic loop, which will
be discussed in Section 8.3. The problem can be solved eveerd th a direct
term, but the calculations are more complicated.

We wish to design a feedback controller for the system whehg the output
is measured. As before, we will assume thatndy are scalars. We also assume
that the system is reachable and observable. In Chapter 6unel fa feedback of
the form

y =Cx. (7.13)

U= —KXx+Kkr
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for the case that all states could be measured, and in SecHamerdeveloped an
observer that can generate estimates of the &thtesed on inputs and outputs. In
this section we will combine the ideas of these sections todiiegdback that gives
desired closed loop eigenvalues for systems where onlyutsigye available for
feedback.

If all states are not measurable, it seems reasonable toarfgedback

u=—-Kx+kr, (7.14)
whereX is the output of an observer of the state, i.e.,
dx . R
Tl AX + Bu+ L(y — CX). (7.15)

Since the system (7.13) and the observer (7.15) are bothtefditaensiom, the
closed loop system has state dimensionagth state &, X). The evolution of the
states is described by equations (7.13)—(7.15). To an#ilyzelosed loop system,
the state variabl& is replaced by

X=X-—X. (7.16)
Subtraction of equation (7.15) from equation (7.13) gives
(;—): =AX— AX—L(Cx—CX)=AX—LCX=(A—-LO)X.

Returning to the process dynamics, introducinfrom equation (7.14) into
equation (7.13) and using equation (7.16) to eliminatgves

dx
a:Ax+ Bu= Ax — BKX + Bkr = Ax— BK(x — X) + Bkr

= (A—-BK)x+ BKX + Bkr.

The closed loop system is thus governed by

d [x A—-BK BK X Bk

TR AT LIS
Notice that the stat®, representing the observer error, is not affected by therref
ence signal. This is desirable since we do not want the reference sigrgiterate
observer errors.

Since the dynamics matrix is block diagonal, we find that theattaristic
polynomial of the closed loop system is

A(s) = det(sl — A+ BK)det(sl — A+ LC).

This polynomial is a product of two terms: the characteriptitynomial of the
closed loop system obtained with state feedback and theacteaistic polyno-
mial of the observer error. The feedback (7.14) that was rated heuristically
thus provides a neat solution to the eigenvalue assignnmebhtgm. The result is
summarized as follows.
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Figure 7.7: Block diagram of an observer-based control system. The obsesesrthe mea-
sured outputy and the inputu to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. Thettentonsists of the
observer and the state feedback; the observer is identical to that ire Hidur

Theorem 7.3(Eigenvalue assignment by output feedbadRpnsider the system

dx
—=A B =Cx.
dt X+Bu Y X
The controller described by
dg
d—f — AR+ BU+L(y—CR) = (A—BK — LC)R + Ly,
u=—KxX+kr

gives a closed loop system with the characteristic polyabmi
A(s) = det(sl — A+ BK)det(sl — A+ LC).

This polynomial can be assigned arbitrary roots if the sysiemeachable and
observable.

The controller has a strong intuitive appeal: it can be thoofjas being com-
posed of two parts, one state feedback and one observer. Tiaeniys of the
controller are generated by the observer. The feedbackkgaen be computed as
if all state variables can be measured, and it depends onfoaity B. The observer
gainL depends on onlyA andC. The property that the eigenvalue assignment for
output feedback can be separated into an eigenvalue assigfona state feedback
and an observer is called teeparation principle

A block diagram of the controller is shown in Figure 7.7. Nettbat the con-
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane baem(tiotted), the vehicle
position (solid) and its estimate (dashed), the upper right plot shows kb&tygsolid) and

its estimate (dashed), and the lower right plot shows the control sigimgj state feedback
(solid) and the control signal using the estimated state (dashed).

troller contains a dynamical model of the plant. This is chlieeinternal model
principle: the controller contains a model of the process being ciatro

Example 7.4 Vehicle steering

Consider again the normalized linear model for vehiclersigan Example 6.4.
The dynamics relating the steering angl® the lateral path deviatiopis given by
the state space model (7.12). Combining the state feedleaisled in Example 6.4
with the observer determined in Example 7.3, we find that théraber is given
by

A

d)t(_Ax+Bu+L(y CX) = [8 0]X+[ ]u+[ ](y—Xl)

U= —KX+kr =ky(r — Xx;) — koXo.
Elimination of the variablel gives

i
d—)t(=(A— BK — LC)X + Ly + Bkr

N [ —Iil—yél —&)ZKZ] o [Il] e [ ] ar

The controller is a dynamical system of second order, withityeotsy andr and
one output. Figure 7.8 shows a simulation of the system when the velscgvien
along a curvy road. Since we are using a normalized modeletigth unit is the
vehicle length and the time unit is the time it takes to traved vehicle length. The
estimator is initialized with all states equal to zero bet teal system has an initial
velocity of 0.5. The figures show that the estimates convergekiyuo their true
values. The vehicle tracks the desired path, which is in ttiellaiof the road, but

there are errors because the road is irregular. The tracking @n be improved
by introducing feedforward (Section 7.5). \%
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7.4 Kalman Filtering %

One of the principal uses of observers in practice is to egénthe state of a
system in the presencembisymeasurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamicalesystis beyond the scope
of this text. In this section, we present a brief introductio the use of stochastic
systems analysis for constructing observers. We work piiyria discrete time to
avoid some of the complications associated with continttimne random processes
and to keep the mathematical prerequisites to a minimum. §é¢don assumes
basic knowledge of random variables and stochastic presgesgee Kumar and
Varaiya [KV86] or Astrom [Ast06] for the required material.

Consider a discrete-time linear system with dynamics

X[k + 1] = AX[K] + Bu[K] + Fo[K], y[k] = CX[K] + w[K], (7.18)
whereo[K] and w[k] are Gaussian white noise processes satisfying
E{v[k]} =0, E{w[k]} =0,
0 k#]j 0 k#]j

E{o[kloT[i]} = E{w[Klw'[j]} =

Rv k:J, Rw k:J,
Efw[Klw[j]} =0.
E{v[K]} represents the expected valueofk] and E{v[k]o"[j]} the correlation
matrix. The matriceR}, and R,, are the covariance matrices for the process dis-

turbancer and measurement noise We assume that the initial condition is also
modeled as a Gaussian random variable with

E{x[0]} = xo,  E{x[0]x"[0]} = P. (7.20)

We would like to find an estimatg[k] that minimizes the mean square error
E{(X[K] — X[K])(X[K] — X[K])T} given the measurementg(z) : 0 < z < t}. We
consider an observer in the same basic form as derived pigyio

K[k + 1] = AR[K] + Bu[k] + L[K](y[K] — CRIK]). (7.21)

The following theorem summarizes the main result.

(7.19)

Theorem 7.4 (Kalman, 1961) Consider a random procesgk{ with dynamics
given by equatiorf7.18)and noise processes and initial conditions described by
equationg7.19)and (7.20) The observer gain L that minimizes the mean square
error is given by
L[K] = AP[KICT(R, + CP[KIC")™™,

where

Plk+1] = (A— LC)PIKI(A—LC)" + FR,FT + LR,L"

Py = E{x[0]x"[0]}.
Before we prove this result, we reflect on its form and functieinst, note

that the Kalman filter has the form ofracursivefilter: given mean square error

(7.22)
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P[K] = E{(x[K] —X[K])(x[K] —X[K]) "} at timek, we can compute how the estimate
and errorchange Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estim#&fk] and the error covariance
P[k], so we can see how reliable the estimate is. It can also berskiwat the
Kalman filter extracts the maximum possible information almuiput data. If we
form the residual between the measured output and the estroatput,

e[k] = y[k] — CX[K],
we can show that for the Kalman filter the correlation matrix is
1 j=k
0 j#k.

In other words, the error is a white noise process, so theére ismaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used evdreiptocess,
noise or disturbances are nonstationary. When the syststatisnary andf P[K]
converges, then the observer gain is constant:

L = APC'(R, + CPCT),

Re(j, k) = E{e[jle"[K]} = W[K]dj,  dik = [

whereP satisfies
P=APA  +FR,FT — APCT(R,+CPCT) '"CPA',

We see that the optimal gain depends on both the processamuisee measurement
noise, but in a nontrivial way. Like the use of LQR to choosessta¢dback gains,
the Kalman filter permits a systematic derivation of the obsegains given a
description of the noise processes. The solution for thetaohgain case is solved
by thedl ge command in MATLAB.

Proof of theorem.We wish to minimize the mean square of the ered(x[k] —
K[KD(X[K] = X[K])T}. We will define this quantity a®[k] and then show that it
satisfies the recursion given in equation (7.22). By definjtion

Plk + 1] = E{(X[k 4+ 1] — R[k + 1] (x[k + 1] — K[k + 1])"}
=(A-=LC)PKI(A-LC)" + FR,FT + LR,L"
= AP[K]AT — AP[KICTLT — LCP[K]AT + L(R, + CP[K]ICT)LT.
Letting R. = (R, + CP[K]CT), we have
P[k+ 1] = AP[K]AT — AP[KICTLT — LCP[K]AT + LR.LT
= AP[K]AT + (L — AP[KICTR-")R.(L — AP[KICT R;l)T
— APKICTR-!CPT[K]AT.

To minimize this expression, we chooke= AP[K]CTR-%, and the theorem is
proved. O
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The Kalman filter can also be applied to continuous-time stetidhprocesses.
The mathematical derivation of this result requires morehstigated tools, but
the final form of the estimator is relatively straightforward

Consider a continuous stochastic system

dx
i Ax+ Bu+ Fo, E{o(s)o" (1)} = R, (t)d(t —s),
y=Cx+uw, E{w(®)w' (1)} = R,(1)d(t ),

whered(z) is the unit impulse function. Assume that the disturbanesd noise
w are zero mean and Gaussian (but not necessarily stationary)

1 1 Tt 1 1 To-1
dfp) = —— 2" R v, df(w) = ez Rytw
Pdi) = o et pdit) = o detr

We wish to find the estimatg(t) that minimizes the mean square eref(x(t) —
K(O))(x(1) = X(1)") given{y(r) : 0 < = < t}.

Theorem 7.5(Kalman—Bucy, 1961)The optimal estimator has the form of alinear
observer

Z—f = AX+ Bu+ L(y —CX),
where L(t) = P(t)CTR; and P(t) = E{(x(t) —X(t))(x(t)—X(t))"} and satisfies
?TT = AP+ PAT — PCTRY(t)CP+ FR,(1)FT, P[0] = E{x[0]x"[0]}.

As in the discrete case, when the system is stationary dd )fconverges, the
observer gain is constant:

L=PC'R;! where AP+ PA" —PC'R;!CP+FRF'" =0.
The second equation is tlagebraic Riccati equation

Example 7.5 Vectored thrust aircraft
We consider the lateral dynamics of the system, consisfitigesubsystems whose
states are given by = (x, 0, X, 0). To design a Kalman filter for the system, we
must include a description of the process disturbancesf@ddnsor noise. We
thus augment the system to have the form

dz

a:Az+ Bu+ Fo, y=Cz+w,

whereF represents the structure of the disturbances (includie@fiects of non-
linearities that we have ignored in the linearizatian);epresents the disturbance
source (modeled as zero mean, Gaussian white noise) egfatesents that mea-
surement noise (also zero mean, Gaussian and white).

For this example, we choos$eas the identity matrix and choose disturbanges
i =1,...,n, to be independent disturbances with covariance giveRipy= 0.1,
Rj = 0,i # ]. The sensor noise is a single random variable which we model as
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Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first desigro(ay
the lateral position of the aircraft is measured. Adding a direct meamsneof the roll
angle produces a much better observer (b). The initial condition for siathlations is
(0.1,0.01750.01, 0).

having covarianc®,, = 10~4. Using the same parameters as before, the resulting
Kalman gain is given by
37.0
—46.9
185
—-316

L =

The performance of the estimator is shown in Figure 7.9a. Wehsgavhile the
estimator converges to the system state, it contains signtfavershoot in the state
estimate, which can lead to poor performance in a closeddetimg.

To improve the performance of the estimator, we explorertigaict of adding a
new output measurement. Suppose that instead of measustrigguwutput position
X, we also measure the orientation of the aircfaff he output becomes

|1 000 -
Y=1lo 10 0
and if we assume that; andw; are independent noise sources each with covariance
R, = 1074, then the optimal estimator gain matrix becomes

326  —0.150
L — —-0.150 326
o 327 -9.79
—0.0033 316

These gains provide good immunity to noise and high perfoomaas illustrated
in Figure 7.9b. \%
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I | Trajectory
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Generation *d € State | Yb u v n y
Process =
Feedback
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Figure 7.10:Block diagram of a controller based on a structure with two degreesexfdra
which combines feedback and feedforward. The controller condiattrajectory generator,
state feedback and an observer. The trajectory generation subsysterutes a feedforward
commandiy along with the desired statg. The state feedback controller uses the estimated
state and desired state to compute a corrective ingut

7.5 A General Controller Structure

State estimators and state feedback are important comgookatcontroller. In
this section, we will add feedforward to arrive at a geneositoller structure that
appears in many places in control theory and is the heart st modern control
systems. We will also briefly sketch how computers can be uséuplement a
controller based on output feedback.

Feedforward

In this chapter and the previous one we have emphasizeddekdls a mechanism
for minimizing tracking error; reference values were idoed simply by adding
them to the state feedback through a dainA more sophisticated way of doing
this is shown by the block diagram in Figure 7.10, where therotlar consists of
three parts: an observer that computes estimates of tles stased on a model and
measured process inputs and outputs, a state feedback tiajelctory generator
that generates the desired behavior of all stateand a feedforward signai.
Under the ideal conditions of no disturbances and no moglelirors the signal
generates the desired behavigmwhen applied to the process. The signatan be
generated by a system that gives the desired response aatbe™ generate the
the signalug, we must also have a model of the inverse of the process dgsami

To get some insight into the behavior of the system, we asshat¢here are
no disturbances and that the system is in equilibrium witlostant reference
signal and with the observer statequal to the process stateWhen the reference
signal is changed, the signalg andxy will change. The observer tracks the state
perfectly because the initial state was correct. The estidstate is thus equal to
the desired statey, and the feedback signag, = L (xg — X) will also be zero. All
action is thus created by the signals from the trajectoregsor. If there are some
disturbances or some modeling errors, the feedback sighatiempt to correct
the situation.

This controller is said to havevo degrees of freedolmecause the responses
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to command signals and disturbances are decoupled. Dastcebresponses are
governed by the observer and the state feedback, while spemse to command
signals is governed by the trajectory generator (feedfaitjva

For an analytic description we start with the full nonlinemamics of the

process
dx

Tl f(x,u), y = h(x, u). (7.23)
Assume that the trajectory generator is able to computeigeddsajectory(Xq, Us)
that satisfies the dynamics (7.23) and satisfies h(xq, ug). To design the con-
troller, we construct the error system. lzet X — Xg andv = u — ug and compute

the dynamics for the error:
Z=X—X3= f(x,u) — f(Xq, Ug)
= f(Zz+ Xd, v + Ugr) — F(Xq, Urr) = F(Z, v, Xa(t), U (1)).

In general, this system is time-varying. Note that —ein Figure 7.10 due to the
convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume tha small (if our controller is doing
a good job), and so we can linearize around 0:

dz ~ A(t)z+ B(t)o, A) = ok , B@)= ok .

dt (xa 0. (1) 90 J(y(),up (1)
It is often the case tha#\(t) and B(t) depend only orxy, in which case it is
convenient to writeA(t) = A(Xq) andB(t) = B(Xqg).

Assume now thaty andug are either constant or slowly varying (with respect
to the performance criterion). This allows us to considet flus (constant) linear
system given byA(xq), B(Xq)). If we design a state feedback controlke(xy) for
eachxq, then we can regulate the system using the feedback

v = K(Xg)z
Substituting back the definitions efandwv, our controller becomes
U= —K(Xq)(X — Xq) + Us.

This form of controller is called gain scheduletinear controller withfeedforward
Uss .

Finally, we consider the observer. The full nonlinear dynanaign be used for
the prediction portion of the observer and the linearizestesy for the correction
term: R

dx . . o

g = W+ Ly = h&,w),
where L(X) is the observer gain obtained by linearizing the systemratdhe
currently estimated state. This form of the observer is knaswrextended Kalman
filter and has proved to be a very effective means of estimatingdteesf a nonlinear
system.
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(a) Overhead view (b) Position and steering

Figure 7.11: Trajectory generation for changing lanes. We wish to change from thieutef
to the right lane over a distance of 30 min 4 s. The planned trajectory iythkane is shown
in (@) and the lateral positiop and the steering angteover the maneuver time interval are
shown in (b).

There are many ways to generate the feedforward signal, ereldhe also many
different ways to compute the feedback giirand the observer gain. Note that
once again the internal model principle applies: the cdlietroontains a model of
the system to be controlled through the observer.

Example 7.6 Vehicle steering
To illustrate how we can use a two degree-of-freedom desigmprove the per-
formance of the system, consider the problem of steering toa@nange lanes on
aroad, as illustrated in Figure 7.11a.

We use the non-normalized form of the dynamics, where wareatkin Exam-
ple 2.8. Using the center of the rear wheels as the referenee(), the dynamics
can be written as

dx dy . d 1

— = CcosH — =sinf — = —tané

dt ot odt T p

wherev is the forward velocity of the vehicle aidds the steering angle. To generate
a trajectory for the system, we note that we can solve for tites and inputs of

the system givem, y by solving the following sets of equations:

X = v COSY, X = v cost — vf sind,
y = v sing, Y = v sinf + vé cosy, (7.24)
0 = v/l tand.

This set of five equations has five unknowﬁsd', v, v ando) that can be solved
using trigonometry and linear algebra. It follows that wa campute a feasible
trajectory for the system given any paitt), y(t). (This special property of a system
is known adifferential flatnes$FLMR92, FLMR95].)

To find a trajectory from an initial stateo, Yo, &) to a final statex;, y¢, 6+)
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at a timeT, we look for a pathx(t), y(t) that satisfies

X(0) = Xo, X(T) = X,
y(0) = Yo, y(T) =i, (7.25)
X(0) sinép + y(0) coshy = 0, X(T)sinfr + y(T)cosfr =0, ’

y(0) sin6p + y(0) cosy = 0, y(T) sinét + y(T) costr = 0.
One such trajectory can be found by choosiig andy(t) to have the form

Xa(t) = oo + ot + o2t? + aat®, Ya(t) = o+ Pat + Bat? + pat®.
Substituting these equations into equation (7.25), we diravith a set of linear
equations that can be solved gt fi,i = 0, 1, 2, 3. This gives a feasible trajectory

for the system by using equation (7.24) to solvetgroq anddy.

Figure 7.11b shows a sample trajectory generated by a sajtedihorder equa-
tions that also set the initial and final steering angle to.Z2¢aice that the feedfor-
ward input is quite different from 0, allowing the contralte command a steering
angle that executes the turn in the absence of errors. \%

Kalman’s Decomposition of a Linear System

In this chapter and the previous one we have seen that twafoedtal properties
of a linear input/output system are reachability and olegahty. It turns out that
these two properties can be used to classify the dynamicssgftem. The key
result is Kalman’s decomposition theorem, which says thisiear system can be
divided into four subsystem&,, which is reachable and observahig; which is
reachable but not observable;, which is not reachable but is observable aig
which is neither reachable nor observable.

We will first consider this in the special case of systems whezenatrixA has
distinct eigenvalues. In this case we can find a set of coarsrsuch that thé\
matrix is diagonal and, with some additional reorderinghaf states, the system
can be written as

(A O 0 O Bro
dx 0 Arf) 0 0 Bré
- = X u
gt~ [0 0 A o Tfof" (7.26)
(0 0 0 A 0 '
y= rCro 0 Cro O] X+ Du.

All statesxy such thatBy # 0 are reachable, and all states such at4 0 are
observable. If we set the initial state to zero (or equivilydnok at the steady-state
response ifA is stable), the states given By, andxy; will be zero andx;; does
not affect the output. Hence the outputan be determined from the system

dXo
dt

= AroXro + BroU, y = CroXro + Du.
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(a) Distinct eigenvalues (b) General case

Figure 7.12: Kalman’s decomposition of a linear system. The decomposition in (a) is for
a system with distinct eigenvalues and the one in (b) is the general casesy$tem is
broken into four subsystems, representing the various combinatioeadfable and observ-
able states. The input/output relationship only depends on the subsetesftbiat are both
reachable and observable.

Thus from the input/output point of view, it is only the reableand observable
dynamics that matter. A block diagram of the system illusigathis property is
given in Figure 7.12a.

The general case of the Kalman decomposition is more cong@ticand re-
quires some additional linear algebra; see the originaéphp Kalman, Ho and
Narendra [KHNG63]. The key result is that the state space dthbestdecomposed
into four parts, but there will be additional coupling sotttiee equations have the
form

[ Ao 0 * 0 Bro
dX_ *  Ag  x * Bro
gt |o o A of*T|o|%™ 7.27)
L 0 O * Fo O .
y=[Co 0 Crw o] X,

where* denotes block matrices of appropriate dimensions. The fopitut re-
sponse of the system is given by

dXo
dt
which are the dynamics of the reachable and observable signsy,,. A block

diagram of the system is shown in Figure 7.12b.
The following example illustrates Kalman’s decomposition.

- AYOXYO + Brou, y — Crero + DU, (728)

Example 7.7 System and controller with feedback from observer state

Consider the system

dx
gr - R y=0x

The following controller, based on feedback from the obsestate, was given in
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Theorem 7.3:

a2
d_T:A>2+ Bu+L(y—CR), u=—K&+kr.

Introducing the states andX = x — X, the closed loop system can be written as

d [x A—-BK BK X Bk

&[f(]:[ 0 A—LC][X]+[O]r’ y:[C O]X’
which is a Kalman decomposition like the one shown in Figue@.with only
two subsystem&,, and Xr,. The subsystenz,,, with statex, is reachable and
observable, and the subsystein,, with stateX, is not reachable but observable.
It is natural that the state is not reachable from the reference signblecause it
would not make sense to design a system where changes inrtiraaral signal

could generate observer errors. The relationship betweereference and the
outputy is given by

d
d—)t( — (A— BK)x+ Bkr, y=Cx
which is the same relationship as for a system with full sieg¢elback. \%

Computer Implementation

The controllers obtained so far have been described by aydditferential equa-

tions. They can be implemented directly using analog compisna/hether elec-
tronic circuits, hydraulic valves or other physical degic8ince in modern engi-
neering applications most controllers are implementedgisomputers, we will

briefly discuss how this can be done.

A computer-controlled system typically operates periatlijc every cycle, sig-
nals fromthe sensors are sampled and converted to digitalfpthe A/D converter,
the control signal is computed and the resulting output iveded to analog form
for the actuators, as shown in Figure 7.13. To illustrate tharprinciples of how
to implement feedback in this environment, we consider th&roller described
by equations (7.14) and (7.15), i.e.,

d
d_)t(:A>2+Bu+L(y—C>2), u=—KX+Kkr.

The second equation consists only of additions and muléiptios and can thus
be implemented directly on a computer. The first equation campkmented by
approximating the derivative by a difference

dx ~ K(tky1) — X(te)
dt h

wheret, are the sampling instants ahd= tx 1 —tx isthe sampling period. Rewriting
the equation to isolat(tx, 1), we get the difference equation

X(ter1) = K(t) + h(AR(t) + Bu(tk) + L (y(t) — CX(t))). (7.29)

= AR(t) + Bu(ti) + L (y(t) — CX(t),
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external disturbances

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| Clock :
! Y y v |
| D/IA |« Computer AD | Filter |« :
e IContro"er

operator input

Figure 7.13:Components of a computer-controlled system. The controller consetsutufg-

to-digital (A/D) and digital-to-analog (D/A) converters, as well as a corapthat implements
the control algorithm. A system clock controls the operation of the contrsij@chronizing

the A/D, D/A and computing processes. The operator input is also fed tmthputer as an
external input.

The calculation of the estimated state at titng requires only addition and mul-
tiplication and can easily be done by a computer. A sectigusefidocode for the
program that performs this calculation is

% Control algorithm- nmain |oop

r = adin(chl) % read reference

y = adin(ch2) % get process out put

u = K*(xd - xhat) + uff % conput e control variable
daout (chl, u) % set anal og out put

xhat = xhat + h*( A*x+B*u+L*(y-C*x)) % update state estinate

The program runs periodically at a fixed rdte Notice that the number of
computations between reading the analog input and settegrialog output has
been minimized by updating the state after the analog outpsitbeen set. The
program has an array of statesat that represents the state estimate. The choice
of sampling period requires some care.

There are more sophisticated ways of approximating a diffexkeequation by a
difference equation. If the control signal is constant lestwthe sampling instants,
it is possible to obtain exact equations; see [AW97].

There are several practical issues that also must be dehltkat example, it
is necessary to filter measured signals before they are sdmmplthat the filtered
signal has little frequency content abofig2, wherefs is the sampling frequency.
This avoids a phenomena knowsadissing If controllers with integral action are
used, it is also necessary to provide protection so thahtegial does not become
too large when the actuator saturates. This issue, daliegrator windupis studied
in more detail in Chapter 10. Care must also be taken so thabtyeer changes do
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not cause disturbances.

7.6 Further Reading

The notion of observability is due to Kalman [Kal61b] and, ¢coned with the dual
notion of reachability, it was a major stepping stone towestblishing state space
control theory beginning in the 1960s. The observer first apgueas the Kalman
filter, in the paper by Kalman [Kal61a] on the discrete-timeecand Kalman and
Bucy [KB61] on the continuous-time case. Kalman also cdojed that the con-
troller for output feedback could be obtained by combinirgjade feedback with
an observer; see the quote in the beginning of this chapterrd$ult was formally
proved by Josep and Tou [JT61] and Gunckel and Franklin [GF7¥H.cbmbined
result is known as the linear quadratic Gaussian contrarihe compact treat-
ment is given in the books by Anderson and Moore [AM90] and@st[Ast06].
Much later it was shown that solutions to robust control pepis also had a sim-
ilar structure but with different ways of computing obseremd state feedback
gains [DGKF89]. The general controller structure discusaegiction 7.5, which
combines feedback and feedforward, was described by Hrawi 963 [Hor63].
The particular form in Figure 7.10 appeared in [AW97], whichoalreats digital
implementation of the controller. The hypothesis that motiontrol in humans
is based on a combination of feedback and feedforward wgsopea by Ito in
1970 [Ito70].

Exercises

69 (Coordinate transformations) Consider a system under@atwie transforma-
tionz = T x, whereT € R™" is an invertible matrix. Show that the observability
matrix for the transformed system is giveny = W, T ~! and hence observability
is independent of the choice of coordinates.

70 Show that the system depicted in Figure 7.2 is not observable.

71(Observable canonical form) Show that if a system is obsésytiten there exists
a change of coordinates= T x that puts the transformed system into observable
canonical form.

72 (Bicycle dynamics) The linearized model for a bicycle is gieequation (3.5),
which has the form

d’p  Dogdo mo3h

_— - = m

a? b at Mt
whereg is the tilt of the bicycle and is the steering angle. Give conditions under

which the system is observable and explain any specialtgingawhere it loses
observability.

J,
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73 (Integral action) The model (7.1) assumes that the inpst 0 corresponds to
x = 0. In practice, it is very difficult to know the value of the capitsignal that

gives a precise value of the state or the output becausedhisinequire a perfectly
calibrated system. One way to avoid this assumption is tenrasghat the model is
given by dx

a:Ax+B(u+uo), y =Cx+ Du,

whereug is an unknown constant that can be modeledas/dt = 0. Consider

Up as an additional state variable and derive a controllercdbasdfeedback from
the observed state. Show that the controller has integrialneahd that it does not
require a perfectly calibrated system.

74 (Vectored thrust aircraft) The lateral dynamics of the vesdathrust aircraft
example described in Example 6.8 can be obtained by consgdéne motion
described by the states= (x, 0, X, 0). Construct an estimator for these dynamics
by setting the eigenvalues of the observer inBudterworth patterrwith Ay, =
—3.83+9.24i, —9.24+ 3.83 . Using this estimator combined with the state space
controller computed in Example 6.8, plot the step responsthefclosed loop
system.

75 (Uniqueness of observers) Show that the design of an obseyveigenvalue
assignment is unique for single-output systems. Constanples that show that
the problem is not necessarily unique for systems with manguds.

76 (Observers using differentiation) Consider the lineatays(7.2), and assume
that the observability matriX\, is invertible. Show that

x=Wi[y yy - yo?]

is an observer. Show that it has the advantage of giving the ststantaneously
but that it also has some severe practical drawbacks.

77 (Observer for Teorell's compartment model) Teorell's camment model,
shown in Figure 3.17, has the following state space reprasent

kK, O 0 0 0 1
ix |k -k 0 k 0 0
—=10 Ka 0 0 O x4+ {0} u,
dt 0 k, 0 —ks—ks O 0

0 0 0 k& 0 0

where representative parametersilare= 0.02,k, = 0.1, k3 = 0.05,k; = ks =
0.005. The concentration of a drug that is active in compartriesimeasured in
the bloodstream (compartment 2). Determine the compattnieat are observable
from measurement of concentration in the bloodstream asijl@n estimator
for these concentrations base on eigenvalue assignments€lthe closed loop
eigenvalues-0.03,—0.05 and—0.1. Simulate the system when the input is a pulse
injection.
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78 (Observer design for motor drive) Consider the normalizedehof the motor
drive in Exercise 16 where the open loop system has the eily@s@0, —0.05+i .

A state feedback that gave a closed loop system with eigeesah—2, —1 and
—1+i was designed in Exercise 64. Design an observer for the sytbnhas
eigenvalues-4, —2 and—2 + 2i. Combine the observer with the state feedback
from Exercise 64 to obtain an output feedback and simulatedgh®lete system.

79 (Feedforward design for motor drive) Consider the normdlizedel of the
motor drive in Exercise 16. Design the dynamics of the blobleled “trajectory
generation”in Figure 7.10 so that the dynamics relating thpwt to the reference
signalr has the dynamics

dBYm szm dym

— — — = amafl, 7.30

g T amigz T ame~ -+ amaYm = 8ms (7.30)
with parametergy; = 2.50m, amz = 2.502, andays = 2. Discuss how the
largest value of the command signal for a unit step in the canthsignal depends
on wm.

80 (Whipple bicycle model) Consider the Whipple bicycle modiren by equa-
tion (3.7) in Section 3.2. A state feedback for the system vesssgtied in Exer-
cise 65. Design an observer and an output feedback for tiersys

81 (Discrete-time random walk) Suppose that we wish to estit@@osition of a
particle that is undergoing a random walk in one dimensi@n, (@long a line). We
model the position of the particle as

X[k + 1] = x[K] + u[Kk],

wherex is the position of the particle ands a white noise processes wE{u[i]} =
OandE{u[i]u[j]}Ruo( — j). We assume that we can measxiseibject to additive,
zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the paatich function ok.

(b) Construct a Kalman filter to estimate the position of thetipl@ given the
noisy measurements of its position. Compute the steadg-sxected value and
covariance of the error of your estimate.

(c) Suppose thaE{u[0]} = u # 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

82 (Kalman decomposition) Consider a linear system charaetkby the matrices

2 1 -1 2 2
1 -3 0 2 2

A=|1 T 4 5| B=|3]. c=[01-10], D=0
0 1 -1 -1 1

Construct a Kalman decomposition for the system. (Hint:tdrgliagonalize.)



Chapter Eight

Transfer Functions

Thetypical regulator system can frequently be described, in essenyidigfdyential equations
of no more than perhaps the second, third or fourth order. ...In copttas order of the set
of differential equations describing the typical negative feedback amplgied in telephony
is likely to be very much greater. As a matter of idle curiosity, | once countédd out what
the order of the set of equations in an amplifier | had just designed wawld been, if | had
worked with the differential equations directly. It turned out to be 55.

Henrik Bode, 1960 [Bod60].

This chapter introduces the concept of ttamsfer functionwhich is a compact
description of the input/output relation for a linear systeCombining transfer
functions with block diagrams gives a powerful method foaldey with complex
linear systems. The relationship between transfer funstéod other descriptions
of system dynamics is also discussed.

8.1 Frequency Domain Modeling

Figure 8.1 is a block diagram for a typical control system sisting of a process to
be controlled and a controller that combines feedback agdfdéeward. We saw in
the previous two chapters how to analyze and design suatrsgsising state space
descriptions of the blocks. As mentioned in Chapter 2, arraditive approach is
to focus on the input/output characteristics of the syst&imce it is the inputs and
outputs that are used to connect the systems, one couldtekpédthis point of

i Reference Feedback d Process n
'\ shaping controller, dynamics
ro e ' u v n y
— F C P —
! |
w |
| |
| -1 =
! Controller |
|

Figure 8.1: A block diagram for a feedback control system. The reference kigisafed
through a reference shaping block, which produces the signal thdienithcked. The error
between this signal and the output is fed to a controller, which producesgbeto the
process. Disturbances and noise are included as external signadsibub and output of
the process dynamics.
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view would allow an understanding of the overall behaviothef system. Transfer
functions are the main tool in implementing this point ofwitor linear systems.

The basic idea of the transfer function comes from lookinghatftequency
response of a system. Suppose that we have an input sign#éd frexiodic. Then
we can decompose this signal into the sum of a set of sinesasiues,

u(t) = > acsin(ket) + by coskat),
k=0
wherew is the fundamental frequency of the periodic input. Eachetéihms in this
input generates a corresponding sinusoidal output (irdgtetate), with possibly
shifted magnitude and phase. The gain and phase at eachriogcare determined
by the frequency response given in equation (5.24):

G(s) =C(sl — A B+ D, (8.1)

where we ses = i (kw) for eachk = 1, ..., 00 andi = +/—1. If we know the
steady-state frequency resporisés), we can thus compute the response to any
(periodic) signal using superposition.

The transfer function generalizes this notion to allow a desalass of input
signals besides periodic ones. As we shall see in the nekibsethe transfer
function represents the response of the system texaonential inpytu = €5t
It turns out that the form of the transfer function is preigbe same as that of
equation (8.1). This should not be surprising since we déreguation (8.1) by
writing sinusoids as sums of complex exponentials. Foyydie transfer function
is the ratio of the Laplace transforms of output and inpuhalgh one does not
have to understand the det