
Chapter Nine
Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tests that it possessed the
advantages which he had predicted for it. In particular, its gain was constant to a high degree,
and it was linear enough so that spurious signals caused by the interactionof the various
channels could be kept within permissible limits. For best results the feedback factorµβ had
to be numerically much larger than unity. The possibility of stability with a feedback factor
larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 1956 [Nyq56].

In this chapter we study how the stability and robustness of closed loop systems
can be determined by investigating how sinusoidal signals of different frequencies
propagate around the feedback loop. This technique allows usto reason about
the closed loop behavior of a system through the frequency domain properties of
the open loop transfer function. The Nyquist stability theorem is a key result that
provides a way to analyze stability and introduce measures of degrees of stability.

9.1 The Loop Transfer Function

Determining the stability of systems interconnected by feedback can be tricky be-
cause each system influences the other, leading to potentially circular reasoning.
Indeed, as the quote from Nyquist above illustrates, the behavior of feedback sys-
tems can often be puzzling. However, using the mathematicalframework of transfer
functions provides an elegant way to reason about such systems, which we callloop
analysis.

The basic idea of loop analysis is to trace how a sinusoidal signal propagates in
the feedback loop and explore the resulting stability by investigating if the prop-
agated signal grows or decays. This is easy to do because the transmission of
sinusoidal signals through a linear dynamical system is characterized by the fre-
quency response of the system. The key result is the Nyquist stability theorem,
which provides a great deal of insight regarding the stability of a system. Unlike
proving stability with Lyapunov functions, studied in Chapter 4, the Nyquist crite-
rion allows us to determine more than just whether a system isstable or unstable.
It provides a measure of the degree of stability through the definition of stability
margins. The Nyquist theorem also indicates how an unstable system should be
changed to make it stable, which we shall study in detail in Chapters 10–12.

Consider the system in Figure 9.1a. The traditional way to determine if the closed
loop system is stable is to investigate if the closed loop characteristic polynomial
has all its roots in the left half-plane. If the process and the controller have rational
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Figure 9.1: The loop transfer function. The stability of the feedback system (a) can be
determined by tracing signals around the loop. LettingL = PC represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected at the point A has the
same magnitude and phase when it reaches point B.

transfer functionsP(s) = np(s)/dp(s) andC(s) = nc(s)/dc(s), then the closed
loop system has the transfer function

Gyr (s) =
PC

1 + PC
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)
,

and the characteristic polynomial is

λ(s) = dp(s)dc(s) + np(s)nc(s).

To check stability, we simply compute the roots of the characteristic polynomial
and verify that they each have negative real part. This approach is straightforward
but it gives little guidance for design: it is not easy to tellhow the controller should
be modified to make an unstable system stable.

Nyquist’s idea was to investigate conditions under which oscillations can occur
in a feedback loop. To study this, we introduce theloop transfer function L(s) =
P(s)C(s), which is the transfer function obtained by breaking the feedback loop,
as shown in Figure 9.1b. The loop transfer function is simply the transfer function
from the input at position A to the output at position B multiplied by−1 (to account
for the usual convention of negative feedback).

We will first determine conditions for having a periodic oscillation in the loop.
Assume that a sinusoid of frequencyω0 is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequencyω0. It seems reasonable
that an oscillation can be maintained if the signal at B has the same amplitude and
phase as the injected signal because we can then disconnect the injected signal and
connect A to B. Tracing signals around the loop, we find that thesignals at A and
B are identical if

L(i ω0) = −1, (9.1)

which then provides a condition for maintaining an oscillation. The key idea of
the Nyquist stability criterion is to understand when this can happen in a general
setting. As we shall see, this basic argument becomes more subtle when the loop
transfer function has poles in the right half-plane.

Example 9.1 Operational amplifier circuit
Consider the op amp circuit in Figure 9.2a, whereZ1 andZ2 are the transfer func-
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Figure 9.2: Loop transfer function for an op amp. The op amp circuit (a) has a nominal
transfer functionv2/v1 = Z2(s)/Z1(s), whereZ1 and Z2 are the impedances of the circuit
elements. The system can be represented by its block diagram (b), where we now include the
op amp dynamicsG(s). The loop transfer function isL = Z1G/(Z1 + Z2).

tions of the feedback elements from voltage to current. Thereis feedback because
voltagev2 is related to voltagev through the transfer function−G describing the op
amp dynamics and voltagev is related to voltagev2 through the transfer function
Z1/(Z1 + Z2). The loop transfer function is thus

L =
GZ1

Z1 + Z2
. (9.2)

Assuming that the currentI is zero, the current through the elementsZ1 andZ2 is
the same, which implies

v1 − v

Z1
=

v − v2

Z2
.

Solving forv gives

v =
Z2v1 + Z1v2

Z1 + Z2
=

Z2v1 − Z1Gv

Z1 + Z2
=

Z2

Z1

L

G
v1 − Lv.

Sincev2 = −Gv the input/output relation for the circuit becomes

Gv2v1 = −
Z2

Z1

L

1 + L
.

A block diagram is shown in Figure 9.2b. It follows from (9.1) that the condition
for oscillation of the op amp circuit is

L(i ω) =
Z1(i ω)G(i ω)

Z1(i ω) + Z2(i ω)
= −1 (9.3)

∇

One of the powerful concepts embedded in Nyquist’s approachto stability anal-
ysis is that it allows us to study the stability of the feedback system by looking at
properties of the loop transfer function. The advantage of doing this is that it is
easy to see how the controller should be chosen to obtain a desired loop transfer
function. For example, if we change the gain of the controller, the loop transfer
function will be scaled accordingly. A simple way to stabilize an unstable system is
then to reduce the gain so that the−1 point is avoided. Another way is to introduce
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Figure 9.3: The Nyquist contourŴ and the Nyquist plot. The Nyquist contour (a) encloses
the right half-plane, with a small semicircle around any poles ofL(s) on the imaginary axis
(illustrated here at the origin) and an arc at infinity, represented byR → ∞. The Nyquist
plot (b) is the image of the loop transfer functionL(s) whens traversesŴ in the clockwise
direction. The solid line corresponds toω > 0, and the dashed line toω < 0. The gain and
phase at the frequencyω are g = |L(i ω)| andϕ = ∠L(i ω). The curve is generated for
L(s) = 1.4e−s/(s + 1)2.

a controller with the property that it bends the loop transfer function away from the
critical point, as we shall see in the next section. Different ways to do this, called
loop shaping, will be developed and will be discussed in Chapter 11.

9.2 The Nyquist Criterion

In this section we present Nyquist’s criterion for determining the stability of a
feedback system through analysis of the loop transfer function. We begin by intro-
ducing a convenient graphical tool, the Nyquist plot, and show how it can be used
to ascertain stability.

The Nyquist Plot

We saw in the last chapter that the dynamics of a linear systemcan be represented
by its frequency response and graphically illustrated by a Bode plot. To study the
stability of a system, we will make use of a different representation of the frequency
response called aNyquist plot. The Nyquist plot of the loop transfer functionL(s)
is formed by tracings ∈ C around the Nyquist “D contour,” consisting of the
imaginary axis combined with an arc at infinity connecting theendpoints of the
imaginary axis. The contour, denoted asŴ ∈ C, is illustrated in Figure 9.3a. The
image ofL(s) whens traversesŴ gives a closed curve in the complex plane and is
referred to as the Nyquist plot forL(s), as shown in Figure 9.3b. Note that if the
transfer functionL(s) goes to zero ass gets large (the usual case), then the portion
of the contour “at infinity” maps to the origin. Furthermore, the portion of the plot
corresponding toω < 0 is the mirror image of the portion withω > 0.
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There is a subtlety in the Nyquist plot when the loop transfer function has poles
on the imaginary axis because the gain is infinite at the poles.To solve this problem,
we modify the contourŴ to include small deviations that avoid any poles on the
imaginary axis, as illustrated in Figure 9.3a (assuming a pole of L(s) at the origin).
The deviation consists of a small semicircle to the right of the imaginary axis pole
location.

The condition for oscillation given in equation (9.1) implies that the Nyquist
plot of the loop transfer function go through the pointL = −1, which is called
thecritical point. Let ωc represent a frequency at which∠L(i ωc) = 180◦, corre-
sponding to the Nyquist curve crossing the negative real axis. Intuitively it seems
reasonable that the system is stable if|L(i ωc)| < 1, which means that the critical
point−1 is on the left-hand side of the Nyquist curve, as indicated in Figure 9.3b.
This means that the signal at point B will have smaller amplitude than the injected
signal. This is essentially true, but there are several subtleties that require a proper
mathematical analysis to clear up. We defer the details for now and state the Nyquist
condition for the special case whereL(s) is a stable transfer function.

Theorem 9.1(Simplified Nyquist criterion). Let L(s) be the loop transfer function
for a negative feedback system (as shown in Figure 9.1a) and assume that L has
no poles in the closed right half-plane (Res ≥ 0) except for single poles on the
imaginary axis. Then the closed loop system is stable if and only if the closed
contour given by� = {L(i ω) : −∞ < ω < ∞} ⊂ C has no net encirclements of
the critical point s= −1.

The following conceptual procedure can be used to determine that there are
no encirclements. Fix a pin at the critical points = −1, orthogonal to the plane.
Attach a string with one end at the critical point and the other on the Nyquist plot.
Let the end of the string attached to the Nyquist curve traverse the whole curve.
There are no encirclements if the string does not wind up on thepin when the curve
is encircled.

Example 9.2 Third-order system
Consider a third-order transfer function

L(s) =
1

(s + a)3
.

To compute the Nyquist plot we start by evaluating points on the imaginary axis
s = i ω, which yields

L(i ω) =
1

(i ω + a)3
=

(a − i ω)3

(a2 + ω2)3
=

a3 − 3aω2

(a2 + ω2)3
+ i

ω3 − 3a2ω

(a2 + ω2)3
.

This is plotted in the complex plane in Figure 9.4, with the points corresponding to
ω > 0 drawn as a solid line andω < 0 as a dashed line. Notice that these curves
are mirror images of each other.

To complete the Nyquist plot, we computeL(s) for s on the outer arc of the
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Figure 9.4: Nyquist plot for a third-order transfer function. The Nyquist plot consists of a
trace of the loop transfer functionL(s) = 1/(s + a)3. The solid line represents the portion
of the transfer function along the positive imaginary axis, and the dashedline the negative
imaginary axis. The outer arc of the D contour maps to the origin.

Nyquist D contour. This arc has the forms = Rei θ for R → ∞. This gives

L(Rei θ ) =
1

(Rei θ + a)3
→ 0 as R → ∞.

Thus the outer arc of theD contour maps to the origin on the Nyquist plot. ∇

An alternative to computing the Nyquist plot explicitly is to determine the plot
from the frequency response (Bode plot), which gives the Nyquist curve fors = i ω,
ω > 0. We start by plottingG(i ω) from ω = 0 to ω = ∞, which can be read off
from the magnitude and phase of the transfer function. We then plot G(Rei θ ) with
θ ∈ [−π/2, π/2] andR → ∞, which almost always maps to zero. The remaining
parts of the plot can be determined by taking the mirror imageof the curve thus far
(normally plotted using a dashed line). The plot can then be labeled with arrows
corresponding to a clockwise traversal around the D contour(the same direction in
which the first portion of the curve was plotted).

Example 9.3 Third-order system with a pole at the origin
Consider the transfer function

L(s) =
k

s(s + 1)2
,

where the gain has the nominal valuek = 1. The Bode plot is shown in Figure 9.5a.
The system has a single pole ats = 0 and a double pole ats = −1. The gain curve
of the Bode plot thus has the slope−1 for low frequencies, and at the double pole
s = 1 the slope changes to−3. For smalls we haveL ≈ k/s, which means that the
low-frequency asymptote intersects the unit gain line atω = k. The phase curve
starts at−90◦ for low frequencies, it is−180◦ at the breakpointω = 1 and it is
−270◦ at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquist plot, shown
in Figure 9.5b. It starts with a phase of−90◦ for low frequencies, intersects the
negative real axis at the breakpointω = 1 whereL(i ) = 0.5 and goes to zero along
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Figure 9.5:Sketching Nyquist and Bode plots. The loop transfer function isL(s) = 1/(s(s+
1)2). The large semicircle is the map of the small semicircle of theŴ contour around the pole
at the origin. The closed loop is stable because the Nyquist curve does not encircle the critical
point. The point where the phase is−180◦ is marked with a circle in the Bode plot.

the imaginary axis for high frequencies. The small half-circle of theŴ contour at
the origin is mapped on a large circle enclosing the right half-plane. The Nyquist
curve does not encircle the critical point, and it follows from the simplified Nyquist
theorem that the closed loop is stable. SinceL(i ) = −k/2, we find the system
becomes unstable if the gain is increased tok = 2 or beyond. ∇

The Nyquist criterion does not require that|L(i ωc)| < 1 for allωc corresponding
to a crossing of the negative real axis. Rather, it says that the number of encirclements
must be zero, allowing for the possibility that the Nyquist curve could cross the
negative real axis and cross back at magnitudes greater than1. The fact that it
was possible to have high feedback gains surprised the earlydesigners of feedback
amplifiers, as mentioned in the quote in the beginning of this chapter.

One advantage of the Nyquist criterion is that it tells us howa system is in-
fluenced by changes of the controller parameters. For example, it is very easy to
visualize what happens when the gain is changed since this just scales the Nyquist
curve.

Example 9.4 Congestion control
Consider the Internet congestion control system describedin Section 3.4. Suppose
we haveN identical sources and a disturbanced representing an external data
source, as shown in Figure 9.6a. We letw represent the individual window size for
a source,q represent the end-to-end probability of a dropped packet,b represent
the number of packets in the router’s buffer andp represent the probability that that
a packet is dropped by the router. We writew̄ for the total number of packets being
received from allN sources. We also include a time delay between the router and
the senders, representing the time delays between the sender and receiver.

To analyze the stability of the system, we use the transfer functions computed
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Figure 9.6: Internet congestion control. A set ofN sources using TCP/Reno send messages
through a single router with admission control (left). Link delays are included for the forward
and backward directions. The Nyquist plot for the loop transfer function is shown on the
right.

in Exercise 94:

G̃bw̄(s) =
1

τes + e−τ f s
, Gwq(s) = −

1

qe(τes + qewe)
, Gpb(s) = ρ,

where(we, be) is the equilibrium point for the system,N is the number of sources,
τe is the steady-state round-trip time andτ f is the forward propagation time. We use
G̃bw̄ to represent the transfer function with the forward time delay removed since
this is accounted for as a separate block in Figure 9.6a. Similarly, Gwq = Gw̄q/N
since we have pulled out the multiplierN as a separate block as well.

The loop transfer function is given by

L(s) = ρ ·
N

τes + e−τ f s
·

1

qe(τes + qewe)
e−τes.

Using the fact thatqe ≈ 2N/w2
e = 2N3/(τec)2 andwe = be/N = τec/N from

equation (3.22), we can show that

L(s) = ρ ·
N

τes + e−τ f s
·

c3τ 3
e

2N3(cτ 2
e s + 2N2)

e−τes.

Note that we have chosen the sign ofL(s) to use the same sign convention as in
Figure 9.1b. The exponential term representing the time delaygives significant
phase aboveω = 1/τe, and the gain at the crossover frequency will determine
stability.

To check stability, we require that the gain be sufficiently small at crossover. If
we assume that the pole due to the queue dynamics is sufficiently fast that the TCP
dynamics are dominant, the gain at the crossover frequencyωc is given by

|L(i ωc)| = ρ · N ·
c3τ 3

e

2N3cτ 2
eωc

=
ρc2τe

2Nωc
.

Using the Nyquist criterion, the closed loop system will be unstable if this quantity
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Figure 9.7:Nyquist curve for the loop transfer functionL(s) = 3(s+1)2

s(s+6)2 . The plot on the right
is an enlargement of the box around the origin of the plot on the left. The Nyquist curve
intersections the negative real axis twice but has no net encirclements of−1.

is greater than 1. In particular, for a fixed time delay, the system will become
unstable as the link capacityc is increased. This indicates that the TCP protocol
may not be scalable to high-capacity networks, as pointed out by Low et al. [LPD02].
Exercise 104 provides some ideas of how this might be overcome. ∇

Conditional Stability

Normally, we find that unstable systems can be stabilized simply by reducing the
loop gain. There are, however, situations where a system can be stabilized by
increasing the gain. This was first encountered by electrical engineers in the design
of feedback amplifiers, who coined the termconditional stability. The problem was
actually a strong motivation for Nyquist to develop his theory. We will illustrate by
an example.

Example 9.5 Third-order system
Consider a feedback system with the loop transfer function

L(s) =
3(s + 6)2

s(s + 1)2
. (9.4)

The Nyquist plot of the loop transfer function is shown in Figure 9.7. Notice that the
Nyquist curve intersects the negative real axis twice. The first intersection occurs at
L = −12 forω = 2, and the second atL = −4.5 forω = 3. The intuitive argument
based on signal tracing around the loop in Figure 9.1b is strongly misleading in this
case. Injection of a sinusoid with frequency 2 rad/s and amplitude 1 at A gives, in
steady state, an oscillation at B that is in phase with the input and has amplitude
12. Intuitively it is seems unlikely that closing of the loopwill result in a stable
system. However, it follows from Nyquist’s stability criterion that the system is
stable because there are no net encirclements of the critical point. Note, however,
that if we decreasethe gain, then we can get an encirclement, implying that the
gain must be sufficiently large for stability. ∇
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General Nyquist Criterion

Theorem 9.1 requires thatL(s) have no poles in the closed right half-plane. In
some situations this is not the case and a more general resultis required. Nyquist
originally considered this general case, which we summarize as a theorem.

Theorem 9.2(Nyquist’s stability theorem). Consider a closed loop system with the
loop transfer function L(s) that has P poles in the region enclosed by the Nyquist
contour. Let N be the net number of clockwise encirclements of−1 by L(s) when s
encircles the Nyquist contourŴ in the clockwise direction. The closed loop system
then has Z= N + P poles in the right half-plane.

The full Nyquist criterion states that ifL(s) hasP poles in the right half-plane,
then the Nyquist curve forL(s) should haveP counterclockwise encirclements of
−1 (so thatN = −P). In particular, thisrequiresthat |L(i ωc)| > 1 for someωc

corresponding to a crossing of the negative real axis. Care has to be taken to get the
right sign of the encirclements. The Nyquist contour has to betraversed clockwise,
which means thatω moves from−∞ to ∞ andN is positive if the Nyquist curve
winds clockwise. If the Nyquist curve winds counterclockwise, thenN will be
negative (the desired case ifP 6= 0).

As in the case of the simplified Nyquist criterion, we use smallsemicircles of
radiusr to avoid any poles on the imaginary axis. By lettingr → 0, we can use
Theorem 9.2 to reason about stability. Note that the image of the small semicircles
generates a section of the Nyquist curve whose magnitude approaches infinity,
requiring care in computing the winding number. When plotting Nyquist curves on
the computer, one must be careful to see that such poles are properly handled, and
often one must sketch those portions of the Nyquist plot by hand, being careful to
loop the right way around the poles.

Example 9.6 Stabilized inverted pendulum
The linearized dynamics of a normalized inverted pendulum can be represented by
the transfer functionP(s) = 1/(s2−1), where the input is acceleration of the pivot
and the output is the pendulum angleθ , as shown in Figure 9.8 (Exercise 85). We
attempt to stabilize the pendulum with a proportional-derivative (PD) controller
having the transfer functionC(s) = k(s + 2). The loop transfer function is

L(s) =
k(s + 2)

s2 − 1
.

The Nyquist plot of the loop transfer function is shown in Figure 9.8b. We have
L(0) = −k andL(∞) = 0. If k > 1, the Nyquist curve encircles the critical point
s = −1 in the counterclockwise direction when the Nyquist contour γ is encircled
in the clockwise direction. The number of encirclements is thus N = −1. Since
the loop transfer function has one pole in the right half-plane (P = 1), we find that
Z = N + P = 0 and the system is thus stable fork > 1. If k < 1, there is no
encirclement and the closed loop will have one pole in the right half-plane. ∇
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Figure 9.8: PD control of an inverted pendulum. (a) The system consists of a mass that is
balanced by applying a force at the pivot point. A proportional-derivative controller with
transfer functionC(s) = k(s + 2) is used to commandu based onθ . (b) A Nyquist plot of
the loop transfer function for gaink = 2. There is one counterclockwise encirclement of the
critical point, givingN = −1 clockwise encirclements.

Derivation of Nyquist’s Stability Theorem
�

We will now prove the Nyquist stability theorem for a generalloop transfer function
L(s). This requires some results from the theory of complex variables, for which
the reader can consult Ahlfors [Ahl66]. Since some precisionis needed in stating
Nyquist’s criterion properly, we will use a more mathematical style of presenta-
tion. We also follow the mathematical convention of counting encirclements in the
counterclockwise direction for the remainder of this section. The key result is the
following theorem about functions of complex variables.

Theorem 9.3(Principle of variation of the argument). Let D be a closed region
in the complex plane and letŴ be the boundary of the region. Assume the function
f : C → C is analytic in D and onŴ, except at a finite number of poles and zeros.
Then thewinding numberwn is given by

wn =
1

2π
1Ŵ arg f (z) =

1

2π i

∫

Ŵ

f ′(z)

f (z)
dz = Z − P,

where1Ŵ is the net variation in the angle when z traverses the contourŴ in the
counterclockwise direction, Z is the number of zeros in D andP is the number of
poles in D. Poles and zeros of multiplicity m are counted m times.

Proof. Assume thatz = a is a zero of multiplicitym. In the neighborhood ofz = a
we have

f (z) = (z − a)mg(z),

where the functiong is analytic and different from zero. The ratio of the derivative
of f to itself is then given by

f ′(z)

f (z)
=

m

z − a
+

g′(z)

g(z)
,

and the second term is analytic atz = a. The function f ′/ f thus has a single pole
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at z = a with the residuem. The sum of the residues at the zeros of the function is
Z. Similarly, we find that the sum of the residues of the poles of is−P, and hence

Z − P =
1

2π i

∫

Ŵ

f ′(z)

f (z)
dz =

1

2π i

∫

Ŵ

d

dz
log f (z) dz =

1

2π i
1Ŵ log f (z),

where1Ŵ again denotes the variation along the contourŴ. We have

log f (z) = log | f (z)| + i arg f (z),

and since the variation of| f (z)| around a closed contour is zero it follows that

1Ŵ log f (z) = i 1Ŵ arg f (z),

and the theorem is proved.

This theorem is useful in determining the number of poles and zeros of a function
of complex variables in a given region. By choosing an appropriate closed region
D with boundaryŴ, we can determine the difference between the number of poles
and zeros through computation of the winding number.

Theorem 9.3 can be used to prove Nyquist’s stability theorem by choosingŴ as
the Nyquist contour shown in Figure 9.3a, which encloses the right half-plane. To
construct the contour, we start with part of the imaginary axis − j R ≤ s ≤ j R and
a semicircle to the right with radiusR. If the function f has poles on the imaginary
axis, we introduce small semicircles with radiir to the right of the poles as shown
in the figure. The Nyquist contour is obtained by lettingR → ∞ and r → 0.
Note thatŴ has orientationoppositethat shown in Figure 9.3a. (The convention in
engineering is to traverse the Nyquist contour in the clockwise direction since this
corresponds to moving upwards along the imaginary axis, which makes it easy to
sketch the Nyquist contour from a Bode plot.)

To see how we use the principle of variation of the argument tocompute stability,
consider a closed loop system with the loop transfer function L(s). The closed loop
poles of the system are the zeros of the functionf (s) = 1+L(s). To find the number
of zeros in the right half-plane, we investigate the windingnumber of the function
f (s) = 1 + L(s) ass moves along the Nyquist contourŴ in thecounterclockwise
direction. The winding number can conveniently be determined from the Nyquist
plot. A direct application of Theorem 9.3 gives the Nyquist criterion, taking care
to flip the orientation. Since the image of 1+ L(s) is a shifted version ofL(s),
we usually state the Nyquist criterion as net encirclementsof the−1 point by the
image ofL(s).

9.3 Stability Margins

In practice it is not enough that a system is stable. There mustalso be some margins
of stability that describe how stable the system is and its robustness to perturbations.
There are many ways to express this, but one of the most common is the use of gain
and phase margins, inspired by Nyquist’s stability criterion. The key idea is that it
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Figure 9.9:Stability margins. The gain margingm and phase marginϕm are shown on the the
Nyquist plot (a) and the Bode plot (b). The gain margin corresponds tothe smallest increase
in gain that creates an encirclement, and the phase margin is the smallest change in phase
that creates an encirclement. The Nyquist plot also shows the stability margin sm, which is
the shortest distance to the critical point−1.

is easy to plot the loop transfer functionL(s). An increase in controller gain simply
expands the Nyquist plot radially. An increase in the phase of the controller twists
the Nyquist plot. Hence from the Nyquist plot we can easily pick off the amount of
gain or phase that can be added without causing the system to become unstable.

Formally, thegain margin gm of a system is defined as the smallest amount that
the open loop gain can be increased before the closed loop system goes unstable. For
a system whose phase decreases monotonically as a function of frequency starting
at 0◦, the gain margin can be computed based on the smallest frequency where the
phase of the loop transfer functionL(s) is −180◦. Letωpc represent this frequency,
called thephase crossover frequency. Then the gain margin for the system is given
by

gm =
1

|L(i ωpc)|
. (9.5)

Similarly, thephase marginis the amount of phase lag required to reach the stability
limit. Let ωgc be thegain crossover frequency, the smallest frequency where the loop
transfer functionL(s) has unit magnitude. Then for a system with monotonically
decreasing gain, the phase margin is given by

ϕm = π + argL(i ωgc). (9.6)

These margins have simple geometric interpretations on the Nyquist diagram of
the loop transfer function, as shown in Figure 9.9a, where we have plotted the portion
of the curve corresponding toω > 0. The gain margin is given by the inverse of
the distance to the nearest point between−1 and 0 where the loop transfer function
crosses the negative real axis. The phase margin is given by the smallest angle on
the unit circle between−1 and the loop transfer function. When the gain or phase
is monotonic, this geometric interpretation agrees with the formulas above.
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Figure 9.10: Stability margins for a third-order transfer function. The Nyquist plot onthe
left allows the gain, phase and stability margins to be determined by measuring the distances
of relevant features. The gain and phase margins can also be read off of the Bode plot on the
right.

A drawback with gain and phase margins is that it is necessaryto give both of
them in order to guarantee that the Nyquist curve is not closeto the critical point.
An alternative way to express margins is by a single number, thestability margin
sm, which is the shortest distance from the Nyquist curve to thecritical point. This
number is related to disturbance attenuation, as will be discussed in Section 11.3.

For many systems, the gain and phase margins can be determined from the Bode
plot of the loop transfer function. To find the gain margin we first find the phase
crossover frequencyωpc where the phase is−180◦. The gain margin is the inverse
of the gain at that frequency. To determine the phase margin we first determine the
gain crossover frequencyωgc, i.e., the frequency where the gain of the loop transfer
function is 1. The phase margin is the phase of the loop transfer function at that
frequency plus 180◦. Figure 9.9b illustrates how the margins are found in the Bode
plot of the loop transfer function. Note that the Bode plot interpretation of the gain
and phase margins can be incorrect if there are multiple frequencies at which the
gain is equal to 1 or the phase is equal to−180◦.

Example 9.7 Third-order system
Consider a loop transfer functionL(s) = 3/(s + 1)3. The Nyquist and Bode plots
are shown in Figure 9.10. To compute the gain, phase and stability margins, we can
use the Nyquist plot shown in Figure 9.10. This yields the following values:

gm = 2.67, ϕm = 41.7◦, sm = 0.464.

The gain and phase margins can also be determined from the Bodeplot. ∇

The gain and phase margins are classical robustness measuresthat have been
used for a long time in control system design. The gain margin is well defined if the
Nyquist curve intersects the negative real axis once. Analogously, the phase margin
is well defined if the Nyquist curve intersects the unit circleat only one point. Other
more general robustness measures will be introduced in Chapter 12.
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Figure 9.11:System with good gain and phase margins but a poor stability margin. Nyquist
(a) and Bode (b) plots of the loop transfer function and step response (c) for a system with
good gain and phase margins but with a poor stability margin. The Nyquist plot shows on the
portion of the curve corresponding toω > 0.

Even if both the gain and phase margins are reasonable, the system may still
not be robust, as is illustrated by the following example.

Example 9.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function

L(s) =
0.38(s2 + 0.1s + 0.55)

s(s + 1)(s2 + 0.06s + 0.5)
.

A numerical calculation gives the gain margin asgm = 266, and the phase margin
is 70◦. These values indicate that the system is robust, but the Nyquist curve is
still close to the critical point, as shown in Figure 9.11. The stability margin is
sm = 0.27, which is very low. The closed loop system has two resonant modes, one
with damping ratioζ = 0.81 and the other withζ = 0.014. The step response of
the system is highly oscillatory, as shown in Figure 9.11c. ∇

The stability margin cannot easily be found from the Bode plotof the loop
transfer function. There are, however, other Bode plots thatwill give sm; these will
be discussed in Chapter 12. In general, it is best to use the Nyquist plot to check
stability since this provides more complete information than the Bode plot.

When designing feedback systems, it will often be useful to define the robustness
of the system using gain, phase and stability margins. These numbers tell us how
much the system can vary from our nominal model and still be stable. Reasonable
values of the margins are phase marginϕm = 30◦–60◦, gain margingm = 2–5 and
stability marginsm = 0.5–0.8.

There are also other stability measures, such as thedelay margin, which is the
smallest time delay required to make the system unstable. For loop transfer functions
that decay quickly, the delay margin is closely related to the phase margin, but for
systems where the gain curve of the loop transfer function has several peaks at high
frequencies, the delay margin is a more relevant measure.
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Figure 9.12:Nyquist and Bode plots of the loop transfer function for the AFM system (9.7)
with an integral controller. The frequency in the Bode plot is normalized bya. The parameters
areζ = 0.01 andki = 0.008.

Example 9.9 Nanopositioning system for an atomic force microscope
Consider the system for horizontal positioning of the sample in an atomic force
microscope. The system has oscillatory dynamics, and a simple model is a spring–
mass system with low damping. The normalized transfer function is given by

P(s) =
ω2

0

s2 + 2ζω0s + ω2
0

, (9.7)

where the damping ratio typically is a very small number, e.g., ζ = 0.1.
We will start with a controller that has only integral action. The resulting loop

transfer function is

L(s) =
ki ω

2
0

s(s2 + 2ζω0s + ω2
0)

,

whereki is the gain of the controller. Nyquist and Bode plots of the loop transfer
function are shown in Figure 9.12. Notice that the part of the Nyquist curve that is
close to the critical point−1 is approximately circular.

From the Bode plot in Figure 9.12b, we see that the phase crossover frequency
is ωpc = a, which will be independent of the gainki . Evaluating the loop transfer
function at this frequency, we haveL(i ω0) = −ki /(2ζω0), which means that the
gain margin isgm = 1−ki /(2ζω0). To have a desired gain margin ofgm the integral
gain should be chosen as

ki = 2ω0ζ(1 − gm).

Figure 9.12 shows Nyquist and Bode plots for the system with gain margingm =
1.67 and stability marginsm = 0.597. The gain curve in the Bode plot is almost
a straight line for low frequencies and has a resonant peak atω = ω0. The gain
crossover frequency is approximately equal toki . The phase decreases monotoni-
cally from−90◦ to−270◦: it is equal to−180◦ atω = ω0. The curve can be shifted
vertically by changingki : increasingki shifts the gain curve upward and increases
the gain crossover frequency. Since the phase is−180◦ at the resonant peak, it is
necessary that the peak not touch the line|L(i ω)| = 1. ∇
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9.4 Bode’s Relations and Minimum Phase Systems

An analysis of Bode plots reveals that there appears to be a relation between the
gain curve and the phase curve. Consider, for example, the Bode plots for the
differentiator and the integrator (shown in Figure 8.12). For the differentiator the
slope is+1 and the phase is a constantπ/2 radians. For the integrator the slope is
−1 and the phase is−π/2. For the first-order systemG(s) = s+ a, the amplitude
curve has the slope 0 for small frequencies and the slope+1 for high frequencies,
and the phase is 0 for low frequencies andπ/2 for high frequencies.

Bode investigated the relations between the curves for systems with no poles
and zeros in the right half-plane. He found that the phase wasuniquely given by
the shape of the gain curve, and vice versa:

argG(i ω0) =
π

2

∫ ∞

0
f (ω)

d log |G(i ω)|
d logω

d logω ≈
π

2

d log |G(i ω)|
d logω

, (9.8)

where f is the weighting kernel

f (ω) =
2

π2
log

∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣.

The phase curve is thus a weighted average of the derivative ofthe gain curve. If
the gain curve has constant slopen, the phase curve has constant valuenπ/2.

Bode’s relations (9.8) hold for systems that do not have poles and zeros in the
right half-plane. Such systems are calledminimum phase systemsbecause systems
with poles and zeros in the right half-plane have a larger phase lag. The distinction
is important in practice because minimum phase systems are easier to control than
systems with a larger phase lag. We will now give a few examples of nonminimum
phase transfer functions.

The transfer function of a time delay ofτ units isG(s) = e−sτ . This transfer
function has unit gain|G(i ω)| = 1, and the phase is argG(i ω) = −ωτ . The
corresponding minimum phase system with unit gain has the transfer function
G(s) = 1. The time delay thus has an additional phase lag ofωτ . Notice that the
phase lag increases linearly with frequency. Figure 9.13a shows the Bode plot of
the transfer function. (Because we use a log scale for frequency, the phase falls off
exponentially in the plot.)

Consider a system with the transfer functionG(s) = (a − s)/(a + s) with
a > 0, which has a zeros = a in the right half-plane. The transfer function
has unit gain|G(i ω)| = 1, and the phase is argG(i ω) = −2 arctan(ω/a). The
corresponding minimum phase system with unit gain has the transfer function
G(s) = 1. Figure 9.13b shows the Bode plot of the transfer function. Asimilar
analysis of the transfer functionG(s) = (s + a)/s − a) with a > 0, which has a
pole in the right half-plane, shows that its phase is argG(i ω) = −2 arctan(a/ω).
The Bode plot is shown in Figure 9.13c.

The presence of poles and zeros in the right half-plane imposes severe limitations
on the achievable performance. Dynamics of this type shouldbe avoided by redesign
of the system whenever possible. While the poles are intrinsic properties of the
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Figure 9.13:Bode plots of systems that are not minimum phase. (a) Time delayG(s) = e−sT,
(b) system with a right half-plane (RHP) zeroG(s) = (a − s)/(a + s) and (c) system with
right half-plane pole. The corresponding minimum phase system has thetransfer function
G(s) = 1 in all cases, the phase curves for that system are shown as dashed lines.

system and they do not depend on sensors and actuators, the zeros depend on how
inputs and outputs of a system are coupled to the states. Zeroscan thus be changed
by moving sensors and actuators or by introducing new sensors and actuators.
Nonminimum phase systems are unfortunately quite common inpractice.

The following example gives a system theoretic interpretation of the common
experience that it is more difficult to drive in reverse gear and illustrates some of
the properties of transfer functions in terms of their polesand zeros.

Example 9.10 Vehicle steering
The nonnormalized transfer function from steering angle to lateral velocity for the
simple vehicle model is

G(s) =
av0s + v2

0

bs
,

wherev0 is the velocity of the vehicle anda, b > 0 (see Example 5.12). The
transfer function has a zero ats = v0/a. In normal driving this zero is in the left
half-plane, but it is in the right half-plane when driving inreverse,v0 < 0. The unit
step response is

y(t) =
av0

b
+

av2
0t

b
.

The lateral velocity thus responds immediately to a steeringcommand. For reverse
steeringv0 is negative and the initial response is in the wrong direction, a behavior
that is representative for nonminimum phase systems (called aninverse response).

Figure 9.14 shows the step response for forward and reverse driving. In this
simulation we have added an extra pole with the time constantT to approximately
account for the dynamics in the steering system. The parameters area = b = 1,
T = 0.1, v0 = 1 for forward driving andv0 = −1 for reverse driving. Notice that
for t > t0 = a/v0, wheret0 is the time required to drive the distancea, the step
response for reverse driving is that of forward driving withthe time delayt0. The
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Figure 9.14:Vehicle steering for driving in reverse. (a) Step responses from steering angle to
lateral translation for a simple kinematics model when driving forward (dashed) and reverse
(solid). With rear-wheel steering the center of mass first moves in the wrong direction and
that the overall response with rear-wheel steering is significantly delayed compared with that
for front-wheel steering. (b) Frequency response for driving forward (dashed) and reverse
(solid). Notice that the gain curves are identical, but the phase curve fordriving in reverse
has nonminimum phase.

position of the zerov0/a depends on the location of the sensor. In our calculation
we have assumed that the sensor is at the center of mass. The zero in the transfer
function disappears if the sensor is located at the rear wheel. The difficulty with
zeros in the right half-plane can thus be visualized by a thought experiment where
we drive a car in forward and reverse and observe the lateral position through a
hole in the floor of the car. ∇

9.5 Generalized Notions of Gain and Phase
�

A key idea in frequency domain analysis is to trace the behavior of sinusoidal
signals through a system. The concepts of gain and phase represented by the transfer
function are strongly intuitive because they describe amplitude and phase relations
between input and output. In this section we will see how to extend the concepts
of gain and phase to more general systems, including some nonlinear systems. We
will also show that there are analogs of Nyquist’s stabilitycriterion if signals are
approximately sinusoidal.

System Gain

We begin by considering the case of a static linear systemy = Au, whereA is
a matrix whose elements are complex numbers. The matrix does not have to be
square. Let the inputs and outputs be vectors whose elements are complex numbers
and use the Euclidean norm

‖u‖ =
√

6|ui |2. (9.9)
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The norm of the output is
‖y‖2 = u∗ A∗ Au,

where∗ denotes the complex conjugate transpose. The matrixA∗ A is symmetric
and positive semidefinite, and the right-hand side is a quadratic form. The square
root of eigenvalues of the matrixA∗ A are all real, and we have

‖y‖2 ≤ λmax(A∗ A)‖u‖2.

The gain of the system can then be defined as the maximum ratio of the output to
the input over all possible inputs:

γ = max
u

‖y‖
‖u‖

=
√

λmax(A∗ A). (9.10)

The square root of the eigenvalues of the matrixA∗ A are called thesingular values
of the matrixA, and the largest singular value is denotedσ̄ (A).

To generalize this to the case of an input/output dynamical system, we need
to think of the inputs and outputs not as vectors of real numbers but as vectors of
signals. For simplicity, consider first the case of scalar signals andlet the signal
spaceL2 be square-integrable functions with the norm

‖u‖2 =

√

∫ ∞

0
|u|2(τ ) dτ .

This definition can be generalized to vector signals by replacing the absolute value
with the vector norm (9.9). We can now formally define the gain of a system taking
inputsu ∈ L2 and producing outputsy ∈ L2 as

γ = sup
u∈L2

‖y‖
‖u‖

, (9.11)

where sup is thesupremum,defined as the smallest number that is larger than its
argument. The reason for using the supremum is that the maximum may not be
defined foru ∈ L2. This definition of the system gain is quite general and can even
be used for some classes of nonlinear systems, though one needs to be careful about
how initial conditions and global nonlinearities are handled.

The norm (9.11) has some nice properties in the case of linear systems. In
particular, given a single-input, single-output stable linear system with transfer
functionG(s), it can be shown that the norm of the system is given by

γ = sup
ω

|G(i ω)| =: ‖G‖∞. (9.12)

In other words, the gain of the system corresponds to the peakvalue of the frequency
response. This corresponds to our intuition that an input produces the largest output
when we are at the resonant frequencies of the system.‖G‖∞ is called theinfinity
normof the transfer functionG(s).

This notion of gain can be generalized to the multi-input, multi-output case as
well. For a linear multivariable system with a real rationaltransfer function matrix
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Figure 9.15:A feedback connection of two general nonlinear systemsH1 andH2. The stability
of the system can be explored using the small gain theorem.

G(s) we can define the gain as

γ = ‖G‖∞ = sup
ω

σ̄ (G(i ω)). (9.13)

Thus we can combine the idea of the gain of a matrix with the ideaof the gain of a
linear system by looking at the maximum singular value over all frequencies.

Small Gain and Passivity

For linear systems it follows from Nyquist’s theorem that the closed loop is stable
if the gain of the loop transfer function is less than 1 for allfrequencies. This result
can be extended to a larger class of systems by using the concept of the system gain
defined in equation (9.11).

Theorem 9.4 (Small gain theorem). Consider the closed loop system shown in
Figure 9.15, where H1 and H2 are stable systems and the signal spaces are properly
defined. Let the gains of the systems H1 and H2 beγ1 andγ2. Then the closed loop
system is input/output stable ifγ1γ2 < 1, and the gain of the closed loop system is

γ =
γ1

1 − γ1γ2
.

Notice that if systemsH1 andH2 are linear, it follows from the Nyquist stability
theorem that the closed loop is stable because ifγ1γ2 < 1, the Nyquist curve is
always inside the unit circle. The small gain theorem is thus an extension of the
Nyquist stability theorem.

Although we have focused on linear systems, the small gain theorem also holds
for nonlinear input/output systems. The definition of gain in equation (9.11) holds
for nonlinear systems as well, with some care needed in handling the initial condi-
tion.

The main limitation of the small gain theorem is that it does not consider the
phasing of signals around the loop, so it can be very conservative. To define the
notion of phase we require that there be a scalar product. Forsquare-integrable
functions this can be defined as

〈u, y〉 =
∫ ∞

0
u(τ )y(τ ) dτ.

The phaseϕ between two signals can now be defined as

〈u, y〉 = ‖u‖‖y‖ cos(ϕ).
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Figure 9.16:Describing function analysis. A feedback connection between a static nonlin-
earity and a linear system is shown in (a). The linear system is characterized by its transfer
function L(s), which depends on frequency, and the nonlinearity by its describing function
N(a), which depends on the amplitudea of its input. The Nyquist plot ofL(i ω) and the plot
of the−1/N(a) are shown in (b). The intersection of the curves represents a possible limit
cycle.

Systems where the phase between inputs and outputs is 90◦ or less for all inputs
are calledpassive systems. It follows from the Nyquist stability theorem that a
closed loop linear system is stable if the phase of the loop transfer function is
between−π andπ . This result can be extended to nonlinear systems as well. It is
called thepassivity theoremand is closely related to the small gain theorem. See
Khalil [Kha01] for a more detailed description.

Additional applications of the small gain theorem and its application to robust
stability are given in Chapter 12.

Describing Functions
�

For special nonlinear systems like the one shown in Figure 9.16a, which consists
of a feedback connection between a linear system and a staticnonlinearity, it is
possible to obtain a generalization of Nyquist’s stabilitycriterion based on the idea
of describing functions. Following the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that correspondsto the first harmonic.

To carry out this analysis, we have to analyze how a sinusoidal signal propa-
gates through a static nonlinear system. In particular we investigate how the first
harmonic of the output of the nonlinearity is related to its (sinusoidal) input. Letting
F represent the nonlinear function, we expandF(ei ωt) in terms of its harmonics:

F(aei ωt) =
∞

∑

n=0

Mn(a)ei (nωt+ϕn(a)),

whereMn(a) andϕn(a) represent the gain and phase of thenth harmonic, which
depend on the input amplitude since the functionF is nonlinear. We define the
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Figure 9.17:Describing function analysis for a relay with hysteresis. The input/output relation
of the hysteresis is shown in (a) and the input with amplitudea = 2, the output and its first
harmonic are shown in (b). The Nyquist plots of the transfer functionL(s) = (s + 1)−4 and
the negative of the inverse describing function for the relay withb = 3 andc = 1 are shown
in (c).

describing function to be the complex gain of the first harmonic:

N(a) = M1(a)ei ϕn(a). (9.14)

The function can also be computed by assuming that the input isa sinusoid and
using the first term in the Fourier series of the resulting output.

Arguing as we did when deriving Nyquist’s stability criterion, we find that an
oscillation can be maintained if

L(i ω)N(a) = −1. (9.15)

This equation means that if we inject a sinusoid at A in Figure 9.16, the same signal
will appear at B and an oscillation can be maintained by connecting the points.
Equation (9.15) gives two conditions for finding the frequencyω of the oscillation
and its amplitudea: the phase must be 180◦, and the magnitude must be unity. A
convenient way to solve the equation is to plotL(i ω) and−1/N(a) on the same
diagram as shown in Figure 9.16b. The diagram is similar to the Nyquist plot where
the critical point−1 is replaced by the curve−1/N(a) anda ranges from 0 to∞.

It is possible to define describing functions for types of inputs other than si-
nusoids. Describing function analysis is a simple method, but it is approximate
because it assumes that higher harmonics can be neglected. Excellent treatments of
describing function techniques can be found in the texts by Atherton [Ath75] and
Graham and McRuer [GM61].

Example 9.11 Relay with hysteresis
Consider a linear system with a nonlinearity consisting of arelay with hysteresis.
The output has amplitudeb and the relay switches when the input is±c, as shown in
Figure 9.17a. Assuming that the input isu = a sin(ωt), we find that the output is zero
if a ≤ c, and ifa > c, the output is a square wave with amplitudeb that switches at
timesωt = arcsin(c/a)+nπ . The first harmonic is theny(t) = (4b/π) sin(ωt−α),
where sinα = c/a. Fora > c the describing function and its inverse are

N(a) =
4b

aπ

(

√

1 −
c2

a2
− i

c

a

)

,
1

N(a)
=

π
√

a2 − c2

4b
+ i

πc

4b
,
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where the inverse is obtained after simple calculations. Figure 9.17b shows the
response of the relay to a sinusoidal input with the first harmonic of the output
shown as a dashed line. Describing function analysis is illustrated in Figure 9.17c,
which shows the Nyquist plot of the transfer functionL(s) = 2/(s + 1)4 (dashed
line) and the negative inverse describing function of a relay with b = 1 andc = 0.5.
The curves intersect fora = 1 andω = 0.77 rad/s, indicating the amplitude and
frequency for a possible oscillation if the process and the relay are connected in a
a feedback loop. ∇

9.6 Further Reading

Nyquist’s original paper giving his now famous stability criterion was published in
theBell Systems Technical Journalin 1932 [Nyq32]. More accessible versions are
found in the book [BK64], which also includes other interesting early papers on
control. Nyquist’s paper is also reprinted in an IEEE collection of seminal papers on
control [Bas01]. Nyquist used+1 as the critical point, but Bode changed it to−1,
which is now the standard notation. Interesting perspectives on early developments
are given by Black [Bla77], Bode [Bod60] and Bennett [Ben93]. Nyquist did a direct
calculation based on his insight into the propagation of sinusoidal signals through
systems; he did not use results from the theory of complex functions. The idea
that a short proof can be given by using the principle of variation of the argument
is presented in the delightful book by MacColl [Mac45]. Bodemade extensive
use of complex function theory in his book [Bod45], which laid the foundation
for frequency response analysis where the notion of minimumphase was treated in
detail. A good source for complex function theory is the classic by Ahlfors [Ahl66].
Frequency response analysis was a key element in the emergence of control theory
as described in the early texts by James et al. [JNP47], Brown and Campbell [BC48]
and Oldenburger [Old56], and it became one of the cornerstones of early control
theory. Frequency response underwent a resurgence when robust control emerged
in the 1980s, as will be discussed in Chapter 12.

Exercises

98 (Operational amplifier) Consider an op amp circuit withZ1 = Z2 that gives
a closed loop system with nominally unit gain. Let the transfer function of the
operational amplifier be

G(s) =
ka1a2

(s + a)(s + a1)(s + a2)
,

wherea1, a2 ≫ a. Show that the condition for oscillation isk < a1 + a2 and
compute the gain margin of the system. Hint: Assumea = 0.

99 (Atomic force microscope) The dynamics of the tapping mode ofan atomic
force microscope are dominated by the damping of the cantilever vibrations and
the system that averages the vibrations. Modeling the cantilever as a spring–mass
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system with low damping, we find that the amplitude of the vibrations decays as
exp(−ζωt), whereζ is the damping ratio andω is the undamped natural frequency
of the cantilever. The cantilever dynamics can thus be modeled by the transfer
function

G(s) =
a

s + a
,

wherea = ζω0. The averaging process can be modeled by the input/output relation

y(t) =
1

τ

∫ t

t−τ

u(v)dv,

where the averaging time is a multiplen of the period of the oscillation 2π/ω. The
dynamics of the piezo scanner can be neglected in the first approximation because
they are typically much faster thana. A simple model for the complete system is
thus given by the transfer function

P(s) =
a(1 − e−sτ )

sτ(s + a)
.

Plot the Nyquist curve of the system and determine the gain of aproportional
controller that brings the system to the boundary of stability.

100 (Heat conduction) A simple model for heat conduction in a solid is given by
the transfer function

P(s) = ke−
√

s.

Sketch the Nyquist plot of the system. Determine the frequency where the phase of
the process is−180◦ and the gain at that frequency. Show that the gain required to
bring the system to the stability boundary isk = eπ .

101 (Vectored thrust aircraft) Consider the state space controller designed for�
the vectored thrust aircraft in Examples 6.8 and 7.5. The controller consists of
two components: an optimal estimator to compute the state ofthe system from
the output and a state feedback compensator that computes the input given the
(estimated) state. Compute the loop transfer function for the system and determine
the gain, phase and stability margins for the closed loop dynamics.

102 (Vehicle steering) Consider the linearized model for vehicle steering with a
controller based on state feedback discussed in Example 7.4.The transfer functions
for the process and controller are given by

P(s) =
γ s + 1

s2
, C(s) =

s(k1l1 + k2l2) + k1l2
s2 + s(γ k1 + k2 + l1) + k1 + l2 + k2l1 − γ k2l2

,

as computed in Example 8.6. Let the process parameter beγ = 0.5 and assume
that the state feedback gains arek1 = 1 andk2 = 0.914 and that the observer gains
arel1 = 2.828 andl2 = 4. Compute the stability margins numerically.

103 (Stability margins for second-order systems) A process whose dynamics is
described by a double integrator is controlled by an ideal PD controller with the
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transfer functionC(s) = kds + kp, where the gains arekd = 2ζω0 andkp = ω2
0.

Calculate and plot the gain, phase and stability margins as afunctionζ .

104(Congestion control in overload conditions) A strongly simplified flow model
of a TCP loop under overload conditions is given by the loop transfer function

L(s) =
k

s
e−sτ ,

where the queuing dynamics are modeled by an integrator, theTCP window control
is a time delayτ and the controller is simply a proportional controller. A major
difficulty is that the time delay may change significantly during the operation of
the system. Show that if we can measure the time delay, it is possible to choose a
gain that gives a stability margin ofsn ≥ 0.6 for all time delaysτ .

105(Bode’s formula) Consider Bode’s formula (9.8) for the relation between gain
and phase for a transfer function that has all its singularities in the left half-plane.
Plot the weighting function and make an assessment of the frequencies where the
approximation argG ≈ (π/2)d log |G|/d logω is valid.

106(Padé approximation to a time delay) Consider the transfer functions

G1(s) = e−sτ , G2(s) = e−sτ ≈
1 − sτ/2

1 + sτ/2
. (9.16)

Show that the minimum phase properties of the transfer functions are similar for
frequenciesω < 1/τ . A long time delayτ is thus equivalent to a small right half-
plane zero. The approximation (9.16) is called a first-orderPadé approximation.

107(Inverse response) Consider a system whose input/output response is modeled
by G(s) = 6(−s + 1)/(s2 + 5s + 6), which has a zero in the right half-plane.
Compute the step response for the system, and show that the output goes in the
wrong direction initially, which is also referred to as aninverse response. Compare
the response to a minimum phase system by replacing the zero at s = 1 with a zero
ats = −1.

108 (Describing function analysis) . Consider the system with the block diagram
shown on the left below.

−1

6

r e u
P(s)

y
R( ·)

y

u

c

b

The blockR is a relay with hysteresis whose input/output response is shown on the
right and the process transfer function isP(s) = e−sτ/s. Use describing function
analysis to determine frequency and amplitude of possible limit cycles. Simulate
the system and compare with the results of the describing function analysis.


