Chapter Nine

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tedti ffossessed the
advantages which he had predicted for it. In particular, its gain was consteahigh degree,
and it was linear enough so that spurious signals caused by the interaafithe various
channels could be kept within permissible limits. For best results the fekdbetor 4 had
to be numerically much larger than unity. The possibility of stability with a feddbaztor
larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 1956 [Nyq56].

In this chapter we study how the stability and robustnes$osea loop systems
can be determined by investigating how sinusoidal signaiéfflerent frequencies
propagate around the feedback loop. This technique allow® wusason about
the closed loop behavior of a system through the frequennyadtoproperties of
the open loop transfer function. The Nyquist stability thesors a key result that
provides a way to analyze stability and introduce measurdegrees of stability.

9.1 The Loop Transfer Function

Determining the stability of systems interconnected bylfeek can be tricky be-
cause each system influences the other, leading to potgrdiaiular reasoning.
Indeed, as the quote from Nyquist above illustrates, thawiehof feedback sys-
tems can often be puzzling. However, using the mathemditazakwork of transfer
functions provides an elegant way to reason about suchregstehich we calloop
analysis

The basic idea of loop analysis is to trace how a sinusoidabsjgropagates in
the feedback loop and explore the resulting stability byestigating if the prop-
agated signal grows or decays. This is easy to do becauseati@rission of
sinusoidal signals through a linear dynamical system isacitarized by the fre-
quency response of the system. The key result is the Nyquaisilist theorem,
which provides a great deal of insight regarding the stghif a system. Unlike
proving stability with Lyapunov functions, studied in Cliap4, the Nyquist crite-
rion allows us to determine more than just whether a systestalse or unstable.
It provides a measure of the degree of stability through tfenidion of stability
margins. The Nyquist theorem also indicates how an unstaiskers should be
changed to make it stable, which we shall study in detail iagiérs 10-12.

Considerthe systemin Figure 9.1a. The traditional way tadeite if the closed
loop system is stable is to investigate if the closed loopaittaristic polynomial
has all its roots in the left half-plane. If the process aradbntroller have rational
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Figure 9.1: The loop transfer function. The stability of the feedback system (a) ean b
determined by tracing signals around the loop. Letling: P C represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected atainé A& has the
same magnitude and phase when it reaches point B.

transfer functionsP(s) = ny(s)/dp(s) andC(s) = n¢(s)/d.(s), then the closed
loop system has the transfer function

PC Np(S)Nc(s)
1+ PC  dp(9)de(s) + Np(s)Ne(s)’
and the characteristic polynomial is
A(8) = dp(S)dc(S) + Np(s)Nc(s).

To check stability, we simply compute the roots of the chinastic polynomial
and verify that they each have negative real part. This agprizestraightforward
but it gives little guidance for design: it is not easy to tedlv the controller should
be modified to make an unstable system stable.

Nyquist’s idea was to investigate conditions under whidtilizgions can occur
in a feedback loop. To study this, we introduce kbep transfer function Ks) =
P(s)C(s), which is the transfer function obtained by breaking thalbeek loop,
as shown in Figure 9.1b. The loop transfer function is simpéyttansfer function
from the input at position A to the output at position B muigg by —1 (to account
for the usual convention of negative feedback).

We will first determine conditions for having a periodic okatibn in the loop.
Assume that a sinusoid of frequenoy is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequengy It seems reasonable
that an oscillation can be maintained if the signal at B hasime amplitude and
phase as the injected signal because we can then disconeétjected signal and
connect A to B. Tracing signals around the loop, we find thastbeals at A and
B are identical if

Gyr (S) =

L(iwo) = —1, (9.1)

which then provides a condition for maintaining an osditlat The key idea of
the Nyquist stability criterion is to understand when thas ©iappen in a general
setting. As we shall see, this basic argument becomes mbtke suhen the loop
transfer function has poles in the right half-plane.

Example 9.1 Operational amplifier circuit
Consider the op amp circuit in Figure 9.2a, wh&keand Z, are the transfer func-
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Figure 9.2: Loop transfer function for an op amp. The op amp circuit (a) has aimedm
transfer functiom,/v; = Z,(s)/Z1(s), whereZ, and Z, are the impedances of the circuit
elements. The system can be represented by its block diagram (bg weeow include the
op amp dynamic§&(s). The loop transfer function is = Z,G/(Z; + Z,).

tions of the feedback elements from voltage to current. Thefieedback because
voltagew; is related to voltage through the transfer functiorG describing the op
amp dynamics and voltageis related to voltage, through the transfer function
Z1/(Z1+ Z5). The loop transfer function is thus

6z
i+ Zy

Assuming that the currentis zero, the current through the elemeBtsand Z, is
the same, which implies

(9.2)

v — 0 v — 02

Z Zy

Solving foro gives
_ Zov1 + Z107 . Zov1 — Z1Go Zo L

= =——u;—Lo.
21+ 2, 21+ 2, Zy G v
Sincev, = —Go the input/output relation for the circuit becomes
Z, L
Gy, =——o .
2 Z;1+L

A block diagram is shown in Figure 9.2b. It follows from (9.hat the condition
for oscillation of the op amp circuit is
Z1(iw)G(iw)

Liw) = Z1(io) + Zo(iw) -1 ©-3)

\%

One of the powerful concepts embedded in Nyquist’s appraastability anal-
ysis is that it allows us to study the stability of the feedbagstem by looking at
properties of the loop transfer function. The advantage daiglthis is that it is
easy to see how the controller should be chosen to obtainisedésop transfer
function. For example, if we change the gain of the contrptlee loop transfer
function will be scaled accordingly. A simple way to stab#lian unstable system is
then to reduce the gain so that thé& point is avoided. Another way is to introduce
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Figure 9.3: The Nyquist contoul” and the Nyquist plot. The Nyquist contour (a) encloses
the right half-plane, with a small semicircle around any polek @) on the imaginary axis
(illustrated here at the origin) and an arc at infinity, represente® by oo. The Nyquist
plot (b) is the image of the loop transfer functi@iis) whens traversed" in the clockwise
direction. The solid line correspondsdo> 0, and the dashed line to < 0. The gain and
phase at the frequeney areg = |L(iw)| andgp = ZL(iw). The curve is generated for
L(s) = L4es/(s+ 12

a controller with the property that it bends the loop trangfaction away from the
critical point, as we shall see in the next section. Différgays to do this, called
loop shaping, will be developed and will be discussed in @Grafl.

9.2 The Nyquist Criterion

In this section we present Nyquist's criterion for deteriminthe stability of a
feedback system through analysis of the loop transfer imctVe begin by intro-
ducing a convenient graphical tool, the Nyquist plot, analshow it can be used
to ascertain stability.

The Nyquist Plot

We saw in the last chapter that the dynamics of a linear systenioe represented
by its frequency response and graphically illustrated byedeBplot. To study the
stability of a system, we will make use of a different repregaton of the frequency
response called ldyquist plot The Nyquist plot of the loop transfer functian(s)

is formed by tracings € C around the Nyquist “D contour,” consisting of the
imaginary axis combined with an arc at infinity connecting éimelpoints of the
imaginary axis. The contour, denotedlas C, is illustrated in Figure 9.3a. The
image ofL (s) whens traversed" gives a closed curve in the complex plane and is
referred to as the Nyquist plot fdr(s), as shown in Figure 9.3b. Note that if the
transfer functiorl (s) goes to zero asgets large (the usual case), then the portion
of the contour “at infinity” maps to the origin. Furthermoreg hortion of the plot
corresponding ta < 0 is the mirror image of the portion withh > 0.
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There is a subtlety in the Nyquist plot when the loop transfacfion has poles
on the imaginary axis because the gain is infinite at the pdtesolve this problem,
we modify the contoul” to include small deviations that avoid any poles on the
imaginary axis, as illustrated in Figure 9.3a (assuming a pbl (s) at the origin).
The deviation consists of a small semicircle to the right efithaginary axis pole
location.

The condition for oscillation given in equation (9.1) imglithat the Nyquist
plot of the loop transfer function go through the point= —1, which is called
the critical point. Let o represent a frequency at whietlL (iw.) = 180, corre-
sponding to the Nyquist curve crossing the negative real dxiuitively it seems
reasonable that the system is stablg.ifi wc)| < 1, which means that the critical
point —1 is on the left-hand side of the Nyquist curve, as indicatefigure 9.3b.
This means that the signal at point B will have smaller amgétthan the injected
signal. This is essentially true, but there are several stidél that require a proper
mathematical analysis to clear up. We defer the detailsdarand state the Nyquist
condition for the special case whetés) is a stable transfer function.

Theorem 9.1(Simplified Nyquist criterion) Let L(s) be the loop transfer function
for a negative feedback system (as shown in Figure 9.1a) asdnae that L has
no poles in the closed right half-plan®¢s > 0) except for single poles on the
imaginary axis. Then the closed loop system is stable if aygl ibrthe closed
contour given by) = {L(iw) : —co < @ < oo} C C has no net encirclements of
the critical point s= —1.

The following conceptual procedure can be used to determiaetihere are
no encirclements. Fix a pin at the critical post= —1, orthogonal to the plane.
Attach a string with one end at the critical point and the ptirethe Nyquist plot.
Let the end of the string attached to the Nyquist curve travdre whole curve.
There are no encirclements if the string does not wind up opitherhen the curve
is encircled.

Example 9.2 Third-order system
Consider a third-order transfer function

1
L= ——.
®) (s+a)3
To compute the Nyquist plot we start by evaluating pointslaniimaginary axis
S = iw, which yields
1 (a-iw)® a®-3a’ . o’-3a%

Llw) = (wta? @102 @t @t wd?

This is plotted in the complex plane in Figure 9.4, with the pooorresponding to
w > 0 drawn as a solid line and < 0 as a dashed line. Notice that these curves
are mirror images of each other.

To complete the Nyquist plot, we compultgs) for s on the outer arc of the
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Figure 9.4: Nyquist plot for a third-order transfer function. The Nyquist plot sists of a
trace of the loop transfer functidn(s) = 1/(s + a)°. The solid line represents the portion
of the transfer function along the positive imaginary axis, and the ddstethe negative
imaginary axis. The outer arc of the D contour maps to the origin.

Nyquist D contour. This arc has the fosn= Re’ for R — oo. This gives

; 1
oy _

Thus the outer arc of thB contour maps to the origin on the Nyquist plot. V

An alternative to computing the Nyquist plot explicitly s determine the plot
from the frequency response (Bode plot), which gives theuistgqurve fors = i w,
w > 0. We start by plottinds(iw) from v = 0 tow = oo, which can be read off
from the magnitude and phase of the transfer function. We phet G (Re?) with
0 e[—n/2,m/2]andR — oo, which almost always maps to zero. The remaining
parts of the plot can be determined by taking the mirror imadhe curve thus far
(normally plotted using a dashed line). The plot can then beléa with arrows
corresponding to a clockwise traversal around the D cor{tbersame direction in
which the first portion of the curve was plotted).

Example 9.3 Third-order system with a pole at the origin
Consider the transfer function

“O) = S+ 07

where the gain has the nominal vakie= 1. The Bode plot is shown in Figure 9.5a.
The system has a single polesat 0 and a double pole at= —1. The gain curve
of the Bode plot thus has the slopd for low frequencies, and at the double pole
s = 1 the slope changes te3. For smalk we havel ~ k/s, which means that the
low-frequency asymptote intersects the unit gain line at k. The phase curve
starts at—90° for low frequencies, it is-180 at the breakpointy = 1 and it is
—270 at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquatt phown
in Figure 9.5h. It starts with a phase B0 for low frequencies, intersects the
negative real axis at the breakpaint= 1 whereL (i) = 0.5 and goes to zero along
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Figure 9.5: Sketching Nyquist and Bode plots. The loop transfer functidn® = 1/(s(s+
1)?). The large semicircle is the map of the small semicircle ofitieentour around the pole
at the origin. The closed loop is stable because the Nyquist curve doesaiele the critical
point. The point where the phase44.80 is marked with a circle in the Bode plot.

the imaginary axis for high frequencies. The small half{eiiaf thel" contour at
the origin is mapped on a large circle enclosing the right-pi@ne. The Nyquist
curve does not encircle the critical point, and it followarfrthe simplified Nyquist
theorem that the closed loop is stable. Sihge) = —k/2, we find the system
becomes unstable if the gain is increasek te 2 or beyond. \%

The Nyquist criterion does not require thiti w)| < 1forallw corresponding
toacrossing of the negative real axis. Rather, it sayslhieatumber of encirclements
must be zero, allowing for the possibility that the Nyquistwe could cross the
negative real axis and cross back at magnitudes greaterlth@he fact that it
was possible to have high feedback gains surprised thedeslgners of feedback
amplifiers, as mentioned in the quote in the beginning of thagpter.

One advantage of the Nyquist criterion is that it tells us fesystem is in-
fluenced by changes of the controller parameters. For exaihfgevery easy to
visualize what happens when the gain is changed since 8tisgales the Nyquist
curve.

Example 9.4 Congestion control
Consider the Internet congestion control system desciib8éction 3.4. Suppose
we haveN identical sources and a disturbantaepresenting an external data
source, as shown in Figure 9.6a. Wedetepresent the individual window size for
a sourceg represent the end-to-end probability of a dropped padketpresent
the number of packets in the router’s buffer gnkpresent the probability that that
a packet is dropped by the router. We wiitdor the total number of packets being
received from allN sources. We also include a time delay between the router and
the senders, representing the time delays between thersertiezceiver.

To analyze the stability of the system, we use the transfestions computed
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Figure 9.6: Internet congestion control. A set df sources using TCP/Reno send messages
through a single router with admission control (left). Link delays are iredifdr the forward
and backward directions. The Nyquist plot for the loop transfer fundsoshown on the
right.

in Exercise 94:

észJ (S) = qu (S) = pr(S) =P,

Oe(7eS + Getve)”
where(we, be) is the equilibrium point for the systeriN is the number of sources,
e IS the steady-state round-trip time ands the forward propagation time. We use
Gpi to represent the transfer function with the forward timeagiebmoved since
this is accounted for as a separate block in Figure 9.6a. Slyi@,,q = Giq/N
since we have pulled out the multiplidr as a separate block as well.

The loop transfer function is given by

7eS + €7 7fS’

N 1 s
L(s)y=p- — - e,
7S+ €775 (e(7eS + Qete)
Using the fact thate &~ 2N /w? = 2N3/(zC)? andwe = be/N = 7ec/N from
equation (3.22), we can show that

c3r3
1eS+ €77 2N3(cr2s+ 2N?)

—76S

L(s)=p-

Note that we have chosen the signlaf) to use the same sign convention as in
Figure 9.1b. The exponential term representing the time dgikes significant
phase above) = 1/7,, and the gain at the crossover frequency will determine
stability.

To check stability, we require that the gain be sufficienthaliat crossover. If
we assume that the pole due to the queue dynamics is sufficfastithat the TCP
dynamics are dominant, the gain at the crossover frequenig/given by

g pCre
2N3CTeZC()C 2Na)C

Using the Nyquist criterion, the closed loop system will Instable if this quantity

L) =p-N-
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Figure 9.7: Nyquist curve for the loop transfer functid(s) = or The plot on the right
is an enlargement of the box around the origin of the plot on the left. Thguisycurve
intersections the negative real axis twice but has no net encirclements of

is greater than 1. In particular, for a fixed time delay, theteyswill become
unstable as the link capacityis increased. This indicates that the TCP protocol
may not be scalable to high-capacity networks, as pointeohdLow et al. [LPDO02].
Exercise 104 provides some ideas of how this might be overcome \%

Conditional Stability

Normally, we find that unstable systems can be stabilizedIgiimpreducing the
loop gain. There are, however, situations where a system eastabilized by
increasing the gain. This was first encountered by electriggiheers in the design
of feedback amplifiers, who coined the teconditional stability The problem was
actually a strong motivation for Nyquist to develop his thedVe will illustrate by
an example.

Example 9.5 Third-order system
Consider a feedback system with the loop transfer function

_ 3(s+6)?

L= ST

(9.4)
The Nyquist plot of the loop transfer function is shown in Fg@r7. Notice that the
Nyquist curve intersects the negative real axis twice. Theifitsrsection occurs at
L = —12forw = 2, and the second &t= —4.5 forw = 3. The intuitive argument
based on signal tracing around the loop in Figure 9.1b isglyanisleading in this
case. Injection of a sinusoid with frequency 2 rad/s and dud# 1 at A gives, in
steady state, an oscillation at B that is in phase with thatiapd has amplitude
12. Intuitively it is seems unlikely that closing of the loagll result in a stable
system. However, it follows from Nyquist’s stability cniten that the system is
stable because there are no net encirclements of the tpta#. Note, however,
that if we decreasdhe gain, then we can get an encirclement, implying that the
gain must be sufficiently large for stability. \%
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General Nyquist Criterion

Theorem 9.1 requires that(s) have no poles in the closed right half-plane. In
some situations this is not the case and a more general iesetjuired. Nyquist
originally considered this general case, which we sumraatza theorem.

Theorem 9.2(Nyquist’s stability theorem)Consider a closed loop system with the
loop transfer function Ks) that has P poles in the region enclosed by the Nyquist
contour. Let N be the net number of clockwise encirclementd diy L(s) when s
encircles the Nyquist contodur in the clockwise direction. The closed loop system
then has Z= N + P poles in the right half-plane.

The full Nyquist criterion states that if(s) hasP poles in the right half-plane,
then the Nyquist curve fat (s) should haveP counterclockwise encirclements of
—1 (so thatN = —P). In particular, thigequiresthat|L (iwc)| > 1 for somew,
corresponding to a crossing of the negative real axis. Casédbe taken to get the
right sign of the encirclements. The Nyquist contour has twdeersed clockwise,
which means thab moves from—oo to oo andN is positive if the Nyquist curve
winds clockwise. If the Nyquist curve winds counterclockei thenN will be
negative (the desired caseRf+# 0).

As in the case of the simplified Nyquist criterion, we use sreathicircles of
radiusr to avoid any poles on the imaginary axis. By letting> 0, we can use
Theorem 9.2 to reason about stability. Note that the imageeo$inall semicircles
generates a section of the Nyquist curve whose magnitudeagies infinity,
requiring care in computing the winding number. When phatiNyquist curves on
the computer, one must be careful to see that such poles@verpr handled, and
often one must sketch those portions of the Nyquist plot mdhheing careful to
loop the right way around the poles.

Example 9.6 Stabilized inverted pendulum

The linearized dynamics of a normalized inverted pendulumbesrepresented by
the transfer functio® (s) = 1/(s®> — 1), where the input is acceleration of the pivot
and the output is the pendulum angleas shown in Figure 9.8 (Exercise 85). We
attempt to stabilize the pendulum with a proportionalgsive (PD) controller
having the transfer functio@ (s) = k(s + 2). The loop transfer function is

The Nyquist plot of the loop transfer function is shown in Fg@.8b. We have
L(0) = —k andL (o) = 0. If k > 1, the Nyquist curve encircles the critical point
s = —1 in the counterclockwise direction when the Nyquist contois encircled

in the clockwise direction. The number of encirclements isstN = —1. Since
the loop transfer function has one pole in the right halfplé = 1), we find that

Z = N 4+ P = 0 and the system is thus stable for- 1. If k < 1, there is no
encirclement and the closed loop will have one pole in thiettiglf-plane. V
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Figure 9.8: PD control of an inverted pendulum. (a) The system consists of a maisis th
balanced by applying a force at the pivot point. A proportional-dévigacontroller with
transfer functiorC(s) = k(s + 2) is used to command based ord. (b) A Nyquist plot of
the loop transfer function for gakn= 2. There is one counterclockwise encirclement of the
critical point, givingN = —1 clockwise encirclements.

Derivation of Nyquist’s Stability Theorem @

We will now prove the Nyquist stability theorem for a gendoalp transfer function
L (s). This requires some results from the theory of complex véghbor which
the reader can consult Ahlfors [Ahl66]. Since some precigameeded in stating
Nyquist’s criterion properly, we will use a more mathematistyle of presenta-
tion. We also follow the mathematical convention of cougtmcirclements in the
counterclockwise direction for the remainder of this s@ttiThe key result is the
following theorem about functions of complex variables.

Theorem 9.3(Principle of variation of the argument).et D be a closed region

in the complex plane and I&t be the boundary of the region. Assume the function
f : C —» Cisanalyticin D and orl", except at a finite number of poles and zeros.
Then thewinding numberw,, is given by

1 1 f(z)
wn_z—Arargf(z) / f(z) =Z-P,

whereAr is the net variation in the angle when z traverses the confoiur the
counterclockwise direction, Z is the number of zeros in D Bnid the number of
poles in D. Poles and zeros of multiplicity m are counted nesm

Proof. Assume that = ais a zero of multiplicitym. In the neighborhood of = a
we have
f(z) = (z—a)"9(2),

where the functiory is analytic and different from zero. The ratio of the derivati
of f to itself is then given by

fo_ m 9@
fzz7 z—a 9@’
and the second term is analyticzat a. The functionf’/f thus has a single pole
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atz = a with the residuem. The sum of the residues at the zeros of the function is

Z. Similarly, we find that the sum of the residues of the poles eff’ and hence
1 f'(2) 1 d 1
271 Jr f(2) z 271 Jrdz og f(2)dz 27i 092

whereAr again denotes the variation along the contbuvVe have

Z-P

log f(2) =log|f(z)| +iargf(2),
and since the variation ¢ff (z)| around a closed contour is zero it follows that
Arlog f(z) =iArargf(2),

and the theorem is proved. O

This theorem is useful in determining the number of poles analszof a function
of complex variables in a given region. By choosing an appatg closed region
D with boundaryl”, we can determine the difference between the number of poles
and zeros through computation of the winding number.

Theorem 9.3 can be used to prove Nyquist's stability theorgohbosingl’ as
the Nyquist contour shown in Figure 9.3a, which enclosesigtg half-plane. To
construct the contour, we start with part of the imaginangajR < s < jR and
a semicircle to the right with radiug. If the function f has poles on the imaginary
axis, we introduce small semicircles with radiio the right of the poles as shown
in the figure. The Nyquist contour is obtained by lettiRg— oo andr — O.
Note thatl” has orientatiomppositehat shown in Figure 9.3a. (The convention in
engineering is to traverse the Nyquist contour in the cldskwdirection since this
corresponds to moving upwards along the imaginary axisghvitiakes it easy to
sketch the Nyquist contour from a Bode plot.)

To see how we use the principle of variation of the argumectiopute stability,
consider a closed loop system with the loop transfer fundtics). The closed loop
poles of the system are the zeros of the funcfigs) = 1+ L (s). To find the number
of zeros in the right half-plane, we investigate the windiugnber of the function
f(s) = 1+ L(s) ass moves along the Nyquist contolirin the counterclockwise
direction. The winding number can conveniently be deterchinem the Nyquist
plot. A direct application of Theorem 9.3 gives the Nyquistesion, taking care
to flip the orientation. Since the image of1L(s) is a shifted version ot (s),
we usually state the Nyquist criterion as net encirclemehthe —1 point by the
image ofL (s).

9.3 Stability Margins

In practice itis not enough that a system is stable. There atszbe some margins
of stability that describe how stable the system is and iastness to perturbations.
There are many ways to express this, but one of the most consloa iise of gain
and phase margins, inspired by Nyquist’s stability crieriThe key idea is that it
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Figure 9.9: Stability margins. The gain marga, and phase margip, are shown on the the
Nyquist plot (a) and the Bode plot (b). The gain margin corresponttetemallest increase
in gain that creates an encirclement, and the phase margin is the smadlegech phase
that creates an encirclement. The Nyquist plot also shows the stabilitymsargvhich is
the shortest distance to the critical point.

is easy to plot the loop transfer functitris). An increase in controller gain simply

expands the Nyquist plot radially. An increase in the phds$keocontroller twists

the Nyquist plot. Hence from the Nyquist plot we can easitkpiff the amount of

gain or phase that can be added without causing the systeettorte unstable.
Formally, thegain margin g, of a system is defined as the smallest amount that

the open loop gain can be increased before the closed lotgnsgees unstable. For

a system whose phase decreases monotonically as a funtfrequency starting

at @, the gain margin can be computed based on the smallest fregudere the

phase of the loop transfer functidr(s) is —180°. Letwy represent this frequency,

called thephase crossover frequencyhen the gain margin for the system is given

by
1

T Lol

Similarly, thephase margitis the amount of phase lag required to reach the stability
limit. Let wgyc be thegain crossover frequencthe smallest frequency where the loop
transfer functiorL (s) has unit magnitude. Then for a system with monotonically
decreasing gain, the phase margin is given by

Om (9.5)

These margins have simple geometric interpretations onyheist diagram of
the loop transfer function, as shown in Figure 9.9a, whereawe plotted the portion
of the curve corresponding to > 0. The gain margin is given by the inverse of
the distance to the nearest point betwednand 0 where the loop transfer function
crosses the negative real axis. The phase margin is giverelsntallest angle on
the unit circle betweer-1 and the loop transfer function. When the gain or phase
is monotonic, this geometric interpretation agrees withfdrmulas above.
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Figure 9.10: Stability margins for a third-order transfer function. The Nyquist plottos
left allows the gain, phase and stability margins to be determined by megheidistances
of relevant features. The gain and phase margins can also be fedidhaf Bode plot on the

right.

A drawback with gain and phase margins is that it is necedsagive both of
them in order to guarantee that the Nyquist curve is not dio$ke critical point.
An alternative way to express margins is by a single numheistability margin
Sm, Which is the shortest distance from the Nyquist curve tcctiteal point. This
number is related to disturbance attenuation, as will beudised in Section 11.3.

For many systems, the gain and phase margins can be detdrintnethe Bode
plot of the loop transfer function. To find the gain margin wetffisd the phase
crossover frequenayy,c where the phase is180°. The gain margin is the inverse
of the gain at that frequency. To determine the phase margifirst determine the
gain crossover frequeneyy, i.e., the frequency where the gain of the loop transfer
function is 1. The phase margin is the phase of the loop trafsfietion at that
frequency plus 180 Figure 9.9b illustrates how the margins are found in the Bode
plot of the loop transfer function. Note that the Bode plaerpretation of the gain
and phase margins can be incorrect if there are multiplauegies at which the
gain is equal to 1 or the phase is equaHb80°.

Example 9.7 Third-order system

Consider a loop transfer functidn(s) = 3/(s + 1)3. The Nyquist and Bode plots
are shown in Figure 9.10. To compute the gain, phase andistabérgins, we can
use the Nyquist plot shown in Figure 9.10. This yields the feiiay values:

gm - 2.67, (0m - 41.73, Sn = 0.464'.
The gain and phase margins can also be determined from theutde \%

The gain and phase margins are classical robustness metsaitraave been
used for a long time in control system design. The gain masgiveil defined if the
Nyquist curve intersects the negative real axis once. Agmlsly, the phase margin
is well defined if the Nyquist curve intersects the unit cietlenly one point. Other
more general robustness measures will be introduced int€hap.
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Figure 9.11: System with good gain and phase margins but a poor stability margin. Nyquis
(a) and Bode (b) plots of the loop transfer function and step respahser (@ system with
good gain and phase margins but with a poor stability margin. The Nydaisthpws on the
portion of the curve corresponding &> 0.

Even if both the gain and phase margins are reasonable, ttesrsysay still
not be robust, as is illustrated by the following example.

Example 9.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function

(s) = 0.38(s? + 0.1s + 0.55)
~ s(s+1)(s? +0.06s + 0.5)°

A numerical calculation gives the gain margingas= 266, and the phase margin
is 70°. These values indicate that the system is robust, but the islyqurve is
still close to the critical point, as shown in Figure 9.11. Thesbgity margin is
Sm = 0.27, which is very low. The closed loop system has two resonanies, one
with damping ratiq- = 0.81 and the other witlh = 0.014. The step response of
the system is highly oscillatory, as shown in Figure 9.11c. \Y%

The stability margin cannot easily be found from the Bode pliothe loop
transfer function. There are, however, other Bode plotswiibgive sy; these will
be discussed in Chapter 12. In general, it is best to use tl@iblyplot to check
stability since this provides more complete informatioartithe Bode plot.

When designing feedback systems, it will often be usefutfon@ the robustness
of the system using gain, phase and stability margins. Thaesders tell us how
much the system can vary from our nominal model and still &blst Reasonable
values of the margins are phase margin= 30°-60°, gain marging, = 2-5 and
stability margins,, = 0.5-0.8.

There are also other stability measures, such addlay margin which is the
smallesttime delay required to make the system unstalitéptransfer functions
that decay quickly, the delay margin is closely related spghase margin, but for
systems where the gain curve of the loop transfer functigrsheeral peaks at high
frequencies, the delay margin is a more relevant measure.
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Figure 9.12:Nyquist and Bode plots of the loop transfer function for the AFM system) (9
with anintegral controller. The frequency in the Bode plot is normalizeal Bye parameters
are¢ = 0.01 andk; = 0.008.

Example 9.9 Nanopositioning system for an atomic force microscope
Consider the system for horizontal positioning of the samplan atomic force
microscope. The system has oscillatory dynamics, and asimptlel is a spring—
mass system with low damping. The normalized transfer fands given by

2
<)

T2+ 20 woS + g’
where the damping ratio typically is a very small number,,e.g= 0.1.

We will start with a controller that has only integral actidrhe resulting loop
transfer function is )

L(s) = :
® S(S? + 2 wos + wh)

wherek; is the gain of the controller. Nyquist and Bode plots of thepldransfer
function are shown in Figure 9.12. Notice that the part of tlygNst curve that is
close to the critical point-1 is approximately circular.

From the Bode plot in Figure 9.12b, we see that the phase crasequency
is wpe = @, which will be independent of the gakq. Evaluating the loop transfer
function at this frequency, we havs(iwg) = —k;/(2¢ wo), which means that the
gain margin igm = 1—Kk; /(2¢ wp). To have a desired gain marging¥ the integral
gain should be chosen as

P(s) (9.7)

ki = 200 (1 — gm).

Figure 9.12 shows Nyquist and Bode plots for the system with geargingm, =
1.67 and stability margirs, = 0.597. The gain curve in the Bode plot is almost
a straight line for low frequencies and has a resonant peak-atwg. The gain
crossover frequency is approximately equakitoThe phase decreases monotoni-
cally from—90° to —270: itis equal to—180 atw = wg. The curve can be shifted
vertically by changind;: increasingk; shifts the gain curve upward and increases
the gain crossover frequency. Since the phaseli80’ at the resonant peak, it is
necessary that the peak not touch the |iné w)| = 1. \%



9.4. BODE'S RELATIONS AND MINIMUM PHASE SYSTEMS 285

9.4 Bode’s Relations and Minimum Phase Systems

An analysis of Bode plots reveals that there appears to btore between the
gain curve and the phase curve. Consider, for example, tlke Biots for the
differentiator and the integrator (shown in Figure 8.12). the differentiator the
slope is+1 and the phase is a constan® radians. For the integrator the slope is
—1 and the phase isz /2. For the first-order syste@(s) = s + a, the amplitude
curve has the slope 0 for small frequencies and the sldp#or high frequencies,
and the phase is 0 for low frequencies arny@ for high frequencies.

Bode investigated the relations between the curves foesyswith no poles
and zeros in the right half-plane. He found that the phaseunagiely given by
the shape of the gain curve, and vice versa:

argG(img) = %/OOO f(a))w

where f is the weighting kernel

| ,

dlogw 2 dlogow (0-8)

f(w) = %Iog w+wo‘.
T w — o

The phase curve is thus a weighted average of the derivatitteeafain curve. If

the gain curve has constant slapehe phase curve has constant vaiueg 2.

Bode'’s relations (9.8) hold for systems that do not havegale zeros in the
right half-plane. Such systems are calteshimum phase systerbecause systems
with poles and zeros in the right half-plane have a largeseleg. The distinction
is important in practice because minimum phase systemsarer¢o control than
systems with a larger phase lag. We will now give a few exagpl@onminimum
phase transfer functions.

The transfer function of a time delay efunits isG(s) = e€7%°. This transfer
function has unit gainG(iw)| = 1, and the phase is a@(iw) = —wz. The
corresponding minimum phase system with unit gain has tester function
G(s) = 1. The time delay thus has an additional phase lagzofNotice that the
phase lag increases linearly with frequency. Figure 9.18wslthe Bode plot of
the transfer function. (Because we use a log scale for firemy¢he phase falls off
exponentially in the plot.)

Consider a system with the transfer functi@gs) = (a — s)/(a + s) with
a > 0, which has a zers = a in the right half-plane. The transfer function
has unit gainG(iw)| = 1, and the phase is a@iw) = —2arctanw/a). The
corresponding minimum phase system with unit gain has tester function
G(s) = 1. Figure 9.13b shows the Bode plot of the transfer functiosirAilar
analysis of the transfer functic@(s) = (s + a)/s — a) with a > 0, which has a
pole in the right half-plane, shows that its phase is@fign) = —2 arctaria/w).
The Bode plot is shown in Figure 9.13c.

The presence of poles and zeros in the right half-plane ings@sere limitations
onthe achievable performance. Dynamics of this type sHmeiéloided by redesign
of the system whenever possible. While the poles are imtripoperties of the
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Figure 9.13:Bode plots of systems that are not minimum phase. (a) Time @G(lsy= 57,
(b) system with a right half-plane (RHP) ze@1(s) = (a — s)/(a + s) and (c) system with
right half-plane pole. The corresponding minimum phase system hasatiefer function
G(s) = 1in all cases, the phase curves for that system are shown as dagsed lin

system and they do not depend on sensors and actuatorsrasalepend on how
inputs and outputs of a system are coupled to the states. Zandbus be changed
by moving sensors and actuators or by introducing new sereswd actuators.
Nonminimum phase systems are unfortunately quite commereictice.

The following example gives a system theoretic interpretatif the common
experience that it is more difficult to drive in reverse geat dlustrates some of
the properties of transfer functions in terms of their paled zeros.

Example 9.10 Vehicle steering
The nonnormalized transfer function from steering anglaterhl velocity for the
simple vehicle model is
aves + vg

bs ~’
whereug is the velocity of the vehicle and,b > 0 (see Example 5.12). The
transfer function has a zero sit= vg/a. In normal driving this zero is in the left
half-plane, but it is in the right half-plane when drivingrgversepy < 0. The unit
step response is

G(s) =

avg  avgt
Yy ==+

The lateral velocity thus responds immediately to a steexamymand. For reverse
steeringg is negative and the initial response is in the wrong diregtaobehavior
that is representative for nonminimum phase systems (cati@wverse responge

Figure 9.14 shows the step response for forward and revergagdrin this
simulation we have added an extra pole with the time conStdatapproximately
account for the dynamics in the steering system. The parasnatea = b = 1,
T = 0.1,v9 = 1 for forward driving andy = —1 for reverse driving. Notice that
fort > to = a/vg, Wherety is the time required to drive the distanagthe step
response for reverse driving is that of forward driving wtitle time delayty. The
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Figure 9.14:Vehicle steering for driving in reverse. (a) Step responses fromisgegngle to
lateral translation for a simple kinematics model when driving forwaasiied) and reverse
(solid). With rear-wheel steering the center of mass first moves in thagwdirection and
that the overall response with rear-wheel steering is significantly détzympared with that
for front-wheel steering. (b) Frequency response for drivimgvéod (dashed) and reverse
(solid). Notice that the gain curves are identical, but the phase cungrifang in reverse
has nonminimum phase.

position of the zer@y/a depends on the location of the sensor. In our calculation
we have assumed that the sensor is at the center of mass. Dhie fee transfer
function disappears if the sensor is located at the rear whige difficulty with
zeros in the right half-plane can thus be visualized by aghbaxperiment where
we drive a car in forward and reverse and observe the latesitipn through a
hole in the floor of the car. \%

9.5 Generalized Notions of Gain and Phase @

A key idea in frequency domain analysis is to trace the bemavi sinusoidal
signals through a system. The concepts of gain and phasseepee by the transfer
function are strongly intuitive because they describe #oge and phase relations
between input and output. In this section we will see how temrc the concepts
of gain and phase to more general systems, including sonimeansystems. We
will also show that there are analogs of Nyquist's stabititiferion if signals are
approximately sinusoidal.

System Gain

We begin by considering the case of a static linear system Au, whereA is
a matrix whose elements are complex numbers. The matrix dutelsane to be
square. Let the inputs and outputs be vectors whose elenrertsraplex numbers
and use the Euclidean norm

lull = V= |u 2 (9.9)
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The norm of the output is
IylI? = u* A" A,

wherex denotes the complex conjugate transpose. The matrixis symmetric
and positive semidefinite, and the right-hand side is a qtiadcam. The square
root of eigenvalues of the matrikx* A are all real, and we have

IVIIZ < Zmax(A*A)|lul|?.

The gain of the system can then be defined as the maximum ratie oiutput to
the input over all possible inputs:

[[ull

The square root of the eigenvalues of the ma#iA are called thesingular values
of the matrixA, and the largest singular value is denofdd).

To generalize this to the case of an input/output dynamigstlesn, we need
to think of the inputs and outputs not as vectors of real nusbat as vectors of
signals For simplicity, consider first the case of scalar signals lahd¢he signal
spacel, be square-integrable functions with the norm

Jullz = ,//0 lul?(z) dz.

This definition can be generalized to vector signals by reptattie absolute value
with the vector norm (9.9). We can now formally define the gdia system taking
inputsu € L, and producing outputg € L, as

y = supM

, (9.11)
uelL, [[Ul

where sup is theupremumdefined as the smallest number that is larger than its
argument. The reason for using the supremum is that the maximay not be
defined foru € L. This definition of the system gain is quite general and can even
be used for some classes of nonlinear systems, though ode todge careful about
how initial conditions and global nonlinearities are haatl

The norm (9.11) has some nice properties in the case of lineterss. In
particular, given a single-input, single-output stabledr system with transfer
functionG(s), it can be shown that the norm of the system is given by

y =sup|G(io)| = [|Gl|c. (9.12)

In other words, the gain of the system corresponds to theysa& of the frequency
response. This corresponds to our intuition that an inpudysres the largest output
when we are at the resonant frequencies of the systéih,, is called thanfinity
normof the transfer functioii (s).

This notion of gain can be generalized to the multi-input, tiraitput case as
well. For a linear multivariable system with a real ratiotrahsfer function matrix
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Figure 9.15:Afeedback connection of two general nonlinear systelnsndH,. The stability
of the system can be explored using the small gain theorem.

G(s) we can define the gain as
7 = IGllec = sups (G(iw)). (9.13)

Thus we can combine the idea of the gain of a matrix with the adelae gain of a
linear system by looking at the maximum singular value oldrequencies.

Small Gain and Passivity

For linear systems it follows from Nyquist's theorem that thosed loop is stable
if the gain of the loop transfer function is less than 1 foffilfuencies. This result
can be extended to a larger class of systems by using themafthe system gain
defined in equation (9.11).

Theorem 9.4 (Small gain theorem)Consider the closed loop system shown in
Figure 9.15, where Hand H, are stable systems and the signal spaces are properly
defined. Let the gains of the systemsaldd H, be y; andy,. Then the closed loop
system is input/output stable)ify, < 1, and the gain of the closed loop system is

V1
1-y1y2

Notice that if systemsl; andH, are linear, it follows from the Nyquist stability
theorem that the closed loop is stable becausg)if < 1, the Nyquist curve is
always inside the unit circle. The small gain theorem is thugxension of the
Nyquist stability theorem.

Although we have focused on linear systems, the small gaiorém also holds
for nonlinear input/output systems. The definition of gainduation (9.11) holds
for nonlinear systems as well, with some care needed in hantifie initial condi-
tion.

The main limitation of the small gain theorem is that it does camsider the
phasing of signals around the loop, so it can be very consegvdo define the
notion of phase we require that there be a scalar productsdfiamre-integrable
functions this can be defined as

(u,y) =/ u(z)y(r)dr.
0
The phase between two signals can now be defined as

(u,y) = [lullllyll cose).

’)}:
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Figure 9.16: Describing function analysis. A feedback connection between a statimnon
earity and a linear system is shown in (a). The linear system is charadtesiats transfer
function L (s), which depends on frequency, and the nonlinearity by its describirgifum

N (a), which depends on the amplitudef its input. The Nyquist plot ot (i w) and the plot

of the—1/N(a) are shown in (b). The intersection of the curves represents a possifile lim
cycle.

Systems where the phase between inputs and outputs isr 9€ss for all inputs
are calledpassive systemét follows from the Nyquist stability theorem that a
closed loop linear system is stable if the phase of the loapsfer function is
between—z andxz. This result can be extended to nonlinear systems as well. It
called thepassivity theorenand is closely related to the small gain theorem. See
Khalil [KhaO1] for a more detailed description.

Additional applications of the small gain theorem and itplegation to robust
stability are given in Chapter 12.

Describing Functions

For special nonlinear systems like the one shown in Figurés9 Wwhich consists
of a feedback connection between a linear system and a stailnearity, it is
possible to obtain a generalization of Nyquist’s stabititiferion based on the idea
of describing functions~ollowing the approach of the Nyquist stability condition
we will investigate the conditions for maintaining an ofstibn in the system. If
the linear subsystem has low-pass character, its outpppi®gimately sinusoidal
even if its input is highly irregular. The condition for odation can then be found
by exploring the propagation of a sinusoid that correspandse first harmonic.
To carry out this analysis, we have to analyze how a sinuksigaal propa-
gates through a static nonlinear system. In particular westigate how the first
harmonic of the output of the nonlinearity is related tosis(soidal) input. Letting
F represent the nonlinear function, we expan@ “!) in terms of its harmonics:

F@@d™) =" My(a)d " +m@),
n=0
whereM,(a) andgn(a) represent the gain and phase of tilke harmonic, which
depend on the input amplitude since the functfons nonlinear. We define the
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Figure 9.17:Describing function analysis for arelay with hysteresis. The input/ougtation
of the hysteresis is shown in (a) and the input with amplitade 2, the output and its first
harmonic are shown in (b). The Nyquist plots of the transfer fundtits) = (s + 1)~* and
the negative of the inverse describing function for the relay With 3 andc = 1 are shown
in (c).

describing function to be the complex gain of the first harrapni
N(a) = My(a)e”®@. (9.14)

The function can also be computed by assuming that the inpusisusoid and
using the first term in the Fourier series of the resulting outp

Arguing as we did when deriving Nyquist’s stability criteni, we find that an
oscillation can be maintained if

Liw)N(@) = —1. (9.15)

This equation means that if we inject a sinusoid at A in Figut® S%he same signal
will appear at B and an oscillation can be maintained by cotimg the points.
Equation (9.15) gives two conditions for finding the frequemayf the oscillation
and its amplitude: the phase must be 180(and the magnitude must be unity. A
convenient way to solve the equation is to pldiw) and—1/N(a) on the same
diagram as shown in Figure 9.16b. The diagram is similar to grguiét plot where
the critical point—1 is replaced by the curvel/N (a) anda ranges from 0O t@o.

It is possible to define describing functions for types of ispother than si-
nusoids. Describing function analysis is a simple methad,itbis approximate
because it assumes that higher harmonics can be neglectadleBktreatments of
describing function techniques can be found in the texts theAon [Ath75] and
Graham and McRuer [GM61].

Example 9.11 Relay with hysteresis

Consider a linear system with a nonlinearity consisting télay with hysteresis.
The output has amplitudeand the relay switches when the inputis, as shown in
Figure 9.17a. Assuming thatthe inputiis= a sin(wt), we find that the outputis zero
if a < ¢, and ifa > c, the output is a square wave with amplitunat switches at
timeswt = arcsin(c/a)+nz . The firstharmonicis they(t) = (4b/z) sin(wt —a),
where siru = ¢/a. Fora > c the describing function and its inverse are

N(a)—4—b( 1—C—2—i9) 1 _mva & nc
an a2 a7 N@ 4b 4b’
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where the inverse is obtained after simple calculationsurei®.17b shows the
response of the relay to a sinusoidal input with the first hawimof the output
shown as a dashed line. Describing function analysis istited in Figure 9.17c,
which shows the Nyquist plot of the transfer functibfs) = 2/(s + 1)* (dashed
line) and the negative inverse describing function of ayrelith b = 1 andc = 0.5.
The curves intersect fa = 1 andw = 0.77 rad's, indicating the amplitude and
frequency for a possible oscillation if the process and #éh@yrare connected in a
a feedback loop. \%

9.6 Further Reading

Nyquist's original paper giving his now famous stabilityterion was published in
theBell Systems Technical Jourrial1932 [Nyq32]. More accessible versions are
found in the book [BK64], which also includes other inteiegtearly papers on
control. Nyquist's paper is also reprinted in an IEEE collectf seminal papers on
control [Bas01]. Nyquist usegt1 as the critical point, but Bode changed it-td,
which is now the standard notation. Interesting perspestdn early developments
are given by Black [Bla77], Bode [Bod60] and Bennett [Ben®Bjquist did a direct
calculation based on his insight into the propagation aisandal signals through
systems; he did not use results from the theory of complextioms. The idea
that a short proof can be given by using the principle of wemmof the argument
is presented in the delightful book by MacColl [Mac45]. Batkade extensive
use of complex function theory in his book [Bod45], whichdldhe foundation
for frequency response analysis where the notion of minimppbase was treated in
detail. A good source for complex function theory is the slaby Ahlfors [Ahl66].
Frequency response analysis was a key element in the emergfecantrol theory
as described inthe early texts by James et al. [JNP47], BradCampbell [BC48]
and Oldenburger [Old56], and it became one of the cornegston early control
theory. Frequency response underwent a resurgence whest oaimirol emerged
in the 1980s, as will be discussed in Chapter 12.

Exercises

98 (Operational amplifier) Consider an op amp circuit wih = Z, that gives
a closed loop system with nominally unit gain. Let the tranéfimction of the
operational amplifier be

kayay

G = (s+a)(s+a)(s+a)’

whereag, a; > a. Show that the condition for oscillation ks < a; + a, and
compute the gain margin of the system. Hint: Assiuanie 0.

99 (Atomic force microscope) The dynamics of the tapping modarofitomic
force microscope are dominated by the damping of the castit@brations and
the system that averages the vibrations. Modeling thelesatias a spring—mass
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system with low damping, we find that the amplitude of the \ibres decays as
exp(—¢wt), where is the damping ratio and is the undamped natural frequency
of the cantilever. The cantilever dynamics can thus be mddejethe transfer

function a

G(s) = ——
(s) sTa’

wherea = ¢ wg. The averaging process can be modeled by the input/outjatitne!

t
w0=%[ u()do,

where the averaging time is a multipleof the period of the oscillation2/w. The
dynamics of the piezo scanner can be neglected in the firsbeippation because
they are typically much faster than A simple model for the complete system is
thus given by the transfer function

_a(l—e™)
P(s) = st(s+a)

Plot the Nyquist curve of the system and determine the gain mfoportional
controller that brings the system to the boundary of stigbili

100 (Heat conduction) A simple model for heat conduction in adsial given by

the transfer function
P(s) = ke V5.

Sketch the Nyquist plot of the system. Determine the frequerere the phase of
the process is-180° and the gain at that frequency. Show that the gain required to
bring the system to the stability boundarykis= e”.

101 (Vectored thrust aircraft) Consider the state space chatrdesigned for@
the vectored thrust aircraft in Examples 6.8 and 7.5. The obbatrconsists of
two components: an optimal estimator to compute the stateeobystem from
the output and a state feedback compensator that comp@éaspht given the
(estimated) state. Compute the loop transfer functionferstystem and determine
the gain, phase and stability margins for the closed loo@mnyos.

102 (Vehicle steering) Consider the linearized model for viehgteering with a
controller based on state feedback discussed in Exampl€&he4ransfer functions
for the process and controller are given by

yS—l—l C(s) = S(k1|1+k2|2)+k1|2
s C 2+s(kitke+ 1)+ K+ 12+ kalp — ykalo’
as computed in Example 8.6. Let the process parameter £e0.5 and assume

that the state feedback gains &re= 1 andk, = 0.914 and that the observer gains
arel; = 2.828 and, = 4. Compute the stability margins numerically.

P(s) =

103 (Stability margins for second-order systems) A process withysmamics is
described by a double integrator is controlled by an ideal Bitroller with the
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transfer functiorC(s) = kgs + kp, where the gains afey = 2;wg andk, = w3.
Calculate and plot the gain, phase and stability marginsfasction( .

104 (Congestion control in overload conditions) A strongly plified flow model
of a TCP loop under overload conditions is given by the loopdfer function

L(s) = ge‘“,

where the queuing dynamics are modeled by an integratofFGRewindow control

is a time delay: and the controller is simply a proportional controller. Ajora

difficulty is that the time delay may change significantly dgrthe operation of
the system. Show that if we can measure the time delay, it silleso choose a
gain that gives a stability margin gf > 0.6 for all time delays .

105(Bode’s formula) Consider Bode’s formula (9.8) for the tisla between gain
and phase for a transfer function that has all its singugarin the left half-plane.
Plot the weighting function and make an assessment of thadregsies where the
approximation ar@s ~ (z/2)d log|G|/dlogw is valid.

106 (Padé approximation to a time delay) Consider the transfestions
1—-s7/2

1+s7/2

Show that the minimum phase properties of the transfer fonstare similar for

frequenciesy» < 1/7. A long time delayr is thus equivalent to a small right half-
plane zero. The approximation (9.16) is called a first-oR#té approximation

Gi(s) =€, Gys) =€~ (9.16)

107 (Inverse response) Consider a system whose input/outpbnse is modeled
by G(s) = 6(—s+ 1)/(s?> + 5s + 6), which has a zero in the right half-plane.
Compute the step response for the system, and show that thet @oes in the
wrong direction initially, which is also referred to asianerse respons€ompare
the response to a minimum phase system by replacing the tzeee & with a zero
ats = —1.

108 (Describing function analysis) . Consider the system withlilock diagram
shown on the left below.

Yy

R(:) —= P(s)

=V

-1

The blockR is a relay with hysteresis whose input/output responsediaston the

right and the process transfer functionAgs) = €57 /s. Use describing function
analysis to determine frequency and amplitude of possitvli tycles. Simulate
the system and compare with the results of the describingtitmanalysis.



