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Preface

This book provides an introduction to the basic principled &ools for design
and analysis of feedback systems. It is intended to serveeasdi audience of
scientists and engineers who are interested in undersigadd utilizing feedback
in physical, biological, information and social systems Neéve attempted to keep
the mathematical prerequisites to a minimum while beingfcémnot to sacrifice
rigor in the process. We have also attempted to make use of®a from a
variety of disciplines, illustrating the generality of nyaof the tools while at the
same time showing how they can be applied in specific apphicatbmains.

This book was originally developed for use in an experimetdairse at Cal-
tech involving students from a wide set of backgrounds. Thesmconsisted of
undergraduates at the junior and senior level in traditiengineering disciplines,
as well as first and second year graduate students in engigesril science. This
latter group included graduate students in biology, compsitience and physics,
requiring a broad approach that emphasized basic prirscgpid did not focus on
applications in any one given area. Over the course of seyesas, the text has
been classroom tested at Caltech and at Lund University anteddback from
many students and colleagues has been incorporated tamgipve the readabil-
ity and accessibility of the material.

Because of its intended audience, this book is organizedslightly unusual
fashion compared to many other books on feedback and conlmoparticular,
we introduce a number of concepts in the text that are noymedlerved for sec-
ond year courses on control and hence often not availableidests who are not
control systems majors. This has been done at the expensetaihdeaditional
topics, which we felt that the astute student could learedently and are of-
ten explored through the exercises. Examples of topics tedtave included are
nonlinear dynamics, Lyapunov stability, reachability amservability, and funda-
mental limits of performance and robustness. Topics thahave de-emphasized
include root locus techniques, lead/lag compensation atalldd rules for gener-
ating Bode and Nyquist plots by hand.

Several features of the book are designed to facilitate i fduction as a ba-
sic engineering text and as an introduction for researdhanatural, information
and social sciences. The bulk of the material is intended toske regardless of
the audience and covers the core principles and tools innhlkysis and design of
feedback systems. Advanced sections, marked by the “damgéend” symbol
shown to the right, contain material that requires a shghibre technical back-
ground, of the sort that would be expected of senior unddtgris in engineering.
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A few sections are marked by two dangerous bend symbols anishi@nded for
readers with more specialized backgrounds, identified avelggnning of the sec-
tion. To keep the length of the text down, several standasdli®and extensions
are given in the exercises, with appropriate hints towaed tholutions. Finally,
we have included a glossary and a notation section at thefehd book in which
we define some of the terminology and notation that may not telifa to all
readers.

To further augment the printed material contained here ngpamion web site
has been developed:

http://ww. cds. cal tech. edu/ ~nmurray/ anw Ki

The web site contains a database of frequently asked questiopplemental ex-
amples and exercises, and lecture materials for coursesl lmasthis text. The
material is organized by chapter and includes a summaryeofrtajor points in
the text as well as links to external resources. The web s#e ebntains the
source code for many examples in the book, as well as uilibgmplement the
techniques described in the text. Most of the code was d@iiginvritten using
MATLAB M-files, but was also tested with LabVIEW MathScript to enswom-
patibility with both packages. Many files can also be run usititer scripting
languages such as Octave, SciLab, SysQuake and Xmath. [Asittui€: the web
site is under construction as of this writing and some festdiescribed in the text
may not yet be available.]

The first half of the book focuses almost exclusively on soecdlstate-space”
control systems. We begin in Chapter 2 with a description ofleling of physi-
cal, biological and information systems using ordinaryedéntial equations and
difference equations. Chapter 3 presents a number of erarimpsome detalil, pri-
marily as a reference for problems that will be used througtfze text. Following
this, Chapter 4 looks at the dynamic behavior of modelsuitiolg definitions of
stability and more complicated nonlinear behavior. We lexadvanced sections
in this chapter on Lyapunov stability, because we find that iiseful in a broad
array of applications (and is frequently a topic that is mdtdaduced until later in
ones studies).

The remaining three chapters of the first half of the book foculrear sys-
tems, beginning with a description of input/output behaindChapter 5. In Chap-
ter 6, we formally introduce feedback systems by demonsgdtow state space
control laws can be designed. This is followed in Chapter 7 byemal on output
feedback and estimators. Chapters 6 and 7 introduce thedkeepts of reacha-
bility and observability, which give tremendous insighbitthe choice of actuators
and sensors, whether for engineered or natural systems.

The second half of the book presents material that is oftesidered to be
from the field of “classical control.” This includes the tramsfunction, introduced
in Chapter 8, which is a fundamental tool for understandmedback systems.
Using transfer functions, one can begin to analyze thelgtabi feedback systems
using frequency domain analysis, including the abilityeason about the closed
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loop behavior of a system from its open loop characterisiitss is the subject of
Chapter 9, which revolves around the Nyquist stabilityeern.

In Chapters 10 and 11, we again look at the design problenusfiog first
on proportional-integral-derivative (PID) controllersdaiien on the more general
process of loop shaping. PID control is by far the most commesigh technique
in control systems and a useful tool for any student. The enagpt frequency
domain design introduces many of the ideas of modern cotitedry, including
the sensitivity function. In Chapter 12, we pull together tesults from the second
half of the book to analyze some of the fundamental traddxafta/een robustness
and performance. This is also a key chapter illustrating twvesp of the techniques
that have been developed and serving as an introductiondee advanced studies.

The book is designed for use in a 10-15 week course in feedlyatdngs that
provides many of the key concepts needed in a variety ofgliseis. For a 10
week course, Chapters 1-2, 4-6 and 8-11 can each be covaxateiek’s time,
with some dropping of topics from the final chapters. A morsuegly course,
spread out over 14-15 weeks, could cover the entire book, twid weeks on
modeling (Chapters 2 and 3)—particularly for students aitrmuch background
in ordinary differential equations—and two weeks on rolpesformance (Chap-
ter 12).

The mathematical pre-requisites for the book are modestrakddaping with
our goal of providing an introduction that serves a broadenmk. We assume
familiarity with the basic tools of linear algebra, incladi matrices, vectors and
eigenvalues. These are typically covered in a sophomorkdeuese in the subject
and the textbooks by Apostol [Apo69], Arnold [Arn87] or Steafstr88] serve
as good references. Similarly, we assume basic knowledgéfefestial equa-
tions, including the concepts of homogeneous and partiaditions for linear
ordinary differential equations in one variable. Apostdpp69] or Boyce and
DiPrima [BDO04] cover this material well. Finally, we also makse of com-
plex numbers and functions and, in some of the advancedssctinore detailed
concepts in complex variables that are typically covered janior level engi-
neering or physics course in mathematical methods. Ap@&fm67] or Stew-
art [Ste02] can be used for the basic material, with AhlforsIf&], Marsden and
Hoffman [MH99] or Saff and Snider [SS02] being good referencesHe more
advanced material. We have chosen not to include appenslicesiarizing these
various topics since there are a number of good books alaitaid we believe
that most readers will be familiar with material at this leve

One additional choice that we felt was important was thesiegcinot to rely
on knowledge of Laplace transforms in the book. While theg issby far the
most common approach to teaching feedback systems in emgigemany stu-
dents in the natural and information sciences may lack thessary mathematical
background. Since Laplace transforms are not required in ssgnéial way, we
have only included them in an advanced section intendecetthings together
for students with that background. Of course, we make trelmes use ofrans-
fer functions which we introduce through the notion of response to expbale
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inputs, an approach we feel is more accessible to a broay afiscientists and
engineers. For courses in which students have already hdddeajpansforms, it
should be quite natural to build on this background in ther@yppate sections of
the text.
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback goliemsve grow, respond
to stress and challenge, and regulate factors such as body temperakowoel, pressure and
cholesterol level. The mechanisms operate at every level, from thedtiteraf proteins in

cells to the interaction of organisms in complex ecologies.

Mabhlon B. Hoagland and B. Dodsofhe Way Life Worksl 995 [HD95].

In this chapter we provide an introduction to the basic cphoéfeedbackand the
related engineering discipline abntrol. We focus on both historical and current
examples, with the intention of providing the context forremt tools in feedback
and control. Much of the material in this chapter is adoptechf{(Mur03] and the
authors gratefully acknowledge the contributions of Rogerckett and Gunter
Stein for portions of this chapter.

1.1 WHAT IS FEEDBACK?

The termfeedbacks used to refer to a situation in which two (or more) dynathica
systems are connected together such that each system iefiLtbiecther and their
dynamics are thus strongly coupled. By dynamical systemrefigr to a system
whose behavior changes over time, often in response tonektstimulation or
forcing. Simple causal reasoning about a feedback systeriffisull because
the first system influences the second and the second systermagftuthe first,
leading to a circular argument. This makes reasoning basedwuse and effect
tricky and it is necessary to analyze the system as a wholen8exjuence of this
is that the behavior of feedback systems is often countaitive and it is therefore
necessary to resort to formal methods to understand them.

Figure 1.1 illustrates in block diagram form the idea of festdb We often use
the termsopen loopand closed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are inteecbed in a cycle, as
shown in Figure 1.1a. If we break the interconnection, werttefthe configuration
as an open loop system, as shown in Figure 1.1b.

As the quote at the beginning of this chapter illustrates agonsource of ex-
amples for feedback systems is from biology. Biologicalteys make use of
feedback in an extraordinary number of ways, on scales mgrnfgpm molecules
to cells to organisms to ecosystems. One example is theatsgulof glucose in
the bloodstream through the production of insulin and giocaby the pancreas.
The body attempts to maintain a constant concentration abgk, which is used
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u y r u y
= System 1I—= System 2 - —= System 1——= System 2——
(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used apuhe in
of system 2 and the output of system 2 becomes the input of systematingra “closed
loop” system. (b) The interconnection between system 2 and system rhased and the
system is said to be “open loop”.

by the body’s cells to produce energy. When glucose levets (@fter eating a
meal, for example), the hormone insulin is released andesaile body to store
excess glucose in the liver. When glucose levels are lowpaénereas secretes the
hormone glucagon, which has the opposite effect. Refetarkigure 1.1, we can
view the liver as system 1 and the pancreas as system 2. Thautddtom the
liver is the glucose concentration in the blood and the “atitfrom the pancreas
is the amount of insulin or glucagon produced. The interpktyvieen insulin and
glucagon secretions throughout the day helps to keep thlmlfgtucose concen-
tration constant, at about 90 mg per 100 mL of blood.

An early engineering example of a feedback system is theifieyal governor,
in which the shaft of a steam engine is connected to a flybalhanr@ism that is
itself connected to the throttle of the steam engine, astithtted in Figure 1.2. The
system is designed so that as the speed of the engine insrgasbaps due to a
lessening of the load on the engine), the flyballs spread apdra linkage causes
the throttle on the steam engine to be closed. This in turnsstimwn the engine,
which causes the flyballs to come back together. We can moidebylstem as
a closed loop system by taking system 1 as the steam engirgyatain 2 as the
governor. When properly designed, the flyball governor naamsta constant speed
of the engine, roughly independent of the loading cond#tiorThe centrifugal
governor was an enabler of the successful Watt steam englmeh fueled the
industrial revolution.

Feedback has many interesting properties that can be egblimitdesigning
systems. As in the case of glucose regulation or the flybakkgmr, feedback can
make a system resilient towards external influences. It cemlzd used to create
linear behavior out of nonlinear components, a common ambran electronics.
More generally, feedback allows a system to be insensititie to external distur-
bances and to variations in its individual elements.

Feedback has potential disadvantages as well. It can crgadenic instabili-
ties in a system, causing oscillations or even runaway bhehanother drawback,
especially in engineering systems, is that feedback candante unwanted sensor
noise into the system, requiring careful filtering of signatds for these reasons
that a substantial portion of the study of feedback systsrdevoted to developing
an understanding of dynamics and mastery of techniquesnardical systems.

Feedback systems are ubiquitous in both natural and engithegstems. Con-
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Figure 1.2: The centrifugal governor and the Watt steam engine. The centrifugyarg
nor on the left consists of a set of “flyballs” that spread apart as teedspf the engine
increases. The Watt engine on the right uses a centrifugal govexinoveé and to the left of
the fly wheel) to regulate its speed. Figures courtesy Richard Adampir{ght 1999) and
Cambridge University.

trol systems maintain the environment, lighting and poweour buildings and

factories; they regulate the operation of our cars, consefeetronics and manu-
facturing processes; they enable our transportation amghemications systems;
and they are critical elements in our military and spaceesyst For the most part
they are hidden from view, buried within the code of embeduétoprocessors,
executing their functions accurately and reliably. Feellies also made it pos-
sible to increase dramatically the precision of instruraenich as atomic force
microscopes and telescopes.

In nature, homeostasis in biological systems maintaingrtak chemical and
biological conditions through feedback. At the other endhef size scale, global
climate dynamics depend on the feedback interactions lestiee atmosphere,
oceans, land and the sun. Ecosystems are filled with examplegdtback due
to the complex interactions between animal and plant lifeerEthe dynamics
of economies are based on the feedback between individudl@rporations
through markets and the exchange of goods and services.

1.2 WHAT IS CONTROL?

The term “control” has many meanings and often varies betweamimunities. In
this book, we define control to be the use of algorithms anddfaeklin engineered
systems. Thus, control includes such examples as feedbaokilo electronic am-
plifiers, setpoint controllers in chemical and materialscpssing, “fly-by-wire”
systems on aircraft and even router protocols that contffld flow on the Inter-
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external disturbances noise

Actuator = System >

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

o T ,,,,,,,,,,,,,,, Controller _ .

operator input

Figure 1.3: Components of a computer-controlled system. The upper dashedp@sents
the process dynamics, which includes the sensors and actuators inrattitie dynamical
system being controlled. Noise and external disturbances can pereudyrtlamics of the
process. The controller is shown in the lower dashed box. It consistealbg-to-digital
(A/D) and digital-to-analog (D/A) converters, as well as a computer thateéments the
control algorithm. A system clock controls the operation of the controj@ctsronizing the
A/D, D/A and computing processes. The operator input is also fed to tm@uier as an
external input.

net. Emerging applications include high confidence softwgstesns, autonomous
vehicles and robots, real-time resource management systedbiologically en-
gineered systems. At its core, control isiaformationscience, and includes the
use of information in both analog and digital representetio

A modern controller senses the operation of a system, caaplaat against the
desired behavior, computes corrective actions based ordalrabthe system’s re-
sponse to external inputs and actuates the system to dféedesired change. This
basicfeedback loopf sensing, computation and actuation is the central cdricep
control. The key issues in designing control logic are emgpitiat the dynamics of
the closed loop system are stable (bounded disturbance®¥ginded errors) and
that they have additional desired behavior (good distureaejection, fast respon-
siveness to changes in operating point, etc). These prepante established using
a variety of modeling and analysis techniques that capheessential dynamics
of the system and permit the exploration of possible bemaviothe presence of
uncertainty, noise and component failures.

A typical example of a modern control system is shown in Figl& The
basic elements of sensing, computation and actuation eaglglseen. In modern
control systems, computation is typically implemented atigital computer, re-
quiring the use of analog-to-digital (A/D) and digital-émalog (D/A) converters.
Uncertainty enters the system through noise in sensing eéndton subsystems,
external disturbances that affect the underlying systeenaifn and uncertain dy-
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namics in the system (parameter errors, unmodeled effeids, The algorithm
that computes the control action as a function of the seraloes is often called
acontrol law. The system can be influenced externally by an operator wha-intr
ducescommand signal® the system.

Control engineering relies on and shares tools from phy&ygeamics and
modeling), computer science (information and software) @perations research
(optimization, probability theory and game theory), buisitalso different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control aaddifitiplines is
in modeling of physical systems, which is common acrossrafisiof engineering
and science. One of the fundamental differences betweemot@niented mod-
eling and modeling in other disciplines is the way in whictemactions between
subsystems are represented. Control relies on a type dfaypoiut modeling that
allows many new insights into the behavior of systems, sgdlisturbance rejec-
tion and stable interconnection. Model reduction, wheriengker (lower-fidelity)
description of the dynamics is derived from a high fidelity relpds also naturally
described in an input/output framework. Perhaps most irapdst, modeling in a
control context allows the design aibustinterconnections between subsystems,
a feature that is crucial in the operation of all large engiad systems.

Control is also closely associated with computer scieniceesvirtually all
modern control algorithms for engineering systems areémginted in software.
However, control algorithms and software can be very diffiéifrom traditional
computer software due to the central role of the dynamichefslystem and the
real-time nature of the implementation.

1.3 FEEDBACK EXAMPLES

Feedback has many interesting and useful properties. Itsngiessible to design
precise systems from imprecise components and to makearglguantities in a

system change in a prescribed fashion. An unstable systeimecstabilized using

feedback and the effects of external disturbances can heedd Feedback also
offers new degrees of freedom to a designer by exploitingiagnactuation and
computation. In this section we survey some of the imporégmlications and

trends for feedback in the world around us.

Early Technological Examples

The proliferation of control in engineered systems has gecuprimarily in the
latter half of the 20th century. There are some important gxaes, such as the
centrifugal governor described earlier and the thermdbigure 1.4a), designed
at the turn of the century to regulate temperature of bugslin

The thermostat, in particular, is a simple example of feekllcantrol that ev-
eryone is familiar with. The device measures the temperatuaebuilding, com-
pares that temperature to a desired setpoint, and usestdbdck error” between
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WOVEMENT OPENS ACCELERATOR
THROTTLE LOAD SPRING PEDAL

iy
\é LATCH \'
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COMIACTS SPECDOMETER
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MOTOR B I
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(b)

Figure 1.4: Early control devices. (a) Honeywell T86 thermostat, originally intrexlic
in 1953. The thermostat controls whether a heater is turned on by comphe current
temperature in a room to a desired value that is set using a dial. (b) Qheysiee control
system, introduced in the 1958 Chrysler Imperial [Row58]. A centafugpvernor is used
to detect the speed of the vehicle and actuate the throttle. The referexezkisspecified
through an adjustment spring.

these two to operate the heating plant, e.g. to turn heatingh@n the temperature
is too low and to turn if off when the temperature is too highisiéxplanation cap-
tures the essence of feedback, but it is a bit too simple exemlfasic device such
as the thermostat. Actually, because lags and delays aexis¢iheating plant and
sensor, a good thermostat does a bit of anticipation, tgrtiie heater off before
the error actually changes sign. This avoids excessive tetyve swings and cy-
cling of the heating plant. This interplay between the dyreanoif the process and
the operation of the controller is a key element in moderrtrobsystems design.

There are many other control system examples that have gedtlover the
years with progressively increasing levels of sophisitbicatAn early system with
broad public exposure was the “cruise control” option idtroed on automobiles
in 1958 (see Figure 1.4b). Cruise control illustrates theadyie behavior of closed
loop feedback systems in action—the slowdown error as thiesyclimbs a grade,
the gradual reduction of that error due to integral actiothécontroller, the small
overshoot at the top of the climb, etc. Later control systemawtomobiles such
as emission controls and fuel metering systems have achimagor reductions of
pollutants and increases in fuel economy.

Power Generation and Transmission

Access to electrical power has been one of the major driveteamnological
progress in modern society. Much of the early developmenbaofrol was driven
by generation and distribution of electric power. Contshiission critical for
power systems and there are many control loops in indivighaster stations.
Control is also important for the operation of the whole powetwork since it
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Figure 1.5: The European Power Network. By 2007 the European power suppliirs
operate a single interconnected network covering a region from the Aoctite Mediter-

ranean and from the Atlantic to the Ural. In 2004 the installed power was tinane700 GW
(7 x 101 W),

is difficult to store energy and is thus necessary to matchyatamh to consump-
tion. Power management is a straightforward regulation Iprolfor a system
with one generator and one power consumer, but it is more wliffic a highly
distributed system with many generators and long distalpe®geen consumption
and generation. Power demand can change rapidly in an unfakldi manner
and combining generators and consumers into large netwogkes it possible
to share loads among many suppliers and to average consungstiong many
customers. Large transcontinental and transnational peystems have therefore
been built, such as the one show in Figure 1.5.

Most electricity is distributed by alternating current (A@ecause the transmis-
sion voltage can be changed with small power losses usingftraners. Alternat-
ing current generators can only deliver power if the geroesadre synchronized to
the voltage variations in the network. This means that thersaif all generators
in a network must be synchronized. To achieve this with |oeglentralized con-
trollers and a small amount of interaction is a challengirapfem. Sporadic low
frequency oscillations between distant regions have bbsarged when regional
power grids have been interconnected [KWO05].

Safety and reliability are major concerns in power systemgrdmay be dis-
turbances due to trees falling down on power lines, liglgminequipment failures.
There are sophisticated control systems that attempt totkeegpystem operating
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(@) (b)

Figure 1.6: Military aerospace systems. (a) The F-18 aircraft is one of the fiostymtion
military fighters to use “fly-by-wire” technology. (b) The X-45 (UCAVhmanned aerial
vehicle is capable of autonomous flight, using inertial measuremenrsessd the global
positioning system (GPS) to monitor its position relative to a desired traje®bntographs
courtesy of NASA Dryden Flight Research Center.

even when there are large disturbances. The control actenbeto reduce volt-

age, to break up the net into subnets or to switch off linespmvweer users. These
safety systems are an essential element of power distibatistems, but in spite
of all precautions there are occasionally failures in lgrgwer systems. The power
system is thus a nice example of a complicated distributetésywhere control is

executed on many levels and in many different ways.

Aerospace and Transportation

In aerospace, control has been a key technological cagyatvdcing back to the
beginning of the 20th century. Indeed, the Wright brotheesarrectly famous
not simply for demonstrating powered flight ledgntrolled powered flight. Their
early Wright Flyer incorporated moving control surfacegieal fins and canards)
and warpable wings that allowed the pilot to regulate theratt's flight. In fact,
the aircraft itself was not stable, so continuous pilot ections were mandatory.
This early example of controlled flight is followed by a fas¢ing success story
of continuous improvements in flight control technology,nsimating in the high
performance, highly reliable automatic flight control sys¢ewe see on modern
commercial and military aircraft today.

Similar success stories for control technology have ocdumemany other
application areas. Early World War Il bombsights and fire aargervo systems
have evolved into today’s highly accurate radar-guidedsgumd precision-guided
weapons. Early failure-prone space missions have evolviedrautine launch
operations, manned landings on the moon, permanently rdaspece stations,
robotic vehicles roving Mars, orbiting vehicles at the ouianets and a host of
commercial and military satellites serving various sutaece, communication,
navigation and earth observation needs. Cars have advaooedanually-tuned
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Figure 1.7: Materials processing. Modern materials are processed at carefualiyotted
conditions, using reactors such as the metal organic chemical vapositden (MOCVD)
reactor shown on the left, which was for manufacturing superconduttin films. Using
lithography, chemical etching, vapor deposition and other techniqoasmlex devices can
be built, such as the IBM cell processor shown on the right. Photograpingesy of Caltech
and IBM.

mechanical/pneumatic technology to computer-contralipdration of all major
functions, including fuel injection, emission controlute control, braking and
cabin comfort.

Current research in aerospace and transportation sysgeimgestigating the
application of feedback to higher levels of decision makingluding logical reg-
ulation of operating modes, vehicle configurations, payloadfigurations and
health status. These have historically been performed byahwperators, but to-
day that boundary is moving and control systems are inarghsiaking on these
functions. Another dramatic trend on the horizon is the Uskarge collections
of distributed entities with local computation, global cmemication connections,
little regularity imposed by the laws of physics and no ploisity of imposing
centralized control actions. Examples of this trend incltidenational airspace
management problem, automated highway and traffic manageamehcommand
and control for future battlefields.

Materials and Processing

The chemical industry is responsible for the remarkable n@ssyin developing
new materials that are key to our modern society. In additiothe continuing
need to improve product quality, several other factors aplocess control in-
dustry are drivers for the use of control. Environmentaldés continue to place
stricter limitations on the production of pollutants, fiorig the use of sophisticated
pollution control devices. Environmental safety consitlers have led to the
design of smaller storage capacities to diminish the riskajor chemical leak-
age, requiring tighter control on upstream processes ansipme cases, supply
chains. And large increases in energy costs have encouesggeers to design
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plants that are highly integrated, coupling many procesgsused to operate in-
dependently. All of these trends increase the complexitthe$e processes and
the performance requirements for the control systems, myakie control system

design increasingly challenging.

As in many other application areas, new sensor technologeaing new op-
portunities for control. Online sensors—including lasackscattering, video mi-
croscopy, and ultraviolet, infrared and Raman spectrgseape becoming more
robust and less expensive and are appearing in more mamifigcprocesses.
Many of these sensors are already being used by currentgsrcoatrol systems,
but more sophisticated signal processing and control tquake are needed to use
more effectively the real-time information provided by $kesensors. Control en-
gineers can also contribute to the design of even bettelosgnahich are still
needed, for example, in the microelectronics industry. l8evehere, the challenge
is making use of the large amounts of data provided by thesesarsors in an ef-
fective manner. In addition, a control-oriented approacmbdeling the essential
physics of the underlying processes is required to undetdtandamental limits
on observability of the internal state through sensor data.

Instrumentation

Measurement of physical variables is of prime interest iarge and engineering.
Consider for example an accelerometer, where early ingngsnconsisted of a
mass suspended on a spring with a deflection sensor. The precissuch an
instrument depends critically on accurate calibratiorhefspring and the sensor.
There is also a design compromise because a weak spring giresdmsitivity
but also low bandwidth.

A different way of measuring acceleration is to tisee feedbackThe spring
is then replaced by a voice coil that is controlled so thatrifass remains at a
constant position. The acceleration is proportional to tireant through the voice
coil. In such an instrument, the precision depends entarlihe calibration of the
voice coil and does not depend on the sensor, which is only as¢he feedback
signal. The sensitivity/bandwidth compromise is also agdidThis way of using
feedback has been applied to many different engineeringfagid has resulted in
instruments with dramatically improved performance. Edeedback is also used
in haptic devices for manual control.

Feedback is widely used to measure ion currents in cells @sdayice called
the voltage clampwhich is illustrated in Figure 1.8. Hodgkin and Huxley used
the voltage clamp to investigate propagation of actioniu@és in the axon of the
giant squid. In 1963 they shared the Nobel Prize in Medicirth &ccles for “their
discoveries concerning the ionic mechanisms involved aitation and inhibition
in the peripheral and central portions of the nerve cell mamé’. A refinement of
the voltage clamp called thgatch clampater made it possible to measure exactly
when a single ion channel is opened or closed. This was dexelop Neher and
Sakmann, who received the 1991 Nobel Prize in Medicine “foir tthecoveries



1.3. FEEDBACK EXAMPLES 11

il
Gioss pipette ﬂV\" Py e

& 1
Cuovbr sl |en [—0
s :

Cell
7 | &
© o \,

Figure 1.8: The voltage clamp method for measuring ion currents in cells. A pipet tstose
place an electrode in a cell (left and middle) and maintain the potential okthata fixed
level. The internal voltage in the cell i and the voltage of the external fluidvs. The
feedback system (right) controls the curreito the cell so that the voltage drop across the
cell membrand\v = v; — ve is equal to its reference valde;,. The current is then equal to
the ion current.

concerning the function of a single ion channels in cells”.

There are many other interesting and useful applicationsexdtfack in scien-
tific instruments. The development of the mass spectromegar &arly example.
In a 1935 paper, Nier observed that the deflection of the iopernt#s on both the
magnetic and the electric fields [Nie35]. Instead of keepioti lields constant,
Nier let the magnetic field fluctuate and the electric field wadrotled to keep
the ratio of the fields constant. The feedback was implemersieg wvacuum tube
amplifiers. The scheme was crucial for the development of nEesg®scopy.

The Dutch Engineer van der Meer invented a clever way to usééadto
maintain a good quality, high density beam in a particle Ecagor [MPTvdM80].
The idea is to sense particle displacement at one point incitedexator and apply
a correcting signal at another point. The scheme, calledhastic cooling, was
awarded the Nobel Prize in Physics in 1984. The method was &dsentthe
successful experiments at CERN where the existence of thelparW and Z
associated with the weak force was first demonstrated.

The 1986 Nobel Prize in Physics—awarded to Binnig and Rohretheir
design of the scanning tunneling microscope—is anothanplaof an innovative
use of feedback. The key idea is to move a narrow tip on a ceetileeam across
the surface and to register the forces on the tip [BR86]. Tliecten of the tip
is measured using tunneling. The tunneling current is useal fieedback system
to control the position cantilever base so that the tungedirrent is constant, an
example of force feedback. The accuracy is so high that iddaliatoms can be
registered. A map of the atoms is obtained by moving the bagigeacantilever
horizontally. The performance of the control system is diyeeflected n the
image quality and scanning speed. This example is describadditional detail
in Chapter 3.

Robotics and Intelligent Machines

The goal of cybernetic engineering, already articulatedhan1940s and even be-
fore, has been to implement systems capable of exhibitighiyiflexible or “in-
telligent” responses to changing circumstances. In 198MIT mathematician
Norbert Wiener gave a widely read account of cyberneticeA8]. A more math-
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Figure 1.9: Robotic systems. (a) “Spirit”, one of the two Mars Exploratory Rovers tha
landed on the Mars in January 2004. (b) The Sony AIBO EntertainmebbiRone of the
first entertainment robots to be mass marketed. Both robots make fessdbiick between
sensors, actuators and computation to function in unknown environniéragographs cour-
tesy of Jet Propulsion Laboratory and Sony.

ematical treatment of the elements of engineering cybemetas presented by
H.S. Tsien in 1954, driven by problems related to control ofsités [Tsi54]. To-
gether, these works and others of that time form much of ttedléctual basis for
modern work in robotics and control.

Two accomplishments that demonstrate the successes oflthariethe Mars
Exploratory Rovers and entertainment robots such as the S8 ,Ashown in
Fig. 1.9. The two Mars Exploratory Rovers, launched by the Jgilsmn Lab-
oratory (JPL), maneuvered on the surface of Mars for over tyeaes starting in
January 2004 and sent back pictures and measurementsraditieonment. The
Sony AIBO robot debuted in June of 1999 and was the first “ententant” robot
to be mass marketed by a major international corporatiomastparticularly note-
worthy because of its use of Al technologies that allowed #&dt in response to
external stimulation and its own judgment. This “higher I&w# feedback is a
key element in robotics, where issues such as obstacleanad goal seeking,
learning and autonomy are prevalent.

Despite the enormous progress in robotics over the lastclealury, in many
ways the field is still in its infancy. Today'’s robots still ekt simple behaviors
compared with humans, and their ability to locomote, intetrjgomplex sensory
inputs, perform higher level reasoning and cooperate begeh teams is limited.
Indeed, much of Wiener’s vision for robotics and intellig@machines remains
unrealized. While advances are needed in many fields to acliy vision—
including advances in sensing, actuation and energy sterdige opportunity to
combine the advances of the Al community in planning, adegtand learning
with the techniques in the control community for modelingglgsis and design of
feedback systems presents a renewed path for progress.
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Figure 1.10: A multi-tier system system for services on the Internet. In the completersyste
is shown schematically on the left, users request information from & senaputers (tier
1), which in turn collect information from other computers (tiers 2 andT3)e individual
server shown on the right has a set of reference parametersaéhbgan) system operator,
with feedback used to maintain the operation of the system in the presenceatainty
(based on Hellersteiet al.[HDPTO0A4].

Networks and Computing Systems

Control of networks is a large research area spanning mamgstancluding con-
gestion control, routing, data caching and power managerSeweral features of
these control problems make them very challenging. The damiifeature is the
extremely large scale of the system; the Internet is prgbtia largest feedback
control system humans have ever built. Another is the deziéred nature of the
control problem: decisions must be made quickly and basktboriocal informa-
tion. Stability is complicated by the presence of varyingditags, as information
about the network state can only be observed or relayed toatiens after a de-
lay, and the effect of a local control action can be felt tigloout the network only
after substantial delay. Uncertainty and variation in teework, through network
topology, transmission channel characteristics, traffinated and available re-
sources, may change constantly and unpredictably. Otmeplézating issues are
the diverse traffic characteristics—in terms of arrivalistats at both the packet
and flow time scales—and the different requirements for tyuafiservice that the
network must support.

Related to control of networks is control of the servers giabn these net-
works. Computers are key components of the systems of sputegb servers
and database servers that are used for communication;cglieccommerce, ad-
vertisement and information storage. While hardware clmstsomputing have
decreased dramatically, the cost of operating these sgdt@sincreased due to
the difficulty in managing and maintaining these complexericdnnected systems.
The situation is similar to the early phases of process cbwiien feedback was
first introduced to control industrial processes. As in pssaeontrol, there are in-
teresting possibilities for increasing performance aratekesing costs by applying
feedback. Several promising uses of feedback in operati@omiputer systems
are described in the book by Hellerstein et al. [HDPTO04].

A typical example of a multi-layer system for e-commercehsvegn in Fig-
ure 1.10a. The system has several tiers of servers. The edge aecepts incom-
ing requests and routes them to the HTTP server tier where tleepaaised and
distributed to the application servers. The processing ififerént requests can
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vary widely and the application servers may also accessrettservers managed
by other organizations.

Control of an individual server in a layer is illustrated ig&ie 1.10b. A quan-
tity representing the quality of service or cost of operasoch as response time,
throughput, service rate or memory usage is measured irothputer. The con-
trol variables might represent incoming messages acceptiedities in the oper-
ating system or memory allocation. The feedback loop thesrgits to maintain
quality-of-service variables within a target range of esu

Economics

The economy is a large dynamical system with many actors:rgowents, orga-
nizations, companies and individuals. Governments cbtiteoeconomy through
laws and taxes, the central banks by setting interest rats@mpanies by set-
ting prices and making investments. Individuals contrelélsonomy through pur-
chases, savings and investments. Many efforts have beea tmawlodel the sys-
tem both at the macro level and at the micro level, but thisetiog is difficult
because the system is strongly influenced by the behaviotedfifferent actors
in the system.

Keynes [Key36] developed a simple model to understandioastbetween
gross national product, investment, consumption and govent spending. One
of Keynes’ observations was that under certain conditibkes,during the 1930s
depression, an increase of investment of government spgratiuld lead to a
larger increase in the gross national product. This idea wad by several gov-
ernments to try to alleviate the depression. Keynes’ ideashe captured by a
simple model that is discussed in Exercise 2.4.

A perspective on modeling and control of economic systemsbeaobtained
from the work of some economists who received the “the SveRjksbank Prize
in Economics in Memory of Alfred Nobel”, popularly called tiNobel Prize in
Economics. Paul A. Samuelson received the prize in 1970 fersdmentific work
through which he has developed static and dynamic econdraary and actively
contributed to rising the level of analysis in economic sc&’. Lawrence Klein
received the prize in 1980 for development of large dynahmeadels with many
parameters that were fitted to historical data [KG55], fomegke a model of the
US economy in the period 1929-1952. Other researchers hagteled other coun-
tries and other periods. In 1997 Myron Scholes shared the piith Robert Mer-
ton for a new method to determine the value of derivativesejikgredient was
a dynamic model for variation of stock prices that is widesed by banks and
investment companies. In 2004 Finn E. Kydland and Edward C. dttsthared
the economics prize “for their contributions to dynamic na@conomics: the time
consistency of economic policy and the driving forces beltinsiness cycles”, a
topic that is clearly related to dynamics and control.

One of the reasons why it is difficult to model economic systesiibat there
are no conservation laws. A typical example is that the vaftecompany as ex-
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Figure 1.11: Supply chain dynamics (after Forrester [For61]). Products flomftioe pro-
ducer to the customer through distributors and retailers as indicated bylithéirses. The
dashed lines show the upward flow of orders. The numbers in the adieglessent the delays
in the flow of information or materials. Multiple feedback loops are preasrgach agent
tries to maintain the proper inventory levels.

pressed by its stock can change rapidly and erratically. €raex, however, some
areas with conservation laws that permit accurate model@we example is the
flow of products from a manufacturer to a retailer as illugtiah Figure 1.11. The
products are physical quantities that obey a conservaigmhd the system can be
modeled simply by accounting for the number of products endliferent inven-
tories. There are considerable economic benefits in comgodupply chains so
that products are available to the customers while minimgithe products that are
in storage. The real problems are more complicated thanateticin the figure
because there may be many different products, differentrfi@s that are geo-
graphically distributed and the factories require raw maker sub-assemblies.

Control of supply chains was proposed by Forrester in 19616f. Consid-
erable economic benefits can be obtained by using models ionméinvento-
ries. Their use accelerated dramatically when informagahmology was applied
to predict sales, keep track of products and enable justda-manufacturing.
Supply chain management has contributed significantly to tbigg success of
global distributors.

Advertising on the Internet is an emerging application oftoal. With network-
based advertising it is easy to measure the effect of differarketing strategies
quickly. The response of customers can then be modeled adddele strategies
can be developed.
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Figure 1.12: The wiring diagram of the growth signaling circuitry of the mammalian
cell [HWO0O0]. The major pathways that are thought to be play a role ineraare indi-
cated in the diagram. Lines represent interaction between genes asthgrio the cell.
Lines ending in arrow heads indicated activation of the given gene owpsgthines ending

in a T-shaped head indicate repression.

Feedback in Nature

Many problems in the natural sciences involve understandgygregate behavior
in complex large-scale systems. This behavior “emerges fitee interaction of
a multitude of simpler systems, with intricate patternsnédimation flow. Repre-
sentative examples can be found in fields ranging from embgyaio seismology.
Researchers who specialize in the study of specific compkes\s often develop
an intuitive emphasis on analyzing the role of feedbackr{tarconnection) in fa-
cilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domgiarts for the
analysis of various complex systems, the development ofoigs methodology
that can discover and exploit common features and essemtiddematical struc-
ture is just beginning to emerge. Advances in science archtdagy are creating
new understanding of the underlying dynamics and the inapod of feedback
in a wide variety of natural and technological systems Weflyrihighlight three
application areas here.

Biological SystemsA major theme currently underway in the biology commu-
nity is the science of reverse (and eventually forward) eegiing of biological
control networks such as the one shown in Figure 1.12. Ther\aige variety of
biological phenomena that provide a rich source of examiplesontrol, includ-
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ing gene regulation and signal transduction; hormonal,umafogical and cardio-
vascular feedback mechanisms; muscular control and lotomactive sensing,
vision and proprioception; attention and consciousness;p@pulation dynamics
and epidemics. Each of these (and many more) provide oppibesito figure out
what works, how it works, and what we can do to affect it.

One interesting feature of biological systems is the frequese of positive
feedback to shape the dynamics of the system. Positive fekdizan be used
to create switch-like behavior through auto-regulatioraajenes, and to create
oscillations such as those present in the cell cycle, cepatéern generators or
circadian rhythm.

Ecosystemdn contrast to individual cells and organisms, emergenp@ries
of aggregations and ecosystems inherently reflect seletig@mmanisms that act on
multiple levels, and primarily on scales well below that lné system as a whole.
Because ecosystems are complex, multiscale dynamicansgsthey provide a
broad range of new challenges for modeling and analysis exflfack systems.
Recent experience in applying tools from control and dymraihsystems to bac-
terial networks suggests that much of the complexity oféhsstworks is due to
the presence of multiple layers of feedback loops that plewbbust functionality
to the individual cell. Yet in other instances, events at¢bl level benefit the
colony at the expense of the individual. Systems level aisban be applied to
ecosystems with the goal of understanding the robustnesschfsystems and the
extent to which decisions and events affecting individyaicses contribute to the
robustness and/or fragility of the ecosystem as a whole.

Environmental Sciencelt is now indisputable that human activities have al-
tered the environment on a global scale. Problems of enorcmuglexity chal-
lenge researchers in this area and first among these is tostadethe feedback
systems that operate on the global scale. One of the chaBengleveloping such
an understanding is the multiscale nature of the probleih, détailed understand-
ing of the dynamics of microscale phenomena such as midoghaal organisms
being a necessary component of understanding global prerarauch as the car-
bon cycle.

1.4 FEEDBACK PROPERTIES

Feedback is a powerful idea which, as we have seen, is usatsiadly in natural

and technological systems. The principle of feedback is lemipase correcting
actions on the difference between desired and actual peaface. In engineering,
feedback has been rediscovered and patented many timesindifferent con-

texts. The use of feedback has often resulted in vast impremtsnin system ca-
pability and these improvements have sometimes been tevwduy, as discussed
above. The reason for this is that feedback has some trulyrkaivia properties.
In this section we will discuss some of the properties of ket that can be un-
derstood intuitively. This intuition will be formalized ilné subsequent chapters.
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Figure 1.13: A feedback system for controlling the speed of a vehicle. In the blockaliag
on the left, the speed of the vehicle is measured and compared to theddgmer within

the “compute” block. Based on the difference in the actual and degiestisthe throttle (or
brake) is used to modify the force applied to the vehicle by the enginetdain and wheels.
The figure on the right shows the response of the control system to maonded change
in speed from 25 m/s to 30 m/s. The three different curves corresjodiffering masses
of the vehicle, between 1000 and 3000 kg, demonstrating the robusiinthesclosed loop
system to a very large change in the vehicle characteristics.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness tertaiicty. By mea-
suring the difference between the sensed value of a reguageal and its desired
value, we can supply a corrective action. If the system ks some change that
affects the regulated signal, then we sense this changeyataiforce the system
back to the desired operating point. This is precisely thecéthat Watt exploited
in his use of the centrifugal governor on steam engines.

As an example of this principle, consider the simple feelllsstem shown
in Figure 1.13. In this system, the speed of a vehicle is ctatrdy adjusting
the amount of gas flowing to the engine. A simple “proportioplals integral”
feedback is used to to make the amount of gas depend on bafrdndetween the
current and desired speed, and the integral of that errorplbhen the right shows
the results of this feedback for a step change in the desreeldsand a variety of
different masses for the car, which might result from haardjfferent number of
passengers or towing a trailer. Notice that independerttehtass (which varies
by a factor of 3!), the steady state speed of the vehicle avegproaches the
desired speed and achieves that speed within approxinatdygonds. Thus the
performance of the system is robust with respect to this rizicey.

Another early example of the use of feedback to provide rolass is the neg-
ative feedback amplifier. When telephone communication® wlereloped, am-
plifiers were used to compensate for signal attenuation ig lioes. The vacuum
tube was a component that could be used to build amplifierstoifien caused
by the nonlinear characteristics of the tube amplifier togethith amplifier drift
were obstacles that prevented development of line amplificera long time. A
major breakthrough was the invention of the feedback ampiifi@927 by Harold
S. Black, an electrical engineer at the Bell Telephone Labdest. Black used
negative feedbackvhich reduces the gain but makes the amplifier insensitive to
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variations in tube characteristics. This invention madeoggible to build stable
amplifiers with linear characteristics despite nonlinéssiof the vacuum tube am-
plifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a systémough feed-
back, we can alter the behavior of a system to meet the neeals application:
systems that are unstable can be stabilized, systems éslugigish can be made
responsive and systems that have drifting operating poenisbe held constant.
Control theory provides a rich collection of techniquesnalsze the stability and
dynamic response of complex systems and to place bounds teltavior of such
systems by analyzing the gains of linear and nonlinear ¢perthat describe their
components.

An example of the use of control in the design of dynamics cofmem the
area of flight control. The following quote, from a lecture bylbMr Wright to the
Western Society of Engineers in 1901 [McF53], illustrates tle of control in
the development of the airplane:

“Men already know how to construct wings or airplanes, whidten
driven through the air at sufficient speed, will not only sursthe
weight of the wings themselves, but also that of the engind, Gt
the engineer as well. Men also know how to build engines arehsc
of sufficient lightness and power to drive these planes aasusy
speed ... Inability to balance and steer still confrontslsiits of the
flying problem. ... When this one feature has been worked bat, t
age of flying will have arrived, for all other difficulties are ofinor
importance.”

The Wright brothers thus realized that control was a key iss@mable flight.
They resolved the compromise between stability and manebiigy by building
an airplane, the Wright Flyer, that was unstable but maneiner The Flyer had
a rudder in the front of the airplane, which made the plang meneuverable. A
disadvantage was the necessity for the pilot to keep adgitie rudder to fly the
plane: if the pilot let go of the stick the plane would crashthé early aviators
tried to build stable airplanes. These would have been etsiy, but because
of their poor maneuverability they could not be brought up ithe air. By using
their insight and skillful experiments the Wright brotherade the first successful
flight at Kitty Hawk in 1905.

Since it was quite tiresome to fly an unstable aircraft, therge stlang motiva-
tion to find a mechanism that would stabilize an aircraft. Sude\ace, invented
by Sperry, was based on the concept of feedback. Sperry used-atgpilized
pendulum to provide an indication of the vertical. He theraaged a feedback
mechanism that would pull the stick to make the plane go upwas pointing
down and vice versa. The Sperry autopilot is the first use of fagdm aeronau-
tical engineering and Sperry won a prize in a competition lier safest airplane
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Figure 1.14: Aircraft autopilot system. The 1912 Curtiss (left) used an autopilot tdlstab
the pitch of the aircraft. The Sperry Autopilot (right) contained a set of fiyros coupled
to a set of air valves that controlled the wing surfaces. The Sperry Aotopas able to
correct for errors in roll, pitch and yaw [Hug93].

in Paris in 1914. Figure 1.14 shows the Curtiss seaplane an8krry autopi-
lot. The autopilot is a good example of how feedback can be tessthabilize an
unstable system and hence “design the dynamics” of theatircr

One of the other advantages of designing the dynamics of meleythat it
allows for increased modularity in the overall system desiBy using feedback
to create a system whose response matches a desired profienwele the com-
plexity and variability that may be present inside a suleystThis allows us to
create more complex systems by not having to simultanedusky the response
of a large number of interacting components. This was oneeativantages of
Black's use of negative feedback in vacuum tube amplifiers:résulting device
had a well-defined linear input/output response that did apedd on the individ-
ual characteristics of the vacuum tubes being used.

Higher Levels of Automation

A major trend in the use of feedback is its application to kighvels of situational
awareness and decision making. This includes not only ioaditlogical branch-
ing based on system conditions, but optimization, adaptatearning and even
higher levels of abstract reasoning. These problems areiddmain of the artifi-
cial intelligence (Al) community, with an increasing roledynamics, robustness
and interconnection in many applications.

An example of this trend is the DARPA Grand Challenge, a sasfecompe-
titions sponsored by the US government to build vehicles dha autonomously
drive themselves in desert and urban environments. Cattatipeted in the 2005
and 2007 Grand Challenges using a modified Ford E-350 offroadneknamed
“Alice.” It was fully automated, including electronicaligontrolled steering, throt-
tle, brakes, transmission and ignition. Its sensing systeiuded multiple video
cameras scanning at 10—-30 Hz, several laser ranging uaisisg at 10 Hz, and



1.4. FEEDBACK PROPERTIES 21

Supervisory Control

Path Path \ehicle
Planner| ~| Follower| " |Actuation

? T :

Road Cost State i
Finding [ 17| Map Estimator || Vehicle
1 1
|
- Terrain Elevation
= Sensors| | Map

Figure 1.15: DARPA Grand Challenge. “Alice”, Team Caltech’s entry in the 2005 ar@720
competitions and its networked control architecture [CFG+06]. Thebfeldsystem fuses
data from terrain sensors (cameras and laser range finders) tohetex digital elevation
map. This map is used to compute the vehicle’s potential speed over tha tand an
optimization-based path planner then commands a trajectory for the véhifddow. A
supervisory control module performs higher level tasks such atlihngrsensor and actuator
failures.

an inertial navigation package capable of providing posi@nd orientation es-
timates at 2.5 ms temporal resolution. Computational nessuincluded 7 high
speed servers connected together through a 1 Gb/s Etheritet.s picture of
the vehicle is shown in Figure 1.15, along with a block diagmainits control
architecture.

The software and hardware infrastructure that was develepabled the ve-
hicle to traverse long distances at substantial speedsstimgj, Alice drove itself
over 500 kilometers in the Mojave Desert of California, witte ability to fol-
low dirt roads and trails (if present) and avoid obstaclesglthe path. Speeds
of over 50 km/hr were obtained in fully autonomous mode. Sartigl tuning of
the algorithms was done during desert testing, in part dilegdack of systems-
level design tools for systems of this level of complexityh€ competitors in the
race (including Stanford, which won the competition) usegathms for adaptive
control and learning, increasing the capabilities of tggtems in unknown envi-
ronments. Together, the competitors in the Grand Challelegeonstrated some
of the capabilities for the next generation of control sgmend highlighted many
research directions in control at higher levels of decisi@king.

Drawbacks of Feedback

While feedback has many advantages, it also has some drlesvb@hief among
these is the possibility for instability if the system is migsigned properly. We
are all familiar with the effects of “positive feedback” wiéhe amplification on
a microphone is turned up too high in a room. This is an examipéefeedback
instability, something that we obviously want to avoid. Tisigricky because we
must not only design the system to be stable under nominalitbams, but to
remain stable under all possible perturbations of the dycem

In addition to the potential for instability, feedback imaetly couples different
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parts of a system. One common problem is that feedback afjeots measure-
ment noise into the system. Measurements must be carefudyefil so that the
actuation and process dynamics do not respond to them, ahitee same time
ensuring that the measurement signal from the sensor iegyagupled into the
closed loop dynamics (so that the proper levels of perfooaane achieved).

Another potential drawback of control is the complexity afleedding a con-
trol system into a product. While the cost of sensing, comiparh and actuation
has decreased dramatically in the past few decades, theefaains that control
systems are often complicated and hence one must careéldinde the costs and
benefits. An early engineering example of this is the use ofopiocessor-based
feedback systems in automobiles. The use of microprocessargomotive ap-
plications began in the early 1970s and was driven by inarghsstrict emissions
standards, which could only be met through electronic cdsmtrEarly systems
were expensive and failed more often than desired, leadifigeguent customer
dissatisfaction. It was only through aggressive improvatsién technology that
the performance, reliability and cost of these systemsveltbthem to be used in a
transparent fashion. Even today, the complexity of theseBysis such that it is
difficult for an individual car owner to fix problems.

Feedforward

Feedback is reactive: there must be an error before coreeatitions are taken.
However, in some circumstances it is possible to measurstardance before it
enters the system and this information can be used to takeative action before
the disturbance has influenced the system. The effect of therlaigice is thus
reduced by measuring it and generating a control signalctateracts it. This
way of controlling a system is callei@edforward Feedforward is particularly
useful to shape the response to command signals becauseacahsignals are
always available. Since feedforward attempts to match tgoads, it requires
good process models; otherwise the corrections may hawertheg size or may
be badly timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward arkvgoas to a market-
based economy versus a planned economy. In business arfgadfcstrategy
corresponds to running a company based on extensive stralegning while a
feedback strategy corresponds to a reactive approach. iErperindicates that
it is often advantageous to combine feedback and feedfdrwBeedforward is
particularly useful when disturbances can be measurecdedigied. A typical ex-
ample is in chemical process control where disturbanceménpmocess may be
due to other processes upstream. The correct balance of pheaapes requires
insight and understanding of their properties.
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Positive Feedback

In most of this text, we will consider the role of negativedback, in which we
attempt to regulate the system by reacting to disturbamcasnay that decreases
the effect of those disturbances. In some systems, patlgudiological systems,
positive feedbackan play an important role. In a system with positive feeétbac
the increase in some variable or signal leads to a situatiarinich that quantity is
further increased through its dynamics. This has a destadgjlieffect and is usu-
ally accompanied by a saturation that limits the growth efdantity. Although
often considered undesirable, this behavior is used ibical (and engineering)
systems to obtain a very fast response to a condition orlsigna

One example of the use of positive feedback is to create siwgdoehavior,
in which a system maintains a given state until some inputchass a threshold.
Hysteresis is often present so that noisy inputs near tlesliotd do not cause the
system to jitter. This type of behavior is callbdtability and is often associated
with memory devices.

1.5 SIMPLE FORMS OF FEEDBACK

The idea of feedback to make corrective actions based on fieeettice between
the desired and actual values of a quantity can be impledentaany different
ways. The benefits of feedback can be obtained by very simpléée laws such
as on-off control, proportional control and PID control. lhistsection we provide
a brief preview of some of the topics that will be studied mfmemally in the
remainder of the text.

On-off Control

A simple feedback mechanism can be described as follows:

if 0
U {umax if e>

1.1

wheree=r —yis the difference between the reference sigraaid the output of the
systeny, andu is the actuation command. Figure 1.16a shows the relatiovelest
error and control. This control law implies that maximum eactive action is
always used.

The feedback in equation (1.1) is called-off control One of its chief advan-
tages is thatitis simple and there are no parameters to eh@usoff control often
succeeds in keeping the process variable close to the mefrsuch as the use of
a simple thermostat to maintain the temperature of a roonypitally results in
a system where the controlled variables oscillate, whiaiftesn acceptable if the
oscillation is sufficiently small.

Notice that in equation (1.1) the control variable is not dadinvhen the error
is zero. It is common to make modifications either by introdgdaysteresis or a
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(a) On-off control (b) Dead zone (c) Hysteresis

Figure 1.16: Input-output characteristics of on-off controllers. Each plot showsrthut on
the horizontal axis and the corresponding output on the vertical axdal @oh-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (o}e that for on-off
control with hysteresis, the output depends on the value of past inputs.

dead zone (see Figure 1.16b and 1.16c).

PID Control

The reason why on-off control often gives rise to oscillagias that the system
overreacts since a small change in the error will make thea#ed variable change
over the full range. This effect is avoidedpnoportional contro] where the char-
acteristic of the controller is proportional to the conalor for small errors. This
can be achieved with the control law

Umax If €> €emax
U= q kpe if enin < €< emax (1.2)
Umin  if € < €nin,

where wherek, is the controller gain@min = Umin/Kp, @ndemax = Umax/Kp. The
interval (emin, €max) is called theproportional bandbecause the behavior of the
controller is linear when the error is in this interval:

While a vast improvement over on-off control, proportiocahtrol has the
drawback that the process variable often deviates fronefesence value. In par-
ticular, if some level of control signal is required for thgstkem to maintain a
desired value, then we must hawe 0 in order to generate the requisite input.

This can be avoided by making the control action proportiemdhe integral
of the error:

t
u(t) :ki/e(r)dr. (1.4)
0

This control form is calledntegral controlandk; is the integral gain. It can be
shown through simple arguments that a controller with irgtkgction will have
zero “steady state” error (Exercise 1.6). The catch is thaethmy not always be
a steady state because the system may be oscillating.
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Figure 1.17: Action of a PID controller. At timd, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedb&esed on the integral

of the error up to time (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of changdekrror. Ty
represents the approximate amount of time in which the error is projemtedrid (see text).

An additional refinement is to provide the controller with anticipative abil-
ity by using a prediction of the error. A simple predictiongisen by the linear
extrapolation
deft)
dt ’
which predicts the errdfy time units ahead. Combining proportional, integral and
derivative control we obtain a controller that can be expedsmathematically as
follows:

e(t+Ty) ~et)+ Ty

u(t) :kpe(t)+|q/ote(r)dr+kddj(tt> (15)

The control action is thus a sum of three terms: the past agsepted by the
integral of the error, the present as represented by theoiopal term and the
future as represented by a linear extrapolation of the d€ther derivative term).
This form of feedback is called@oportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.17.

The PID controller is very useful and is capable of solving aenmidnge of
control problems. Over 95% of all industrial control prabkeare solved by PID
control, although many of these controllers are actually ¢Htollers because
derivative action is often not included [DM02]. There arepaisore advanced con-
trollers, which differ from the PID controller by using moreghisticated methods
for prediction.

1.6 FURTHER READING

The material in this section draws heavily from the reporthed Panel on Fu-
ture Directions on Control, Dynamics and Systems [Mur03]. egalvadditional
papers and reports have highlighted successes of cont839Nand new vistas
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in control [Bro0O, KumO01]. The early development of contrsldescribed by
Mayr [May70] and the books by Bennett [Ben86a, Ben86b], Wiuover the pe-
riod 1800-1955. A fascinating examination of some of theéyelistory of con-
trol in the United States has been written by Mindell [Min0Z.popular book
that describes many control concepts across a wide rangsaplihes is “Out
of Control” by Kelly [Kel94]. There are many textbooks avaie that describe
control systems in the context of specific disciplines. Fajireers, the textbooks
by Franklin, Powell and Emami-Naeini [FPENO5], Dorf and Bishop {28 Kuo
and Golnaraghi [KG02], and Seborg, Edgar and Mellichamp [SEM@8)widely
used. More mathematically oriented treatments of contrebty include Son-
tag [Son98] and Lewis [Lew03]. The book by Hellersteinal. [HDPT04] pro-
vides a description of the use of feedback control in conmgusiystems. A num-
ber of books look at the role of dynamics and feedback in lgickl systems,
including Milhorn [Mil66] (now out of print), J. D. Murray [Mr04] and Ellner
and Guckenheimer [EGO05]. The book by Fradkov [Fra07] and tdtartacle by
Bechhoefer [Bec05] cover many specific topics of intereshéophysics commu-
nity.

EXERCISES

1.1 Perform the following experiment and explain your resulteldihg your head
still, move your right or left hand back and forth in front adyr face, following it

with your eyes. Record how quickly you can move your handteeyou begin to
lose track of your hand. Now hold your hand still and move yloead back and
forth, once again recording how quickly you can move befoosing track.

1.2 Identify 5 feedback systems that you encounter in your eagryenviron-
ment. For each system, identify the sensing mechanismai@mtumnechanism and
control law. Describe the uncertainty with respect to whioh feedback system
provides robustness and/or the dynamics that are changmatinthe use of feed-
back.

1.3 Balance yourself on one foot with your eyes closed for 15 sdso Using
Figure 1.3 as a guide, describe the control system respeniiblkeeping you
from falling down. Note that the “controller” will differ fsm the diagram (unless
you are an android reading this in the far future).

1.4 Make a schematic picture of the system for supplying milkrfrine cow to
your table. Discuss the impact of refrigerated storage.

1.5 Download the MATLAB code used to produce the simulations ferdtuise

control system in Figure 1.13 from the companion web sitenysiial and error,

change the parameters of the control law so that the overghtize speed is not
more than 1 m/s for a vehicle with mass= 1000 kg.
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1.6 We say that a system with a constant input reaches “steaigy gtthe output
of the system approaches a constant value as time increzs®s.that a controller
with integral action, such as those given in equations (and) (1.5), gives zero
error if the closed loop system reaches steady state.

1.7 Search for the term “voltage clamp” on the Internet and explehy it is so

advantageous to use feedback to measure the ion currentsn ¥eu may also

enjoy reading about the Nobel Prizes of Hodgkin and Huxley31&&l Neher and
Sakmann (sebt t p: / / nobel pri zes. or g).

1.8 Search for the term “force feedback” and explore its use initsipnd sensing.






Chapter Two
System Modeling

. | asked Fermi whether he was not impressed by the agreemewtdye our calculated
numbers and his measured numbers. He replied, “How many arbippargmeters did you
use for your calculations?” | thought for a moment about our cut-offgedures and said,
“Four” He said, “l remember my friend Johnny von Neumann usedap svith four param-
eters | can fit an elephant, and with five | can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for mesatospscattering to
Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamied ts answer
guestions via analysis and simulation. The model we chogsendks on the ques-
tions we wish to answer, and so there may be multiple models f&ingle dy-
namical system, with different levels of fidelity dependingtbe phenomena of
interest. In this chapter we provide an introduction to thacept of modeling,
and provide some basic material on two specific methods teatanmonly used
in feedback and control systems: differential equatiortsdifierence equations.

2.1 MODELING CONCEPTS

A model is a mathematical representation of a physicalplickl or information
system. Models allow us to reason about a system and mak&twad about
how a system will behave. In this text, we will mainly be irsted in models of
dynamical systems describing the input/output behaviagystems and we will
often work in so-called “state space” form.

Roughly speaking, a dynamical system is one in which thecesffef actions
do not occur immediately. For example, the velocity of a caesdinot change
immediately when the gas pedal is pushed nor does the tetupeia a room
rise instantaneously when a heater is switched on. Similarlyeadache does
not vanish right after an aspirin is taken, requiring timeatice effect. In business
systems, increased funding for a development project dotdagrease revenues in
the short term, although it may do so in the long term (if it wapod investment).
All of these are examples of dynamical systems, in which thlealsior of the
system evolves with time.

In the remainder of this section we provide an overview of safithe key
concepts in modeling. The mathematical details introdueed are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring-mass system, with nonlinear damping. The position of the mass is de
noted byq, with g = 0 corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring conktamdl a damper with force depen-
dent on the velocity.”

The Heritage of Mechanics

The study of dynamics originated in the attempts to desctéoegpary motion. The
basis was detailed observations of the planets by TychoeBaal the results of
Kepler, who found empirically that the orbits of the plan&isild be well described
by ellipses. Newton embarked on an ambitious program tmtexplain why the
planets move in ellipses and he found that the motion coulexpéained by his
law of gravitation and the formula that force equals mas®siracceleration. In
the process he also invented calculus and differentialtemnsa

One of the triumphs of Newton’s mechanics was the observéliat the mo-
tion of the planets could be predicted based on the curresitiges and velocities
of all planets. It was not necessary to know the past motioe.stdteof a dynam-
ical system is a collection of variables that characterthesmotion of a system
completely for the purpose of predicting future motion. Bosystem of planets
the state is simply the positions and the velocities of tha@is. We call the set of
all possible states thstate space

A common class of mathematical models for dynamical systisnesdinary
differential equations (ODES). In mechanics, one of the &@stsuch differential
equation is that of a spring-mass system, with damping:

mg+c(q) +kg= 0. (2.1)

This system is illustrated in Figure 2.1. The variafjle R represents the position
of the massn with respect to its rest position. We use the notatjda denote the
derivative ofg with respect to time (i.e., the velocity of the mass) grtd represent
the second derivative (acceleration). The spring is asstoneatisfy Hooke's law,
which says that the force is proportional to the displacdmieme friction element
(damper) is taken as a nonlinear functiafq), which can model effects such as
stiction and viscous drag. The positigand velocityg represent the instantaneous
“state” of the system. We say that this system seaond order systesince the
dynamics depend on the second derivative.of

The evolution of the position and velocity can be describadgusither a time
plot or a phase plot, both of which are shown in Figure 2.2. Tine {plot, on the
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Figure 2.2: lllustration of a state model. A state model gives the rate of change of tiee sta
as a function of the state. The plot on the left shows the evolution of the statéuaction

of time. The plot on the right shows the evolution of the states relative to @heln, with

the velocity of the state denoted by arrows.

left, shows the values of the individual states as a funaifidime. The phase plot,
on the right, shows theector fieldfor the system, which gives the state velocity
(represented as an arrow) at every point in the state spacaddition, we have
superimposed the traces of some of the states from diffecgmitions. The phase
plot gives a strong intuitive representation of the equmts a vector field or a
flow. While systems of second order (two states) can be repiega this way, it
is unfortunately difficult to visualize equations of higheder using this approach.

The differential equation (2.1) is called amntonomousystem because there
are no external influences. Such a model is natural to use festcal mechanics,
because it is difficult to influence the motion of the planetsmbny examples, it
is useful to model the effects of external disturbances atroied forces on the
system. One way to capture this is to replace equation (%.1) b

m4+c(q) +kg=u (2.2)

whereu represents the effect of external inputs. The model (2.2)llsa aforced
or controlleddifferential equation. The model implies that the rate ofrgfeof
the state can be influenced by the input). Adding the input makes the model
richer and allows new questions to be posed. For exampleawexamine what
influence external disturbances have on the trajectoriesydtam. Or, in the case
when the input variable is something that can be modulateddantrolled way,
we can analyze whether it is possible to “steer” the system fone point in the
state space to another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineg, where the de-
sign of electronic amplifiers led to a focus on input/outpubdagor. A system
was considered as a device that transformed inputs to @ tpatillustrated in
Figure 2.3. Conceptually an input/output model can be vieaga giant table
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Input Output

—{ System ——»

Figure 2.3: lllustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the onthefright its
representation as a block diagram.

of inputs and outputs. Given an input signgl) over some interval of time, the
model should produce the resulting outg(it).

The input/output framework is used in many engineering systsince it al-
lows us to decompose a problem into individual componemtsnected through
their inputs and outputs. Thus, we can take a complicate@mystich as a radio
or a television and break it down into manageable pieced) aadhe receiver,
demodulator, amplifier and speakers. Each of these piecesse®oainputs and
outputs and, through proper design, these components cardoeonnected to
form the entire system.

The input/output view is particularly useful for the spedaikss oflinear time-
invariant systems. This term will be defined more carefully later in thiapter,
but roughly speaking a system is linear if the superposifaatdition) of two in-
puts yields an output which is the sum of the outputs that daarrespond to
individual inputs being applied separately. A system istimvariant if the output
response for a given input does not depend on when that ispyiglied.

Many electrical engineering systems can be modeled byrlitieze-invariant
systems and hence a large number of tools have been devatpagrdlyze them.
One such tool is thetep responsewhich describes the relationship between an
input that changes from zero to a constant value abruptlys{@p” input) and
the corresponding output. As we shall see in the latter fattteotext, the step
response is very useful in characterizing the performaf@dynamical system
and it is often used to specify the desired dynamics. A sarsiigle response is
shown in Figure 2.4a.

Another possibility to describe a linear, time-invariagstem is to represent
the system by its response to sinusoidal input signals. Shialled theérequency
responseand a rich, powerful theory with many concepts and strongfulsesults
has emerged. The results are based on the theory of compiaklearand Laplace
transforms. The basic idea behind frequency response isvihaan completely
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Figure 2.4: Input/output response of a linear system. The step response (a3 #i@autput
of the system due to an input that changes from O to 1 at timeb s. The frequency
response (b) shows the amplitude gain and phase change due to é&sihngait at different
frequencies.

characterize the behavior of a system by its steady stapomes to sinusoidal
inputs. Roughly speaking, this is done by decomposing abigrary signal into
a linear combination of sinusoids (e.g., by using the Fouransform) and then
using linearity to compute the output by combining the reseato the individual
frequencies. A sample frequency response is shown in Figdbe 2

The input/output view lends itself naturally to experimémeatermination of
system dynamics, where a system is characterized by recpitdi response to a
particular input, e.g. a step or a sweep across a range afdneies.

The Control View

When control theory emerged as a discipline in the 1940sppeoach to dynam-
ics was strongly influenced by the electrical engineeringuifoutput) view. A
second wave of developments in control, starting in the 18&0s, was inspired
by mechanics, where the state space perspective was useein€ngence of space
flight is a typical example, where precise control of the oobid spacecraft is es-
sential. These two points of view gradually merged into wkabiday the state
space representation of input/output systems.

The development of state space models involved modifyingrtbdels from
mechanics to include external actuators and sensors, dizéhgtmore general
forms of equations. In control, the model given by equat@) was replaced by

dx

a = f(X7 U), y: h(X,U), (23)
wherex is a vector of state variablesjs a vector of control signals, aryh vector
of measurements. The terdx/dt represents the derivative gfwith respect to
time, now considered as a vector, ahdndh are mappings of their arguments to
vectors of the appropriate dimension. For mechanical systthe state consists of
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the position and velocity of the system, so tkat (q,q) in the case of a damped
spring-mass system. Note that in the control formulationnveglel dynamics as
first order differential equations, but we will see that tras capture the dynamics
of higher order differential equations by appropriate débiniof the state and the
mapsf andh.

Adding inputs and outputs has added to the richness of tissickd problems
and led to many new concepts. For example it is natural tofgsissible states
can be reached with the proper choicaigfeachability) and if the measurement
contains enough information to reconstruct the state fohbdity). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view wag ttmergence of
disturbance and model uncertainty as critical elementharthieory. The simple
way of modeling disturbances as deterministic signalsdik@s and sinusoids has
the drawback that such signals can be predicted preciseljnore realistic ap-
proach is to model disturbances as random signals. This vieivgives a natural
connection between prediction and control. The dual viewsdit/output rep-
resentations and state space representations are attiaideful when modeling
uncertainty, since state models are convenient to desamioeninal model but un-
certainties are easier to describe using input/output leddéen via a frequency
response description). Uncertainty will be a constant gnémnoughout the text
and will be studied in particular detail in Chapter 12.

An interesting experience in design of control systemsasfiredback systems
can often be analyzed and designed based on comparativghjesinodels. The
reason for this is the inherent robustness of feedbackragstdowever, other uses
of models may require more complexity and more accuracy.&aeple is feed-
forward control strategies, where one uses a model to prneatmihe inputs that
will cause the system to respond in a certain way. Anothex iari system valida-
tion, where one wishes to verify that the detailed respoih#eeosystem performs
as it was designed. Because of these different uses of madslsommon to use
a hierarchy of models having different complexity and figelit

Multi-Domain Modeling

Modeling is an essential element of many disciplines, baditions and meth-
ods from individual disciplines can be different from eathe, as illustrated by
the previous discussion of mechanical and electrical e®ging. A difficulty in
systems engineering is that it is frequently necessary abwlith heterogeneous
systems from many different domains, including chemidaicteical, mechanical
and information systems.

To model such multi-domain systems, we start by partitigransystem into
smaller subsystems. Each subsystem is represented by éalgunations for mass,
energy and momentum, or by appropriate descriptions ofifleernation process-
ing in the subsystem. The behavior at the interfaces is caghtoy describing how
the variables of the subsystem behave when the subsystenistenrconnected.
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These interfaces act by constraining variables within thé&idual subsystems to
be equal (such as mass, energy or momentum fluxes). The compuded is then
obtained by combining the descriptions of the subsysterdgtaninterfaces.

Using this methodology it is possible to build up librarigssabsystems that
correspond to physical, chemical and informational coneptst The procedure
mimics the engineering approach where systems are built$rdosystems that are
themselves built from smaller components. As experiencgiised, the compo-
nents and their interfaces can be standardized and callectaodel libraries. In
practice, it takes several iterations to obtain a good fibthat can be reused for
many applications.

State models or ordinary differential equations are noabigtfor component
based modeling of this form because states may disappear eameponents are
connected. This implies that the internal description of @mponent may change
when it is connected to other components. As an illustratienconsider two
capacitors in an electrical circuit. Each capacitor has & st@rresponding to the
voltage across the capacitors, but one of the states wapgisar if the capacitors
are connected in parallel. A similar situation happens Wwith rotating inertias,
each of which are individually modeled using the angle adition and the angular
velocity. Two states will disappear when the inertias amegd by a rigid shaft.

This difficulty can be avoided by replacing differential edoas bydifferential
algebraic equationswhich have the form

F(z,z) =0,
wherez € R". A simple special case is

X= f(X, y) g(X7 y) =0, (24)

wherez = (x,y) andF = (x— f(x,y),9(x,y)). The key property is that the deriva-
tive zis not given explicitly and there may be pure algebraic iefst between the
components of the vectar

The model (2.4) captures the examples of the parallel capa@nd the linked
rotating inertias. For example, when two capacitors areeoted we simply add
the algebraic equation expressing that the voltages athessapacitors are the
same.

Modelicais a language that has been developed to support compoased-b
modeling. Differential algebraic equations are used ad#wc description and
object-oriented programming is used to structure the nsodébdelica is used to
model the dynamics of technical systems in domains such akanéal, electri-
cal, thermal, hydraulic, thermo-fluid and control subsystelodelica is intended
to serve as a standard format so that models arising in @iffefomains can be ex-
changed between tools and users. A large set of free and camahidodelica
component libraries are available and are used by a growimgper of people
in industry, research and academia. For further informmagiboutModelicg see
http://ww. nodel i ca. org.
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2.2 STATE SPACE MODELS

In this section we introduce the two primary forms of modélsttwe use in this
text: differential equations and difference equationsthBoake use of the notions
of state, inputs, outputs and dynamics to describe the ahafva system.

Ordinary Differential Equations

The state of a system is a collection of variables that sunmmahie past of a
system for the purpose of predicting the future. For a playsgstem the state
is composed of the variables required to account for stoodgeass, momentum
and energy. A key issue in modeling is to decide how accyréiés storage has
to be represented. The state variables are gathered in a,vect®", called the
state vector The control variables are represented by another vectoRP and
the measured signal by the vecyor R9. A system can then be represented by the
differential equation

Zlf[( = f(x,u), y =h(x,u), (2.5)
wheref : R" x RP — R" andh: R" x RP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called thder of the system. The sys-
tem (2.5) is calledime-invariantbecause the functions andg do not depend
explicitly on timet; there are more general time-varying systems where the func
tions do depend on time. The model consists of two functidresfunctionf gives
the rate of change of the state vector as a function of gtatel controlu, and the
functiong gives the measured values as functions of staed controlu.

A system is called &near state space system if the functiohandg are linear
in x andu. A linear state space system can thus be represented by

dx

pri Ax+ Bu, y = Cx+ Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said tombar and
time-invariant or LTI for short. The matriXA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influeneedhtput directly.
A different form of linear differential equations, generalg the second order
dynamics from mechanics, is an equation of the form
dn dnfl
dT'): A dtn—i/
wheret is the independent (time) variablg}) is the dependent (output) variable,
andu(t) is the input. The notatiod“y/dt* is used to denote theh derivative ofy
with respect td, sometimes also written 8. The system (2.7) is said to be an

+ - +apy =U, (2.7)
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nth order system. This system can be converted into state §pacdy defining

dn- 1y/dtn 1
dn- 2y/dt” 2
dy/dt

and the state space equations become

X1 —aiXy — - —anXp u
X X 0
g 2 B 2 . . .
dt . - . . ) y_ n
Xn-1 Xn-2 0
Xn Xn—1 0

With the appropriate definition o4, B, C andD, this equation is in linear state
space form.
An even more general system is obtained by letting the olpuatlinear com-
bination of the states of the system, i.e.
y = bixg +boxo+ - - + baXy +du

This system can be modeled in state space as

X1 —a; —a2 ... —apn-1 —an 1
X2 1 0 ... 0 0 0
dlx|_| o 1 0 0 |xs|0]y
- 5 5 5 (2.8)
Xn 0 o0 10 0
y= (bl b ... bn]x+du.

This particular form of a linear state space system is catbedhable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems

An example of a class of systems that can be modeled usingawyddifferential
equations is the class of “balance systems.” A balance mystea mechanical
system in which the center of mass is balanced above a pivot. pgpome com-
mon examples of balance systems are shown in Figure 2.5. Thea@dgunan
transportation system (Figure 2.5a) uses a motorized ptatfo stabilize a per-
son standing on top of it. When the rider leans forward, thacke propels itself
along the ground, but maintains its upright position. Amotxample is a rocket
(Figure 2.5b), in which a gimbaled nozzle at the bottom of theket is used to
stabilize the body of the rocket above it. Other examplesatdirice systems in-
clude humans or other animals standing upright or a perslamt&iag a stick on
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. !
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(a) Segway (b) Saturn rocket (c) Cart-pendulum system

Figure 2.5: Balance systems. (a) Segway human transportation system, (b) Satket
and (c) inverted pendulum on a cart. Each of these examples uses &ritie bottom of the
system to keep it upright.

their hand.
Balance systems are a generalization of the spring-matnsyge saw earlier.
We can write the dynamics for a mechanical system in the géf@m

M(a)d+C(a,q) +K(a) =B(q)u,

whereM(q) is the inertia matrix for the systen@(q,q) represents the Coriolis
forces as well as the dampini§(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into themaycs. The
specific form of the equations can be derived using Newtoniaohanics. Note
that each of the terms depends on the configuration of thersysé@d these terms
are often nonlinear in the configuration variables.

Figure 2.5c shows a simplified diagram for a balance system. daefrthis
system, we choose state variables that represent thegooaitid velocity of the
base of the systenp andp, and the angle and angular rate of the structure above
the basef andf. We letF represent the force applied at the base of the system,
assumed to be in the horizontal direction (aligned vpithand choose the position
and angle of the system as outputs. With this set of definititresdynamics of
the system can be computed using Newtonian mechanics arnldenfmsm

(M+m) —mlcosB) (p cp+mising82)  (F )9
—mlcos® (J+mli?) ) (6 vo—mglsing | = (0] (2.9)

whereM is the mass of the bas®,andJ are the mass and moment of inertia of the
system to be balancelis the distance from the base to the center of mass of the
balanced body; andy are coefficients of viscous friction, aids the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space fgrdetining the
state ax = (p, 0, p, 0), the input asu = F and the output ag = (p,0). If we
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define the total mass and total inertia as
M=M+m  J=J+ml

the equations of motion then become

p
p . 6 _
d e —mlsg82 +mgml?/J)sgcg — cp— yYimcgB +-u
de [ p]| ~ M—m(mR/%)c3 .
0 —ml?sgcg 82 + Miglsg — clcgp— y(M/m)6 + Icgu
\ J(M/m) —m(Icg)?
y: g] b

where we have used the shorthanpd= cosf andsg = sinf.

In many cases, the angwill be very close to 0 and hence we can use the
approximations sifl ~ 6 and co$ ~ 1. Furthermore, if9 is small, we can ig-
nore quadratic and higher termsén Substituting these approximations into our
equations, we see that we are left witlireear state space equation

oy (O 0 1 0 D 0
dle 0 0 0 1 0 0
at || = [0 mPrg/u —ca/p —yaimp| | o | a/m |t
6 0 Mmgl/u —clm/u —yMy/u J \O Im/u
_(r 000,
Y=o 100"
whereu = MyJ — Al 0

Example 2.2 Inverted pendulum

A variation of this example is one in which the location of tiese,p, does not
need to be controlled. This happens, for example, if we arg iotérested in
stabilizing a rocket's upright orientation, without woimyg about the location of
base of the rocket. The dynamics of this simplified system aenddy

d [‘-9] _ [mgl o ] y—0 (2.10)
dt |6) sind— -6+ —cosbu |’ R '
J Joo%
wherey is the coefficient of rotational friction} = J+ ml? andu is the force
applied at the base. This system is referred to asarted pendulum O

Difference Equations

In some circumstances, it is more natural to describe thugen of a system
at discrete instants of time rather than continuously iretintf we refer to each
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of these times by an integ&r=0,1,2, ..., then we can ask how the state of the
system changes for ea&h Just as in the case of differential equations, we define
the state to be those sets of variables that summarize thefghs system for the
purpose of predicting its future. Systems described in traamer are referred to
asdiscrete time systems

The evolution of a discrete time system can written in the form

X[k+ 1] = f(x[K],ulk]), y[K] = h(x[k],u[k]) (2.11)

wherex[k] € R" is the state of the system at “timk’(an integer)u[k] € RP is the
input andy[k] € R%is the output. As beforef, andh are smooth mappings of the
appropriate dimension. We call equation (2.14jféerence equatiosince it tells
us nowx[k+ 1] differs fromx[k]. The statex[k] can either be a scalar or a vector
valued quantity; in the case of the latter we wjék] for the value of thgth state
at timek.

Just as in the case of differential equations, it will oftentbe case that the
equations are linear in the state and input, in which caseanencite the system
as

x[k+ 1] = Axk] + BulK], y[K] = Cx[k] + DulK].

As before, we refer to the matricés B, C andD as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. Theitsm of a linear
difference equation with initial conditiox]0] and inputu[0],...,u[T] is given by

k—1 _
X[k = Afxo + ZOA"‘J‘lBu[ i]
‘:k_l k> 0. (2.12)
y[k] = CA%o+ Z)CAK—J—lsu[ j] -+ DulK]
J:

Difference equations are also useful as an approximatiafifieirential equa-
tions, as we will show later.

Example 2.3 Predator-prey

As an example of a discrete time system, consider a simplehfioda predator-
prey system. The predator-prey problem refers to an ecabgystem in which
we have two species, one of which feeds on the other. This tyggstem has
been studied for decades and is known to exhibit interesitymgmics. Figure 2.6
shows a historical record taken over 50 years in a populaifdgnxes versus
hares [Mac37]. As can been seen from the graph, the annuabiseeof the popu-
lations of each species are oscillatory in nature.

A simple model for this situation can be constructed usinigerdte time model
by keeping track of the rate of births and deaths of each spedtiettingH rep-
resent the population of hares abhdepresent the population of lynxes, we can
describe the state in terms of the populations at discretedseof time. Lettingk
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Figure 2.6: Predator versus prey. The photograph on the left shows a Canadaaryl
a snowshoe hare, the lynx’s primary prey. The graph on the righwslioe populations
of hares and lynxes between 1845 and 1935 in a section of the CanautthieR[Mac37,
MS93]. The data were collected on an annual basis over a period ad#8.yPhotograph
courtesy Rudolfo’s Usenet Animal Pictures Gallery.

be the discrete time index (e.qg., the day number), we cam writ
Hk+ 1] = H[k] + by (u)H [K] — aL[kH[K]
L[k+ 1] = L[k] —d¢L[K] +cL[k]H k],

whereby (u) is the hare birth rate per unit period and as a function of tuel f
supplyu, ds is the lynx death rate, ang andc are the interaction coefficients.
The interaction ternaL[k|H[K] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey megttisshence given
by the product of the population sizes. The interaction tekfi]H[K] in the lynx
dynamics has a similar form and represents the rate of grofitie lynx popula-
tion. This model makes many simplifying assumptions—sudhafact that hares
only decrease in numbers through predation by lynxes—Iluotfitah is sufficient to
answer basic questions about the system.

To illustrate the usage of this system, we can compute thebruwf lynxes
and hares at each time point from some initial populations ©done by starting
with x[0] = (Ho, Lo) and then using equation (2.13) to compute the populations in
the following period. By iterating this procedure, we camgete the population
over time. The output of this process for a specific choice cipaters and initial
conditions is shown in Figure 2.7. While the details of theldation are different
from the experimental data (to be expected given the siitylad our assump-
tions), we see qualitatively similar trends and hence weusanthe model to help
explore the dynamics of the system. O

(2.13)

Example 2.4 Email Server
The IBM Lotus server is an collaborative software system thatinisters users’
e-mail, documents and notes. Client machines interactevithusers to provide
access to data and applications. The server also handlesdth@istrative tasks.
In the early development of the system it was observed tlegpénformance was
poor when the CPU was overloaded because of too many sergoests and
mechanisms to control the load were therefore introduced.

The interaction between the client and the server is in thra fifremote proce-
dure calls (RPCs). The server maintains a log of statisticewipteted requests.
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Figure 2.7: Discrete time simulation of the predator-prey model (2.13). Using thenpar
tersa= c=0.007,b;(u) = 0.7 andd = 0.5 in equation (2.13), the period and magnitude of
the lynx and hare population cycles approximately match the data in Fighre 2.

The total number of requests being served, caitel (RPCs in server), is also
measured. The load on the server is controlled by a paramated ¥axUser s,
which sets the total number of client connections to theeserhis parameter is
controlled by the system administrator. The server can berdegl as a dynamical
system withMaxUser s as input andRl S as the output. The relationship between
input and output was first investigated by exploring the stestdte performance
and was found to be linear.

In [HDPTO04] a dynamic model in the form of a first order differemzpiation
is used to capture the dynamic behavior of this system. Usiagem identification
technigues they construct a model of the form

ylk+ 1] = ay[k] + bulk],

whereu = MaxUser s — MaxUser s andy = Rl S— RI'S. The parametera = 0.43
andb = 0.47 are parameters that describe the dynamics of the systamdathe
operating point an@xUser s = 165 andRI'S = 135 represent the nominal oper-
ating point of the system. The number of requests was aveigigthe sampling
period which was 60 s. O

Simulation and Analysis

State space models can be used to answer many questions. Beentdst com-
mon, as we have seen in the previous examples, is to predi@vitiution of the
system state from a given initial condition. While for simphodels this can be
done in closed form, more often it is accomplished throughmater simulation.
One can also use state space models to analyze the overalidedf the system,
without making direct use of simulation.

Consider again the damped spring-mass system from Secliph2 this time
with an external force applied, as shown in Figure 2.8. We waspredict the
motion of the system for a periodic forcing function, withigem initial condition,
and determine the amplitude, frequency and decay rate oégudting motion.
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Figure 2.8: A driven spring-mass system, with damping. Here we use a linear dgmpin
element with coefficient of viscous frictiom The mass is driven with a sinusoidal force of
amplitudeA.

We choose to model the system with a linear ordinary difféaéequation.
Using Hooke’s law to model the spring and assuming that thepda exerts a
force that is proportional to the velocity of the system, egdn

mg+ cq+kg=u, (2.14)

wherem is the massq is the displacement of the massjs the coefficient of
viscous friction k is the spring constant andis the applied force. In state space
form, usingx = (q, ) as the state and choosigg- g as the output, we have

dx X2
T C k ul: y =X
dt | =2 — —x+

m- m- m

We see that this is a linear, second order differential éguatith one input and
one output.

We now wish to compute the response of the system to an inpihiecform
u = Asinwt. Although it is possible to solve for the response analilicave
instead make use of a computational approach that does Igairréhe specific
form of this system. Consider the general state space system

dx

i f(x,u).

Given the state at timet, we can approximate the value of the state at a short
time h > 0 later by assuming that the rate of changé ©f u) is constant over the
intervalt tot + h. This gives

X(t+h) =x(t) +hf(x(t),u(t)). (2.15)

Iterating this equation, we can thus solve a&s a function of time. This approxi-
mation is known as Euler integration, and is in fact a diffeesaquation if we leh
represent the time increment and weitk] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methaasEuler
integration, it still illustrates some of the basic tradeof

Returning to our specific example, Figure 2.9 shows the restitemputing
X(t) using equation (2.15), along with the analytical compotatiWe see that as
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Figure 2.9: Simulation of the forced spring-mass system with different simulation time co
stants. The darker dashed line represents that analytical solution olidhéirees represent
the approximate solution via the method of Euler integration, using decgesteip sizes.

h gets smaller, the computed solution converges to the exadian. The form
of the solution is also worth noticing: after an initial tea@nt, the system settles
into a periodic motion. The portion of the response after thesient is called the
steady state responsethe input.

In addition to generating simulations, models can also el us answer other
types of questions. Two that are central to the methods itestin this text are
stability of an equilibrium point and the input/output freency response. We illus-
trate these two computations through the examples belaedarn to the general
computations in later chapters.

Returning to the damped spring-mass system, the equationstin with no

input forcing are given by
dx X2

mX2 le

wherex; is the position of the mass (relative to the rest position)»arits veloc-
ity. We wish to show that if the initial state of the system vgag from the rest
position, the system will return to the rest position evatiju(we will later define
this situation to mean that the rest positiorasymptotically stable While we
could heuristically show this by simulating many, manyialitconditions, we seek
instead to prove that this is true fanyinitial condition.

To do so, we construct a functidh: R" — R that maps the system state to a
positive real number. For mechanical systems, a conveniaice is the energy
of the system,

V(X) = %kx%%—%mx%. (2.17)
If we look at the time derivative of the energy function, we seat

dv ) . c k
e kxaXa 4+ mMxexo = kxqXo + mxz(—ﬁxz — ﬁxl) = 0%,
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which is always either negative or zero. Hentg(t)) is never increasing and,
using a bit of analysis that we will see formally later, thdiindual states must
remain bounded.

If we wish to show that the states eventually return to thginyiwe must
use a more slightly more detailed analysis. Intuitively,sca® reason as follows:
suppose that for some period of timé(x(t)) stops decreasing. Then it must be
true thatv (x(t)) = 0, which in turn implies thak,(t) = O for that same period. In
that casexy(t) = 0 and we can substitute into the second line of equation 2016

obtain:
c k k

0= Xo = sz mX1 = mX1.

Thus we must have thag also equals zero and so the only time thdk(t))
can stop decreasing is if the state is at the origin (and htmseystem is at its
rest position). Since we know th¥t(x(t)) is never increasing (sincé < 0), we
therefore conclude that the origin is stable @oryinitial condition).

This type of analysis, called Lyapunov analysis, is considémn detail in Chap-
ter 4 but shows some of the power of using models for analysigsiem proper-
ties.

Another type of analysis that we can perform with models isdmpute the
output of a system to a sinusoidal input. We again considesphing-mass system,
but this time keeping the input and leaving the system inrigireal form:

m4+ cq+kg=u. (2.18)

We wish to understand what the response of the system is tmaadal input of
the form

u(t) = Asinwt.

We will see how to do this analytically in Chapter 6, but fomnee make use of
simulations to compute the answer.

We first begin with the observation thatjft) is the solution to equation (2.18)
with input u(t), then applying an input®t) will give a solution 2j(t) (this is
easily verified by substitution). Hence it suffices to look atannput with unit
magnitudeA = 1. A second observation, which we will prove in Chapter Shatt
the long term response of the system to a sinusoidal inptggl & sinusoid at the
same frequency and so the output has the form

q(t) = g(w) sin(wt + ¢ (w)),

whereg(w) is called thegain of the system and (w) is called thephase(or phase
offset).

To compute the frequency response numerically, we can gisipiulate the
system at a set of frequencies, ..., wy and plot the gain and phase at each of
these frequencies. An example of this type of computatishasvn in Figure 2.10.
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Figure 2.10: A frequency response (magnitude only) computed by measuring shense
of individual sinusoids. The figure on the left shows the responsesafititem as a function
of time to a number of different unit magnitude inputs (at differentdietgies). The figure
on the right shows this same data in a different way, with the magnitude oktiponse
plotted as a function of the input frequency. The filled circles corregporihe particular
frequencies shown in the time responses.

2.3 MODELING METHODOLOGY

To deal with large complex systems, it is useful to have dkffé representations
of the system that capture the essential features and haleviant details. In all
branches of science and engineering it is common practinosdsome graphical
description of systems. They can range from stylistic peguo drastically simpli-
fied standard symbols. These pictures make it possible to geteall view of the
system and to identify the individual components. Exampfesioh diagrams are
shown in Figure 2.11. Schematic diagrams are useful becagg@itre an overall
picture of a system, showing different subprocesses arnditierconnection, and
indicating variables that can be manipulated and signalsctiin be measured.

Block Diagrams

A special graphical representation calletlack diagramhas been developed in
control engineering. The purpose of a block diagram is to exsigle the informa-
tion flow and to hide details of the system. In a block diagraiffierent process
elements are shown as boxes and each box has inputs dendiseshyith arrows
pointing toward the box and outputs denoted by lines witlowasrgoing out of
the box. The inputs denote the variables that influence a pa@resthe outputs
denote signals that we are interested in or signals that mfkiether subsystems.
Block diagrams can also be organized in hierarchies, winelieidual blocks may
themselves contain more detailed block diagrams.

Figure 2.12 shows some of the notation that we use for bloakaias. Signals
are represented as lines, with arrows to indicate inputsoatglits. The first di-
agram is the representation for a summation of two signafsinfiut/output re-
sponse is represented as a rectangle with the system nam®iloematical de-
scription) in the block. Two special cases are a proportigaa, which scales the
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Figure 2.11: Schematic diagrams in different disciplines. Each diagram is used to itkistra
the dynamics of a feedback system: (a) electrical schematics for armystem, (b) a
biological circuit diagram for a synthetic clock circuit [ASMNO3], (c)ogess diagram for a
distillation column and (d) Petri net description of a communication protdgol
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Figure 2.12: Standard block diagram elements. The arrows indicate the the inputs &nd ou
puts of each element, with the mathematical operation corresponding tiothet labeled

at the output. The system block (e) represents the full input/outputmespd a dynamical
system.
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Figure 2.13: A block diagram representation of the flight control system for an irfggnt
against the wind. The mechanical portion of the model consists of thelraglg dynamics
of the fly, the drag due to flying through the air and the forces genergtételwings. The
motion of the body causes the visual environment of the fly to changethaminformation
is then used to control the motion of the wings (through the sensory mattarsy, closing
the loop.

input by a multiplicative factor, and an integrator, whialtguts the integral of the
input signal.

Figure 2.13 illustrates the use of a block diagram, in thig dasmodeling the
flight response of a fly. The flight dynamics of an insect are inbtgdntricate,
involving a careful coordination of the muscles within the tibymaintain stable
flight in response to external stimuli. One known charadierisf flies is their
ability to fly upwind by making use of the optical flow in their cpound eyes as
a feedback mechanism. Roughly speaking, the fly controlgigstation so that
the point of contraction of the visual field is centered in il field.

To understand this complex behavior, we can decompose tralbdynamics
of the system into a series of interconnected subsysterfislgmks”). Referring to
Figure 2.13, we can model the insect navigation system tirangnterconnection
of five blocks. The sensory motor system (a) takes the infaamditom the visual
system (e) and generates muscle commands that attempetatstefly so that
the point of contraction is centered. These muscle commamdscaverted into
forces through the flapping of the wings (b) and the resulter@a@dynamic forces
that are produced. The forces from the wings are combinedtivildrag on the
fly (d) to produce a net force on the body of the fly. The wind veloeihters
through the drag aerodynamics. Finally, the body dynamicdéscribe how the
fly translates and rotates as a function of the net forces tea@plied to it. The
insect position, speed and orientation is fed back to thg dexodynamics and
vision system blocks as inputs.

Each of the blocks in the diagram can itself be a complicatbdysiem. For
example, the fly visual system of a fruit fly consists of two casgied compound
eyes (with about 700 elements per eye) and the sensory mi@ns has about
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200,000 neurons that are used to process that informationor& detailed block
diagram of the insect flight control system would show thergdgenections be-
tween these elements, but here we have used one block tseapr®w the motion
of the fly affects the output of the visual system and a secoockitb represent
how the visual field is processed by the fly’s brain to generatecte.commands.
The choice of the level of detail of the blocks and what elemémiseparate into
different blocks often depends on experience and the qumessthat one wants to
answer using the model. One of the powerful features of btbagrams is their
ability to hide information about the details of a systent thay not be needed to
gain an understanding of the essential dynamics of thersyste

Modeling from Experiments

Since control systems are provided with sensors and acsliaiteralso possible to
obtain models of system dynamics from experiments on thegso The models
are restricted to input/output models since only theseadégare accessible to ex-
periments, but modeling from experiments can also be coedbivith modeling
from physics through the use of feedback and interconnectio

A simple way to determine a system’s dynamics is to obsemedbponse to a
step change in the control signal. Such an experiment begisstting the control
signal to a constant value, then when steady state is estelllthe control signal
is changed quickly to a new level and the output is observede eéXperiment
will give the step response of the system and the shape oéipense gives useful
information about the dynamics. It immediately gives aridgation of the response
time and it tells if the system is oscillatory or if the resperin monotone. By
repeating the experiment for different steady state vadnesdifferent amplitudes
of the change of the control signal we can also determineasanipere the process
can be approximated by a linear system.

Example 2.5 Identification of a spring-mass system
Consider the spring-mass system from Section 2.1, whoserdgsare given by

md+ cq+ kg = u. (2.19)

We wish to determine the constamis c andk by measuring the response of the
system to a step input of magnituBg

We will show in Chapter 5 that whee? < 4km the step response for this
system from the rest configuration is given by

q(t) = % (1—exp(—%) sin(oqjt+¢)> 2m

¢ =tan?! (\/ Akm— 02> .

From the form of the solution, we see that the form of the respas determined
by the parameters of the system. Hence, by measuring cétures of the step
response we can determine the parameter values.
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Figure 2.14: Step response for a spring-mass system. The magnitude of the stéjsinpu
Fo = 20 N. The period of oscillation] is determined by looking at the time between two
subsequent local maxima in the response. The period combined wittetity state value
g(e) and the relative decrease between local maxima can be used to estingeateters

in a model of the system.

Figure 2.14 shows the response of the system to a step of mdgRit= 20 N,
along with some measurements. We start by noting that tlaelgtstate position
of the mass (after the oscillations die down) is a functiothefspring constank:

q(e) = %, (2.20)

whereFy is the magnitude of the applied fordé (= 1 for a unit step input). The
parameter 1k is called thegain of the system. The period of the oscillation can
be measured between two peaks and must satisfy

2m  /4km—c?

Finally, the rate of decay of the oscillations is given by tlpanential factor in
the solution. Measuring the amount of decay between twogeed have (using
Exercise 2.5)

log(a(t2) — Fo/K) —log(cl(t2) — Fo/K) = 5= (t— ). (2.22)

Using this set of three equations, we can solve for the pamsand determine
that for the step response in Figure 2.14 we have 250 kg,c ~ 60 N s/m and
k~ 40 N/m. O

Modeling from experiments can also be done using many oigeals. Si-
nusoidal signals are commonly used (particularly for systavith fast dynamics)
and precise measurements can be obtained by exploitinglaton techniques.
An indication of nonlinearities can be obtained by repeagrperiments with in-
put signals having different amplitudes.
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Normalization and Scaling

Having obtained a model, it is often useful to scale the e by introducing
dimension free variables. Such a procedure can often sirtpif equations for a
system by reducing the number of parameters and reveaéstieg properties of
the model. Scaling can also improve the numerical conditigmif the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: simply choosisuor each in-
dependent variable and introduce new variables by divittiegrariables with the
chosen normalization unit. We illustrate the procedurd wito examples.

Example 2.6 Spring-mass system
Consider again the spring-mass system introduced eaNieglecting the damp-
ing, the system is described by

mg-+kg=u.

The model has two parametarsandk. To normalize the model we introduce
dimension free variables = q/I and 1 = wot, wherean = /k/m and| is the
chosen length scale. We scale forcerbl and introduces = u(mlag). The
scaled equation then becomes

> dg/l 1
dr2  d(aot)?  wflm

which is the normalized undamped spring-mass system. &tiat the normal-
ized model has no parameters while the original model hadgarametersn
andk. Introducing the scaled, dimension-free state variabjes x = g/ and
2, = dx/dt = g/(lwp) the model can be written as

a(2)= (5o () (0)

This simple linear equation describes the dynamics of anpn@mnass system,
independent of the particular parameters, and hence gs#/essight into the fun-
damental dynamics of this oscillatory system. To recoverphysical frequency
of oscillation or its magnitude, we must invert the scaling lvave applied. [

(_kq+ U) = _X+V7

Example 2.7 Balance system
Consider the balance system described in Section 2.1. Negjetamping by
puttingc = 0 andy = 0 in equation (2.9) the model can be written as

d?q d?e . .dg,2
(M+m)@—mlcosew+mlsme(a) =F
d%q ,. d%6 :
—mlcoseﬁJr(Jerl )W—mglsme_o

Let wp = /mgl/(J+ ml?), choose the length scale Bghe time scale as/lw,
the force scale a@vl +m)l w and introduce the scaled variables- aot, x = g/
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a). The uncertainty lemon in (b) is one way to capture uncertairttyriamical
systems emphasizing that a model is only valid in some amplitude and fregrenges. In

(c) a model is represented by a nominal modi¢) and another modéiM representing the
uncertainty analogous to representation of parameter uncertainty.

andu = F/((M+m)l«g). The equations then become

d?x d2e do\2
—z—acose—+a<—) =u

dr dr2 dr
d’x  d%6 .
—pB coseﬁ + az - sin6 =0,

wherea = m/(M+m) andB = mI?/(J+ml?). Notice that the original model has
five parameterm, M, J, | andg but the normalized model has only two parameters
a andB. If M >> mandml? > J we geta ~ 0 andf3 ~ 1 and the model can be
approximated by

d?x d?6

drz ~ " ar2
The model can be interpreted as a mass combined with an idveetledulum
driven by the same input. O

—Sin@ = ucosoh.

Model Uncertainty

Reducing uncertainty is one of the main reasons for usindjd@ek and it is there-
fore important to characterize uncertainty. When makingsneements there is a
good tradition to assign both a nominal value and a measwecddrtainty. It is
useful to apply same principle to modeling, but unfortulyaités often difficult to
express the uncertainty of a model quantitatively.

For a static system whose input-output relation can be cteniaed by a func-
tion, uncertainty can be expressed by an uncertainty bailisisated in In Fig-
ure 2.15a. At low signal levels there are uncertainties dugensor resolution,
friction and quantization. Some models for queuing systemsetls are based
on averages that exhibit significant variations for smallyjations. At large sig-
nal levels there are saturations or even system failures.sijmal ranges where
a model is reasonably accurate varies dramatically betwpphcations but it is
rare to find models that are accurate for signal ranges langertd.
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Characterization of uncertainty of dynamic model is muchrendifficult. We
can try to capture uncertainties by assigning uncertattieparameters of the
model but this is often not sufficient. There may be errors dyghtmmomena that
have been neglected, for example small time delays. In cbthite ultimate test
is how well a control system based on the model performs amel delays can be
important. There is also a frequency aspect. There are slomopiena, such as
aging, that can cause changes or drift in the systems. Theesdsarhigh frequency
effects: a resistor will no longer be a pure resistance at kiggh frequencies and
a beam has stiffness and will exhibit additional dynamicemvBubject to high
frequency excitation. Thencertainty lemorshown in Figure 2.15b is one way to
conceptualize the uncertainty of a system. It illustrakeg & model is only valid
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing unaietty in Chapter 12
using figures such as the one shown in Figure 2.15c. These todks ns& of
the concept of a transfer function, which describes theuagy response of an
input/output system. For now, we simply note that one shalvi@ys be careful to
recognize the limits of a model and not to make use of moddkdaritheir range
of applicability. For example, one can describe the una#gtdemon and then
check to make sure that signals remain in this region.

2.4 MODELING EXAMPLES

In this section we introduce additional examples thatitiate some of the differ-
ent types of systems for which one can develop differentjah#ion and difference
equation models. These examples are specifically chosen framga of differ-
ent fields to highlight the broad variety of systems to whictdigack and control
concepts can be applied. A more detailed set of applicatlmatsserve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation ardiack to control the
movement of a mechanical system. Motion control systemgedrom nanopo-

sitioning systems (atomic force microscopes, adaptiveEgptto control systems
for the read/write heads in a disk drive of CD player, to maotiring systems
(transfer machines and industrial robots), to automotrgrol systems (anti-lock
brakes, suspension control, traction control), to air guats flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model

A common problem in motion control is to control the trajegt@f a vehicle
through an actuator that causes a change in the orientétisteering wheel on an
automobile or the front wheel of a bicycle are two examplessbmilar dynamics
occur in steering of ships or control of the pitch dynamicswfaircraft. In many
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead viewdlfiale
with four wheels. By approximating the motion of the front and rear pdimsteels by a
single front and rear wheel, we obtain an abstraction called the “bicycteethshown on
the right. The wheel base sand the center of mass at a distarctrward of the rear
wheels. The steering angle & and the velocity at the center of mass has the angle
relative the length axis of the vehicle. The position of the vehicle is givetxly and the
orientation (heading) bg.

cases, we can understand the basic behavior of these sybt®mgh the use of a
simple model that captures the basic geometry of the system.

Consider a vehicle with two wheels as shown in Figure 2.16.tfk@purpose
of steering we are interested in a model that describes hewsdlocity of the
vehicle depends on the steering angjleTo be specific, consider the velocityat
the center of mass, a distarecéom the rear wheel, and letbe the wheel base, as
shown in Figure 2.16. Let andy be the coordinates of the center of ma$she
heading angle and the angle between the velocity vectoand the centerline of
the vehicle. Sincé = ratand anda = ratana it follows that tanx = (a/b) tanf
and we get the following relation betweemand the steering angl®

atand
b )
Assume that the wheels are rolling without slip and that thleaity of the rear

wheel isvg. The vehicle speed at its center of mass is v/ cosa and we find
that the motion of this point is given by

a(d) = arctar( (2.23)

% =vcos(a +0) = vomsc(gs;re)

(@1 6) (2.24)
dy . __sin(a+
dt_vsm(a+9)_voicosa .

To see how the angl@ is influenced by the steering angle we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velogjtyr, around the point
O. Hence 40 ve v
0 0
— = — = —tand. 2.25
dt ra b ( )
Equations (2.23)—(2.25) can be used to model an automokilertine assump-
tions that there is no slip between the wheels and the roadhatdhe two front
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(b)

Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) resdits its

engine thrust downward so that it can “hover” above the ground.eSainfrom the engine
is diverted to the wing tips to be used for maneuvering. As shown in (bnehéhrust on
the aircraft can be decomposed into a horizontal fé#cand a vertical forcé, acting at a
distancer from the center of mass.

wheels can be a approximated by a single wheel at the centbe @far. The as-
sumption of no slip can be relaxed by adding an extra statahlar giving a more
realistic model. Such a model also describes the steeringndigs of ships as
well as the pitch dynamics of aircraft and missiles. It iogiessible to place the
coordinates of the car at the rear wheels (correspondingttioga = 0), a model
which is often referred to as thgubins car[Dub57].

The situation in Figure 2.16 represents the situation whervehécle moves
forward and has front-wheel steering. The case when the leet@gerses is ob-
tained simply by changing the sign of the velocity, whichdsigalent to a vehicle
with rear-wheel steering.

[l

Example 2.9 Vectored thrust aircraft
Consider the motion of vectored thrust aircraft, such asHheier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takbpffedirecting its
thrust downward and through the use of smaller maneuvehingters located on
its wings. A simplified model of the Harrier is shown in Figurd2b, where we
focus on the motion of the vehicle in a vertical plane throtigd wings of the
aircraft. We resolve the forces generated by the main dowdhtauster and the
maneuvering thrusters as a pair of forég®ndF, acting at a distancebelow the
aircraft (determined by the geometry of the thrusters).

Let (x,y, 8) denote the position and orientation of the center of massad.
Let m be the mass of the vehicld,the moment of inertiag the gravitational
constant, and the damping coefficient. Then the equations of motion for the
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive ak rael are
stored in a queue. Messages are processed and removed fromethe ajurateu. The
average size of the queue is givemby R.

vehicle are given by
mMX = F1 cosO — Fsinf — cx
my = F1Sin@ 4+ F,cosé —mg— cy (2.26)
JO =rFy.

It is convenient to redefine the inputs so that the origin is quldérium point

of the system with zero input. Lettingg = F; andu; = F, — mg, the equations

become . : : .
MX = —mgsin® — cx+ u; cosO — U, sinf

my = mg(cosO — 1) — cy+ u; Sin6 + up coso (2.27)
Jé =Truj.
These equations described the motion of the vehicle as a #ateef coupled sec-
ond order differential equations. O

Information Systems

Information systems range from communication systemsthkenternet to soft-
ware systems that manipulate data or manage enterpriseegderces. Feedback
is present in all these systems, and design of strategiesufting, flow control and
buffer management are typical problems. Many results iupgetheory emerged
from design of telecommunication systems and later fronelbg@ment of the In-
ternet and computer communication systems [BG87, Kle753BciManagement
of queues to avoid congestion is a central problem and wethélefore start by
discussing modeling of queuing systems.

Example 2.10 Queuing systems
A schematic picture of a simple queue is shown in Figure 2.18qugsts arrive
and are then queued and processed. There can be large variatiarrival rates
and service rates and the queue length builds up when thealaaie is larger than
the service rate. When the queue becomes too large, sesvimnied using an
admission control policy.

The system can be modeled in many different ways. One way isoidem
each incoming request, which leads to an event-based mdusievihe state is
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an integer that represents the queue length. The queue chamge a request
arrives or a request is serviced. The statistics of arrivdlsamvicing are typically
modeled as random processes. In many cases it is possita¢etonine statistics
of quantities like queue length and service time but the adatjpns can be quite
complicated.

A significant simplification can be obtained by usindl@av model Instead
of keeping track of each request we instead view service aqdests as flows,
similar to what is done when replacing molecules by a contimwhen analyzing
fluids. Assuming that the average queue lengtha continuous variable and that
arrivals and services are flows with ratesand 1, the system can be modeled by
the first order differential equation

KA H= A pnad (9, x>0 (2.28)
where timax is the maximum service rate arfdx) is a number between 0 and 1
that describes the effective service rate as a functioneofitteue length.

It is natural to assume that the effective service rate dipem the queue
length because larger queues require more resources. ddysstate we have
f(X) = A /Umax @nd we assume that the queue length goes to zero W)igRax
goes to zero and that it goes to infinity when umax goes to 1. This implies
that f (0) = 0 and thatf () = 1. In addition if we assume that the effective ser-
vice rate deteriorates monotonically with queue lengtmttiee functionf (x) is
monotone and concave. A simple function that satisfies thie baguirements is
f(x) = x/(1+x), which gives the model

dx A X

a - Umaxx+ 1
This model was proposed by Agnew [Agn76]. It can be shown thatrival
and service processes are Poisson processes the averagdequgh is given by
equation (2.29) and that equation (2.29) is a good apprdiomaven for short
gueue lengths; see Tipper [TS90].

To explore the properties of the model (2.29) we will first istigate the equi-
librium value of the queue length when the arrival rates constant. Setting the
derivativedx/dt to zero in equation (2.29) and solving fowe find that the queue
lengthx approaches the steady state value

A
HUmax— A~
Figure 2.19a shows the steady state queue length as a furdtibfmay, the
effective service rate excess. Notice that the queue langtbases rapidly as
approachegimax. To have a queue length less than 20 requifamax < 0.95.
The average time to service a requestds= (X+ 1)/Umax and it also increases
dramatically as\ approachegimax.

Figure 2.19b illustrates the behavior of the server in a gimeerload situation.
The maximum service rate [$max = 1, and the arrival rate starts &t= 0.5. The

(2.29)

Xe = (2.30)
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Figure 2.19: Queuing dynamics. The figure on the left shows steady state queue &ngth
function of A / umax, and the figure on the right shows the behavior of the queue length when
there is a temporary overload in the system. The full line shows a realizaftian event
based simulation and the dashed line shows the behavior of the flow n2a2i@). (

arrival rate is increased t = 4 at time 20, and it returns td = 0.5 at time 25.
The figure shows that the queue builds up quickly and clearssiewty. Since the
response time is proportional to queue length, it meanshieaquality of service
is poor for a long period after an overload. This behavior Iedaherush-hour
effectand has been observed in web servers and many other questegisysuch
as automobile traffic.

The dashed line in Figure 2.19b shows the behavior of the flow mathéch
describes the average queue length. The simple model cafteihavior qualita-
tively, but there are significant variations from sample tmgke when the queue
length is short.

|

Queuing problems of the type illustrated in Example 2.10 Hmeen observed
in many different situations. The following example illietiEs an early example
of the difficulty and it also describes how it can be avoided bing a simple
feedback scheme.

Example 2.11 Virtual memory paging control

An early example of use of feedback in computer systems wpkedpin oper-
ating system OS/VS for the IBM 370 [BG68, Cro75]. The systendusgual
memory, which allows programs to address more memory thainyisically avail-
able as fast memory. Data in current fast memory (RAM) is s®ee directly but
data that resides in slower memory (disk) is automaticalded into fast mem-
ory. The system is implemented in such a way that it appeatsetprtogrammer
as a single large section of memory. The system performedwelyin many
situations but very long execution times were encountanaavérload situations,
as shown in Figure 2.20a. The difficulty was resolved with a stnddcrete feed-
back system. The load of the central processing unit (CPU) veasuared together
with the number of page swaps between fast memory and slowonyerfihe op-
erating region was classified as being in one of three stat@snai, underload
or overload. The normal state is characterized by high CPWiggtihe under-
load state is characterized by low CPU activity and few pagéaoements, the
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Figure 2.20: lllustration of feedback in the virtual memory system of IBM/370. The left
figure (a) shows the effect of feedback on execution times in a simuj&ibowing [BG68].
Results with no feedback are shown witland with feedback witlx. Notice the dramatic
decrease in execution time for the system with feedback. The right figuiustrates how
the three states were obtained based on process measurements.

overload state has moderate to low CPU load but many pagecespénts, see
Figure 2.20a. The boundaries between the regions and thedimesfasuring the
load were determined from simulations using typical loatise control strategy
was to do nothing in the normal load condition, to exclude@ess from mem-
ory in an overload condition and to allow a new process or gipusly excluded

process in the underload condition. Figure 2.20a shows feetkeness of the
simple feedback system in simulated loads. Similar priesigre used in many
other situations, for example in fast, on-chip cache memory O

Example 2.12 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications whergvare to collect
and aggregate information over a region of space using pieilsiensors that are
connected together via a communications network. Exampt#sde monitoring
environmental conditions in a geographical area (or inaitlailding), monitoring
movement of animals or vehicles, or monitoring the resoloegling across a
group of computers. In many sensor networks the computtresources for the
system are distributed along with the sensors and it can periant for the set
of distributed agents to reach a consensus about a cer@peny, such as the
average temperature in a region or the average computhlimthamongst a set
of computers.

To illustrate how such a consensus might be achieved, wedsaribe problem
of computing the average value of a set of numbers that aadlyavailable to the
individual agents. We wish to design a “protocol” (algonithsuch that all agents
will agree on the average value. We consider the case in vdli@dgents cannot
necessarily communicate with each other directly, altthowe will assume that
the communications network is connected (meaning that ngyteups of agents
are completely isolated from each other). Figure 2.21a slaosimple situation of
this type.

We model the connectivity of the sensor network using a grapth nodes
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Figure 2.21: Consensus protocols for sensor networks. A simple sensor netvtbriive
nodes is shown on the left. In this network, node 1 communicates with noded2 2
communicates with notes 1, 3, 4 and 5, etc. A simulation demonstrating tkiergence of
the consensus protocol (2.31) to the average value of the initial corslisshown on the
right.

corresponding to the sensors and edges corresponding ¢xiitence of a direct
communications link between two nodes. For any such gragh¢cam build an
adjacency matrixwhere each row and column of the matrix corresponds to a
node and a 1 in the respective row and column indicates tleatvtb nodes are
connected. For the network shown in Figure 2.21a, the carrepg adjacency
matrix is

>

Il
oOoor o

=

o
OORrR RO
OO0 ORrQ

We also use the notation¥ to represent the set of neighbors of a nadd-or
example, 12 = {1,3,4,5} and.#53 = {2,4}.

To solve the consensus problem, weXebe the state of thegh sensor, corre-
sponding to that sensor’s estimate of the average valuevinate trying to com-
pute. We initialize the state to the value of the quantity soeed by the individual
sensor. Our consensus protocol can now be realized as aulodate law of the
form

Xik+ 1 =x[kl+y S (XK —xk]). (2.31)
jeM
This protocol attempts to compute the average by updatintptad state of each
agent based on the value of its neighbors. The combined dgsashall agents
can be written in the form

X[k+ 1] = x[k] — y(D — A)x[K] (2.32)

whereA is the adjacency matrix and is a diagonal matrix whose entries cor-
respond to the number of neighbors of the corresponding.n®te constany
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describes the rate at which we update our own estimate ofvétrage based on
the information from our neighbors. The mattix= D — Ais called the_aplacian
of the graph.

The equilibrium points of equation (2.32) are the set of statech thake[k +
1] = xg[K]. It is easy to show thate = (a,q,...,a) is an equilibrium state for
the system, corresponding to each sensor having an ideasitmatea for the
average. Furthermore, we can show ttnas the precisely the average value of the
initial states. To see this, let

WK = ﬁ,_im[k}

whereN is the number of nodes in the sensor netwd0| is the average of the
initial states of the network, which is the quantity we agérng to compute W|K]
is given by the difference equation
12 12
Wlk+1] = N lei k+1] = N Zl(xi[k] +y Y (%K —x[K])).
i= i= e
Sincei € .4} implies thatj € .4{, it follows that each term in the second summation
occurs twice with opposite sign. Thus we can conclude g+ 1] = WI[K]
and henc&V[k] = WI0] for all k, which implies that at the equilibrium poimt
must beWy, the average of the initial state$V is called aninvariant and the
use of invariants is an important technique for verifyingreotness of computer
programs.

Having shown that the desired consensus state is an edquitilroint for our
protocol, we still must show that the algorithm actually wenges to this state.
Since there can be cycles in the graph, it is possible thatt#te of the system
could get into an “infinite loop” and never converge to the debtonsensus state.
A formal analysis requires tools that will be introducecetan the text, but it can
be shown that for any connected graph, we can always finsugh that the states
of the individual agents converge to the average. A simutatiemonstrating this
property is shown in Figure 2.21b.

Although we have focused here on consensus to the average ok set of
measurements, other consensus states can be achieveghtbhmice of appropri-
ate feedback laws. Examples include finding the maximum orrmim value in
a network, counting the number of nodes in a network or comgutigher order
statistical moments of a distributed quantity [OSFMO7]. O

Biological Systems

Biological systems provide perhaps the richest sourceemftiack and control ex-
amples. The basic problem of homeostasis, in which a quasitiz as tempera-
ture or blood sugar level is regulated to a fixed value, is betafrthe many types
of complex feedback interactions that can occur in moleaukachines, cells, or-
ganisms and ecosystems.
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1. Transcription

mernbrane

Protein synthesis

Figure 2.22: Biological circuitry. The cell on the left is a bovine pulmonary cell, stained
so that the the nucleus, actin and chromatin are visible. The figure on titegii@s an
overview of the process by which proteins in the cell are made. RNA isd¢rdoed from
DNA by an RNA polymerase enzyme. The RNA is then translated into a protein
organelle called the ribosome.

Example 2.13 Transcriptional regulation

Transcription is the process by which mRNA is generated fasagment of DNA.
The promoter region of a gene allows transcription to be otlett by the pres-
ence of other proteins, which bind to the promoter region eititer repress or
activate RNA polymerase (RNAP), the enzyme that producesRiNAtranscript

from DNA. The mRNA is then translated into a protein accordimds nucleotide

sequence. This process is illustrated in Figure 2.22.

A simple model of the transcriptional regulation processhimugh the use
of a Hill function [dJO2, Mur04]. Consider the regulation afprotein A with
concentration given bpa and corresponding mRNA concentration. Let B be
a second protein with concentratipg that represses the production of protein A
through transcriptional regulation. The resulting dyna€pa andma can be
written as
dpa

+ ao, dt = Bma—Opa, (2.33)

dma

A o™

a
1+ kgpd
wherea + ag is the unregulated transcription raterepresents the rate of degra-
dation of mMRNA,a andn are parameters that describe how B represseg A,
represents the rate of production of the protein from itsesponding mRNA and
0 represents the rate of degradation of the protein A. The peteximg describes
the “leakiness” of the promoter antis called the Hill coefficient and relates to
the cooperativity of the promoter.

A similar model can be used when a protein activates the ptamuof another
protein, rather than repressing it. In this case, the egustiave the form

dma  akspp
dt — 1+kgph

d
+ ag — yma, % = Bma—Opa, (2.34)
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Figure 2.23: The repressilator genetic regulatory network. A schematic diagram oéthe
pressilator is given on the left, showing the layout of the genes in the plabatitiolds the
circuit as well as the circuit diagram (center). A simulation of a simple rhfodéhe repres-
silator is shown on the right, showing the oscillation of the individual proteirceatrations.
Parameter values taken from [ELOQQ].

where the variables are the same as described previoustg.thét in the case of
the activator, ifpg is zero then the production rate dg (versusa + ag for the
repressor). Agg gets large, the first term in the expressionigy approaches 1
and the transcription rate becomes- ag (versusag for the repressor). Thus we
see that the activator and repressor act in opposite fagtuioneach other.

As an example of how these models can be used, we consideraithel of a
“repressilator”, originally due to Elowitz and Leibler [ELOOThe repressilator is
a synthetic circuit in which three proteins each represstemon a cycle. This is
shown schematically in Figure 2.23a, where the three protia TetRA cl and
Lacl. The basic idea of the repressilator is that if TetR is @néshen it represses
the production ofA cl. If A cl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed thehcl
is no longer repressed and so on. If the dynamics of the tiaceidesigned prop-
erly, the resulting protein concentrations will oscillate

We can model this system using three copies of equation 2.8t A and
B replaced by the appropriate combination of TetR, cl and L&leé state of the
system is then given by= (Mreg, Pretr, Ml, Pel, Meaci, PLaci)- Figure 2.23b shows
the traces of the three protein concentrations for parasete 2, a = 0.5, k =
6.25x 104, ag=5x10"% y=58x10"3 B =0.12 andd = 1.2 x 103 with
initial conditionsx(0) = (1,0,0,200,0,0) (following [EL0O]). O

Example 2.14 Wave propagation in neuronal networks

The dynamics of the membrane potential in a cell are a fundeherechanism

in understanding signaling in cells, particularly in news@nd muscle cells. The
Hodgkin-Huxley equations give a simple model for studyinggagation waves in

networks of neurons. The model for a single neuron has the form

av
Ca = —|Na_ IK — ||eak+ |input7
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whereV is the membrane potential; the capacitancelna and I the current
caused by transport of sodium and potassium across the eefibnane ljqax a
leakage current anighp,t the external stimulation of the cell. Each current obeys
Ohm’s law, i.e.

I :g(V_E)7

whereg is the conductance arifithe equilibrium voltage. The equilibrium voltage
is given by Nernst's law

RT
E= E IOg(Ce/Ci)7

whereR is Boltzmann’s constanil the absolute temperaturg, Faraday’s con-
stant,nis the charge (or valence) of the ion, an@ndc, are the ion concentrations
inside the cell and in the external fluid. At 2 we haveRT/F =20 mV.

The Hodgkin-Huxley model was originally developed as a maarngredict
the quantitative behavior of the squid giant axon [HH52].dgkin and Huxley
shared the 1963 Nobel Prize in Physiology (along with J. C. Egdta analysis
of the electrical and chemical events in nerve cell disobafde voltage clamp de-
scribed in Section 1.3 (see Figure 1.8) was a key element in kiodgd Huxley’s
experiments. O

2.5 FURTHER READING

Modeling is ubiquitous in engineering and science and hasmg@ history in ap-
plied mathematics. For example, the Fourier series wasdoted by Fourier
when he modeled heat conduction in solids [Fou07]. Modeldyofamics have
been developed in many different fields, including mechafieca78, Gol53],

heat conduction [CJ59], fluids [BRS60], vehicles [Abk69, Blag&ll94], circuit

theory [Gui63], acoustics [Ber54] and micromechanicateys [Sen01]. Control
theory requires modeling from many different domains andteontrol theory
texts contain several chapters on modeling using ordindfgrential equations
and difference equations (see, for example, [FPENO05]). A iddmsok on mod-

eling of physical systems, especially mechanical, elegltand thermo-fluid sys-
tems, is Cannon [Can03]. The book by Aris [Ari94] is highlyginal and has
a detailed discussion of the use of dimension free variabie® of the authors’
favorite books on modeling of biological systems are J. Dristy [Mur04] and

Wilson [Wil99]. For readers interested in learning more @hobject oriented
modeling and Modelica, Tiller [Til01] provides an excellemtroduction.
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EXERCISES

2.1 Consider the linear ordinary differential equation (2 Show that by choosing
a state space representation with=y, the dynamics can be written as

0 1 0 0
. . 0
A 0 . . 0 B— |
o .. 0 1 .
—ap —an-1 —a1 1
C= [1 .0 0].

This canonical form is calledhain of integratordorm.

2.2 Use the equations of motion for a balance system to derivenardic model
for the inverted pendulum described in Example 2.2 and véndyfor smallf the
dynamics are approximated by equation (2.10).

2.3 Consider the following discrete time system
X[k+ 1] = AXK] + BulK]
ylk] = CxK]
where
x— [2] A= [agl g;;] B— [2] c=(1 0)
In this problem, we will explore some of the properties o$ttliscrete time system
as a function of the parameters, the initial conditions, tiednputs.

(a) For the case wheam > = 0 andu = 0, give a closed for expression for the
output of the system.

(b) A discrete system is irquilibriumwhenxk+ 1] = x[k] for all k. Letu=
r be a constant input and compute the resulting equilibriuntgor the
system. Show that ifa;i| < 1 for all i, all initial conditions give solutions
that converge to the equilibrium point.

(c) Write a computer program to plot the output of the systamesponse to
a unit step inputulk] = 1, k > 0. Plot the response of your system with

x[0] = 0 andA given by
05 1
A= [ 0 0.25] '

2.4 Keynes’ simple model for an economy is given by
Y[kl =CIK] + 1 [k] + G[K],

whereY, C, | andG are gross national product (GNP), consumption, investment
and government expenditure for yégaiConsumption and investment are modeled
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by difference equations of the form
Clk+1] = aY[K], I[k+ 1] = b(Clk+ 1] —CIK]),

wherea andb are parameters. The first equation implies that consumption in
creases with GNP but that the effect is delayed. The secoratiegumplies that
investment is proportional to the rate of change of consignpt

Show that the equilibrium value of the GNP is given by

Ye

1= a(le"‘ Ge),

where the parameter/{1 — a) is the Keynes multiplier (the gain fromor G to
Y). With a= 0.25 an increase of government expenditure will result in aftdd
increase of GNP. Also show that the model can be written aftlosving discrete
time state model

[?[{Il:ill}]] = [aba—a ;b] [CI:[[IL(]]] + [:b] GlK
Y[K = C[K +I[K + G[K.

2.5(Second order system identification) Verify that equatio8Z2in Example 2.5
is correct and use this formula and the others in the exarmpternpute the pa-
rameters corresponding to the step response in Figure 2.14.

2.6(Least squares system identification) Consider a nonlin&areintial equation
that can be written in the form

dx M
at i;m fi(x),

where fi(x) are known nonlinear functions amg are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estinfatesstatex at time
instantdy, to, ..., tn, with N > M. Show that the parameteas can be determined
by finding the least squares solution to a linear equationefdim

Ha = b,

wherea € RM is the vector of all parameters amtl e RN*M andb € RN are
appropriately defined.

2.7(Normalized oscillator dynamics) Consider a damped spmirggs system with
dynamics

mg+cq+kg=u.
Let ap = \/k/m be the undamped natural frequency ahe- c/(2v/km) be the
relative damping.

(a) Show that by rescaling the equations, we can write th@sydiynamics in
the form
G+ 2 woz+ wiq=w (2.35)
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whereu = F /m. This form of the dynamics is that of a linear oscillator with
natural frequencywy and damping coefficierg.

(b) Show that the system can be further normalized and wiiittéme form
da -~ dz
a2 dt

We thus see that the essential dynamics of the system arengovby a
single damping parametef,

=-—-21—2{2p+V.

2.8 An electric generator connected to a strong power grid camdgeled by a
momentum balance for the rotor of the generator:
2
J?ﬁ? =Pn—Po=Pn— %sintp,

whereld is the effective moment of inertia of the generatbthe angle of rotation,
Pn the mechanical power that drives the generdiois the generator voltag¥,
the grid voltage an& the reactance of the lind> is the active electrical power
and, assuming that the line dynamics are much faster thaotihedynamics, it is
given byP. =V 1 = (EV/X)sin¢, wherel is the current component in phase with
the voltageE and¢ is the phase angle between voltageandV.

Show that the dynamics of the electric generate have the sammatized form
as the inverted pendulum (note that damping has been nedléactthe model
above).

2.9 Show that the dynamics for a balance system using normalizediimates
can be written in state space form as

X3
Xa
dx —OX2 — a'SiNX COSXp + U

dt 1- afcoZxy '
— 0B COSXXZ — SiNXp + B COSXoU
1—apBcogx

wherex = (q/1,6,q/1,06).

2.10 Consider the dynamics of two repressors connected togitleecycle, as

shown below:
A
up — </ /> — U
B

Using the models from Example 2.13, under the assumptiorthlegbarameters
are the same for both genes, and further assuming that theAneBhEentrations
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reach steady state quickly, show that the dynamics for ffstes can be written
as dz H dz H

1
—=———7—V — = —Z—\Vh. 2.36
dr  1+27 b dr  1+7] 2" (2.36)
wherez; andz represent scaled versions of the protein concentratichthatime
scale has been changed. Show hhat2.16 using the parameters in Example 2.13.



Chapter Three

Examples

. Don't apply any model until you understand the simplifying assumgttonwhich it
is based, and you can test their validity. Catch phrase: use only as dire@en't limit
yourself to a single model: More than one model may be useful for ulagheliag different
aspects of the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb in his 1970 paper “Mathematical Models—Uses and Limitatif@a{70].

In this chapter we present a collection of examples spanmiagy different
fields of science and engineering. These examples will be hsedghout the text
and in exercises to illustrate different concepts. Firsetimaders may wish to
focus only on a few examples with which they have the mostr@iperience or
insight to understand the concepts of state, input, outpditignamics in a familiar
setting.

3.1 CRUISE CONTROL

The cruise control system of a car is a common feedback systeoustered in
everyday life. The system attempts to maintain a constantitglin the presence
of disturbances primarily caused by changes in the slopaad@ The controller
compensates for these unknowns by measuring the speed@drthed adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figule 8etv be
the speed of the car angl the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type des@&ibbriefly in Chapter 1,
receives the signalg andv; and generates a control signathat is sent to an
actuator that controls throttle position. The throttle imntwontrols the torque
T delivered by the engine, which is transmitted through geaus the wheels,
generating a forc& that moves the car. There are disturbance fofgedue to
variations in the slope of the road, the rolling resistanue aerodynamic forces.
The cruise controller also has a human-machine interfadeatttavs the driver
to set and modify the desired speed. There are also functiamhslisconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engaresmission,
wheels and car body—and a detailed model can be very cortgalicén spite of
this, the model required to design the cruise controllertguite simple.

To develop a mathematical mode we start with a force balasrabé car body.
Let v be the speed of the canthe total mass (including passengefs}he force
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torquéhat is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environmettt,asiaerodynamic
drag and gravitational forces on hills, the net force causes the car\e.niche velocity

of the carv is measured by a control system that adjusts the throttle through an actuation
mechanism. A human interface allows the system to be turned on an ofhamdference
speedy; to be established.

generated by the contact of the wheels with the road Faride disturbance force
due to gravity and friction. The equation of motion of the casimply

dv

m— =F — Fy. 3.1
at d (3.1)
The forceF is generated by the engine, whose torque is proportiondieo t

rate of fuel injection, which is itself proportional to a dosl signal 0< u < 1 that
controls throttle position. The torque also depends on engjieedo. A simple
representation of the torque at full throttle is given by tibvgue curve

T(@) = Tm (1—/3((*‘:1—1)3, (3.2)

where the maximum torquR, is obtained at engine spee#,. Typical parameters
are T, = 190 Nm, oy, = 420 rad/s (about 4000 RPM) argi= 0.4. Letn be
the gear ratio and the wheel radius. The engine speed is related to the velocity

200

150

Torque [Nm]
Torque [Nm]

100

0 200 400 600 0 20 40 60
Angular velocityw [rad/s] Velocity v [m/s]

Figure 3.2: Torque curves for typical car engine. The graph on the left showsotigeie
generated by the engine as a function of the angular velocity of the engiile,the curve
on the right shows torque as a function of car speed for differemsgea
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Figure 3.3: Car with cruise control encountering a sloping road: a schematic diaigram
shown in (a) and (b) shows the response in speed and throttle whereao§yps encoun-
tered. The hill is modeled as a net change in hill an6lef 4 degrees, with a linear change
in the angle betweein= 5 andt = 6. The Pl controller has proportional gairkis= 0.5 and
the integral gain i% = 0.1.

through the expression 0
w = FV =. (JnV,

and the driving force can be written as
n
F— T“T(a)) — apUT (V).

Typical values ofx, for gears 1 through 5 ame, = 40,0, = 25,03 = 16,04 =12
andas = 10. The inverse ofr, has a physical interpretation as thigective wheel
radius Figure 3.2 shows the torque as a function of engine speed eindle
speed. The figure shows that the effect of the gear is to “flattemtdrque curve
so that a almost full torque can be obtained almost over triendpeed range.

The disturbance forcgy has three major componentsg, the forces due to
gravity; F, the forces due to rolling friction; arig,, the aerodynamic drag, Letting
the slope of the road b&, gravity gives the forcéy = mgsing, as illustrated in
Figure 3.3a, wherg = 9.8 m/€ is the gravitational constant. A simple model of
rolling friction is

Fr = —mgGsgn(v),
whereC; is the coefficient of rolling friction and sg@w) is the sign ofv (4+1) or

zero ifv=0. A typical value for the coefficient of rolling friction i€, = 0.01.
Finally, the aerodynamic drag is proportional to the squétbespeed:

Fa= SPCIAV,
wherep is the density of airCy is the shape-dependent aerodynamic drag coef-

ficient andA is the frontal area of the car. Typical parameters@re 1.3 kg/n?,
Cy=0.32 andA= 2.4 n?.
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Summarizing, we find that the car can be modeled by

m(;;/ = anuT(anv) — MgGsgnv) — 3pCyAV —mgsin®, (3.3)
where the functior is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velowgityvhich is also the output. The
input is the signal that controls the throttle position, and the disturbanddés
force Ry, which depends on the slope of the road. The system is nonleeause
of the torque curve and the nonlinear character of the aeadic drag. There
can also be variations in the parameters, e.g. the mass chthdepends on the
number of passengers and the load being carried in the car.

We add to this model a feedback controller that attemptsgolage the speed
of the car in the presence of disturbances. We shall use adfiqgional-integral)
controller, which has the form

u(t) = kpe(t) + k /0t e(1)dr.

This controller can itself be realized as an input/outputasiygital system by defin-
ing a controller state and implementing the differential equation

dz

dt
wherey; is the desired (reference) speed. As discussed briefly imtradiuction,
the integrator (represented by the s@gtensures that in steady state the error will
be driven to zero, even when there are disturbances or nmgdatiors. (The design
of PI controllers is the subject of Chapter 10.) Figure 3.3mshine response of
the closed loop system, consisting of equations (3.3) adq,(@hen it encounters
a hill. The figure shows that even if the hill is so steep that tettle changes
from 0.17 to almost full throttle, the largest speed errdess than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (3t3)ay seem
surprising that such a seemingly complicated system car&eritied by the sim-
ple model (3.3). Itis important to make sure that we restrictuse of the model to
the uncertainty lemon conceptualized in Figure 2.15b. Theahigchot valid for
very rapid changes of the throttle because since we haveddrnbe details of the
engine dynamics, neither is it valid for very slow changesaose the properties
of the engine will change over the years. Nevertheless thaetris very useful
for the design of a cruise control system. As we shall seetar lehapters, the
reason for this is the inherent robustness of feedbackrmegsteven if the model
is not perfectly accurate, we can use it to design a contratid make use of the
feedback in the controller to manage the uncertainty in yiséesn.

The cruise control system also has a human-machine intetiatallows the
driver to communicate with the system. There are many diften@ys to imple-
ment this system; one version is illustrated in Figure 3.4. 3ysem has four
buttons: on-off, set/decelerate, resume/accelerateamzet The operation of the

Vi —V u=kp(vr —Vv)+kiz (3.4)
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Figure 3.4: Finite state machine for cruise control system. The figure on the leftshow
some typical buttons used to control the system. The controller can be iof dour modes,
corresponding to the nodes in the diagram on the right. Transition betweendties is
controlled by pressing one of five buttons on the cruise control interfateoff, set/accel,
resume or cancel.

system is governed by a finite state machine that controls tduemof the Pl con-
troller and the reference generator. Implementation ofrotlars and reference
generators will be discussed more fully in Chapter 10.

The use of control in automotive systems goes well beyondithgls cruise con-
trol system described here. Modern applications includis&ons control, trac-
tion control and power control (especially in hybrid vek&). Many automotive
applications are discussed in detail in and the book by Kieand Nielsen [KNOO]
and the survey papers by Powetsl.[BP96, PNOQ].

3.2 BICYCLE DYNAMICS

The bicycle is an interesting dynamical system with the featiiat one of its key
properties is due to a feedback mechanism that is createtiebgdsign of the
front fork. A detailed model of a bicycle is complex because gystem has many
degrees of freedom and the geometry is complicated. Howavgreat deal of
insight can be obtained from simple models.

To derive the equations of motion we assume that the bicytie on the hor-
izontal xy plane. Introduce a coordinate system that is fixed to the l@oyith
the &-axis through the contact points of the wheels with the gdpuhe n-axis
horizontal and th& -axis vertical, as shown in Figure 3.5. hetbe the velocity of
the bicycle at the rear whedd,the wheel basegp the tilt angle and the steering
angle. The coordinate system rotates around the (idinith the angular veloc-
ity w = Vvpd /b, and an observer fixed to the bicycle experiences forces dineto
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted gleium, as shown
in the rear view in Figure 3.5b. To model the tilt, considertigél body obtained
when the wheels, the rider and the front fork assembly are fizetie bicycle
frame. Letm be the total mass of the systeththe moment of inertia of this
body with respect to thé-axis, andD the product of inertia with respect to the
é{ axes. Furthermore, let the and { coordinates of the center of mass with
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Figure 3.5: Schematic views of a bicycle. The steering anglé,i¢he roll angle isp. The
center of mass has heighand distanca from a vertical through the contact poit of the
rear wheel. The wheel basetignd the trail i.

respect to the rear wheel contact poiRt, be a and h, respectively. We have

J ~ mi? andD = mah The torques acting on the system are due to gravity and
centripetal action. Assuming that the steering ariglis small, the equation of
motion becomes

d?¢ Dvods

J————= mghsin¢+m—\%h

b

The termmghsing is the torque generated by gravity. The terms contaidiagd
its derivative are the torques generated by steering, \wetterm(Dvg/b)dd/dt
due to inertial forces and the terfmih/b) & due to centripetal forces.

The steering angle is influenced by the torque the rider apmi¢ise handle
bar. Because of the tilt of the steering axis and the shapkeofront fork, the
contact point of the front wheel with the ro&d is behind the axis of rotation of
the front wheel assembly, as shown in Figure 3.5c. The distartween the
contact point of the front whed®, and the projection of the axis of rotation of
the front fork assembl¥s is called thetrail. The steering properties of a bicycle
depend critically on the trail. A large trail increases dtghbut makes the steering
less agile.

A consequence of the design of the front fork is that the stgeangled is
influenced both by steering torqideand by the tilt of the frame. This means
that the bicycle with a front fork is &eedback systeias illustrated by the block
diagram in Figure 3.6. The steering andlenfluences the tilt angle and the
tilt angle influences the steering angle giving rise to theular causality that is
characteristic for reasoning about feedback. For a fraktviath positive trail, the
bicycle will steer into the lean creating a centrifugal ®tbat attempts to diminish
the lean. Under certain conditions, the feedback can dgtstabilize the bicycle.
A crude empirical model is obtained by assuming that theksdéeandB are static
gainsk; andk; respectively:

3, (3.5)

5 =kiT — k. (3.6)
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Figure 3.6: Block diagram of the bicycle with a front fork. The steering torque appited
the handlebars i, the roll angle isp, and the steering angl® Notice that the front fork
creates a feedback from the roll angi¢o the steering anglé that under certain conditions
can stabilize the system.

This model neglects the dynamics of the front fork, the toaet interaction and
the fact that the parameters depend on the velocity. A moearate model is
obtained by the rigid body dynamics of the front fork and trenfe. Assuming
small angles this model becomes

M [‘g] +Cyw [‘g] + (Ko +Ka\B) [‘g] _ [?] , 3.7)

where the elements of thex22 matricesM, C, Ky andK, depend on the geome-
try and the mass distribution of the bicycle. Note that ttas b form somewhat
similar to the spring-mass system introduced in Chapterd2iag balance system
in Example 2.1. Even this more complex model is inaccurateusecthe inter-
action between tire and road is neglected; taking this ictmant requires two
additional state variables. Again, the uncertainty lemmoRigure 2.15b provides a
framework for understanding the validity of the model uniterse assumptions

Interesting presentations on the development of the kécgod given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (3was presented
in a paper by Whipple in 1899 [Whi99]. More details on bicyaiedeling is given
in the paperAKLOS], which has many references.

3.3 OPERATIONAL AMPLIFIER CIRCUITS

The operational amplifier (op amp) is a modern implementatioBlack’s feed-
back amplifier. It is a universal component that is widely ufedhstrumentation,
control and communication. It is also a key element in anatmgputing.
Schematic diagrams of the operational amplifier are shown iar€ig.7. The
amplifier has one inverting input(), one non-inverting input(; ), and one output
(Voup)- There are also connections for the supply voltagesande,, and a zero
adjustment (offset null). A simple model is obtained by asisig that the input
currents _ andi are zero and that the output is given by the static relation

Vout = Sagvminvvmax) (k(V+ - V_)) ’ (38)
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Figure 3.7: An operational amplifier and two schematic diagrams. The figure on the lef
shows the amplifier pin connections on an integrated circuit chip, the midgieefshows a
schematic with all connections, and the diagram on the right shows onlygthed sonnec-
tions.

where sat denotes the saturation function

a ifx<a
Satap(X) = ¢ x ifa<x<b (3.9)
b ifx>h.

We assume that the galiris large, in the range of $81, and the voltagesnn
andvmax satisfy
€_ < Vmin < Vmax < €4

and hence are in the range of the supply voltages. More aeconadels are ob-
tained by replacing the saturation function with a smoothcfion as shown in
Figure 3.8. For small input signals the amplifier character{8.8) is linear:

Vout = k(v —v_) =: —kv. (3.10)
Since the open loop gakis very large, the range of input signals where the system
is linear is very small.
A simple amplifier is obtained by arranging feedback arourmrdithsic opera-

tional amplifier as shown in Figure 3.9a. To model the feedbacglifier in the
linear range, we assume that the currignt i _ +i, is zero, and that the gain of

Vout
Vmax

Vi —V_

Vmin

Figure 3.8: Input/output characteristics of an operational amplifier. The differkintat is
given byv; —v_. The output voltage is a linear function of the input in a small range around
0, with saturation atnin andvmax. In the linear regime the op amp has high gain.
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Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feledbaend
an operational amplifier and has a corresponding block diagram Ifle)réBistor&; andR,
determine the gain of the ampilifier.

the amplifier is so large that the voltage- v_ — v, is also zero. It follows from
Ohm’s law that the currents through resistBisandR; are given by

i_ %2
RR R
and hence the closed loop gain of the amplifier is
V2 Ry
" ke where kg R (3.11)

A more accurate model is obtained by continuing to negleetdinrentip but
assuming that the voltagas small but not negligible. The current balance is then

Vi—V V-V

R R
Assuming that the amplifier operates in the linear range aimdj egjuation (3.10)
the gain of the closed loop system becomes

V2_ R2 1

vi R, 1 R,
1+ (142
+k<+R1)

If the open loop gairk of the operational amplifier is large, the closed loop gain
ke is the same as in the simple model given by equation (3.11}ic&lthat the
closed loop gain only depends on the passive componentshahdadriations in
k only have a marginal effect on the closed loop gain. For eXarfk = 10°
andRy/R; = 100, a variation ok by 100% only gives a variation of 0.01% in
the closed loop gain. The drastic reduction in sensitivitg isice illustration of
how feedback can be used to make precise systems from unocestaponents.
In this particular case, feedback is used to trade high gain@v robustness for
low gain and high robustness. Equation (3.13) was the forthalainspired Black
when he invented the feedback amplifier [Bla34] (see the gaibtke beginning
of Chapter 12).

It is instructive to develop a block diagram for the feedbaakplifier in Fig-
ure 3.9a. To do this we will represent the pure amplifier wittuirv and outputv,
as one block. To complete the block diagram we must descabevtdepends on

(3.12)

ke = — (3.13)
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Figure 3.10: Circuit diagram of a Pl controller obtained by feedback around aratipaal
amplifier. The capacitd€ is used to store charge and represents the integral of the input.

vy andv,. Solving equation (3.12) for gives

vy, R, R <v+&)
7R1+R21 R1+R227R1+R2 ! R/’

and we obtain the block diagram shown in Figure 3.9b. The dmagtaarly shows
that the system has feedback and that the gain frotovis Ry /(Ry + Ry), which
can also be read from the circuit diagram in Figure 3.9a. Ifltop is stable
and the gain of the amplifier is large it follows that the ereas small and then
we find thatv, = —(Ry/Ry)va. Notice that the resistd®; appears in two blocks
in the block diagram. This situation is typical in electricaicuits and it is one
reason why block diagrams are not always well suited for stypes of physical
modeling.

The simple model of the amplifier given by equation (3.10) gigealitative
insight but it neglects the fact that the amplifier is a dynahs&ystem. A more
realistic model is

d;";“t = —aVou— bv. (3.14)

The parametdp that has dimensions of frequency and is called the gainyiaitiol
product of the amplifier. Whether a more complicated modebkedudepends on
the questions to be answered and the required size of thetaimtg lemon. The
model (3.14) is still not valid for very high or very low frequocies, since drift
causes deviations at low frequencies and there are adalidgnamics that appear
at frequencies close tm The model is also not valid for large signals—an upper
limitis given by the voltage of the power supply, typicalfythe range of 5-10 V—
neither is it valid for very low signals because of electriwaise. These effects can
be added, if needed, but increase the complexity of the aisaly

The operational amplifier is very versatile and many diffegrstems can be
built by combining it with resistors and capacitors. In faaty linear system can
be implemented by combining operational amplifiers withstess and capacitors.
Exercise 3.5 shows how a second order oscillator is impleedesmd Figure 3.10
shows the circuit diagram for an analog PI (proportionakgmnal) controller. To
develop a simple model for the circuit we assume that theeatiiy is zero and that
the open loop gaik is so large that the input voltagas negligible. The current
through the capacitor is= Cd\/dt, wherev; is the voltage across the capacitor.
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Since the same current goes through the resitave get

o v
SR T dt?
which implies that

Ve(t) = (l:/i(t)dt: Ric/otvl(r)dr.

The output voltage is thus given by

. R 1 1t
Vo(t) = —Roi — Ve = _ﬁivl(t) ——— [ vi(1)dr,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered bypRtkl[Lun05,
Phi48] and their usage is described in many textbooks (e@78]). Good infor-
mation is also available from suppliers [Jun02, Man02].

3.4 COMPUTING SYSTEMS AND NETWORKS

The application of feedback to computing systems followsstiiae principles as
control of physical systems, but the types of measuremewtsantrol inputs that
can be used are somewhat different. Measurements (seaseitypically related
to resource utilization in the computing system or netwarld can include quan-
tifies such as the processor load, memory usage or networknidthd Control
variables (actuators) typically involve setting limits the resources available to a
process. This might be done by controlling the amount of mgntbsk space or
time that a process can consume, turning on or off processatgying availability
of aresource, or rejecting incoming requests to a serveeso Process modeling
for networked computing systems is also challenging, angigeal models based
on measurements are often used when a first principles moulet &vailable.

Web Server Control

Web servers respond to requests from the Internet and gravidrmation in the
form of web pages. Modern web servers will start multiplegesses to respond to
requests, with each process assigned to a single sourtaafilither requests are
received from that source for a predefined period of time. Rsmethat are idle
become part of a pool that can be used to respond to new reqiliegtrovide fast
response to web requests, it is important that the web spreeesses do not over-
load the server’s computational capabilities nor exhasstemory. Since other
processes may be running on the server, the amount of aegiledcessing power
and memory is uncertain and feedback can be used to provatkmgEformance
in the presence of this uncertainty.
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Figure 3.11: Feedback control of a web server. Connection requests arriven ampat
queue, where they are sent to a server process. A finite state maekipe tkack of the
state of the individual server processes and responds to requestmtrdl algorithm can
modify the server’s operation by controlling parameters that affeceitabior, such as the
maximum number of requests that can be serviced at a single kimeJ( i ent s) or the
amount of time that a connection can remain idle before it is dropgedAl i ve).

Figure 3.11 illustrates the use of feedback to modulate tlezation of the
Apache web server. The web server operates by placing ingpognnection
requests on a queue and then starting a subprocess to hegdésts for each ac-
cepted connection. This subprocess responds to requestafgiven connection
as they come in, alternating betweeBasy state and aMi t state. (Keeping
the subprocess active between requests is known as “pers#stof the connec-
tion and provides substantial reduction in latency to retgi®r multiple pieces of
information from a single site.) If no requests are receifg@da sufficiently long
period of time, controlled by thEeepAl i ve parameter, then the connection is
dropped and the subprocess enterkdine state, where it can be assigned another
connection. A maximum daxCl i ent s simultaneous requests will be served,
with the remainder remaining on the incoming request queue.

The parameters that control represent a tradeoff betwedarpemce (how
quickly requests receive a response) and resource usagan(tbunt of processing
power and memory utilized on the server). IncreasingvtheCl i ent s param-
eter allows connection requests to be pulled off of the quaaee quickly, but
increases the amount of processing power and memory usatgs tequired. In-
creasing th&keepAl i ve timeout means that individual connections can remain
idle for a longer period of time, which decreases the prangdsad on the ma-
chine but increases the size of the queue (and hence the aofdime required
for a user to initiate a connection). Successful operaticalafisy server requires
proper choice of these parameters, often based on trialramid e

To model the dynamics of this system in more detail, we craatiscrete time
model with states given by the average processor lggdand the percentage
memory usag&mem 1he inputs to the system are taken as the maximum number
of clientsumc and the keep-alive timey,. If we assume a linear model around the
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equilibrium point, the dynamics can be written as
Xepulk+1] ] _ (A Az [ XepulK . Bi1 Bi2| [ UkalK] (3.15)
Xmem{K+ 1] Az1 Axz2) (XmemlK| B2r Boz) |Umclk]) "
where the coefficients of tieandB matrices must be determined based on empiri-
cal measurements or detailed modeling of the web servaxtegsing and memory

usage. Using system identification, Diao et al. [DGH+02, HDRTd@&ntified the
linearized dynamics as

_( 054 011 (-85 44 4
A= [—0.026 063]’ B= [—2.5 2.8] 107

where the system was linearized about the equilibrium point
Xepu = 0.58, Uka = 11 sec Xiem = 0.55, U = 600

This model shows the basic characteristics that were destabove. Look-
ing first at theB matrix, we see that increasing thkeepAl i ve timeout (first
column of theB matrix) decreases both the processor usage and the memory us
age, since there is more persistence in connections ane lleacserver spends
a longer time waiting for a connection to close rather th&mgaon a new ac-
tive connection. Thékaxd i ent s connection increases both the processing and
memory requirements. Note that the largest effect on thegssor load is the
KeepAl i ve timeout. TheA matrix tells us about how the processor and memory
usage evolve in a region of the state space near the equilipoint. The diagonal
terms describe how the individual resources return to #xjim after a transient
increase or decrease. The off-diagonal terms show that iheogipling between
the two resources, so that a change in one could cause ahatgein the other.

Although this model is very simple, we will see in later exdespthat it can
be used to modify the parameters controlling the serverahtime and provide
robustness with respect to uncertainties in the load on gehine. Similar types
of mechanisms have been used for other types of serversmip@tant to remem-
ber the assumptions on the model and their role in detergnimimen the model is
valid. In particular, since we have chosen to use averagetijea over a given
sample time, the model will not provide an accurate repiasiem for high fre-
guency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decenté@iefficient and ex-
pandable communication system. The system consists of ahangber of inter-
connected gateways. A message is split into several pattiadtsre transmitted
over different paths in the network and the packages arénegjao recover the
message at the receiver. An acknowledgment (“ack”) messaggnt back to the
sender when a packet is received. The operation of the systgovérned a simple
but powerful decentralized control structure that evoleedr time.
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Figure 3.12: Internet congestion control. Source computers send information terspu
which forward the information to other routers that eventually connecitogbeiving com-
puter. When a packet is received, an acknowledgment packet isasathrough the routers
(not shown). The routers buffer information received from thersesiand send the data
across the outgoing link. The plot on the right shows the equilibrium befferh, for a set
of N identical computers sending packets through a single router with droalpitdy p.

The system has two control mechanisms, cafemtocols the Transmission
Control Protocol (TCP) for end-to-end network communicatiod ¢he Internet
Protocol (IP) for routing packets and for host-to-gateway ategay-to-gateway
communication. The current protocols evolved after sometapalar congestion
collapses occurred in the mid 1980s, when throughput ureéegly could drop by
a factor of 1000 [Jac95]. The control mechanism in TCP is basetbaserving
the number of packets in the loop from sender to receiver actl to the sender.
The sending rate is increased exponentially when there i®ngestion and it is
dropped to a low level when there is congestion.

To derive a model for congestion control, we model three isgpaelements
of the system: the rate at which packets are sent by indiV/stuarces (comput-
ers), the dynamics of the queues in the links (routers), hadtimission control
mechanism for the queues. Figure 3.12a shows a block diagnatmef system.

The current source control mechanism on the Internet is @gobknown as
TCP/Reno [LPDO02]. This protocol operates by sending packets ¢éceive and
waiting to receive an acknowledgment from the receiver thatpacket has ar-
rived. Is no acknowledgment is sent within a certain timemariod, the packet is
retransmitted. To avoid waiting for the acknowledgmenobefsending the next
packet, Reno transmits multiple packets up to a fixed “windavwsund the lat-
est packet that has been acknowledged. If the window leisgthasen properly,
packets at the beginning of the window will be acknowledgtmieethe source
transmits packets at the end of the window, allowing the aaeizo continuously
stream packets at a high rate.

To determine the size of the window to use, TCP/Reno uses adekafecha-
nism in which (roughly speaking) the window size is increblsg one every time
a packet is acknowledged and the window size is cut in halimgaekets are lost.
This mechanism allows a dynamic adjustment of the window isizehich each
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computer acts in a greedy fashion as long as packets are delingred but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed byrithérsg the
dynamics of the window size. Suppose we haélveomputers and lety; be the
current window size (measured in number of packets) foittheomputer. Let;
represent the end-to-end probability that a packet is drdmomeplace between
the source and the receiver. We can model the dynamics ofittuow size by the
differential equation

dw o rit-T) o ooow W
H_(:I_—q|) W +q,(—§r.(t—r.)), r'_?i’

wherer; is the end-to-end transmission time for a packet to reackdsrhtion and
the acknowledgment to be sent back an the resulting rate at which packets
are cleared from the list of packets that have been receiVkd.first term in the
dynamics represents the increase in the window size wheckesais received
and the second term represents the decrease in window sezeaybacket is lost.
Notice thatr; is evaluated at time— 1;, representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the rogtexue and the
admission control mechanism for the queue. Assume that welhBinks in the
network and usé to index the individual links. We model the queue in terms of
the current number of packets in the router’s buffgrand assume that the router
can contain a maximum diff max packets and transmits packets at a tequal
to the capacity of the link. The buffer dynamics can then bétamias

dd?:a—q, S = z ri(t—r”f), (3.17)
{ir TeLi}

(3.16)

wherelL; is the set of links that are being used by soUrce‘; is the time that it
takes a packet from sourceo reach linkl ands is the total rate at which packets
arrive on linkl.

The admission control mechanism determines whether a giaekep is ac-
cepted by a router. Since our model is based on the averagéitisam the
network and not the individual packets, one simple modebiagsume that the
probability that a packet is dropped depends on how how ligllduffer is: p, =
m (b;,bmax). For simplicity, we will assume for now thas = p/b (see Exer-
cise 3.6 for a more detailed model). The probability that &pais dropped at a
given link can be used to determine the end-to-end prolatilat a packet is lost

in transmission: )
G=1-[]A-p) =5 pt—1), (3.18)
leL; leL;

whererfiJ is the backward delay from linkto sourcel and the approximation is
valid as long as the individual drop probabilities are smdle use the backward
delay since this represents the time required for the aclatmment packet to be
received by the source.
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Together, equations (3.16), (3.17) and (3.18) represeradehof the conges-
tion control dynamics. We can obtain substantial insighttesidering a special
case in which we havl identical sources and 1 link. In addition, we assume for
the moment that the forward and backward time delays canrimgeg, in which
case the dynamics can be reduced to the form

dwi 1 pb2+w?) dbo Nw b
G 1 2 0 a ur & Ttg G
wherew; € R, i =1,....N are the window sizes for the sources of ddi& R

is the current buffer size of the routew, controls the rate at which packets are
dropped ana is the capacity of the link connecting the router to the cotarsu
The variabler represents the amount of time required for a packet to beepsed
by a router, based on the size of the buffer and the capadiedink. Substituting

T into the equations, we write the state space dynamics as

dw ¢ w2 db Y ew
E —b—pC<1+ 2), a—i;T—C, (3.20)

More sophisticated models can be found in [HMTGOO, LPDO02]. _
The nominal operating point for the system can be found bingett = b = 0:

c w2 CJew b
O_b—pc<1+2>, O_i;T_C’ =

Exploiting the fact that each of the source dynamics are idahtt follows that all
of thew; should be the same and it can be shown that there is a uniqilidegon
satisfying the equations:

1 3

Wie=~ N’ W(Pbe) + (pbe) =1=0. (3.21)
The solution for the second equation is a bit messy, but caly éssdetermined
numerically. A plot of its solution as a function of 2p°N?) is shown in Fig-
ure 3.12b. We also note that at equilibrium we have the falgwadditional

equalities:
be NWe We
c c Ge=NPe=NPLe  Te= -

Te

Figure 3.13 shows a simulation of 60 sources communicatingsa@ single
link, with 20 sources dropping out &t= 20 s and the remaining sources increasing
their rates (window sizes) to compensate. Note that theebsfze and window
sizes automatically adjust to match the capacity of the link

A comprehensive treatment of computer networks is givemmmeénbaum [Tan96].
A good presentation of the ideas behind the control priesifibr the Internet are
given by one of its designers, Van Jacobson, in [Jac95] yKKRkI85] presents an
early effort of analysis of the system. The book by Hellerstdial. [HDPTO04]
gives many examples of use of feedback in computer systems.
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Figure 3.13: Internet congestion control fa¥ identical sources across a single link. As
shown on the right, multiple sources attempt to communicate through a santess a single
link. An “ack” packet sent by the receiver acknowledges that thesages was received,;
otherwise the message packet is resent and the sending rate is slowedtdbe source.
The simulation on the left is for 60 sources starting random rates, withi@@eodropping
out att = 20 s. The buffer size is shown on the top and the individual source fiatésof
the sources are shown on the bottom.

3.5 ATOMIC FORCE MICROSCOPY

The 1986 Nobel Prize in Physics was shared by Gerd Binnig andidleiRohrer
for their design of the scanning tunneling microscope. Tleea idf the instrument
is to bring an atomically sharp tip so close to a conductingase that tunneling
occurs. Animage is obtained by traversing the tip acrossdh&ple and measuring
the tunneling current as a function of tip position. This imien has stimulated
the development of a family of instruments that permit vigadion of surface
structure at the nanometer scale, including the atomicefancroscope (AFM),
where a sample is probed by a tip on a cantilever. An AFM canatgén two
mode. In tapping mode the cantilever is vibrated and the itundjel of vibration
is controlled by feedback. In contact mode the cantileven isontact with the
sample and its bending is control by feedback. In both casesal is actuated
by a piezo element that controls the vertical position ofdastilever base. The
control system has a direct influence on picture quality aadmsiog rate.

A schematic picture of an atomic force microscope is showkigare 3.14a. A
micro-cantilever with a tip having a radius of the order ofrtf is placed close to
the sample. The tip can be moved vertically and horizontalggia piezoelectric
scanner. It is clamped to the sample surface by attractivelga\Waals forces and
repulsive Pauli forces. The cantilever tilt depends on tpedoaphy of the surface
and the position of the cantilever base which is controllgdhe piezo element.
The tiltis measured by sensing the deflection of the laser bearg a photo diode.
The signal from the photo diode is amplified and sent to a cdatrtiiat drives the
amplifier for the vertical deflection of the cantilever. By aamtfling the piezo
element so that the deflection of the cantilever is consthatsignal driving the
vertical deflection of the piezo element is a measure of thmiatiorces between
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Figure 3.14: Atomic force microscope. A schematic diagram of an atomic force niomes
is shown on the left, consisting of a piezo drive that scans the sample tined&FM tip. A
laser reflects off of the cantilever and is used to measure the detectioe ty tthrough a
feedback controller. An AFM image of DNA is shown on the right.

the cantilever tip and the atoms of the sample. An image o$tiniace is obtained
by scanning the cantilever along the sample. The resolutiakemit possible to
see the structure of the sample on the atomic scale, agalladtin Figure 3.14b,
which shows an AFM image of a DNA molecule.

The horizontal maotion is typically modeled as a spring-massesn with low
damping. The vertical motion is more complicated. To modelsystem, we start
with the block diagram shown in Figure 3.15. Signals that aséyeaccessible are
the input voltages to the power amplifier that drives the piezo element, the gelta
v applied to the piezo element and the output voltagéthe signal amplifier for
the photo diode. The controller is a Pl controller implemertigda computer,
which is connected to the system by A/D and D/A converters. ddfection of
the cantileverg, is also shown in the figure. The desired reference value for the
deflection is an input to the computer.

There are several different configurations that have diftedgnamics. Here
we will discuss a high performance system frorﬁ\[&O?] where the cantilever
base is positioned vertically using a piezo stack. We bdginnhodeling by a
simple experiment on the system. Figure 3.16a shows a stepnes of a scanner
from the input voltage to the power amplifier to the output voltagef the signal
amplifier for the photo diode. This experiment captures theadyins of the chain
of blocks fromu toy in the block diagram in Figure 3.15. Figure 3.16a shows that
the system responds quickly but that there is a poorly dansgedlatory mode
with a period of about 35 ps. A primary task of the modelingisihderstand the
origin of the oscillatory behavior. To do so we will exploigetsystem in more
detail.

The natural frequency of the clamped cantilever is typicalyeral hundred
kHz, which is much higher than the observed oscillation awl80 kHz. As a
first approximation we will therefore model the cantileverastatic system. Since
the deflections are small we can assume that the berfdiofjthe cantilever is
proportional to the difference in heights between the tewdr tip at the probe
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Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope (AFM) in scanning mode. The control systeamats to keep the
cantilever deflection equal to it reference value. Cantilever deflectioeésured, amplified
and converted to a digital signal, then compared with its reference valoerrécting signal

is generated by the computer, converted to analog form, amplified andcséhe piezo
element.

and the piezo scanner. A more accurate model can be obtaynewdeling the
cantilever as a spring-mass system of the type discusselapter 2.

Figure 3.16a also shows that the response of the power amjdifiast. As
first approximation we will model it as a static system. The plaibde and the
signal amplifier also have fast responses and can thus be aedomiestatic systems.
The remaining block is a piezo system with suspension. A saliermechanical
representation of the vertical motion of the scanner is shiomFigure 3.16b. We
will model the system as two masses separated by an idea plement. The
massm is half of the piezo system plus the massis the other half of the piezo
system and the mass of the support.

A simple model is obtained by assuming that the piezo crgsmaérates a force
F between the masses and that there is a dangamghe spring. Let the positions
of the center of the masses heandz,. A momentum balance gives the following
model for the system:

d?z dz

d221
m—s5 =F =—C— —kzn—F
gz~ e Zdt 7
Let the elongation of the piezo elemdnt z3 — 7, be the control variable and
the heightz; of the cantilever base be the output. Eliminating the vagi&bin
equations (3.22) and substitutiag— | for z; gives the model

2 2
‘fjtz,j +c2‘jjztl Fkozy = ngtl +c2‘;'1 Flol. (3.22)
Summarizing, we find that a simple model of the system is obtiairyemod-
eling the piezo by (3.22) and all the other blocks by statidel®. Introducing
the linear equations= kzu, andy = ksz; we now have a complete model relat-
ing the outputy to the control signal. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the powepldier. As in the
previous examples, the concept of the uncertainty lemonguargi2.15b provides

(M +mp)
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Figure 3.16: Measured step response and model of piezo scanner. The le& figows a
measured step response. The top curve shows the valtagplied to the drive amplifier
(50 mv/div), the middle curve is the outp\}, of the power amplifier (500 mV/div) and
the bottom curve is the outpytof the signal amplifier (500 mV/div). The time scale is 25
us/div. Data has been supplied by Georg Schitter. The right figure is desimgchanical
model for the vertical positioner and the piezo crystal.

a framework for describing the uncertainty: the model wdldccurate up to the
frequencies of the fastest modeled modes and over a rangetiimin which the
linearized stiffness models can be used.

The experimental results in Figure 3.16a can be explainedtaizly as fol-
lows. When a voltage is applied to the piezo it expandk Jiype massny is moves
up and the mass, moves down instantaneously. The system settles after aypoorl
damped oscillation.

It is highly desirable to have design a control system forwbical motion
so that it responds quickly with little oscillation. The inghent designer has
several choices: to accept the oscillation and have a sleporese time, to design a
control system that can damp the oscillations, or to redetbig mechanics to give
resonances of higher frequency. The last two alternatives agifaster response
and faster imaging.

Since the dynamic behavior of the system changes with theepiep of the
sample, itis necessary to tune the feedback loop. In singgtemis this is currently
done manually by adjusting parameters of a PI controller. dlage interesting
possibilities to make AFM systems easier to use by introdpainomatic tuning
and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic forcestopes.
The interaction of atoms close to surfaces is fundamentallio state physics, see
Kittel [Kit95]. The model discussed in this section is basedsehitter [Sch01].

3.6 DRUG ADMINISTRATION

The phrase “take two pills three times a day” is a recommeadatith which we
are all familiar. Behind this recommendation is a solutibam open loop control
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Figure 3.17: The abstraction used to compartmentalize the body for the purpose of de-
scribing drug distribution (based on Teorell [Teo37]). The body israbged by a number of
compartments with perfect mixing and the complex transport processepproximated by
assuming that the flow is proportional to the concentration difference® icaimpartments.

The constant&; parameterize the rates of flow between different compartments.

problem. The key issue is to make sure that the concentrafiannzedicine in
a part of the body is sufficiently high to be effective but nothégh that it will
cause undesirable side effects. The control action is qaeahtake two pills and
sampledgevery 8 hoursThe prescriptions are based on simple models captured in
empirical tables, and dosage is based on the age and weitjte patient.

Drug administration is a control problem. To solve it we mustierstand how
a drug spreads in the body after it is administered. This tagilledpharmacoki-
netics is now a discipline of its own and the models used are caitaedpartment
models They go back to the 1920s when Widmark modeled propagatiafcof
hol in the body [WT24]. Compartment models are now importantstreening
of all drugs used by humans. The schematic diagram in FiguikilBustrates the
idea of a compartment model. The body is viewed as a numbemopadments
like blood plasma, kidney, liver, and tissues which are sspd by membranes.
It is assumed that there is perfect mixing so that the drugeatnation is con-
stant in each compartment. The complex transport processesparoximated
by assuming that the flow rates between the compartments@pertional to the
concentration differences in the compartments.

To describe the effect of a drug it is necessary to know batlkdnhcentration
and how it influences the body. The relation between concémtraaind its effect
eis typically nonlinear. A simple model is

Co
e= . 3.23
C0+Cernax ( )

The effect is linear for low concentrations and it saturatdsgh concentrations.
The relation can also be dynamic and and it is then callemacodynamics
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Compartment Models

The simplest dynamic model for drug administration is olgdiby assuming that
the drug is evenly distributed in a single compartment aftteas been adminis-
tered and that the drug is removed at a rate proportionaktadhcentration. The
compartments behave like stirred tanks with perfect mixiogt ¢ be the concen-
tration,V the volume andj the outflow rate. Converting the description of the
system into differential equations gives the model

(;f[: =—qc, c>0. (3.24)

This equation has the solutiaft) = coe~ 9V = cpe !, which shows that the con-
centration decays exponentially with the time consfartV /q after an injection.
The input is introduced implicitly as an initial conditiontine model (3.24). More
generally, the way the input enters the model depends onlmedrtig is adminis-
tered. For example, the input can be represented as a massfiothié compart-
ment where the drug is injected. A pill that is dissolved ckio &e interpreted as
an input in terms of a mass flow rate.

The model (3.24) is called aane-compartment model asingle pool model
The parameteq/V is called the elimination rate constant. This simple model
often used to model the concentration in the blood plasman&sgsuring the con-
centration at a few times, the initial concentration canlitaimed by extrapolation.
If the total amount of injected substance is known, the vaifnecan then be deter-
mined as/ = m/cp; this volume is called théhe apparent volume of distribution
This volume is larger than the real volume if the concentratiothe plasma is
lower than in other parts of the body. The model (3.24) is vampte and there
are large individual variations in the parameters. The patargV andq are often
normalized by dividing by the weight of the person. Typicatgmeters for aspirin
areV = 0.2 L/kg andq = 0.01(L/h)/kg. These numbers can be compared with
a blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, intthdar fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/min/kg.

The simple one-compartment model captures the gross beluddoug distri-
bution but it is based on many simplifications. Improved msaein be obtained
by considering the body as composed of several compartnexasnples of such
systems are shown in Figure 3.18, where the compartmentsaesented as cir-
cles and the flows by arrows.

Modeling will be illustrated using the two-compartment rebish Figure 3.18a.
We assume that there is perfect mixing in each compartmehthat the transport
between the compartments are driven by concentrationreliftees. We further
assume that a drug with concentratmris injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the outputclabd
c2 be the concentrations of the drug in the compartments ang hdV, be the

S
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by ltl

(a) (b)

Figure 3.18: Schematic diagrams of compartment models. A simple two-compartment
model is shown on the left. Each compartment is labeled by its volume aodsamdi-

cate the flow of chemical into, out of and between compartments. Thpament model

on the right shows a system with six compartments used to study metabolibymaitl hor-
mone [God83]. The notatiok; denotes the transport from compartmgmd compartment

i

volumes of the compartments. The mass balances for the congras are

dc
Vlditl —q(Ca—C1) —QoC1+CoU G >0
dc
WE%ZWQ—%) >0 (3.25)
y=_Cp.

Introducing the variableky = qo/Vi, k1 = q/V1, k2 = q/V2 andbg = ¢o/V1 and
using matrix notation, the model can be written as

de (—ko—ki ki bo
dt_[ ko —kz]c+[0 !

(3.26)
y= (0 1] X.

Comparing this model with its graphical representation iguFé 3.18a we find

that the the mathematical representation (3.26) can beewiily inspection.

It should also be emphasized that simple compartment msdelsas the one
in equation (3.26) have a limited range of validity. Low freqay limits exist
because the human body changes with time and since the conepéimodel uses
average concentrations they will not accurately represgnd changes. There are
also nonlinear effects that influence transportation betvilee compartments.

Compartment models are widely used in medicine, engingexitd environ-
mental science. An interesting property of these systentiaisvariables like
concentration and mass are always positive. An essenffalulty in compart-
ment modeling is deciding how to divide a complex system gdmpartments.
Compartment models can also be nonlinear, as illustratdteinext section.
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Figure 3.19: Insulin-glucose dynamics. (a) Sketch of body parts involved in comtol

glucose, (b) schematic diagram of the system, and (c) responseslin ansd glucose when
glucose in injected intravenously. From [PB86].

Insulin-Glucose Dynamics

It is essential that the blood glucose concentration in tigybs kept in a narrow
range (0.7-1.1 g/L). Glucose concentration is influenced hyyrfactors like food
intake, digestion and exercise. A schematic picture ofelevant parts of the body
is shown in Figure 3.19.

There is a sophisticated mechanism that regulates glucosewwation. Glu-
cose concentration is maintained by the pancreas thattséiceshormones insulin
and glucagon. Glucagon is released into the blood stream tiieeglucose level
is low. It acts on cells in the liver that release glucose.ulinsis secreted when
the glucose level is high and the glucose level is lowereddusing the liver and
other cells to take up more glucose. In diseases, like jlveli@betes, the pan-
creas is unable to produce insulin and the patient musttimjealin into the body
to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are coagdicdynamics
with time scales that range from seconds to hours have besamaa. Models of
different complexity have been developed. The models aredijp tested with
data from experiments where glucose is injected intravelyoand insulin and
glucose concentrations are measured at regular time aiserv

Arelatively simple model called thminimal modeWas developed by Bergman
and coworkers [Ber89]. This models uses two compartmenéstepresenting the
concentration of glucose in the blood stream and the otlpeesenting the concen-
tration of insulin in the interstitial fluid. Insulin in the dbd stream is considered
as an input. The reaction of glucose to insulin can be modsledebequations

Xm o

dx .
dp = (Prtxe)xi+ pade, de = —paXo+ pa(U—ie), (3.27)

wherege andie represent the equilibrium values of glucose and insuiris the
concentration of glucose and is proportional to the concentration of interstitial
insulin. Notice the presence of the temix, in the first equation. Also notice
that the model does not capture the complete feedback locgube it does not
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describe how the pancreas reacts to the glucose. Figure 8ht®¢s a fit of the
model to a test on a normal person where glucose was injecteyénously at
timet = 0. Glucose concentration rises rapidly and the pancrepsmes with a
rapid spike-like injection of insulin. The glucose and inisuévels then gradually
approach the equilibrium values.

Models of the type (3.27) and more complicated models hawmiagy com-
partments have been developed and fitted to experimental datifficulty in
modeling is that there are significant variations in modeapaaters over time and
for different patients. For example the paramgieilin (3.27) has been reported
to vary with an order of magnitude for normal persons. The riHave been
used for diagnosis and to develop schemes for treatmentsbipe with diseases.
Attempts to develop a fully automatic artificial pancreastesn hampered by the
lack of reliable sensors.

The papers by Widmark and Tandberg [WT24] and Teorell [TeoB¥tkassics
in pharmacokinetics which is now an established disciphite many textbooks
[Dos68, Jac72, GP82]. Because of its medical importancenpd@kinetics is
now an essential component of drug development. The book ggsHRig63]
is a good source for modeling of physiological systems ansheermathematical
treatment is given in [KS01]. Compartment models are disiss[God83]. The
problem of determining rate coefficients from experimentthds discussed in
[BA70] and [God83]. There are many publications on the insglircose model.
The minimal model is discussed in [CT84, Ber89, Ber01] moremeceferences
are [MLKO6, FCF+06].

3.7 POPULATION DYNAMICS

Population growth is a complex dynamic process that involliesinteraction of
one or more species with their environment and the largesystem. The dynam-
ics of population groups are interesting and important imyngifferent areas of
social and environmental policy. There are examples whewespecies have been
introduced into new habitats, sometimes with disastrogslt® There are also
been attempts to control population growth both througlemtiges and through
legislation. In this section we describe some of the modesdan be used to un-
derstand how populations evolve with time and as a functidheir environment.

Logistic Growth Model

Let x the population of a species at tiheA simple model is to assume that the
birth and death rates are proportional to the total popaftihis gives the linear
model

dx

Fri bx—dx=(b—d)x=rx, x>0, (3.28)
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where birth ratd and death ratd are parameters. The model gives an exponential
increase itb > d or an exponential decreasebik d. A more realistic model is to
assume that the birth rate decreases when the populatiarges IThe following
modification of the model (3.28) has this property:

dx X

— =rx(1—— >0 3.29
wherex. is thecarrying capacityof the environment. The model (3.29) is called
thelogistic growthmodel.

Predator-Prey Models

A more sophisticated model of population dynamics incluttheseffects of com-
peting populations, where one species may feed on anothisrsitumtion, referred

to as thepredator-prey problenmwas already introduced in Example 2.3, where we
developed a discrete time model that captured some of therésaof historical
records of lynx and hare populations.

In this section, we replace the difference equation modsd tisere with a more
sophisticated differential equation model. L&ft) represent the number of hares
(prey) andL(t) represent the number of lynxes (predator). The dynamicseof th
system are modeled as

dj:th <1_H> aHL H>0

dt K/) 1+aHT =

+arh (3.30)
Sl L>0
dt ! kH =

In the first equationr, represents the growth rate of the harnés,epresents the
maximum population of hares (in the absence of lynxasgpresents the inter-
action term that describes how the hares are diminished @sctidn of the lynx
population, and}, depends is a time constant for prey consumption. In the secon
equationr, represents the growth rate of the lynxes &reépresents the fraction
of hares versus lynxes at equilibrium. Note that both the laaxd lynx dynamics
include terms that resemble the logistic growth model (8.29

Of particular interest are the values at which the popufataiues remain con-
stant, calledequilibrium points The equilibrium points for this system can be
determined by setting the right hand side of the above empugto zero. Letting
He andLe represent the equilibrium state, from the second equatmhave

Le - kHe

Substituting this into the first equation, we must solve

He akH?
Ho(1— )&% _ o
' e( K) TranT, 0
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Figure 3.20: Simulation of the predator-prey system. The figure on the left shows-a sim
ulation of the two populations as a function of time. The figure on the righvsibe
populations plotted against each other, starting from different valuéegfopulation. The
oscillation seen in both figures is an example of a “limit cycle”. The paranvetaes used

for the simulations werg, = 0.02,K = 500,a= 0.03,T, =5, =0.01,k=0.2.

Multiplying through by the denominator, we get

0=He- <rh (1— T) (1+aHTh) — akHe)

= He- <rh§Th He2 + (ak+ rh/K — rhaTh)He — I‘h> .
This gives one solution df = 0 and a second that can be solved analytically or
numerically.

Figure 3.20 shows a simulation of the dynamics starting frasataof popula-
tion values near the nonzero equilibrium values. We sedah#tis choice of pa-
rameters, the simulation predicts an oscillatory popatatiount for each species,
reminiscent of the data shown in Figure 2.6 (page 41).

Fisheries Management

The dynamics of a commercial fishery can be described by thewfwly simple

model
ax

Fi
wherex is the total biomassf (x) the growth rate anti(x,u) the harvesting rate.

The logistic function (3.29) is a simple model for the growdterand the harvesting
can be modeled by

f(x) —h(x,u), (3.31)

h(x,u) = axu (3.32)

where the control variable is the harvesting effort, analis a constant. The rate

of revenue is
g(x,u) = bh(x,u) — cu, (3.33)
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whereb andc are constants representing the price of fish and the cost afdishi
Using equations (3.32) and (3.33) we find that the rate of nexém

g(x,u) = (abx—c)u.

In a situation where there are many fishermen and no concetind@nvironment,
it is economic to fish as long abx > c and there will then be an equilibrium
where the biomass is c
Xoo = P
ab

which is the equilibrium with unrestricted fishing.

Assume that the population is initially at equilibrium>d0) = x.. The rev-
enue rate with unrestricted fishing is th@bx. — c)u, which can be very large.
The fishing effort then naturally increases until the equiilibr (3.34), where the
revenue rate is zero.

We can contrast unrestricted fishing with the situation foingle fishery. A
typical case is when a country has all fishing rights in a larga.an such a case it
is natural to maximize the rate efistainable revenuelhis can be accomplished
by adding the constraint that the biomasis: equation (3.31) is constant, which
implies that

(3.34)

f(x) = h(x,u).
Solving this equation fou gives
_ _ )
u=ug(x) = "

Inserting the value afl into equation (3.33) gives the following rate of revenue

9(x) = bh(x ug) — cug(x) = (b— = ) F(x)

c X r (3.35)
= rx(b— 5() (1— Z): Z (—abx2+ (c+ abx)x— cxc>.
The rate of revenue has a maximum
r(c—abx)?
=— 3.36
ro dabx, (3.36)
for
_Xx, C
Xo = 5 + 2ab’ (3.37)

Figure 3.21 shows a simulation of a fishery. The system is ilyitial equi-
librium with x = 100. Fishing begins with constant harvesting nate 3 at time
t = 0. The initial revenue rate is large, but it drops rapidly as glpulation de-
creases. At timé = 12 the revenue rate is practically zero. The fishing policy is
changed to a sustainable strategy at ttmel5. This is accomplished by using a
proportional-integral (PI) controller where the refereiscthe optimal sustainable
population sizey = 55 given by equation (3.37). The feedback stops harvesting
for a period but the biomass increases rapidly. At tiree28 the harvesting rate
increases rapidly and a sustainable steady state is reacheshort time.
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Figure 3.21: Simulation of a fishery. The curves show total biomadsarvesting raterand
revenue ratg as a function of timeé. The fishery is modeled by equations (3.31), (3.32),
(3.33) with parameterg. = 100,a= 0.1, b =1 andc = 1. Initially fishing is unrestricted at
rateu = 3. Attimet = 15 fishing is changed to harvesting at a sustainable rate, accomplished
by a PI controller with parameteks= 0.5 andk; = 0.5.

Volume |1 of the two volume set by J. D. Murray [Mur04] give a btbcoverage
of population dynamics.

EXERCISES

3.1 Consider the cruise control example described in SectionBild a simula-
tion that recreates the response to a hill shown in Figure @&8tshow the effects
of increasing and decreasing the mass of the car by 25%. gedes controller
(using trial and error is fine) so that it returns to within 10%ile desired speed
within 3 seconds of encountering the beginning of the hill.

3.2 Show that the dynamics of a bicycle frame given by equatioB) (8an be
written in state space form as

d (x1] (0 mghJd X1 1
- )
bl bl )

where the inputi is the torque applied to the handle bars and the outgsithe
title angle¢. What do the states, andx, represent?

3.3 Combine the bicycle model given by equation (3.5) and theehifwd steering
kinematics in Example 2.8 to obtain a model that describegpdltie of the center
of mass of the bicycle.



98 CHAPTER 3. EXAMPLES

3.4 Consider the op amp circuit shown below: Show that the dynsutan be

V2

Ri | Ra Ro

G Vo Cy V3
[ 1.

written in state space form as

Vi

1y 1
dx_ | RCG RG wt | RiC |
i | R1 1 .
Ra R2C2 RoCo

y= (O 1] X
whereu = vi andy = v3. (Hint: Usev, andvs as your state variables.)

3.5 The op amp circuit shown below is an implementation of an lzgoil. Show

€Ca Ry Cl

that the dynamics can be written in state space form as
R4

dx 0 R1RsCy
dt 1 ’
-0
RC1

where the state variables represents the voltages acesaphacitors; = v; and
X2 = V.

3.6 Analyze congestion control dynamics with RED.

3.7 A schematic diagram an AFM where the vertical scanner is afigdze with
preloading is shown below Show that the dynamics can be writte

d221 le d2| dl

— — 4+ (ki +k)zg=mp—— — +kal.

(M +mp) e +(c1+¢C2) at + (k1 +k2)z1 M o +C2 g The

Are there there parameters values which makes the dynaitisuparly simple.
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3.8 (Drug administration) The metabolism of alcohol in the body e modeled
by the nonlinear compartment model
d
Vbdf(:o = (¢ —Cp) +Qiv
dg C
V— = _ _ .
gt a(c—a) Qmam + Qgi
whereV, = 48 | andV, = 0.6 | are the effective distribution volumes of body wa-
ter and liver waterc, and ¢ are the concentrations of alcohol in the compart-
ments,gy anddg; are the injection rates for intravenously and gastroimtabin-
take,q = 1.5 L/min is the total hepatic blood flovgnax = 2.75 mmol/min and
co = 0.1 mmol. Simulate the system and compute the concentratitreiblood

for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9(State variables in compartment models) Consider the cdmpat model de-
scribed by equation (3.26). Let andx, be the total mass of the drug in the
compartments. Show that the system can be described by tag@aqu

dx _ (—ko—ki ko Co
dt_[ ki —kz]x+[0 !

y= (o 1/v2] X.

Compare the this equation with the (3.26) where the stateblas were con-
centrations. Mass is called axtensive variablend concentration is called an
intensive variable

(3.39)

3.10(Population dynamics) Consider the model for logistic glogiten by equa-
tion (3.29). Show that the maximum growth rate occurs whensike of the
population is half of the steady state value.

3.11(Population dynamics) Verify the curves in Figure 3.20 by tingga program
that integrates the differential equations.






Chapter Four

Dynamic Behavior

It Don't Mean a Thing If It Ain't Got That Swing.

Duke Ellington (1899-1974)

In this chapter we give a broad discussion of the behavioryoathical sys-
tems, focused on systems modeled by nonlinear differegqiadtions. This allows
us to discuss equilibrium points, stability, limit cyclescaother key concepts for
understanding dynamic behavior. We also introduce somaadstfor analyzing
global behavior of solutions.

4.1 SOLVING DIFFERENTIAL EQUATIONS

In the last two chapters we saw that one of the methods of rimgddynamical sys-
tems is through the use of ordinary differential equatiddBESs). A state space,
input/output system has the form

%: f(X, U), y= h(X,U), (4'1)

dt
wherex= (x1,...,%n) € R"is the statey € RP is the input ang € R%is the output.
The smooth map$ : R" x RP — R"andh: R" x RP — RY represent the dynamics
and measurements for the system. We will sometimes focusglesnput, single
output (SISO) systems, for whigh=q= 1.

We begin by investigating systems in which the input has Ise¢to a function

of the statepy = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equatio this case become

d

o = T a() = FX). (4.2)
To understand the dynamic behavior of this system, we needhatyze the

features of the solutions of equation (4.2). While in sormapéé situations we can

write down the solutions in analytical form, often we mudyren computational

approaches. We begin by describing the class of solutiari®problem.
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Initial Value Problems

We say thak(t) is asolutionof the differential equation (4.2) on the time interval
tocRtots e Rif

dx(t)
dt
A given differential equation may have many solutions. W# miost often be
interested in thenitial value problem wherex(t) is prescribed at a given time
to € R and we wish to find a solution valid for dlituretime,t > to.
We say thak(t) is a solution of the differential equation (4.2) with inlti@lue
X0 € RMattg € R if

=F(x(t)) foralltg<t <ts.

X(to) =% and d)(;(tt) =F(x(t)) foralltg<t<t;.

For most differential equations we will encounter, thera isiguesolution that is
defined fortg < t < t;. The solution may be defined for all tinhe> ty, in which
case we takés = . Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to thisrgly as the solution
of an ODE.

We will typically assume thap is equal to 0. In the case wheéris independent
of time (as in equation (4.2)), we can do so without loss ofegelity by choosing
a new independent (time) variable=t —ty (Exercise 4.1).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of thenfor

G+ 2¢ wod+ whq =0,

whereqis the displacement of the oscillator from its rest positibhese dynamics
are equivalent to those of a spring-mass system, as shownertigs 2.7. We

assume thaf < 1, corresponding to a lightly damped system (the reasorhfer t
particular choice will become clear later). We can rewtitis in state space form

by settingx; = g andx; = g/ wy, giving

dxg dxo
ddt — WoX2, ddt — Xy — 2{ WoX.

In vector form, the right hand side can be written as

(X
Fx) = [—woxl—ZZZasz] '

The solution to the initial value problem can be written in anter of different
ways and will be explored in more detail in Chapter 5. Here iwgoky assert that
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Figure 4.1: Response of the damped oscillator to the initial conditigr= (1,0). The
solution is unique for the given initial conditions and consists of an oscillaolytion for
each state, with an exponentially decaying magnitude.

the solution can be written as

1 .
X (t) = ot <xlocoswdt + @((Lbleo—FXQo) smwdt>
_ 1 .
Xo(t) =€ {axt (xZOcoswdt — @((J.ﬁXj[()—F wo{X20) smwat)

wherexg = (X10,X20) is the initial condition anduy = wo+/1— 2. This solution
can be verified by substituting it into the differential eqoat We see that the
solution is explicitly dependent on the initial conditiomdit can be shown that this
solution is unique. A plot of the initial condition resporiseshown in Figure 4.1.
We note that this form of the solution only holds fok0{ < 1, corresponding to
an “underdamped” oscillator. O

Existence and Uniqueness @

Without imposing some mathematical conditions on the fiondt, the differential
equation (4.2) may not have a solution fortaland there is no guarantee that the
solution is unique. We illustrate these possibilities viitlo examples.

Example 4.2 Finite escape time
Letx € R and consider the differential equation

dax
=2 4.3
a =X (4.3)
with initial conditionx(0) = 1. By differentiation we can verify that the function
1
t)=— 4.4
X(t)= 7 (4.4)

satisfies the differential equation and it also satisfies titialicondition. A graph
of the solution is given in Figure 4.2a; notice that the soluijoes to infinity as
goes to 1. We say that this system liagte escape timeThus the solution only
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Figure 4.2: Existence and uniqueness of solutions. Equation (4.3) only has a sdiotion
timet < 1, at which point the solution goes to, as shown in (a). Equation (4.4) is an
example of a system with many solutions, as showh.irFor each value o, we get a
different solution starting from the same initial condition.

exists in the time interval &t < 1. O

Example 4.3 No unique solution
Letx € R and consider the differential equation

dx

= _2
dt VX
with initial conditionx(0) = 0. We can show that the function
0 fo<t<a
(t) = 2
(t—a)“ ift>a

satisfies the differential equation for all values of the psetera > 0. To see this,
we differentiatex(t) to obtain

dx_ fo fo<t<a
dt  |2(t-a) ift>a

and hencex= 2,/x for all t > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 4.2b. Notice that in this casedlsge many solutions

to the differential equation. O

These simple examples show that there may be difficulties ewnsimple
differential equations. Existence and uniqueness can beugieged by requiring
that the functiorF has the property that for some fixe& R

IFO)—FW) <clx=y[ forallxy,

which is calledLipschitz continuity A sufficient condition for a function to be
Lipschitz is that the JacobiadF /dx, is uniformly bounded for alk. The diffi-
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Figure 4.3: Phase portraits. The plot on the left shows the vector field for a plamamaigal
system. Each arrow shows the velocity at that point in the state spac@lditon the right
includes the solutions (sometimes called streamlines) from different inttfaditions, with
the vector field superimposed.

culty in Example 4.2 is that the derivatid¥ /dx becomes large for largeand
the difficulty in Example 4.3 is that the derivatigé /dx is infinite at the origin.

4.2 QUALITATIVE ANALYSIS

The qualitative behavior of nonlinear systems is importantihderstanding some
of the key concepts of stability in nonlinear dynamics. W4 f@icus on an im-
portant class of systems known as planar dynamical systEhese systems have
two state variableg € R?, allowing their solutions to be plotted in theg, x»)
plane. The basic concepts that we describe hold more ggnarallcan be used
to understand dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamicalesys with state
x € R? is to plot thephase portraitof the system, briefly introduced in Chapter 2.
We start by introducing the concept of a vector field. For aewsof ordinary
differential equations
dx
dt
the right hand side of the differential equation defines atyexec R" a velocity
F(x) € R". This velocity tells us how changes and can be represented as a vector
F(x) € R".
For planar dynamical systems, each state corresponds tmiipohe plane
and F(x) is a vector representing the velocity of that state. We can thlese
vectors on a grid of points in the plane and obtain a visuagenaf the dynamics
of the system, as shown in Figure 4.3a. The points where theitiekare zero

F(),
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are of particular interest, since they define stationarytsathe flow: if we start
at such a state, we stay at that state.

A phase portrait is constructed by plotting the flow of the wedield corre-
sponding to the planar dynamical system. That is, for a satitiéli conditions,
we plot the solution of the differential equation in the @ak?. This corresponds
to following the arrows at each point in the phase plane aadithg the resulting
trajectory. By plotting the resulting trajectories for eead different initial condi-
tions, we obtain a phase portrait, as show in Figure 4.3b.

Phase portraits give us insight into the dynamics of the systg showing us
the trajectories plotted in the (two dimensional) statecepat the system. For ex-
ample, we can see whether all trajectories tend to a singie gs time increases
or whether there are more complicated behaviors as thensystelves. In the ex-
ample in Figure 4.3, corresponding to a damped oscillatersyistem approaches
the origin for all initial conditions. This is consistent Wwibur simulation in Fig-
ure 4.1 but it allows us to infer the behavior for all initiardditions rather than a
single initial condition. However, the phase portrait donesreadily tell us the rate
of change of the states (although this can be inferred frentethgth of the arrows
in the vector field plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a stages an equilibrium point for a dynamical system

dx _
dt
if F(xe) = 0. If a dynamical system has an initial conditig{®) = x then it will
stay at the equilibrium poini(t) = xe for all t > 0, where we have takdép= 0.
Equilibrium points are one of the most important features dfaamical sys-

tem since they define the states corresponding to constargtimgeconditions. A
dynamical system can have zero, one or more equilibriumtgoin

F(¥)

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figure 4.4, which is a ddhebalance system
we considered in Chapter 2. The inverted pendulum is a simph&esion of the
problem of stabilizing a rocket: by applying forces at thaedaf the rocket, we
seek to keep the rocket stabilized in the upright positione State variables are
the anglef = x; and the angular velocitg6 /dt = x,, the control variable is the
acceleratiornu of the pivot, and the output is the andle

For simplicity we assume thatgl/J = 1 andml/J = 1, whereJ = J+ m/?,
so that the dynamics (equation (2.10)) become

dx_ [ @ ] (4.5)

dt — | sinxy— yxo + ucosx

This is a nonlinear time-invariant system of second orders Saime set of equa-
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(b) (©

Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a inode
for a class of balance systems in which we wish to keep a system uprightasia rocket
(a). Using a simplified model of an inverted pendulum (b), we can dpwelphase plane
diagram that shows the dynamics of the system (c). The system has matjiglérium
points, marked by the solid dots along the= 0 line.

tions can also be obtained by appropriate normalizatiohegystem dynamics as
illustrated in Example 2.7.
We consider the open loop dynamics by setting 0. The equilibrium points

for the system are given by
0
Xe = [inn] ’

wheren=10,1,2,.... The equilibrium points fon even correspond to the pendu-

lum pointing up and those farodd correspond to the pendulum hanging down. A

phase portrait for this system (without corrective inpigsghown in Figure 4.4c.

The phase portrait shows2m < x; < 21, so 5 of the equilibrium points are shown.
0

Nonlinear systems can exhibit rich behavior. Apart fromiltopia they can
also exhibit stationary periodic solutions. This is of gnestctical value to gener-
ate sinusoidally varying voltages in power systems or taegate periodic signals
for animal locomotion. A simple example is given in Exercis&4 which shows
the circuit diagram for an electronic oscillator. A norrzalil model of the oscilla-
tor is given by the equation

C:jX: =X+ x1(1— X2 —x3)
(4.6)
dx

2 2

The phase portrait and time domain solutions are given in Eigus. The figure
shows that the solutions in the phase plane converge towdanittajectory. In the
time domain this corresponds to an oscillatory solutiontidenatically the circle
is called dimit cycle More formally, we call an isolated solutiott) a limit cycle
of periodT > 0if x(t+T) = x(t) forallt € R.

There are methods for determining limit cycles for seconeépsystems, but



108 CHAPTER 4. DYNAMIC BEHAVIOR

1
0.5

X2 N

0 3

x
-0.5
-1

-15 -2
-1 0 1 0 10 20 30
x1 time
(a) (b)

Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different watiaitions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) slasingle solution
plotted as a function of time, with the limit cycle corresponding to a steady d#millaf
fixed amplitude.

for general higher order systems we have to resort to coripnghanalysis. Com-
puter algorithms find limit cycles by searching for periodigjeéctories in state
space that satisfy the dynamics of the system. In many &ihgtstable limit
cycles can be found by simulating the system with differaiital conditions.

4.3 STABILITY

The stability of a solution determines whether or not sohgioearby the solution
remain nearby, get closer or move further away.

Definitions

Let x(t;a) be a solution to the differential equation with initial catioh a. A
solution is stable if other solutions that start naatay close tx(t;a). Formally,
we say that thesolution Xt;a) is stable if for alle > 0, there exists & > 0 such
that

|b—al|<d = ||x(t;b)—x(t;a)]| <& forallt>O0.

Note that this definition does not imply theft; b) approaches(t;a) as time in-
creases, but just that it stays nearby. Furthermore, the bl may depend os,
so that if we wish to stay very close to the solution, we mayeha\start very, very
close @ < ¢). This type of stability which is illustrated in Figure 4.6 i3setimes
called stability “in the sense of Lyapunov”. If a solutiorsigble in this sense and
the trajectories do not converge, we say that the solutioeusrally stable

An important special case is when the solutidtta) = Xe is an equilibrium
solution. Instead of saying that the solution is stable wg$y say that the equi-
librium pointis stable. An example of a neutrally stableiglqium point is shown
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Figure 4.6: lllustration of Lyapunov’s concept of a stable solution. The solutionasgmted
by the full line is stable if we can guarantee that all solutions remain within adidiameter
€ by choosing initial conditions sufficiently close the solution.

in Figure 4.7. From the phase portrait, we see that if we stat the equilibrium
point then we stay near the equilibrium point. Indeed, fog &xample, given any
¢ that defines the range of possible initial conditions, we @dauply choosed = ¢
to satisfy the definition of stability since the trajectorés perfect circles.

A solutionx(t; a) is asymptotically stablé it is stable in the sense of Lyapunov
and also(t; b) — x(t; a) ast — oo for b sufficiently close t@. This corresponds to
the case where all nearby trajectories converge to theessahition for large time.
Figure 4.8 shows an example of an asymptotically stable ibguiin point. Note
from the phase portraits that not only do all trajectoriey stear the equilibrium
point at the origin, but they all approach the origirt @ets large (the directions of
the arrows on the phase plot show the direction in which tjedtories move).

A solutionx(t; a) is unstableif it is not stable. More specifically, we say that a
solutionx(t;a) is unstable if given some > 0, there doesot exist ad > 0 such
that if ||b—a|| < & then||x(t; b) —x(t;a)|| < € for allt. An example of an unstable
equilibrium point is shown in Figure 4.9.

The definitions above are given without careful descriptiothefr domain of
applicability. More formally, we define a solution to heeally stable (or asymp-

0.5 //
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium poirte at the origin is stable since all trajectories that

start neaxe stay neaxe.
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Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium poixg at the origin is asymptotically stable
since the trajectories converge to this point as .

totically stable) if it is stable for all initial conditions< B, (a) where
Br(a) = {x:[x—al| <r}

is a ball of radiug arounda andr > 0. A system is globally stable if it is sta-
ble for allr > 0. Systems whose equilibrium points are only locally stalale c
have interesting behavior away from equilibrium pointswasexplore in the next
section.

For planar dynamical systems, equilibrium points have lessigned names
based on their stability type. An asymptotically stableilgium point is called
a sink or sometimes amttractor. An unstable equilibrium point can either be
a source if all trajectories lead away from the equilibrium point, @saddle if
some trajectories lead to the equilibrium point and othesseraway (this is the
situation pictured in Figure 4.9). Finally, an equilibriumipicthat is stable but not
asymptotically stable (i.e. neutrally stable, such as tiein Figure 4.7) is called
acenter

Example 4.5 Congestion control
The model for congestion control in a network consistinglafientical computers
connected to a single router, introduced in Section 3.4 yvisgby

dw c ( W2> db wce

2

dt b
wherew is the window size anlis the buffer size of the router. Phase portraits are
shown in Figure 4.10 for two different sets of parameter &llieeach case we see
that the system converges to an equilibrium point in whiehlibffers are below
their full capacity of 500 packets. The equilibrium size of thuffer represents
a balance between the transmission rates for the sourcethamapacity of the
link. We see from the phase portraits that the equilibriurmisoare stable since
all initial conditions result in trajectories that converg these points. O

a—NF—C,
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium pinte at the origin is unstable since not all trajectories
that start neaxe stay neaxe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

Stability of Linear Systems

A linear dynamical system has the form

dx

Fri AX X0) = Xo, 4.7
whereA € R™" is a square matrix, corresponding to the dynamics matrix of a

linear control system (2.6). For a linear system, the stghif the equilibrium at
the origin can be determined from the eigenvalues of theixnatr

A(A) = {se C:detsl—-A) =0}.
We use the notatiod; for theith eigenvalue oA, so thatA; € A (A). In generald
can be complex valued, althoughAfis real-valued then for any eigenvaldeits
complex conjugatd * will also be an eigenvalue.

The easiest class of linear systems to analyze are those wysisen matrices
are in diagonal form. In this case, the dynamics have the form

A1 0
dx A2
= X. 4.8
dt (4.8)
0 An
It is easy to see that the state trajectories for this systenmdependent of each
other, so that we can write the solution in termsafdividual systems

X = AiX;.
Each of these scalar solutions is of the form
% (t) = eN'x(0).

We see that the equilibrium point = 0 is stable ifA; < 0 and asymptotically
stable ifA; < 0. The origin is always an equilibrium for a linear system. 8itiee
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Figure 4.10: Phase portraits for a congestion control protocol running With 60 identical
source computers. The equilibrium values correspond to a fixed wiatithe source, which
results in a steady state buffer size and corresponding transmissioA fasger link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

stability of a linear system only depends on the madrixe find that stability is a

property of the system. For linear system we can thereftkeatsout the stability

of the system rather than the stability of a particular sotubr equilibrium point.
Another simple case is when the dynamics are in the blockodiagorm

o1 W 0 0
—w O1 0 0
dx _ ]
dt 0 0 - : : -
0 0 Om Oh
0 0 —Wm Om

In this case, the eigenvalues can be shown tajbe g; +iwj. We once again can
separate the state trajectories into independent sofutisreach pair of states and
the solutions are of the form

Xoj—1(t) = €' (x;(0) coswjt +Xi11(0) sinwjt)
Xoj(t) = %' (% (0) sinwjt — X1 (0) coswjt)

wherej =12 ....m. We see that this system is asymptotically stable if and only
if 0 = ReAj < 0. Itis also possible to combine real and complex eigensgaiue
(block) diagonal form, resulting in a mixture of solutiorfstioe two types.

Very few systems are in one of the diagonal forms above, buessystems can
be transformed into these forms via coordinate transfdonst One such class
of systems is those for which the dynamics matrix has dis{inon-repeating)
eigenvalues. In this case there is a mairix R™" such that the matri¥ AT~1
is in (block) diagonal form, with the block diagonal elem®ibrresponding to
the eigenvalues of the original matiix(see Exercise 4.14). If we choose new
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coordinateg = T xthen
7=Tx=TAx=TAT 1z

and the linear system has a (block) diagonal dynamics maixthermore, the
eigenvalues of the transformed system are the same as thieabsystem since
if v is an eigenvector oA thenw = Tv can be shown to be an eigenvector of
TAT-L. We can reason about the stability of the original system dityng that
X(t) = T~1z(t) and so if the transformed system is stable (or asymptofistdble)
then the original system has the same type of stability.

This analysis shows that for linear systems with distincesiglues, the sta-
bility of the system can be completely determined by exangjrthe real part of
the eigenvalues of the dynamics matrix. For more generésys we make use
of the following theorem, proved in the next chapter:

Theorem 4.1. The system

dx
2 A
at =

is asymptotically stable if and only if all eigenvalues oflthave strictly negative
real part and is unstable if any eigenvalue of A has strictigipve real part.

Example 4.6 Compartment model

Consider the two-compartment module for drug deliveryodtrced in Section 3.6.
Using concentrations as state variables and denotingadke\stctor by, the sys-
tem dynamics are given by

dx _[—ko—ki ki bo _

dt_[ ko “kp X+ 1| y= [0 1] X,
where the inpuu is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measurgzioy We wish to

design a feedback control law that maintains a constanubgipen byy = yjq.
We choose an output feedback control law of the form

U= —K(y—Yq) +Ug

whereuy is the rate of injection required to maintain the desiredcemtration
andk is a feedback gain that should be chosen such that the clospdystem is
stable. Substituting the control law into the system, weiabta

dX_ —ko—kl —klbok bO .
T [ ks "k X+ 0 Ug =:AX+Buy
y= (O l] X =:Cx

The equilibrium concentratiox, € R? is given byxe = —A~1Buy and
boko

— CA By = Ug.
Ye "™ koka 1 keka 1 Kkikabo
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Choosingug such thatye = yq provides the constant rate of injection required to
maintain the desired output. We can now shift coordinatgsdatoe the equilibrium
point at the origin, which yields

CLZ_ —ko—ky —kgbgk .
dt ko —ko ?

wherez = x— Xe. We can now apply the results of Theorem 4.1 to determine the
stability of the system. The eigenvalues of the system aenddy the roots of the
characteristic polynomial

A(S) = -+ (Ko + ka +ka)s+ (Ko + ki + kakobok).

While the specific form of the roots is messy, it can be showhnttheroots are
positive as long as the linear term and the constant termathegmsitive. Hence
the system is stable for arky> 0. 0

Stability Analysis via Linear Approximation

An important feature of differential equations is that ibiten possible to deter-
mine the local stability of an equilibrium point by approxting the system by a
linear system. The following example illustrates the baséai

Example 4.7 Inverted pendulum
Consider again the inverted pendulum, whose open loop digsare given by

de_ (%
dt  |sinxg—yxo )’

where we have defined the statexas (6,6). We first consider the equilibrium
point atx = (0,0), corresponding to the straight up position. If we assumethtea
anglef = x; remains small, then we can replacexginvith x; and cox; with 1,
which gives the approximate system

dx X2 0 1

s [_] - [1 _y] x 4.9)
Intuitively, this system should behave similarly to the m@omplicated model
as long asq is small. In particular, it can be verified that the equililonigpoint
(0,0) is unstable by plotting the phase portrait or computing tgerevalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable aquitilpoint atx =

(1,0). In this case we have to expand sjrand cox; aroundx; = 11, according
to the expansions

sin(rm+6) = —sinB~ —6 cogm+6) =cog0) ~ 1.

If we definez; = x; — irandz, = xo, the resulting approximate dynamics are given
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Figure 4.11: Comparison between the phase portraits for the full nonlinear systeft)s (le
and its linear approximation around the origin (right). Notice that near thiiledgum point
at the center of the plots, the phase portraits (and hence the dynamiedinast identical.

by

dZ_ i) B 0 1
o I B A (4.10)

Note thatz= (0,0) is the equilibrium point for this system and that it has thmea
basic form as the dynamics shown in Figure 4.8. Figure 4.11 sltosvphase por-
traits for the original system and the approximate systeyarat the corresponding
equilibrium points. Note that they are very similar, altgbunot exactly the same.
It can be shown that if a linear approximation has either gugtically stable or
unstable equilibrium points, then the local stability of thriginal system must be
the same (Theorem 4.3, page 123). O

More generally, suppose that we have a nonlinear system
x=F(X)

that has an equilibrium point at. Computing the Taylor series expansion of the
vector field, we can write

X = F(Xe) + ‘2'):( (X—Xe) + higher order terms ifix — xe).
Xe

SinceF (xe) = 0, we can approximate the system by choosing a new statédlearia
Z= X— Xe and writing

JoF

z=Az where A= —| .
dxXe

(4.11)

We call the system (4.11) tHmear approximationof the original nonlinear sys-
tem.

The fact that a linear model can be used to study the behaviamohlinear
system near an equilibrium point is a powerful one. Indeezlcan take this even
further and use a local linear approximations of a nonlirmatem to design a
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feedback law that keeps the system near its equilibriumtgdesign of dynam-
ics). Thus, feedback can be used to make sure that solutior@reslose to the
equilibrium point, which in turn ensures that the linear @p@mation used to sta-
bilize it is valid.

Linear approximations can also used to understand stabilitpn-equilibrium
solutions, as illustrated by the following example.

Example 4.8 Stable limit cycle
Consider the system given by equation (4.6),

dx

ditl =X+ x1(1—%x2 —x3)

d

d—)iz = X1+ X(1—x2 —X3),

whose phase portrait is shown in Figure 4.5. The differentjgbéion has a peri-
odic solution
X1(t) = x1(0) cost +x2(0) sint, (4.12)

with x2(0) +x3(0) = 1.
To explore the stability of this solution, we introduce pataordinates and¢
that are related to the state varialskgs@ndx, by

X1 = rcosg, Xo =rsing.
Differentiation gives the following linear equations foand¢
X1 =fcosp —rgsing, X =Fsing +r¢ cosp
Solving this linear system farand¢ gives, after some calculation,
F=r(1-r%), ¢=-1

Notice that the equations are decoupled, hence we can artakystability of each
state separately.

The equation for has three equilibria: = 0,r = 1 andr = —1 (not realizable
sincer must be positive).. We can analyze the stability of thesdlibga by
linearizing the radial dynamics with(r) = r(1—r?). The corresponding linear
dynamics are given by

- 2
r= or rer_(l 2ro)r re=0,1,
where we have abused notation and used represent the deviation from the
equilibrium point. It follows from the sign ofl — 2r2) that the equilibriunt = 0
is unstable and the equilibrium= 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes to= 1 as time goes to infinity, but if the system
starts withr = 0 it will remain at the equilibrium for all times. This implighat
all solutions to the original system that do not starkat xo = 0 will approach

the circlexf 4+ x5 = 1 as time increases.
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Figure 4.12: Solution curves for a stable limit cycle. The phase plane plot on the lefisho
that the trajectory for the system rapidly converges to the stable limit cydie. sTarting
points for the trajectories are marked by circles in the phase portrait. Tealttmain plots
on the right show that the states do not convert to the solution but instéathima constant
phase error.

To show stability of the full solution (4.12), we must invgstte the behavior
of neighboring solutions with different initial conditisnWe have already shown
that the radius will approach that of the solution 4.12 as longré8) > 0. The
equation for the angl¢ can be integrated analytically to giggt) = —t + ¢ (0),
which shows that solutions starting at different anglesill neither converge nor
diverge. Thus, the unit circle &ttractingbut the solution (4.12) is only stable, not
asymptotically stable. The behavior of the system is ilatsl by the simulation
in Figure 4.12. Notice that the solutions approach the ciagtedly but that there
is a constant phase shift between the solutions. O

4.4 LYAPUNOV STABILITY @

We now return to the study of the full nonlinear system

dx_ F(x) xeR" (4.13)

dt

Having defined when a solution for a nonlinear dynamical systestable, we
can now ask how to prove that a given solution is stable, atyioplly stable
or unstable. For physical systems, one can often argue alalitity based on
dissipation of energy. The generalization of that techniguarbitrary dynamical
systems is based on the use of Lyapunov functions in placeevfg.

In this section we will describe techniques for determintimg stability of so-
lutions for a nonlinear system (4.13). We will generally hterested in stability
of equilibrium points and it will be convenient to assumettka= 0 is the equi-
librium point of interest. (If not, rewrite the equationsamew set of coordinates

Z=X—Xe.)
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Lyapunov Functions

A Lyapunov function V R" — R is an energy-like function that can be used to
determine stability of a system. Roughly speaking, if we ftath a non-negative
function that always decreases along trajectories of teeery, we can conclude
that the minimum of the function is a stable equilibrium gdlocally).

To describe this more formally, we start with a few definitiokige say that a
continuous functiorY is positive definitef V (x) > 0 for all x # 0 andV (0) = 0.
Similarly, a function ismegative definité V (x) < 0 for all x # 0 andV (0) = 0. We
say that a functioV is positive semidefinité V (x) > 0 for all x butV (x) can be
zero at points other than just= 0.

To illustrate the difference between a positive definite fiomcand a positive
semi-definite function, suppose that R? and let

VI(X) =x2,  Vo(X) =X+ 3.

BothV; andV;, are always non-negative. However, it is possibleMpto be zero
even ifx # 0. Specifically, if we sex = (0, c) wherec € R is any nonzero number,
thenVy(x) = 0. On the other hand/>(x) = 0 if and only ifx= (0,0). ThusV; is
positive semi-definite and, is positive definite.

We can now characterize the stability of an equilibrium poin= 0 for the
system (4.13).

Theorem 4.2(Lyapunov stability) Let V be a non-negative function @&f' and
letV represent the time derivative of V along trajectories @& system dynam-
ics(4.13)

VvV = 07V@< — dl (x)

~ oxdt  ox '

Let B = Br(0) be a ball of radius r around the origin. If there exists>r0 such
thatV is positive definite and is negative semi-definite for allxBy, then x=0
is locally stable in the sense of Lyapunov. If V is positiviinite andV is negative
definite in B, then x= 0is locally asymptotically stable.

If V satisfies one of the conditions above, we say thit a (local)Lyapunov
functionfor the system. These results have a nice geometric intatfmet The
level curves for a positive definite function are the curveinged byV (x) = c,
¢ > 0 and for eaclt this gives a closed contour, as shown in Figure 4.13. The
condition thatV (x) is negative simply means that the vector field points towards
lower level contours. This means that the trajectories mogeraller and smaller
values ofV and ifV is negative definite thenmust approach 0.

Example 4.9 Stability of a simple nonlinear system
Consider the scalar nonlinear system

X= 2 —X
Cl4x
This system has equilibrium pointsat 1 andx = —2. We consider the equilib-
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Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov functd(x) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system vayalvaus¥® (x)

to decrease along the trajectory.

rium point atx = 1 and rewrite the dynamics usizg= x— 1:

. 2
Z=——-2z-1
2+2 ’
which has an equilibrium point at= 0. Now consider the candidate Lyapunov
function

V(X) = %22

which is globally positive definite. The derivative ¥falong trajectories of the

system is given by 5
z

21z
If we restrict our analysis to a baB, wherer < 2, then 2+z > 0 and we can
multiply through by 2+ zto obtain

22— (Z+2)(2+2)=-2-32=-2(z+3)<0 zeB,r<2

V() =z

It follows thatV (z) < 0 for all z€ By, z# 0 and hence the equilibrium poixg= 1
is locally asymptotically stable. O

A slightly more complicated situation occursvfis negative semi-definite. In
this case it is possible th¥t(x) = 0 whenx ## 0 and hence could stop decreasing
in value. The following example illustrates these two cases.

Example 4.10 Hanging pendulum
A normalized model for a hanging pendulum is

dxq dxo .
— =X —— = —sinx
at 2, at 1,
wherex; is the angle between the pendulum and the vertical, withtigesty
corresponding to counter-clockwise rotation. The equdtasian equilibriuny; =
x2 = 0, which corresponds to the pendulum hanging straight ddwrexplore the
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stability of this equilibrium we choose the total energy dyapunov function:

1 1 1
V(X) = 1—cosx + éxg ~ ix% + éxg.

The Taylor series approximation shows that the function sitpe definite for
smallx. The time derivative oV (x) is

V = Xq SiNX1 + XoXo = Xo SiNX1 — Xp Sinxy = 0.
Since this function is positive semi-definite it follows fromydpunov’s theorem
that the equilibrium is stable but not necessarily asynigatly stable. When per-
turbed the pendulum actually moves in a trajectory whichesponds to constant
energy. O

Lyapunov functions are not always easy to find and they are migua. In
many cases energy functions can be used as a starting poi@sadone in Ex-
ample 4.10. It turns out that Lyapunov functions can alwagsdund for any
stable system (under certain conditions) and hence onektimat if a system is
stable, a Lyapunov function exists (and vice versa). Rewslts using “sum
of squares” methods have provided systematic approachdmding Lyapunov
systems [PPP02]. Sum of squares techniques can be applied tachMargety of
systems, including systems whose dynamics are describg@alipggomial equa-
tions as well as “hybrid” systems, which can have differetdeis for different
regions of state space.

For a linear dynamical system of the form

X = AX
it is possible to construct Lyapunov functions in a systeenaianner. To do so,
we consider quadratic functions of the form
V(x) = X" Px,
whereP € R™" is a symmetric matrix® = PT). The condition thaV be positive
definite is equivalent to the condition thRis apositive definite matrix
x'Px>0  forallx+£0,

which we write a? > 0. It can be shown that B is symmetric ther® is positive
definite if and only if all of its eigenvalues are real and pgsit

Given a candidate Lyapunov functidf(x) = x" Px, we can now compute its
derivative along flows of the system:

_ovdx_

-~ ooxdt
The requirement that be negative definite (for asymptotic stability) becomes a
condition that the matrix@ be positive definite. Thus, to find a Lyapunov func-

tion for a linear system it is sufficient to choos®a> 0 and solve thé.yapunov
equation

X" (ATP+PA)x =: —x" Qx.

ATP+PA=—Q. (4.14)
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(@)

Figure 4.14: Stability of a genetic switch. The circuit diagram on the left represents two
proteins that are each repressing the production of the other. The inpaitsiu, interfere
with this repression, allowing the circuit dynamics to be modified. The equifibpoints

for this circuit can be determined by the intersection of the two curvesrsioovthe right.

This is a linear equation in the entries Bf and hence it can be solved using
linear algebra. It can be shown that the equation always kakuton if all of the
eigenvalues of the matriX are in the left half plane (see Exercise 4.8). Moreover
the solutionP is positive definite ifQ is positive definite. It is thus always possible
to find a quadratic Lyapunov function for a stable linear syst&Ve will defer a
proof of this until Chapter 5 where more tools for analysidiméar systems will
be developed.

Knowing that we have a direct method to find Lyapunov functitordinear
systems we can now investigate stability of nonlinear systeConsider the sys-
tem dx

9=
whereF (0) = 0, andF (x) contains terms that are second order and higher in the
elements ok. The functionAxis an approximation df (x) near the origin and we
can determine the Lyapunov function for the linear appr@tion and investigate

if it also is a Lyapunov function for the full nonlinear syste The following
example illustrates the approach.

F(x) =: AX+F(x), (4.15)

Example 4.11 Stability of a Genetic Switch
Consider the dynamics of a set of repressors connectedhergiet a cycle, as
shown in Figure 4.14a. The normalized dynamics for this systeme given in
Exercise 2.10:
da _ p _ dz»_ p
dr 14z Y dr 1+7

wherez; and z, are scaled versions of the protein concentrationand u are
parameters that describes the interconnection betweegeties, and we have set
the external inputs; andus, to zero.

The equilibrium points for the system are found by equatiregtitme deriva-

— 2o, (4.16)
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tives to zero. We define

u pondf o —pnut

1+
and the equilibrium point are defined as the solutions of thmgons

71 = f(Zz) 7 = f(Z]_).

If we plot the curveqz;, f(z)) and(f(z),2) on a graph, then these equations
will have a solution when the curves intersect, as shown inre€ig¢.14b. Because
of the shape of the curves, it can be shown that there willydvwe three solutions:
one atzie = Zpe, ONe Withzye < zpe and one withege > zpe. If > 1, then we can
show that the solutions are given approximately by

1 1
e~ U, Ze= W’ Z1e = Z2e, Z1e ™ Tnil, Ze ~ . (4.17)

To check the stability of the system, we writéu) in terms of its Taylor series
expansion abouig

f(u) = f(Ue)+ f'(Ue) - (U— Ug) + f”(Ug) - (U— Ue)? + higher order terms

where f’ represents the first derivative of the function aifdthe second. Using
these approximations, the dynamics can then be written as

dw (-1 f'(z) =
a_ [f/(zle) _i ]W+F(W)>

wherew = z— 7 is the shifted state ariél(w) represents quadratic and higher order
terms.

We now use equation (4.14) to search for a Lyapunov funct@mosingQ = |
and lettingP € R%*? have elementsg;j, we search for a solution of the equation

-1 fp) (P P2 (Pu Pw2) (-1 f1)_ (-1 0

fi -1 P12 P22 P12 P22 f, —1 o -1)°
wheref; = f'(ze) and f) = f’(z2e). Note that we have sgh1 = p12 to forceP to
be symmetric. Multiplying out the matrices, we obtain

—2pu+2f3p12 pufi—2pa+p2f;) _ (-1 0
P11f] —2p12+ p22fy  —2p22+2f1p12 0o -1)°
which is a set ofinear equations for the unknowns;. We can solve these linear
equations to obtain
f2 5§42 f1 4t f5— f]f)+2

S s N

To check tha¥ (w) = w"Pwis a Lyapunov function, we must verify thetw) is
positive definite function or equivalently thBt> 0. SinceP is a 2x 2 symmetric
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matrix, it has two real eigenvalu@dg andA, that satisfy
)\1+/\2:trace{P), Al-AZ:det(P).

In order forP to be positive definite we must have thigtandA, are positive and
we thus require that

f2 25+ 5+ 4 f2 251+ 5+ 4
4— 4f/1) 16— 16f; 5

We see that tra¢®) = 4de(P) and the numerator of the expressions is jigt-

f2)2+4 > 0, so it suffices to check the sign of-1f; f;. In particular, forP to be

positive definite, we require that

f'(z16) ' (20e) < 1.

We can now make use of the expressionsffadefined earlier and evaluate at
the approximate locations of the equilibrium points detiireequation (4.17). For
the equilibrium points whereye # 2y, we can show that

tracgP) = > 0.

>0, detP)=

1 (20) () ~ () (g — HORT Y g O e
le 2e) ~ IJ) (Iln_l) - (1+un)2 1+H_n(n_1) ~ N .
Usingn = 2 andu = 200 from Exercise 2.10 we see thd{ze) f'(z¢) < 1 and
henceP is a positive definite. This implies th¥tis a positive definite function and
hence a potential Lyapunov function for the system. _

To determine if the system (4.16) is stable, we now compuge the equilib-
rium point. By construction

V =w' (PA+ATP)W+FT (W)Pw+w'PF (W) = —w'w+F T (w)Pw+w'PF (w).

Since all terms irF are quadratic or higher order i, it follows thatF T (w)Pw
andw' PF (w) consist of terms that are at least third ordemin Therefore ifw
is sufficiently close to zero then the cubic and higher ordengewill be smaller
than the quadratic terms. Hence, sufficiently close/te 0,V is negative definite
allowing us to conclude that these equilibrium points aréhlstable.

Figure 4.15 shows the phase portrait and time traces for ammysith u = 4,
illustrating the bistable nature of the system. When theaincondition starts with
a concentration of protein B greater than protein A, thetsmiuconverges to the
equilibrium point at (approximatelyl/u"~*, i) and if A is greater then B then it
goes to(u,1/u"1). The equilibrium point withzye = 25¢ is seen to be unstable.

0

More generally, we can investigate what the linear apprasion tells about
the stability of a solution to a nonlinear equation. The felltg theorem gives a
partial answer for the case of stability of an equilibriunino

Theorem 4.3. Consider the dynamical systef@ 15)with F(0) = 0 and F such
thatlim ||F(x)||/||x|| — O as||x|| — O. If the real parts of all eigenvalues of A are
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Protein B (scaled)
Protein concentration (scaled)

0 1 2 3 4 5 0 5 10 15 20 25
Protein A (scaled) time (scaled)

Figure 4.15: Dynamics of a genetic switch. The phase portrait on the left shows that the
switch has three equilibrium points, corresponding to protein 1 havingeoration greater
than, equal to or less than protein 2. The concentration with equal prategectrations is
unstable, but the other equilibrium points are stable. The simulation on tHeskigtvs the
time response of the system starting from two different initial conditions.

strictly less than zero, then,x= 0 is a locally asymptotically stable equilibrium
point of equation(4.15)

This theorem implies that asymptotic stability of the linegproximation im-
plies local asymptotic stability of the original nonlinear system. Thedrem is
very important for control because it implies that stalilian of a linear approxi-
mation of a nonlinear system results in a stable equilibfionhe nonlinear sys-
tem. The proof of this theorem follows the technique used innip{a 4.11. A
formal proof can be found in [KhaO1].

Krasovskii-Lasalle Invariance Principle

For general nonlinear systems, especially those in symfmiin, it can be difficult
to find a positive definite functioM whose derivative is strictly negative definite.
The Krasovskii-Lasalle theorem enables us to conclude agfimgtability of an
equilibrium point under less restrictive conditions, nma the case thaV is
negative semi-definite, which is often easier to construotvéier, it applies only
to time-invariant or periodic systems.

We will deal with the time-invariant case and begin by introithg a few more
definitions. We denote the solution trajectories of the timeriant system

dx

dt
asx(t : a), which is the solution of equation (4.18) at tirhestarting froma at
to = 0. Thew limit setof a trajectoryx(t;a) is the set of all pointz € R" such
that there exists a strictly increasing sequence of titpesich thatx(tn;a) — z
asn — o. A setM C R" is said to be amnvariant setif for all b € M, we have

X(t;b) € M for allt > 0. It can be proved that the limit set of every trajectory is
closed and invariant. We may now state the Krasovskii-Lagaihciple.

F(X) (4.18)
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Theorem 4.4(Krasovskii-Lasalle principle)Let V: R" — R be a locally positive
definite function such that on the compactQet= {x € R": V(x) < r} we have
V(x) < 0. Define ,

S={xe Q;:V(x) =0}.

As t— oo, the trajectory tends to the largest invariant set inside.&; its w limit
set is contained inside the largest invariant set in S. Irtipatar, if S contains no
invariant sets other than x 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].

Lyapunov functions can often be used to design stabilizioigtrollers as is
illustrated by the following example, which also illusgathow the Krasovskii-
Lasalle principle can be applied.

Example 4.12 Stabilization of an inverted pendulum
Following the analysis in Example 2.7, an inverted pendulamze described by
the following normalized model:

dX]_
at — X2,
wherex; is the angular deviation from the upright position ants the (scaled)
acceleration of the pivot. The system has an equilibriurr,at xo = 0, which
corresponds to the pendulum standing upright. This equilibis unstable.
To find a stabilizing controller we consider the following dadate for a Lya-
punov function

d .
d—);z = SiNX1 + UCOSXy, (4.19)

1 1 1
V(x) = (cosxg — 1) +a(1—cogxg) + éxg ~ (a— é)x§+ QX%'

The Taylor series expansion shows that the function is pesiefinite near the
origin if a> 0.5. The time derivative o¥ (x) is

V = —Xq SiNxXg + 2ax; SiNX1 COSX + XoXp = X2(U+ 2asinx; ) COSX;.
Choosing the feedback law
U= —2asinx; — X» COSX,

gives _
V = —x3c08xq,

It follows from Lyapunov’s theorem that the equilibrium ischlly stable. How-
ever, since the function is only negative semi-definite wenononclude asymp-
totic stability using Theorem 4.2. However, note thiat 0 implies thatx, =0 or
X1 = T/2+nm.
If we restrict our analysis to a small neighborhood of thgiorQ),, r < /2
then we can define
S={(x1,%) € Q; 1 xp =0}

and we can compute the largest invariant set inSideéor a trajectory to remain
in this set we must have, = 0 for allt and hence(t) = 0 as well. Using the
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Figure 4.16: Phase portrait for a stabilized inverted pendulum. The shaded regicates!
the set of initial conditions that converge to the origin. The ellipse corredpto a level
set of a Lyapunov functiol (x) for whichV(x) > 0 andV (x) < 0 for all points inside the
ellipse. This can be used as an estimate of the region of attraction of the gquiljoint.

dynamics of the system (4.19), we see thét) = 0 andx(t) = 0 impliesx;(t) =0
as well. Hence the largest invariant set ins&is (x1,x2) = 0 and we can use the
Krasovskii-Lasalle principle to conclude that the origidasally asymptotically
stable. A phase portrait of the closed loop system is shoviaigare 4.16.

O

4.5 PARAMETRIC AND NON-LOCAL BEHAVIOR

Most of the tools that we have explored are focused on thd lwelzavior of a
fixed system near an equilibrium point. In this section weflyrimtroduce some
concepts regarding the global behavior of nonlinear systand the dependence
of a system'’s behavior on parameters in the system model.

Regions of attraction

To get some insight into the behavior of a nonlinear systernamestart by finding
the equilibrium points. We can then proceed to analyze tbal loehavior around
the equilibria. The behavior of a system near an equilibriwimtpis called the
local behavior of the system.

The solutions of the system can be very different far away famrequilibrium
point. This is seen, for example, in the stabilized penduluiExample 4.12. The
inverted equilibrium point is stable, with small osciltatis that eventually con-
verge to the origin. But far away from this equilibrium pothere are trajectories
that converge to other equilibrium points or even cases iithvthe pendulum
swings around the top multiple times, giving very long datibns that are topo-
logically different from those near the origin.

To better understand the dynamics of the system, we can agraime set of all
initial conditions that converge to a given asymptoticaligble equilibrium point.
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This set is called thesgion of attractionfor the equilibrium point. An example is
shown by the shaded region in Figure 4.16. In general, compuégions of at-
traction is difficult. However, even if we cannot determine thgion of attraction,
we can often obtain patches around the stable equilibrizatteaattracting. This
gives partial information about the behavior of the system.

One method for approximating the region of attraction i®tigh the use of
Lyapunov functions. Suppose thdtis a local Lyapunov function for a system
around an equilibrium poing. Let Q; be set on whiclV (x) has value less than

Qr={xeR":V(x)<r},

and suppose that(x) < 0 for all x € Q;, with equality only at the equilibrium
pointxg. ThenQ; is inside the region of attraction of the equilibrium poiSince
this approximation depends on the Lyapunov function andhivéce of Lyapunov
function is not unique, it can sometimes be a very conservastimate.

It is sometimes the case that we can find a Lyapunov funati@uch thatv is
positive definite an¥ is negative (semi-) definite for atle R". In this case it can
be shown that the region of attraction for the equilibriuninpds the entire state
space and the equilibrium point is said todlebally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Exampl2. The Lya-
punov function for the system was

V(x) = (cosxg — 1) +a(1—cogxg) + %x%

andV was negative semidefinite for alland nonzero wher; +711/2. Hence
anyx such thatxz| < /2, V(x) > 0 will be inside the invariant set defined by the
level curves oV (x). These level sets are shown in Figure 4.16. O

Bifurcations

Another important property of nonlinear systems is howrthehavior changes as
the parameters governing the dynamics change. We can $tisdiy the context
of models by exploring how the location of equilibrium paintheir stability, their
regions of attraction, and other dynamic phenomena suchmétscycles, vary
based on the values of the parameters in the model.
Consider a differential equation of the form

dx

4t = Foom), xeR", peRX (4.20)
wherex is the state angl is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x,u)=0
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Figure 4.17: Bifurcation analysis of the predator-prey system. (a) Parametric stadbidity
gram showing the regions in parameter space for which the system is atab(b) bifurca-
tion diagram showing the location and stability of the equilibrium point as a fumctidy,.
The dotted lines indicate the upper and lower bounds for the limit cycle apdrameter
value (computed via simulation). The nominal values of the parameterg imtidel are
rp = 0.02,K =500,a=0.03,T, =5, = 0.01 andk = 0.2.

and asu is varied, the corresponding solutiorg i) can also vary. We say that
the system (4.20) hasadfurcationat u = u* if the behavior of the system changes
qualitatively atu*. This can occur either due to a change in stability type or a
change in the number of solutions at a given valug of

Example 4.14 Predator-prey
Consider the predator-prey system described in SectionT®& .dynamics of the
system are given by

aH _ . (y HY)__aHL
dat " K) 1+aHT,

dL L

whereH andL are the number of hares (prey) and lynxes (predators)yarrg,
K, k, aandTy, are parameters that model a given predator-prey systerorijoed
in more detail in Section 3.7). The system has an equilibriumtd He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behafithe sys-
tem, we choose to focus on two specific parameters of interesire growth rate
of the lynxes, andl}, the time constant for prey consumption. Figure 4.17a is
a numerically computegarametric stability diagranshowing the regions in the
chosen parameter space for which the equilibrium poingaislst(leaving the other
parameters at their nominal values). We see from this figueftn certain com-
binations ofr; and T, we get a stable equilibrium point while at other values this
equilibrium point is unstable.

Figure 4.17b shows a numerically computatlrcation diagramfor the sys-

(4.21)
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tem. In this plot, we choose one parameter to vapy &nd then plot the equilib-
rium value of one of the statek)(on the vertical axis. The remaining parameters
are set to their nominal values. A solid line indicates thatequilibrium point is
stable; a dashed line indicates that the equilibrium paintistable. Note that the
stability in the bifurcation diagram matches that in thegpaetric stability diagram
for r; = 0.01 (the nominal value) an@, varying from 0 to 20. For the predator-
prey system, when the equilibrium point is unstable, thetsm converges to a
stable limit cycle. The amplitude of this limit cycle is showsing the dot-dashed
line in Figure 4.17b. O

A particular form of bifurcation that is very common when trtiing linear
systems is that the equilibrium remains fixed, but the stgwoli the equilibrium
changes as the parameters are varied. In such a case it &imgv® plot the
eigenvalues of the system as a function of the parameterdh [Bats are called
root locus plotsbecause they give the locus of the eigenvalues when parnamete
change. Bifurcations occur when parameter values are sathhere are eigen-
values with zero real part. Computing environments such LBk, MATLAB
and Mathematica have tools for plotting root loci.

Example 4.15 Root locus plot for a bicycle model

Consider the linear bicycle model given by equation (3. §eaation 3.2. Introduc-
ing the state variableg = ¢, xo = J, x3 = ¢ andx4 = & and setting the steering
torqueT = 0 the equations can be written as

dx 0 [

dt ~M~1(Ko+Kav3) —MiCv X=AX

wherel is a 2x 2 identity matrix ands is the velocity of the bicycle. Figure 4.18a
shows the real parts of the eigenvalues as a function of ¥gloEigure 4.18b
shows the dependence of the eigenvaluesarf the velocityy. The figures show
that the bicycle is unstable for low velocities because twemvalues are in the
right half plane. As the velocity increases these eigemslmove into the left
half plane indicating that the bicycle becomes self-sizbij). As the velocity is
increased further there is an eigenvalue close to the dfigirmoves into the right
half plane making the bicycle unstable again. However, ¢igenvalue is small
so it can easily be stabilized by a rider. Figure 4.18b showsttie bicycle is
self-stabilizing for velocities between 6 and 10 m/s. O

Parametric stability diagrams and bifurcation diagranmsaravide valuable in-
sights into the dynamics of a nonlinear system. It is ususdigessary to carefully
choose the parameters that one plots, including combihiegéatural parameters
of the system to eliminate extra parameters when possibbenpQter programs
such aAUTO, LOCBI F andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.
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Figure 4.18: Stability plots for balancing a bicycle. The left plot shows the real partef th
system eigenvalues as a function of the bicycle velocityvhen one or more eigenvalues
have positive real part, the system is unstable. The figure on the rigitssthe locus of
eigenvalues on the complex plane as the velocigyvaried and gives a different view of the
stability of the system. This type of plot is called a root locus plot.

* VeloGity v °

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations tcsag feedback laws
that stabilize and equilibrium point and provide a desim¢kl of performance.
However, for some classes of problems the feedback coatmolist be nonlinear
to accomplish its function. By making use of Lyapunov fuans we can often
design a nonlinear control law that provides stable bemaagowe saw already in
Example 4.12.

One way to systematically design a nonlinear controllemidegin with a
candidate Lyapunov functioW (x) and a control systert = f(x,u). We say
thatV (x) is acontrol Lyapunov functiotif for every x there exists ai such that
V(x) = %f(x, u) < 0. In this case, it may be possible to find a functim(x)
such thatu = a(x) stabilizes the system. The following example illustrates th
approach.

Example 4.16 Noise cancellation

Noise cancellation is used in consumer electronics anddinstrial systems to re-
duce the effects of noise and vibrations. The idea is to lpceliiuce the effect
of noise by generating opposing signals. A pair of headphoevith noise can-
cellation such as those shown in Figure 4.19a is a typical pl@anf schematic
diagram of the system is shown in Figure 4.19b. The system lmastarophones,
one outside the headphones that picks up exterior no&®d another inside the
headphones that picks up the sigaalvhich is a combination of the desired signal
and the external noise that penetrates the headphone. Ttz &@m the exterior
microphone is filtered and sent to the headphones in such ahatit tancels the
external noise that penetrates into the headphones. Thegta of the filter are
adjusted by a feedback mechanism to make the noise sigrted internal micro-
phone as small as possible. The feedback is inherently reanllmecause it acts by
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Figure 4.19: Headphones with noise cancellation. Noise is sensed by the exterior micro-
phone (a) and sent to a filter in such a way that it cancels the noise trettqtes the head
phone (b). The parameters of the filter are adjusted by the controller.

changing the parameters of the filter.

To analyze the system we assume for simplicity that the aipen of external
noise into the headphones is modeled by a first order dynasyst#m described
by

g—tz = apz+ bon, (4.22)

wherezis the sound level and the paramei&ys: 0 andbg are not known. Assume
that the filter is a dynamical system of the same type

d—W = aw+ bn
dt '

We wish to find a controller that updatesand b so that they converge to the
(unknown) parameteld andbp. Introducex; =e=w-—12z X = a—ap andxz =
b —bg, then

d
% — —ag(x—2) + (a—ag)w+ (b—bo)n = —agxs — XoX+Xan.  (4.23)

We will achieve noise cancellation if we can find a feedbackfiawchanging the
parameters andb so that the erroe goes to zero. To do this we choose

1
V(x50 %) = 5 (oX§ +5 +x3)

as a candidate Lyapunov function for (4.23). The derivativé s
V= AX1X1 + XoXo + X3X3 = —C(aoX% + X2(X2 + aXgW) + X3(X3 + X1n)

Choosing
Xo = AXX = AEW X3 = axn=aen (4.24)

we find thatv = —aaoxf, and it follows that the quadratic function will decrease
as long ae = x; =w—2z+# 0. The nonlinear feedback (4.24) thus attempts to
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headphgne s
nal without noise cancellation and the bottom left shows the signal with narseetiation.
The right figures show the parameterandb of the filter.

change the parameters so that the error between the sighth@noise is small.
Notice that feedback law (4.24) does not use the model (£23)citly.

A simulation of the system is shown in Figure 4.20. In the satiah we have
represented the signal as a pure sinusoid and the noisesabtiand noise. The fig-
ure shows the dramatic improvement with noise cancellafldre sinusoidal sig-
nal is not visible without noise cancellation. The filter paedens change quickly
from their initial valuesa = b = 0. Filters of higher order with more coefficients
are used in practice. O

4.6 FURTHER READING

The field of dynamical systems has a rich literature that chewizes the possi-
ble features of dynamical systems and describes how patiarabainges in the
dynamics can lead to topological changes in behavior. RBadatroductions to
dynamical systems are given by Strogatz [Str94] and the hijbstrated text by
Abraham and Shaw [AS82]. More technical treatments includdrémov, Vitt
and Khaikin [AVK87], Guckenheimer and Holmes [GH83] and §iits [Wig90].
For students with a strong interest in mechanics, the tex#srbold [Arn87] and
Marsden and Ratiu [MR94] provide an elegant approach usialg from differ-
ential geometry. Finally, nice treatments of dynamical eyst methods in biol-
ogy are given by Wilson [Wil99] and Ellner and Guckenheimer (5 There
is a large literature on Lyapunov stability theory, incluglithe classic texts by
Malkin [Mal59], Hahn [Hah67] and Krassovskii [Kra63]. Weghily recommend
the comprehensive treatment by Khalil [KhaO01].
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EXERCISES

4.1 Show that if we have a solution of the differential equatioril)4jiven by
X(t) with initial conditionx(tp) = Xo, thenxX{(1) = Xx(t —tg) — Xo is a solution of the
differential equation

with initial conditionX(0) = 0.

4.2 Consider the cruise control system described in Section Bldt the phase
portrait for the combined vehicle dynamics and Pl compemsaith k, = 1 and
ki = 0.5.

4.3 Consider the predator-prey example introduced in Secti@n $he phase
portrait for this system is shown in Figure 3.20b. In additothe two equilibrium
points, we see a limit cycle in the diagram. This limit cyclafgactingor stable
since initial conditions near the limit cycle approach itiage increases. It divides
the phase space into two different regions: one inside thi¢ ¢diycle in which the
size of the population oscillations grows with time (urttiéy reach the limit cycle)
and one outside the limit cycle in which they decay.

4.4 We say that an equilibrium point = 0 is anexponentially stablequilibrium
point of (4.2) if there exist constants, a > 0 ande > 0 such that
Ix(®)] < me 1) x(to) (4.25)

for all |x(tp)|| < € andt > tg. Prove that an equilibrium point is exponentially
stable if and only if there exists &> 0 and a functioV (x,t) that satisfies

a]|X|[? <V (x,t) < azlx|?
dv

— < —ag|x||*
dt [ r(xy)
oV
i <
| X ()] < aallX|

for some positive constants, a2, as, a4, and||x|| < e.

4.5 Consider the asymptotically stable system

dx (-A O

at b A%
whereA > 0. Find a Lyapunov function for the system that proves asytitpto
stability.

4.6 The following simple model for an electric generator conaddb a strong
power grid was given in Exercise 2.8:
d? EV .
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The parameter
_ Pmax  EV

Pn XPn
is the ratio between the maximum deliverable poRgsx= EV/X, and the me-

chanical poweR,. Considera as a bifurcation parameter and discuss how the
equilibria depend oa.

(4.26)

4.7 Consider the model in the previous example vétis 1. Show that there is a
center atpo = arcsir(1l/a) and a saddle ap = 11— ¢o. Also show that the orbit
through the saddle is given by

1 2
(20(;?) — ¢ +¢o—acosp —vaz—1=0. (4.27)
Simulate the system and show that the stability region isrttezior of this orbit.
Investigate what happens if the system is in equilibriunhvaitvalue ofa that is

slightly larger than 1 and suddenly decreases, corresponding to the reactance of
the line suddenly increasing.

4.8 Show that Lyapunov equation (4.14) always has a solution dfahe eigen-
values ofA are in the left half plane. (Hint: use the fact that the Lyamuequation
is linear inP and start with the case whefehas distinct eigenvalues.)

4.9 (Congestion control) Consider the congestion control lembdescribed in
Section 3.4. Confirm that the equilibrium point for the systengiven by equa-
tion (3.21) and compute the stability of this equilibriumintousing a linear ap-
proximation.

4.10(Swinging up a pendulum) Consider the inverted penduluncudised in Ex-
ample 4.4, which is described by

6 = sinf +ucosb,

wheref is the angle between the pendulum and the vertical and theotsignal
u is the acceleration of the pivot. Using the energy function

V(6,0) =cosh — 1+ %62,
show that the state feedback
u=k(Vo—V)0cosh (4.28)
causes the pendulum to “swing up” to upright position.
4.11(Root locus plot) Consider the linear system
a3 1) (2):
dt~ |0 -3 4

y= (1 o)x
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with the feedbacki = —ky. Plot the location of the eigenvalues as a function the
parametek.

4.12 An op amp circuit for an oscillator was shown in Exercise 3.5sTihear cir-
cuit was stable but naturally not asymptotically stable.cAesnatic of a modified
circuit which has nonlinear elements is shown in the figurewellhe modifica-

tion is obtained by making a feedback around each opera@omaglifier which has
capacitors using multipliers. The sigreal = V2 + V3 — V3 is the amplitude error.
Show that the system is modeled by

dVl . R4 1
dt R1R3Clv2+ R11C1V1(V% “viov)
d 1 1
2 V(G V2 —\3)

- v
dt RCo * * RooCo

Show that the circuit gives and oscillation with a stable fiayicle with amplitude
Vp. (Hint: Use the results of Example 4.8.)

4.13 (Self activating genetic circuit) Consider the dynamics ajemetic circuit
that implementself activation the protein produced by the gene is an activator
for the protein, thus stimulating its own production. Usthg models presented
in Example 2.13, the dynamics for the system can be written as

dm_ _ap®
dt ~ 1k (o ¥m
dp

E—Bm—ép

for p,m > 0. Find the equilibrium points for the system and analyze twall
stability of each using Lyapunov analysis.

4.14 Prove that if a matrix has distinct eigenvalues, it is diadjaanhble.
4.15(Pitchfork bifurcation) Consider the scalar dynamical sgst
X = ux—x2.

The equilibrium values of are plotted below, with solid lines representing stable
equilibria and dashed lines representing unstable egqailitAs illustrated in the
figure, the number and type of the solutions changgs at0 and hence we say
there is a bifurcation gt = 0.
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X" x*
—--
a8 \
k u ’ u
_ 7’
(a) supercritical pitchfork (b) subcritical pitchfork

Note that the sign of the cubic term determines whether thedation gen-
erates a stable branch (calledsapercritical bifurcation and shown in (a) or a
unstable branch (calledsabcritical bifurcation and shown in (b).

4.16 Let A € R™" be a matrix with eigenvalues,,...,A, and corresponding
eigenvectorss, ..., Vy.

(a) Show that if the eigenvalues are distingt£ A; for i # j) theny; # v; for
i .

(b) Show that the eigenvectors form a basiskdrso that any vectox can be
written asx =3 ajv; for a; € R.

(c) LetT=|v1 v ... vn| and show thaTAT lis a diagonal matrix of
the form (4.8) on page 111.

This form of the dynamics of a linear system is often referceddmodal form



Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For examplesthéon between
force on a spring and displacement of the spring is always nonlinear t@ stagree. The
relation between current through a resistor and voltage drop acrosksd deviates from a
straight-line relation. However, if in each case the relatioméasonablyinear, then it will
be found that the system behavior will be very close to that obtained bynaggan ideal,
linear physical element, and the analytical simplification is so enormousitbahake linear
assumptions wherever we can possibly do so in good conscience.

R. CannonpPynamics of Physical Systeni®967 [Can03].

In Chapters 2—4 we considered the construction and anaty<sigferential
equation models for dynamical systems. In this chapter weiafize our results
to the case of linear, time-invariant, input/output systerwo central concepts
are the matrix exponential and the convolution equatiorguth which we can
completely characterize the behavior of a linear system.alde describe some
properties of the input/output response and show how tooxppate a nonlinear
system by a linear one.

5.1 BASIC DEFINITIONS

We have seen several instances of linear differential @nsin the examples of
the previous chapters, including the spring-mass systamgeéd oscillator) and
the operational amplifier in the presence of small (non-a#ing) input signals.
More generally, many dynamical systems can be modeled aetyby linear dif-
ferential equations. Electrical circuits are one example lofoad class of systems
for which linear models can be used effectively. Linear msagk also broadly
applicable in mechanical engineering, for example as nsoofesmall deviations
from equilibria in solid and fluid mechanics. Signal procegsystems, including
digital filters of the sort used in CD and MP3 players, are anatbarce of good
examples, although often these are best modeled in didoret€as described in
more detail in the exercises).

In many cases, wereatesystems with linear input/output response through
the use of feedback. Indeed, it was the desire for lineanbehthat led Harold S.
Black to the invention of the negative feedback amplifier. 8$trall modern single
processing systems, whether analog or digital, use fe&dbgeroduce linear or
near-linear input/output characteristics. For theseesyst it is often useful to
represent the input/output characteristics as linealrigg the internal details
required to get that linear response.
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For other systems nonlinearities cannot be ignored, eslbedi one cares
about the global behavior of the system. The predator-prelyl@m is one exam-
ple of this: to capture the oscillatory behavior of the idegendent populations
we must include the nonlinear coupling terms. Other examplelude switch-
ing behavior and generating periodic motion for locomatiBlowever, if we care
about what happens near an equilibrium point, it often sidficeapproximate
the nonlinear dynamics by their lodalearization as we already explored briefly
in Section 4.3. The linearization is essentially an approXionaof the nonlinear
dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systemseriormally. Con-
sider a state space system of the form

dx = f(x,u), y = h(x,u), (5.1)
dt

wherex € R", u € RP andy € RY. As in the previous chapters, we will usually

restrict ourselves to the single input, single output castakingp=q= 1. We

also assume that all functions are smooth and that for amaagoclass of inputs

(e.g., piecewise continuous functions of time) that theitsohs of equation (5.1)

exist for all time.

It will be convenient to assume that the origin= 0, u= 0 is an equilibrium
point for this systemx = 0) and thath(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose {ixatue) # (0,0) is an equilibrium point
of the system with outpute = h(xe,Ue). Then we can define a new set of states,
inputs and outputs

X=X—% UO=uU-Us V=Yy-VYe
and rewrite the equations of motion in terms of these vagibl

—X
dt N
¥=h(X+X%e,0+Ue) —Ye =:h(

Xt
=t

)
).

In the new set of variables, the origin is an equilibrium pauith output 0, and
hence we can carry out our analysis in this set of variablese@e have obtained
our answers in this new set of variables, we simply “traesl#tem back to the
original coordinates using= Xe+ X, U= Ug+ G andy = ye+V.

Returning to the original equations (5.1), now assumindneuit loss of gen-
erality that the origin is the equilibrium point of intereste write the outpuy(t)
corresponding to initial conditior(0) = xo and inputu(t) asy(t;xo,u). Using
this notation, a system is said to béireear input/output systentf the following

= f(R+Xe, U+ Ue) —: f(

)

Xt
o=}
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conditions are satisfied:

() y(t;axi+ Bxz,0) = ay(t; x1,0) + By(t; %2, 0)
(i) y(t; axo,0u) = ay(t; %o, 0) + Oy(t; 0, u) (5.2)
(iii)  y(t;0,0u1+ yup) = SY(t; 0,uz) + yy(t; 0, u2).

Thus, we define a system to be linear if the outputs are jointlsal in the initial
condition response and the forced response. Property (iigisisual decomposi-
tion of a system response into the homogeneous resporse)(and the particular
responsexp = 0). Property (iii) is the formal definition of therinciple of super-
position

The general form of a linear state space system is

(;(—Ax—i— Bu, y =Cx+Du, (5.3)
whereA € R™" B e R™P, C e R™", D € R¥P. In the special case of a single-
input, single-output system® is a column vectorC is a row vector and is
scalar. Equation (5.3) is a system of linear, first order, diffidal equations with
inputu, statex and outpuy. It is easy to show that given solutiorgt) andxx(t)
for this set of equations, that they satisfy the linearitpditions (Exercise 5.1).

We define the solutiom,(t) with zero input as th@omogeneousolution and
the solutiorxp(t) with zero initial condition as thparticular solution. Figure 5.1
illustrates how the homogeneous and particular solutiansbe superimposed to
form the complete solution.

It is also possible to show that if a finite dimensional dynahgystem is in-
put/output linear in the sense we have described, that ititveays be represented
by a state space equation of the form (5.3) through apptepciacice of state
variables. In Section 5.2 we will give an explicit solutionezfuation (5.3) but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first order differential equation

— =ax+u, y=X

with x(0) = Xo. Letu; = Asinwit andu; = Bcoswyt. The homogeneous solution
is Xn(t) = €¥'xg, and the two particular solutions are

—w €+ wy coswt + asinowgt
a2+ w7
ae! — acoswpt + wp Sinwpt
as+ w5

Suppose that we now choog€)) = axp andu = u; + Up. Then the resulting
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Input (u) State (x, x,) Output (y)
2 2 2
3
31 1 1
[}
c
g o 0 0
=]
5
£ -1 -1 -1
-2 -2 -2
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2 2 2
1 1 1
<
3 A /\
g o 0 0
g
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2 2 2
o 1 1 1
o
Q.
£ 0 0 0
3]
-1 -1 -1
-2 -2 -2
0 20 40 60 0 20 40 60 0 20 40 60
time (sec) time (sec) time (sec)

Figure 5.1: Superposition of homogeneous and particular solutions. The first mowss
the input, state and output corresponding to the initial condition respoitesé&cond row
shows the same variables corresponding to zero initial condition, baen@input. The
third row is the complete solution, which is the sum of the two individual solutions

solution is
A Ba
x(t):eat<orxo+ 5 w12+ 5 2)
a“+w a+w
_AwlcosahtJrasinwlt B—acoswzt+cozsinw2t

5.4
a2+ w? a2+ w3 >4)

To see this, substitute equation (5.4) into the differéeigation. Thus, the prop-
erties of a linear system are satisfied. O

Time Invariance

Time invarianceas an important concept that is used to describe a systemewvhos
properties do not change with time. More precisely, for aetimvariant system
if the input u(t) gives outputy(t), then if we shift the time at which the input
is applied by a constant amouat u(t + a) gives the outpuy(t +a). Systems
that are linear and time-invariant, often calledl systemshave the interesting
property that their response to an arbitrary input is coteplecharacterized by
their response to step inputs or their response to shortuiiseg”.

To explore the consequences of time-invariance, we first cberibe response
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant signakcan
represented as a sum of step signals (a) and the resulting output is ttoé thenindividual
outputs (b).

to a piecewise constant input. Assume that the system ialipiait rest and con-
sider the piecewise constant input shown in Figure 5.2a. Tinat inas jumps at
timesty and its values after the jumps anéy). The input can be viewed as a
combination of steps: the first step at titgehas amplitude(tp), the second step
at timet; has amplitudei(t;) — u(tp), etc.

Assuming that the system is initially at an equilibrium gdigo that the initial
condition response is zero), the response to the input cabtiad@ed by superim-
posing the responses to a combination of step inputsHI(Btbe the response to
a unit step applied at time 0. The response to the first steprsHliie— to)u(to),
the response to the second stepi& —t1) (u(t1) — u(to)), and we find that the
complete response is given by

y(t) = H(t —to)u(to) + H(t — tl) (u(tz) — u(to)) + - --
(H(t) H(t_tl) (H(t—tl t—tz))u(tl)+...
)

(2]

— ZJ(H(t—tn) H(t—thi1))u(tn)

2 H(t—tn) —H(t -t
n= tn+1 —tn

An example of this computation is shown in Figure 5.2.
The response to a continuous input signal is obtained by datkia limit as
the1—ty — 0, which gives

. /OOOH’(t—T)u(T)dT, (5.5)

whereH’ is the derivative of the step response, also calledripilse response
The response of a linear time-invariant system to any inputicas be computed
from the step response. Notice that the output only depemdseoinput since we
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assumed the system was initially at re$0) = 0. We will derive equation (5.5) in
a slightly different way in the next section.

5.2 THE MATRIX EXPONENTIAL

Equation (5.5) shows that the output of a linear system carritewas an integral
over the inputsi(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial condition&e begin by exploring

the initial condition response using the matrix exponéntia

Initial Condition Response

Although we have shown that the solution of a linear set ded#htial equations
defines a linear input/output system, we have not fully corgbtihe solution of
the system. We begin by considering the homogeneous respongsponding to
the system
dx
dt
For thescalardifferential equation

= AX (5.6)

X = ax xeR, aeR
the solution is given by the exponential

x(t) = €¥x(0).

We wish to generalize this to the vector case, whiebecomes a matrix. We define
thematrix exponentiahs the infinite series

_ 1 2 3
e = |+x+2x+ x %k' , (5.7)

whereX € R™"is a square matrix andis then x nidentity matrix. We make use
of the notation
X0=1 X?=XX X"=x"1X,

which defines what we mean by the “power” of a matrix. Equatiai)(& easy
to remember since it is just the Taylor series for the scalpoeential, applied to
the matrixX. It can be shown that the series in equation (5.7) conveiwesany
matrix X € R™" in the same way that the normal exponential is defined for any
scalara € R.

ReplacingX in equation (5.7) byAt wheret € R we find that

1 1 ® 1
M= | LAt AR A = > .\l
2 3! Lok
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and differentiating this expression with respect gives
d 1 > 1
— M= AL A+ AN =AY AR = A 5.8
dt TATEGAT =AY 8

Multiplying by x(0) from the right we find thax(t) = €*x(0) is the solution to the
differential equation (5.6) with initial conditiox(0). We summarize this important
result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6)is given by
x(t) = éMx(0).

Notice that the form of the solution is exactly the same asfatar equations,
but we must put the vectox0) on the right of the matrix™!.

The form of the solution immediately allows us to see that theton is linear
in the initial condition. In particular, iky (t) is the solution to equation (5.6) with
initial condition x(0) = Xp1 andxnz2(t) with initial condition x(0) = xg2, then the
solution with initial conditionx(0) = axo1+ BXoz IS given by

X(t) = M (axo1+ Bxoz) = (A€ %o1+ BEMX02) = aXp(t) + BXna(t).
Similarly, we see that the corresponding output is given by

y(t) = Cx(t) = ayn(t) + Byn2(t),

whereyp (t) andyno(t) are the outputs correspondingXq (t) andxn(t).
We illustrate computation of the matrix exponential by twamples.

Example 5.2 Double integrator
A very simple linear system that is useful for understandiagic concepts is the
second order system given by

G=u
y=a

This system system is calleddauble integratobecause the inputis integrated
twice to determine the outpyt
In state space form, we write= (qg,q) and

dx_ (0 1) . (0],
dt— (0 O 1)~

The dynamics matrix of a double integrator is

01
A—[oo

and we find by direct calculation thAZ = 0 and hence

“n (s
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Thus the homogeneous solutian= 0) for the double integrator is given by

- (3 3) (28] - (5
y(t) = x1(0) +1tx2(0).

Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring-mastesysvith zero damp-
ing, is

G+ wfg=u.
Putting the system into state space form, the dynamics nfatrihis system can
be written as

A 0 w and At _ co_swot sinapt '
—wy O —Sinapt  cosant

This expression foe™ can be verified by differentiation:

Ee/“— —wpSinapt  wp Cosupt
dt = = | —apcoswpt  —wpSinupt

_ 0 w co_swot sinaypt — AX(1),
—wpy O —sSinapt  cosunt

The solution is then given by

cosupt  Sinupt x1(0
x(t) = e'x(0) = [_sinwot coswot] [X;(Og]'

If { # 0 then the solution is more complicated, but the matrix exptial can
be shown to be

Zei“’dt—Ze_iwdt eiwdt_|_e—iaht eiwdt_e—iaht
_|_
plt 2¢/(%2-1 2 2¢/(%2—-1
€ e—ioodt _eioodt Ze—iwdt_zeiwdt eiu)dt+e—ia)dt

2¢/(2—1 2¢/(2—-1 * 2

wherewy = an+/{? — 1. Note thatwy and/{? — 1 can either be real or complex,
but the combinations of terms will always yield a real valoethe entries in the

matrix exponential. O

An important class of linear systems are those that can beecied into diag-
onal form. Suppose that we are given a system

dx
a_Ax

such that all of the eigenvalues Afare distinct. It can be shown (Exercise 4.14)
that we can find an invertible matrik such thaff AT is diagonal. If we choose
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a set of coordinatez= T x, then in the new coordinates the dynamics become

92_ 19X Tax=TAT 12
dt dt
By construction ofT, this system will be diagonal.
Now consider a diagonal matri& and the correspondinkth power ofAt,

which is also diagonal:

A1 0) Atk 0
e mr= | M ,
0 ' An 0 | pING
It follows from the series expansion that the matrix expaia¢is given by
eht 0
e |
0 ot

A similar expansion can be done in the case that the eigegwalte complex,
using a block diagonal matrix, similar to what was done in Bect.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transforsmdihgional form.
They can however be transformed to a closely related frorgattieJordan form
in which the dynamics matrix has the eigenvalues along theattial. When there
are equal eigenvalues there may be 1s appearing in the siagendl indicating
that there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it tenwritten
as

50 0 o a1 o
0 X 0 '
J= where J = | : oo e (5.9)
8 ;) 0O 0 ... A 1
K 0 0 ... 0 A

Each matrixJ; is called aJordan blockand A; for that block corresponds to an
eigenvalue ofl. A first order Jordan block can be represented as a systenstonsi
ing of an integrator with the feedbadk Jordan of higher order can be represented
as series connections of such systems, as illustrated imeFg8.

Theorem 5.2(Jordan decompositionAny matrix Ac R™" can be transformed
into Jordan form with the eigenvalues of A determiningn the Jordan form.



146 CHAPTER 5. LINEAR SYSTEMS

X1 X1 X2 X1 X2 X2

A A A A A A

Figure 5.3: Representation of linear system where the dynamics matrix is a Jordda bloc
A first order Jordan block can be represented as an integrator withdekA , as shown on
the left. Second and third order Jordan blocks can be representedess cnnections of
integrators with feedback, as shown on the right.

Proof. See any standard text on linear algebra, such as Strang [STit&8Epecial
case where the eigenvalues are distinct is examined in Beefcl4. Ol

Converting a matrix into Jordan form can be complicatedaaigh MATLAB
can do this conversion for numerical matrices usingjtbedan function. The
structure of the resulting Jordan form is particularly ieting since there is no
requirement that the individual's be unique, and hence for a given eigenvalue
we can have one or more Jordan blocks of different size.

Once a matrix is in Jordan form, the exponential of the mataix be computed
in terms of the Jordan blocks:

er 0 ... O

; 0 e* 0

e = (5.10)
o ... 0
o ... ek,

This follows from the block diagonal form af. The exponentials of the Jordan
blocks can in turn be written as

) ) 2 A n-1 )
et telt e L e
0 e et . e
el = Mt : : (5.11)
te}\it
0 elit

When there are multiple eigenvalues, the invariant sulespassociated with
each eigenvalue correspond to the Jordan blocks of thexm@atriNote thatA
may be complex, in which case the transformafiothat converts a matrix into
Jordan form will also be complex. Whenhas a nonzero imaginary component,
the solutions will have oscillatory components since

eI — g% (coswt +i sinwt).

We can now use these results to prove Theorem 4.1, which shatethe equilib-
rium pointxe = 0 of a linear system is asymptotically stable if and only iARe O.
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Proof of Theorem 4.1Let T € C™" be an invertible matrix that transformsnto
Jordan form,) = TAT—. Using coordinatez= T x, we can write the solution(t)
as
z(t) = e%'2(0).

Since any solutiom(t) can be written in terms of a solutia) with z(0) = T x(0),
it follows that it is sufficient to prove the theorem in the sérmed coordinates.

The solutiorg(t) can be written as a combination of the elements of the matrix
exponential and from equation (5.11) these elements adlydeczero for arbitrary
z(0) if and only if ReA; < 0. Furthermore, if any; has positive real part, then
there exists an initial conditior(0) such that the corresponding solution increases
without bound. Since we can scale this initial condition tcablgitrarily small, it
follows that the equilibrium point is unstable if any eigahiwe has positive real
part. O

The existence of a canonical form allows us to prove many pti@seof linear
systems by changing to a set of coordinates in whichAheatrix is in Jordan
form. This will be used in Chapters 6 and 7 to design contrellée illustrate
this in the following proposition, which follows along tharae lines as the proof
of Theorem 4.1.

Proposition 5.3. Suppose that the system
X = AX

has no eigenvalues with strictly positive real part and onenore eigenvalues
with zero real part. Then the system is stable if and only if Jbelan blocks
corresponding to each eigenvalue with zero real part ardasdd x 1) blocks.

Proof. Exercise 5.2. O
The following example illustrates the use of Jordan form.

Example 5.4 Linear model of a thrust vectored aircraft.

Consider the dynamics of a thrust vectored aircraft suchatsiescribed in Exam-
ple 2.9. Suppose that we choage= u, = 0, so that the dynamics of the system
become

) \
g Z5
z_ Z5
dt —gsinzz —cz; ’ (5.12)
—g(coszz—1)—cz,
0

\

wherez = (x,y,0,X,y,08). The equilibrium points for the system are given by
setting the velocitiege, Ye and 6, to zero and choosing the remaining variables to
satisfy

—gsinzze=0

= 0.=0.
—g(coszzge—1) =0 — Be=
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————

Figure 5.4: Modes of vibration for a system consisting of two masses connectedimgsp
In (a) the masses move left and right in synchronization in (b) they rnmwards or against
each other.

This corresponds to the upright orientation for the aircrédbte thatxe andye
are not specified. This is because we can translate the systeameww (upright)
position and we still obtain an equilibrium point.

To compute the stability of the equilibrium point, we comptiie linearization
using equation (4.11):

0 0 O 1 0
0 0 O 0 1 O
A:ad—F =10 0 O 0 o 1f.
Xl o 0 -g —¢c 0 0O
0 0 O 0O -c O

The eigenvalues of the system can be computed as
A(A) ={0,0,0,0,—c,—c}.

We see that the linearized system is not asymptoticallyiestgibce not all of the
eigenvalues have strictly negative real part.

To determine with the system is stable in the sense of Lyapume must make
use of the Jordan form. It can be shown that the Jordan forni®fiven by

0|0 0 00O
0/0 1 0/ 0|0
;_|ojoo1folo
~|ojooojo]o
0/0 0 0| —c| 0
0]0 0 0] 0 |—-c

Since the second Jordan block has eigenvalue 0 and is not e®igpnvalue, the
linearization is unstable. O

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a pescrof the types of
behavior the system can exhibit. For oscillatory systems térmmodeis often

used to describe the vibration patterns that can occur. &igudrillustrates modes
for a system consisting of two masses connected by springs.p@ttern is when
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both masses oscillate left and right in unison, another isnwthe masses moves
towards and from each other.

The initial condition response of a linear system can be @mrith terms of a
matrix exponential involving the dynamics matéx The properties of the matrix
A therefore determine the resulting behavior of the systefmerGa matrixA €
R™", recall thatv is an eigenvector oA with eigenvalué\ if

Av=AV.

In generald andv may be complex valued, althoughAfis real-valued then for
any eigenvalud , its complex conjugaté * will also be an eigenvalue (withi* as
the corresponding eigenvector).

Suppose first that andv are a real-valued eigenvalue/eigenvector paiXor
If we look at the solution of the differential equation #(0) = v, it follows from
the definition of the matrix exponential that

t 150 A?t? t
v = (I +At+§At +-~-)v:v+)\tv+7v+-~-:e/‘ V.

The solution thus lies in the subspace spanned by the eigenvébe eigenvalue
A describes how the solution varies in time and this solusaften called anode
of the system. (In the literature, the term mode is also ofteed to refer to the
eigenvalue, rather than the solution.)

If we look at the individual elements of the vectorandy, it follows that

Xi (t) _ e/‘tvi

X (t) e“vj '
and hence the ratios of the components of the staige constants for a (real)
mode. The eigenvector thus gives the “shape” of the solutimhig also called
amode shapef the system. Figure 5.5 illustrates the modes for a secouer or
system consisting of a fast mode and a slow mode. Noticeltbattate variables
have the same sign for the slow mode different signs for thienfemde.

The situation is more complicated when the eigenvalued afe complex.
SinceA has real elements, the eigenvalues and the eigenvectorsrapex con-
jugatesA = g +iw andv = u=xiw, which implies that

U V4V We V—V*
2 2
Making use of the matrix exponential, we have

v = eM(u+iw) = e ((ucoswt — wsinwt) +i(usinwt +wcoswt)),

which implies
Mu= %(eAtv+ eAt\f*> — ue’ coswt — wet sincot

My = % (eA‘v— eAtv*) = ue”' sinct + we’t coswt.
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1 1
o N Slow mode
= 05
0.5 < S
0 ; : -
0 10 20 30 40 50
L 0
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Fast mode
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< N
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Figure 5.5: lllustration of the notion of modes for a second order system with reahedde
ues. The left figure (a) shows the phase plane and the modes @dssjo solutions that
start on the eigenvectors (bold lines). The corresponding time funai@enshown in (b).

A solution with initial conditions in the subspace spanngdhe real paru and
imaginary partv of the eigenvector will thus remain in that subspace. Thetiepiu
will be a logarithmic spiral characterized lmyand w. We again call the solution
corresponding td a mode of the system anthe mode shape.

If a matrix A has an distinct eigenvalueds, ..., An, then the initial condition
response can be written as a linear combination of the mddesee this, suppose
for simplicity that we have all real eigenvalues with copesding unit eigenvec-
torsvy,...,vh. From linear algebra, these eigenvectors are linearly iewiégnt
and we can write the initial conditiox(0) as

X(O) = 1V1+ d2Vo + - - - + ApVp.
Using linearity, the initial condition response can be teritas
X(t) = ale/\ltvl + azeAthZ 4.4 aneﬁntvn.

Thus, the response is a linear combination the modes of thersywith the am-
plitude of the individual modes growing or decayinged$. The case for distinct
complex eigenvalues follows similarly (the case for nostidcct eigenvalues is
more subtle and requires making use of the Jordan form disdua the previous
section).

Example 5.5 Coupled spring-mass system
Consider the spring-mass system shown in Figure 5.4. Theiegudtmotion of
the system are

My = —2kop — cdp + kep

Moty = ko — 2Kap — CQ2

In state-space form, we define the state tabe(qi, g, d1,¢2) and we can rewrite
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the equations as

0 0 1 0
0 0 0 1
dx 2k Kk C o |x
d | m m m '
k%o, _c
m m m/

We now define a transformatian= T x that puts this system into a simpler form.
Letzy = 3(th + ), 22 = 21, z3 = 3(Ch — ) @ndzs = 3, so that

1 1 0 O
110 0 1 1

Z=Tx=3511 21 0 o0
O 0 1 1
In the new coordinates, the dynamics become
(0 1 0 0
k
-—— —— 0 0
dz_ | m .
dt 0 0 0 1
0 3k c
m m

and we see that the system is in block diagonahfoda) form.

In the z coordinates, the states and z, parameterize one mode with eigen-
valuesA ~ c¢/(2vkm)+i,/k/m, and the statez andz; another mode witiA ~
c¢/(2v/3km) +i,/3k/m. From the form of the transformatioh we see that these
modes correspond exactly to the modes in Figure 5.4, in wdni@mdg, move ei-
ther toward or against each other. The real and imaginarg pathe eigenvalues
give the decay rates and frequencies for each mode. O

5.3 INPUT/OUTPUT RESPONSE

In the previous section we saw how to compute the initial @mmresponse using
the matrix exponential. In this section we derive doavolution equatioypwhich
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (Eeeated here:

dx
at - /xFBu (5.13)

y = Cx+Du.
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Using the matrix exponential, the solution to equation 3p.dan be written as
follows.

Theorem 5.4. The solution to the linear differential equati@b.13)is given by
t
X(t) = x(0) + / At-TBy(T)dr. (5.14)
0

Proof. To prove this, we differentiate both sides and use the ptp§8r8) of the
matrix exponential. This gives

d t
= Ax(0) + / A-DBU(T)dT + Bu(t) = Ax+ B,
0
which proves the result. Notice that the calculation is esaky the same as for
proving the result for a first order equation. O

It follows from equations (5.13) and (5.14) that the inputfmut relation for a
linear system is given by

y(t) = Ce"x(0) + /Ot ceNt-DBu(T)dT 4 Du(t). (5.15)

It is easy to see from this equation that the output is joititigar in both the
initial conditions and the state, which follows from thedarity of matrix/vector
multiplication and integration.

Equation (5.15) is called theonvolution equatiomand it represents the general
form of the solution of a system of coupled linear differahgquations. We see
immediately that the dynamics of the system, as charaetbtiy the matrixA,
play a critical role in both the stability and performancetiod system. Indeed,
the matrix exponential describésth what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can vemgusing the concept
of theimpulse responsef a system. Consider the application of an input signal
u(t) given by the following equation:

0 t<0
ut) =pe(t) =< 1/e 0<t<e (5.16)
0 t>e¢.

This signal is a “pulse” of duratiom and amplitude Le, as illustrated in Fig-
ure 5.6a. We define ampulse &(t), to be the limit of this signal as — O:

o(t) = l@o Pe(t). (5.17)

This signal, sometimes calleddelta function,is not physically achievable but
provides a convenient abstraction for understanding sgorese of a system. Note
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Figure 5.6: Pulse response and impulse response. The figure on the left shizses pti
width 5, 2 and 1, each with total area equal to 1. The corresponding pdpenses for a
linear system with eigenvalugs= {—0.08 —0.62} are shown on the right as solid lines.
The dashed line is the true impulse response, which is well-approximatedpoyse of
duration 1.

that the integral of an impulse is one:

t t t
/0 5(T)d1':.0 lanOpg(t)dr:yLno A pe(t)dr

"€
=lim [ 1/edtr=1 t>0.

e—0.J0
In particular, the integral of an impulse over an arbitgashort period of time is

identically 1.
We define thempulse responsef a systemh(t), to be the output correspond-
ing to having an impulse as its input:

h(t) = /0 tc:ez‘\“—T)EacS(r)olr = Ce'B, (5.18)

where the second equality follows from the fact thét) is zero everywhere except
the origin and its integral is identically one. We can nowtevithe convolution
equation in terms of the initial condition response, thevotution of the impulse
response and the input signal, and the direct term:

y(t) = CeMx(0) + /Ot h(t — )u(t)dT + Du(t). (5.19)

One interpretation of this equation, explored in Exercigge . that the response
of the linear system is the superposition of the response iofmite set of shifted

impulses whose magnitude is given by the inuft). This is essentially the ar-
gument used in analyzing Figure 5.2 and deriving equatids).(9\ote that the

second term in equation (5.19) is identical to equation)(&ril it can be shown
that the impulse response is formally equivalent to thevdévie of the step re-
sponse.
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The use of pulses as an approximation of the impulse respisseravides a
mechanism for identifying the dynamics of a system from daigure 5.6b shows
the pulse responses of a system for different pulse widtlaic®lthat the pulse
responses approaches the impulse response as the pulbegoédt to zero. As
a general rule, if the fastest eigenvalue of a stable systesrdal part-omax,
then a pulse of lengtl will provide a good estimate of the impulse response
E£0max < 1. Note that for Figure 5.6, a pulse width©& 1 s givescOmax = 0.62
and the pulse response is already close to the impulse respon

Coordinate Invariance

The components of the input vectarand the output vectoy are given by the
chosen inputs and outputs of a model, but the state varidelesnd on the coor-
dinate frame chosen to represent the state. This choice oficates affects the
values of the matrice8, B andC that are used in the model. (The direct tebm
is not affected since it maps inputs to outputs.) We now itiyate some of the
consequences of changing coordinate systems.
Introduce new coordinatesby the transformatioz = Tx, whereT is an in-
vertible matrix. It follows from equation (5.3) that
‘;'tz = T(Ax+Bu) = TAT 1z+ TBu=Az+Bu
y=Cx+DU =CT1z+Du =Cz+Du.

The transformed system has the same form as equation (5.8)eburatrice, B
andC are different:

A=TAT !t B=TB C=CT % (5.20)

There are often special choices of coordinate systems tbat as to see a partic-
ular property of the system, hence coordinate transfoonattan be used to gain
new insight into the dynamics.

We can also compare the solution of the system in transfoguedlinates to
that in the original state coordinates. We make use of aniitapbproperty of the

exponential map, .
eTST! _ 1571

which can be verified by substitution in the definition of the @xgntial map.
Using this property, it is easy to show that

X(t) =T 1z(t) = T 1ATx(0) + T2 /0t f-DBu(r)dr.

From this form of the equation, we see that if it is possibleram$formA into

a form A for which the matrix exponential is easy to compute, we canthat
computation to solve the general convolution equationteruntransformed state
x by simple matrix multiplications. This technique is illLestied in the following
examples.

if
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Figure 5.7: Coupled spring mass system. Each mass is connected to two springs with
stiffnessk and a viscous damper with damping coefficienThe mass on the right is drive
through a spring connected to a sinusoidally varying attachment.

Example 5.6 Coupled spring-mass system
Consider the coupled spring-mass system shown in FigureTh&.input to this
system is the sinusoidal motion of the end of rightmost gpaimd the output is the
position of each mass; andg,. The equations of motion are given by

the equations as

(0 0 1 0 0
0 0 0 1 0
dx 2k k c
—=1-= = = o0 |x+]o]u
dt m m m
ko2& oocf (S
m m m m

mMybs = —2kan — gy + Kop
Mol = ko — 2Kep — ¢z + Ku.

In state-space form, we define the state tabe(q1,dp, g1,¢2) and we can rewrite

This is a coupled set of four differential equations and qodmplicated to solve

in analytical form.

The dynamics matrix is the same as in Example 5.5 and we caneiseandi-
nate transformation defined there to put the system in modal: fo

o 1 o0 o0 0
ke 5 k
dz_ m m 2m
gt lo o o 1|*| o |¥
0 o X ¢ _k
m m 2m

Note that the resulting matrix equations are block diagamal hence decoupled.
We can thus solve for the solutions by computing the solstiohtwo sets of
second order systems represented by the staie®) and (z3,z). Indeed, the
functional form of each set of equations is identical to thfad single spring-mass
system.

Once we have solved the two sets of independent second ajdatiens, we
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Figure 5.8: Transient versus steady state response. The left plot shows theargplihear
system and the right plot the corresponding output. The output signallinitizdergoes a
transient before settling into its steady state behavior.

can recover the dynamics in the original coordinates byrting the state trans-
formation and writingc = T 1z We can also determine the stability of the system
by looking at the stability of the independent second orgstesns (Exercise 5.6).

O
Steady State Response
Given a linear input/output system
dx
at = Ax+Bu (5.21)
y = Cx+ Du,

the general form of the solution to equation (5.21) is giventhie convolution
equation:

y(t) = CeMx(0) + /0 tce‘\@—f)Esul(r)olHDu(t).

We see from the form of this equation that the solution cassisan initial condi-
tion response and an input response.

The input response, corresponding to the last two terms iedhation above,
itself consists of two components—theansient responsand steady state re-
sponse The transient response occurs in the first period of time #fieinput
is applied and reflects the mismatch between the initial ¢dmmdand the steady
state solution. The steady state response is the portioreafutput response that
reflects the long term behavior of the system under the giveatsn For inputs
that are periodic the steady state response will often hedierand for constant
inputs the response will often be constant. An example ofrresient and steady
state response for a periodic input is shown in Figure 5.8.

A particularly common form of input is step inputwhich represents an abrupt
change in input from one value to another. uAit step(sometimes called the
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and steady sta
value give the key performance properties of the signal.

Heaviside step function) is defined as

0 t=0
1 t>0.

u—S(t)—{

The step responsef the system (5.21) is defined as the outy} starting from
zero initial condition (or the appropriate equilibrium pgiand given a step input.
We note that the step input is discontinuous and hence isnaatigally imple-
mentable. However, it is a convenient abstraction that delyiused in studying
input/output systems.

We can compute the step response to a linear system usinghelation
equation. Setting(0) = 0 and using the definition of the step input above, we
have

t
y(t) = / Ct-DBu(T)dT 4+ Du(t)
0
t
- / CeMt-TBdr 4D t>0.
JO

If A has eigenvalues with negative real part (implying that theim is a stable
equilibrium point in the absence of any input), then we cavrite the solution as

y(t)=CAeB+D-CA B t>0. (5.22)
V- -
transient steady state

The first term is the transient response and decays to zdre-as. The second
term is the steady state response and represents the vatue aditput for large
time.

A sample step response is shown in Figure 5.9. Several termsadewhen
referring to a step response. Téieady state valyeg/ss, of a step response is the
final level of the output, assuming it converges. Tise time T, is the amount
of time required for the signal to go from 10% of its final valoe90% of its final
value. Itis possible to define other limits as well, but in ek we shall use these
percentages unless otherwise indicated. @vershootMy, is the percentage of
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Figure 5.10: Response of a compartment model to a constant drug infusion. A simple
diagram of the system is shown in (a). The step response (b) shovatehaf concentration
buildup in compartment 2. In (c) a pulse of initial concentration is used ¢éedpp the
response.
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the final value by which the signal initially rises above thelfirdue. This usually
assumes that future values of the signal do not overshodirtalevalue by more
than this initial transient, otherwise the term can be anniig. Finally, theettling
time T, is the amount of time required for the signal to stay withia &f its final
value for all future times. The settling time is also somesrdefined as reaching
1% or 2% of the final value (see Exercise 5.8). In general thederpgance
measures can depend on the amplitude of the input step, blindéar systems it
can be shown that the last three quantities defined above dependent of the
size of the step.

Example 5.7 Compartment Model

Consider the compartment model illustrated in Figure 5.10described in more
detail in Section 3.6. Assume that a drug is administered Iogtemt infusion in
compartment; and that the drug has its effect in compartméntTo assess how
the quickly the concentration in the compartment reaclesglgtstate we compute
the step response which is shown in Figure 5.10b. The stepnesps quite
slow with a settling time of 39 minutes. It is possible to dbtthe steady state
concentration much faster by having a faster injection natelly, as is shown
in Figure 5.10c. The response of the system in this case canrbputed by
combining two step responses (Exercisg O

Another common input signal to a linear system is a sinusmid@mbination
of sinusoids). Thérequency responsa an input/output system measures the way
in which the system responds to a sinusoidal excitation @xdits inputs. As we
have already seen for scalar systems, the particular gsolasisociated with a sinu-
soidal excitation is itself a sinusoid at the same frequeHeyce we can compare
the magnitude and phase of the output sinusoid to the inpotegenerally, if a
system has a sinusoidal output response at the same frgoagtie input forcing,
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we can speak of the frequency response of the system.
To see this in more detail, we must evaluate the convolutipmgon (5.15) for
u = coswt. This turns out to be a very messy calculation, but we can mak&ef
the fact that the system is linear to simplify the derivatitm particular, we note
that 1
cosawt = 5 (e“‘" + e*i“").

Since the system is linear, it suffices to compute the respdrtbe gystem to the
complex inputu(t) = e and we can then reconstruct the input to a sinusoid by
averaging the responses correspondingi=a wt ands= —it.

Applying the convolution equation to the inpuit= €% with x(0) = 0, we have

t
y(t):/ CAt-UBETdr 4 Dt
0
t t
- / Ct-D+sITgr | pest — At / Cds-ATBdr + De,
0 0

If we assume that none of the eigenvaluesiddre equal tes = +iw, then the
matrix sl — A is invertible and we can write (after some algebra)

y(t) =Ce (x(0) — (s —A) B) + (C(sI—A) B+D)e".

transient steady state

Notice that once again the solution consists of both a teaigiomponent and a
steady state component. The transient component decaysotd #ee system is
asymptotically stable and the steady state component pFonal to the (com-
plex) inputu = e,
We can simplify the form of the solution slightly further bgwriting the steady
state response as
yso(t) = M dfest — \elstHe)

where _
Mel® =C(sl—A)"1B+D (5.23)

andM and 6 represent the magnitude and phase of the complex nu@(s¢r
A)~B+D. Whens=iw, we say thaM is thegainand@ is thephaseof the system
at a given forcing frequencgo. Using linearity and combining the solutions for
s= +iw ands= —iw, we can show that if we have an input A;sin(wt + @)
and outpuly = Aysin(wt + ¢ ), then

gain(w) = :z =M phaséw)=¢ — Y = 6.

The steady state solution for a sinusaig- coswt is now given by

If the phasef is positive, we say that the output “leads” the input, othisenve
say it “lags” the input.
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Figure 5.11: Frequency response, showing gain and phase. The gain is givee bt
of the output amplitude to the input amplitudd, = Ay/A,. The phase lag is given by
6 = —2n(ty —tp)/T; itis negative for the case shown because the output lags the input.

A sample frequency response is illustrated in Figure 5.11.sbkid line shows
the input sinusoid, which has amplitude 1. The output sirug®ishown as a
dashed line, and has a different amplitude plus a shiftedghahe gain is the
ratio of the amplitudes of the sinusoids, which can be ddtexchby measuring
the height of the peaks. The phase is determined by compdrngatio of the
time between zero crossings of the input and output to theatiygeriod of the
sinusoid:

AT

Another way to view the frequency response is to plot how #ia gnd phase
in equation (5.23) depend an (throughs = iw). Figure 5.11 shows an example
of this type of representation.

Example 5.8 Active bandpass filter

Consider the op amp circuit shown in Figure 5.12a. We can éeywnamics of the
system by writing the “nodal equations”, which state that $hm of the currents
at any node must be zero. Assuming that=v, = 0, as we did in Section 3.3,
we have

_ Vl_VZ_C1% o:(:l%+§+c2%’ 0=C2%+E—C1%

0 Ry dt’ dt Ry dt dt R dt’

Choosingv, andvs as our states and using the first and last equations, we obtain

%_vl—vz %_ V3 Vi—Ww
dt RiC1 ’ dt R.Co RiCo -
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Figure 5.12: Active band pass filter. The circuit diagram shows an op amp withR&o
filters arranged to provide a band pass filter. The plot on the right stimgain and phase
of the filter as a function of frequency.
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Rewriting these in linear state space form we obtain

N 1
dx RiC1 RiCy
A X+ u
RiCo RoCo R;Co
y= (0 1] X

wherex = (v2,Vv3), u= vy andy = vs.
The frequency response for the system can be computed usiag@ay(5.23):

B & RiCys
Ry (1 + R]_C]_S) (1 + RZCZS)

The magnitude and phase are plotted in Figure 5.12BRfer 100Q, R, =5 kQ
andC; =C, = 100 pF. We see that the circuit passes through signals wigh e
cies around 10 rad/s, but attenuates frequencies below$aad above 50 rad/s.
At 0.1 rad/s the input signal is attenuated by 20x (0.05). Type of circuit is
called abandpass filtessince it pass through signals in the band of frequencies
between 5 and 50 rad/s.

Mel® =C(sl—-A)'B+D = s=iw.

O

As in the case of the step response, a number of standardrpes@ee defined
for frequency responses. The gain of the systemw at O is called thezero fre-
guency gairand corresponds to the ratio between a constant input arstehdy
output:

Mo = —CA !B+D.
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The zero frequency gain is only well definedhifs invertible (and, in particular, if

it does has not eigenvalues at 0). Itis also important to thatiethe zero frequency
gain is only a relevant quantity when a system is stable atheutorresponding
equilibrium point. So, if we apply a constant input= r then the corresponding
equilibrium pointxe = —A~1Br must be stable in order to talk about the zero fre-
quency gain. (In electrical engineering, the zero frequeain is often called the
“DC gain”. DC stands for “direct current” and reflects the coomseparation of
signals in electrical engineering into a direct currentdZeequency) term and an
alternating current (AC) term.)

The bandwidthaw, of a system is the frequency where the gain has decreased
by a factor of /2 from its zero frequency gain. This definition assumes that
we have nonzero, finite zero frequency gain. For systems tteatuate low fre-
quencies but pass through high frequencies, the referexicésgaken as the high
frequency gain. For a system such as the band-pass filter in &8, band-
width is defined as the range of frequencies where the gaingsrighan ¥+/2 of
the gain at the center of the band. (For Example 5.8 this woinkl aybandwidth
of approximately 50 rad/s.)

Another important property of the frequency response isrésenance peak
M, the largest value of the frequency response, angdéad frequencyo,, the
frequency where the maximum occurs. These two propertiesridesthe fre-
quency of the sinusoidal input that produces the largessiplesoutput and the
gain at the frequency.

Example 5.9 AFM Dynamics

Consider the model for the vertical dynamics of the atomicdamicroscope in

contact mode, discussed in Section 3.5. The basic dynamiag\ane by equa-

tion (3.22). The piezo stack can be modeled by a second ordersywith un-

damped natural frequenays and relative dampings. The dynamics are then
described by the linear system

0 1 0 0 0
dx | —k/(m+m) —c/(m+m) 1/m; O 1ol
dt 0 0 0 1 0

0 0 —§  —2{3us w?

y— mp [ mk mc 1 0] X

Mm+m LMm+my M +np
where the input signal is the drive signal to the amplifier iddvthe piezo stack
and the output is the elongation of the piezo. The frequerspomse of the system
is shown in Figure 5.13. The zero frequency gain of the systéviyis 1. There
are two resonant poles with peds; = 2.12 atwm; =238 krad's andM;, = 4.29
at wmrp =746 krad's. The bandwidth of the system, defined as the lowest fre-
quency where the gain ig2 less than the zero frequency gaingis=292 krad's.
There is also a dip in the gaMy = 0.556 for wnq =268 krad's. This dip (some-
times called aranti-resonancgis associated with a dip in the phase and will limit
the performance when the system is controlled by simplercbets, as will see
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AFM picture T

Figure 5.13: AFM frequency response. The plot on the right shows the gain arskpfoa
the piezo stack of an atomic force microscope. The response contaifretuency peaks at
resonances of the system, along with an antiresonanoe-a268 krad/s. The combination
of a resonant peak followed by an antiresonance is common for systémmultiple lightly
damped modes.

in Chapter 10. O

Sampling

It is often convenient to use both differential and differerequations in modeling
and control. For linear systems it is straightforward tosfarm from one to the
other. Consider the general linear system described bytiegu&.13) and assume
that the control signal is constant over sampling intervatanstant lengtth. It
follows from equation (5.14) of Theorem 5.4 that

X(t+h) = X (t) + /tt+h éMTBu(k) dr = ®x(t) +u(t), (5.25)

where we have assumed that the discontinuous control sigieahtinuous from
the right. The behavior of the system at the sampling timesh is described by
the difference equation

xk+1] = dx(k| +Tukl,  y[k =Cxk|+DulK. (5.26)

Notice that the difference equation (5.26) is an exact sapr&tion of the behavior
of the system at the sampling instants. Similar expressianslso be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.25) to (5.26) is called samplifbe relations be-
tween the system matrices in the continuous and samplegs@qmtations is

o= Fz(/oheASdS)B; A:%Iogd?, B:(/Ohe/“dt)_lr. (5.27)

Notice that ifA is invertible we have

r=A"1(e"-1).
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All continuous time systems have a discrete time versiorihmre are discrete
time systems which do not have a continuous time equivaldre.precise condi-
tion is that the matrixp cannot have real eigenvalues on the negative real axis.

Example 5.10 Differential equation for IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotusesemere
obtained as the discrete time system

y[k+ 1] = ay{k] + bulk]

wherea = 0.43, b = 0.47 and the sampling period = 60s. A differential
equation model is needed if we would like to design contraiteayms based on
continuous time theory. Such a model is obtained by applymggon (5.27),
hence

loga

h -1
A=292_ 00141 B= (/ eAtdt> b= 00141
h Jo

and we find that the difference equation can be interpretecsamaled version of
the ordinary differential equation

31( =—0.141x+0.141u

5.4 LINEARIZATION

As described in the beginning of the chapter, a common safrieear system
models is through thapproximationof a nonlinear system by a linear one. These
approximations are aimed at studying the local behavior ®fstem, where the
nonlinear effects are expected to be small. In this sectierdiscuss how to lo-
cally approximate a system by its linearization and what lsarsaid about the
approximation in terms of stability. We begin with an illtetion of the basic
concept using the cruise control example from Chapter 3.

Example 5.11 Cruise control
The dynamics for the cruise control system are derived in @28&til and have the
form

dv

m - = AnUT(anv) — mgGsgr(y) - 1pC/AV — mgsing, (5.28)

where the first term on the right hand side of the equation igdiee generated
by the engine and the remaining three terms are the rollingdn, aerodynamic
drag and gravitational disturbance force. There is an dxjitiln (ve, Ue) when the
force applied by the engine balances the disturbance forces

To explore the behavior of the system near the equilibriumwildinearize the
system. A Taylor series expansion of equation (5.28) ardlwa@quilibrium gives

d(v—ve)

T a(V—Ve) —bg (8 — Be) +b(u—ue) (5.29)
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4. The full lines is the simulation based on a nonlinear model and the dasleed lin
shows the corresponding simulation using a linear model. The controltes geekp = 0.5
andk; = 0.1.

where

4 Ue0 2T (apVe) — PCyAVe
m

Notice that the term corresponding to rolling friction gipaars ifv = 0. For a car
in fourth gear withve = 25 m/s,68; = 0 and the numerical values for the car from
Section 3.1, the equilibrium value for the throttlelis= 0.1687 and the parameters
area= —0.0101,b = 1.32 andc = 9.8. This linear model describes how small
perturbations in the velocity about the nominal speed evoiime.

Figure 5.14 shows a simulation of a cruise controller witkedinand nonlinear
models; the differences between the linear and nonlineatetscare small and
hence the linearized model provides a reasonable approgima O

_ anT (anVe)

Jacobian Linearization around an Equilibrium Point

To proceed more formally, consider a single input, singlgpounonlinear system

dx n
a_f(x,u) xeR“ueR
y = h(x,u) yeR

(5.31)

with an equilibrium point ak = X, U = Ue. Without loss of generality we can
assume thate = 0 andue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thdocal behavior of the system around the equilibrium pdiat ue),
we suppose that— x, andu — ue are both small, so that nonlinear perturbations
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around this equilibrium point can be ignored compared with(tower order) lin-
ear terms. This is roughly the same type of argument that wken we do small
angle approximations, replacing $lrwith 8 and co$ with 1 for 8 near zero.

As we did in Chapter 4, we define a new set of state variables well as
inputsv and outputsv:

Z=X—Xe V=U—Ue W=y —h(Xe,Ug).

These variables are all close to zero when we are near thébemun point, and so
in these variables the nonlinear terms can be thought ofeakigfher order terms
in a Taylor series expansion of the relevant vector fieldsufassg for now that
these exist).

Formally, theJacobian linearizatiorof the nonlinear system (5.31) is

z=Az+Bv
(5.32)
w=Cz+ Dy,
where
A:ﬂ B:ﬁ :@ :@ (5.33)
0X (Yo U) Ju (Xe,le) ox (Yo U) Ju (Xe,e)

The system (5.32) approximates the original system (5.3Bnwhe are near the
equilibrium point about which the system was linearized.

It is important to note that we can only define the linearizatid a system
about an equilibrium point. To see this, consider a polyrabsystem

X = ag+ aiX+ apx® +azx + u,

whereag # 0. There are a family of equilibrium points for this systemegivby
(Xe,Ue) = (Xe, —@0 — @1Xe — azx?e — a@@) and we can linearize around any of these.
Suppose that we try to linearize around the origin of the syskte= 0, u= 0. If

we drop the higher order termsxnthen we get

X=ap+aix+u,

which isnot the Jacobian linearization & # 0. The constant term must be kept
and this is not present in (5.32). Furthermore, even if we Kepttonstant term
in the approximate model, the system would quickly move aftam this point
(since it is “driven” by the constant terap) and hence the approximation could
soon fail to hold.

Software for modeling and simulation frequently has faesitfor performing
linearization symbolically or numerically. The MATLAB comman r i mfinds
the equilibrium andl i nnod extracts linear state-space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering
Consider the vehicle steering system introduced in Exam@e 2he nonlinear
equations of motion for the system are given by equatior#3§2(2.25) and can
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be written as

4 (> vcos(a(d)+0) ans
s 1y vsméa(é) +6) | a(s) = arctar(a ";‘)n )7
tle O tansé

b

wherex, y and 8 are the position and orientation of the center of mass of the
vehicle,vy is the velocity of the rear whed,is the distance between the front and
rear wheels and is the angle of the front wheel. The functior{d) is the angle
between the velocity vector and the vehicle’s length axis.

We are interested in the motion of the vehicle about a sttéilghpath @ = 6)
with fixed velocityvg # 0. To find the relevant equilibrium point, we first g 0
and we see that we must have= 0, corresponding to the steering wheel being
straight. This also yieldg = 0. Looking at the first two equations in the dynamics,
we see that the motion in the direction is by definitiomot at equilibrium since
&2+n?= v% # 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral aeviatthe vehicle
from a straight line. For simplicity, we lély = 0, which corresponds to driving
along thex axis. We can then focus on the equations of motion inytlaed 6
directions. With some abuse of notation we introduce th&gesta= (y,0) and
u= 9. The system is then in standard form with

vsin(a(u) +x2)
f(x,u) [ i ] , a(u) :arctar(atanu), h(x,u) = x1.

Vo

b tanu b
The equilibrium point of interest is given by= (0,0) andu = 0. To compute the
linearization the model around this equilibrium point, waka use of the formu-
las (5.33). A straightforward calculation yields

A— ﬂ . 0 Vo B— ﬂ o avo/b
 dx|x=0 (O O ~ du|x=0 | Vo/b
u=0 u=0
oh Jdh
C_&x:o_[l O] D_%X:O_O
u=0 u=0
and the linearized system
X = Ax+Bu, y=Cx+Du (5.34)

thus provides an approximation to the original nonlinearaiyics.

The linearized model can be simplified further by introduciogmalized vari-
ables, as discussed in Section 2.3. For this system, we clio@seheel basé
as the length unit and the unit as the time required to traweheel base. The
normalized state is thus= (x1/b,x2) and the new time variable is= vot /b. The
model (5.34) then becomes

)G 0o om
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wherey=a/b. The normalized linear model for vehicle steering with néppéng
wheels is thus a linear system with only one parameter. O

Feedback Linearization

Another type of linearization is the use of feedback to contlee dynamics of a
nonlinear system into a linear one. We illustrate the bage with an example.

Example 5.13 Cruise control
Consider again the cruise control system from Example 5. hbse dynamics are
given in equation (5.28):

dv

M- = anUT(anv) —mgGsgnv) - 1pCyAVZ —mgsind.

If we chooseu as a feedback law of the form

1 / 1

then the resulting dynamics become

dv
— = d 5.37
M=yt (5.37)

whered = mgsin8 is the disturbance force due the slope of the road. If we now
define a feedback law far (such as a proportional-integral-derivative [PID] con-
troller), we can use equation (5.36) to compute the final itipatt should be com-
manded.

Equation (5.37) is a linear differential equation. We haveeasially “inverted”
the nonlinearity through the use of the feedback law (5.3R)is requires that
we have an accurate measurement of the vehicle velecitywell as an accurate
model of the torque characteristics of the engine, geangatirag and friction
characteristics and mass of the car. While such a model igeratrally available
(remembering that the parameter values can change), if sigrda good feedback
law for U/, then we can achieve robustness to these uncertainties. O

More generally, we say that a system of the form

dx

=T, y=h(

is feedback linearizablé we can find a control lawu = a(x,v) such that the
resulting closed loop system is input/output linear witputiv and outputy, as
shown in Figure 5.15. To fully characterize such systems yoih& the scope of
this text, but we note that in addition to changes in the injmatgeneral theory also
allows for (nonlinear) changes in the states that are usel@goribe the system,
keeping only the input and output variables fixed. More detfilthis process can
be found in the textbooks by Isidori [Isi89] and Khalil [KhHO

@ One case the comes up relatively frequently, and is hencthwspecial mention,
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Figure 5.15: Feedback linearization using feedback. A nonlinear feedback of time fo
u= a(x,v) is used to modify the dynamics of a nonlinear process so that the resfrons

the inputv to the outputy is linear. A linear controller can then be used to regulate the
system'’s dynamics.

is the set of mechanical systems of the form

M(q)d+C(a,q) = B(q)u.

Hereq € R" is the configuration of the mechanical systavh,g) € R"" is the
configuration-dependent inertia matr(,q, q) € R" represents the Coriolis forces
and additional nonlinear forces (such as stiffness antidny andB(q) € R™P

is the input matrix. Ifp = n then we have the same number of inputs and con-
figuration variables and if we further have th&Q) is an invertible matrix for all
configurationsy, then we can choose

u=B"(q)(M(q)v—-C(q,q)). (5.38)
The resulting dynamics become
M@d=M(@v = 4=V,

which is a linear system. We can now use the tools of lineatesysheory to
analyze and design control laws for the linearized systemembering to apply
equation (5.38) to obtain the actual input that will be agglio the system.

This type of control is common in robotics, where it goes byrtame ofcom-
puted torqueand aircraft flight control, where it is call@ynamic inversionSome
modeling tools like Modelica can generate the code for therse model auto-
matically. One caution is that feedback linearization ciarocancel out benefi-
cial terms in the natural dynamics, and hence it must be usidoare. Exten-
sions that do not require complete cancellation of nonlitiea are discussed in
Khalil [Kha01] and Krstt et al. [KKK95].

5.5 FURTHER READING

The idea to characterize dynamics by considering the resgdosstep inputs is
due to Heaviside. The unit step is therefore also calledHbaviside step func-
tion. The majority of the material in this chapter is very clasksead can be
found in most books on dynamics and control theory, inclgd#arly works on
control such as James, Nichols and Phillips [JNP47], and nesrent textbooks
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such as Franklin, Powell and Emami-Naeini [FPENO05] and Ogata [(Jg&0de-

lightful presentation of linear systems is given in the bbgikBrockett [Bro70], a
more comprehensive treatment is given by Rugh [Rug95] andlegant math-
ematical treatment is given in Sontag [Son98]. The materialemulfack lin-
earization is found in books on nonlinear control theoryghsas Isidori [Isi89]
and Khalil [Kha01].

EXERCISES

5.1 Show that the differential equation (5.3) is a linear inputiyait system using
the definitions in Section 5.1

5.2 Using the computation for the matrix exponential, show #wation (5.11)
holds for the case of a:33 Jordan block. (Hint: decompose the matrix into the
form S+ N whereSis a diagonal matrix.)

5.3 Construct a linear system for which a periodic input doespnotiuce a peri-
odic output. (Hint: the Jordan form should not be diagonal.)

5.4 Prove Proposition 5.3 by showing that if the system contairsbaigenvalue
A = 0 with nontrivial Jordan block, then there exists an initahdition which
has a solution that grows in time. Extend this argument to #s® ©f complex
eigenvalues with R& = 0 by using the block Jordan form

J= ( Missing]

5.5 Show that a signal(t) can be decomposed in terms of the impulse function
o(t) as

u(t) = /0t 5(t—1)u(t)dt

and use this decomposition plus the principle of superiposio show that the
response of a linear system to an inpt) (assuming zero initial condition) can
be written as

t
YO = [ hit-ru(r)dr,
0
whereh(t) is the impulse response of the system.

5.6 Compute the full solution to the coupled spring-mass systeExample 5.6
by transforming the solution for the block diagonal systeaunlbinto the original
set of coordinates. Show that the system is asymptoticalblesif m, b andk are
all greater than zero.

5.7 Show that the step response for an asymptotically stablarlgyestem is given
by equation (5.22).
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5.8 Consider a first order system of the form

X=—TX+U

y=X.
We say that the parameteis thetime constanfor the system since the zero input
system approaches the origingds For a first order system of this form, show that

the rise time of the system is approximately 2 5% settling time corresponds to
approximately 3 and a 2% settling time corresponds to approximately 4

5.9 Consider a linear discrete time system of the form
x[k+ 1] = AXK] 4+ Bu[K]
y[K] = Cxk] 4 DulK].

(@) Show that the general form of the output of a discrete timeal system is
given by the discrete time convolution equation:

y[k] = CA%g + kzj CA“=1B[i] + DulK]

(b) Show that a discrete time linear system is asymptoticdéiple if and only
if all eigenvalues ofA have magnitude strictly less than 1.

(c) Letulk] = Asin(wk) represent an oscillatory input with frequerwy< 7t (to
avoid “aliasing”). Show that the steady state component®fésponse has
gainM and phasé where

Mel® = C(é®“l —A)"1B+D.

(d) Show that if we have a nonlinear discrete time system
X[k = f(x[k],u[k]) xkl e RMue R
y[K] = h(x[K], u[k]) yeR

then we can linearize the system around an equilibrium peiue) by
defining the matriced, B, C andD as in equation (5.33).

5.10 Consider the consensus protocol introduced in Example Zhaw that if
the graph of the sensor network is connected, then we can fiathaguch that
the agent states converge to the average value of the mdaguantity.

5.11 Consider the dynamics of a genetic circuit that implemeset&repression
the protein produced by the gene is a repressor for the prdtais restricting its
own production. Using the models presented in Example 2hE3dynamics for
the system can be written as

dm_ a
dt ~ 1k (oo ym (5.39)
P _ gm_ap

a:
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for p,m > 0. Find the equilibrium points for the system and use the fized
dynamics around each equilibrium point to determine thallstability of the
system.

5.12 Consider the following simple Keynesian macro-economideh@ the form
of a linear discrete time system discussed in Exercise 5.9

[(I:[E[:Lrll]}] = [abaa ;b] [(I:[[';[]]] + [;b] Gl
Y[t] = Clt] + 1] + Gl

Determine the eigenvalues of the dynamics matrix. Whentagartagnitudes of
the eigenvalues less than 1? Assume that the system is ifbeigui with constant
values capital spending, investment and government expenditu Explore

what happens when government expenditure increases by 13%.the values
a=0.25andb=0.5.

5.13 Consider a linear system= Axwith ReA; < 0 for all eigenvalued; of the
matrix A. Show that the matrix

P:/OweATTQeNdT

defines a Lyapunov function of the for(x) = x" Px.



Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage oramean accu-
mulation of past causes. We must, of course, demand that the setrofirgtates> be
sufficiently rich to carry all information about the past history2ofo predict the effect of the
past upon the future. We do not insist, however, that the state igdisésuch information
although this is often a convenient assumption.

R. E. Kalman, P. L. Falb and M. A. Arbib, 1969 [KFA69].

This chapter describes how feedback of a system’s state casdaeto shape
the local behavior of a system. The concept of reachabilitytieduced and used
to investigate how to “design” the dynamics of a system tgloassignment of
its eigenvalues. In particular, it will be shown that undertain conditions it is
possible to assign the system eigenvalues arbitrarily ipycgpiate feedback of
the system state.

6.1 REACHABILITY

One of the fundamental properties of a control system is whtbf points in the
state space can be reached through the choice of a contul ithpurns out that
the property of “reachability” is also fundamental in urstanding the extent to
which feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of thersyaihd focusing on
the evolution of the state, given by

dx
4t = Ax+Bu (6.1)

wherex € R", u € R, Ais ann x n matrix andB a column vector. A fundamental
guestion is whether it is possible to find control signals sb&my point in the state
space can be reached through some choice of input. To stigjywh define the
reachable se¥(xo, < T) as the set of all pointss such that there exists an input
u(t), 0<t <T that steers the system frax(0) = Xo to X(T) = X¢, as illustrated in
Figure 6.1a.

Definition 6.1 (Reachability) A linear system iseachableif for any xg,x; € R"
there exists & > 0 andu: [0, T] — R such that the corresponding solution satisfies
X(0) = xp andx(T) = Xs.
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(a) Reachable set (b) Reachability through control

Figure 6.1: The reachable set for a control system. TheZéty, < T) shown on the left is

the set of points reachable froxg in time less thaM. The phase portrait on the right shows
the dynamics for a double integrator, with the the natural dynamics drawro@zontal
arrows and the control inputs drawn as vertical arrows. The sethiéwble equilibrium
points is thex axis. By setting the control inputs as a function of the state, it is possible to
steer the system to the origin, as shown on the sample path.

The definition of reachability addresses whether it is possthteach all points
in the state space inteansientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibriwmntp of the system
(since we can remain at those points once we get there). Tha aitpossible
equilibria for constant controls is given by

& = {Xe : A%+ bue = 0 for someue € R}.

This means that possible equilibria lie in a one (or possiliyér) dimensional
subspace. If the matri& is invertible this subspace is spanned4oy B.
The following example provides some insight into the poditids.

Example 6.1 Double integrator
Consider a linear system consisting of a double integratbnse dynamics are
given by

5(1 = X2

X2 = U.

Figure 6.1b shows a phase portrait of the system. The open lowndcs (1= 0)
are shown as horizontal arrows pointed to the rightdor- O and to the left for
x2 < 0. The control input is represented by a double-headed amdiaei vertical
direction, corresponding to our ability to set the value:ofThe set of equilibrium
points& corresponds to the, axis, withug = 0.

Suppose first that we wish to reach the origin from an initialditon (a, 0).
We can directly move the state up and down in the phase plah&dmust rely
on the natural dynamics to control the motion to the left agldtr If a > 0, we can
move the origin by first setting < 0, which will casex, to become negative. Once
X2 < 0, the value of; will begin to decrease and we will move to the left. After
a while, we can sait, to be positive, moving, back toward zero and slowing the
motion in thex; direction. If we bringx, > 0, we can move the system state in the
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opposite direction.

Figure 6.1b shows a sample trajectory bringing the systeme@tigin. Note
that if we steer the system to an equilibrium point, it is plolesto remain there
indefinitely (sincex; = 0 whenx, = 0), but if we go to any other point in the state
space, we can only pass through the point in a transientafashi O

To find general conditions under which a linear system is ralsleh we will
first give a heuristic argument based on formal calculatiatiswpulse functions.
We note that if we can reach all points in the state space gtfreaome choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the state totatep in the input is
given by .
X(t) = / At-TBdr = A-1(eM — 1)B 6.2)
0

(see equation (5.22) and Exercise 5.7). The derivative of aste function is
the impulse functionp(t), defined in Section 5.3. Since derivatives are linear
operations, it follows (see Exercise 6.10) that the respafighe system to an
impulse function is the derivative of equation (6.2):

dx t
a_&a
Similarly we find that the response to the derivative of a impfisction is
d?x
— =A'B.
dt? ¢

Continuing this process and using the linearity of the systle input
u(t) = a1o(t) + ag5(t) +ad(t)+- +apd™ V(1)
gives the state
X(t) = 016MB+ oA B + azA2NB+ - - + 0, A LAB.
Taking the limit ag goes to zero through positive values we get
X(0+) = Q1B+ 02AB+ a3AZB+ - - - + a, AV 1B,
The right hand is a linear combination of the columns of therat

W — [B AB ... Amis]. (6.3)

To reach an arbitrary point in the state space we thus rethatehere are linear
independent columns of the mati. The matrixW; is called thereachability
matrix.

An input consisting of a sum of impulse functions and themasives is a very
violent signal. To see that an arbitrary point can be reaglhiftdsmoother signals
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we can make use of the convolution equation. Assuming tkeainitial condition
is zero, the state of a linear system is given by

- /t f-UBY(T)dT = /t ATBu(t — 1)dT
0 0

It follows from the theory of matrix functions, specificallig Cayley-Hamilton
theorem (see Exercise 6.11) that

T = lao(T) +Aay(T) +---+ A" Lay_4(1),

whereq; (1) are scalar functions, and we find that

B/ ao(T)u(t—1) dr+AB/ ai(T)u(t —1)dTr+
+ A 1B/ an_1(T)u(t — 1) dT.

Again we observe that the right hand side is a linear comioinaif the columns
of the reachability matri¥\; given by equation (6.3). This basic approach leads to
the following theorem.

Theorem 6.1. A linear system is reachable if and only the reachability nimat/;
is invertible.

The formal proof of this theorem is beyond the scope of thig text follows
along the lines of the sketch above and can be found in mo&stmolinear control
theory, such as [CD91, Lew03]. We illustrate the concept athability with the
following example.

Example 6.2 Reachability of balance systems
Consider the balance system introduced in Example 2.1 awinsimoFigure 6.2.
Recall that this system is a model for a class of examples ichwihe center of
mass is balanced above a pivot point. One example is the Segavesportation
system shown in the left portion of the figure, for which a nalwuestion to
ask is whether we can move from one stationary point to an@ih@ppropriate
application of forces through the wheels.

The nonlinear equations of motion for the system are givergiragon (2.9)
and repeated here:

(M+m)p—mlcosd § = —cp—mlsind 62 +F 6.4
(J+ml?)8 —mlcosh = —yB +mglsing, '

For simplicity, we takec = y = 0. Linearizing around the equilibrium poirg =
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(@) (b)

Figure 6.2: Balance system. The Segway human transportation system shown oft ibe le
an example of a balance system which uses torque applied to the wheekptthkerider
upright. A simplified diagram for a balance system is shown on the right. syetem
consists of a mags on a rod of length connected by a pivot to a cart with mads

(p,0,0,0), the dynamics matrix and the control matrix are

0 0 10 0
0 0 0 1 0
A= mé12 B= J
0 MtJt—n?ZIZ 00 Medk—m2i2 |’
M¢mg| Im
0 MtJttfmzlz 00 Mg J; —mé1 2
whereM; = M +mandJ; = J+ml?. The reachability matrix is
r X gl3m3 3
0 Mg J —n@l2 0 (MyJ—n212)2
0 |mmz , 0 glzn?(r;ﬂ;';/l)z
M —rmPl M —n?l
W — \ 1 S (Med 1 (6.5)
Mg —m?I2 0 (Mt —P12)2 0
Im 0 Q2122 (m+M) 0
Mg —mm?12 (Mt —P12)2
This matrix has determinant
214
g’
detW)=-——"——-—-— #0
W) (Mg, — PI2)4 7

and we can conclude that the system is reachable. This inthhésve can move
the system from any initial state to any final state and, inigaer, that we can
always find an input to bring the system from an initial statemoequilibrium
point. O

It is useful of have an intuitive understanding of the medsrais that make a
system unreachable. An example of such a system is given urd=§3. The
system consists of two identical systems with the same ir(letarly, we can not



178 CHAPTER 6. STATE FEEDBACK

p

Figure 6.3: A non-reachable system. The cart-pendulum system shown on theatefi h
single input that affects two pendula of equal length and mass. Sincertesfaffecting
the two pendula are the same and their dynamics are identical, it is not digoitantrol
the state of the system. The figure on the right gives a block diagramsemation of this
situation.

separately cause the first and second system to do sometffergli since they
have the same input. Hence we cannot reach arbitrary stadesoathe system is
not reachable (Exercise 6.2).

More subtle mechanisms for non-reachability can also odeor example, if
there is a linear combination of states that always remainstant, then the system
is not reachable. To see this, suppose that there exists weaarH such that

0= %Hx: H(Ax+Bu) forall u.

ThenH is in the left null space of botA andB and it follows that
HW = H [B AB ... Anle] —0.

Hence the reachability matrix is not full rank. In this cagaye have an initial
conditionXy and we wish to reach a staxe for which Hxg # Hx¢, then since
Hx(t) is constant, no input can move fronxg to X;.

Reachable Canonical Form

As we have already seen in previous chapters, it is oftenesvent to change
coordinates and write the dynamics of the system in the fitamgd coordinates
z=Tx One application of a change of coordinates is to converistegyinto a
canonical form in which it is easy to perform certain typeswodlysis.

A linear state space system isregachable canonical fornf its dynamics are



6.1. REACHABILITY 179

d bl b2 bnfl bn
u < Z\ f P4 f 2 . f Zn—1 f Zn
-1 a a an—1 an

Figure 6.4: Block diagram for a system in reachable canonical form. The indiVistates
of the system are represented by a chain of integrators whose inpridiepn the weighted
values of the states. The output is given by an appropriate combinattbe sf/stem input
and other states.

given by
—a; —a —az ... —ay 1
1 0 o ... O 0
z_ 1o 1 0o .. 0]z ]|0]y
dt ; TP : (6.6)
0 1 0 0
y= (bl b, by ... bn] z+du.

A block diagram for a system in reachable canonical form gsshin Figure 6.4.
We see that the coefficients that appear inAhendB matrices show up directly
in the block diagram. Furthermore, the output of the systei $émple linear
combination of the outputs of the integration blocks.
The characteristic polynomial for a system in reachable w@abform is given
by
As)="+as" 1+ +a,_15+an. (6.7)

The reachability matrix also has a relatively simple strrectu

*

1 —a a2—a
0 1 —ay ..
W= (B AB .. ATIB) = |: : - ]
00 0 1 «
00 0 1

wherex indicates a possibly nonzero term. This matrix is full ramicsino column
can be written as a linear combination of the others due tdridaggular structure
of the matrix.

*

We now consider the problem of changing coordinates sudltttbalynamics of a
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system can be written in reachable canonical form A, 8represent the dynamics

of a given system and, B be the dynamics in reachable canonical form. Suppose
that we wish to transform the original system into reachahlgonical form using

a coordinate transformatian= Tx. As shown in the last chapter, the dynamics
matrix and the control matrix for the transformed system are

A=TATt B =TB.
The reachability matrix for the transformed system then bexo
W= (8 AE .. Anig).
Transforming each element individually, we have
AB=TAT 1TB=TAB
A’B = (TAT 12TB=TAT ITAT 1TB=TA’B

A'B=TA'B.
and hence the reachability matrix for the transformed sysse
W =T (B AB - A™1B) —Tw. (6.8)
SinceW; is invertible, we can thus solve for the transformatibithat takes the
system into reachable canonical form:
T=Www 1
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two dimensional system of the form

= [O’w ‘(;’] X+ [(1)] u

We wish to find the transformation that converts the systemrieachable canon-

ical form: L
A_ | —& 5 _
=T (o)

The coefficients; anda, can be determined from the characteristic equation for
the original system:

a; = —2a

A(s) =detsl—A) = 2as+ (% + w?) — y
=0 "+ w".

The reachability matrix for each system is

([0 w ~  [1 —a
Wr_[l or] Wf—[o 1]'
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The transformatio becomes

a;+a a
- 1 —d=5- 1 w 1

w w

and hence the coordinates
a
[zl] _Tx— 6X1+X2
Vi) Xo

put the system in reachable canonical form. O

We summarize the results of this section in the followingtieen.

Theorem 6.2. Let A and B be the dynamics and control matrices for a reachable
system. Then there exists a transformatieax such that in the transformed co-
ordinates the dynamics and control matrices are in reachaainonical forn{6.6)

and the characteristic polynomial for A is given by

detsl—A) ="+ ays" 1+ ... +an_15+an.

One important implication of this theorem is that for anyaeable system,
we can always assume without loss of generality that thedioates are chosen
such that the system is in reachable canonical form. Thisrigepkarly useful for
proofs, as we shall see later in this chapter. However, fgin brder systems, small
changes in the coefficiendés can give large changes of the eigenvalues. Hence, the
reachable canonical form is not always well conditioned amcst be used with
some care.

6.2 STABILIZATION BY STATE FEEDBACK

The state of a dynamical system is a collection of variablasghrmits prediction
of the future development of a system. We now explore the idekesigning the
dynamics a system through feedback of the state. We willnasghat the system
to be controlled is described by a linear state model and teasghe input (for

simplicity). The feedback control will be developed step Bpsusing one single
idea: the positioning of closed loop eigenvalues in dededtions.

State Space Controller Structure

Figure 6.5 shows a diagram of a typical control system usiaig $eedback. The
full system consists of the process dynamics, which we taketlinear, the con-
troller elementsK andk;, the reference input, and processes disturbancds,
The goal of the feedback controller is to regulate the outpth@systemy, such
that it tracks the reference input in the presence of disturbs and also uncer-
tainty in the process dynamics.
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Controller Process

X=Ax+Bu
y=Cx+Du

r —» k

,,,,,,,,,,,,,,,,,

Figure 6.5: A feedback control system with state feedback. The controller useystens
statex and the reference inputto command the process through its inputWe model
disturbances via the additive inpait

An important element of the control design is the perforneasiecification.
The simplest performance specification is that of stabilitythie absence of any
disturbances, we would like the equilibrium point of theteys to be asymptoti-
cally stable. More sophisticated performance specificattgpically involve giv-
ing desired properties of the step or frequency responskeoystem, such as
specifying the desired rise time, overshoot and settlimg tof the step response.
Finally, we are often concerned with the disturbance rejegtroperties of the sys-
tem: to what extent can we tolerate disturbance ingwtad still hold the outpug
near the desired value?

Consider a system described by the linear differential tgua

dx

T Ax+ Bu, y =Cx+Du, (6.9)

where we have ignored the disturbance sigh&dr now. Our goal is to drive the
outputy to a given reference value,and hold it there.

We begin by assuming that all components of the state vectomaasured.
Since the state at timecontains all information necessary to predict the future
behavior of the system, the most general time invariantroblatw is a function of
the state and the reference input:

u=a(xr).
If the feedback is restricted to be a linear, it can be wrigen
u=—Kx+Kkr, (6.10)

wherer is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figuse Bhe nega-
tive sign is a convention to indicate that negative feedlimtie normal situation.
The closed loop system obtained when the feedback (6.10pigeddo the sys-
tem (6.9) is given by g

X

o = (A= BK)x+Bkr. (6.11)

We attempt to determine the feedback giliiso that the closed loop system has
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the characteristic polynomial
p(s) ="+ P18 4+ + P15+ P (6.12)

This control problem is called the eigenvalue assignmertilpro or “pole place-
ment” problem (we will define “poles” more formally in a latenapter).
Note that the&k, does not affect the stability of the system (which is detasdi
by the eigenvalues ¢k — BK), but does affect the steady state solution. In partic-
ular, the equilibrium point and steady state output for tosed loop system are
given by
Xe=—(A—BK) 1Bkr  ye=Cx+Due,

hencek; should be chosen such that=r (the desired output value). Sinkeis a
scalar, we can easily solve to show thaDi& 0 (the most common case).
k- =—1/(C(A-BK)'B). (6.13)

Notice thatk, is exactly the inverse of the zero frequency gain of the cldsep
system. Th solution fob # 0 is left as an exercise.

Using the gainK andk;, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to corstauch a state feedback
control law, we begin with a few examples that provide somsdiatuition and
insights.

Example 6.4 Vehicle steering
In Example 5.12 we derived a normalized linear model for Vehsteering. The
dynamics describing the lateral deviation where given by

(Yl
C= [1 0) D=0.

The reachability matrix for the system is thus

w- (o )~ 1 3)

The system is reachable since\det= —1 # 0.

We now want to design a controller that stabilizes the dycanaind tracks
a given reference value of the lateral position of the vehicle. To do this we
introduce the feedback

U= —KX+kr = —kgxg — koXo + ki,

and the closed loop system becomes

((jj;(:(A—BK)X—i—Bkrr: [__kall 1:l¥2k2] X+ [‘ﬂj] r

y=Cx+Du= [l 0) X.

(6.14)
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Figure 6.6: State feedback control of a steering system. Step responses obtainedny
trollers designed witl{c = 0.7 andw, = 0.5, 0, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasidut that largew.: also give large initial control

actions. Step responses obtained with controller designedwithl and{. = 0.5, 0.7 and
1 are shown in (b).

The closed loop system has the characteristic polynomial

_ S+yki yke—1) _
det(sI—A+BK)_det[ K S+k2]_sz+(yk1+k2)s+k1.

Suppose that we would like to use feedback to design the dysashihe system
to have the characteristic polynomial

p(S) = S> 4 2{c xS+ W

Comparing this polynomial with the characteristic polynahof the closed loop
system we see that the feedback gains should be chosen as

ki=wf ko= 20— ya?.

Equation (6.13) givek: = ky = w?, and the control law can be written as
U= kg (r —x1) — kaXo = @ (r —x1) — (2{cx — ya?)Xo.

The step responses for the closed loop system for differéumesa@f the design
parameters are shown in Figure 6.6. The effectugfis shown in Figure 6.6a,
which shows that the response speed increases with inegaasi The responses
for wx, = 0.5 and 1 have reasonable overshoot. The settling time is alBocirl
lengths fora. = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths foraw, = 1. The control signad is large initially and goes to zero as time
increases because the controller has an integrator. Tied watue of the control
signal isk; = w?r and thus the achievable response time is limited by theahiail
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actuator signal. Notice in particular the dramatic incesimscontrol signal when
w; changes from 1 to 2. The effect gf is shown in Figure 6.6b. The response
speed and the overshoot increase with decreasing dampsangg these plots, we
conclude that reasonable values of the design parameet® dravew, in the
range of 0.5to 1 ang. ~ 0.7. O

The example of the vehicle steering system illustrates hate seedback can
be used to set the eigenvalues of the closed loop systemitaaylvalues.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the paeasnef the system
are the coefficients of the characteristic equation. It isgfoee natural to consider
systems in this form when solving the eigenvalue assignmpreitiem.

Consider a system in reachable canonical form, i.e,

—a; —a —az ... —ay 1
d 1 0 o ... O 0
—Z:Az+l§u: 0 1 0 ... 0 [|z+ lu
dt ; SRR 0 (6.15)
0 1 0 0
y=Ca= (o1 b - tn)z

It follows from(6.7) that the open loop system has the charéatic polynomial
detsl—A) ="+ a;s" 1+ ... +a,_15+an.

Before making a formal analysis we can gain some insight bstigating the
block diagram of the system shown in Figure 6.4 on page 179. haecteristic
polynomial is given by the parametexsin the figure. Notice that the parameggr
can be changed by feedback from stat¢o the inputu. It is thus straightforward
to change the coefficients of the characteristic polynonyaithte feedback.

Returning to equations, introducing the control law

U= —Kz+kr =—kzi —kozo — - - - — knzn + ki, (6.16)
the closed loop system becomes
—ap—ki —ap—ky —ag—ks ... —a,—kn Ky
1 0 0 0 0
az_ | o 1 0 .. 0 |z]of;
dt : : : (6.17)
0 1 0 0
y— (bn by bl]z.

The feedback changes the elements of the first row oAtheatrix, which corre-
sponds to the parameters of the characteristic equation.cloked loop system
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thus has the characteristic polynomial
'+ (& + k)" 1 4 (ap+ k)" 2 4 -+ (an_1+ kn_1)S+an + kn.
Requiring this polynomial to be equal to the desired closeg [polynomial
p(s) ="+ p1S" T+ + Pr_1S+ Pn
we find that the controller gains should be chosen as

ki=pi—a, k=p-a - k=p—an
This feedback simply replaces the parametgiis the system (6.17) by;. The
feedback gain for a system in reachable canonical form is thu

Kz[pl—al p2—az - pn—an]. (6.18)

To have zero frequency gain equal to unity, the paranietshould be chosen
as -
an+Kn  pn
= =—. 6.19
Kr br by (6.19)
Notice that it is essential to know the precise values of patarsa, andb, in
order to obtain the correct zero frequency gain. The zerai&egy gain is thus
obtained by precise calibration. This is very different frobtaining the correct

steady state value by integral action, which we shall seater kections.

Eigenvalue Placement

We have seen through the examples how feedback can be usedign the dy-

namics of a system through assignment of its eigenvaluesolVe the problem in
the general case, we simply change coordinates so that skensys in reachable
canonical form. Consider the system

dx
a—AerBu (6.20)
y =Cx+Du.

We can change the coordinates by a linear transformatioii x so that the trans-
formed system is in reachable canonical form (6.15). Fohsaucystem the
feedback is given by equation (6.16), where the coefficierdsgaven by equa-
tion (6.18). Transforming back to the original coordinagess the feedback

u=—Kz+kr =—KTx+ktr.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedbadRpnsider the system
given by equatioli6.20) with one input and one output. L&ts) =" +a; "1 +
.-+ 4 ap_1S+ a, be the characteristic polynomial of A. If the system is reatda

then there exists a feedback
U= —Kx+kr
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that gives a closed loop system with the characteristicnntyial
p(s) ="+ pas" T+ -+ Pn_1S+ Pn

and unity zero frequency gain between r and y. The feedbaokiggiven by
K=KT= (pl—al po—ax --- pn—an]v\wlrv\/r_l kr :%7 (6.21)

where a are the coefficients of the characteristic polynomial of tietrix A and
the matrices WandW; are given by

1 a a - a1) °

0 1 & -+ apo
VVr:(B AB ... An—ls], W= | : T

o o0 - 1 a1

o o0 o - 1

For simple problems, the eigenvalue assignment problenbeaolved by in-
troducing the elementg of K as unknown variables. We then compute the char-
acteristic polynomial

A(s) =det(sl — A+ BK)

and equate coefficients of equal powers i the coefficients of the desired char-
acteristic polynomial

p(s) ="+ PS4+ pro1+ pn.

This gives a system of linear equations to deternkindhe equations can always
be solved if the system is reachable, exactly as we did in Elag.

Equation (6.21), which is called Ackermann’s formula [AckAtk85], can
be used for numeric computations. It is implemented in theTM®B function
acker. The MATLAB function pl ace is preferable for systems of high order
because it is better conditioned numerically.

Example 6.5 Predator-prey

Consider the problem of regulating the population of an gst@$n by modulating
the food supply. We use the predator-prey model introduceskiction 3.7. The
dynamics for the system are given by

H H aHL

gt — n+u) < K) 1+aHT, = 0
dL L

i r|L<1 kH> L>0

We choose the following nominal parameters for the systelmciwcorrespond to
the values used in previous simulations:

r=0.02 K=500 a=0.03
r =0.01 k=0.2 Th=5.
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We take the parametey, corresponding to the growth rate for hares, as the input
to the system, which we might modulate by controlling a foodrse for the hares.
This is reflected in our model by the ter(m, + u) in the first equation.

To control this system, we first linearize the system arourdetuilibrium
point of the system(He, Le), which can be determined numerically to bex
(6.5,1.3). This yields a linear dynamical system

d [21] _ [0.001 —0.01] [21] N [6.4] v

dt |z) 10.002 —-0.01 Y 0
wherez; =L —Le, 2z =H —Heg andv=u. Itis easy to check that the system
is reachable around the equilibriufm v) = (0,0) and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system regjlialancing the
ability to modulate the input against the natural dynamidhe system. This can
be done by the process of trial and error or by using some ahibre systematic
techniques discussed in the remainder of the text. For nevgimiply choose the

desired closed loop poles to betat= {—0.01,—0.02}. We can then solve for the
feedback gains using the techniques described earliechwhsults in

K — [0.005 —0.15) .

Finally, we solve for the reference gaik, using equation (6.13) to obtakp =
0.003.
Putting these steps together, our control law becomes

v=—Kz+Kkr.

In order to implement the control law, we must rewrite it wsthe original coor-
dinates for the system, yielding

U=Us—K(X—Xe) + ke (r —ve)
H-6.5

= (0005 -0015) [L—1.3

] +0.003(r —6.5).

This rule tells us how much we should modulageas a function of the current
number of lynxes and hares in the ecosystem. Figure 6.7a shemsulation of

the resulting closed loop system using the parameters defbwme: and starting an
initial population of 15 hares and 5 lynxes. Note that theéeysquickly stabilizes
the population of lynxes at the reference valtie=€ 20). A phase portrait of the
system is given in Figure 6.7b, showing how other initial adads converge to
the stabilized equilibrium population. Notice that the dymcs are very different
than the natural dynamics (shown in Figure 3.20 on page 95). O

The results of this section show that we can use state feedbaiisign the
dynamics of a system, under the strong assumption that wemeasure all of the
states. We shall address the availability of the statesam#éxt chapter, when we
consider output feedback and state estimation. In addifibeorem 6.3 states that
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Figure 6.7: Simulation results for the controlled predator-prey system. The populafion
lynxes and hares as a function of time is shown in (a) and a phase pftréié controlled
system is shown in (b). Feedback is used to make the population stdje-anissingand
Le = missing

the eigenvalues can be assigned to arbitrary locationsashadihly idealized and
assumes that the dynamics of the process are known to higisipre The robust-
ness of state feedback combined with state estimators sdsmed in Chapter 12,
after we have developed the requisite tools.

6.3 STATE FEEDBACK DESIGN

The location of the eigenvalues determines the behaviomredtltised loop dynam-
ics and hence where we place the eigenvalues is the maimddsdajsion to be
made. As with all other feedback design problems, thereradebdffs between the
magnitude of the control inputs, the robustness of the syseperturbations and
the closed loop performance of the system. In this sectioexeenine some of
these tradeoffs, starting with the special case of secaet aystems.

Second Order Systems

One class of systems that occurs frequently in the analpsisiasign of feedback
systems is second order, linear differential equationscaBge of their ubiqui-
tous nature, it is useful to apply the concepts of this chiaptéhat specific class
of systems and build more intuition about the relationsrepueen stability and
performance.

The canonical second order system is a differential equafitime form

G+ 2Z and + wha = ku
y=q.

(6.22)
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In state space form, this system can be represented as

) Eliz] )+ (i) 629
y= X.

The eigenvalues of this system are given by

A=—Janxy\/wh({2-1)

and we see that the origin is a stable equilibrium poirtjf> 0 and{ > 0. Note
that the eigenvalues are complex{if< 1 and real otherwise. Equations (6.22)
and (6.23) can be used to describe many second order systeingdjng damped
oscillators, active filters and flexible structures, as showthé examples below.

The form of the solution depends on the valu€ pfvhich is referred to as the
damping factoffor the system. I > 1, we say that the systemaserdampeénd
the natural response & 0) of the system is given by

_ BxiotXe0 ot G%10+ %20 _pi

y(t) - B —a B —a
whereda = wp({ ++/{%2—1) andB = wn({ — /{2 — 1). We see that the response

consists of the sum of two exponentially decaying sign#lé.=+ 1 then the system
is critically dampedand solution becomes

y(t) = & ™ (x10+ (X20+ { woXao)t).-

Note that this is still asymptotically stable as longeas> 0, although the second
term in the solution is increasing with time (but more slovtan the decaying
exponential that is multiplying it).

Finally, if 0 < { < 1, then the solution is oscillatory and equation (6.22) id sa
to beunderdamped The parameteny is referred to as the natural frequency of
the system, stemming from the fact that for snqalthe eigenvalues of the system
are approximatelp = —{ + jap. The natural response of the system is given by

_ o—Cont (42 1 '
y(t)=e <xlocoswdt+ ( o X10+ wdxzo) S|nwdt> ,

wherewy = wp/1— {2 is called thedamped frequencyFor{ < 1, ay ~ ap de-
fines the oscillation frequency of the solution ahdives the damping rate relative
to wy.

Because of the simple form of a second order system, it isillest® solve
for the step and frequency responses in analytical form. ©haisn for the step
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2

Figure 6.8: Step response for a second order system. Normalized step respdns¢he
system (6.23) fo = 0 (dashed), 0.1, 0.2, 0.5, 0.707 (dash dotted), 1, 2, 5 and 1@{lo
As the damping ratio is increased, the rise time of the system gets longéhebatis less
overshoot. The horizontal axis is in scaled umist; higher values oty results in faster
response (rise time and settling time).

response depends on the magnitudé:of

k - et
y(t) = s (1—e { ot coswdt+\/ﬁe Z“’Otsmwdt> (<1
y(t) = Lz (1— e Y1+ ant)) (=1 (624
L e S wo<12z>t>
y(t)_wg<l e 2(1+Z)e {>1,

where we have takex(0) = 0. Note that for the lightly damped casé £ 1) we
have an oscillatory solution at frequenay.

Step responses of systems whth- wg and different values of are shown in
Figure 6.8. The shape of the response is determined agd the speed of the
response is determined by (included in the time axis scaling): the response is
faster ifwy is larger.

In addition to the explicit form of the solution, we can alsorgute the proper-
ties of the step response that were defined in Section 5.3. Bor@g, to compute
the maximum overshoot for an underdamped system, we retdteutput as

W\~ 1-22
where¢ = arccog. The maximum overshoot will occur at the first time in which
the derivative ofy is zero, and hence we look for the timeat which

y(t) = X (1 ;efz“’otsin(aﬁt + ¢)> (6.25)

0 7 < T—DZZe sin(ayt +¢) 1_t Z2e cofwyt+9) |-
(6.26)



192 CHAPTER 6. STATE FEEDBACK

Table 6.1: Properties of the response to reference values of a second ostiemdpr|{| < 1.
The parametep = arccog.

Property Value (=05 ¢=1/v2 (=1
Steady state value k/ @ k/w@ k/w@ k/w@
Rise time T =1/ -e?/@%  18/ay 22/ap 2.7/wp
Overshoot Mp=e™/VI- 160 4% 0%
Settling time (2%) Ts~4/lwy 80/wy  59/ap  5.8/ap

Eliminating the common factors, we are left with

Vi

4

Since¢ = arccog/, it follows that we must havext, = 17 (for the first non-trivial
extremum) and hendg = 71/ wy. Substituting this back into equation (6.25), sub-
tracting off the steady state value and normalizing, we have

Mp = g /v 1-¢2,

Similar computations can be done for the other charactesisfia step response.
Table 6.1 summarizes the calculations.

The frequency response for a second order system can alsoripited ex-
plicitly and is given by

- k k
0 _ = .
(iw)2+20wp(iw)+wg  wf— w?+ 2 wpw
A graphical illustration of the frequency response is giveRigure 6.9. Notice the
resonance peak that increases with decreaginbhe peak is often characterized

by is Q-value defined a®) = 1/2¢. The properties of the frequency response for
a second order system are summarized in Table 6.2.

tan(wtp + ¢) =

Table 6.2: Properties of the frequency response for a second order systerf{jwithl.

Property Value ¢=0.1 (=05 (=1/V2
Zero frequency gain Mg k/w0? k/w@ k/wf
Bandwidth Wy 1.54un 1.27w Wy
Resonantpeak gain M,  154k/wf 1.27k/w¢  k/wf
Resonant frequency  wmr wp 0.707wy 0




6.3. STATE FEEDBACK DESIGN 193

10" T T T T T T T T

AN
Z \
= N Z
10° _— 5
10k T ~ E
10_2 -1 ' ' ' ' ' ' — l0 ' — 1
10 10 10
0 T
= !
RS i 4
T~ i
_507 = ~ i -
~ i
-100 - NS .
i NG
| REES
-150 1 Tl R
| : = =
10" 10° 10

Figure 6.9: Frequency response of a second order system (6.23). The cppershows
the gain ratioM, and the lower curve shows the phase slfiftThe parameters is Bode plot
of the system with{ = 0 (dashed), 0.1, 0.2, 0.5, 0.7 and 1.0 (dashed-dot).

Example 6.6 Drug administration
To illustrate the usage of these formulas, consider thedwopartment model for
drug administration, described in Section 3.6. The dynanfitiseosystem are

de (—ko—ki ki bo
dt_[ ka —kz]c+[0 !

y— [0 1) X,

wherec; andc, are the concentrations of the drug in each compartment=
0,...,2 andb are parameters of the systemjs the flow rate of the drug into
compartment 1 angis the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in eachartmment and we
would like to design a feedback law to maintain the output givan reference
valuer.

We choose&/ = 0.9 to minimize the overshoot and choose the rise time to be
T, = 10 min. Using the formulas in Table 6.1 this gives a valuedpr= 0.22
We can now compute the gain to place the eigenvalues at thagidm. Setting
u= —Kx-+kr, the closed loop eigenvalues for the system satisfy

A(s) =—0.198+ 0.0959
Choosek; = —0.2027 andky, = 0.2005 gives the desired closed loop behavior.
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Figure 6.10: Open loop versus closed loop drug administration. Comparison betwegn d
administration using a sequence of doses versus continuously monttegiogncentrations
and adjusting the dosage continuously. In each case, the concentrai@mpieximately)
maintained at the desired level, but the closed loop system has substansissat@bility

in the drug concentration.

Equation 6.13 gives the reference gkin= 0.0645. The response of the controller
is shown in Figure 6.10 and compared with an “open loop” ssaiavolving
administering periodic doses of the drug. O

Higher Order Systems

Our emphasis so far has only considered second order syskangigher order
systems, eigenvalue assignment is considerably more diffespecially when
trying to account for the many tradeoffs that are presentf@edback design.

One of the other reasons why second order systems play surhpantant
role in feedback systems is that even for more complicatstigys the response is
often characterized by the “dominant eigenvalues”. To defiase more precisely,
consider a system with eigenvalugsi = 1,...,n. We define the damping factor
for a complex eigenvalug to be

—ReA
=
A

We say that a complex conjugate pair of eigenvalugd™ is adominant pairif it
has the lowest damping factor compared with all other eigler@s of the system.
Assuming that a system is stable, the dominant pair of emjaes tends to be
the most important element of the response. To see thismastat we have a
system in Jordan form with a simple Jordan block correspunth the dominant
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pair of eigenvalues:

i b z+Bu

N
y=Cz

(Note that the state may be complex due to the Jordan transformation.) The re-
sponse of the system will be a linear combination of the nesee from each of
the individual Jordan subsystems. As we see from Figure 6t& & 1 the sub-
system with the slowest response is precisely the one wéfsithallest damping
factor. Hence when we add the responses from each of thedodisubsystems,
it is the dominant pair of eigenvalues that will be the priynctor after the initial
transients due to the other terms in the solution die out. I&\this simple anal-
ysis does not always hold (for example, if some non-domitenmis have larger
coefficients due to the particular form of the system), it i®fthe case that the
dominant eigenvalues determine the (step) response of$ens.

One way to visualize the effect of the closed loop eigenwabrethe dynamics
is to use the eigenvalue plot in Figure 6.11. This chart shopesentative step
and frequency responses as a function of the location of ittenealues. The
diagonal lines in the left half plane represent the dampatip £ = /2 ~ 0.707,
a common value for many designs.

The only formal requirement for eigenvalue placement is thatsystem is
reachable. In practice there are many other constraintsulsecthe selection of
eigenvalues has strong effect on the magnitude and rateaoigehof the control
signal. Large eigenvalues will in general require large argignals as well as
fast changes of the signals. The capability of the actuatdrsherefore impose
constraints on the possible location of closed loop eigega These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance syssesn example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whgeamics were given
in Example 6.2. The dynamics are given by

0 0 1 0 0
0 0 0 1 0
A= 1o ml2g —c} —yim B= J ,
Mk—m212 Mek—m2l2 Mg —m?Pl2 Mg —m212
0 Mmgl —clm —ydt Im_
Md—m2 M-mR2 Mg —mRl2 M Jy—mPl2

whereMy = M +m, J = J+ ml? and we have lefc and y non-zero. We use
the following parameters for the system (correspondinginbuto a human being
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N Unstable

Unstable

{=V2

Figure 6.11: Representative step and frequency responses for second ystms, follow-

ing Franklin, Powell and Emami-Naeini [FPENO5]. Step responsestaen in the upper
half of the plot, with the location of the origin of the step response indicatingahe\of the
eigenvalues. Frequency responses are shown in the lower half dbth&lpe diagonal lines
represent constant damping rafio= 1/v/2, where the response has very little overshoot
and almost no resonant peak.

balanced on a stabilizing cart):
M = 10kg m= 80 kg c=0.1Ns/m

=9.8m/¢
J =100 kg nf/s? l=1m y=0.01Nms g

The eigenvalues of the open loop dynamics are giveh y0,4.7, —1.9+2.7.
We have verified already in Example 6.2 that the system is rééelaad hence
we can use state feedback to stabilize the system and pravigsired level of
performance.

To decide where to place the closed loop eigenvalues, wethate¢he closed
loop dynamics will roughly consist of two components: a defast dynamics
that stabilize the pendulum in the inverted position andta&slower dynamics
that will control the position of the cart. For the fast dynesn we look to the
natural period of the pendulum (in the hanging down posjtievhich is given
by wp = /mgl/(J+ml2) ~ 2.1 rad/s. To provide a fast response we choose a
damping ratio off = 0.5 and try to place the first pair of polest, ~ —{wp +
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Figure 6.12: State feedback control of a balance system. The step responserufalleo
designed to give fast performance is shown in (a). Although the nsgpoharacteristics
(top left) look very good, the input magnitude (bottom left) is very large. s laggressive
controller is shown in (b). Here the response time is slowed down, but piog fmagnitude
is much more reasonable. Both step responses are applied to the lidesizanics.

wp ~ —1=+2i, where we have used the approximation tbéii— {2~ 1. For the
slow dynamics, we choose the damping ratio to ¥t provide small overshoot
and choose the natural frequency to bg @ give a rise time of approximately 5
seconds. This gives eigenvalues, = —0.35+ 0.35.

The controller consists of a feedback on the state and a ferealfd gain for
the reference input. The feedback gain is given by

K — [—18.8 4500 597 —876) ,

which can be computed using Theorem 6.3 or using the MATIpABce com-
mand. The feedforward gain lg = —1/(C(A—BK)1B) = —155. The step
response for the resulting controller (applied to the liizeal system) is given in
Figure 6.12a. While the step response gives the desiredathestics, the input
required (bottom left) is excessively large, almost thieees the force of gravity
at its peak.

To provide a more realistic response, we can redesign thiatlen to have
slower dynamics. We see that the peak of the input force scauthe fast time
scale and hence we choose to slow this down by a factor ofdAng&he damping
ratio unchanged. We also slow down second set of eigenvyaltsthe intuition
that we should move the position of the cart more slowly tharstabilize the pen-
dulum dynamics. Leaving the damping ratio for the slow dyraninchanged at
0.7 and changing the frequency to 1 (corresponding to a risediifapproximately
10 seconds), the desired eigenvalues become

A ={-0.334+0.66i, —0.175+0.18i}
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The performance of the resulting controller is shown in Figudeb. O

As we see from this example, it can be difficult to reason abdwgre/to place
the eigenvalues using state feedback. This is one of theipledonitations of this
approach, especially for systems of higher dimension.rfxgtcontrol techniques,
such as the linear quadratic regular problem discussed a@xbne approach that
is available. One can also focus on the frequency respomsegeforming the
design, which is the subject of Chapters 8-12.

Linear Quadratic Regulators

In addition to selecting the closed loop eigenvalue locestito accomplish a certain
objective, another way that the gains for a state feedbackater can be chosen
is by attempting to optimize a cost function. This can be paldirly useful in
helping balance the performance of the system with the madgmiof the inputs
required to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problemmone of the
most common optimal control problems. Given a multi-inpogeér system

X = Ax+ Bu xe R"ueRP,

we attempt to minimize the quadratic cost function
J= / (X" Qux+u"Quu) dt
0

whereQy > 0 andQy > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimension. This cost function representadeoff between the
distance of the state from the origin and the cost of the obimput. By choosing
the matriceQ, andQ, we can balance the rate of convergence of the solutions
with the cost of the control.

The solution to the LQR problem is given by a linear control ldwhe form

u=—Q,B"Px
whereP € R™" is a positive definite, symmetric matrix that satisfies the &gna
PA+ATP—PBQ;'B"P+Q,=0. (6.27)

Equation (6.27) is called thedgebraic Riccati equatioand can be solved numer-
ically (for example, using theqr command in MATLAB).

One of the key questions in LQR design is how to choose the wse@hand
Qu- To guarantee that a solution exists, we must h@ye> 0 andQ, > 0. In
addition, there are certain “observability” conditions Qp that limit its choice.
We assume her@, > 0 to ensure that solutions to the algebraic Riccati equation
always exist.

To choose specific values for the cost function weightsndQ,, we must use
our knowledge of the system we are trying to control. A pattidy simple choice
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is to use diagonal weights
01 0 ri 0

Q= Qu=p -
0 an 0 M

For this choice o)y andQ,, the individual diagonal elements describe how much
each state and input (squared) should contribute to thelbeest. Hence, we can
take states that should remain small and attach higher weddjies to them. Sim-
ilarly, we can penalize an input versus the states and otipeits through choice
of the corresponding input weigpt

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the system (2.26), writtestate space form as

r X4 0
X5 0
dx X6 0
dt | —gsin@—cxq | T | &cosb f1— Esinf f,
—gcosd —cy 1sin6 f1+ X cos f
\ 0 r/J f

The equilibrium point for the system is given liy= 0, f, = mgandxe = (&, e, 0,0,0,0).
To derive the linearized model near an equilibrium pointcempute the lineariza-
tion according to equation (5.33):

(0 O 0 1 0 0 0 0
00 0 0 1 0 0 0
A 00 0 0 0 1 B_ 0 0
~l0 0 -g -¢m 0 O 1/m O
00 0 0 —-c¢/moO 0 1/m
(0 0 —mgl/J O 0 O (. r/J 0
1 000000
C=lo100 0 o] D=0
Letting z= X — Xe andv = u— Ug, the linearized system is given by
z=Az+Bv
y=Cx

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the systemgwhie cost function
as

J= /m(zTszJr pVQuv)dt
0

wherez = X — Xe andv = u— U represent the local coordinates around the desired
equilibrium point(xe, Ue). We begin with diagonal matrices for the state and input
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Step Response Step Response
15 1.5
X rho=0.1
—y rho=1
% 1 é 1 rho=10 ||
= =
£ £
< <
0.5 0.5
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Timet [s] Timet [s]

(a) (b)

Figure 6.13: Step response for vectored thrust aircraft. The plot on the left stiewsand

y positions of the aircraft when it is commanded to move 1 m in each diredtidhe right

figure thex motion is shown for several different control weiglptsA higher weight of the
input term in the cost function causes a more sluggish response.
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This gives a control law of the form= —Kz, which can then be used to derive the
control law in terms of the original variables:

U=V+U = —K(X—Xg) + Ue.

As computed in Example 5.4, the equilibrium points haye- (0,mg) andxe =
(&e,Ne,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure 6.13a. The response can be tunedjbgted the
weights in the LQR cost. Figure 6.13b shows the response ié thieections for
different choices of the weigig. O

Linear quadratic regulators can also be designed for destiree systems, as il-
lustrated by the following example.

Example 6.9 Web server control

Consider the web server example given in Section 3.4, wheseeete time model
for the system was given. We wish to design a control law thtd the server
parameters so that average processor load of the serveiriamad at a desired
level. Since other processes may be running on the servewdheserver must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 6.1¥e focus

on the special case where we wish to control only the procdsad using both
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Figure 6.14: Feedback control of a web server. The controller sets the values ofehe
server parameters based on the difference between the nominalgters (determined by
krr) and the current loagepy. The disturbance represents the load due to other processes
running on the server. Note that the measurement is taken after thebdister so that we
measure the total load on the server.

theKeepAl i ve andMaxC i ent s parameters. We also include a “disturbance”
on the measured load that represents the usage of the pracegsles by other
processes running on the server. The system has the samestpasiare as the
generic control system in Figure 6.5, with the variation thatdisturbance enters
after the process dynamics.

The dynamics of the system are given by a set of differencetiemsaof the
form

X[k+ 1] = AXK] + BulK], YepulK] = CepuX[K] + depulK],

wherex = (Xepu, Xmem), U = (Uka, Umc), cpu is the processing load from other pro-
cesses on the computer aygy is the total processor load.
We choose our controller to be a state feedback controllgreoform

u=—-K [ Yepu ] +keTepu,
Xmem

wherercpy is the desired processor load. Note that we have used theuradas
processor loagkp, instead of the state to ensure that we adjust the systemtmpera
based on the measured load. (This modification is necessaayseof the non-
standard way in which the disturbance enters the processigs.)

The feedback gain matrix can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, @agh function given by

(5 0 ~ (1/5¢? 0
QX_[O 1]’ QU_[ 0 1/1000?]'

The cost function for the stat®y is chosen so that we place more emphasis on
the processor load versus the memory usage. The cost fufictitime inputsQ

is chosen so as to normalize the two inputs, witkesepAl i ve timeout of 50
seconds having the same weight dgbx Cl i ent s value of 1000. These values
are squared since the cost associated with the inputs is bive” Q,u. Using the
dynamics in Section 3.4, the resulting gains become

«_ (—223 101
~ 3827 777}
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Figure 6.15: Web server with LQR control. The plot on the left shows the state of the
system under a change in external load appliedd=atl0 s. The corresponding web server
parameters (system inputs) are shown on the right. The controller is akléuce the effect

of the disturbance by approximately 40%.

As in the case of a continuous time control system, the retergaink; is
chosen to yield the desired equilibrium point for the systedettingxk + 1] =
x[k] = xe, the steady state equilibrium point and output for a givéeresce input
r is given by

Xe = (A—BK)xe+ Bk, Ye = CXe.

This is a matrix differential equation in whidh is a column vector that sets the
two inputs values based on the desired reference. If we tekddsired output to
be of the formye = (r,0), then we must solve

[(1)] =C(A—BK—1)"Bk

Solving this equation fok;, we obtain

K — ((C(A—BK—I)*lB))_l [é] = [:9?9.3;3] '

The dynamics of the closed loop system are illustrated in EBigut5. We apply
a change in load ad.p, = 0.3 at timet = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desirad bt 057. Note that
both theKeepAl i ve andMaxCl i ent s parameters are adjusted. Although the
load is decreased, it remains approximately 0.2 above thigedesteady state.
(Better results can be obtained using the techniques ofeakiesection.) O

6.4 INTEGRAL ACTION

Controllers based on state feedback achieve the correadysttate response to
reference signals by careful calibration of the gainrHowever, one of the primary
uses of feedback is to allow good performance in the presefinaecertainty, and
hence requiring that we have amactmodel of the process is undesirable. An
alternative to calibration is to make use of integral featthan which the controller
uses an integrator to provide zero steady state error. The ¢@scept of integral
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feedback was already given in Section 1.5 and in Section 3r&;Wwe provide a
more complete description and analysis.

The basic approach in integral feedback is to create a stdtewhe controller
that computes the integral of the error signal, which is theed as a feedback
term. We do this by augmenting the description of the systéimanew state:

d (x] _ (Ax+Bu)] _ (Ax+Bu

dtlz) | y-r J (Cx—r )"
The statez is seen to be the integral of the error between the desirguibuand
the actual outpuy. Note that if we find a compensator that stabilizes the system
then we will necessarily have= 0 in steady state and henge- r in steady state.

Given the augmented system, we design a state space centrothe usual
fashion, with a control law of the form

U= —Kx—kiz+kr,

whereK is the usual state feedback terknjs the integral term an§; is used to
set the nominal input for the desired steady state. The negwdtuilibrium point
for the system is given as

¥e = —(A—BK) 'B(kr —kize)

Note that the value df; is not specified, but rather will automatically settle to the
value that makeg =y —r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of teeip values ofA,
B andK, as long as the system is stable (which can be done througb@fie
choice ofK andk;).

The final compensator is given by

u=—Kx—kiz+kr

z=y-—r,
where we have now included the dynamics of the integratoaasgb the specifi-
cation of the controller. This type of compensator is knowa dgnamic compen-

satorsince it has its own internal dynamics. The following exanililistrates the
basic approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in SectitraBd considered fur-
ther in Example 5.11. The linearized dynamics of the procemsnar an equilib-
rium pointve, Ue are given by

X = ax— bg6 + bw
Y=V=X+Ve,

wherex =v— Ve, W= U— Ug, Mis the mass of the car arftlis the angle of the road.
The constand depends on the throttle characteristic and is given in Exarmll.
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If we augment the system with an integrator, the processrdigsabecome

X = ax—by6 + bw
Z=Y—Vy =Ve+X—V,

or, in state space form,

a0 e ()0 (0)

Note that when the system is at equilibrium we have #ha0, which implies that
the vehicle speed; = ve + X, should be equal to the desired reference speged,
Our controller will be of the form

Z=Y—V,

U= —Kkpx—kiz+k-v
and the gaing,, ki andk; will be chosen to stabilize the system and provide the
correct input for the reference speed.

Assume that we wish to design the closed loop system to haaeacteristic
polynomial

A(S) =S +ais+ap.

Setting the disturbancé = 0, the characteristic polynomial of the closed loop
system is given by

det(sl — (A—BK)) = s* + (bk, — &)s+ bk

and hence we set

ar+a ap a
“="p K=p K=y

The resulting controller stabilizes the system and henecgbd=y — v; to zero,
resulting in perfect tracking. Notice that even if we havenzab error in the
values of the parameters defining the system, as long as thedcloop poles are
still stable then the tracking error will approach zero. Tthesexact calibration
required in our previous approach (usikg is not needed here. Indeed, we can
even choosk = 0 and let the feedback controller do all of the work (Exerci$d.6
Integral feedback can also be used to compensate for comsamrbances.
Figure 6.16 shows the results of a simulation in which the caoenters a hill
with angle8 = 4° att = 8 s. The stability of the system is not affected by this
external disturbance and so we once again see that the edosity converges
to the reference speed. This ability to handle constanthiafices is a general
property of controllers with integral feedback and is exetbin more detail in
Exercise 6.6. O
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Figure 6.16: Velocity and throttle for car with cruise control based on proportionaditdd)

and PI control (full). The PI controller is able to adjust the throttle to corsptnfor the
effect of the hill and maintain the speed at the reference valug-6f25 m/s.

6.5 FURTHER READING

The importance of state models and state feedback was distursthe seminal
paper by Kalman [Kal60], where the state feedback gain weadd by solving
an optimization problem that minimized a quadratic losscfiom. The notions
of reachability and observability (next chapter) are alge th Kalman [Kal61b]
(see also [Gil63, KHN63]). Kalman defines controllabilitydareachability as the
ability to reach the origin and an arbitrary state, respebti[KFA69]. We note
that in most textbooks the term “controllability” is usedfead of “reachability”,
but we prefer the latter term because it is more descriptivih@® fundamental
property of being able to reach arbitrary states. Most wgrdeluate textbooks
on control will contain material on state space systemdudicg, for example,
Franklin, Powell and Emami-Naeini [FPENO5] and Ogata [Oga01]. diaied’s
textbook [FriO4] covers the material in the previous, curr@md next chapter in
considerable detail, including the topic of optimal cohtro

EXERCISES

6.1 Extend the argument in Section 6.1 to show that if a system @hedde from
an initial state of zero, it is reachable from a nonzeroahgtate.

6.2 Consider the system shown in Figure 6.3. Write the dynamigheftwo

systems as

dx dz
— = Ax+Bu — = Az+ Bu.
gt OB g = At

Observe that ik andz have the same initial condition, they will always have the
same state, regardless of the input that is applied. Showthisaviolates the
definition of reachability and further show that the reacligbinatrix W; is not
full rank.

6.3 Show that the characteristic polynomial for a system in raebhcanonical
form is given by equation (6.7) and that

n—1 n—k
Zx dz _d™fu
g1 +~-—|—an_1—dt +anz = TS

d"z,
a
g + a1
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6.4 Consider a system in reachable canonical form. Show thanhtteege of the
reachability matrix is given by

1 a a - an
~ 0 1 a -+ a1
=, (6.28)
0O 0 0 - 1

6.5 Build a simulation for the speed controller designed in Exkengal0 and show
that withk, = 0, the system still achieves zero steady state error.

6.6 Show that integral feedback can be used to compensate forstacomlistur-
bance by giving zero steady state error even whenO.

6.7 (Rear steered bicycle) A simple model for a bicycle was gikgn(3.5) in
Section 3.2. A model for a bicycle with rear-wheel steeringbitained simply by
reversing the sign of the velocity in the model. Determine ¢onditions under
which this systems is reachable and explain any situatiomghich the system is
not reachable.

6.8 Equation (6.13) gives the gain required to maintain a givéreace value for
a system with no direct term. Compute the reference gaireicéise wher® # 0.

6.9 (An unreachable system) Consider the system
dx (0 1 Xt 1 u
d~ |0 O 0
y= (l 0) X

with the control law
U= —kix1 —koxo +kir.

Show that eigenvalues of the system cannot be assigned taayhbialues.

6.10 Show that ify(t) is the output of a linear system corresponding to ingti,
then the output corresponding to an inut) is given byy(t). (Hint: use the
definition of the derivativey(t) = lim_o(y(t+ &) — y(t)) /€.)

6.11 Prove the Cayley-Hamilton theorem



Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages: wtatign of the
“best approximation”X(t;) of the state from knowledge aftyfort <t; and computation of
u(ty) givenx(ty).

From R. E. Kalman “Contributions to the theory of optimal control” [Kal60]

In the last chapter we considered the use of state feedbaunlodify the dy-
namics of a system. In many applications, it is not practicaheasure all of the
states directly and we can measure only a small number ofitsufporrespond-
ing to the sensors that are available). In this chapter we $tow to use output
feedback to modify the dynamics of the system, through thef bservers. We
introduce the concept of observability and show that if desysis observable, it
is possible to recover the state from measurements of thesigmd outputs to the
system. It is then shown how to design a controller with fee#bfrom the ob-
server state. An important concept is the separation pleguoted above, which
is also proved. The structure of the controllers derived ia thapter is quite
general and is obtained by many other design methods.

7.1 OBSERVABILITY

In Section 6.2 of the previous chapter it was shown that it issjiide to find a

feedback that gives desired closed loop eigenvalues mrduidat the system is
reachable and that all states are measured. For many @itsiatiis highly unreal-

istic to assume that all states are measured. In this saggdnvestigate how the
state can be estimated by using a mathematical model andradasurements. It
will be shown that the computation of the states can be chaig by a dynamical

system called anbserver

Definition of Observability

Consider a system described by a set of differential equsitio

d
d%‘ — Ax+Bu,  y=Cx+Du, (7.1)

wherex € R" is the stateu € RP the input, and/ € RY the measured output. We
wish to estimate the state of the system from its inputs amplubs, as illustrated
in Figure 7.1. In some situations we will assume that theranig one measured
signal, i.e. that the signalis a scalar and tha is a (row) vector. This signal
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n

Process
u X=Ax+Bu | Y X
- Observer —
y=Cx+Du

A

Figure 7.1: Block diagram for an observer. The observer uses the processireezenty
(possibly corrupted by nois®) and the inputi to estimate the current state of the process,
denotedk”

may be corrupted by noiss, although we shall start by considering the noise-free
case. We writex for the state estimate given by the observer.

Definition 7.1 (Observability) A linear system i®bservablef forany T > 0 it is
possible to determine the state of the sysi€m) through measurements wft)
andu(t) on the intervalO, T].

The definition above holds for nonlinear systems as well, aaddbults dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many importaptieations, even
outside of feedback systems. If a system is observable,ttrege are no “hid-
den” dynamics inside it; we can understand everything thawing on through
observation (over time) of the inputs and outputs. As wel stes, the problem of
observability is of significant practical interest becauseill determine if a set of
sensors is sufficient for controlling a system. Sensors coedbivith a mathemat-
ical model can also be viewed as a “virtual sensor” that gimésmation about
variables that are not measured directly. The process ohodow signals from
many sensors with mathematical models is also caéetsor fusion

Testing for Observability

When discussing reachability in the last chapter we neggettie output and fo-
cused on the state. Similarly, it is convenient here to iiytizeglect the input and
focus on the autonomous system
dx = AX, y=Cx (7.2)
dt
We wish to understand when it is possible to determine the ftam observations
of the output.

The output itself gives the projection of the state on vedioasare rows of the
matrix C. The observability problem can immediately be solved if thenr C is
invertible. If the matrix is not invertible we can take detives of the output to

obtain q d
Y_o9X_
dt c dt CAX
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From the derivative of the output we thus get the projectiothefstate on vectors
that are rows of the matri€A. Proceeding in this way we get

y C
y CA
y [ =] CA |x (7.3)
-1 cA-1
We thus find that the state can be determined if the matrix
C
CA
W, = | CA (7.4)
CA.n—l

hasn independent rows. It turns out that we need not consider anyalives
higher thann — 1 (this is an application of the Cayley-Hamilton theorem (Exe
cise 6.11).

The calculation can easily be extended to systems with inpiis state is then
given by a linear combination of inputs and outputs and thigiher derivatives.
The observability criterion is unchanged. We leave this easan exercise for the
reader.

In practice, differentiation of the output can give largeoes when there is
measurement noise and therefore the method sketched abae¢ particularly
practical. We will address this issue in more detail in thetisection, but for now
we have the following basic result:

Theorem 7.1. A linear system of the forrfv.1) is observable if and only if the
observability matrix Wis full rank.

Proof. The sufficiency of the observability rank condition followsrin the analy-@
sis above. To prove necessity, suppose that the systemasvabse but/, is not
full rank. Letv € R", v# 0 be a vector in the null space 8, so that,v = 0. If
we letx(0) = v be the initial condition for the system and choase 0, then the
output is given byy(t) = CeMv. Sincee™ can be written as a power seriesAn
and sinceA" and higher powers can be rewritten in terms of lower powers (bfy
the Cayley-Hamilton theorem), it follows that the outputlweie identically zero
(the reader should fill in the missing steps if this is not dledowever, if both the
input and output of the system are 0, then a valid estimateen$tate ix = O for
all time, which is clearly incorrect sinc€0) = v # 0. Hence by contradiction we
must have that\,, is full rank if the system is observable. Ol

Example 7.1 Compartment model
Consider the two compartment model in Figure 3.18a on pageiBadsume that
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V2
Vi

Ri Ry

Figure 7.2: A non-observable system. Two identical subsystems have outputsdtiat a
together to form the overall system output. The individual states of theystdm cannot be
determined since the contributions of each to the output are not distinblésfde circuit
diagram on the right is an example of such a system.

the the concentration in the first compartment can be measured system is
described by the linear system

dc —ko—ki ki bo (

— = c u, =11 0) X.

dt [ ko k) T |0 Y
The first compartment can represent the concentration in tuallglasma and the
second compartment the drug concentration in the tissueenhé active. To
determine if it is possible to find the concentration in theucompartment from

measurement of blood plasma we investigate the obsenyabflthe system by
forming the observability matrix

c 10
Wo = [CA] = [—ko—kl kl] :

The rows are linearly independentkf # 0 and under this condition it is thus
possible to determine the concentration of the drug in thigeacompartment from
measurements of the drug concentration in the blood. O

It is useful to have an understanding of the mechanisms tla&kera system
unobservable. Such a system is shown in Figure 7.2. The systeamigosed
of two identical systems whose outputs are added. It seemmisively clear that
it is not possible to deduce the states from the output sineecannot deduce
the individual output contributions from the sum. This casoabe seen formally
(Exercise 7.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms Wéluseful in studying
observability. We define the observable canonical form tdbeltal of the reach-
able canonical form.
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Figure 7.3: Block diagram of a system on observable canonical form. The statéee of
system are represented by individual integrators whose inputs ar@ghtac combination
of the next integrator in the chain, the first state (right most integratakjt@system input.
The output is a combination of the first state and the input.

Definition 7.2 (Observable canonical formA linear single input, single output
(SISO) state space system iinservable canonical forifits dynamics are given

by

—ag 1 0 - 0 by
—ap 0 1 0 by
CE = . Z+ . u
dt - . .
—a,.1 0 0 1 bn-1
—-a, 0 O 0 b

y=[(1 0 0+ 0)z+Du

The definition can be extended to systems with many inputs tlyeddference
is that the vector multiplyingi is replaced by a matrix.

Figure 7.3 shows a block diagram for a system in observablenieal form.
As in the case of reachable canonical form, we see that tHéaieets in the sys-
tem description appear directly in the block diagram. Theattaristic equation
for a system in observable canonical form is given by

As)="+as" 1+ +a,_15+an. (7.5)

It is possible to reason about the observability of a systeabservable canonical
form by studying the block diagram. If the inputand the outpuy are available
the statez; can clearly be computed. Differentiatizg we also obtain the input
to the integrator that generatesand we can now obtaim = z; + a;z; — byu.
Proceeding in this way we can compute all states. The compntaiil however
require that the signals are differentiated.

To check observability more formally, we compute the obakility matrix for
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a system in observable canonical form, which is given by

1 0O 0 .. O

—a 1 0 ... 0

W= | —af—aa —a 1 0
* * o1

where * represents as entry whose exact value is not imgoridre rows of this
matrix are linearly independent (since it is lower triaragyland henc#\; is full
rank. A straightforward but tedious calculation shows thetinverse of the ob-
servability matrix has a simple form, given by

1 0 0 0
ai 1 0 0
WO—]-: ao a1 1 0
a1 @2 -3 - 1

As in the case of reachability, it turns out that if a systeroliservable then
there always exists a transformatidnthat converts the system into reachable
canonical form (Exercise 7.3). This is useful for proofs, siitclets us assume
that a system is in reachable canonical form without any édsggenerality. The
reachable canonical form may be poorly conditioned nura#yic

7.2 STATE ESTIMATION

Having defined the concept of observability, we now returrinéoguestion of how
to construct an observer for a system. We will look for obsesvthat can be
represented as a linear dynamical system that takes th&siapd outputs of the
system we are observing and produces an estimate of thersystiate. That is,
we wish to construct a dynamical system of the form

dx

— =FX+Gu+H
whereu andy are the input and output of the original system and R" is an
estimate of the state with the property tikét) — x(t) ast — co.

The Observer

We consider the system in equation (7.1) witlset to zero to simplify the expo-
sition: g
X

g =AXtBu  y=Cx (7.6)
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We can attempt to determine the state simply by simulatiegetiuations with the
correct input. An estimate of the state is then given by
dx

4 = A%+Bu (7.7)

To find the properties of this estimate, introduce the estomatrrorx = x—X. It
follows from equations (7.6) and (7.7) that

ax

gt = AX.
If matrix A has all its eigenvalues in the left half plane, the eraill go to zero
and hence equation (7.7) is a dynamical system whose outpnerges to the
state of the system (7.6).

The observer given by equation (7.7) uses only the process inphe mea-
sured signal does not appear in the equation. We must alsoedhat the system
is stable, and essentially our estimator converges bethestate of both the ob-
server and the estimator are going zero. This is not very sefucontrol design
context since we want to have our estimate converge quiokdyrtonzero state, so
that we can make use of it in our controller. We will therefateempt to modify
the observer so that the output is used and its convergeogenies can be de-
signed to be fast relative to the system’s dynamics. Thisamrsill also work for
unstable systems.

Consider the observer

dx

G = ARFBUL(Y—CR). (7.8)

This can be considered as a generalization of equation (Fegdback from the
measured output is provided by adding the tériy— CX), which is proportional
to the difference between the observed output and the otliptits predicted by
the observer. It follows from equations (7.6) and (7.8) that

dx

If the matrixL can be chosen in such a way that the mafix LC has eigenval-
ues with negative real parts, the ersowill go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a statedback and
finding the observer. State feedback design by eigenvalugreseit is equivalent
to finding a matrixK so thatA — BK has given eigenvalues. Design of an observer
with prescribed eigenvalues is equivalent to finding a matrso thatA — LC has
given eigenvalues. Since the eigenvalues of a matrix anchitspose are the same
we can established the following equivalence:

A< AT, B—CT, KeoLT,  Wew

The observer design problem is theal of the state feedback design problem.
Using the results of Theorem 6.3, we get the following thecoaerabserver design:
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Theorem 7.2(Observer design by eigenvalue assignme@®nsider the system
given by

dx

at = Ax+Bu y=Cx (7.9)
with one input and one output. L&t(s) ="+ a;" 1+ - +a, 1S+ a, be the
characteristic polynomial for A. If the system is observablen the dynamical
system

4%
d—)t(:AﬁvLBquL(y—Cf() (7.10)
is an observer for the system, with L chosen as
pr—a1
~ | P2—@a
L =W, W, , , (7.11)
Pn—an
and the matrices WandW, given by
-1
c 1 0 0 0
a1 1 0 0
CA -
WO — . WO = a2 a-l 1 0
cart o A
a8n-1 a-2 an-3 1

The resulting observer erréf= x— X is governed by a differential equation having
the characteristic polynomial

p(s) ="+ pas" 4+ pn.

The dynamical system (7.10) is called an observer for (thestaf) the sys-
tem (7.9) because it will generate an approximation of tagestof the system
from its inputs and outputs. This form of an observer is a muohenuseful form
than the one given by pure differentiation in equation (7.3)

Example 7.2 Compartment model
Consider the compartment model in Example 7.1 which is chevized by the

matrices
_[—ko—ki kg _ [bo _
A_[ ko —kz] B_[O]’ €= (1 0]’
The observability matrix was computed in Example 7.1 where oveluded that

the system was observablekif 2 0. The dynamics matrix has the characteristic
polynomial

A(s) = det [s+ Eok:_ ke slkliz] — &+ (ko+ k1 + ka)s+ koko.
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@) (b)

Figure 7.4: Observer for a two compartment system. The observer measurieptheon-
centratioru and output concentratignto determine the compartment concentrations, shown
on the right. The true concentrations are shown in full lines and the estigetesated by
the observer in dashed lines.

Let the desired characteristic polynomial of the observes®e pis+ p,. and
equation 7.1 gives the observer gain

(D) et 9
—ko—ki kg Ko+ki+ky 1 p2 — koko

_ [ P1—ko— ki —kz ]
(P2 — prke + kako +k2) /K
Notice that the observability conditioky # O is essential. The behavior of the
observer is illustrated by the simulation in Figure 7.4b. iblohow the observed
concentrations approaches the true concentrations. O

The observer is a dynamical system whose inputs are the grogasu and
process output. The rate of change of the estimate is composed of two terms. On
term, AX+ Bu, is the rate of change computed from the model wigubstituted
for x. The other terml_(y—VY), is proportional to the difference=y —y between
measured output and its estimatg = CX. The estimator gaih is a matrix that
tells how the erroe is weighted and distributed among the states. The observer
thus combines measurements with a dynamical model of theraysA block
diagram of the observer is shown in Figure 7.5.

Computing the Observer Gain

For simple low order problems it is convenient to introduice élements of the
observer gairk as unknown parameters and solve for the values required/¢o gi
the desired characteristic polynomial, as illustratechanfbllowing example.

Example 7.3 Vehicle steering
The normalized, linear model for vehicle steering derivelxamples 5.12 and 6.4
gives the following state space model dynamics relatirgyétpath deviationy to
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Figure 7.5: Block diagram of the observer. The observer takes the sigraislu as inputs
and produces an estimate Notice that the observer contains a copy of the process model
that is driven byy — y through the observer galn

G (03, (M)
dt - 10 0 1 (7.12)
y= (1 O] X
Recall that the state, represents the lateral path deviation and #akepresents
turning rate. We will now derive an observer that uses théesysnodel to deter-

mine turning rate from the measured path deviation.
The observability matrix is

10
WO: [O 1]7

i.e., the identity matrix. The system is thus observable aaceigenvalue assign-
ment problem can be solved. We have

(-1
Ao ()

which has the characteristic polynomial

steering angle

det(sl — A+ LC) = det [STZ'l ‘Sl] =415+ 1p.

Assuming that we want to have an observer with the charatitepolynomial
S+ p1S+ p2 = S+ 20oweS+ &,

the observer gains should be chosen as

l1 = p1= 2{owy, l = p2 = .

The observer is then

ﬁ:AﬂBquL(y—CX): [8 (1)] R+ [i’] u-+ [:;] (Y —%0).
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Figure 7.6: Simulation of an observer for a vehicle driving on a curvy road. Theeoker
has an initial velocity error. The plots on the left show the lateral deviatiptthe lateral
velocity X, in full lines and their estimates, andx> in dashed lines. The plots on the right
show the estimation errors.

A simulation of the observer for a vehicle driving on a curend is simulated
in Figure 7.6. The vehicle length is the length unit in the ndized model. The
figure shows that the observer error settles in about 8 veleiotghs. O

For systems of high order we have to use numerical calcalgtidhe duality
between design of a state feedback and design of an obseeasTsnthat means
that the computer algorithms for state feedback can be Useda the observer
design; we simply use the transpose of the dynamics matdxtanoutput matrix.
The MATLAB commandacker , which essentially is a direct implementation of
the calculations given in Theorem 7.2, can be used for systgdthsone output
(Exercise 7.8). The MATLAB commangl| ace can be used for systems with
many outputs. It is also better conditioned numerically.

7.3 CONTROL USING ESTIMATED STATE

In this section we will consider a state space system withireztterm (the most
common case):

% = Ax+ Bu, y=Cx (7.13)
Notice that we have assumed that there is no direct term isystem D = 0). This
is often a realistic assumption. The presence of a directittoombination with a
controller having proportional action creates a so callgdlaraic loop which will
be discussed in Section 8.3. The problem can be solved eveerd th a direct
term but the calculations are more complicated.

We wish to design a feedback controller for the system wheletbe output is
measured. As before, we will be assume thanhdy are scalars. We also assume
that the system is reachable and observable. In Chapter 6unel fa feedback of
the form

U= —Kx+kr



218 CHAPTER 7. OUTPUT FEEDBACK

for the case that all states could be measured and in Secfome/developed an
observer that can generate estimates of the sthi@séd on inputs and outputs.
In this section we will combine the ideas of these sectiorftba feedback that
gives desired closed loop eigenvalues for systems wheyeootputs are available
for feedback.

If all states are not measurable, it seems reasonable togrfgedback

u=—KX+Kkr, (7.14)
wherexis the output of an observer of the state, i.e.
dx . -
at = AX+Bu+L(y—Cx). (7.15)

Since the system (7.13) and the observer (7.15) are bothtefditaensiom, the
closed loop system has state dimensiom&h state &, X). The evolution of the
states is described by equations (7.13), (7.14) and (7.TId)analyze the closed
loop system, the state variablésreplaced by

X=X—X. (7.16)
Subtraction of equation (7.15) from equation (7.13) gives
(:jl)t( = AX— AX—L(Cx—CX) = AX— LCX= (A—LC)X.

Returning to the process dynamics, introducinfrom equation (7.14) into
equation (7.13) and using equation (7.16) to elimineg@/és
d
d%( — Ax+Bu=Ax— BKX+ Bk = Ax— BK(x—X) + Bk
= (A—BK)x+BKX+ Bkr.

The closed loop system is thus governed by

d (x A—BK BK X Bk

3 R e B 1 L
Notice that the stat®, representing the observer error, is not affected by the-com
mand signalr. This is desirable since we do not want the reference signal to
generate observer errors.

Since the dynamics matrix is block diagonal, we find that theasttaristic
polynomial of the closed loop system is

A(s) = det(sl — A+ BK)det(sl - A+ LC).

This polynomial is a product of two terms: the characteriptitynomial of the

closed loop system obtained with state feedback and thacteaistic polynomial

of the observer error. The feedback (7.14) that was motivagedistically thus

provides a neat solution to the eigenvalue assignmentgmbl'he result is sum-
marized as follows.



7.3. CONTROL USING ESTIMATED STATE 219

r ul X X e y !
ke () B ? ) C ‘
| A i
(Process

« : ®
y

() X
B ) / —C —
A
Observer
Controller

Figure 7.7: Block diagram of an observer-based control system. The obseses the
measured outpytand the inputi to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. Theoientonsists of the
observer and the state feedback; the observer is identical to Figure 7.5

Theorem 7.3(Eigenvalue assignment by output feedbadBpnsider the system

dx
— =Ax+B =C
gt X+ Bu, y=Cx
The controller described by
U= —KX+kr
dx

Fri AX+Bu+L(y—CX) = (A—BL—KC)X+Ly

gives a closed loop system with the characteristic polyabmi
A(s) = det(sl — A+ BK)det(sl —A+LC).

This polynomial can be assigned arbitrary roots if the sysiemeachable and
observable.

The controller has a strong intuitive appeal: it can be thooflas composed
of two parts, one state feedback and one observer. The dysaiftice controller
is generated by the observer. The feedback gatan be computed as if all state
variables can be measured and it only dependad andB. The observer gaih
only depends o andC. The property that the eigenvalue assignment for output
feedback can be separated into eigenvalue assignment tateadesedback and an
observer is called theeparation principle

A block diagram of the controller is shown in Figure 7.7. Nettbat the con-
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troller contains a dynamical model of the plant. This is chleeinternal model
principle: the controller contains a model of the process being ciattoindeed,
the dynamics of the controller are due to the observer anddheoller can thus
be viewed as a dynamical system with ingwand outpuu:

dx

;= (A-BK—LC)%+Ly, u=—Kg+kt. (7.18)

Example 7.4 Vehicle steering

Consider again the normalized, linear model for vehiclerstg in Example 6.4.
The dynamics relating steering angie¢o lateral path deviatiow is given by the
state space model (7.12). Combining the state feedbackedein Example 6.4
with the observer determined in Example 7.3 we find that therothet is given
by

dx Ao o\ 0 1), y l1 5

a_Ax+Bu+L(y—Cx)_ [O O] X+ [1] u+ [|2] (y—%a)
U= —KX+kr =Kky(r—xp)— koxo.

Elimination of the variablel gives

gl)t( = (A—BK—LC)X+Ly+Blkr

—li—vk 1-yk) ., [

= [ —kl—y|k2 —lsz ] X+ [lz] Y+ [:{] Kar.
The controller is a dynamical system of second order, withitbpotsy andr and
one outputu. Figure 7.8 shows a simulation of the the system when the hehic
is driven along a curvy road. Since we are using a normalizedeiribe length
unit is the vehicle length and the time unit is the time it @ketravel one vehicle
length. The estimator is initialized with all states equateoo but the real system
has an initial velocity 0.5. The figures show that the estimed@serge quickly to
their true values. The vehicle tracks the desired path wisiéth the middle of the

road, but there are errors because the road is irregular. réblerig error can be
improved by introducing feedforward. 0

7.4 KALMAN FILTERING

One of the principal uses of observers in practice is to eg#rthe state of a sys-
tem in the presence aofoisymeasurements. We have not yet treated noise in our
analysis and a full treatment of stochastic dynamical systis beyond the scope

of this text. In this section, we present a brief introductio the use of stochastic
systems analysis for constructing observers. We work pifyniaa discrete time

to avoid some of the complications associated with contisuane random pro-
cesses and to keep the mathematical prerequisites to a smminThis section
assumes basic knowledge of random variables and stoclpastiesses; see Ku-
mar and Varaiya [KV86] oAstrom [Ast?O] for the required material.
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based ae sta
feedback and an observer. The upper curves show the road gsukiotted), the vehicle
position (full) and its estimate (dashed), the middle curve shows the veldaifygnd its
estimate (dashed) and the bottom curve shows the control signal withraltmrbased on
state feedback (full) and the control signal (dashed).

Consider a discrete time, linear system with dynamics
X[k+ 1] = AXK] + Bulk] + FV[K]

VK] = CXK] + Wik, 719
wherev[k] andw[k] are Gaussian, white noise processes satisfying
E{vk]} =0 E{wk]} =0
E(vlkv[]]) = {‘; L EWRWT) - {‘;W a2

E{vKw'[j]} =0.
E{v[k|} represents the expected valuev{i] andE{v[k]v' [j]} the correlation ma-
trix. We assume that the initial condition is also modele@ d&aussian random
variable with
E{x(0} =x  E{x[0)x"[0]} =R (7.21)

We wish to find an estimatgk] that minimizes the mean square ereqi(x[k] —
X[K])(x[k] —X[K])T} given the measuremenfy(t) : 0 < T <t}. We consider an
observer in the same basic form as derived previously:

X[k~ 1] = AX[K] 4 BUlk] + L[K] (y[k] — CX[K]). (7.22)
The following theorem summarizes the main result.

Theorem 7.4. Consider a random processkk with dynamicg(7.19) and noise
processes and initial conditions described by equatigh20) and (7.21) The
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observer gain L that minimizes the mean square error is gbyen
L[k] = APKICT (Ry+CP[KICT) 1,

where
Plk+1] = (A—LC)P[K(A—LC)" +FRFT +LR,L"

Po = E{x[0]x"[0]}

Before we prove this result, we reflect on its form and functi@inst, note that
the Kalman filter has the form of eecursivefilter: given P[k] = E{E[KET[K]}
at timek, can compute how the estimate and covariatf@nge Thus we do not
need to keep track of old values of the output. Furthermoe=Ktdman filter gives
the estimatexk] andthe covarianc@[k], so we can see how reliable the estimate
is. It can also be shown that the Kalman filter extracts the mari possible
information about output data. If we form the residual beswehe measured
output and the estimated output,

elk] = y[k] —CX[K],
we can can show that for the Kalman filter the correlation madri

0 j#k
1 j=k

(7.23)

Re(Jvk) = E{e[]]eT[k]} ZW[k]éjk, 5jk = {

In other words, the error is a white noise process, so therelismaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used evdreiptocess,
noise or disturbances are non-stationary. When the syststationary and P[K]
converges, then the observer gain is constant:

L =APCT (R, +CPCT),
whereP satisfies
P—APA" + FRFT —APCT (R, +CPCT) 'CPAT.

We see that the optimal gain depends on both the processaruisine measure-
ment noise, but in a nontrivial way. Like the use of LQR to chostsge feedback
gains, the Kalman filter permits a systematic derivation efdhserver gains given
a description of the noise processes. The solution for thetaohgain case is
solved by thedl ge command in MATLAB.

Proof (of theorem).We wish to minimize the mean square of the erkof(x[k] —
R[K)(x[K] — X[K)T}. We will define this quantity a®[k] and then show that it
satisfies the recursion given in equation (7.23). By definjtion

Plk+1] = E{xk+ 1)x" [k+ 1]}
= (A—LC)PK(A—LC)T + FRFT +LR,L"
—= APKIAT — APKICTLT — LCAT + L(Ry+CPK|ICT)LT.
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Letting R: = (Ry+CPIKICT), we have
Plk+1] = AP[KAT — APKICTLT — LCA" 4+ LRL"
— APKAT + (L— APKICTR: )R (L — APKICTR 1)
— APKICTR;ICPT [KAT 4Ry,

To minimize this expression, we chooke= APK|CTR:! and the theorem is
proved. O

The Kalman filter can also be applied to continuous time stdthpocesses.
The mathematical derivation of this result requires morenstigated tools, but
the final form of the estimator is relatively straightforward

Consider a continuous stochastic system

X = Ax+ Bu+Fv E{v(sV' (1)} = Ry(t)d(t —s)

y=Cx+w E{w(sW' (1)} = Ry(t)5(t —s),
whered(T) is the unit impulse function. Assume that the disturbanaed noise
w are zero-mean and Gaussian (but not necessarily statjonary

1 1, Tp-1
df(v) = 7672\/ RV
pdf(v) v 2mm/detR,
1 1,Tp-1
dfw) = ——— g 2" RvW
pdf(w) v2m/detR,

We wish to find the estimatgt) that minimizes the mean square erfdr(x(t) —
(1)) (x(t) —X(t))T} given{y(1) : 0< T <t}.

Theorem 7.5(Kalman-Bucy, 1961) The optimal estimator has the form of a lin-

ear observer ]
X=AX+Bu+L(y—CX)

where L(t) = P(t)CTR, ! and At) = E{(x(t) — X(t))(x(t) — R(t))T} and satisfies
P=AP+PA" —PC'R,(t)CP+FR,(t)F"
P[0] = E{x/0)x" [0]}
Example 7.5 Vectored thrust aircraft
To design a Kalman filter for the system, we must include a dwesmn of the

process disturbances and the sensor noise. We thus audraesytstem to have
the form

lef = Ax+ Bu+ Gw
y=Cx+Vv

whereG represents the structure of the disturbances (includieg@tiects of non-
linearities that we have ignored in the linearizatiomyepresents the disturbance
source (modeled as zero mean, Gaussian white noisey eeptesents that mea-
surement noise (also zero mean, Gaussian and white).
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Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first desigi) (lenly
the lateral position of the aircraft is measured. Adding a direct meamumeof the roll angle
produces a much better observer (right).

For this example, we choosgas the identity matrix and choose disturbances

w;i, i =1,...,nto be independent disturbances with covariance giveR;jby 0.1,
Rj = 0,i # ]. The sensor noise is a single random variable which we model as
having covarianc&®, = 0.01. Using the same parameters as before, the resulting
Kalman gain is given by

7.42

-3.70

27.6

28.0

The performance of the estimator is shown in Figure 7.9a. Wehsgevhile the
estimator converges to the system state, it contains signtficinging” in the state
estimate, which can lead to poor performance in a closeddetmg.

To improve the performance of the estimator, we explorertigaict of adding
a new output measurement. Suppose that instead of measusinth¢ output
positioné, we also measure the orientation of the aircr@ftThe output becomes

(1 000 i Vi
Y=1lo 1 0 0 Vo
and if we assume th&i andv, are independent noise sources each with covariance
Ry, = 0.0001 then the optimal estimator gain matrix becomes

L=

731 -0.019
L— —-0.019 @25
| 268 —0.368
0.110 196

These gains provide good immunity to noise and very high pedoce, as illus-
trated in Figure 7.9b.
0
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Figure 7.10: Block diagram of a controller based on a structure with two degrees ®f fre
dom. The controller consists of a trajectory generator, state feedbackraobserver. The
trajectory generation subsystem computes a feedforward comugaidng with the desired
statexq. The state feedback controller uses the estimated state and desired statgtibec

a corrective inputi.

7.5 FEEDFORWARD AND IMPLEMENTATION

In this section we will discuss improved ways to introducterence values by
using feedforward. This leads to a system structure is orteajh@ears in may
places in control theory and is the heart of most modern obsyistems. We will
also briefly discuss how computers can be used to implememtteoier based on
output feedback.

Feedforward

In this chapter and the previous one we have emphasizeddekedls a mechanism
for minimizing tracking error; reference values were idoed simply by adding
them to the state feedback through a dgainA more sophisticated way of doing
this is shown by the block diagram in Figure 7.10, where therotlar consists of
three parts: an observer that computes estimates of tles ftased on a model and
measured process inputs and outputs, a state feedback tiajelctory generator
that generates the desired behavior of all stageand a feedforward signak.
Under the ideal conditions of no disturbances and no moglelirors the signalk;
generates the desired behavigmwhen applied to the process.

To get some insight into the behavior of the system, we assatéhere are no
disturbances and that the system is in equilibrium with tamsreference signal
and with the observer stateequal to the process state When the command
signal is changed the signalg andxy will change. The observer tracks the state
perfectly because the initial state was correct. The estidnsthtecis thus equal to
the desired statey and the feedback signeg, = L(xg — X) will also be zero. All
action is thus created by the signals from the trajectoryggor. If there are some
disturbances or some modeling errors the feedback sighiahttégmpt to correct
the situation.

This controller is said to havevo degrees of freedolmecause the responses
to command signals and disturbances are decoupled. Dastcebresponses are
governed by the observer and the state feedback while thenss to command
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signals is governed by the trajectory generator (feedfatjva
For an analytic description we start with the full nonlinemamics of the

process
x= f(x,u), y = h(x,u). (7.24)

Assume that the trajectory generator is able to generatsigederajectory(Xq, Ut )
that satisfies the dynamics (7.24) and satisfiesh(xy, U ). To design the con-
troller, we construct the error system. leet X — X4, V= U— Ug and compute the
dynamics for the error:

é=X—Xg = f(x,u) — f(xg,Us)
= f(e+xg,v+ug) — f(Xq)
= F(e v, xq(t), ui (t)).

In general, this system is time varying.
For trajectory tracking, we can assume that small (if our controller is doing
a good job) and so we can linearize arownd O:
e~ A(t)e+B(t)v, Alt) = 9F B(t) = oF .
08 [ (xg(t).ug 1) OV | xat).ur 1)
It is often the case thak(t) andB(t) depend only oy, in which case it is conve-
nient to writeA(t) = A(xq) andB(t) = B(Xq).

Assume now thaty andug are either constant or slowly varying (with respect
to the performance criterion). This allows us to considet flug (constant) linear
system given byA(Xq),B(Xq)). If we design a state feedback controli&fxy) for
eachxy, then we can regulate the system using the feedback

v=K(xg)e
Substituting back the definitions efandv, our controller becomes

U= —K(Xq)(X—Xq) + Usi

This form of controller is called gain scheduledinear controller withfeedfor-
ward Us.

Finally, we consider the observer. The full nonlinear dynanci&n be used for
the prediction portion of the observer and the linearizestesy for the correction

term:
R = f(Xu)+L(X)(y—h(%u))

whereL (X) is the observer gain obtained by linearizing the systemratdiie cur-

rently estimated state. This form of the observer is knowmasxgended Kalman
filter and has proved to be a very effective means of estimatingate af a non-

linear system.

There are many ways to generate the feedforward signal ame #ne also
many different ways to compute the feedback gdimnd the observer gaib.
Note that once again the internal model principle applies:controller contains a
model of the system to be controlled, through the observer.
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Figure 7.11: Trajectory generation for changing lanes. We wish to change from thieuhef
to the right lane over a distance of 30 meters in 4 seconds. The left §goves the planned
trajectory in thexy plane and the right figure shows the lateral positjaand the steering
angled over the maneuver time interval.

Example 7.6 Vehicle steering
To illustrate how we can use two degree of freedom design poake the perfor-
mance of the system, consider the problem of steering a adraioge lanes on a
road, as illustrated in Figure 7.11.

The dynamics of the system were derived in Example 2.8. Usimgéehnter of
the rear wheels as the reference=£ 0), the dynamics can be written as

X = cos@v, y = sin@v, 6 = 1/btand,

wherev is the forward velocity of the vehicle andl is the steering angle. To
generate a trajectory for the system, we note that we cae $ohthe states and
inputs of the system givex) y by solving the following sets of equations:

X = vcosh X = Vcosh — vsinH
y = sin@v y = Vvsind +vcosH o (7.25)
6 = v/l tand

This set of five equations has five unknow#s @, v, v andd) that can be solved
using trigonometry and linear algebra. It follows that wa campute a feasible
trajectory for the system given any patft), y(t). (This special property of a
system is something that is knowndifferential flathes$FLMR92, FLMR95].)

To find a trajectory from an initial stateo, yo, 6p) to a final statéxs, ys, 6¢) at
atimeT, we look for a pathx(t), y(t) that satisfies

X(0) =Xxo X(T) =X¢

y(0) = Yo y(T) =y (7.26)
X(0) sinBy +y(0) cosfp = 0 X(T)sinBr +y(T)cos6r =0
y(0) sinBp +Yy(0) cosby =0 y(T)sin6r +y(T)cosbr =0
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One such trajectory can be found by choosiftg andy(t) to have the form
Xg(t) = o+ ot + aapt? + aaat?, Ya(t) = Bo+ But + Bot? + Bat.

Substituting these equations into equation (7.26), we drevith a set of linear
equations that can be solved fmr G, i = 0,1, 2,3. This gives a feasible trajectory
for the system by using equation (7.25) to solvefigrvg anddy.

Figure 7.11b shows a sample trajectory generated by solkgggetequations.
Notice that the feedforward input is quite different fromallpwing the controller
to command a steering angle that executes the turn in theedsé errors.

O

Kalman’s Decomposition of a Linear System

In this chapter and the previous one we have seen that twafoedtal properties
of a linear input/output system are reachability and oladahty. It turns out that
these two properties can be used to classify the dynamicssgétem. The key
result is Kalman’s decomposition theorem, which says thiaesr system can be
divided into four subsystem&:, which is reachable and observaligz which is
reachable but not observabigg which is not reachable but is observable, apgl
which is neither reachable nor observable.

We will first consider this in the special case of systems whezenatrixA has
distinct eigenvalues. In this case we can find a set of coaelireuch that thé
matrix is diagonal and, with some additional reorderinghaf states, the system
can be written as

Ao 0 0 0O Bro

dX_ 0 Ag O 0 Bro

gt [0 0 Ao o |0 " 7.27)
0 0 0 As 0 '

y— [qo 0 GCo 0] X+ Du.

All statesxy such thatBx # 0 are reachable and all states such that 0 are
observable. If we set the initial state to zero (or equivilyelook at the steady
state response i is stable), the states given By andxq will be zero andxg
does not affect the output. Hence the outpaoan be determined from the system

Xro = AroXro + BroU, Yy = CioXro +Du

Thus from the input/output point of view, it is only the reableaand observable
dynamics that matter. A block diagram of the system illustoathis property is
given in Figure 7.12a.

The general case of the Kalman decomposition is more contgticand re-
quires some additional linear algebra. Introduce the raalehsubspace’; which
is the linear subspace spanned by the columns of the redighatatrix W;. The
state space is the direct sum.#f and another linear subspa@g. Notice thatZ;
is unigue but thatZican be chosen in many different ways. Choosing coordinates
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Figure 7.12: Kalman’s decomposition of a linear system. The decomposition on the left is
for a system with distinct eigenvalues, the one on the right is the gene®l Tae system

is broken into four subsystems, representing the various combinatieeaahable and ob-
servable states. The input/output relationship only depends on the siilstates that are
both reachable and observable.

with x, € Z; andxr € Z7the system equations can be written as

a [Xr] = [ 0 Agz X + 0 u, (7.28)
where the stateg are reachable ang-are non-reachable.
Introduce the unique subspacks of non-observable states. This is the right
null space of the observability mathié,. The state space is the direct sum%y§

and the non-unique subspagg. Choosing a coordinate system withe 2, and
Xg € Zgthe system equations can be written as

d (%) _ (A O (], (B,

it (o) ~ (At A2) L) T B3

= (e o) 2]
= [Xo]

where the stateg, are observable andg are not observable.

The intersection of two linear subspaces is also a lineampsdes Introduce
Zrs as the intersection of2; and 25 and the complementary linear subspace
Zro, Which together withZ: g5 spansZ;. Finally, we introduce the linear subspace
Zto Which together with-2rs, 2rs and 2 spans the full state space. Notice

that the decomposition is not unique because only the sabspas is unique.

Combining the representations (7.28) and (7.29) we find thiaear system can
be transformed to the form

(7.29)

All 0 Al3 0 Bl
9( B AZl A22 A23 A24 ot BZ y
dd | 0 0 A® 0 0 (7.30)
0 0 A® A% 0 '

y— [cl 0 c2 o) X,
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where the state vector has been partitioned as

Xro

A block diagram of the system is shown in Figure 7.12b. By trgdhe arrows
in the diagram we find that the input influences the systEmand s and that
the output is influenced by, andZr. The systenkigis neither connected to the
input nor the output. The input/output response of the sysdhus given by

Yo = Allxo + By, y = Clx + Du, (7.31)
which is the dynamics of the reachable and observable sigrsys,.

Example 7.7 System and controller with feedback from observer stase

Consider the system

dx

— = Ax+B =C

dt X+ bUu, y==LX
The following controller based on feedback from the obsestate was given in
Theorem 7.3

u=—Kx+kr, (;(:AX+BU+L(y—C>“()

Introducing the statesandxX= x — X the closed loop system can be written as

d (x) (A-BK 0 X Bk B
(3] = (o %) 3]+ () veer
The statex’is clearly not reachable from the command signaind the relation

between the referenceand the outpuy is the same as for a system with full state
feedback. 0

Computer Implementation

The controllers obtained so far have been described by aydditferential equa-

tions. They can be implemented directly using analog compisne/hether elec-
tronic circuits, hydraulic valves or other physical degceSince in modern en-
gineering applications most controllers are implement&dgicomputers we will

briefly discuss how this can be done.

A computer-controlled system typically operates perialiyc every cycle, sig-
nals from the sensors are sampled and converted to digital iy the A/D con-
verter, the control signal is computed and the resultinguiuis converted to ana-
log form for the actuators, as shown in Figure 7.13. To illigtithe main princi-
ples of how to implement feedback in this environment, wesabgr the controller
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operator input

Figure 7.13: Components of a computer-controlled system. The controller consists of
analog-to-digital (A/D) and digital-to-analog (D/A) converters, as welaaomputer that
implements the control algorithm. A system clock controls the operation afdahgoller,
synchronizing the A/D, D/A and computing processes. The operatot isaiso fed to the
computer as an external input.

described by equations (7.14) and (7.15), i.e.,

u=—KxX+kt, (Zl)t(_AR+Bu+L(y—C>2).

The first equation consists only of additions and multiplmasi and can thus be
implemented directly on a computer. The second equationeamflemented by
approximating the derivative by a difference

ax  X(tis) — X(t)
dt h
wherety are the sampling instants ahé- ty . 1 —tx is the sampling period. Rewrit-
ing the equation to isolatety 1), we get
R(tkr1) = X(tk) + h(Af((tk) +Bu(t) + L(y(tk) —CR())). (7.32)

The calculation of the estimated state at tigng only requires addition and mul-
tiplication and can easily be done by a computer. A sectigrsefido code for the
program that performs this calculation is

— AR(ty) + Bu(ti) + L (y(t) — CR(t)),

% Control algorithm- nain |oop

r = adin(chl) % read reference

y = adin(ch2) % get process out put

u = -Krsxhat + Kr=r % conpute control variable
daout (chl, u) % set anal og out put

xhat = xhat + h*(A*x+Bxu+L*(y-Cxx)) % update state estinate

The program runs periodically at a fixed rdte Notice that the number of
computations between reading the analog input and settengrialog output has
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been minimized by updating the state after the analog outasitbeen set. The
program has an array of statefat , that represents the state estimate. The choice
of sampling period requires some care.

There are more sophisticated ways of approximating a diffexleequation
by a difference equation. If the control signal is constagtineen the sampling
instants it is possible to obtain exact equations; §M~.‘QO].

There are several practical issues that also must be dehlt For example, it
is necessary to filter a signal before it is sampled so that tieedfd signal has little
frequency content abovk/2 wherefs is the sampling frequency. If controllers
with integral action are used, it is also necessary to pepiwtection so that the
integral does not become too large when the actuator sesurahis issue, called
integrator windup s studied in more detail in Chapter 10. Care must also kentak
so that parameter changes do not cause disturbances.

7.6 FURTHER READING

The notion of observability is due to Kalman [Kal61b] and, ¢coned with the dual
notion of reachability, it was a major stepping stone towestblishing state space
control theory beginning in the 1960s. The observer first agaokas the Kalman
filter, in the paper by Kalman [Kal61a] for the discrete timeseand Kalman
and Bucy [KB61] for the the continuous time case. Kalman alsgjectured that
the controller for output feedback could be obtained by doinfy a state feed-
back with an observer; see the quote in the beginning of thapter. This result
was formally proved by Josep and Tou [JT61] and Gunckel andkknaitGF71].
The combined result is known as the linear quadratic Gaussiatrol theory; a
compact treatment is given in the books by Anderson and Mpak&90] and
Astrom [Ast70]. Much later it was shown that solutions to robust coinprob-
lems also had a similar structure but with different ways ahputing observer
and state feedback gains [DGKF89].

EXERCISES

7.1 (Coordinate transformations) Consider a system under edowie transfor-
mationz= T x, whereT € R™"is an invertible matrix. Show that the observability
matrix for the transformed system is given\bly =W, T~ and hence observability
is independent of the choice of coordinates.

7.2 Show that the system depicted in Figure 7.2 is not observable.

7.3 (Coordinate transformations) Show that if a system is oladdey then there
exists a change of coordinates= T x that puts the transformed system into ob-
servable canonical form.
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7.4 (Bicycle dynamics) The linearized model for a bicycle areegivin equa-
tion (3.5), which has the form
d?¢ Dvodd mgh
T T AT
where ¢ is the tilt of the bicycle and is the steering angle. Given conditions

under which the system is observable and explain any sp&itigtions were it
loses observability.

7.5 (Pendulum on cart) Consider the linearized model of a pemddo a cart
given in Example??. Is the system is observable from the cart position? What
happens if the ration/M goes to zero? Discuss qualitatively the effect of friction
on the cart.

7.6 (Pendulum on cart) Design an observer for the pendulum oraettieCombine

the observer with the state feedback developed in Exafle obtain an output
feedback. Simulate the system and investigate the effedbiafsserror in the angle
Sensor.

7.7 (Pendulum on cart) A normalized model of the pendulum on aisddscribed

by the equations .
X=u, 6 =0+u,

where it has been assumed that the cart is very heavy, see ExatpAssume
that cart positiorx and the pendulum anglare measured, but that there is a bias
in the measurement of the angle, which is modelegby: 6 + 6y, where6y is

a constant bias, hend® = 0. Introduce state variablegs = X, Xxo = 0, X3 = X,

X4 = 6 andxs = 6y. Show that the system is observable. What is the engineering
implication of the result?

7.8 (Duality) Show that the the following MATLAB function computése gainL
of a an observer for the systexn="Ax, y = Cx which gives and observer whose
eigenvalues are the elements of the vegtor

function L=observer (A C, p)
L=pl ace(A ,C ,p); L=L";

Test the program on some examples where you have calculsegdult by
hand.

7.9 (Selection of Eigenvalues) Pick up the program for simulatingifé 7.4 from
thewi ki . Read the program and make sure that you understand it. Exyer
behavior of the estimates for different choices of the eiglres.

7.10 (Uniqueness) Show that design of an observer by eigenvaaeeiplent is
unique for single output systems. Construct examples tiaw shat the problem
is not necessarily unique for systems with many outputs. &stdgpw the lack of
unigueness can be exploited.






Chapter Eight

Transfer Functions

The typical regulator system can frequently be described, in essentjadfférential equa-
tions of no more than perhaps the second, third or fourth order. ..olmtrast, the order
of the set of differential equations describing the typical negative fe&dimaplifier used in
telephony is likely to be very much greater. As a matter of idle curiosity, ¢ aocnted to
find out what the order of the set of equations in an amplifier | had jusigded would have
been, if | had worked with the differential equations directly. It turnedtoute 55.

Henrik Bode, 1960 [Bod60].

This chapter introduces the concept of tfamsfer functionwhich is a compact
description of the input/output relation for a linear systeCombining transfer
functions with block diagrams gives a powerful method foaldey with complex
linear systems. The relationship between transfer funstéord other system de-
scriptions of system dynamics is also discussed.

8.1 FREQUENCY DOMAIN MODELING

Figure 8.1 shows a block diagram for a typical control systeamsisting of a
process to be controlled and a (dynamic) compensator, ctethén a feedback
loop. We saw in the previous two chapters how to analyze asidgasuch systems
using state space descriptions of the blocks. As was madionChapter 2, an
alternative approach is to focus on the input/output charestics of the system.
Since it is the inputs and outputs that are used to connecl#terss, one could
expect that this point of view would allow an understandihthe overall behavior

reference feedback d process N
shaping controller dynamics
r e u Y n y
— F C P —
1 |l

Figure 8.1: A block diagram for a feedback control system. The reference sigisafed
through a reference shaping block, which produces the signal thabeviliacked. The
error between this signal and the output is fed to a controller, which pesdthe input
to the process. Disturbances and noise are included at the input and ofitpe process
dynamics, as external signals.
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of the system. Transfer functions are the main tool in im@etimg this point of
view for linear systems.

The basic idea of the transfer function comes from lookinghatftequency
response of a system. Suppose that we have an input signa geatodic. Then
we can decompose this signal into the sum of a set of sinesasites,

u(t) = i ay sin(kawt) 4 b cogkat),
K=0

wherew is the fundamental frequency of the periodic input. Each eftdrms
in this input generates a corresponding sinusoidal ouipustéady state), with
possibly shifted magnitude and phase. The gain and phaselatreguency is
determined by the frequency response, given in equati@3)5.

G(s) =C(sl—A)"1B+D, (8.1)

where we se$ = i(kw) for eachk =1,...,0 andi = /—1. If we know the steady
state frequency respon&gs), we can thus compute the response to any (periodic)
signal using superposition.

The transfer function generalizes this notion to allow a desalass of input
signals besides periodic ones. As we shall see in the netibsgethe transfer
function represents the response of the system to an “eriahmput”, u = €.

It turns out that the form of the transfer function is prelighe same as equa-
tion (8.1). This should not be surprising since we derivedatigu (8.1) by writing
sinusoids as sums of complex exponentials. Formally, trester function corre-
sponds to the Laplace transform of the steady state respbasgystem, although
one does not have to understand the details of Laplace tramsfo order to make
use of transfer functions.

Modeling a system through its response to sinusoidal andrexptial signals is
known asfrequency domain modelind his terminology stems from the fact that
we represent the dynamics of the system in terms of the gereztdrequencys
rather than the time domain varialileThe transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a paldidy convenient
representation for manipulating and analyzing complerlieek systems. As we
shall see, there are many graphical representations dfférafunctions that cap-
ture interesting properties of dynamics. Transfer fumdialso make it possible
to express the changes in a system because of modelingwhich is essential
when discussing sensitivity to process variations of theé digcussed in Chap-
ter 12. More specifically, using transfer functions it is pbkesto analyze what
happens when dynamic models are approximated by staticlsnodahen high
order models are approximated by low order models. One gomesee is that we
can introduce concepts that express the degree of staifilitygystem.

While many of the concepts for state space modeling and sisalyrectly ap-
ply to nonlinear systems, frequency domain analysis apgrmarily to linear
systems. The notions of gain and phase can be generalizedliogar systems
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and, in particular, propagation of sinusoidal signals digito a nonlinear system
can approximately be captured by an analog of the frequersponse called the
describing function. These extensions of frequency respuailsbe discussed in
Section 9.5.

8.2 DERIVATION OF THE TRANSFER FUNCTION

As we have seen in previous chapters, the input/output digseosha linear system
has two components: the initial condition response anddireefl response. In ad-
dition, we can speak of the transient properties of the aysted its steady state
response to an input. The transfer function focuses on tlaelgtstate response
due to a given input, and provides a mapping between inpultthesir correspond-
ing outputs. In this section, we will derive the transferdtian in terms of the
“exponential response” of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we wiake use of a
special type of signal, called aexponential signalpf the forme® wheres =
0 +iw is a complex number. Exponential signals play an importaetirolinear
systems. They appear in the solution of differential equatiand in the impulse
response of linear systems, and many signals can be refgdsssnexponentials
or sums of exponentials. For example, a constant signatiglgie® with a = 0.
Damped sine and cosine signals can be represented by

el0HWN _ ot _ o0t (ot +isinwt),

whereo < 0 determines the decay rate. Figure 8.2 give examples oflsigmat
can be represented by complex exponentials; many othealsigan be repre-
sented by linear combinations of these signals. As in the ebsinusoidal signals,
we will allow complex valued signals in the derivation thatiéws, although in
practice we always add together combinations of signatsrésalt in real-valued
functions.

To investigate how a linear system responds to an expomhengia u(t) = e
we consider the state space system

d
d—?[(:ijL Bu, y = Cx+ Du. (8.2)

Let the input signal bei(t) = €™ and assume that= Aj(A), j = 1,...,n, where
Aj(A) is the jth eigenvalue oA. The state is then given by

X(t) = €M(0) + /O CAt-TIgeT g — eMx(0) + e /0 {(S-ATR .
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s=0 s=-1 s=1

0 0.5 1
Time t

z=0
1
e o0
-1
5 10 15

0 5 10 15 0 5 10 15
Time t Time t Time t

Figure 8.2: Examples of exponential signals. The top row corresponds to expahsig-
nals with a real exponent and the bottom row corresponds to those witll@oexponents.
In each case, if the real part is negative then the signal decays, wihiéeréal part is positive
then it grows.

If s# A(A) the integral can be evaluated and we get

x(t) = Mx(0) + (sl —A)‘l(e(s"A)t - I)B

v (x(O) (sl —A)*lB) +(sl—A) 1B
The output of equation (8.2) is thus
y(t) = Cx(t) + Du(t)

— ceM (x(O) ~(sl— A)’lB) + (C(sl ~A) B+ D) e, (8.3)
a linear combination of the exponential functiogts ande™. The first term in
equation (8.3) is the transient response of the system.|IReate’ can be written
in terms of the eigenvalues @f (using the Jordan form in the case of repeated
eigenvalues) and hence the transient response is a linedniation of terms of
the formeit, where); are eigenvalues d&. If the system is stable thesi* — 0
ast — oo and this term dies away.

The second term of the output (8.3) is proportional to thetimgt) = €. This
term is called thg@ure exponential responsH the initial state is chosen as

x(0) = (sl—A)"1B,

then the output only consists of the pure exponential respamd both the state
and the output are proportional to the input:

X(t) = (sl —A)~1Be = (sl - A)"1Bu(t)
y(t) = (C(sl —A)"'B+D)e™ = (C(sl —A) !B+ D)u(t).
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This is also the output we see in steady state, when the trassigpresented by
the first term in equation (8.3) have died out. The map from tpatito output,

Gyu(s) = C(sl—A)'B+D, (8.4)

is thetransfer functionfrom u to y for the system (8.2) and we can wrig&) =
Gyu(s)u(t) for the case thati(t) = €. Compare with the definition of frequency
response given by equation (5.23).

An important point in the derivation of the transfer functics the fact that
we have restricted so thats # Aj(A), the eigenvalues oA. At those values of
s, we see that the response of the system is singular (sineé\ will fail to be
invertible). Ifs= Aj(A), the response of the system to the exponential iopst
elitisy = p(t)eMit, wherep(t) is a polynomial of degree less than or equal to the
multiplicity of the eigenvalue\j (see Exercise 8.3).

Example 8.1 Damped oscillator
Consider the response of a damped linear oscillator, whase space dynamics
were studied in Section 6.3:

. O o 0
= [—wo —ZZwo] X+ [k/wo] u (8.5)
y= [1 O] X.

This system is stable ff > 0 and so we can look at the steady state response to an
inputu = €%,

cun-onn (1) [ 1) ()

1 [ — Yy 1
=|(1 0 8.6
[ ] <52+2zwos+wg [wo s+25ab] > [k/wo] 86
k
P +2{wos+ W
To compute the steady state response to a step function,tvse-9& and we see
that K
u=1 = y=Gyp(Ou=—.
w0
If we wish to compute the steady state response to a sinuseidjrite

: 1, i
u=sine = > (et —ie'™)
1. , i RN
y=> (IGyu(—iw)e ' —iGy,(iw)e™).
We can now write5(s) in terms of its magnitude and phase,

k - Md?

Gl = o 2wt @

)



240 CHAPTER 8. TRANSFER FUNCTIONS

where the magnitudil and phasé satisfy

M = K . (0f — w?)cosh — (2 wpw) sinB = 0.

V(@ - 0?7+ (2 aww)?

We can also make use of the fact ti@t-iw) is given by its complex conjugate
G*(iw) and it follows thatG(—iw) = Me'®. Substituting these expressions into
our output equation, we obtain

P N PR T NP2
y_§<l(Me e i(Me?)e )
M % (iefi(wt+9) B iei(wt+9)) — Msin(cot + 6).
The responses to other signals can be computed by writingnthe as an appro-
priate combination of exponential responses and usingiitye O

Coordinate Changes

The matricesA, B andC in equation (8.2) depend on the choice of coordinate
system for the states. Since the transfer function relafasg to outputs, it should
be invariant to coordinate changes in the state space. T g, consider the
model (8.2) and introduce new coordinatdsy the transformatioa = T x, where
T is a nonsingular matrix. The system is then described by
gtz = T(Ax+Bu) = TAT 1z+ TBu=: Az+ Bu
y=Cx+DU =CT 1z4+Du=:Cz+Du

This system has the same form as equation (8.2) but the ne#fi¢@andC are
different: _ N B
A=TAT! B=T1TB C=cT % (8.7)

Computing the transfer function of the transformed modebeie
G(s) =C(sl-A) 1B+D=CT }sI-TAT 1)~ 1TB+D
—C(TYsI-TAT HT) 'B+D=C(sl—A)'B+D = G(s),
which is identical to the transfer function (8.4) computezhi the system descrip-

tion (8.2). The transfer function is thus invariant to changéthe coordinates in
the state space.

Another property of the transfer function is that it corresgs to the portion of
the state space dynamics that are both reachable and dbiseriraparticular, if
we make use of the Kalman decomposition (Section 7.5), thetrémsfer func-
tion only depends on the dynamics in the reachable and dddslersubspace,
(Exercise 8.2).
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Transfer Functions for Linear Systems
Consider a linear input/output system described by themifftial equation

d" dn-? d™u d™tu
d—t?]/+alw_i/+--~+any: boﬁ—i-blw
whereu is the input andy is the output. This type of description arises in many
applications, as described briefly in Section 2.2; bicycleatiyics and AFM mod-
eling are two specific examples. Note that here we have gézrestadur previous
system description to allow both the input and its derivegtito appear.
To determine the transfer function of the system (8.8),Hetihput beu(t) =
e, Since the system is linear, there is an output of the systamighalso an
exponential functiory(t) = yoe™. Inserting the signals into equation (8.8) we find

(+ a4+ +an)yoe™ = (bps"+ bys™ L+ by)e S

+ -+ bmu, (8.8)

and the response of the system can be completely describ@lpolynomials

as)=s"+as" ++a,

. (8.9)
b(s) = boS"+b1S™" "+ -+ + by,

The polynomiak(s) is the characteristic polynomial of the ordinary diffeiaht
equation. Ifa(s) # 0 it follows that
b(s)
_ yaest _ D) st
Ww—wé—a®é (8.10)

The transfer function of the system (8.8) is thus the ratifunadtion

b(s)

G(s) = a3 (8.11)
where the polynomials(s) and b(s) are given by equation (8.9). Notice that
the transfer function for the system (8.8) can be obtainemh§yection, since the
coefficients ofa(s) andb(s) are precisely the coefficients of the derivativesuof
andy.

Equations (8.8)—(8.11) can be used to compute the trangietiéins of many
simple ODEs. Table 8.1 gives some of the more common forms. Tstefifie
of these follow directly from the analysis above. For thepamional-integral-
derivative (PID) controller, we make use of the fact that thiegral of an expo-
nential input is given by1/s)e. The last entry in Table 8.1 is for a pure time
delay, in which the output is identical to the input at anieatime. Time delays
appear in many systems: typical examples are delays in peogagation, com-
munication and mass transport. A system with a time delayth@sput/output
relation

y(t) =u(t—1). (8.12)

As before, let the input be(t) = €. Assuming that there is an output of the form
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Table 8.1: Laplace transforms for come common ordinary differential equations

Type ODE Transfer Function

. 1
Integrator y=u S
Differentiator y=u S
1

First order system fFay=u —_—

Y yray s+a
. 1
Double Integrator y=u 2
1

D d oscillat 12 wny Y 2 2lwmsta?
amped oscillator y-2{ wny + @y = u P+ 2 S+ WP

PID controller y =kpu+Kkgu+Kki [u kp+kds+§

Time delay yt)=ut—r1) e’

y(t) = yoe® and inserting into equation (8.12) we get
y(t) = yoeot = 170 — eSSt — e~ Ty(t).

The transfer function of a time delay is thG$s) = e, which is not a rational
function but is analytic except at infinity. (A complex furaniisanalyticif it has
no singularities in the closed left half plane.)

Example 8.2 Electrical circuit elements

Modeling of electrical circuits is a common use of transterdtions. Consider for

example a resistor modeled by Ohm'’s l&w= IR, whereV is the voltage across

the resister) is the current through the resistor aRds the resistance value. If

we consider current to be the input and voltage to be the tthpuesistor has the

transfer functiorZ(s) = R. Z(s) is also called thempedancef the circuit element.
Next we consider an inductor whose input/output charestterlis given by

dl
L—=V.
dt
Letting the current beé(t) = e, we find that the voltage ¥ (t) = Lse" and the
transfer function of an inductor is th#§s) = Ls. A capacitor is characterized by
dv
C—=I
dt
and a similar analysis gives a transfer function from curtervoltage ofZ(s) =
1/(Cs). Using transfer functions, complex electrical circuita && analyzed alge-
braically by using the complex impedanggs) just as one would use the resistance
value in a resistor network. 0
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R | R

\%1

Vo 10°

O [e]

Figure 8.3: Stable amplifier based on negative feedback around an operatiopéfi@m

The block diagram on the left shows a typical amplifier with low frequerain B, /R;. If

we model the dynamic response of the op am@é&s = ak/(s+ a) then the gain falls off

at frequencyw = a, as shown in the gain curves on the right. The frequency response is
computed fok = 107, a= 100 rad/sR, = 106Q, andR; = 1, 1(?, 10* and 106Q.

Example 8.3 Operational amplifiers

To further illustrate the use of exponential signals, wesoder the operational
amplifier circuit introduced in Section 3.3 and reproduced iguFé 8.3a. The
model introduced in Section 3.3 is a simplification becauselittear behavior
of the amplifier was modeled as a constant gain. In realityetlage significant
dynamics in the amplifier and the static modg} = —kv (equation (3.10)), should
therefore be replaced by a dynamic model. In the linear réingemplifier, we
can model the operational amplifier as having a steady seqedncy response

Vout ak .

v sta— G(s). (8.13)
This response corresponds to a first order system with timetanaing/a. The
parametek is called the th@pen loop gairand the producakis called thegain-
bandwidth producttypical values for these parameters ke 10’ andak = 10'—
10° rad/s.

Since all of the elements of the circuit are modeled as ben&ali if we drive
the inputvy with an exponential signa¢® then in steady state all signals will
be exponentials of the same form. This allows us to manipufeesquations
describing the system in an algebraic fashion. Hence we cié@ w

Vi1 —V . V—\Vo
RR R
using the fact that the current into the amplifier is very syrasl we did in Sec-

tion 3.3. Eliminatingv between these equation gives the following transfer func-
tion of the system
V2 RoG(s) Roak
Vi Ri+R+RG(S) Rakt (Rit+Ry)(st+a)
The low frequency gain is obtained by settgg 0, hence
Vo kR R,
Tw K DRR TR

which is the result given by (3.11) in Section 3.3. The bandwaftthe amplifier

and v, =G(9)y, (8.14)

G(0)
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circuit is
Ri(k+1)+Ro _ ai:lk
Ri+R> Ry’

where the approximation holds f&/R; > 1. The gain of the closed loop system
drops off at high frequencies & /(w(R1 + Ry)). The frequency response of the
transfer function is shown in Figure 8.3 fee= 10’, a= 100 rad/sR, = 106Q,
andR; =1, 1¢%, 10* and 16 Q.

Note that in solving this example, we bypassed explicitlitimg the signals as
v = Ve and instead worked directly with assuming it was an exponential. This
shortcut is handy in solving problems of this sort. A comgamiwith Section 3.3,
where we made the same calculation wigés) was a constant, shows analysis of
systems using transfer functions is as easy as to deal witatis systems. The
calculations are the same if the resistariReandR, are replaced by impedances,
as discussed in Example 8.2.

(*)0:

O

Although we have focused thus far on ordinary differentiqliaions, transfer
functions can also be used for other types of linear systevids.illustrate this
via an example of a transfer function for a partial diffefah¢quation.

Example 8.4 Transfer function for heat propagation
Consider the problem of one dimensional heat propagatiarsgmi-infinite metal
rod. Assume that the input is the temperature at one end andhé output is
the temperature at a point along the rod. Béxt,t) be the temperature at position
x and timet. With proper choice of length scales and units, heat prapay#s
described by the partial differential equation

08 9%6

" 9% (8.15)
and the point of interest can be assumed to havel. The boundary condition
for the partial differential equation is

0(0,t) = u(t).

To determine the transfer function we choose the inpugs= €. Assume that
there is a solution to the partial differential equationtaf form6(x,t) = @(x)e™,
and insert this into equation (8.15) to obtain

d2
sy =7,

with boundary conditiony(0) = €. This ordinary differential equation (with
independent variabbg) has the solution

P(X) = AeVS 4 Be XS,
Matching the boundary conditions givés= 0 andB = €%, so the solution is
y(t) = 6(Lt) = P(1)et = e Ve = e VSu(t).
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The system thus has the transfer funct®(s) = e V5. As in the case of a time
delay, the transfer function is not a rational function s ian analytic function.
t

Gains, Poles and Zeros

The transfer function has many useful interpretations aadgatures of a transfer
function are often associated with important system pitigserThree of the most
important features are the gain and locations of the polézaros.

Thezero frequency gaiof a system is given by the magnitude of the transfer
function ats= 0. It represents the ratio of the steady state value of theubutith
respect to a step input (which can be represented-as™ with s= 0). For a state
space system, we computed the zero frequency gain in equatR):

G(0)=D-CA1B.
For a system written as a linear ODE, as in equation (8.8),
dy d"ly dMu d™ 1y
if we assume that the input and output of the system are ausgtaandug, then
we find thata,yo = bmug. Hence the zero frequency gain is
_ Yo _ bm
U @
Next consider a linear system with the rational transfectiom

G(s) = @

a(s)

+ -+ bmu,

G(0) (8.16)

The roots of the polynomia(s) are calledpolesof the system and the roots of
b(s) are called thezerosof the system. Ifp is a pole it follows thaty(t) = e™

is a solution of equation (8.8) with = 0 (the homogeneous solution). A pgbe
corresponds to eodeof the system with corresponding modal solut&h The
unforced motion of the system after an arbitrary excitat®a weighted sum of
modes.

Zeros have some what different interpretation. Since the gxpenential out-
put corresponding to the inputt) = e with a(s) # 0 is G(s)e¥, it follows that
the pure exponential output is zerdifs) = 0. Zeros of the transfer function thus
block the transmission of the corresponding exponentigiads.

For a state space system with transfer func@®gs) = C(sl — A)"'B+ D, the
poles of the transfer function are the eigenvalues of theixnAtin the state space
model. One easy way to see this is to notice that the vali&gfis unbounded
whensis an eigenvalue of a system, since this is precisely thefgmtiots where
the characteristic polynomial (s) = defsl — A) = 0 (and hencesl — A is non-
invertible). It follows that the poles of a state space systeepend only on the



246 CHAPTER 8. TRANSFER FUNCTIONS

Pole-Zero Map
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Figure 8.4: A pole zero digram for a transfer function with zeros-& and—1, and poles at
—3and—-2+2j. The circles represent the locations of the zeros and the crossesatierisc
of the poles. A complete characterization requires we also specify thehtie system.

matrix A, which represents the intrinsic dynamics of the system. #yetlsat a
transfer function is stable if all of its poles have negatal part.

To find the zeros of a state space system, we observe that tieearercomplex
numberss such that the inputi(t) = €™ gives zero output. Inserting the pure
exponential responsét) = xoe™ andy(t) = 0 in equation (8.2) gives

s = Axoe™ + Buoe™, 0= Cé%o + Deug,

sl-A B)] (%] 0
C D )
This equation has a solution with nonzeg) ug only if the matrix on the left does
not have full rank. The zeros are thus the valsisach that

si-A B
det[ c D] —0. (8.17)

which can be written as

Since the zeros depend 8nB, C andD, they therefore depend on how the inputs
and outputs are coupled to the states. Notice in partiché&rit the matrixB has
full rank then the matrix in equation (8.17) hadinearly independent rows for
all values ofs. Similarly there aren linearly independent columns if the matrix
C has full rank. This implies that systems where the matriges C are of full
rank do not have zeros. In particular it means that a systembaeros if it is
fully actuated (each state can be controlled independeatlyf the full state is
measured.

A convenient way to view the poles and zeros of a transfertfondés through
apole zero diagramas shown in Figure 8.4. In this diagram, each pole is marked
with a cross and each zero with a circle. If there are mulfgu&es or zeros at
a fixed location, these are often indicated with overlappircgses or circles (or
other annotations). Poles in the left half plane corresporatable modes of the
system and poles in the right half plane correspond to ulestabdes. Notice that
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Figure 8.5: Poles and zeros for a balance system. The balance system (a) cadéledn
around its vertical equilibrium point by a fourth order linear system. Tdlegpand zeros for
the transfer functioflg F andHg , are shown on the right top and bottom, respectively.

the gain must also be given to have a complete descriptidredafansfer function.

Example 8.5 Balance system

Consider the dynamics for a balance system, shown in Figbee 8The trans-
fer function for a balance system can be derived directlynftbe second order
equations, given in Example 2.1:

d?p d20 dp

—ml—_-cosf+c— +m|sm9(dq)2 =F

MGz dt2 dt dt

d?p d?e . :
—mlcosf— e +Jt¥ —mglsin@+y6 = 0.
If we assume tha? andq are small, we can approximate this nonlinear system by
a set of linear second order differential equations,

2 2
d?p_ d%0  dp
dt? dt? dt
dzp d’6  dé

16 =0.

dt2 e ae Vg~ M9

If we let F be an exponential signal, the resulting response satisfies

M =F

M’ p—mlIs0+csp=F
s 0 —mis’p+ys8 —mglo =0,

where all signals are exponential signals. The resultingsfea functions for the
position of the cart and orientation of the pendulum aremylwe solving forp and



248 CHAPTER 8. TRANSFER FUNCTIONS

Gy
u y u y u e y
Gy Gy = }— (%) Gy
G, T
-G,
(@) Gyu = GGy (0) Gyu=GC1+G2 _ Gy
© Gyu 1+ GGy

Figure 8.6: Interconnections of linear systems. Series (a), parallel (b) and&e&dc)
connections are shown. The transfer functions for the compositensystn be derived by
algebraic manipulations assuming exponential functions for all signals.

0 in terms ofF to obtain

mls
MR = (M3 —m12)5— (W + o)+ (mgiM — oy)s+ mgic
oo —%s*— ys+mgl
PF—

(M — mPI2)s* — (yM; +cd)s® + (mgIM — cy)s? +mglcs

where each of the coefficients is positive. The pole zero dimgrfar these two
transfer functions are shown in Figures 8.5 using the paensiBbom Example 6.7.
If we assume the damping is small andset 0 andy = 0, we obtain

ml
Hor = Mg — 122+ mgimt
— s> +mgl
HpF ==

(= (Mg — mPI2)? + mgIM) -

This gives nonzero poles and zeros at

_ 4/ _mgM _ 4 /Mgl
P=F\/ iy iz © 1268 2=/~ 4209

We see that these are quite close to the pole and zero losatiétigure 8.5. [

8.3 BLOCK DIAGRAMS AND TRANSFER FUNCTIONS

The combination of block diagrams and transfer functions p@waerful way to
represent control systems. Transfer functions relatiffgreéint signals in the sys-
tem can be derived by purely algebraic manipulations of iénesfer functions of
the blocks usindplock diagram algebraTo show how this can be done, we will
begin with simple combinations of systems.

Consider a system that is a cascade combination of systetinghei transfer
functionsGs (s) andGy(s), as shown in Figure 8.6a. Let the input of the system
beu = €. The pure exponential output of the first block is the expomaéstgnal
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Gzu, which is also the input to the second system. The pure expiahentput of
the second system is
y= Gz(G]_U) = (GzGl)U.

The transfer function of the system is tHas= G,Gy, i.e. the product of the trans-
fer functions. The order of the individual transfer funcgds due to the fact that
we place the input signal on the right hand side of this exgloes hence we first
multiply by G1 and then byG,. Unfortunately, this has the opposite ordering from
the diagrams that we use, where we typically have the signal filom left to
right, so one needs to be careful. The ordering is importagithierG, or G, is a
vector-valued transfer function, as we shall see in sommples.

Consider next a parallel connection of systems with thesfearfunctionsG;
andG,, as shown in Figure 8.6b. Letting= € be the input to the system, the
pure exponential output of the first system is tlygr= G1u and the output of the
second system ¥ = G,u. The pure exponential output of the parallel connection
is thus

y = Giu+ Gou= (G1+ Gy)u

and the transfer function for a parallel connectiofsis- G; + G».

Finally, consider a feedback connection of systems withriduester functions
G; and G, as shown in Figure 8.6¢. Let= €% be the input to the systeny,
the pure exponential output, aadbe the pure exponential part of the intermediate
signal given by the sum af and the output of the second block. Writing the
relations for the different blocks and the summation unitfiwe

y=G1e e=u—Gyy.

Elimination ofe gives

G
= - 1 = =——u
y=Gi(u-Gy) = (1+GG)y=Giu = Yy 1+G1G2u
The transfer function of the feedback connection is thus
Gy
G= 14+G.1Gy

These three basic interconnections can be used as the basisrfputing transfer
functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figure 8.7, which was given alreadlieabeginning of
the chapter. The system has three blocks representing aspi®ca feedback
controllerC and a feedforward controllét. There are three external signals: the
reference, the load disturbanagand the measurement noiseA typical problem
is to find out how the errog is related to the signals d andn.

To derive the relevant transfer functions we assume thaigtflals are expo-
nential functions, drop the arguments of signals and tearfsinctions and trace
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Figure 8.7: Block diagram of a feedback system. The inputs to the system are thenege
signalr, the process disturbanceand the process noise The remaining signals in the
system can all be chosen as possible outputs and transfer functiobs oaad to relate the
system inputs to the other labeled signals.

the signals around the loop. We begin with the signal in wivehare interested,
in this case the erra, given by
e=Fr—y.
The signaly is the sum ofh andn, wheren is the output of the process:
y=n+n n="P(d+u) u==Ce
Combining these equations gives
e=Fr—y=Fr—(n+n)=Fr—(n+P(d+u))
=Fr—(n+P(d+Ce)
and hence
e=Fr—n—Pd—-PCe
Finally, solving this equation fog gives

e= F r— ! n— P

1+PC 1+PC 1+PC

and the error is thus the sum of three terms, depending onrefeesncer, the
measurement noiseand the load disturbanek The functions
F -1 —P

Ce=17pc Ce=13pc e 1ipC

are the transfer functions from referengenoisen and disturbancd to the error

e

d — Gerr + Genn + Gedd (818)

(8.19)

We can also derive transfer functions by manipulating tleelbdiagrams di-
rectly, as illustrated in Figure 8.8. Suppose we wish to comhg transfer func-
tion between the referenceand the outpuy. We begin by combining the process
and controller blocks in Figure 8.7 to obtain the diagram iruFég8.8a. We can
now eliminate the feedback loop using the algebra for a feekimterconnection
(Figure 8.8b) and then use the series interconnection rudbtain

PCF



8.3. BLOCK DIAGRAMS AND TRANSFER FUNCTIONS 251

r e y r <1
— F PC - — F = T+PC

(b)

PCF
1+PC

(@) (©

Figure 8.8: Example of block diagram algebra. Figure (a) results from multiplying the
process and controller transfer functions (from Figure 8.7). Remathe feedback loop
with its transfer function equivalent yields (b) and finally multiplying the twoagéning
blocks gives the reference to output representation in (c).

Similar manipulations can be used to obtain the other trarfafections (Exer-
cise 8.10).

The derivation illustrates an effective way to manipulategquations to obtain
the relations between inputs and outputs in a feedbackraygtee general idea is
to start with the signal of interest and to trace signalsiaddbe feedback loop until
coming back to the signal we started with. With some practggiations (8.18)
and (8.19) can be written directly by inspection of the bld@gram. Notice, for
example, that all terms in equation (8.19) have the samendigxadors and that the
numerators are the blocks that one passes through when djoéagjy from input
to output (ignoring the feedback). This type of rule can beluseompute transfer
functions by inspection, although for systems with muéifdedback loops it can
be tricky to compute them without writing down the algebraleitly.

Example 8.6 Vehicle steering

Consider the linearized model for vehicle steering inticatlin Example 5.12. In
Examples 6.4 and 7.3 we designed a state feedback compeasdtstate estima-
tor for the system. A block diagram for the resulting consgstem is given in
Figure 8.9. Note that we have split the estimator into two conemts Gg,(s) and
Ggy(s), corresponding to its inputsandy. The controller can be described as the
sum of two (open loop) transfer functions

The first transfer functionGy(s), describes the feedback term and the second,
Gur(s), describes the feedforward term. We call these “open loapisfer func-
tions because they represent the relationships betweesigiiigls without consid-
ering the dynamics of the process (e.g., remo\Rtg) from the system descrip-
tion). To derive these functions, we compute the the traufsfections for each
block and then use block diagram algebra.

We begin with the estimator, which takesndy as its inputs and produces an
estimatex” The dynamics for this process was derived in Example 7.3 agides
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; ‘ Y v
| K | 3
! , | Gu Ggy | 1!
| R % 1
| -1 = 1
Controller . Estimator |

Figure 8.9: Block diagram for the steering control system. The control system igrkxbto
maintain the lateral position of the vehicle along a reference curve (I¢f§ sfructure of the
control system is shown on the right as a block diagram of transfetifunsc The estimator
consists of two components that compute the estimatedssteden the combination of the
input u and outputy of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commandeihgtaagle u.

by
dg ]
pr (A—LC)X+Ly+Bu
2= (sl—(A—LC)) 'Bu+ (sl— (A—LC)) 'Ly,

Gsu G)?y

Using the expressions féy, B, C andL from Example 7.3, we obtain

ys+1 l1s+15
f+lis+l L +lis+1p
Gau(s) = Gf(y(s) = )
s+|1—ylz los
Sz+|1S+|2 Sz+|1S—|-|2

wherel; andl, are the observer gains apds the scaled position of the center
of mass from the rear wheels. The controller was a state fekdtmmpensator,
which can be viewed as a constant, multi-input, single duitjansfer function of
the formu = —KX.

We can now proceed to compute the transfer function for thezadlvcontrol
system. Using block diagram algebra, we have

—KGgy(s) S(kil1 +kol2) + kil

Guy(s) = =—
W) = T kGl P siykatkot 1) £k 1o+ Kala — Viala

and

B ky B k1(52+|15—|—|2)
1+KGau(s)  S+s(yki+ko+11) + ki + 1o+ koly — ykolo’
wherek; andk, are the controller gains.

Gur(9)
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Finally, we compute the full closed loop dynamics. We begirdbyiving the
transfer function for the proced(s). We can compute this directly from the state
space description of the dynamics, which was given in Exarégle Using that
description, we have

P(S) = Gyu(s) = C(sl~A) "B+ D= (1 0) [8 ‘Sl] 1[‘1’] :%”.

The transfer function for the full closed loop system betw#eninputr and the
outputy is then given by

kP(s) ki(ys+1)

Gy = = .
T 14+P(S)Guyls) P+ (key+ka)s+ke

Note that the observer gaihsandl, do not appear in this equation. This is because
we are considering steady state analysis and, in steady tatestimated state
exactly tracks the state of the system assuming perfect Isodé will return to
this example in Chapter 12 to study the robustness of thigcpsar approach. [

Pole/Zero Cancellations

Because transfer functions are often polynomials,iit can sometimes happen
that the numerator and denominator have a common factoghwdan be can-
celed. Sometimes these cancellations are simply algebinaifications, but in
other situations these cancellations can mask potenggilifies in the model. In
particular, if a pole/zero cancellation occurs due to teimseparate blocks that
just happen to coincide, the cancellation may not occur & ohthe systems is
slightly perturbed. In some situations this can result irese differences between
the expected behavior and the actual behavior, as illgstiatthis section.

To illustrate when we can have pole/zero cancellationssiden the block di-
agram shown in Figure 8.7 with = 1 (no feedforward compensation) aGdnd
P given by

Cls) = gzg P(s) = ”z(s)

(s)
The transfer function from to eis then given by

1 de(S)dp(S)

Ger(s) = 1+PC ~ de(s)dp(S) + Ne(s)Np(s)’

If there are common factors in the numerator and denominpatiynomials, then
these terms can be factored out and eliminated from bothuheerator and de-
nominator. For example, if the controller has a zere-ata and the process has a
pole ats = a, then we will have

(s+2)de(s)dp(s) de(s)dp(S)

Cerls) = (ST @ d(9d5(5) + (5 + ANONp(S  de(SIdp(S) - M(Inp(S)
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wheren;(s) anddj,(s) represent the relevant polynomials with the texma fac-
tored out. In the case wherx O (so that the zero or pole is in the right half plane),
we see that there is no impact on the transfer fundBen

Suppose instead that we compute the transfer functiondrtoe, which repre-
sents the effect of a disturbance on the error between theerefe and the output.
This transfer function is given by

de(s)np(s)
(s+a)dc(s)dp(s) + (s+a)ng(s)np(s) '

Ged(S) =

Notice that ifa < 0 then the pole is in the right half plane and the transfertionc
Geq is unstable Hence, even though the transfer function frotn e appears to be
OK (assuming a perfect pole/zero cancellation), the tearfsinction fromd to e
can exhibit unbounded behavior. This unwanted behaviopis&y of anunstable
pole/zero cancellatian

It turns out that the cancellation of a pole with a zero can aks understood
in terms of the state space representation of the systenachRkility or observ-
ability is lost when there are cancellations of poles andz€Exercise 8.13). A
consequence is that the transfer function only represeaidtamics in the reach-
able and observable subspace of a system (see Section 7.5).

Example 8.7 Cruise control with pole-zero cancellation

The linearized model from throttle to velocity for the line&d model for a car
has the transfer functiodB(s) = b/(s—a). A simple way (but not necessarily good
way) to design a PI controller is to choose the parameterseoPttcontroller so
that the controller zero at= —k1 /k, cancels the process polesat a. The transfer
function from reference to velocity G (s) = bkp/(s+ bkp) and control design
is simply a matter of choosing the gdip. The closed loop system dynamics is of
first order with the time constany fhkj,.

Figure 8.10 shows the velocity error when the car encountelis@ease in
the road slope. A comparison with the controller used in EgiBb (reproduced
in dashed curves) show that the controller based on pote-@@ncellation has
very poor performance. The velocity error is larger and ietak long time to
settle. Notice that the control signal remains practicedlgstant aftet = 15 even
if the error is large after that time. To understand what leagpve will analyze
the system. The parameters of the systemaatre —0.0101,b = 1.32 and the
controller parameters akg = 0.3 andk; = 0.005. The closed loop time constant
is 1/(bky) = 2.5 s and we would expect that the error would settle in abOwst 1
(4 time constants). The transfer functions from road slopeetocity and control

signals are
bgkps bk
(s—a)(s+bkp) ~ s+bky’
Notice that the canceled mode= a = —0.0101 appears iy but not inGyg,

which explains whyv settles very slowly. The reason why the control signal re-
mains constant is that the controller has a zer®-at—0.0101 which cancels the

Gve(s) = Gus(s)
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Figure 8.10: Car with PI cruise control encountering a sloping road. Figure 8.10asthe
velocity error and Figure 8.10b shows the throttle. Results with a P1 contvailie kp, = 0.3

andk; = 0.0051, where the process pae- —0.101 is shown in full lines and a controller
with kp = 0.3 andk; = 0.5 are shown in dashed lines. Compare with Figure 3.3b on page 71.

slowly decaying process mode. Notice that the error wowdrde if the canceled
pole is unstable. O

The lesson we can learn from this example is that it is a bad toldgy to
cancel unstable or slow process poles. A more detailed skgmu of pole/zero
cancellations is given in Section 12.4.

Algebraic Loops

When analyzing or simulating a system described by a bloagrdim it is neces-
sary to form the differential equations that describe thegete system. In many
cases the equations can be obtained by combining the diffekequations that
describe each subsystem and substituting variables. ThEesprocedure cannot
be used when there are closed loops of subsystems that elétdikect connection
between inputs and outputs, a so-cakbégkbraic loop

To see what can happen, consider a system with two blockst arfitsr non-
linear system q

X
a = f(X,U), y:g(x)v (821)
and a proportional controller described loy= —ky. There is no direct term since
the functiong does not depend am In that case we can obtain the equation for
the closed loop system simply by substitutingy —kyin (8.21) to give
dx
a_ f(X,—ky), y—g(X)

Such a procedure can easily be automated using simple fommangulation.

The situation is more complicated if there is a direct termy 4 g(x,u) then
substitutingu by —ky gives

dx
gt = [x—ky),  y=g(x—ky),

To obtain a differential equation fog the algebraic equation= g(x, —ky) must
be solved to givey = h(x), which in general is a complicated task.
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When algebraic loops are present it is necessary to solebi@iy equations
to obtain the differential equations for the complete syst®esolving algebraic
loops is a non-trivial problem because it requires symbsidilution of algebraic
equations. Most block-diagram oriented modeling langaaganot handle alge-
braic loops and they simply give a diagnosis that such loopgeesent. In the
era of analog computing, algebraic loops were eliminatethtvgpducing fast dy-
namics between the loops. This created differential egusirath fast and slow
modes that are difficult to solve numerically. Advanced mindelanguages like
Modelica use several sophisticated methods so resolvberaigdoops.

8.4 THE BODE PLOT

The frequency response of a linear system can be computedtftransfer func-
tion by settings = iw, corresponding to a complex exponential

u(t) = €“* = coq wt) +isin(wt).
The resulting output has the form
y(t) = G(iw)e™ = Mé? — Mcog wt + @) +iM sin(wt + ¢)

whereM and¢ are the gain and phase Gf

ImG(iw)

ReG(iw)
The phase of is also called thargumenbf G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single siids(sin or cos) is
amplified byM and phase shifted bfy. Note that—m < ¢ < 1, so the arctangent
must be taken respecting the signs of the numerator and deatam It will often
be convenient to represent the phase in degrees rathegttians. \We will use the
notation/G(iw) for the phase in degrees and &(@w) for the phase in radians.
In addition, while we always take a@fiw) to be in the rangé—r, 11, we will
take ZG(iw) to be continuous, so that it can take on values outside ofihger of
-180 to 180.

The frequency respongg(iw) can thus be represented by two curves: the
gain curve and the phase curve. The gain curve giégv)| as a function of
frequencyw and the phase curve give$s(iw) as a function of frequenayp. One
particularly useful way of drawing these curves is to useddldg scale for the

magnitude plot and a log/linear scale for the phase plot. fijpis of plot is called
aBode plotand is shown in Figure 8.11.

M= |G(iw)| ¢ = arcta

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy &ictkand interpret.
Since the frequency scale is logarithmic they cover the behata linear system
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Figure 8.11: Bode plot of the transfer functio@(s) = 20+ 10/s+ 10s of an ideal PID
controller. The top plot is the gain curve and bottom plot is the phase ciitve.dashed
lines show straight line approximations of the gain curve and the comdsmpphase curve.

over a wide frequency range.

Consider a transfer function that is a rational functionhaf form
by (s)b2(S)

G(s) = ———.
= a9

We have
log|G(s)| = log|ba(s)| +log|b(s)| —loglai(s)| —log|az(s)|

and hence we can compute the gain curve by simply adding dtchsting gains
corresponding to terms in the numerator and denominatoiilesiyn

ZG(S) = £b1(8) + £Lba(s) — Zai(s) — Zax(s)

and so the phase curve can be determined in an analogousrfashince a poly-
nomial can be written as a product of terms of the type

k, s, s+a S +2las+a’

it suffices to be able to sketch Bode diagrams for these termes Bolde plot of a
complex system is then obtained by adding the gains and ploftlee terms.

The simplest term in a transfer function is one of the fatirwherek > 0 if
the term appears in the numerator &nd O if the term is in the denominator. The
magnitude and phase of the term are given by

log|G(iw)| =klogw, ZG(iw)=90k.

The gain curve is thus a straight line with sldpand the phase curve is a constant
at 90 x k. The case whek= 1 corresponds to a differentiator and has slope 1 with
phase 90. The case whek = —1 corresponds to an integrator and has slefie
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Figure 8.12: Bode plot of the transfer functiors(s) = fork=—2,-1,0,1,2. On a log-
log scale, the gain curve is a straight line with sldpdJsing a log-linear scale, the phase
curves the transfer functions are constants, with phase eqkad@®

with phase-90°. Bode plots of the various powerslofire shown in Figure 8.12.
Consider next the transfer function of a first order systenergby

a
=53
We have al
a
G(s)| = /G(s)=/(a)— Z(s+a
6O =5 (9= 24(a) - £(s+a)
and hence

log|G(iw)| =loga— % log(w?+a?)) /G(iw) = —Llsi()arctam/a.

The Bode plot is shown in Figure 8.13a, with the magnitude nbret by the
zero frequency gain. Both the gain curve and the phase carvbeapproximated
by the following straight lines

. loga ifw<a
IOgG(Iw)‘%{—logw if w>a
0 if w<a/l0
/G(iw) =~ ¢ —45—45(logw—loga) a/10< w < 10a
-90 if w> 10a.

The approximate gain curve consists of a horizontal line ufpeiguencyw = a,
called thebreakpoint at which point the curve is a line of slopel (on a log-log
scale). The phase curve is zero up to frequexid and then decreases linearly by
45°/decade up to frequency 40at which point it remains constant at"9Notice
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Figure 8.13: Bode plots for first and second order systems. The first orderryG{s) =

a/(s+ a) (left) can be approximated by asymptotic curves (dashed) in both theagdin
frequency, with the breakpoint in the gain curvesat a and the phase decreasing by 90
over a factor of 100 in frequency. The second order sysgésh = w?/(* + 2{ wos+ &f)

(right) has a peak at frequenaynd then a slope 6f2 beyond the peak; the phase decreases
from O° to 18C0°. The height of the peak and rate of change of phase depending on the
damping facto ({ =0.02, 0.1, 0.2, 0.5 and 1.0 shown).

that a first order system behaves like a constant for low frecjes and like an
integrator for high frequencies; compare with the Bode pldiigure 8.12.
Finally, consider the transfer function for a second ordsteay

2

_ W
Gls) = P+2als+wh’

for which we have
log|G(iw)| = 2logan — % log (w* + 2afw?(20% — 1) + wf)

G(iw) = —@arctanzzﬂ.
m — w?

wh
The gain curve has an asymptote with zero slopediox . For large val-
ues ofw the gain curve has an asymptote with slep2. The largest gaiQ =
max, |G(iw)| ~ 1/(2¢), called theQ-value is obtained forw ~ wy. The phase
is zero for low frequencies and approaches®1f®@ large frequencies. The curves
can be approximated with the following piecewise linearrespions

'|fw<< y, /Gliw) ~ 0 |.fw<< wo,‘
if w> wy —-180 ifw> an

The Bode plot is shown in Figure 8.13b. Note that the asympémtaroximation

. 0
log|G(iw)| ~ {—Zlogw
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Figure 8.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for

the transfer functioiB(s) = k(s+ b)/(s+a)(s* + 2{ wps+ wp), wherea < b < wp. Each
segment in the gain and phase curves represents a separate pottienapproximation,
where either a pole or a zero begins to have effect. Each segmentagpheximation is a
straight line between these points at a slope given by the rules for coghéreffects of
poles and zeros.

is poor neaww = a and the Bode plot depends strongly ®mear this frequency.

Given the Bode plots of the basic functions, we can now skistetirequency
response for a more general system. The following exampistifites the basic
idea.

Example 8.8 Asymptotic approximation for a transfer function
Consider the transfer function given by

- k(s+b)
Gl9) = (s+a)(s?+ 2{ woS+ wp)

The Bode plot for this transfer function is shown in Figure 8\&ith the complete
transfer function shown in as a solid line and a sketch of theéeBplot shown as a
dashed line.

We begin with the magnitude curve. At low frequency, the nitagie is given

b
Y kb

aw?’
When we reach the pole at= a, the magnitude begins to decrease with slefde
until it reaches the zero at= b. At that point, we increase the slope by 1, leaving
the asymptote with net slope 0. This slope is used until wehrdae second order
pole ats = w, at which point the asymptote changes to slefZ We see that the
magnitude curve is fairly accurate except in the region efghak of the second
order pole (since for this cageis reasonably small).

The phase curve is more complicated, since the effect of tasgéiretches out
much further. The effect of the pole beginssat a/10, at which point we change

ak b< ay.

G(0)
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Figure 8.15: Bode plots for low pass, band pass and high pass filters. The top pldtsare
gain curves and the bottom plots are the phase curves. Each systeys foragsencies in a
different range and attenuates frequencies outside of that range.

from phase 0 to a slope of45°/decade. The zero begins to affect the phase at
s=Db/10, giving us a flat section in the phase. $At 10a the phase contributions
from the pole end and we are left with a slopejef5°/decade (from the zero). At
the location of the second order po$es: i, we get a jump in phase 6f180C.
Finally, ats = 10b the phase contributions of the zero end and we are left with
phase—180 degrees. We see that the straight line approximatiothéophase is
not as accurate as it was for the gain curve, but it does @fitarbasic features of
the phase changes as a function of frequency. O

The Bode plot gives a quick overview of a system. Since any bicgra be
decomposed into a sum of sinusoids it is possible to viseidhiz behavior of a
system for different frequency ranges. The system can beedias a filter that can
change the amplitude (and phase) of the input signals aogpta the frequency
response. For example if there are frequency ranges whergatin curve has
constant slope and the phase is close to zero, the actior afyftem for signals
with these frequencies can be interpreted as a pure gainlaBinfor frequencies
where the slope is +1 and the phase close tg 8 action of the system can be
interpreted as a differentiator, as shown in Figure 8.12.

Three common types of frequency responses are shown in Figlise he
system in Figure 8.15a is called@wv pass filterbecause the gain is constant for
low frequencies and it drops for high frequencies. Notiga the phase is zero for
low frequencies and-180 for high frequencies. The systems in Figure 8.15b and
c are called dand pass filteandhigh pass filtefor similar reasons.
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Figure 8.16: Noise attenuation in a genetic circuit. The open loop system (a) consists
of a constitutive promoter, while the closed loop circuit (b) is self-regdlatgh negative
feedback (repressor). The frequency response for eaclitégsthown on the right.

To illustrate how different system behaviors can be reachftibee Bode plots
we consider the band pass filter in Figure 8.15b. For frequsrari®undw = wy,
the signal is passed through with no change in gain. Howeweirequencies well
below or well abovewy, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For fretjasrelowa/100
there is a phase lead of 9@nd for frequencies above 1®there is a phase lag
of 90°. These actions correspond to differentiation and integmnati the signal in
these frequency ranges.

Example 8.9 Transcriptional regulation in a biological circuit

Consider a genetic circuit consisting of a single gene. Wghwo study the re-
sponse of the protein concentration to fluctuations in the mkRjnhamics. We
consider two cases: eonstitutive promotefno regulation) and self-repression
(negative feedback), illustrated in Figure 8.16. The dynamoitthe system are
given by

dm dp
G AP -ym-u  F=pm-ap,

wherev is a disturbance term that affects mRNA transcription.

For the case of no feedback we havép) = ap and the system has an equi-
librium point atme = ag/y, pe = B/9d-0p/y. The transfer function fromr to p is
given by
-B

ol = oyt o)

For the case of negative regulation, we have

o
a(p) = 1+lip1+0!o
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and the equilibrium points satisfy

o o« VB
me—BIOe, 1+ kp™ 0=YMe= Bpe-
The resulting transfer function is given by
2Bakpe
GCI _ B _ )
S (s+y)(s+0)+Bo’ ° (1+kp)?

Figure 8.16¢ shows the frequency response for the two citciie see that
the feedback circuit attenuates the response of the systdisttirbances with low
frequency content, but slightly amplifies disturbancesgt friequency (compared
to the open loop system). Notice that these curves are vaiiasito the frequency
response curves for the op amp, shown in Figure 8.3 on page 243.

O

Transfer Functions from Experiments

The transfer function of a system provides a summary of thetloptput response
and is very useful for analysis and design. However, modefiom first prin-
ciples can be difficult and time consuming. Fortunately, we cfien build an
input/output model for a given application by directly maasg the frequency re-
sponse and fitting a transfer function to it. To do so, we pbrthe input to the
system using a sinusoidal signal at a fixed frequency. Whelgt&ate is reached,
the amplitude ratio and the phase lag give the frequencynsspfor the excitation
frequency. The complete frequency response is obtained &gpEng over a range
of frequencies.

By using correlation techniques it is possible to deterntireefrequency re-
sponse very accurately and an analytic transfer functiorbeaobtained from the
frequency response by curve fitting. The success of this apiproas led to in-
struments and software that automate this process, cgectrum analyzerdhVe
illustrate the basic concept through two examples.

Example 8.10 Atomic force microscope

To illustrate the utility of spectrum analysis, we considee dynamics of the
atomic force microscope, introduced in Section 3.5. Expentaledetermination
of the frequency response is particularly attractive fag #ystem because its dy-
namics are very fast and hence experiments can be doneyyuicklpical exam-
ple is given in Figure 8.17, which shows an experimentallgdeined frequency
response (solid line). In this case the frequency respoaseobtained in less than
a second. The transfer function

G(s) = kel Wi (S? + 201015+ wf)(S + 2{4a4s+ wf)e ST
WP+ 2000+ w2) (P + 203wsS+ W) (2 + 255+ )

with w = 2420,{; = 0.03, awp = 2550,(» = 0.03, wz = 6450,{3 = 0.042, wy =
8250, = 0.025, s = 9300,(s = 0.032,T = 104 andk = 5, was fit to the data
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Figure 8.17: Frequency response of a preloaded piezoelectric drive for an aforoemi-
croscope. Figure 8.17a is a schematic which indicates the measureédtmpwoltage to
the drive amplifier) and output (the output of the amplifier measuringntaetiection). Fig-
ure 8.17b is a Bode plot of the measured transfer function (full lineg)tike fitted transfer
function (dashed lines).

(dashed line). The frequencies associated with the zerdsaaed where the gain
curve has minima and the frequencies associated with tles poé located where
the gain curve has local maxima. The relative damping ratiesdjusted to give
a good fit to maxima and minima. When a good fit to the gain curvéisioed
the time delay is adjusted to give a good fit to the phase curve.pigro drive is
preloaded and a simple model of its dynamics is derived indisei3.7. The pole
at 2500 kHz corresponds to the trampoline mode derived iexbecise; the other
resonances are higher modes. O

Example 8.11 Pupillary light reflex dynamics
The human eye is an organ that is easily accessible for exgetsmit has a control
system that adjusts the pupil opening to regulate the ligienisity at the retina.
This control system was explored extensively by Stark in tteel860s [Sta68].
To determine the dynamics, light intensity on the eye wagudasinusoidally and
the pupil opening was measured. A fundamental difficulty & the closed loop
system is insensitive to internal system parameters, sysaa@f a closed loop
system thus gives little information about the internalgandies of the system.
Stark used a clever experimental technigue that allowed bimviestigate both
open and closed loop dynamics. He excited the system byngtiie intensity
of a light beam focused on the eye and he measured pupil avelhysdrated in
Figure 8.18. By using a wide light beam that covers the wholeilghe mea-
surement gives the closed loop dynamics. The open loop dgsasmdre obtained
by using a narrow beam, which is small enough that it is not @mfted by the
pupil opening. The result of one experiment for determinipgroloop dynamics
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Figure 8.18: Light stimulation of the eye. In (a) the light beam is so large that it always
covers the whole pupil, giving the closed loop dynamics. In (b) the lightdsiged into a
beam which is so narrow that it is not influenced by the pupil openingngihe open loop
dynamics. In (c) the light beam is focused on the edge of the pupil ogewinich has the
effect of increasing the gain of the system since small changes in thileopeping have a
large effect on the amount of light entering the eye. From [Sta59].

is given in Figure 8.19. Fitting a transfer function to the gaumves gives a good
fit for G(s) = 0.17/(1+ 0.08s)3. This curve gives a poor fit to the phase curve as
shown by the dashed curve in Figure 8.19. The fit to the phase mumwvgproved

by adding a time delay, which leaves the gain curve unchanéd substantially
modifying the phase curve. The final fit gives the model

_ 0.17 —0.2s
(9= 17 0.0897°
The Bode plot of this is shown with solid curves in Figure 8.1%ddling of the
pupillary reflex from first principles is discussed in detai[K801]. O

Notice that for both the AFM drive and the pupillary dynamitgsinot easy
to derive appropriate models from first principles. In prestiit is often fruitful
to use a combination of analytical modeling and experimddentification of
parameters. Experimental determination of frequency mespds less attractive
for systems with slow dynamics because the experiment talasy time.

8.5 LAPLACE TRANSFORMS @

Transfer functions are typically introduced using Laplaems$forms and in this
section we derive the transfer function using this fornrmaliswe assume basic
familiarity with Laplace transforms; students who are notifaar with them can
safely skip this section. A good reference for the matherahtnaterial in this
section is the classic book by Widder [Wid41].

Traditionally, Laplace transforms were also used to compegponses of lin-
ear systems to different stimuli. Today we can easily gdadlee responses using
computers. Only a few elementary properties are neededafic lcontrol appli-
cations. There is, however, a beautiful theory for Laplacesfiams that makes
it possible to use many powerful tools from the theory of tiorts of a complex
variable to get deep insights into the behavior of systems.

Consider a functiorf (t), f : R* — R that is integrable and grows no faster
thane®! for some finitesy € R and larget. The Laplace transform magfsto a
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Figure 8.19: Sample curves from open loop frequency response of the eye (eftfBade
plot for the open loop dynamics (right). The solid curve shows a fit ofitita using a third
order transfer function with time delay. The dashed curve in the Bodésginé phase of the
system without time delay, showing that the delay is needed to properlyreghtiphase.
Figure redrawn from the data of Stark [Sta59].

functionF = £ f : C — C of a complex variable. It is defined by

F(s):/oooe‘Stf(t)dt, Res > 5. (8.22)

The transform has some properties that makes it well suitetbad with linear
systems.

First we observe that the transform is linear because

Z(af +bg) = /0 e t(af(t) + bg(t)) dt o2
:a/oooeStf(t)dt+b/oooeStg(t)dt:a.,iﬂerb.Zg. '

Next we calculate the Laplace transform of the derivative fofretion. We have

.,zﬂdf:/ e‘Stf’(t)dt:e‘Stf(t)’ers/ e S (t)dt = — f(0) +s£f,
dt 0 0 0

where the second equality is obtained using integrationaoispWe thus obtain

.,2”(;: =sZf —(0) =sF(s) - f(0). (8.24)
This formula is particularly simple if the initial conditisrare zero because it fol-
lows that differentiation of a function corresponds to nplitcation of the trans-
form bys.
Since differentiation corresponds to multiplication $we can expect that in-
tegration corresponds to division By This is true, as can be seen by calculating
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the Laplace transform of an integral. Using integration byipae get

z/ dr—/ (e‘St/Otf( )dr)dt

e st
e > f(r dr

1 ® —ST
5/0 e > f(r)dr,
hence

t 1
z/o f(r)dr=_2F = F(9). (8.25)

Next consider a linear time-invariant system with zeroahistate. We saw in
Section 5.3 that the relation between the inp@nd the outpuy is given by the

convolution integral -
:/ h(t—1)u(t)dt
0

whereh(t) is the impulse response for the system. Taking the Laplaosftam
of this expression, we have

Y(s):/o / St/ (t—1)u(r)drdt
:/0 /()efsu*r e STh(t — T)u(T)drdt

:/me*STu(r)dr/wefsth(t)dt: H(s)U(s).
0 0

Thus, the input/output response is givenYys) = H(s)U (s) whereH, U andY
are the Laplace transforms bf u andy. The system theoretic interpretation is
that the Laplace transform of the output of a linear system psoaluct of two
terms, the Laplace transform of the infpuifs) and the Laplace transform of the
impulse response of the systeti{s). A mathematical interpretation is that the
Laplace transform of a convolution is the product of the tiamss of the functions
that are convolved. The fact that the formiés) = H(s)U(s) is much simpler
than a convolution is one reason why Laplace transforms hewerbe popular in
engineering.

We can also use the Laplace transform to derive the trangifetifun for a state
space system. Consider for example a linear state spaegrsgsiscribed by

X = Ax+ Bu, y=Cx+Du.

Taking Laplace transformsnder the assumption that all initial values are zero
gives

sX(s) = AX(s) +BU(s), Y(s) =CX(s)+DU(s).
Elimination of X(s) gives
Y(s) = (C(sl A B D)U (9). (8.26)

The transfer function i§(s) = C(sl — A)~'B -+ D (compare with equation (8.4)).
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8.6 FURTHER READING

Heaviside, who introduced the idea of characterizing dyinarhy the response
to a unit step function, also introduced a formal operatdeutas for analyzing
linear systems. This was a significant advance because it lgaymssibility to
analyze linear systems algebraically. Heaviside and hikweodescribed in the
biography [Nah88]. Unfortunately it was difficult to formzdi Heaviside’s calcu-
lus properly and Heaviside’s work was therefore heavilyiared. This was not
done rigorously until the mathematician Laurent Schwartztigeddistribution
theoryin the late 1940s. Schwartz was awarded the Fields Medal fervihik
in 1950. The idea of characterizing a linear system by itsdstestate response
to sinusoids was introduced by Fourier in his investigatbheat conduction in
solids [FouO7]. Much later it was used by Steinmetz when h@dhiced thew
method to develop a theory for alternating currents. The epinaf transfer func-
tions was an important part of classical control theory;[38847]. It was intro-
duced via the Laplace transform by Gardner Barnes [GB42], albo used it to
calculate response of linear systems. The Laplace transf@snvery important
in the early phase of control because it made it possible totfartsients via ta-
bles. The Laplace transform is of less importance today wheporeses to linear
systems can easily be generated using computers. There ayeertellent books
on the use of Laplace transforms and transfer functions fatetiteg and anal-
ysis of linear input/output systems. Traditional texts @mtcol such as [DB04]
and [FPENO5] are representative examples.

EXERCISES

8.1 Let G(s) be the transfer function for a linear system. Show that if welyagn
inputu(t) = Asin(wt) then the steady state output is given/y) = |G(iw)|Asin(wt +
argG(iw)).

8.2 Show that the transfer function of a system only depends omlyhamics
in the reachable and observable subspace of the Kalman gesdion. Hint:
Consider the representation given by Equation (7.29).

8.3 Consider the system

X—ax+u
dt

Show that the response to the inpiit) = € is x(t) = €*'x(0) +te.

8.4 The linearized model of the pendulum in the upright posit®oharacterized
by the matrices

A= [2 é] B:[cl)], cz[l o], D=0

Determine the transfer function of the system.
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8.5 Compute the frequency response of a PI controller using anngp with
frequency response given by equation (8.13).

8.6 The physicisAngstiom, who is associated with the length uAitused fre- @
guency response to determine thermal diffusivity of mdtarsy61]. Heat propa-
gation in a metal rod is described by the partial differdrgguation

oT adZT

ot ox?
wherea = p"—c is the thermal diffusivity, and the last term representsritad loss
to the environment. Show that the transfer function relatémgperatures at points

with the distancé is
G(s) =e ' VIStH/A (8.28)

and the frequency response is given by

/ 2 _ / 2
log|G(iw)| = —I m argG(iw):—I\/ Ht 2:>2+“.

2a

Also derive the following equation:
log|G(iw)| argG(iw) = Iz—w
2a
This remarkably simple formula shows that diffusivity candegermined from
the value of the transfer function at one frequency. It waskiey in Angstiom’s
method for determining thermal diffusivity. Notice thaetparamete represent-
ing the thermal losses does not appear in the formula.

8.7 Consider the linear state space system
X = Ax+Bu
y=Cx

Show that the transfer function is

69 — bas™ 4+ bps™ 2+ + by
St as i+t

where

b, =CB
b, = CAB+ a;CB
bs = CA’B+ a;CAB+ a,CB

by, =CA" B+ a;CA" !B+ +a, 1CB
andA (s) = 8"+ a;s" 1+ - -- + ay is the characteristic polynomial féx.
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8.8 Consider the differential equation
dny dnfly dnfzy
dn gt T2 g2
Let A be a root of the polynomial
St 4 +a,=0.

Show that the differential equation has the solutjn = et

+-tany=0

8.9 Consider the system

dny dn—ly dn—lu dn—2u
—b b
g g1 T Ty =gt T e

Let A be a zero of the polynomial
b(s) = bys" 1+ b2+ .- + by,

Show that if the input isi(t) = € then there is a solution to the differential equa-
tion that is identically zero.

+ -+ bnu,

8.10 Using block diagram algebra, show that the transfer funstivomd to y
andntoy in Figure 8.8 are given by

d 5 y n 1 y
HWH —_— e

1+PC

8.11 Consider the lateral dynamics of a vectored thrust airceaftdescribed in
Example 2.9. Show that the dynamics can be described usingltbeihg block

diagram:
6 u % % L
r — — =
hES = —mg m&+cs 1

Use this block diagram to compute the transfer functionmftg to 8 andx
and show that they satisfy

oo oo J< —mgr
i = 3¢ X I2(m +cs)

8.12 Consider the cruise control system given in Example 6.10. [@aenthe

transfer function from the throttle positiamand the angle of the roafl to the

speed of the vehiclg, assuming a nominal spe&d with corresponding throttle
positionue.

8.13 Consider a closed loop system of the form of Figure 8.7 Wwith 1 andP
andC having a common pole. Show that if each system is written ite Space
form, the resulting closed loop system is not reachable ahdlservable.
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Figure 8.20: Schematic diagram of thguarter car modela) and of a vibration absorber
right (b).

8.14 Active and passive damping is used in cars to give a smoogonca bumpy
road. A schematic diagram of a car with a damping system invsha Fig-
ure 8.20b. The car is approximated with two masses, one m=sea quarter of
the car body and the other a wheel. The actuator exerts a Fotoetween the
wheel and the body based on feedback from the distance betwasty and the
center of the wheel (thmttle spacé. A simple model of the system is given by
Newton’s equations for body and wheel

mMpXp = F, MyXw = —F + ke (% — Xw),

wheremy, is a quarter of the body massy, is the effective mass of the wheel
including brakes and part of the suspension systemufisprung magsandk; is
the tire stiffness. Furthermorg,, x, andx, represent the heights of body, wheel,
and road, measured from their equilibria. For a conventidamper consisting of
a spring and a damper we have= K(Xy — Xp) + C(Xw — Xp), for an active damper
the forceF can be more general and it can also depend on riding conslitRider
comfort can be characterized by the transfer functBg from road heightx

to body acceleratiom = X,. Show that this transfer function has the property
Gax (im) = k/my, wherewr = /k/my (thetire hop frequency The equation
implies that there are fundamental limitations to the cattfwat can be achieved
with any damper. More details are given in [HB9Q].

8.15 Damping vibrations is a common engineering problem. A sat@ndiagram
of a damper is shown in Figure 8.20c. The disturbing vibratsansinusoidal force
acting on massm and the damper consists of magss and the spring,. Show
that the transfer function from disturbance force to heighif the massm is

mps? + ko
mMymps? + My S3 + (Meko + mp (kg + k) )S? + kaci s+ kiko

How should the massy and the stiffnes&, be chosen to eliminate a sinusoidal
oscillation with frequencyw. More details are given on pages 87-93 in the classic

GX]_F -
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text on vibrations [DH85].

8.16 Consider the following simple queue model

dx X

at " THT
based on continuous approximation, whares the arrival rate angi the service
rate. Linearize the system around the equilibrium obtainild v= A¢ andu =
Ue. The queue can be controlled by influencing the admission Aate uAe, or
the service rater = ute. Compute the transfer functions for service control and
admission control and give the gains and the time constéthe gystem. Discuss
the particular case when the ratie= A¢/ e go€s to one.

8.17 Consider the TCP/AQM model described in Section 3.4. Show tlealirih
earized model can be described by the transfer functions

NweT's N

_ Gwg(S) =—————, Gpp(S) = p,
where(w*,b*) is the equilibrium point for the systery, is the number of sources,
T* is the steady state round trip time anfis the forward propagation time.

Gow(S) =

8.18(Inverted pendulum with PD control) Consider the normalizeerted pen-
dulum system, whose transfer function is giverFigg) = 1/(s?> — 1) (Exercise 8.4).
A proportional-derivative (PD) control law for this systerashtransfer function
C(s) =kp+kys(see Table 8.1). suppose that we chadd&® = a(s—1). Compute
the closed loop dynamics and show that the system has gaxkingeof reference
signals but does not hae good disturbance rejection piepert



Chapter Nine

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tedtd gossessed the
advantages which he had predicted for it. In particular, its gain was condtam high
degree, and it was linear enough so that spurious signals caused bgtéraction of the
various channels could be kept within permissible limits. For best resulfeéuback factor
UB had to be numerically much larger than unity. The possibility of stability with afaed
factor larger than unity was puzzling.

From “The Regeneration Theory”, Harry Nyquist, 1956 [Nyg56].

In this chapter we study how stability and robustness ofeddsop systems
can be determined by investigating how sinusoidal signatiéfflerent frequencies
propagate around the feedback loop. This technique allowts vsason about
the closed loop behavior of a system through the frequennyadoproperties of
the open loop transfer function. The Nyquist stability thesoris a key result that
provides a way to analyze stability and introduce measurdegrees of stability.

9.1 THE LOOP TRANSFER FUNCTION

Determining the stability of systems interconnected bylfeek can be tricky be-
cause each system influences the other, leading to potgrdiaiular reasoning.
Indeed, as the quote from Nyquist above illustrates, thawiehof feedback sys-
tems can often be puzzling. However, using the mathemdtaalework of trans-
fer functions provides an elegant way to reason about suatBsyg, which we call
loop analysis

The basic idea of loop analysis is to trace how a sinusoidabsjgropagates in
the feedback loop and explore the resulting stability byestigating if the prop-
agated signal grows or decays. This is easy to do becauseatimrission of
sinusoidal signals through a linear dynamical system isacitarized by the fre-
qguency response of the system. The key result is the Nyquaisilist theorem,
which provides a great deal of insight regarding the stghilf a system. Unlike
proving stability with Lyapunov functions, studied in Chiap4, the Nyquist crite-
rion allows us to determine more than just whether a systestalde or unstable.
It provides a measure of the degree of stability through tfenidion of stability
margins. The Nyquist theorem also indicates how an unstaisterm should be
changed to make it stable, which we shall study in detail iagiérs 10-12.

Consider the system in Figure 9.1a. The traditional way tordeie if the
closed loop system is stable is to investigate if the cloeegd tharacteristic poly-
nomial has all its roots in the left half plane. If the procass the controller have
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r e u y B A
C(s) —= P(9) - = — L

(@) (b)

Figure 9.1: The loop transfer function. The stability of the feedback system (a) ean b
determined by tracing signals around the loop. Letting PC represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected atainé A& has the
same magnitude and phase when it reaches B.

rational transfer function®(s) = np(s)/dp(s) andC(s) = nc(s)/dc(s), then the
closed loop system has the transfer function

PC Np(S)Nc(S)
Gyr(s) = 1+PC dp(s)dc(ps) +Np(S)ne(s)’

and the characteristic polynomial is
A(s) = dp(s)dc(s) + np(s)nc(s).

To check stability, we simply compute the roots of the chimastic polynomial
and verify that they each have negative real part. This apprisastraightforward
but it gives little guidance for design: it is not easy to taliv the controller should
be modified to make an unstable system stable.

Nyquist's idea was to investigate conditions under whidtillzgions can occur
in a feedback loop. To study this, we introduce kbep transfer function, [s) =
P(s)C(s) which is the transfer function obtained by breaking the beett loop, as
shown in Figure 9.1b. The loop transfer function is simply ttsfer function
from the input at position A to the output at position B.

We will first determine conditions for having a periodic okatibn in the loop.
Assume that a sinusoid of frequenay is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequengy It seems reasonable
that an oscillation can be maintained if the signal at B hast#ime amplitude and
phase as the injected signal, because we could then conte®&.Aracing signals
around the loop we find that the signals at A and B are idenfical i

Licn) = 1, (9.1)

which provides a condition for maintaining an oscillatiomhe key idea of the
Nyquist stability criterion is to understand when this cappen in a general set-
ting. As we shall see, this basic argument becomes moreeswiitn the loop
transfer function has poles in the right half plane.

Example 9.1 Loop transfer function for operational amplifier
Consider the op amp circuit in Figure 9.2a wh&ieandZ, are the transfer func-
tions from voltage to current of the feedback elements. Thsfiemedback because
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2q

(@) (b)

Figure 9.2: Loop transfer function for an op amp. The op amp circuit on the leftéhas
nominal transfer functiony /v1 = Z5(s)/Z1(s), whereZ; andZ, are the impedences of the
circuit elements. The system can be represented by its block diagrara aogtih where we
now include the op amp dynami€s). The loop transfer function iis = ;G /(Z1 + Z»).

the voltagev, is related to the voltagethrough the transfer functiorG describ-
ing the op amp dynamics and the voltage related to the voltage, through the
transfer functiorZs /(Z1 + Z2). The loop transfer function is thus
Gz
N Z1+2
Assuming that the currertis zero, the current through the elemeBtsandZ; is
the same which implies

(9.2)

Solving forv gives
Ve ZoVy + Z1Vo B Zovh — Z1Gv B Zo

= = —Lv; —Lv
Z1+ 2> Z1+2> z !
Sincevp; = —Gvthe input-output relation for the circuit becomes
Z L
Gy =—o—.
Tz 1L

A block diagram is shown in Figure 9.2b. It follows from (9.hjat the condition
for oscillation of the op amp circuit is

o A(iw)Gliw)
Liw) = Zl(liw) +2Z(iw)

(9.3)

O

One of the powerful concepts embedded in Nyquist’s appraastability anal-
ysis is that it allows us to study the stability of the feedbagstem by looking at
properties of the loop transfer function. The advantage aiglthis is that it is
easy to see how the controller should be chosen to obtainieedéise loop trans-
fer function. For example if we change the gain of the cotdrdhe loop transfer
function will be scaled accordingly. A simple way to stat@lian unstable system
is then to reduce the gain so that thé point is avoided. Another way is to in-
troduce a controller with the property that it bends the lbapsfer function away
from the critical point, as we shall see in the next sectioiffeBent ways to do
this, called loopshaping, will be developed as will be d&smd in Chapter 11.
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(a) NyquistD contour (b) Nyquist plot

Figure 9.3: The Nyquist contouF and the Nyquist plot. The Nyquist contour (a) encloses
the right half plane, with a small semicircles around any poldsgfon the imaginary axis
(illustrated here at the origin) and an arc at infinity, representeR by . The Nyquist
plot (b) is the image of the loop transfer functitls) whens traversed™ in the counter-
clockwise direction. The solid line correspondsida> 0 and the dashed line o < 0. The
gain and phase at the frequenoyareg = |L(iw)| and¢ = ZL(iw). The curve is generated
for L(s) = 1.4e7S/(s+1)2.

9.2 THE NYQUIST CRITERION

In this section we present Nyquist’s criterion for deteriminthe stability of a
feedback system through analysis of the loop transfer fomctWe begin by intro-
ducing a convenient graphical tool, the Nyquist plot, angishow it can be used
to ascertain stability.

The Nyquist Plot

We saw in the last chapter that the dynamics of a linear sysganbe represented
by its frequency response and graphically illustrated leyBlode plot. To study
the stability of a system, we will make use of a different egentation of the
frequency response called\yquist plot The Nyquist plot of the loop transfer
functionL(s) is formed by tracing € C around the Nyquist “D contour”, consist-
ing of the imaginary axis combined with an arc at infinity coctivey the endpoints
of the imaginary axis. The contour, denoted as C, is illustrated in Figure 9.3a.
The image ofL(s) whens traversed™ gives a closed curve in the complex plane
and is referred to as the Nyquist plot fofs), as shown in Figure 9.3b. Note that
if the transfer functiorlL(s) goes to zero asgets large (the usual case), then the
portion of the contour “at infinity” maps to the origin. Furthewsre, the portion of
the plot corresponding t@ < 0 is the mirror image of the portion witte > O.

There is a subtlety with the Nyquist plot when the loop tranffi@ction has
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poles on the imaginary axis because the gain is infinite atdhesp To solve this
problem, we modify the contour to include small deviations that avoid any poles
on the imaginary axis, as illustrated in Figure 9.3a (assgraipole ofL(s) at the
origin). The deviation consists of a small semicircle to tightr of the imaginary
axis pole location.

The condition for oscillation given in equation (9.1) imglithat the Nyquist
plot of the loop transfer function goes through the pairt —1, which is called
the critical point. Let w. represent a frequency at whiefl (ia;) = 180°, corre-
sponding to the Nyquist curve crossing the negative real driuitively it seems
reasonable that the system is stablf {iwx)| < 1, which means that the critical
point —1 is on the left hand side of the Nyquist curve, as indicatdeigure 9.3b.
This means that the signal at point B will have smaller amgétthan the in-
jected signal. This is essentially true, but there are séget#leties that require
a proper mathematical analysis to clear up. We defer thélsledanow and state
the Nyquist condition for the special case whe(s) is a stable transfer function.

Theorem 9.1(Simplified Nyquist criterion) Let L(s) be the loop transfer function
for a negative feedback system (as shown in Figure 9.1a) asdmae that L has
no poles in the closed right half plan&és > 0), except for single poles on the
imaginary axis. Then the closed loop system is stable if amgl ibthe closed
contour given byQ = {L(iw) : —o0 < w < «} C C has no net encirclements of
s=-1

The following conceptual procedure can be used to deternhiaethere are
no encirclements: Fix a pin at the critical pos¥= —1, orthogonal to the plane.
Attach a string with one end at the critical point and the ptrethe Nyquist plot.
Let the end of the string attached to the Nyquist curve travdre whole curve.
There are no encirclements if the string does not wind up opithehen the curve
is encircled. The number of encirclements is called the wigdiumber. (In the
theory of complex functions it is the customary to encirtle Nyquist contour in
the counter-clockwise direction, which means that the imay axis is traversed
in the direction fronmro to —o.)

Example 9.2 Third order system
Consider a third order transfer function
1
L(s)= —.
(s) (s+a)3
To compute the Nyquist plot we start by evaluating pointstaitnaginary axis
s=iw, which yields
: 1 (a—iw)® a-3aw’ . wd-32%w
Liw) = = = = +i :
(iw+a)? (2+w?)d (a2+w?)?  (a2+w?)3
This is plotted in the complex plane in Figure 9.4, with the p®itorresponding
to w > 0 drawn as solid line and < 0 as a dashed line. Notice that these curves
are mirror images of each other.
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Nyquist Diagram

Imaginary Axis

-2 0 2 4
Real Axis
Figure 9.4: Nyquist plot for a third order transfer function. The Nyquist plot dstssof a
trace of the loop transfer functidn(s) = 1/(s+a)3. The solid line represents the portion

of the transfer function along the positive imaginary axis and the dashedh@énegative
imaginary axis. The outer arc of the D contour maps to the origin.

To complete the Nyquist plot, we computés) for s on the outer arc of the
Nyquist D contour. This arc has the fose= Re? for R — «. This gives

i 1
L(R&®)= ———— 0 as R .
( ) (Rée T a)e — — 00
Thus the outer arc of the contour maps to the origin on the Nyquist plot.

An alternative to computing the Nyquist plot explicitly sdetermine the plot
from the frequency response (Bode plot), which gives theuistgurve fors=icw,
w > 0. We start by plotting5(iw) from w = 0 to w = «, which can be read off
from the magnitude and phase of the transfer function. Wa tiet G(Re?)
with 6 € [0, 11/2] andR — o, which almost always maps to zero. The remaining
parts of the plot can be determined by taking the mirror imaifgiae curve thus
far (normally plotted using a dashed line style). The plot t@n be labeled
with arrows corresponding to a counter-clockwise traveasaund the D contour
(opposite the direction that the first portion of the curve plasted).

Example 9.3 Third order system with a pole at the origin
Consider the transfer function

k

L(s) = m,

where the gain has the nominal vakie 1. The Bode plot is shown in Figure 9.5a.
The system has a single polesat 1 and a double pole at= —1. The gain curve
of the Bode plot thus has the slopd. for low frequencies and at the double pole
s= 1 the slope changes te3. For smallswe havel ~ k/swhich means that the
low frequency asymptote intersects the unit gain linewat k. The phase curve
starts at—90° for low frequencies, it is-180 at the break pointo = 1, and it is
—270 at high frequencies.

Having obtained the Bode plot we can now sketch the Nyquist, ghown
in Figure 9.5b. It starts with a phase B0 for low frequencies, intersects the
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(a) Bode plot (b) Nyquist plot

Figure 9.5: Sketching Nyquist and Bode plots. The loop transfer functidr{$$=1/(s(s+
1)2). The large semi circle is the map of the small semi circle offtt@ntour around the
pole at the origin. The closed loop is stable because the Nyquist cursendbencircle the
critical point. The point where the phase-i480° is marked with a circle.

negative real axis at the breakpoint= 1 whereL (i) = 0.5 and goes to zero along
the imaginary axis for high frequencies. The small half eiraf thel" contour at
the origin is mapped on a large circle enclosing the right plaihe. The Nyquist
curve does not encircle the critical point and it followsnrthe simplified Nyquist
theorem that the closed loop is stable. Sih¢g = —k/2 we find the system
becomes unstable if the gain is increasek +02 or beyond. O

The Nyquist criterion does not require thhatiw)| < 1 for all w. correspond-
ing to a crossing of the negative real axis. Rather, it sagsttie number of en-
circlements must be zero, allowing for the possibility ttet Nyquist curve could
cross the negative real axis and cross back at magnitudategtban 1. The fact
that it was possible to have high feedback gains surprisedahly practitioners of
feedback amplifiers, as mentioned in the quote in the begywiithis chapter.

One advantage of the Nyquist criterion is that it tells us feogystem is in-
fluenced by changes of the controller parameters. For exaibjgevery easy to
visualize what happens when the gain is changed since 8tisgales the Nyquist
curve.

Example 9.4 Congestion control
Consider the Internet congestion control system desciib8dction 3.4. Suppose
we haveN identical sources and a disturbandeepresenting an external data
source, as shown in Figure 9.6a. We also include a time delayeke the router
and the senders, representing the time delays betweenntierssnd receiver.

To analyze the stability of the system, we use the transfestions computed
in Exercise 8.17:

Nwee*Tfs N
Gouw(s) = ————, Gug(8) = ———————,
ou(S) TeS+eT's walS) Oe(TeS+ QeWe)

where(wg, be) is the equilibrium point for the syster, is the number of sources,
Te is the steady state round trip time andis the forward propagation time.

pr(S) =p,
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Nyquist Diagram
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Figure 9.6: Internet congestion control. A set Nfsources using TCP/Reno send messages
through a single router with admission control. Link delays are includethéforward and
backward directions. The Nyquist plot for the loop transfer functiom@s to the right.

The loop transfer function is given by
p N 1
TeS+ e T'S Qo TeS+ QeWe)

Using the fact thatle ~ 2N /W2 = 2N3/(1¢c)2 andwe = be/N = TeC/N, we can
show that

—TeS

L(s) =

3.3
N ctg s

L(s)=p- :
()=p Tes+eT's 2N3(cr2s+ 2N2)

Note that we have chosen the signLg$) to use the same sign convention as Fig-
ure 9.1b. The exponential term representing the time delasgignificant phase
abovew = 1/t and the gain at the crossover frequency will determine Iittabi

To check stability, we require that the gain be sufficientlyaBiat crossover. If
we assume that the pole due to the queue dynamics is sufficfastithat the TCP
dynamics are dominant, the gain at the crossover frequency/given by

A1 pcre
2N3ct2a, 2N

L{iwx)| =p-N-

Using the Nyquist criterion, the closed loop system will Instable if this quantity

is greater than 1. In particular, for a fixed time delay, theeayswill become
unstable as the link capacityis increased. This indicates that the TCP protocol
may not scalable to high capacity networks, as pointed oliblayet al. [LPD02].
Exercise 9.15 provides some ideas of how this might be ovezcom O

Conditional Stability

Normally, we find that unstable systems can be stabilizedIgitmpreducing the
loop gain. There are however situations where a system catabiized by in-
creasing the gain. This was first encountered by electricahergs in the design
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Figure 9.7: Nyquist curve for the loop transfer functidr(s) = 3;((35173;_ The plot on the

right is an enlargement of the area around the origin of the plot on theTég. Nyquist
curve intersections the negative real axis twice but has no net encincterof—1.

of feedback amplifiers, who coined the teoonditional stability The problem
was actually a strong motivation for Nyquist to develop hisdry. We will illus-
trate by an example.

Example 9.5 Conditional stability
Consider a feedback system with the loop transfer function
3(s+1)?

L(s) = SO (9.4)
The Nyquist plot of the loop transfer function is shown in Fig@r7. Notice that
the Nyquist curve intersects the negative real axis twice firkt intersection oc-
curs atL = —12 for w = 2 and the second &t= —4.5 for w = 3. The intuitive
argument based on signal tracing around the loop in Figutei8.4trongly mis-
leading in this case. Injection of a sinusoid with frequeBawd/s and amplitude
1 at A gives, in steady state, an oscillation at B that is insghaith the input and
has amplitude 12. Intuitively it is seems unlikely that atgsof the loop will re-
sult a stable system. However, it follows from Nyquist'daslity criterion that the
system is stable because there are no net encirclements afitibal point. [

General Nyquist Criterion

Theorem 9.1 requires thhts) has no poles in the closed right half plane. In some
situations this is not the case and a more general resuljisrezl. Nyquist origi-
nally considered this general case, which we summarizesifolfowing theorem.

Theorem 9.2(Nyquist’s stability theorem)Consider a closed loop system with
the loop transfer function (s), that has P poles in the region enclosed by the
Nyquist contour. Let wbe the net number of counter-clockwise encirclements
of —1 by L(s) when s encircles the Nyquist contdurin the counter-clockwise
direction. The closed loop system then hast#P poles in the right half plane.
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Figure 9.8: PD control of an inverted pendulum. A proportional-derivative cdigravith
transfer functionC(s) = k(s+ 2) is used to command based onf. A Nyquist plot of
the loop transfer function for gaik= 2 is shown in on the right. There is one clockwise
encirclement of the critical point, giving a winding numbey= —1.

The full Nyquist criterion states that lif(s) hasP poles in the right half plane,
then the Nyquist curve fdc(s) should have® clockwise encirclements 6f1 (so
thatw, = —P). In particular, thisrequiresthat |L(iwx)| > 1 for someaw cor-
responding to a crossing of the negative real axis. Caredae taken to get
the right sign of the winding number. The Nyquist contour la®é¢ traversed
counter-clockwise, which means thatmoves fromeo to —co andwy, is positive if
the Nyquist curve winds counter-clockwise.

As in the case of the simplified Nyquist criterion, we use sreathicircles of
radiusr to avoid any poles on the imaginary axis. By letting- 0, we can use
Theorem 9.2 to reason about stability. Note that the imageso$tall semicircles
generates a section of the Nyquist curve whose magnitudeagies infinity,
requiring care in computing the winding number. When phaftNyquist curves
on the computer, one must be careful to see that such polgsaverly handled
and often one must sketch those portions of the Nyquist glogind, being careful
to loop the right way around the poles.

Example 9.6 Stabilization of an inverted pendulum

The linearized dynamics of a normalized inverted pendulumbearepresented by
the transfer functio(s) = 1/(s* — 1), where the input is acceleration of the pivot
and the output is the pendulum an@leas shown in Figure 9.8 (Exercise 8.4). We
attempt to stabilize the pendulum with a proportional-give (PD) controller
having the transfer functio@(s) = k(s+ 2). The loop transfer function is

L(s) = kiff i).

The Nyquist plot of the loop transfer function is shown in Fg@.8b. We have
L(0) = —k andL(«) = 0, the Nyquist curve is actually an ellipse. Kf> 1 the
Nyquist curve encircles the critical poiat= —1 in the clockwise direction when
the Nyquist contouy is encircled in the counter-clockwise direction. The wirgdin
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number is thusv, = —1. Since the loop transfer function has one pole in the right
half plane P = 1) we find thatN = P+ w, = 0 and the system is thus stable for
k> 1. If k < 1 there is no encirclement and the closed loop will have oihe ipo
the right half plane. O

Derivation of Nyquist’s Stability Theorem @

We will now prove the Nyquist stability theorem for a gendaoap transfer func-
tion L(s). This requires some results from the theory of complex véegfor

which the reader can consult [Ahl66]. Since some precisiareeded in stating
Nyquist's criterion properly, we will also use a more matlagical style of pre-
sentation. The key result is the following theorem about fioms of complex
variables.

Theorem 9.3(Principle of variation of the argument).et D be a closed region in
the complex plane and I€t be the boundary of the region. Assume the function
f :C — Cis analytic in D and orT, except at a finite number of poles and zeros.
Then thewinding numberwy, is given by

1 1 f'(z)
W”_ErArargf(Z)_ﬁ/r f(Z)dz_N—F’,

wherelr is the net variation in the angle along the contdurN is the number
of zeros and P the number of poles in D. Poles and zeros ofpticity m are
counted m times.

Proof. Assume tharz = ais a zero of multiplicitym. In the neighborhood of= a

we have
f(2) = (z—a)"g(2),

where the functioy is analytic and different from zero. The ratio of the derivati
of f to itself is then given by

f'lgg = m d@
fg z-a 9@
and the second term is analyticat a. The functionf’/f thus has a single pole

atz = a with the residuen. The sum of the residues at the zeros of the function is
N. Similarly we find that the sum of the residues of the poles eff’sand hence

N—P:/r ];/((Zz))dzz/r(;jzlogf(z)dz:ArIogf(z),

where/Ar again denotes the variation along the contouwe have

log f(z) = log|f(z)| +iargf(2)
and since the variation of (z)| around a closed contour is zero it follows that
Arlogf(z) =iArargf(z)

and the theorem is proved. O
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This theorem is useful for determining the number of poles zews of a
function of complex variables in a given region. By choosamgappropriate closed
regionD with boundaryl”, we can determine the difference between the number
of poles and zeros through computation of the winding number

Theorem 9.3 can be used to prove Nyquist's stability theorgrhbosing™ as
the Nyquist contour shown in Figure 9.3a, which enclosesitid half plane. To
construct the contour, we start with part of the imaginang axjR < s< R, and
a semicircle to the right with radil® If the functionf has poles on the imaginary
axis we introduce small semicircles with radiio the right of the poles as shown
in the figure. The Nyquist contour is obtained by lettRg- c andr — 0.

To see how we use this to compute stability, consider a clioggrisystem with
the loop transfer functioh(s). The closed loop poles of the system are the zeros of
the functionf (s) = 1+L(s). To find the number of zeros in the right half plane, we
investigate the winding number of the functiégs) = 1+ L(s) ass moves along
the Nyquist contouf in the counter-clockwise direction. The winding number
can conveniently be determined from the Nyquist plot. Adiegplication of the
Theorem 9.3 gives the Nyquist criterion. Since the image-eiL1s) is a shifted
version ofL(s), we usually state the Nyquist criterion as net encirclesmenfthe
—1 point by the image df(s).

9.3 STABILITY MARGINS

In practice it is not enough that a system is stable. There atsrsbe some margins
of stability that describe how stable the system is and itsistness to perturba-
tions. There are many ways to express this, but one of the rmpshon is the use
of gain and phase margins, inspired by Nyquist’s stabilitiedon. The key idea
is that it is easy to plot the loop transfer functibfs). An increase of controller
gain simply expands the Nyquist plot radially. An increase¢he phase of the
controller twists the Nyquist plot clockwise. Hence frone thyquist plot we can
easily pick off the amount of gain or phase that can be add#wbwi causing the
system to go unstable.

Let wpc be thephase crossover frequenahe smallest frequency where the
phase of the loop transfer functids) is —180°. Thegain marginis defined as

1
= o] ©9)
It tells us how much the controller gain can be increasedrbaaching the sta-
bility limit.
Similarly, let wyc be thegain crossover frequencihe lowest frequency where
the loop transfer functioh(s) has unit magnitude. Thehase margins

¢m = m+argl(iwyc), (9.6)

the amount of phase lag required to reach the stability lifflitese margins have
simple geometric interpretations in the Nyquist diagrarnthefloop transfer func-
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Figure 9.9: Stability margins. The gain margi, and phase marging, are shown on the
the Nyquist plot (left) and the Bode plot (right). The Nyquist plot alsovghthe stability
marginsm, which is the shortest distance to the critical point.

tion, as shown in Figure 9.9a.

A drawback with gain and phase margins is that it is necegsagive both of
them in order to guarantee that the Nyquist curve is not dioske critical point.
An alternative way to express margins is by a single numhestability margin
Sm, Which is the shortest distance from the Nyquist curve tatitecal point. This
number is related to disturbance attenuation as will beudsed in Section 11.3.

Gain and phase margins can be determined from the Bode filod tfop trans-
fer function. To find the gain margin we first find the phase crosséhequency
wpc Where the phase is180°. The gain margin is the inverse of the gain at that
frequency. To determine the phase margin we first determimgain crossover
frequencywyc, i.e. the frequency where the gain of the loop transfer fonats
1. The phase margin is the phase of the loop transfer functitmaa frequency
plus 180. Figure 9.9b illustrates how the margins are found in the Badeof
the loop transfer function. The margins can be computed #oally for simple
systems of low order but it is straightforward to computenthreumerically.

Example 9.7 Third order transfer function

Consider a loop transfer functidr(s) = 3/(s+ 1)3. The Nyquist and Bode plots
are shown in Figure 9.10. To compute the gain, phase andistabargins, we
can use the Nyquist plot as described in Figure 9.9a. Thisyittld following

values:

The gain and phase margin can also be determined from the Boidghpwn in
Figure 9.9b. O

The gain and phase margins are classical robustness metsatrbave been
used for a long time in control system design. The gain magyimall defined if
the Nyquist curve intersects the negative real axis oncealdgously the phase
margin is well defined if the Nyquist curve intersects the wiitle only at one
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Nyquist Diagram Bode Diagram
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Figure 9.10: Stability margins for a third order transfer function. The Nyquist plot an th
left allows the gain, phase and stability margins to be determined by megheidistances
of relevant features. The gain and phase margins can also be feddhaf Bode plot on the
right.

point. Other more general robustness measures will bedintexd in Chapter 12.
Even if both gain and phase margins are reasonable the sysagrstithnot be
robust as is illustrated by the following example.

Example 9.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function

~ 0.38(s*+0.15+0.55)
(8= S5+ 1)(F+ 0065+ 05)

A numerical calculation gives the gain margimjs= 266, the phase margin is 70
These values indicate that the system is robust but the Nycuuige is still close
to the critical point, as shown in Figure 9.11. The stabilityrgia is s, = 0.27,
which is very low. The closed loop system has two resonant s)oolee with
relative damping; = 0.81 and the other witlf = 0.014. The step response of the
system is highly oscillatory, as shown in Figure 9.11c. U

The stability margin cannot easily be found from the Bode plothe loop
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Figure 9.11: System with good gain and phase margin, but poor stability margin. Nyquist
(a) and Bode (b) plots of the loop transfer function and step respahser (@ system with
good gain and phase margins but with poor stability margin.
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Figure 9.12: Nyquist and Bode plots of the loop transfer function for the AFM systeim) (9
with an integral controller. The frequency in the Bode plot is normalized. Byhe parame-
ters arel = 0.01 andk; = 0.008.

transfer function. There are however other Bode plots thihgivie s,; these will
be discussed in Chapter 12. In general, it is best to use tl@ibslyplot to check
stability, since this provides more complete informatibart the Bode plot.

When we are designing feedback systems, it will often beulsefdefine the
robustness of the system using gain, phase and stabilitginsarThese numbers
tell us how much the system can vary from our nominal modelsiifibe stable.
Reasonable values of the margins are phase magin 30° — 60°, gain margin
Om = 2—5, and stability margirs,, = 0.5—0.8.

There are also other stability measures, such adetay margin which is the
smallest time delay required to make the system unstableloBp transfer func-
tions that decay quickly, the delay margin is closely raldtethe phase margin,
but for systems where the amplitude ratio of the loop trarfsfiection has several
peaks at high frequencies, the delay margin is a more rdlevaasure.

Example 9.9 AFM nanopositioning system

Consider the system for horizontal positioning of the samiplan atomic force
microscope. The system has oscillatory dynamics and a simqdkel is a spring-
mass system with low damping. The normalized transfer fonds given by

2
P(s)

a
P +2las+a?
where the relative damping typically is a very small numbeay, { = 0.1.
We will start with a controller that only has integral actidrhe resulting loop
transfer function is
kia?

L(s) = s(s?+2las+a?)’

wherek; is the gain of the controller. Nyquist and Bode plots of thepldransfer
function are shown in Figure 9.12. Notice that the part of tggNst curve that is
close to the critical point-1 is approximately circular.

(9.7)
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From the Bode plot in Figure 9.12b, we see that the phase craskequency
iS wpc = a, which will be independent of the gakq. Evaluating the loop transfer
function at this frequency, we hatgia) = —k;/(2{a), which means that the gain
margin isgm = 1— ki /(2¢a). To have a desired gain margingf the integral gain
should be chosen as

ki =2ad(1—gm).

Figure 9.12 shows Nyquist and Bode plots for the system with gergingm, =
0.60 and stability margiisy, = 0.597. The gain curve in the Bode plot is almost a
straight line for low frequencies and a resonance peak-at. The gain crossover
frequency is approximately equal ko The phase decreases monotonically from
—90° to —270’: it is equal to—18C at w = a. The curve can be shifted verti-
cally by changindg: increasingk; shifts the gain curve upwards and increases the
gain crossover frequency. Since the phase 180’ at the resonance peak, it is
necessary that the peak does not touch thellifiev)| = 1. 0

9.4 BODE’S RELATIONS AND MINIMUM PHASE SYSTEMS

An analysis of Bode plots reveals that there appears to berbkat@on between
the gain curve and the phase curve. Consider for exampledbe Blots for the
differentiator and the integrator (shown in Figure 8.12 ogga58). For the dif-
ferentiator the slope i1 and the phase is constamnt2 radians. For the integrator
the slope is-1 and the phase is11/2. For the first order systef@(s) = s+ a, the
amplitude curve has the slope 0 for small frequencies angltpe+1 for high
frequencies and the phase is 0 for low frequenciesrgi&dfor high frequencies.

Bode investigated the relations between the curves foesysivith no poles
and zeros in the right half plane. He found that the phase wagiely given by
the shape of the gain curve and vice versa:

LT[ dlog|G(iw)| __ mdlog|G(iw)|
argG(iap) = 2/0 f(w)idlogw dlogw ~ 2 dlogw (9.8)
wheref is the weighting kernel
2 W+ Wy
f(w) = ?Iog‘w_wO .

The phase curve is thus a weighted average of the derivatitree@fain curve. If
the gain curve has constant slapthe phase curve has the constant vailog2.

Bode’s relations (9.8) hold for systems that do not havegateal zeros in the
right half plane. Such systems are calfeshimum phase systerbscause systems
with poles and zeros in the right half plane have larger phageThe distinction
is important in practice because minimum phase systemsaarereo control than
systems with larger phase lag. We will now give a few exampfegn-minimum
phase transfer functions.

The transfer function of a time delay @f units isG(s) = e S, This transfer
function has unit gainG(iw)| = 1, and the phase is aBfiw) = —wTy. The corre-
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Figure 9.13: Bode plots of systems that are not minimum phase. (a) Time d&lay=
e ST, (b) system with a right half plane ze®(s) = (a—s)/(a+s) and (c) system with
right half plane pole. The corresponding minimum phase systems hasutiséer function
G(s) = 1in all cases, the phase curves for that system are shown dashed.

sponding minimum phase system with unit gain has the trafsfietionG(s) = 1.
The time delay thus has an additional phase lag®f. Notice that the phase lag
increases linearly with frequency. Figure 9.13a shows theeRuot of the transfer
function. (Because we use a log scale for frequency, theggfladls off much faster
than linearly in the plot.)

Consider a system with the transfer functi®(s) = (a—s)/(a+s) witha> 0,
which has a zere = a in the right half plane. The transfer function has unit gain,
|G(iw)| = 1, and the phase is aBfiw) = —2arctar{w/a). The corresponding
minimum phase system with unit gain has the transfer fundB¢s) = 1. Fig-
ure 9.13b shows the Bode plot of the transfer function.

A similar analysis of the transfer functid®(s) = (s+a)/s—a) with a > 0,
which has a pole in the right half plane, shows that its phasergG(iw) =
—2arctarfa/w). The Bode plot is shown in Figure 9.13c

The presence of poles and zeros in the right half plane impsmese limi-
tations on the achievable performance. Dynamics of this ghpuld be avoided
by redesign of the system whenever possible. While the @okeatrinsic prop-
erties of the system and they do not depend on sensors arat@stuthe zeros
depend on how inputs and outputs of a system are coupled tbates. Zeros can
thus be changed by moving sensors and actuators or by iciragnew sensors
and actuators. Non-minimum phase systems are unfortyngiiéle common in
practice.

The following example gives a system theoretic interpretatif the common
experience that it is more difficult to drive in reverse geat dlustrates some of
the properties of transfer functions in terms of their pealed zeros.

Example 9.10 Vehicle steering
The non-normalized transfer function from steering anglateral velocity for the
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Figure 9.14: Step responses from steering angle to lateral translation for simple Kieema
model when driving forward (dashed) and reverse (full). Notice tha with rear wheel
steering the center of mass first moves in the wrong direction and thavéhallaesponse
with rear wheel steering is significantly delayed compared with front Wteering. The
response in rear steering lags the response in forward steering with 4s.

simple vehicle model is

avos+V3
G(s) = —7—.
(s bs
The transfer function has a zerosat Vp/a. In normal driving this zero is in the

left half plane but it is in the right half plane when drivingrieverseyp < 0. The
unit step response is

_aw _ avt

The lateral velocity thus responds immediately to a steeramymand. For reverse
steeringy is negative and the initial response is in the wrong directiobehavior
that is representative for non-minimum phase systems. &i@u” shows the step
response for forward and reverse driving. In this simutatice have added an
extra pole with the time constamtto approximately account for the dynamics in
the steering system. The parametersaateb =1, T = 0.1, vo = 1 for forward
driving andvp = —1 for reverse driving. Notice that far> to = a/vp, wheretg is
the time required to drive the distanaéhe step response for reverse driving is that
of forward driving with the time delatp. Notice that the position of the zewy/a
depends on the location of the sensor. In our calculationave Assumed that the
sensor is at the center of mass. The zero in the transfer @mdisappears if the
sensor is located at the rear wheel. The difficulty with zerdaberight half plane
can thus be visualized by a thought experiment where we drivar in forward
and reverse and observe the lateral position through a hakeifloor of the car.
O
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9.5 THE NOTIONS OF GAIN AND PHASE @

A key idea in frequency domain analysis it to trace the bedrani sinusoidal sig-
nals through a system. The concepts of gain and phase ref@@ssrthe transfer
function are strongly intuitive because they describe #oge and phase relations
between input and output. In this section we will see how termc the concepts
of gain and phase to more general systems, including sonmmeansystems. We
will also show that there are analogs of Nyquist's stabititiferion if signals are
approximately sinusoidal.

System Gain

We begin by considering the case of a static linear systemAu, whereA is
a matrix whose elements are complex numbers. The matrix dutdsane to be
square. Letthe inputs and outputs be vectors whose elenterdsraplex numbers
and use the Euclidean norm

lull = /Zui[2. (9.9)

The norm of the output is
Iyl|? = u*A"Au

wherex denotes the complex conjugate transpose. The mAtixis symmetric
and positive semidefinite and the right hand side is a quadiatin. The eigen-
values of the matriA*A are all real and we have

IVI1? < Amax(A“A)|Jul®.

The gain of the system can then be defined as the maximum ratie oiutput to
the input over all possible inputs:

y= ml?xm = /Amax(A*A). (9.10)
The eigenvalues of the matr&‘A are called thesingular valuesof the matrixA
and the largest singular value is denote@d).

To generalize this to the case of an input/output dynamigstlesn, we need
to think of think of the inputs and outputs not as vectors af rumbers, but as
vectors ofsignals For simplicity, consider first the case of scalar signals lahd
the signal spack, be square integrable functions with the norm

Jul=1/ [ WP

This definition can be generalized to vector signals by reptattie absolute value
with the vector norm (9.9). We can now formally define the gdia system taking
inputsu € L, and producing outputge L, as

y= supM (9.11)

uelo ||u||7
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Figure 9.15: A feedback connection of two general nonlinear systétpsandH,. The
stability of the system can be explored using the small gain theorem.

where sup is thesupremumgdefined as the smallest number that is larger than its
argument. The reason for using supremum is that the maximymmaotide defined
for u € L,. This definition of the system gain is quite general and can bearsed
for some classes of nonlinear systems, though one needsctaréfel about how
initial conditions and global nonlinearities are handled.

It turns out that the norm (9.11) has some very nice propeiti¢he case of
linear systems. In particular, given a stable linear sysisth transfer function
G(s) it can be shown that the norm of the system is given by

Y = SUpG(ie)| = Gl (9.12)

In other words, the gain of the system corresponds to the ypalale of the fre-
quency response. This corresponds to our intuition that patiproduces the
largest output when we are at the resonant frequencies afystem. |G| is
called theinfinity normof the transfer functiofi(s).

This notion of gain can be generalized to the multi-input, tmuitput case as
well. For a linear multivariable system with a real ratiotrahsfer function matrix
G(s) we can define the gain as

y=IGll =83I05(G(iw))- (9.13)

Thus we see that combine the ideas of the gain of a matrix witigén of a linear
system by looking at the maximum singular value over all diexties.

Small Gain and Passivity

For linear systems it follows from Nyquist's theorem that tiosed loop is stable
if the gain of the loop transfer function is less than one fbfraquencies. This
result can be extended to a larger class of systems by usingatincept of the
system gain defined in equation (9.11).

Theorem 9.4(Small gain theorem)Consider the closed loop system in Figure 9.15
where H and H, are stable systems and the signal spaces are properly defined
Let the gains of the systemg Bind H, be y; and y». Then the closed loop system
is input/output stable ifs y» < 1, and the gain of the closed loop system is

Y 1-yy
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Notice that if systemsl; andH> are linear it follows from the Nyquist stability
theorem that the closed loop is stable, becauseyf < 1 the Nyquist curve is
always inside the unit circle. The small gain theorem is thusxension of the
Nyquist stability theorem.

Note that although we have focused on linear systems, th# gaia theorem
actually holds nonlinear input/output systems as well. Tégndion of gain in
equation (9.11) holds for nonlinear systems as well, withesa@are needed in
handling the initial condition.

The main limitation of the small gain theorem is that it does cansider the
phasing of signals around the loop, so it can be very coneevalo define the
notion of phase we require that there is a scalar product.s§oare integrable
functions this can be defined as

(wy) = [ umy(mdr
The phase& between two signals can now be defined as

) = |lullllyl cos(9)

Systems where the phase between inputs and outputsés 8&s for all inputs are
calledpassive system# follows from the Nyquist stability theorem that a closed
loop linear system is stable if the phase of the loop trarfsfiection is between
—rmandr. This result can be extended to nonlinear systems as weH. chilled
the passivity theorerand is closely related to the small gain theorem.

Additional applications of the small gain theorem and itplagation to robust
stability are given in Chapter 12.

Describing Functions @

For special nonlinear systems like the one shown in Figuréa9 Which consists
of a feedback connection of a linear system and a static meanlity, it is possi-
ble to obtain a generalization of Nyquist’s stability criten based on the idea of
describing functions Following the approach of the Nyquist stability condition
we will investigate the conditions for maintaining an ofstibn in the system. If
the linear subsystem has low-pass character, its outpppi®gimately sinusoidal
even if its input is highly irregular. The condition for odation can then be found
by exploring the propagation of a sinusoid that correspaoadse first harmonic.

To carry out this analysis, we have to analyze how a sinuksidaal prop-
agates through a static nonlinear system. In particularnwvestigate how the
first harmonic of the output of the nonlinearity is relatedt®(sinusoidal) input.
Letting F represent the nonlinear function, we expdhg '“') in terms of its
harmonics:

Flae ™) = 3 M a)gn@t=fn(@
(ae™™) n;) n(a)

whereMp(a) and ¢n(a) represent the gain and phaserntfi harmonic, which
depend on the input amplitude since the functioms nonlinear. We define the
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@ (b)

Figure 9.16: lllustration of describing function analysis. A feedback connection d&tics
nonlinearity and a linear system is shown in (a). The linear system is ¢odzacd by its
transfer functiorl(iw), which depends on frequency, and the nonlinearity by its describing
functionN(a) which depends on the amplitude @bf its input. (b) shows the Nyquist plot

of G(iw) and the a plot of the-1/N(a). The intersection of the curves represent a possible
limit cycle.

describing function to be the complex gain of the first harraoni
N(a) = My(a)e¥@. (9.14)

The function can also be computed by assuming that the inpusisusoid and
using the first term in the Fourier series of the resulting outp

Arguing as we did when deriving Nyquist’s stability criteni we find that an
oscillation can be maintained if

L(iw)N(a) = —1. (9.15)

This equation means that if we inject a sinusoid at A in Figu 3he same
signal will appear at B and an oscillation can be maintaingadnnecting the
points. Equation (9.15) gives two conditions for finding theginencyw of the
oscillation and its amplitude: the phase must be 18@nd the magnitude must
be unity. A convenient way to solve the equation is to plotv) and—1/N(a) on
the same diagram as shown in Figure 9.16c¢. The diagram is similae Nyquist
plot where the critical point-1 is replaced by the curve1/N(a) anda ranges
from O toco.

It is possible to define describing functions for other typesputs than si-
nusoids. Describing function analysis is a simple methaoditols approximate
because it assumes that higher harmonics can be neglectlleaktreatments of
describing function techniques can be found in the textsitah&m and McRuer [GM61]
and Atherton [Ath75].

Example 9.11 Relay with hysteresis

Consider a linear system with a nonlinearity consisting odlay with hysteresis.
The output has amplitudeand the relay switches when the inputts, as shown
in Figure 9.17a. Assuming that the inputis= asin(wt) we find that the output is
zero ifa< cand ifa> cthe output is a square wave with amplituzignat switches
at timeswt = arcsir(c/a) 4+ nrt. The first harmonic is they(t) = (4b/m) sin(wt —
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Figure 9.17: Describing function analysis for relay with hysteresis. The input-outgut r
lation of the hysteresis is shown in Figure 9.17a and Figure 9.17b shewsht, the
output and its first harmonic. Figure 9.17c shows the Nyquist plots af#émsfer function
G(s) = (s+1)~*and the negative of the inverse describing function for the relay it
andc=1.
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a), where sira = c¢/a. Fora > c the describing function and its inverse are

4b ¢ .¢c 1 m/az—c2 . 1c
N@ = (V1 2 i) N@ 4 4

where the inverse is obtained after simple calculationsurgi@.17b shows the
response of the relay to a sinusoidal input with the first haimof the output
shown as a dashed line. Describing function analysis istithited in Figure 9.16b
which shows the Nyquist plot of the transfer functiGis) = 2/(s+ 1)* (dashed)
and the negative inverse describing function of a relay wita 1 andc = 0.5.
The curves intersect fax= 1 andw = 0.77 rad's indicating the amplitude and
frequency for a possible oscillation if the process and #adly are connected in a
a feedback loop. O

9.6 FURTHER READING

Nyquist's original paper giving his now famous stabilityterion was published in
the Bell Systems Technical Journal in 1932 [Nyq32]. More asit#e versions are
found in the book [BK64], which also has other interestingyepapers on con-
trol. Nyquist's paper is also reprinted in an IEEE collectidrseminal papers on
control [(ed01]. Nyquist used1 as the critical point but Bode changed it-td,
which is now the standard notation. Interesting perspeston the early develop-
ment are given by Black [Bla77], Bode [Bod60] and Bennett{8&b]. Nyquist
did a direct calculation based on his insight of propagatibeinusoidal signals
through systems; he did not use results from the theory opt®afunctions. The
idea that a short proof can be given by using the principleaofation of the ar-
gument is given in the delightful little book by MacColl [M&E]. Bode made
extensive use of complex function theory in his book [Bod4Bhich laid the
foundation for frequency response analysis where the matfaninimum phase
was treated in detail. A good source for theory of complexfioms is the classic
by Ahlfors [Ahl66]. Frequency response analysis was a keyneld in the emer-
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gence of control theory as described in the early texts byedatal. [JNP47],
Brown and Campbell [BC48] and Oldenburger [(ed56], and damee one of the
cornerstones of early control theory. Frequency respondefiasurgence when
robust control emerged in the 1980s, as will be discussedhap@r 12.

EXERCISES

9.1 Consider the op amp circuit in Figure 8.3 show that the loopstier function
is given by
R]_G(S)
L(s) = ,
©) Ri+Ro

whereG(s) is the transfer function of the op amp itself. The closed loaip gf the
circuit is Ry /Ry which is close to unity wheR; = Ry. The loop transfer function
obtained in this case is called unit gain loop transfer fiomct See Example 8.3.
Example 6.10.

9.2 Consider an op amp circuit withy = Z, that gives a closed loop system with
nominal unit gain. Let the transfer function of the operagicemplifier be
kalaz

G(s) =
(s) (s+a)(s+a1)(s+ap)
whereag,a; >> a show that the condition for oscillation ks< sqrta;ay.

9.3 In design of op amp circuits it is a tradition to make the Bod#pof the
transfer functions(s) and (Z1(s) + Z2(s))/Za(s). Show that this is essentially
equivalent to the Bode plot of the loop transfer function tod tircuit and that
the gain crossover frequency corresponds to the inteosesctif the gain curves of
G(s) and(Zi(s) + Z2(s))/Za(S).

9.4 Use the Nyquist theorem to analyze the stability of the ergisntrol system
in Example??, but using the original Pl controller from Example 6.10.

9.5 The dynamics of the tapping mode of an atomic force microstogeminated
by the damping of the cantilever vibrations and the systerithvhverages the
vibrations. Modeling the cantilever as a spring-mass systéth low damping
we find that the amplitude of the vibrations decayeag(—{ wt) where( is the
relative damping andv the undamped natural frequency of the cantilever. The
cantilever dynamics can thus be modeled by the transfetifumc

b

G(s) = sia

wherea= { wy. The averaging process can be modeled by the input-outatitne|
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where the averaging time is a multipief the period of the oscillation72/ . The
dynamics of the piezo scanner can be neglected in the firsbeippation because

it is typically much faster thaa. A simple model for the complete system is thus
given by the transfer function

P(s) =

Plot the Nyquist curve of the system and determine the gain mfoportional
controller which brings the system to the boundary of sitgbil

a(l—e™)
st(s+a)

9.6 A simple model for heat conduction in a solid is given by tlaasfer function
P(s) = ke V5.

Sketch the Nyquist plot of the system. Determine the frequevritere the phase
of the process is-180° and the gain at that frequency. Show that the gain required
to bring the system to the stability boundarkis- €”.

9.7 In Example 9.4 we developed a linearize model of the dynanacs fcon-
gestion control mechanism on the Internet, following [LPDa&&Y [HMTGO00]. A
linearized version of the model is represented by the tearfghction

N c3r R
T*s+eT's 2N3(cT*2s+ 2N2)
wherec s the link capacity in packets/mi,load factor (number of TCP sessions),
p is the drop probability factor andis the round-trip time in seconds. Consider
the situation with the parametdxs= 80,c = 4, p = 10 2 andt* = 0.25. Find the

stability margin of the system, also determine the staitiairgin if the time delay
becomeg* = 0.5.

L(s)p-

9.8 Consider the transfer functions

a—-s
G S :eis121 G S)= ——.
(9 =€, Gys)=
Use the approximation
g7 1-sT/2
T 14sT/2

to show that the minimum phase properties of the transfestiins are similar if
Tq = 2/a. Allong time delayTy is thus equivalent to a small right half plane zero.

9.9 (Inverted pendulum) Consider the inverted pendulum in EXxarBB. Show
that the Nyquist curve is the ellipse

(x4 k)2 +4y? = k2
9.10 Consider the linearized model for vehicle steering with atiler based on
state feedback discussedi@ The transfer function of the process is

ys+1
P(s) = 2
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and the controller has the transfer function
C(s) — S(kily + kol2) 4 kal2
P +5(yky+ ko +11) + ki + 12+ kolg — kol
as computed in Example 8.6. Let the process parametgr=b0.5 and assume
that the state feedback gains d&ge= 1 andky, = 0.914, and the observer gains
arel; = 2.828 andl, = 4. Compute the stability margins numerically. The phase

margin of the system is 44and the gain margin is infinite since the phase lag is
never greater than 18Q0indicating that the closed loop system is robust.

9.11

9.12 Consider Bode’s formula (9.8) for the relation between gaid phase for a
transfer function that has all its singularities in the ledtf plane. Plot the weight-
ing function and make an assessment of the frequencies Wieepproximation
argG =~ (1r/2)dlog|G|/dlogw is valid.

9.13 Consider a closed loop system with the loop transfer functio

k
L(s) = SeT 12

Use the Nyquist criterion to determine if the closed loopeiysis stable and what
the gain, phase and stability margins are.

9.14(Loop transfer function with RHP pole) Consider a feedbackey with the
loop transfer function "

)

This transfer function has a polesat 1 which is inside the Nyquist contour. Draw
the Nyquist plot for this system and determine if the closEplsystem is stable.

9.15(Congestion control) A strongly simplified flow model of TCP loiopover-
load conditions is given by the loop transfer function

k
L(s) = —e Sk
(9= e,

where he queuing dynamics is modeled by an integrator, thewWi@&ow control

by a time delayTy is the time delay and the controller is simply a proportional
controller. A major difficulty is that the time delay may chamignificantly during
the operation of the system. Show that if we can measure the detay, it is
possible to choose a gain that gives a stability margig,of= 0.6 for all time
delaysTy.

9.16



Chapter Ten
PID Control

Based on a survey of over eleven thousand controllers in the refirfiegjicals and pulp and
paper industries, 97% of regulatory controllers utilize PID feedback.

Desborough Honeywell, 2000 [DMO02].

This chapter treats the basic properties of proportionaigiral-derivative (P1D)
control and the methods for choosing the parameters of thiailers. We also
analyze the effects of actuator saturation and time dedayjrhportant features of
many feedback systems, and methods for compensating fee tfeects. Finally,
we will discuss the implementation of PID controllers as aamegle of how to
implement feedback control systems using analog or digdaiputation.

10.1 BASIC CONTROL FUNCTIONS

PID control, which was introduced already in Section 1.5 ansllbeen used in
several examples, is by far the most common way of using feedin engineer-
ing systems. It appears in simple devices and in large f@stavith thousands
of controllers. PID controllers appear in many differentnfist as a standalone
controller, as part of hierarchical, distributed contrgdtems or built into embed-
ded components. Most PID controllers do not use derivatitieraso they should
strictly speaking be called PI controllers; we will howeveeWPID as a generic
term for this class of controller. There is also growing enickethat PID control
appears in biological systems [YHSDOO].

Block diagrams of closed loop systems with PID controlleessdrown in Fig-
ure 10.1. The control signal for the system in Figure 10.1a is formed entirely
from the errore; there is no feedforward term (which would correspond;toin
the state feedback case). A common alternative in whichgstimmal and deriva-
tive action do not act on the reference is shown in Figure lébigbinations of
the schemes will be discussed in Section 10.5. The commanal siggcalled the
reference value in regulation problems, or sa¢pointin literature of PID control.
The input-output relation for an ideal PID controller witharfeedback is

t 1t de
U=kpe+ ki/o e(r)dr +ky fracdedt=ky(e-+ ﬁ/o (AT + Ty ). (10.0)
The control action is thus the sum of three terms: proportiteedback, the in-
tegral term, and derivative action. For this reason PID cdlers were originally
calledthree term controllers The controller parameters are the proportional gain
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Figure 10.1: Block diagrams of closed loop systems with ideal PID controllers. Both con
troller have one output the control signal The controller in (a), which is based on error
feedback, has one input, the control eret r —y. For this controller proportional, integral
and derivative action acts on the erm& r —y. The two-degree-of-freedom controller in
(b), has two inputs, the referencand the process outpwut Integral action acts on the error,
but proportional and derivative action acts on the process oytput

kp, the integral gairk; and the derivative gaiky. The time constant$; and Ty,
called integral time (constant) and derivative time (cangt are sometimes used
instead of the integral and derivative gains.

The controller (10.1) represents an idealized controlleis & useful abstrac-
tion for understanding the PID controller, but several modifans must be made
in order to obtain a controller that is practically usefulef@re discussing these
practical issues we we will develop some intuition about PdDtool.

We start by considering pure proportional feedback. Fig@2d shows the
responses of the process output to a unit step in the refererioe for a system
with pure proportional control at different gain settingsl of the systems have
error feedback. In the absence of a feedforward term, theubaever reaches the
reference and hence we are left with nonzero steady state ketting the process
and the controller have transfer functids) andC(s), the transfer function from
reference to output is

PC

T 14+PC
and thus the steady state error for a unit step is

1
~ 11 kyP(0)’

For the system in Figure 10.2a with gaigs= 1, 2 and 5, the steady state error is
0.5, 0.33 and 0.17. The error decreases with increasing lgaiirthe system also
becomes more oscillatory. Notice in the figure that the inii&due of the control
signal equals the controller gain.

To avoid having a steady state error, the proportional texmbe changed to

u(t) = kpe(t) + ug, (10.3)

Gyr (10.2)

1-Gy(0)
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Figure 10.2: Responses to step changes in the reference value for system withoet jorogd
controller (a), PI controller (b) and PID controller (c). The process the transfer function
P(s) = 1/(s+1)3, the proportional controller (left) had parametkgs= 1, 2 and 5, the PI
controller has parameteks = 1,k =0, 0.2, 0.5 and 1, and the PID controller has parameters
arekp = 2.5,k = 1.5 andky =0, 1, 2 and 4.

whereug is a feedforward term that is adjusted to give the desireddstetate
value. If we choosexs = r/P(0) = k-, then the output will be exactly equal to
the reference value, as it was in the state space case, edothidt there are no
disturbances. However, this requires exact knowledge @fptiocess dynamics,
which is usually not available. The paramatgr calledresetin the PID literature,
must therefore be adjusted manually.

As we saw in Sections 6.4, integral action guarantees thatrtheess output
agrees with the reference in steady state and provides ematit/e to the feed-
forward term. Since this result is so important we will pravid general proof.
Consider the controller given by equation (10.1). Assunag ttiere exist a steady
state withu = up ande = g. It then follows from equation (10.1) that

Uo = Kpeo + kieot,

which is a contradiction unless or k; are zero. We can thus conclude that with
integral action the error will be zero if it reaches a steddyes Notice that we have
not made any assumptions about linearity of the processeadiiturbances. We
have, however assumed that an equilibrium exists. Usiegiat action to achieve
zero steady state error is much better than using feedfdywarich requires pre-
cise knowledge of process parameters.

The effect of integral action can also be understood fromueegy domain
analysis. The transfer function of the PID controller is

q9:m+%+ms (10.4)
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Figure 10.3: Implementation of Pl and PD controllers. The block diagram on the leftsho
how integral action is implemented usipgsitive feedbaclith a first order system, some-
times called automatic reset. The block diagram on the right shows hovatiegi action
can be implemented by taking differences between a static system artcbadfimssystem.

The controller has infinite gain at zero frequen€yf@) = «) and it then follows
from equation (10.2) thaBy,(0) = 1, which implies that there is no steady state
error for a step input.

Integral action can also be viewed as a method for genertiegeedforward
termug in the proportional controller (10.3) automatically. Onayato do this
is shown in Figure 10.3a, where the controller output is l@sspfiltered and fed
back with positive gain. This implementation, calladtomatic resetwas one
of the early inventions of integral control. The transferdtion of the system in
Figure 10.3a is obtained by block diagram algebra; we have

1+sT

Kp
Gue = kpsi_IT =kp+ ST
which is the transfer function for a PI controller.

The properties of integral action are illustrated in Figure2hGor a step input.
The proportional gain is constark, = 1, and the integral gains ake= 0, 0.2,
0.5and 1. The cade = 0 corresponds to pure proportional control, with a steady
state error of 50%. The steady state error is eliminated witegral gain action is
used. The response creeps slowly towards the reference &nsatues ofk; and
goes faster for larger integral gains, but the system alsorhes more oscillatory.

Integral gaink; is a useful measure for attenuation of load disturbances- Co
sider a closed loop system under PID control and assume #haygtem is stable
and initially at rest with all signals being zero. Apply a usiep disturbance at
the process input. After a transient the process output goesro and the con-
troller output settles at a value that compensates for theidiance. It follows
from (10.1) that

u(e) — k /0 " e(t)dt.

The integrated error is thus inversely proportional to ireégaink;. The integral
gain is thus a measure of the effectiveness of disturbabteelattion. A large gain
k; attenuates disturbances effectively but too large a gaesgiscillatory behavior,
poor robustness and possibly instability.

We now return to the general PID controller and consider thecebf the
derivative termky. Recall that the original motivation for derivative feedhavas
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to provide predictive action. Notice that the combinatidrihe proportional and
the derivative terms can be written as

de de

whereep(t) can be interpreted as a prediction of the error at tirrdy by linear
extrapolation. The prediction tim& = kq/kp is the derivative time constant of
the controller.

Derivative action can be implemented by taking the diffeesbetween the
signal and its low-pass filtered version as shown in FigureldOBhe transfer
function for the system is

(10.5)

1 K STy

1+sTd) T P14 sTy
The system thus has the transfer funct®fs) = sTy/(1+ sTy), which approxi-
mates a derivative for low frequencigs| (< Ty).

Figure 10.2c illustrates the effect of derivative actiore fiystem is oscillatory
when no derivative action is used and it becomes more dangderaative gain is
increased. Performance deteriorates if derivative gaimdsigh. When the input
is a step the controller output generated by the derivagiira will be an impulse.
This is clearly visible in Figure 10.2c. The impulse can be a@dily using the
controller configuration shown in Figure 10.1b.

Although PID control was developed in the context of engimegapplications,
it also appears in nature. Disturbance attenuation by B&din biological sys-
tems is often called adaptation. A typical example is thelfaup reflex discussed
in Example 8.11 where it is said that the eye adapts to changjhgintensity.
Analogously, feedback with integral action is called perfedaptation [YHSDOOQ].
In biological systems proportional, integral and deriwataction is generated by
combining subsystems with dynamical behavior similar tatik done in engi-
neering systems. For example, Pl action can be generateceliptdraction of
several hormones [ESGMO02].

Gue(s) = kp(l

Example 10.1 PD action in the retina

The response of cone photo receptors in the retina is an egantpre propor-
tional and derivative action is generated by a combinatiocooes and horizon-
tal cells. The cones are the primary receptors stimulatedghy, Ithe cones in
turn stimulate the horizontal cells and the horizontalsegilve inhibitory (neg-
ative) feedback to the cones. A schematic diagram of theesys$ shown in
Figure 10.4a. The system can be modeled by ordinary diffedestjuations by
representing neuron signals by continuous variables septig the average pulse
rate. In [Wil99] it is shown that the system can be represkbtethe differential

equations q L g L
X1 X2
dt Tc( X —ketu), dt T ba—xz),

whereu is the light intensity anc; andx, are the average pulse rates from the
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Figure 10.4: Schematic diagram of cone photo receptors (C) and horizontal celia (H¢
retina. Excitatory feedback is indicated by arrows and inhibitory feddbgcircles in the
schematic diagram in (a). A block diagram is shown in (b) and the stepmsspn (c).

cones and the horizontal cells. A block diagram of the sydteshown in Fig-
ure 10.4b. The step response of the system shown in Figure 4ot that the
system has a large initial response followed by a lower eomsteady state re-
sponse typical of proportional and derivative action. Theapeeters used in the
simulation ar&k = 4, T, = 0.025 andT; = 0.08. O

10.2 SIMPLE CONTROLLERS FOR COMPLEX SYSTEMS

Many of the design methods discussed in previous chapteses e property
that the complexity of the controller is directly reflectedthge complexity of the
model. When designing controllers by output feedback inpgidras we found for
single-input single-output systems that the order of therotler was the same as
the order of the model, possibly one order higher if integlon was required.
Applying similar design methods for PID control will requitieat we have have
low order models of the processes to be able to easily andtgzeesults.

Low order models can be obtained from first principles. Any lstaystem
can be modeled by a static system if its inputs are sufficiesiw. Similarly
a first order model is sufficient if storage of mass, momentumnergy can be
captured by only one variable; typical examples are thecitylof a car on a road,
angular velocity of a stiff rotational systems, level in @akaand concentration
in a volume with good mixing. System dynamics are of secone@roifdstorage
of mass, energy and momentum can be captured by two statbhegriypical
examples are position of a car on the road, stabilizationitbestellites, levels in
two connected tanks and two compartment models. A wide rahig@ehniques for
model reduction also available. In this chapter we will foom design techniques
were we simplify the models to capture the essential pragsetthat are needed for
PID design.

We begin by analyzing the case of integral control. A stap$tesn can be con-
trolled by an integrating controller provided that the regonents on the closed
loop system are modest. To design the controller we assumhthiitransfer func-
tion of the process is a constdtit= P(0). The loop transfer function under integral
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control then becomekk; /s and the closed loop characteristic polynomial is sim-
ply s+ Kk;. Specifying performance by the desired time constgnf the closed
loop system we find that the integral gain is given by

ki =1/(TeP(0)).

The analysis requires th@ is large enough that the process transfer function can
be approximated by a constant.

For systems that are not well-represented by a constant gaather way to
find a suitable value of integral gain is to make a Taylor sesigsansion of the
loop transfer function

Lig_ KPS _ K(P(0) +SP(0) KP(0)

S =kP'(0) + ——=.
S S kPO + S
ChoosingkP’(0) = —0.5 gives a system with good robustness as will be discussed
in Section??. The controller gain is then given by

=~ 5mre (106)

- 2P(0) '

and the expected closed loop time constaiitjisz —2P'(0)/P(0). This approach
is useful when the process has a pole at the origin, as @lftestrin the following
example.

Example 10.2 Integrating control of AFM in tapping mode

A simplified model of the dynamics of the vertical motion of araic force
microscope in tapping mode was discussed in Exercise 9.5.rahsfér function
for the system dynamics is

—ST
P(s) a(l—e®)
st(s+a)
wherea = {ap, andt = 2rm/wy and the gain has been normalized to 1. We have
P(0) =1 andP'(0) = —1/2—1/a, and it follows from (10.6) that the integral gain
iski=a/(2+ar). A Nyquist plot and Bode plot for the resulting loop transfer
function are shown in Figure 10.5. O

I

A first order system has the transfer function

P(S) L

T sta
With a PI controller the closed loop system has the charatieegolynomial

S(s+ ) + bkps+ bks = & + (a+ bky)s+ bk.

The closed loop poles can thus be assigned arbitrary valupsdper choice of
the controller gains. Requiring that the closed loop systesithe characteristic
polynomial

§? +ajs+ a3,
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Figure 10.5: Integral control for AFM in tapping mode. An integral controller is design
based on the slope of the process transfer function at 0. The congielsrgood robustness
properties based on a very simple analysis.

we find that the controller parameters are
a—a

ko = 1b :

If we require a response of the closed loop system that isesltivan that of the

open loop system, a reasonable choicajiss a+ a anda, = aa. If a response

that is faster that the open loop system is required, it isoeable to choos® =

2{pup anday = wg wherewy and{p are undamped natural frequency and relative

damping of the dominant mode. These choices have significgradiron the

robustness of the system and will be discussed in Section ¥hdupper limit

to ay is given by the validity of the model. Large values®d will require fast

control actions and actuators may saturate if the valueddaime. A first order

model is unlikely to represent the true dynamics for higlgfiencies. We illustrate

the design by an example.

_ &
k=" (10.7)

Example 10.3 Cruise control using Pl feedback

Consider the problem of maintaining the speed of a car ases gp a hill. In
Example 5.14 we found that there was little difference betwike linear and non-
linear models when investigating Pl control provided thatttirottle did not reach
the saturation limits. A simple linear model of a car was giireExample 5.11:

d(v—Ve)
dt

wherev is the velocity of the can is the input from the engine arilis the slope
of the hill. The parameters weee= 0.0101,b = 1.3203,g = 9.8, v = 20, and
Ue = 0.1616. This model will be used to find suitable parameters of aclesh
speed controller. The transfer function from throttle tooedly is thus a first order
system. Since the open loop dynamics is so slow it is naturgpéeify a faster
closed loop system by requiring that the closed loop syssevfisecond order with
relative damping and undamped natural frequeney. The controller gains are
given by (10.7).

= —a(v—Ve) +b(u—ue) — g0, (10.8)
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Figure 10.6: Cruise control using Pl feedback. The step responses for theardoinput
illustrate the effect of parameteds = 1 anday on the response of a car with cruise control.
A change in road slope fronf@o 4° is applied betweeh=5 and 6 s. The plot on the left
shows the response fay = 0.5 and{p = 0.5, 1 and 2. Choosingy = 1 gives no overshoot.
The plot on the right shows the responsedge= 1 anday = 0.2, 0.5 and 1.0.

Figure 10.6 shows the velocity and the throttle for a car thaiaily moves
on a horizontal road and encounters a hill with slofeattitimet = 6 sec. To
design a PI controller we choogg= 1 to obtain a response without overshoot, as
shown in Figure 10.6a. The choiceaf is a compromise between response speed
and control actions: a large value gives a fast response tequires fast control
action. The trade-off is is illustrated in Figure 10.6b. Theyésmt velocity error
decreases with increasing, but the control signal also changes more rapidly. In
the simple model (10.8) it was assumed that the force resgposthntaneously to
throttle commands. For rapid changes there may be additignamics that have
to be accounted for. There are also physical limitationsec#te of change of the
force, which also restricts the admissible valuewpf A reasonable choice @l is
in the range of 0.5to 1.0. Notice in Figure 10.6 that even wiih= 0.2 the largest
velocity error is only 1 m/s.

0

A PI controller can also be used for a process with second alyieamics,
but there will be restrictions on possible locations of elb$oop poles, as shown
in Exercise 10.2. Using a PID controller it is possible to coh&r system of
second order in such a way that the closed loop poles haveaaydocations, see
Exercise 10.3.

Instead of finding a low order model and designing controlfersthem we
can also use a high order model and only attempt to place adewinént poles.
An integrating controller has one parameter and it is péss$doposition one pole.
Consider a process with the transfer functi®fs). The loop transfer function
with an integrating controller i&(s) = kiP(s)/s. The roots of the closed loop
characeristic polynomial are the rootsof kiP(s) = 0. Requiring thas = —ais
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Figure 10.7: lllustration of Ziegler-Nichols step and frequency response expetsndine
unit step response in (a) is characterized by the paramatansl Tye;. The frequency re-
sponse method characterizes process dynamics by the point of thesNggrve of the
process transfer function first intersects the negative real axis anfdettjuencyw, where
this occurs.

a root, we find that the controller gain should be chosen as

a
P
The poles= —awill be dominant ifais small. A similar approach can be applied
to Pl and PID controllers.

(10.9)

10.3 PID TUNING

Users of control systems are frequently faced with the tdsidsting the con-

troller parameters to obtain a desired behavior. There arey rddferent ways

to do this. One approach is to go through the conventionaissté modeling

and control design as described in the previous section.eShecPID controller

has so few parameters, a number of special empirical metimasalso been de-
veloped for direct adjustment of the controller parametditse first tuning rules

were developed by Ziegler and Nichols [ZN42]. Their idea was éde@ma simple

experiment, extract some features of process dynamics tlhenexperiment and
determine controller parameters from the features.

Ziegler-Nichols’ Tuning

Ziegler and Nichols developed two methods for controllerirtgnin the 1940s
based on simple characterization of process dynamics itirtteeand frequency
domains.

The time domain method is based on a measurement of part optreloop
unit step response of the process, as shown in Figure 10.7ast@meesponse is
measured by applying a unit step input to the process anddiagathe response.
The response is characterized by parameiesd 1, which are the intercepts of
the steepest tangent of the step response with the coardimas. The parame-
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Table 10.1:Ziegler-Nichols tuning rules. (a) The step response methods give thmpgers
in terms of the interce@ and the apparent time delay (b) The frequency response method
gives controller parameters in terms of critical glirand critical periodTc.

Type aky, T/t T4/t Type kp/ke Ti/Te Ta/Te
P 1 P 0.5
Pl 0.9 3 Pl 0.4 0.8
PID 1.2 2 0.5 PID 0.6 0.5 0.125
(a) Step response method (b) Frequency response method

ter T is an approximation of the time delay of the system ayd is the steepest

slope of the step response. Notice that it is not necessavgitaintil steady state

is reached to find the parameters, it suffices to wait until teparese has had an
inflection point. The controller parameters are given in Tdlflel. The parame-

ters were obtained by extensive simulation of a range oesaprtative processes.
A controller was tuned manually for each process and it was tittempted to

correlate the controller parameters wétlandr.

In the frequency domain method a controller is connectetiégprocess, the
integral and derivative gains are set to zero, and the ptigpai gain is increased
until the system starts to oscillate. The critical value @& groportional gairk;
is observed together with the period of oscillatign It follows from Nyquist's
stability criterion that the loop transfer functian= k:P(s) intersects the critical
point for the frequencyy. = 211/T.. The experiment thus gives the point on the
Nyquist curve of the process transfer function where thespHag is 180, as
shown in Figure 10.7b.

The Ziegler-Nichols methods had a huge impact when they wéaadinced in
the 1940s. The rules were simple to use and gave initial dondifor manual
tuning. The ideas were adopted by manufacturers of contsdite routine use.
The Ziegler-Nichols tuning rules have unfortunately two sewdrawbacks: too
little process information is used and the closed loop systthat are obtained
lack robustness.

The step response method can be improved significantly by atieaizang the
unit step response by parametkrst andT in the model

K
P(s) = 1osT

The parameters can be obtained by fitting the model to a meastagdesponse.
Notice that the experiment takes longer time than the ewypmari in Figure 10.7a
because to determinié it is necessary to wait until the steady state has been
reached. Also notice that the intercepin the Ziegler-Nichols rule is given by
a=Krt/T.

The frequency response method can be improved by measurirgy pomts

e s (10.10)
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on the Nyquist curve, for example the zero frequency ¢aior the point where
the process has 9(@hase lag. This latter point can be obtained by connecting an
integrating controller and increasing its gain until theteyn reaches the stability
limit. The experiment can also be automated by using relagifaek, as will be
discussed later in this section.

There are many versions of improved tuning rules. As an ithisin we give
the following rules for PI control fromﬁ{HOS]:

ko — 0.17r;rro.28T (Okng)a = % (%f)
(10.11)
kp = 0.16k; (O.4kc), K = 0.16kc_?C 0.72K (O.TSCkC>

The values for the Ziegler-Nichols rule are given in parergbed\otice that the
improved formulas typically give lower controller gainsaththe Ziegler-Nichols
method. The integral gain is higher for systems whose dyraarie delay domi-
nated,r > T.

Example 10.4 PI control of AFM in tapping mode
A simplified model of the dynamics of the vertical motion of araic force
microscope in tapping mode was discussed in Example 10.2 rahsfer function
is normalized by choosing/a as the time unit. The normalized transfer function
is
—sTh

sTh(s+1)
whereT, = 2n1a/wp = 2n11. The Nyquist plot of the transfer function is shown
in Figure 10.8a foz = 0.002 andn = 20. The leftmost intersection of the Nyquist
curve with the real axis occurs at Re- —0.0461 forw = 13.1. The critical gain
is thusk. = 21.7 the critical period ig. = 0.48. Using Ziegler-Nichols tuning rule
we find the parametets, = 8.87 andk; = 22.6 (T; = 0.384) for a PI controller.
With this controller the stability margin is, = 0.31, which is quite small. The
step response of the controller is shown in Figure 10.8. Matigoarticular that
there is a large overshoot in the control signal.

The modified Ziegler-Nichols rule (10.11) gives the controfiarameter& =
3.47 andk; = 8.73 (T; = 0.459) and the stability margin becomgs= 0.61. The
step response with this controller is shown in Figure 10.8.oMgarison of the
responses obtained with the original Ziegler Nichols rulershthat the overshoot
has been reduced. Notice that the control signal reacheseitsly state value
almost instantaneously. It follows from Example 10.2 thatieepntegrating con-
troller has the normalized gala = 1/(2+ Tn) = 0.44. Comparing this with the
gains of a PI controller we can conclude that a Pl controlleegimuch better
performance than a pure integrating controller. O
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Figure 10.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step reg®ns
(b) for PI control of the vertical motion of an atomic force microscop&jping mode. The
averaging parameter is= 20. Results with Ziegler-Nichols tuning are shown in dashed
lines, and modified Ziegler-Nichols tuning is shown in full lines. The Nyqgpist of the
process transfer function is shown in dotted lines.

Relay Feedback

The Ziegler-Nichols frequency response method increasegdimeof a propor-
tional controller until oscillation to determine the cciil gaink; and the corre-
sponding period, or equivalently the point where the Nyquist curve inters¢ioe
negative real axis. One way to obtain this information awttcally is to connect
the process in a feedback loop with a nonlinear element gawirelay function
as shown in Figure 10.9a. For many systems there will then lmseillation, as
shown in Figure 10.9b, where the relay outpus$ a square wave and the process
outputy is close to a sinusoid. Moreover the input and the output arefgpphase,
which means that the system oscillates with the criticalgoEf., where the pro-
cess has a phase lag of 28(Notice that an oscillation with constant period is
established quickly.

The critical period is simply the period of the oscillationo @etermine the
critical gain we expand the square wave relay output in aiEoseries. Notice

' e u NS T T
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Figure 10.9: Block diagram of a process with relay feedback (left) and typical signals
(right). The process output is solid and the relay output is dashed. Notice that the

signalsu andy have opposite phase.
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in the figure that the process output is practically sinuddidaause the process
attenuates higher harmonics effectively. It is then sufficte consider only the
first harmonic component of the input. Lettidgoe the relay amplitude, the first
harmonic of the square wave input has amplitudé¢ If a is the amplitude
of the process output, the process gain at the critical &rouow. = 211/T; is
IP(iax)| = 75 and the critical gain is

4d
Cam
Having obtained the critical gaif; and the critical period, the controller param-
eters can then be determined using the Ziegler-Nichols.rigsroved tuning can
be obtained by fitting a model to the data obtained from the/retperiment.

The relay experiment can be automated. Since the amplitudie afscillation
is proportional to the relay output, it is easy to control yt ddjusting the relay
output. Automatic tuning based on relay feedback is usedimpmeommercial PID
controllers. Tuning is accomplished simply by pushing adsuthat activates relay
feedback. The relay amplitude is automatically adjustedepkthe oscillations
sufficiently small and the relay feedback is switched to a PIBtr@dler as soon as
the tuning is finished.

Ke (10.12)

10.4 INTEGRATOR WINDUP

Many aspects of a control system can be understood fromrlmedels. There
are, however, some nonlinear phenomena that must be talceadoount. These
are typically limitations in the actuators: a motor has tedispeed, a valve cannot
be more than fully opened or fully closed, etc. For a systeat tiperates over
a wide range of conditions, it may happen that the contralabée reaches the
actuator limits. When this happens the feedback loop isdir@nd the system
runs in open loop because the actuator will remain at itg imiependently of the
process output as long as the actuator remains saturatetégeal term will also
build up since the error is typically nonzero. The integraitend the controller
output may then become very large. The control signal wilhttemain saturated
even when the error changes and it may take a long time bdfer@ntegrator
and the controller output come inside the saturation rarigee consequence is
that there are large transients. This situation is refemeaktintegrator windup
illustrated in the following example.

Example 10.5 Cruise control

The windup effect is illustrated in Figure 10.10, which showsthhappens when
a car encounters a hill that is so stee}) that the throttle saturates when the cruise
controller attempts to maintain speed. When encountehaglope at timé¢ =5

the velocity decreases and the throttle increases to gemamae torque. However,
the torque required is so large that the throttle saturdtes.error decreases slowly
because the torque generated by the engine is just a literlghan the torque
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Figure 10.10: Simulation of PI cruise control with windup (left) and anti-windup (right).
The figure shows the speedand the throttleu for a car that encounters a slope that is so
steep that the throttle saturates. The controller output is dashed. Thellesrgarameters
arekp = 0.5 andk; = 0.1.

required to compensate for the gravity. The error is largeth@ihtegral continues
to build up until the error reaches zero at time 30, but therodier output is still
larger than the saturation limit and the actuator remaimsrated. The integral
term starts to decrease and at time 45 and the velocity sqtiiekly to the desired
value. Notice that it takes considerable time before thdrober output comes
into the range where it does not saturate, resulting in &lavgrshoot. O

There are many ways to avoid windup. One method is illustrateBig-
ure 10.11: the system has an extra feedback path that isageddry measuring
the actual actuator output, or the output of a mathematicalehof the saturating
actuator, and forming an error signal as the difference between the output of
the controllerv and the actuator output The signales is fed to the input of the
integrator through gaik. The signaks is zero when there is no saturation and the
extra feedback loop has no effect on the system. When thatactsaturates, the
signales is fed back to the integrator in such a way teagoes towards zero. This
implies that controller output is kept close to the satoratimit. The controller
output will then change as soon as the error changes sigméggtal windup is
avoided.

The rate at which the controller output is reset is governedhkyfeedback
gain,k;; a large value ok; gives a short reset time. The paramétarannot be too
large because measurement error can then cause an unidassaih. A reasonable
choice is to choosk as a fraction of 1T;. We illustrate how integral windup can
be avoided by investigating the cruise control system.

Example 10.6 Cruise control
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Figure 10.11: PID controller with filtered derivative and anti-windup. The input to the
integrator (¥s) consists of the error term plus a “reset” based on input saturation.eIf th
actuator is not saturated then= u— v, otherwisees will decrease the integrator input to
prevent windup.

Figure 10.10b shows what happens when a controller withvaintlup is applied
to the system simulated in Figure 10.10a. Because of the &&dbom the ac-
tuator model, the output of the integrator is quickly reseatvalue such that the
controller output is at the saturation limit. The behaviodriastically different
from that in Figure 10.10a and the large overshoot is avoi@ibd.tracking gain is
ki = 2 in the simulation. O

10.5 IMPLEMENTATION

There are many practical issues that have to be consideradimpéementing PID
controllers. They have been developed over time based otigalaexperiences.
In this section we consider some of the most common. Similasiderations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivathas high gain for high
frequency signals. This means that high frequency measutemese will gener-
ate large variations of the control signal. The effect of measient noise may be
reduced by replacing the terkgs by kys/(1+ sTt), which can be interpreted as
an ideal derivative of a low-pass filtered signal. For sra#tle transfer function is
approximatelykgs and for largesit is equal toky / Ts. The approximation acts as a
derivative for low-frequency signals and as a constant fyaithe high frequency
signals. The filtering time is chosen &s= (ky/k)/N, with N in the range of 2 to
20. Filtering is obtained automatically if the derivativeingplemented by taking
the difference between the signal and its filtered versiomags in Figure 10.3b
(see equation (10.5)). Instead of filtering just the denaatii is also possible to
use an ideal controller and filter the measured signal. Thefgafunction of such
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a controller with a filter is then

1 1
ko (14 = 1 ST . 10.1
c p< +s‘ﬁ+sd> 14T+ (sT)2/2 (10.13)

where a second order filter is used.

Setpoint Weighting

Figure 10.1 on page 300 shows two configurations of a PID coatrdlhe system
in Figure 10.1a shows a controller wighror feedbackvhere proportional, integral
and derivative action acts on the error. In the simulatiodP controllers in
Figure 10.2 there is a large initial peak of the control sigwalich is caused by the
derivative of the reference signal. The peak can be avoidessiog the controller
in Figure 10.1b where proportional and derivative actiors actly on the process
output. An intermediate form is given by

dr dy

u=Kkp(Br—y)+Kk /Om(r(r) —y(1))dT + kg (ya — a), (10.14)

where the proportional and derivative actions act on foast3 andy of the ref-
erence. Integral action has to act on the error to make satetth error goes to
zero in steady state. The closed loop systems obtained fereatit values of3
andy respond to load disturbances and measurement noise inrtfeevgay. The
response to reference signals is different because it dsgamnthe values @8 and
y, which are calledeference weighter setpoint weightsWe illustrate the effect
of setpoint weighting by an example.

Example 10.7 Cruise control

Consider the PI controller for the cruise control systemwvéerin Example 10.3.
Figure 10.12 shows the effect of setpoint weighting on thpaese of the system
to a reference signal. Wit = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to thewration limit. There is no
overshoot with3 = 0 and the control signal is much smaller, clearly a much bette
drive comfort. The frequency responses gives another vigheosdame effect. The
parametef is typically in the range of 0 to 1 anglis normally zero to avoid large
transients in the control signal when the reference is obdng O

The controller given by equation (10.14) is a special caseuwfroller with two
degrees of freedom, which will be discussed in more det&idation 11.2.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different techgiel®. Figure 10.13
shows how Pl and PID controllers can be implemented by feeddacind oper-
ational amplifiers.

To show that the circuit in Figure 10.13b is a PID controller wk uge the the
approximate relation between the input voltagand the output voltage of an
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Figure 10.12: Time and frequency responses for Pl cruise control with setpointhiie@
Step responses are shown in (a) and the gain curves of the freqesponses in (b). The
controller gains ar&, = 0.74 andk; = 0.19. The setpoint weights afe= 0, 0.5 and 1 and

y=0.

operational amplifier derived in Example 8.3,

Z;
u=-—--e
Zy
In this equationZy is the impedance between the negative input of the amplifier
and the input voltage, andZ; is the impedance between the zero input of the
amplifier and the output voltage The impedances are given by

_ R .
= T7RCs A®=Rut

Zo(9) e
and we find the following relation between the input voltagend the output volt-

Co
|_
Ro Ry G
o € . o
u u
o o o
(a) PI controller (b) PID controller

Figure 10.13: Schematic diagrams for Pl and PID controllers using op amps. Thet@rcu
the left uses a capacitor in the feedback path to store the integral of tie®ne circuit on
the right ads a filter on the input to provide derivative action.
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ageu:
21, Ri(1+RCos)(1+RCis)

Zo Ro R1Cis )
This is the input-output relation for a PID controller of therfo(10.1) with pa-
rameters

U=

R
k=0 T=RC Ty=RGCo.
Ro
The corresponding results for a Pl controller is obtained byngeCy = 0 (remov-

ing the capacitor).

Computer Implementation

In this section we briefly describe how a PID controller may bplemented using
a computer. The computer typically operates periodicaliyh wignals from the
sensors sampled and converted to digital form by the A/D eday, the control
signal computed and then converted to analog form for theasmts. The sequence
of operation is as follows:

1. Wait for clock interrupt 4. Send output to the actuator
2. Read input from sensor 5. Update controller variables
3. Compute control signal 6. Repeat

Notice that an output is sent to the actuators as soon asvhihle. The time
delay is minimized by making the calculations in Step 3 astsdwpossible and
performing all updates after the output is commanded. Thipla way of reduc-
ing the latency is, unfortunately, seldom used in commeésgistems.

As an illustration we consider the PID controller in Figure1llQ.which has
a filtered derivative, setpoint weighting and protectioniagfaintegral windup.
The controller is a continuous time dynamical system. To em@nt it using a
computer, the continuous time system has to be approxinigteddiscrete time
system.

A block diagram of a PID controller with anti-windup is showrRigure 10.11.
The signalv is the sum of the proportional, integral and derivative &rand the
controller output i1 = sa{v) where sat is the saturation function that models the
actuator. The proportional terky(Br —y) is implemented simply by replacing
the continuous variables with their sampled versions. denc

P(tk) = kp (Br(t) —y(t)) » (10.15)

where{tyx} denotes the sampling instants, i.e., the times when the emnpeads
its input. We leth represent the sampling time, so that; = tx + h. The integral
term is obtained by approximating the integral with a sum

(1) = 1)+ kheft) + 7 (5atv) ~). (10.16)
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whereT; = h/k; represents the anti-windup term. The filtered derivative tBris
given by the differential equation

dD

Approximating the derivative with a backward differencees

D(tk) —D(tk-1) Ky y(tk) —y(tk—1)

which can be rewritten as
Tt
D(tx) = Th D(tk—1) — T +h (Y(tx) = Y(tk-1)) - (10.17)

The advantage of using a backward difference is that the paea /(T; +h) is
non-negative and less than one forfalk 0, which guarantees that the difference
equation is stable. Reorganizing equations (10.15)-30the PID controller can
be described by the following pseudo code:

% Precomput e controller coefficients
bi =ki *h

ad=Tf/ ( Tf +h)

bd=kd/ ( Tf +h)

br=h/ Tt

% Control algorithm- nmain |oop
while (running) {

r=adi n(chl) % read setpoint fromchl

y=adi n(ch2) % read process variable fromch2
P=kp* (b*r-vy) % conput e proportional part

D=ad* D- bd* (y-yol d) % updat e derivative part

v=P+| +D % conput e tenporary out put

u=sat (v, ul ow, uhi gh) % si mul ate actuator saturation
daout (ch1l) % set anal og out put chl

I =l +bi *(r-y)+br*(u-v) % updat e i ntegral

yol d=y % updat e ol d process out put

sl eep(h) % wait until next update interval

Precomputation of the coefficiertt$ , ad, bd andbr saves computer time in
the main loop. These calculations have to be done only whetnadlem parameters
are changed. The main loop is executed once every samplifagip@he program
has three statey.ol d, | , andD. One state variable can be eliminated at the cost
of less readable code. The latency between reading the analaigand setting the
analog output consists of 4 multiplications, 4 additiond amaluation of thes at
function. All computations can be done using fixed point dalttons if necessary.
Notice that the code computes the filtered derivative of thegss output, and that
it has set-point weighting and anti-windup protection.
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10.6 FURTHER READING

The history of PID control is very rich and stretches back to libginning of
the foundation of control theory. A very readable treatmisngiven by Ben-
nett [Ben86a, Ben86b] and Mindel [Min02]. The Ziegler-Nichalles for tuning
PID controllers, first presented in 1942 [ZN42], were develdpeeskd on extensive
experiments with pneumatic simulators and Vannevar Budiffsrential analyzer
at MIT. An interview with Nichols gives an interesting viewthe development of
the Ziegler-Nichols rules is given in an interview with Zieg|Bli90]. An indus-
trial perspective on PID control is given in [Bia95], [Shi96ldYH91] and in the
paper [DMO02] cited in the beginning of this chapter. A contesive presenta-
tion of PID control is given inAH95] and [AHO5]. Interactive learning tools for
PID control can be downloaded fromt p: / / www. cal er ga. conf contri b.

EXERCISES

10.1 Consider the systems represented by the block diagrams imeF?§. As-
sume that the process has the transfer funcli@s) = b/(s+ a) show that the
transfer functions from to y are

B blkgs? + bkps+ bk
(@GS = 1 i)+ (a+ bka)s+ bk
_ bk
()G (8) = pi @+ (atbky)s £ bk
10.2 Consider a second order process with transfer function
b
P<S) - S+ a;s+ay

The closed loop system with a Pl controller is a third ordereyst Show that
it is possible to position the closed loop poles as long astime of the poles is
—a;. Give equations for the parameters that give the closed dbapacteristic
polynomial

(s+ Qo) ($* + 2{oanS+ ).

10.3 Consider a second order process with transfer function

b
P(s)=5———.
(S) S+as+ap
Find the gains for a PID controller that gives the closed lomtiesy the character-
istic polynomial
(s+ Qo) ($* + 20oanS+ ).

10.4 Consider a system with the transfer functiBts) = (s+1)~2. Find an
integrating controller that gives a closed loop polesat —a and determine the
value ofa that maximizes integral gain. Determine the other polefhefdystem
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and judge if the pole can be considered to be dominant. Cawidhh the value
of the integral gain given by (10.6).

10.5 Compartment models and many systems encountered in igicheste the
property that their impulse responses are positive or etgritly that their step
responses are monotone. Consider such a system with tiséetréumnctionP(s).
Show that the impulse responisgt) of the normalized systefi(s) /P(0) has the
propertieshy(t) > 0 and fg” ha(t)dt = 1. The functiorhs(t) can be interpreted as a
probability density function - the probability that a paléi entering the system at
time O will exit at timet. Let

Tar :/ tha(t)dt
0

be the average residence time. Show fthat= —P’(0)/P(0) and that the tuning
formula (10.6) can be written &= 1/(T5P(0)).

10.6 Consider a system with the transfer functi®(s) = e °/s. Determine pa-
rameters of P,Pl and PID controllers using Ziegler-Nicholp-stand frequency
response methods. Compare the parameter values obtairtbd Hifferent rules
and discuss the results.

10.7 (Vehicle steering) Design a proportion-integral congplfor the vehicle
steering system that gives closed loop characteristictexua

$* 4 2008 + 2anS+ .

10.8 (Congestion control) A simplified flow model for TCP transmissie de-
rived in [LPD02, HMTGO0O]. The linearized dynamics are modeledHhgytransfer
function b

—ST*

Carl® = sranEran)®

which describes the dynamics relating expected queuetertgtexpected packet
drop p. The parameters are given by wherg= 2N?/(ct*?), ap = 1/1* and

b =c?/(2N). The parametet is the bottleneck capacityy the number sources
feeding the link andr* is the round trip delay time. Use the parameter values
N = 75 sourcesC = 1250 packets/s and® = 0.15 and find parameters of a PI
controller using one of the Ziegler-Nichols rules and theegponding improved
rule. Simulate the responses of the closed loop systemsebitaiith the Pl con-
trollers.



Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with signsiéiteriora-
tions in another frequency range, and the price is higher if the plant is -bpam unstable.
This applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture in 1989 [Ste03].

In this chapter we continue to explore the use of frequencyado techniques
with a focus on design of feedback systems. We begin with arimrough de-
scription of the performance specifications for control ey, and then introduce
the concept of “loop shaping” as a mechanism for designimgrobtiers in the fre-
guency domain. We also introduce some fundamental liroitatio performance
for systems with right half plane poles and zeros.

11.1 SENSITIVITY FUNCTIONS

In the previous chapter, we considered the use of PID feedmekmechanism
for designing a feedback controller for a given processhis¢hapter we will ex-
pand our approach to include a richer repertoire of toolsf@ping the frequency
response of the closed loop system.

One of the key ideas in this chapter is that we can design theviier of the
closed loop system by focusing on the open loop transfertiiumc This same
approach was used in studying stability using the Nyquitgrgon: we plotted the
Nyquist plot for theopenloop transfer function to determine the stability of the
closedloop system. From a design perspective, the use of loop asabds is
very powerful: since the loop transfer functionlis= PC, if we can specify the
desired performance in terms of properties pfve can directly see the impact of
changes in the controll€. This is much easier, for example, than trying to reason
directly about the tracking response of the closed loopesystwvhose transfer
function is given byGy, = PC/(1+ PC).

We will start by investigating some key properties of thedfesck loop. A
block diagram of a basic feedback loop is shown in Figure 1ThE system loop
is composed of two components, the process and the comtrbfie controller has
two blocks: the feedback blodR and the feedforward block. There are two
disturbances acting on the process, the load disturb@énaed the measurement
noisen. The load disturbance represents disturbances that devertitess away
from its desired behavior, while the measurement noiseesgmts the disturbances
that corrupt the information about the process given by émsars. In the figure,



322 CHAPTER 11. FREQUENCY DOMAIN DESIGN

Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedone Th
controller has a feedback blo€kand a feedforward block. The external signals are the
command signal, the load disturbanca and the measurement noiseThe process output
isy and the control signal is.

the load disturbance is assumed to act on the process inpatisEhsimplification,
since disturbances often enter the process in many differays, but it allows us
to streamline the presentation without significant loss ofegality.

The process output is the real variable that we want to control. Control is
based on the measured siggalvhere the measurements are corrupted by mea-
surement noisa. The process is influenced by the controller via the contrat var
ableu. The process is thus a system with three inputs—the contri@hblau, the
load disturbance and the measurement noise-and one output—the measured
signaly. The controller is a system with two inputs and one output. Tipeitis
are the measured signablnd the reference signaland the output is the control
signalu. Note that the control signalis an input to the process and the output of
the controller, and that the measured signal the output of the process and an
input to the controller.

The feedback loop in Figure 11.1 is influenced by three exteigahls, the
reference, the load disturbance and the measurement noise Any of the re-
maining signals can be of interest in controller designetelng on the particular
application. Since the system is linear, the relations betvike inputs and the in-
teresting signals can be expressed in terms of the transfetions. The following
relations are obtained from the block diagram in Figure 11.1:

PCF P 1

1+PC 1+PC 1+PC

PCF P —PC
z 1+PC 1+PC 14PC|
v] = | CF ! —C [d]. (11.1)
U 1+PC 1+PC 1+PC| |,
o CF  -PC -C

1+PC 1+PC 1+PC

F P ~1
1+PC 1+PC 1+PC

In addition, we can write the transfer function for the evetween the reference
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r and the outpufy (not an explicit signal in the diagram), which satisfies

PCF>r+ P 4, PC |
1+PC 1+PC"  1+PC"

There are several interesting conclusions we can draw fr@setiequations.
First we can observe that several transfer functions areatine sind that all of the

important relations are given by the following set of sixwsger functions, which
we call theGang of Six

e=r—n=(1

PCF PC =

1+PC 1+PC 1+PC

* * * (11.2)
CF C 1

1+PC 1+PC 1+PC’

The transfer functions in the first column give the responséefirocess output
and control signal to the setpoint. The second column caonthia response of
the control variable to load disturbance and noise and thédalamn gives the
response of the process output to those two inputs. Notateotily four transfer
functions are required to describe how the system reactatbdisturbances and
the measurement noise, and that two additional transfetifums are required to
describe how the system responds to setpoint changes.

The linear behavior of the system is determined by the sixsfearfunctions
in equation (11.2) and specifications can be expressed irstefrinese transfer
functions. The special case whEn= 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feedraok the error only
and the system is completely characterized by four trarfisfetions, namely the
four rightmost transfer functions in equation (11.2), whiave specific names:

1

S= 17PC sensitivity function
= PC complementary sensitivity function
1+PC
P o . (11.3)
PS= 15 PC load sensitivity function
S= c noise sensitivity function
1+PC

These transfer functions and their equivalent systems dezldhe Gang of Four
The load disturbance sensitivity function is sometimeseckthe input sensitivity
function and the noise sensitivity function is sometimdkedahe output sensitiv-
ity function. These transfer functions have many intergsproperties that will
be discussed in detail in the rest of the chapter. Good ihgighthese properties
is essential for understanding the performance of feedbgstems both for the
purpose of use and design.

Analyzing the Gang of Six we find that the feedback contr@arfluences the
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the effects of load disturbances and measurement noise&eNbat measurement
noise enters the process via the feedback. In Section 12.@ ibevshown that
the controller influences the sensitivity of the closed looptocess variations.
The feedforward paif of the controller only influences the response to command
signals.

In Chapter 9 we focused on the loop transfer function and weadahat its
properties gave useful insight into the properties of aesyistTo make a proper
assessment of a feedback system it is necessary to corts&dprdperties of all
transfer functions (11.2) in the Gang of Six or Gang of Fouriwor feedback, as
illustrated in the following example.

Example 11.1 The loop transfer function only gives limited insight

Consider a process with the transfer functi®is) = 1/(s— a) controlled by a PI
controller with error feedback having the transfer funet{s) = k(s—a)/s. The
loop transfer function i& = k/s, and the sensitivity functions are

_ PC Kk po_ P _ s
~ 1+PC  s+k ~ 1+PC  (s—a)(s+k)
~C k(-4 1 s

CS= 1+PC  s+k S= 1+PC  s+k’

Notice that the factos— a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivitgtion or complemen-
tary sensitivity function. However, cancellation of thetfar is very serious ia> 0
since the transfer functioRSrelating load disturbances to process output is then
unstable. In particular, a small disturbarttean lead to an unbounded output,
which is clearly not desirable. O

The system in Figure 11.1 represents a special case becasisssuimed that
the load disturbance enters at the process input and thahélasured output is
the sum of the process variable and measurement noise.rlizstes can enter
in many different ways and the sensors may have dynamics. i& afsstract way
to capture the general case is shown in Figure 11.2, which twedytwo blocks
representing the process”) and the controller€’). The process has two inputs,
the control signali and a vector of disturbances and two outputs, the measured
signaly and a vector of signalsthat is used to specify performance. The system in
Figure 11.1 can be captured by choosmg- (d,n) andz= (n,v,e, ). The pro-
cess transfer functio®” is a 2x 2 block matrix and the controller transfer function
% is a 1x 2 block matrix; see Exercise 11.3. Processes with multiplatsnpnd
outputs can also be considered by regardimgdy as vectors. Representations at
these higher levels of abstraction are useful for the deveént of theory because
they make it possible to focus on fundamentals and to solwergéproblems with
a wide range of applications. However, care must be exerdisenaintain the
coupling to the real world control problems we intend to solv
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Figure 11.2: A more general representation of a feedback system. The progasgsuin
represents the control signal, which can be manipulated, and the piopesw represents
other signals that influence the process. The process optptihe measured variables and
z are other interesting signals of interest.

11.2 FEEDFORWARD DESIGN

Most of our analysis and design tools up to this point haveised on the role of
feedback and its effect on the dynamics of the system. Feedfdris a simple
and powerful technique that complements feedback. It canskd both to im-
prove the response to reference signals and to reduce #ut effmeasurable dis-
turbances. Feedforward compensation admits perfect etiom of disturbances
but it is much more sensitive than feedback. A general scHemieedforward
was discussed in Section 7.5 on page 225 using Figure 7.10. plesiiorm of
feedforward for PID controllers was discussed in Section.1UHe controller in
Figure 11.1 also has a feedforward block to improve respamseféerence sig-
nals. An alternative version of feedforward is shown in Fegglit.3, which we will
use in this section to understand some of the tradeoffs leetvieedforward and
feedback.

Systems with two degrees of freedom (feedforward and feéddzave the
advantage that the response to reference signals can lpael@sndependently of
the design for disturbance attenuation and robustness. Mérst consider the
response to reference signals and we will therefore ityitedsume that the load

= Fu(s) Fa(s)

Ym e

$\eta$
> Fm(s) %@«v

Pi(s) »s{Signjas

Figure 11.3: Block diagram of a system with feedforward compensation for impraoeed
sponse to reference signals and measured disturbances. Thiémvieed elements are
present:Fn(s) sets the desired output valug,(s) generates the feedforward command
andFy(s) attempts to cancel disturbances.
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disturbancel is zero. Let, represent the ideal response of the system to reference
signals. The feedforward compensator is characterizeddatyahsfer function,
andF,. When the set point is changed the transfer fundipgenerates the signal
Ug, which is chosen to give the desired output when appliedad o the process.
Under ideal conditions the outpyis then equal tyy, the error signal is zero and
there will be no feedback action. If there are disturbanceaadeling errors, the
signalyy andy will differ. The feedback then attempts to bring the erroréoaz

To make a formal analysis we compute the transfer functiomfreference to

process output ( )
P(CFn+Fy PR, — Fm
Gy(S)=———=——=Fnt+——-— 11.4
(=1 pc ™t Iipc (11.4)
whereP = P,P;. The first term represents the desired transfer function. Téwnske
term can be made small in two ways. Feedforward compensagioie used to
makePR, — Fy, small or feedback compensation can be used to makeQlarge.

Perfect feedforward compensation is obtained by choosing
Fn = PR. (11.5)

Notice the different character of feedback and feedforwsvih feedforward we
attempt to match two transfer functions, and with feedbaelattempt attempt to
make the error small by dividing it by a large number. For atcler having
integral action, the loop gain is large for small freques@ed it is thus sufficient
to make sure that the condition for ideal feedforward holdsigher frequencies.
This is easier than trying to satisfy the condition (11.5)dbfrequencies.

We will now consider reduction of effects of the load distambed in Fig-
ure 11.3. We consider the case where we are able to measudisthebance
signal and assume that the disturbance enters the proceamibg in a known
way (captured by, andP,). The effect of the disturbance can be reduced by feed-
ing the measured signal through a dynamical system withrémsfier functior.
Assuming that the referenceis zero, we can use block diagram algebra to find
that the transfer function from disturbance to processudugp

Po(1+FyPy)
1+PC
whereP = PP,. The effect of the disturbance can be reduced by makindd{P;

small (feedforward) or by making-£ PC large (feedback). Perfect compensation
is obtained by choosing

Gya = (11.6)

Fa=—-P L (11.7)

Notice that the feedforward disturbance compensator igtregse of the transfer
function Py, requiring precise knowledge of the process dynamics.

As in the case of reference tracking, disturbance rejectombe accomplished
by combining Feedback and feedforward controllers. Sincefteqquency dis-
turbances can be effectively eliminated by feedback we osdyire the use of
feedforward for high frequency disturbances, and the tearisnctionF4 in equa-
tion (11.7) can then be computed using an approximatidd ébr high frequen-
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Figure 11.4: Feedforward control for vehicle steering. Lateral deviagi@md steering angle
d for smooth lane change control using feedforward.

cies.

Equations (11.5) and (11.7) give analytic expressions ffg¢bdforward com-
pensator. To obtain a transfer function that can be impleeakrithout difficulties
we require that the feedforward compensator is stable atdgtioes not require
differentiation. Therefore there may be constraints oniptesshoices of the de-
sired responsé,, and approximations are needed if the process has zeros in the
right half plane.

Example 11.2 Vehicle steering
A linearized model for vehicle steering was given in Exampde &he normalized
transfer function from steering angle to lateral deviai®n
ys+1
P(s) = 2
For a lane transfer system we would like to have a nice regpeitkout overshoot
and we therefore choose the desired response as

a2
Fn= ——
where the response speed or aggressiveness of the steegogarned by the
parametern. Equation (11.5) gives

Fm a’s?

TP (stD)(sta)?
which is a stable transfer function as longjas 0. Figure 11.4 shows the re-
sponses of the system far= 1.5. The figure shows that a lane change is ac-
complished in about 10 vehicle lengths with smooth steesimgjes. The largest
steering angle is a little bit more than 0.1 rad (6 deg). Usiegscaled variables
the curve showing lateral deviations can also be intergrasehe vehicle path with
vehicle length as the length unit. O

A major advantage of controllers with two degrees of freedbat combine
feedback and feedforward is that the control design proldambe split in two
parts. The feedback controll€ can be designed to give good robustness and
effective disturbance attenuation and the feedforward gaar be designed inde-
pendently to give the desired response to command signals.
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11.3 PERFORMANCE SPECIFICATIONS

A key element of the control design process is how we spebifydesired per-
formance of the system. It is also important for users to tstedad performance
specifications so that they know what to ask for and how to tegstem. Specifi-
cations are often given in terms of robustness to procesatizars and responses
to reference signals and disturbances. They can be givenrbmims of time and
frequency responses. Specifications on the step respondertenee signals was
given in Figure 5.9 in Section 5.3 and in Section 6.3. Robustspssifications
based on the loop transfer function and the sensitivity tions were discussed
in Section 9.3 and will be discussed more in Chapter 12. Theifg@ions dis-
cussed previously were based on the loop transfer funct®ince we found in
Section 11.1 that a single transfer functions did not alwdysacterize the prop-
erties of the closed loop completely we will give a more coetgldiscussion of
specifications in this section, based on the full Gang of Six.

The transfer function gives a good characterization of thea behavior of a
system. To give specifications is is desirable to captureltheacteristic properties
of a system with a few parameters. Common features for tisoreses are over-
shoot, rise time and settling time, as shown in Figure 5.9 ged®d7. Common
features of frequency responses are resonance peak, pgakificy, crossover fre-
quency and bandwidth. The crossover frequency is defined &stheency where
the gain is equal to the low frequency gain for low-pass syster the high fre-
quency gain for high-pass systems. The bandwidth is defineldeaselquencies
where the gain is Av/2 of the low frequency (low-pass), mid frequency (band-
pass) or high frequency gain (high-pass). There are iniegeglations between
specifications in the time and frequency domain. Roughlylspgathe behavior
of time responses for short times is related to behavioramfufency responses at
high frequencies and vice versa. The precise relations areivial to derive.

Response to Reference Signals

Consider the basic feedback loop in Figure 11.1. The responsésrence signals
is described by the transfer functio@, = PCF/(1+ PC) andGy = CF/(1+
PC) (F = 1 for systems with error feedback). Notice that it is usefutdonsider
both the response of the output and that of the control sigimaparticular, the
control signal response allows us to judge the magnituderatedof the control
signal required to obtain the output response.

The time response of process output can be characterizegebtjymieT,, over-
shootM,, and settling timéls. The response of the control signal can be charac-
terized by the largest value of the control signal or the slveot. The frequency
responsésy, can be characterized by the resonance pégkhe largest value of
the frequency response; the peak frequeagy, the frequency where the maxi-
mum occurs; and the bandwidth,, the frequency where the gain has decreased
to 1/4/2. The transfer functios,, can be characterized by the largest value of
Gur(iw)]-
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Figure 11.5: Reference signal responses. The responses in process gupdtcontrol
signalu to a unit step in the reference sigmas shown in (a) and the gain curves@®§; and
Gyr are shown in (b). Results with PI control with error feedback are shiovudl lines, the
dashed lines show results for a controller with a feedforward compensa

Example 11.3 Response to reference signals
Consider a process with the transfer funct{s) = (s-+1)~3 and a PI controller
with error feedback having the gaikg = 0.6 andk; = 0.5. The responses are
illustrated in Figure 11.5. The full lines show results for a &htoller with error
feedback. The dashed lines show results for a controllerfegtiforward designed
to give the transfer functio@y, = (0.5s+ 1)~3. Looking at the time responses we
find that the controller with feedforward gives a faster resgowith no overshoot.
However, much larger control signals are required to olitaérfast response. The
largest value of the control signal is 8 compared to 1.2 ferdgular PI controller.
The controller with feedforward has a larger bandwidth (redriwith o) and no
resonance peak. The transfer functi@p also has higher gain at high frequencies.
U

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to congp#re output of the
closed loop system in Figure 11.1 with the output of the cpoading open loop
system obtained by settif@ = 0. If we let the disturbances for the open and
closed loop systems be identical, the output of the closeg &ystem is then ob-
tained simply by passing the open loop output through a systih the transfer
function S. The sensitivity function tells how the variations in the uttare in-
fluenced by feedback (Exercise 11.10). Disturbances withuéecies such that
|S(iw)| < 1 are attenuated but disturbances with frequencies sutiSha)| > 1
are amplified by feedback. The maximum sensitilty, which occurs at the sen-
sitivity crossover frequencys, is thus a measure of the largest amplification of
the disturbances. The maximum magnitude of1t-L) is also the minimum of
|1+ L|, which is precisely the stability margs, defined in Section 9.3, so that
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Figure 11.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function on the right (a) can be tsedlculated the
properties of the sensitivity function through the relat®r- 1/(1+L). The sensitivity
crossover frequenays: and the frequencymswhere the sensitivity has its largest value are
indicated in the figure. All points inside the dashed circle have sensitivitegerthan 1.

Ms = 1/sym. The maximum sensitivity is therefore also a robustness aneas

If the sensitivity function is known, the potential improwents by feedback
can be evaluated simply by recording a typical output andifilgeit through the
sensitivity function. A plot of the gain curve of the sensti function is a good
way to make an assessment of disturbance attenuation. 8meesitivity func-
tion only depends on the loop transfer function its propertian also be visualized
graphically using the Nyquist plot of the loop transfer ftioe. This is illustrated
in Figure 11.6. The complex numbertll (iw) can be represented as the vec-
tor from the point—1 to the pointL(iw) on the Nyquist curve. The sensitivity is
thus less than one for all points outside a circle with radiwnd center at-1.
Disturbances with frequencies in this range are attenuatede feedback.

The transfer functiorGyq from load disturbance to process outpuy for the
system in Figure 11.1is

P T
Gyg = 1+PC_PS_ c (11.8)

Since load disturbances typically have low frequencies,gitural to focus on the
behavior of the transfer function at low frequencies. Foystem withP(0) # 0
and a controller with integral action, the controller gaoeg to infinity for small
frequencies and we have the following approximation forlsma

“CcTCcT K

wherek; is the integral gain. Since the sensitivity functiSigoes to 1 for largs
we have the approximatid@yy ~ P for high frequencies.

Measurement noise, which typically has high frequenciesegates rapid vari-
ations in the control variable that are detrimental bec#tusgcause wear in many
actuators and can even saturate an actuator. It is thustiampoo keep the varia-

Gya (11.9)
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Figure 11.7: Disturbance responses. Time and frequency responses of praadpsity to
load disturbancel are shown in (a) and responses of the control sigrtal measurement
noised are shown in (b). The low frequency approximation is shown with dotted kmel
the high frequency approximations by dashed lines.

tions in the control signal due to measurement noise at ned® levels—a typical
requirement is that the variations are only a fraction ofdpan of the control sig-
nal. The variations can be influenced by filtering and by propsigtieof the high
frequency properties of the controller.

The effects of measurement noise are captured by the trausfetion from
measurement noise to the control signal,

C T
Gun= 1+PC_CS_ 3 (11.10)

For low frequencies the transfer function the sensitivitydtion equals 1 anGyn,
can be approximated by/P. For high frequencie®C is small andG,,, can be
approximated a&yn ~ C.

Example 11.4 Response to disturbances

Consider a process with the transfer functiR{s) = (s+1)~2 and a PID controller
with gainsk = 0.6, ki = 0.5 andky = 2.0. We augment the controller with a second
order noise filter withTs = 0.1 so that its transfer function is

kg +ks+k
Cls) = S(?T?/2+sTi +1)

The responses are illustrated in Figure 11.7. The system respom step in the
load disturbance in the top part of Figure 11.7a has a pealk8fdl.timet = 2.73,

and the initial part of the response is well captured by tlgh fiiequency approx-
imation Gyq =~ P (dashed). The magnitude of the peak is also well approximated
by the low frequency approximatidd,q ~ 1/C (dotted), but the peak time is not.
The frequency response in Figure 11.7a shows that the gaintasienum 0.58
atw = 0.7. The figure shows that the gain curve is well captured by theoapp
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mations.

The response of the control signal to a step in measuremesg fishown
in Figure 11.7b. The high frequency roll-off of the transfendtion Gyn(iw) is
due to filtering; without that the gain curve in Figure 11.7b Vgdocontinue to
rise after 20 rags. The step response has a peak of 113-a0.08 which is well
captured by the high frequency approximation (dashed). fdguency response
has its peak 20 atw = 14, which is also well captured by the high frequency
approximation (dashed). Notice that the peak occurs faveltoe peak of the
response to load disturbances and far above the gain cevsBequencywy =
0.78. An approximation derived in Exercise 11.11 gives f@&Xiw)| ~ ky/ Tt =
20 which occurs ab = /2/Tq = 14.1. 0

11.4 FEEDBACK DESIGN VIA LOOP SHAPING

One advantage of the Nyquist stability theorem is that itisdal on the loop trans-
fer function, which is related to the controller transfendtion throughL = PC.

It is thus easy to see how the controller influences the loogstea function. To
make an unstable system stable we simply have to bend theidtymuve away
from the critical point.

This simple idea is the basis of several different design authcollectively
calledloop shaping The methods are based on choosing a compensator that gives
a loop transfer function with a desired shape. One podssihidito determine a
loop transfer function that gives a closed loop system withdesired properties
and to compute the controller &= L/P. Another is to start with the process
transfer function change its gain and then add poles and zertil the desired
shape is obtained. In this section we will explore differep shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape of the loop transfertiondhat gives good
performance and good stability margins. Figure 11.8 showgiadl loop trans-
fer function. Good robustness requires good stability mar¢pr good gain and
phase margins) which imposes requirements on the loopféraiusiction around
the crossover frequencies,c andwyc. The gain ofl at low frequencies must be
large in order to have good tracking of command signals aod gejection of low
frequency disturbances. SinBe= 1/(1+ L) it follows that for frequencies where
IL| > 100 disturbances will be attenuated by a factor of 100 ant¢r#ok&ing error
is less than 1%. It is therefore desirable to have a largesowes frequency and
a steep (negative) slope of the gain curve. The gain at lowuéecjes can be in-
creased by a controller with integral action which is alsecdag compensation
To avoid injecting too much measurement noise into the sy#tes desirable that
the loop transfer function have a low gain at frequencieb figguenciesigh fre-
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Figure 11.8: Gain curve of the Bode plot for a typical loop transfer function. The gain
crossover frequencyyyc and the slopegc of the gain curve at crossover are important pa-
rameters that determine the robustness of the closed lop systems. Aetpvefcy, a large
magnitude forL provides good load disturbance rejection and reference tracking, athile
high frequency a small loop gain is used to avoid amplifying measurencise.

guency roll-off The choice of gain crossover frequency is a compromise legtwe
attenuation of load disturbances, injection of measurémeise and robustness.
Bode's relations (see Section 9.4) impose restrictions erstiape of the loop
transfer function. Equation (9.8) implies that the slopeh& gain curve at gain
crossover cannot be too steep. If the gain curve is constape,swe have the
following relation between slopgc and phase margigim:
2¢m

Nge = —2+ == [rad = —180 + g [ded. (11.11)

This formula is a reasonable approximation when the gainecdoes not deviate
too much from a straight line. It follows from equation (11)lhat the phase
margins 30, 45° and 60 correspond to the slopes -5/3, -3/2 and -4/3.

Loop shaping is a trial and error procedure. We typicallytstath a Bode
plot of the process transfer function. We then attempt t@shhe loop transfer
function by changing controller gain and adding poles andszef the controller.
Different performance specifications are evaluated for eactiroller as we at-
tempt to balance many different requirements by adjustorgroller parameters
and complexity. Loop shaping is straightforward to applyitgke-input, single
output systems. It can also be applied to systems with ong gpd many out-
puts by closing the loops one at a time starting with the imuest loop. The only
limitation for minimum phase systems is that large phasgdead high controller
gains may be required to obtain closed loop systems withrésgionse. Many
specific procedures are available: they all require expeeidit they also give a
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Figure 11.9: Frequency response for a lead and lag compens&ss~= k(s+a)/(s+b).
Lead compensation occurs whar< b (left) and provides phase lead betweer= a and
w = b. Lag compensation correspondsato- b and provides low frequency gain. Pl control
is a special case of lag compensation and PD control is a special dase abmpensations.
Frequency responses are shown in dashed curves.

good insight into the conflicting requirements. There are &mental limitations
to what can be achieved for systems that are not minimum pliasg will be
discussed in the next section.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfeiction of the process
and to add simple compensators with the transfer function

s4a
=k——.
C(s) s+b

The compensator is called a lead compensatokib and a lag compensatordf>
b. The PI controller is a special case of lag compensator bvith0 and the ideal
PD controller is a special case of a lead compensator a4#th0. Bode plots of
lead and lag compensators are shown in Figure 11.9. Lag coatjmnscreases
the gain at low frequencies. It is typically used to improsacking performance
and disturbance attenuation at low frequencies. The fotigwexample gives an
illustration.

(11.12)

Example 11.5 Atomic force microscope in tapping mode
A simple model of the dynamics of the vertical motion of annaimforce micro-
scope in tapping mode was given in Exercise 9.5. The transfati@n for the
system dynamics is
a(l—e =)

st(s+a)

P(s) =

wherea = {wp, andt = 27m/wp and the gain has been normalized to 1. A Bode
plot of this transfer function for the parameters 1 and is shown in dashed curves
in Figure 11.10a. To improve attenuation of load disturbamee increase the low
frequency gain by introducing an integrating controllereTéop transfer function
then becomek = ki P(s) /sand we adjust the gain so that the phase margin is zero,
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Figure 11.10: Loop shaping design of a controller for an atomic force microscope pirigp
mode. Figure 11.10a shows Bode plots of the process (dashed)pth&dmsfer function
with an integral controller with critical gain (dotted) and a PI controller adflistegive
reasonable robustness. Figure 11.10b shows the gain curves f@atiteof Four for the
system.

giving k; = 8.3. Notice the increase of the gain at low frequencies. The RPbate

is shown by the dotted line in Figure 11.10a where the cripcatt is indicated by

o. To improve the phase margin we introduce proportionabaciind we increase
the proportional gairk, gradually until reasonable values of the sensitivities are
obtained. The valu&, = 3.5 givesMs = 1.6 andM; = 1.3. The loop transfer
function is shown in full lines in Figure 11.10a. Notice thgrsficant increase of
the phase margin compared with the purely integrating odatr(dotted line).

To evaluate the design we also compute the gain curves afthsfer functions
in the Gang of Four. They are shown in Figure 11.10b. The pealedéhsitivity
curves are reasonable and the ploP&shows that the largest value BSis 0.3
which implies that load disturbances are well attenuatee.plbt ofCSshows that
the largest controller gain is 6. The controller has a gain®&8 high frequencies
and hence we may consider adding high frequency roll off. O

A common problem in design of feedback systems is that theekay of
the system at the desired crossover frequency is not highgénitm allow either
proportional or integral feedback to be used effectivehstéad, one may have a
situation where you need to add phdsad to the system, so that the crossover
frequency can be increased.

A standard way to accomplish this is to uskead compensatomwhich has the

form  s+a

— k2
(s s+b

A key feature of the lead compensator is that it adds plesin the frequency
range between the pole/zero pair (and extending approglyna0X in frequency
in each direction). By appropriately choosing the locatdrnhis phase lead, we

a<b. (11.13)
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-7 ) Symbol  Description Value
m vehicle mass 4.0kg
y r J vehicle inertiags axis  0.0475 kgrh
. F ! r force moment arm 26.0cm

! d angular damping 0.001 kgm/s

= MY K g gravitational constant 9.8 nf/s

(a) (b)

Figure 11.11: Roll control of a vectored thrust aircraft. The roll andlés controlled by
applying maneuvering thrusters, resulting in a moment generatég. byhe table to the
right lists the parameter values for a laboratory version of the system.

can provide additional phase margin at the gain crossogguéncy.

Because the phase of a transfer function is related to tpe sitthe magnitude,
increasing the phase requires increasing the gain of tigetiaasfer function over
the frequency range in which the lead compensation is apgHence we can also
think of the lead compensator as changing the slope of timsfeafunction and
thus shaping the loop transfer function in the crossovepre@lthough it can be
applied elsewhere as well).

Example 11.6 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust airgratich as the one il-
lustrated in Figure 11.11. Following exercise 8.11, we mdkdelsystem with a
second order transfer function of the form

r

P(s) = J&+cs’

with the parameters given in Figure 11.11b. We take as ouppaénce speci-
fication that we would like less than 1% error in steady statklass than 10%
tracking error up to 10 rad/sec.

The open loop transfer function is shown in Figure 11.12a. Toeae our
performance specification, we would like to have a gain ofatl@0 at a frequency
of 10 rad/sec, requiring the gain crossover frequency tot laehggher frequency.
We see from the loop shape that in order to achieve the dgs@dédrmance we
cannot simply increase the gain, since this would give a l@myphase margin.
Instead, we must increase the phase at the desired cro$sayazncy.

To accomplish this, we use a lead compensator (11.13)awtl2 andb = 50.
We then set the gain of the system to provide a large loop gaito the desired
bandwidth, as shown in Figure 11.12b. We see that this sysasra bain of greater
than 10 at all frequencies up to 10 rad/sec and that it hasA@etegrees of phase
margin. O
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Figure 11.12: Control design for a vectored thrust aircraft using lead compensalibe
Bode plot for the open loop proceBsis shown on the left and the loop transfer function
L = PC using a lead compensator on the right. Note the phase lead in the cros=gioer
nearw = 100 rad/s.

The action of a lead compensator is essentially the sametas tha derivative
portion of a PID controller. As described in Section 10.5, wiemfuse a filter for
the derivative action of a PID controller to limit the high dueency gain. This
same effect is present in a lead compensator through theapsie b.

Equation (11.13) is a first order lead compensator and cangaon to 90 of
phase lead. Higher levels of phase lead can be provided hg assecond order
lead compensator:

(s+a)?

(51 D)2 a<h.

C(s) =k

11.5 FUNDAMENTAL LIMITATIONS

Although loop shaping gives us a great deal of flexibility irsidgaing the closed
loop response of a system, there are certain fundamentis lon what can be
achieved. We consider here some of the primary performamégtions that can
occur due to difficult dynamics; additional limitations hagito do with robustness
are considered in the next chapter.

Right Half Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to @dnirhe limitations are
related to poles and zeros in the right half plane and timaydelTo explore the
limitations caused by poles and zeros in the right half plaedactor the process
transfer function as

P(S) = Pmp(S)Pap(s), (11.14)

wherePnpis the minimum phase part ailp is the non-minimum phase part. The
factorization is normalized so th@p(iw)| = 1 and the sign is chosen so tiiap,
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has negative phase. The transfer functigpis called arall-pass systerhecause
it has unit gain for all frequencies. Requiring that the ghasrgin isp, we get

argL (iwgc) = argPap(iwyc) + argPmp(iwyc) +argC(iwye) > —m+ ¢m, (11.15)

whereC is the controller transfer function. Le be the slope of the gain curve
at the crossover frequency. Sinégp(iw)| = 1 it follows that

_ dlog|L(iw)| _ dlog|Pnp(iw)C(iw)|

Nae =
g¢ dlogw | “ dlogw oy
= C = C

Assuming that the slopeyc is negative it has to be larger thai? for the system
to be stable. It follows from Bode’s relations, equatior8f9that

argPmp(iw) +argC(iw) ~ ngcg .
Combining this with equation (11.15) gives the followingguality for the allow-
able phase lag

—argPap(ite) < TT— G-+ Ngey =1 1. (11.16)

5=
This condition, which we call therossover frequency inequaljtghows that the
gain crossover frequency must be chosen so that the phaskthegnon-minimum
phase component is not too large. For systems with high tobss require-
ments we may choose a phase margin of @, = 71/3) and a slopeég. = —1,
which gives an admissible phase lgg= 11/6 = 0.52rad (30). For systems
where we can accept a lower robustness we may choose a phage nfad5
(¢m = 11/4) and the slopegc = —1/2, which gives an admissible phase Ihg=
/2= 1.57 rad (90).

The crossover frequency inequality shows that non-miniminasp compo-
nents impose severe restrictions on possible crossovgrdreies. It also means
that there are systems that cannot be controlled with suffisibility margins.
The conditions are more stringent if the process has an @megmP (i wyc), as we
shall see in the next chapter. We illustrate the limitatioresnumber of commonly
encountered situations.

Example 11.7 Zero in the right half plane
The non-minimum phase part of the process transfer functia ystem with a
right half plane zero is

z—s
Pap(s) = Py
wherez > 0. The phase lag of the non-minimum phase part is
—argPyp(iw) = 2arctan§.
Since the phase d¥;, decreases with frequency, the inequality (11.16) gives the
following bound on the crossover frequency:

Wye < ztan(¢,/2). (11.17)
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With ¢, = 11/3 we getwyc < 0.6a. Slow zeros £ small) therefore give stricter
restrictions on possible gain crossover frequencies tastrzeros. O

Time delays also impose limitations similar to those givgrzéros in the right
half plane. We can understand this intuitively from the agpnation
o ST A, l1-st
1+st’

Example 11.8 Pole in the right half plane
The non-minimum phase part of the transfer function for aesgswith a pole in
the right half plane is

S+p
P ="
ap(s) S p7
wherep > 0. The phase lag of the non-minimum phase part is
¢ = —argPyp(iw) = 2arctanc%
and the crossover frequency inequality becomes
p
> — . 11.18
4 (g1 /2) (H-19)

Right half plane poles thus require that the closed loopesydtave sufficiently
high bandwidth. Withp, = 11/3 we getwy > 1.7p. Fast right half plane poleg(
large) therefore gives stricter restrictions on possilam grossover frequencies
than slow poles. Control of unstable systems imposes reqeints for process
actuators and sensors. O

Since a zero in the right half plane gives an upper limit to ttf@evable gain
crossover frequency it follows that zeros far to the rightegsmall limitations
but that zeros close to the origin imposes severe limitatiofhe situation with
right half plane poles is different because a pole imposesvearllimit to the gain
crossover frequency and poles far to the right require syst&ith a high gain
crossover frequency. It can thus be expected that systethspaies and zeros
cannot be controlled robustly if the poles and zeros are lasec

A straightforward way to use the crossover frequency inkigua to plot the
phase of the non-minimum phase fadyp of the process transfer function. Such
a plot will immediately show the permissible gain crossdvequencies. An illus-
tration is given in Figure 11.13 which shows the phas@sgffor systems with a
right half plane pole-zero pair and systems with a right pkhe pole and a time
delay. If we require that the phase lagof the nonminimum phase factor should
be less than 90 deg we must require that the ratis larger than 6 or smaller
than 1/6 for system with right half plane poles and zeros hatlthe producpr is
less than 0.15 for systems with a time delay and a right hatigpole. Notice the
symmetry in the problem far> pandz < p: in either case the zeros and the poles
must be sufficiently far apart (Exercise 11.13). Also notic fhossible values of
the gain crossover frequenay are quite limited.
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Figure 11.13: Example limitations due to the crossover frequency inequality. The figure
illustrates limitations by showing the phase of the minimum phase fa&gipof transfer
functions. All systems have a right half plane polesat 1. The system in (a) has zeros at
s=2,5, 10, 20 and 50 (full lines) and at= 0.5, 0.02 0.1 0.05 and 0.02 (dashed lines). The
system in (b) has time delays= 0.05 0.1, 0.2 0.5 and 1.

As the examples above show, right half plane poles and zegoi$isantly limit
the achievable performance of a system, hence one woultbléeoid these when-
ever possible. The poles of a system depend on the intrinsiandics of the sys-
tem and are given by the eigenvalues of the dynamics matoika linear system.
Sensors and actuators have no effect on the poles; the onlyoaghange poles
is to redesign the system. Notice that this does not imply tihatable systems
should be avoided. Unstable system may actually have aalyasit one example
is high performance supersonic aircraft.

The zeros of a system depend on the how sensors and actuatcmugted to
the states. The zeros depend on all the mat#cd® C andD in a linear system.
The zeros can thus be influenced by moving sensors and actoatoysadding

sensors and actuators. Notice that a fully actuated syBtenh does not have any
Zeros.

Example 11.9 Balance system
As an example of a system with both right half plane poles &nds; consider the
balance system with zero damping, whose dynamics are giwen b

ml
Hor = M — 122 + mgimt
— s +mgl
HpF =

(= (Mg — mPI2)? + mgIM) -

Assume that we want to stabilize the pendulum by using thiepeesition as the
measured signal. The transfer function from the input férde the cart position
p has poles[0,0,++/mgIM /(Mg — m?I12)} and zerog{++/mgl/3}. Using the
parameters in Example 6.7, the right half plane pole i3at2.68 and the zero is
atz=2.09. The pole is so close to the zero that the system cannot lhebed
robustly. Using Figure 11.13, we see that the amount of aableyphase margin
for the system is very small if we desire a bandwidth in theyeaof 2—4 rad/s.
The right half plane zero of the system can be eliminated byging the
output of the system. For example, if we choose the outpubtoespond to a
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position at a distanaealong the pendulum, we haye= p—r sin@ and the transfer
function for the linearized output becomes

(mlr — )% 4+ mgl
(=M —PI2)2+ mgiM) -

If we choose sufficiently large themlr — J; > 0 and we eliminate the right half
plane zero, obtaining instead two pure imaginary zeros.e Nt = J+ ml?
and so if the inertia of the penduludnis nonzero themlr — J > 0 requires > I,
indicating that our output must correspond to a point abbeecenter of mass of
the pendulum.

If we choose such thamnlr — J > 0 then the crossover inequality is based just
on the right half plane pole (Example 11.8). If our desiredsghlag is¢, = 45°
then our gain crossover must satisfy

Hyr = Hpr —IrHgr =

p
=268
“c > tang, /2 o8
Assuming that our actuators have sufficiently high bandwid#ly a factor of 10
abovewyc or roughly 4 Hz, then we can provide robust tracking up to fres
quency.

O

Bode’s Integral Formula

In addition to providing adequate phase margin for robustibty, a typical con-
trol design will have to satisfy performance conditions lo@ $ensitivity functions
(Gang of Four). In particular the sensitivity functi®= 1/(1+ PC) represents
disturbance attenuation and also relates the tracking etoathe reference signal:
we usually want the sensitivity to be small over the rangeexfdiencies where we
want small tracking error and good disturbance attenuafidmasic problem is to
investigate ifS can be made small over a large frequency range. We will syart b
investigating an example.

Example 11.10 System that admits small sensitivities
Consider a closed loop system consisting of a first order geoaed a proportional
controller. Let the loop transfer function be

_k
s+ 1
where parametekis the controller gain. The sensitivity function is

s+1
S(s) = s+1+k

. 1+ w?
i)l = \/1+2k+k2+w2'

L(s) = PC

and we have
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This implies thatS(iw)| < 1 for all finite frequencies and that the sensitivity can
be made arbitrary small for any finite frequency by makirsgfficiently large. [

The system in Example 11.10 is unfortunately an exception. Eyddature
of the system is that the Nyquist curve of the process is cetelyl contained in
the right half plane. Such systems are calpeditive real For these systems the
Nyquist curve never enters the unit disk centered-at(the region is shown in
Figure 11.6) where the sensitivity is greater than one.

For typical control systems there are unfortunately secerestraints on the
sensitivity function. The following theorem, due to Bodeowides insights into
the limits of performance under feedback.

Theorem 11.1(Bode’s integral formula)Let S's) be the sensitivity function for
a feedback system and assume that it goes to zero fasted flsdfior large s. If
the loop transfer function has poleg im the right half plane then the sensitivity
function satisfies the following integral:

* , * 1
/o Iog]S(lco)|dm_/0 Iog|1+L(iw>’dw_nz Pk (11.19)

Equation (11.19) implies that there are fundamental linutest to what can
be achieved by control and that control design can be vieweal r@distribution
of disturbance attenuation over different frequenciespadrticular, this equation
shows that if the sensitivity function is made smaller fomgdfrequencies it must
increase at other frequencies so that the integral ofS0@)| remains constant.
This means that if disturbance attenuation is improved infogmguency range it
will be worse in another, a property sometime referred tinasvaterbed effectit
also follows that systems with open loop poles in the right plane have larger
overall sensitivity than stable systems.

Equation (11.19) can be regarded asoaservation law if the loop transfer
function has no poles in the right half plane the equatiorpéfias to

/Owlog|S(iw)|dw:0.

This formula can be given a nice geometric interpretationllastiated in Fig-
ure 11.14, which shows Id§(iw)| as a function otv. The area over the horizontal
axis must be equal to the area under the axis when frequepbytisd on dinear
scale. Thus if we wish to make the sensitivity smaller up toesfeguencyosc we
must balance this by increased sensitivity abaye Control system design can be
viewed as trading the disturbance attenuation at somedrages for disturbance
amplification at other frequencies.

There is an analogous result for the complementary sengifiuiction which

tells that
® log|T (iw)] 1
—————dw=n) — 11.20
| =5 55 (11.20)
where the summation is over all right half plane zeros. Noti@t slow right half

plane zeros are worse than fast ones and that fast right laalké poles are worse
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Figure 11.14:Interpretation of thevaterbed effectThe function logS(iw)| is plotted versus
win linear scales in (a). According to Bode’s integral formula (11.19pitea of lodS(iw)|
above zero must be equal to the area below zero. Gunter Stein’s ettipn of design as a
trade-off of sensitivities at different frequencies is shown in (r(f{Ste03]).

than slow ones.

Example 11.11 X29 aircraft

As an example of the application of Bode’s integral formwa, present an anal-
ysis of the control system for the X-29 aircraft (see Figurel®), which has an
unusual configuration of aerodynamic surfaces that are weditp enhance its
maneuverability. This analysis was originally carried outGunter Stein in his
article “Respect the Unstable” [Ste03], which is also thesewf the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parasrtbedrdescribe
the key properties of the system. The X-29 has longitudinaadyics that are very
similar to the inverted pendulum dynamics (ExampR® and, in particular, have
a pair of poles at approximately= +6 and a zero at= 26. The actuators that
stabilize the pitch have a bandwidth@f = 40 rad/s and the desired bandwidth of
the pitch control loop isn = 3 rad/s. Since the ratio of the zero to the pole is only
4.3 we may expect that is may be difficult to achieve the spetifits.

To evaluate the achievable performance, we seek to choesettitrol law such
that the sensitivity function is small up to the desired haidth and has a value
of no greater thamMs beyond that value. Because of the Bode integral formula,
we know thatMs must be greater than 1 to balance the small sensitivity at low
frequency. We thus ask whether or not we can find a control&riths the shape
shown in Figure 11.15b and seek to find the smallest vali dfat achieves this.
Note that the sensitivity above the frequenayis not specified since we have no
actuator authority at that frequency. However, assumiatttie process dynamics
fall off at high frequency, the sensitivity at high frequgmnill approach 1. Thus,
we desire to design a closed loop system that has low setysdivfrequencies
below cy and sensitivity that is not too large betwemnand ws.

From Bode’s integral formula, we know that whatever congmolve choose,
equation (11.19) must hold. We will assume that the seitsifiunction is given
by

wMs

. W< W
\S(Iwﬂ:{M‘*’l
S O-)lﬁwﬁwaa
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Figure 11.15: X-29 flight control system. The aircraft makes use of forward swépgs
and a set of canards on the fuselage to achieve high maneuverabiligyfigtine on the
right shows the desired sensitivity for the closed loop system. We seedetour control
authority to shape the sensitivity curve so that we have low sensitivity (geddrmance)
up to frequencyw; by creating higher sensitivity up to our actuator bandwidgh

corresponding Figure 11.15b. If we further assume thég)| < 5/w? for fre-
guencies larger than the actuator bandwidth, Bode’s intégrcomes

o wa
/ Iog|S(iw)|dw:/ log|S(ie)|dew+ &
0 0

w
:/o log wal\)ilsdw+(a)a—a>l)long+5: Tp.

If we ignore the small contribution from, we can solve foMs in terms of the
remaining parameters of the system,

Mg = lP+an)/@a,

This formula tells us what the achievable valuévfwill be for the given control
specifications. In particular, using= 6, wy = 3 andw, = 40 rad/s we get that
Ms = 1.75, which means that in the range of frequencies betweeand w;,
disturbances at the input to the process dynamics (suchrad will be amplified
by a factor of 175 in terms of their effect on the aircraft.

Another way to view these results is to compute the phaseimtrgt corre-
sponds to the given level of sensitivity. Since the peak seitginormally occurs
at or near the crossover frequency, we can compute the praggnnsorrespond-
ing to Ms = 1.75. As shown in Exercise 11.16 the maximum achievable phase
margin for this system is approximately°3%vhich is below the usual design limit
in aerospace systems of“431ence for this system it is not possible to obtain high
performance and robustness at the same time, unless moacauthority is
available.

O
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Figure 11.16: Contour used to prove Bode’s theorem. For each right half plane psle w
create a path from the imaginary axis that encircles the pole as shown iguhe Tio avoid
clutter we have shown only one of the paths that enclose one right ha#f.plan

Derivation of Bode’s Formula @

This is a technical section which requires some knowledgéetiieory of com-
plex variables, in particular contour integration. Assuthat the loop transfer
function has distinct poles at= pg in the right half plane and thai(s) goes to
zero faster than /sfor large values o§.

Consider the integral of the logarithm of the sensitivitpétionS(s) = 1/(1+
L(s)) over the contour shown in Figure 11.16. The contour enclogesght half
plane except the poins= px where the loop transfer functidn(s) = P(s)C(s)
has poles and the sensitivity functi&ts) has zeros. The direction of the contour
is counter-clockwise.

The integral of the log of the sensitivity function aroundsthbntour is given

by
—iR
/r log(S(s)) ds— /iR log(S(s)) ds-+ /R 0g(S(9))ds+ Y /y log(S(s)) ds

=l1+1l2+13=0,

whereR is a large semicircle on the right angd is the contour starting on the
imaginary axis as= Im px and a small circle enclosing the pghg. The integral
is zero because the function I8g) is regular inside the contour. We have

= —i/_iR log(S(iw))dew = —2i /OiRIog(|S(iw)|)dw

iR
because the real part of I8 w) is an even function and the imaginary part is an
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odd function. Furthermore we have
12— [ log(S(s))ds— [ log(L+L(s))ds~ [ L(s)ds
R R R

SinceL (s) goes to zero faster thary4dfor larges the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integrl). For this purpose we split the contour into three
partsX., yandX_ as indicated in Figure 11.16. We can then write the integral as

|3:/X+ IogS(s)ds—k/ongS(s)ds+/X logS(s)ds

The contoury is a small circle with radius around the polgy. The magnitude of
the integrand is of the order logand the length of the path ig®. The integral
thus goes to zero as the radiugoes to zero. Furthermore, making use of the fact
thatX_ is oriented oppositely fronX., we have

./x+ logS(s)ds+ /x, logS(s)ds= / (logS(s) —logS(s— 2mi) ds= 27py.

Xy
Since|S(s)| = |S(s— 2mi)| we have

logS(s) —logS(s— 2mi) = argS(s) — argS(s— 271 ) = 211

and we find that
I3 = 2m2 py

Letting the small circles go to zero and the large circle gafmity and adding
the contributions from all right half plane poleg gives

R
I+ 1o+15 = —2i/ l0g/Stie)|dw + 3 27 =0
0

which is Bode’s formula (11.19).

11.6 DESIGN EXAMPLE

In this section we carry out a detailed design example thadtibtes the main
techniques in this chapter.

Example 11.12 Lateral control of a vectored thrust aircraft

The problem of controlling the motion of a vertical take ofddanding (VTOL)
aircraft was introduced in Example 2.9 and in Example 11.6 revive designed a
controller for the roll dynamics. We now wish to control thasfiion of the aircraft,
a problem that requires stabilization of both the attitude position. To control
the lateral dynamics of the vectored thrust aircraft, we enade of a “inner/outer”
loop design methodology, as illustrated in Figure 11.17. @agram shows the
process dynamics and controller divided into two compasiean “inner loop”
consisting of the roll dynamics and control and an “outeiploconsisting of the
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Figure 11.17: Inner/outer control design for a vectored thrust aircraft. The innap t4
controls the roll angle of the aircraft using the vectored thrust. The dogr controller
Co, commands the roll angle to regulate the lateral position. The procesmiymare de-
composed into inner loo?() and outer loopR,) dynamics, which combine to form the full
dynamics for the aircraft.

lateral position dynamics and controller. This decompositiollows the block
diagram representation of the dynamics given in Exercisk. 8.1

The approach that we take is to design a contrd@jdor the inner loop so that
the resulting closed loop systeirh provides fast and accurate control of the roll
angle for the aircraft. We then design a controller for theri position that uses
the approximation that we can directly control the roll ang$ an input to the dy-
namics controlling the position. Under the assumptionttiatynamics of the roll
controller are fast relative to the desired bandwidth ofléteral position control,
we can then combine the inner and outer loop controllersta gangle controller
for the entire system. As a performance specification for titeessystem, we
would like to have zero steady state error in the lateraltiprsia bandwidth of
approximately 1 rad/s and a phase margin of. 45

For the inner loop, we choose our design specification to geotrie outer loop
with accurate and fast control of the roll. The inner loop dyitws are given by

r
Jg+cs

We choose the desired bandwidth to be 10 rad/s (10 times tee loop) and the
low frequency error to be no more than 5%. This specificatioraisfed using
the lead compensator of Example 11.6 designed previouslyesmhoose

S+a

PI :HGU]_:

i(s) =k—— =2 =2 k=1
C(s=ks a=2 b=25
The closed loop dynamics for the system satisfy
G GR _ G(1—mgR)

Hi = —m
'“1ycR "Y1rGR T 11GR

A plot of the magnitude of this transfer function is shown igudtie 11.18 and we
see that it is a good approximation up to 10 rad/s.
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Figure 11.18: Outer loop control design for a vectored thrust aircraft. The outer &mp
proximates the roll dynamics as a state gaimg The Bode plot for the roll dynamics
are shown on the right, indicating that this approximation is accurate up toxapyately
10 rad/s.

To design the outer loop controller, we assume the inner toticontrol is
perfect, so that we can talfy as the input to our lateral dynamics. Following the
diagram shown in Exercise 8.11, the outer loop dynamics cawritten as

~ Hi(0)
- omg’
where we replacel; (s) with H;(0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, thipr@ximation may
not be valid and so we must verify this when we complete ouigdes

Our control goal is now to design a controller that gives zteady state error
in X and has a bandwidth of 1 rad/s. The outer loop process dynarécgiven
by a second order integrator and we can again use a simpledtesapensator to
satisfy the specifications. We also choose the design sutlthimdoop transfer
function for the outer loop hd&,| < 0.1 for w > 10 rad/s so that thid; dynamics
can be neglected. We choose the controller to be of the form

St8
s+by’

with the negative sign to cancel the negative sign in theggsdynamics. To find

the location of the poles, we note that the phase lead flatierest @approximately
b/10. We desire phase lead at crossover and we desire the eosg@y =

1 rad/s, so this givels, = 10. To insure that we have adequate phase lead, we must
chooses, such thab,/10 < 10a, < by, Which implies that, should be between

0.1 and 1. We chooss = 0.3. Finally, we need to set the gain of the system such
that at crossover the loop gain has magnitude one. A simpitalation shows that

ko = 0.8 satisfies this objective. Thus, the final outer loop contrdimomes

P(s) = Hi(0)Rs(s)

Co(5) = ko

s+0.3
Co(s) =0.8 ST 10"
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Bode Diagram Nyquist Diagram
Gm = 36 dB (at 50.7 rad/sec) , Pm =57 deg (at 0.38 rad/sec)
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Figure 11.19: Inner/outer loop controller for a vectored thrust aircraft. The Bodeg an
Nyquist plots for the transfer function for the combined inner and outsy teansfer func-
tions are show. The system has a phase margin‘©©a68 a gain margin of 6.2.

Finally, we can combine the inner and outer loop controllers gerify that
the system has the desired closed loop performance. The Bodsyauist plots
corresponding to Figure 11.17 with the inner and outer loagrodlers is shown
in Figure 11.19 and we see the specifications are satisfied. itficagddve show
the Gang of Four in Figure 11.20 and we see that the transfetifuns between
all inputs and outputs are reasonable.

The approach of splitting the dynamics into an inner and datgy is common
in many control applications and can lead to simpler dedignsomplex systems.
Indeed, for the aircraft dynamics studied in this examjles, very challenging to
directly design a controller from the lateral positioto the inputu;. The use of
the additional measurement @fgreatly simplifies the system requirements allows
the design to be broken up into simpler pieces.

O

11.7 FURTHER READING

Design by loop shaping was a key element of the early devedopof control and
systematic design methods were developed, see James|dNidladPhilips [INP47],,
Chestnut and Mayer [CM51], Truxal [Tru55], and Thaler [Tha82pop shap-
ing is also treated in standard textbooks such as FranklinelP@and Emami-
Naeini [FPENO5], Dorf and Bishop [DB04], Kuo and Golnaraghi [6Z} and
Ogata [Oga01]. Systems with two degrees of freedom were aleedlby Horowitz [Hor63],
who also discussed limitations of poles and zeros in thet ihiglf plane. Fun-
damental results on limitations are given in Bode [Bod45@renrecent presen-
tations are found in Goodwin, Graebe and Salgado [GGS01]. Hatntent in
Section 11.5 is based oﬁ\$t00]. Much of the early work was based on the loop
transfer function; the importance of the sensitivity fuoos appeared in connec-
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Figure 11.20: Gang of Four for vector thrust aircraft system.

tion with the development in the 1980s which resulted in thealedH., design
methods. A compact presentation is given in the text by Ddyances and Tan-
nenbaum [DFT92] and Zhou, Doyle and Glover [ZDG96]. Loop shapiag inte-
grated with the robust control theory in MacFarlane and &¢I G90] and Vin-
nicombe [Vin01]. Comprehensive treatments of control&ystesign are given
in Maciejowski [Mac89] and Goodwin, Graebe and Salgado [GG.S01

EXERCISES

11.1 Consider the system in Figure 11.1 give all signal pairs whighrelated by
the transfer functions/A1+ PC), P/(1+PC), C/(1+PC) andPC/(1+ PC).

11.2(Cancellation of unstable process pole) Consider the syst&xample 11.1.
Choose the parametas= —1 compute time and frequency responses for all trans-
fer functions in the Gang of Four for controllers wikh= 0.2 andk = 5.

11.3(Equivalence of Figure 11.1 and 11.2) Show that the system inré&igyii. 1
can be represented by 11.2 by proper choise of the mattitesd% .

11.4(Sensitivity of feedback and feedforward) Consider theesysh Figure 11.1,

let Gy, be the transfer function relating measured sigrtal reference. Compute
the sensitivities oGy, with respect to the feedforward and feedback transfer func-
tionsF andC (9Gy,/dF anddGy,/dC).
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11.5 (Equivalence of controllers with two degrees of freedom) Sttt the sys-
tems in Figure 11.1 and Figure 11.3 give the same responsesioaad signals

11.6(Rise-time-bandwidth product)Prove Consider a stablesgystith the trans-g%
fer functionG(s), whereG(0) = 1. Define the rise timd; as the inverse of the
largest slope of the step response and the bandwidtl as(1/2) [ |G(iw)|dw.
Show thatwsT, > 1.

11.7 Regenerate the controller for the system in Example 11.6 ardhe fre-
qguency responses for the Gang of Four to show that the peafurenspecification
is met.

11.8 Let f(t) = f(0) +tf'(0) +t2/2f"(0) +--- be a Taylor series expansion @
the time functionf, show that

E(s) :%f(0)+éf'(0)+%f”(0)+---

11.9Exercise 11.8 shows that the behavior of a time function falkins related
to the Laplace transform for large Show that the behavior of a time function f
larget is related to the Laplace transform for snall

11.10 Consider the feedback system shown in Figure 11.1. Assurhththeefer-
ence signal is constant. Lg$ be the measured output when there is no feedback
andy. be the output with feedback. Show that

Yei(s) = S(s)Yoi(9)

whereSis the sensitivity function.
11.11(Approximate expression for noise sensitivity) Show thateffect of noise
on the control signal for the system in Exercise 11.4 can becappated by

kyqs
(sTa)?/2+sTy+1
Show that using this approximation the largest valufc&iw)| is kg/Ts and that
it occurs forw = /2/Ts.
11.12 Show that the nonminimum phase part of the transfer fundéiene ST

for a time delay has the the phase kag which implies that the gain crossover
frequency must be chosen so thatT < ¢,. Also use the approximatiogr ST ~

igﬁ so show that a time delay is similar to a system with a right plaihe zero

ats=2/T. A slow zero thus corresponds to a long time delay.

CS~C~

11.13(The pole zero ratio) Consider a process with the transfeatiom
a—s
—k—"
s—b
with positivea andb. Show that the the closed loop system with unit feedback is
eitherb/a<k<lorl<k<b/a

P(s)
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11.14(Pole in the right half plane and time delay) The non-minimuragehpart of
the transfer function for a system with one pole in the righif plane and a time
delayT is

S+P__sT
——e .
S—p
Using the gain crossover inequality, compute the limits lua achievable band-
width of the system.

Pamp(S) = (11.21)

11.15(Integral formula for complementary sensitivity) Prove thamula (11.20)
for the complementary sensitivity.

11.16 (Phase margin formulas) Show that if the relationship betwberphase
margin and the magnitude of the sensitivity function at soeer is given by
1

11.17(Limitations on achievable phase lag) Derive analyticatfolas correspond-
ing to the plots in Figure 11.13.

11.18(Design of a PI controller) Consider a system with processsfex function
1

P(s) = ———— 11.22
and a Pl controller with the transfer function
ki 1+sT

C(s)=ky+—=k

( ) p"' S sT
The controller has high gain at low frequencies and its pregesinegative for all
parameter choices. To achieve good performance it is désita have large gain
at low frequencies and a high crossover frequency.

11.19(Stabilization of inverted pendulum with visual feedbaclgnSider stabi-
lization of an inverted pendulum based on visual feedbadkgua video cam-
era with 50 Hz frame rate. Let the effective pendulum length.bdse the gain
crossover inequality to determine the minimum length ofd@edulum that can be
stabilized if we desire a phase lggof no more than 9Q



Chapter Twelve
Robust Performance

However, by building an amplifier whose gain is deliberately made, sayedibels higher
than necessary (10000 fold excess on energy basis), and then féeeliogtput back on the
input in such a way as to throw away that excess gain, it has been foussibpoto effect
extraordinary improvement in constancy of amplification and freedom fron-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers”, 1934 [Bla34].

This chapter focuses on the analysis of robustness of fekdlyatems, a large
topic for which we provide only an introduction to some of &®/ concepts. We
consider the stability and performance of systems whoseegsodynamics are
uncertain and derive fundamental limits for robust stabaind performance. To
do this we develop ways to describe uncertainty, both in tmenfof parameter
variations and in the form of neglected dynamics. We alseflyrmention some
methods for designing controllers to achieve robust paréorce.

12.1 MODELING UNCERTAINTY

Harold Black’s quote above illustrates that one the key o$ésedback is to pro-
vide robustness to uncertainty (“consistency of amplifad@. It is one of the
most useful properties of feedback and is what makes it plesg design feed-
back systems based on strongly simplified models.

One form of uncertainty in dynamical systems is that the patars describ-
ing the system are unknown, parametric uncertainty A typical example is the
variation of the mass of a car, which changes with the numbpassengers and
the weight of the baggage. When linearizing a nonlineaesysthe parameters of
the linearized model also depend on the operating condittds straightforward
to investigate effects of parametric uncertainty simplyewaluating the perfor-
mance criteria for a range of parameters. Such a calculatibrlivectly reveal
the consequences of parameter variations. We illustratesoyiple example.

Example 12.1 Cruise control

The cruise control problem was described in Section 3.1 and arRidller was
designed in Example 10.3. To investigate the effect of patamaeriations we
will choose a controller designed for a nominal operatingdititon correspond-
ing to massm = 1600, fourth geard = 12) and speed, = 25 m/s; the con-
troller gains arek = 0.72 andk; = 0.18. Figure 12.1a shows the velocityand
the throttleu when encountering a hill with a°3slope with masses in the range
1600< m< 2000, gear ratios 3 to B1(= 10, 12 and 16) and velocity 1:0v < 40
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Figure 12.1: Responses of the cruise control system to a slope increase (&f8 and
the eigenvalues of the closed loop system (right). Model parametessvap over a wide
range.
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m/s. The simulations were done using models that were lipedraround the
different operating conditions. The figure shows that theeevariations in the
response but that they are quite reasonable. The largegiityedoror is in the

range of 0.2 to 0.6 m/s, and the settling time is about 15 s. ©h&d signal is

marginally larger than 1 in some cases which implies thattiretle is fully open.

A full nonlinear simulation using a controller with windupgtection is required if
we want to explore these cases in more detail. Figure 12.Misstie eigenvalues
of the closed loop system for the different operating cood#. The figure shows
that the closed loop system is well damped in all cases. O

This example indicates that at least as far as parametriatiars are con-
cerned, the design based on a simple nominal model will gitisfactory control.
The example also indicates that a controller with fixed paramsetan be used in
all cases. Notice however that we have not considered apgi@inditions in low
gear and at low speed but cruise controllers are not use@gettases.

Unmodeled Dynamics

It is generally easy to investigate the effects of parammefariations. However,

there are other uncertainties that also are important, szused at the end of
Section 2.3. The simple model of the cruise control system ocaptures the

dynamics of the forward motion of the vehicle and the torgharacteristics of

the engine and transmission. It does not, for example, dechi detailed model

of the engine dynamics (whose combustion processes amedir complex) nor

the slight delays that can occur in modern electronicadligtmlled engines (due
to the processing time of the embedded computers). Theseatedimechanisms
are calledunmodeled dynamics
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Figure 12.2: Unmodeled dynamics in linear systems. Uncertainty can be represesitgd u
additive perturbations (left), multiplicative perturbations (middle) or Bestk perturbations
(right). The nominal system B andAP represents the unmodeled dynamics.

Unmodeled dynamics can be accounted for by developing a ourglex
model. Such models are commonly used for controller devedopiout substan-
tial effort is required to develop the models. An alternatis to investigate if the
closed loop system is sensitive to generic forms of unmadéymamics. The ba-
sic idea is to describe the “unmodeled” dynamics by inclgdiriransfer function
in the system description whose frequency response is leolibdt otherwise un-
specified. For example, we might model the engine dynamidseicituise control
example as a system that quickly provides the torque thagseasted through
the throttle, giving a small deviation from the simplified nebdwhich assumed
the torque response was instantaneous. This techniquesmabeablsed in many
instances to model parameter variations, allowing a quteecal approach to un-
certainty management.

In particular we wish to explore if additional linear dynasimay cause dif-
ficulties. A simple way is to assume that the transfer functbithe process is
P(s) + AP(s) whereP(s) is the nominal simplified transfer function addP(s)
represents the unmodeled dynamics. This case is cadlditive uncertaintyFig-
ure 12.2 shows some other cases to represent uncertaméemear system.

When are Two Systems Similar? @

A fundamental issue in describing robustness is to determimen two systems
are close. Given such a characterization, we can then attendescribe robust-
ness according to how close the actual system must be to tdelrimorder to
still achieve the desired levels of performance. This seglyiimnocent problem
is not as simple as it may appear. A naive idea is to say thatsijw@tems are
close if their open loop responses are close. Even if thissapp®tural, there are
complications, as illustrated by the following examples.

Example 12.2 Similar in open loop but large differences in closed tip
The systems with the transfer functions
100 100
Pi(s) = — S) =
1S =51 R (s+1)(sT+1)2
have very similar open loop responses for small valueB,ds illustrated in the

top left corner of Figure 12.3a, wheile= 0.025. The differences between the
step responses are barely noticeable in the figure. The stepnisss with unit
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Figure 12.3: Determining when two systems are close. The plots on the left show the open
and closed loop responses for two processes that have nearly ilstgfreesponses in open
loop, but are very different in closed loop. The system on the rightvstibe opposite: the
systems are different in open loop, but similar in closed loop.

gain error feedback are shown in the bottom left figure. Nathae one closed
loop system is stable and the other one is unstable. O

Example 12.3 Different in open loop but similar in closed loop
Consider the systems
100 100

Pi(s) = St1 Pa(s) = s—1

The open loop responses are very different becRusestable and is unstable,
as shown in the top right plot in Figure 12.3. Closing a feeddaop with unit
gain around the systems we find that the closed loop trangfietifuns are

(s) = 100 (s) = 100
W=sr100 2V 7 s1099
which are very close as is also shown in Figure 12.3b. O

These examples show that if our goal is to close a feedbackitaopy be
misleading to compare the open loop responses of the systemired by these
examples we will introduce a distance measure that is mgreapate for closed
loop operation. Consider two systems with the rationalgf@mnfunctions

_ N2(s)

Pl(s)zgig and Pz(s)_%,

wheren; (s), nx(s), di(s) anddy(s) are polynomials. Let
p(s) = du(S)n2(—s) — Ny (s)da(—S)
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Figure 12.4: Geometric interpretation of the distandé;, P,) between two transfer func-
tions. At each frequency, the points on the Nyquist curvePfoandP, are projected onto
a unit sphere of radius 1 sitting at the origin of the complex plane. The distagtween
the two systems is defined as the maximum distance between the RoiatslR, over all
frequencies.

and define thehordal distancédetween the transfer functions as

sup |P1('iw) —Po(iw)| , if p(s) has no RHP zeros
dy(P,P2) = ¢ @ /(1+[Pu(iw)?)(1+ [Pa(iw)[?)
1 otherwise.

(12.1)
The distance has a nice geometric interpretation, as showigime 12.4, where
the Nyquist plots oP, andP; are projected on the Riemann sphere. The Riemann
sphere is located above the complex plane. It has diametad ltssouth pole
is at the origin of the complex plane. Points in the complex@lare projected
onto the sphere by a line through the point and the north gaggife 12.4). The
distanced, (P1, P,) is simply the shortest chordal distance between the pioject
of the Nyquist curves. The distancly(P;,P,) is similar to |P, — P| when the
transfer functions are small, but very different wHeq| and |P,| are large. It is
also related to the behavior of the systems under unit fexxcimmwill be discussed
in Section 12.5. Since the diameter of the Riemann sphereti$allows that the
distance is never larger than 1.

The Vinnicombe metrior thev-gap metric(12.1) was introduced in [Vin01]
and is a natural tool to compare the behavior of two systendemclosed loop
feedback. Vinnicombe also gave strong robustness readedkon the metric. We
illustrate by computing the metric for the systems in thevjones examples.

Example 12.4 Vinnicombe metric for Examples 12.2 and 12.3
For the systems in Example 12.2 we have

ni(s) =ny(s) =100,  di(s)=s+1,  da(s) = (s+1)(sT+1)?
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and hence
p(s) = di(S)n2(—s) — 1 (s)da(—s) = 100s(ST? + T +2).

This polynomial has no roots in the open right half plane anccare proceed to
compute the norm (12.1) numerically, which foe= 0.025 gived(Py, P,) = 0.98,
a quite large value. To have a reasonable robustness thiedinbe recommended
values less than 1/3.

For the system in Example 12.3 we have

ni(s) = nz(s) = 100 di(s) =s+1, do(s) =s—1
and
p(s) = da(s)N2(—s) — ny(s)dx(—S) = 100(s+ 1 — (—s+1)) = 200s,

This polynomial has no roots in the open right half plane anccare proceed to
compute the norm (12.1) numerically, givitjP;,P,) = 0.02, which is a very
small value. This explains why both systems can be contrelleitiby the same
controller. O

12.2 STABILITY IN THE PRESENCE OF UNCERTAINTY

Having discussed how to describe robustness, we now cartsideroblem of

robust stability: when can we show that the stability of atesysis robust with

respect to process variations? This is an important quesitnme the potential for
instability is one of the main drawbacks of feedback. Heneavant to ensure that
even if we have small inaccuracies in our model, we can sidirgntee stability
and performance.

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant wayttwg the effects
of uncertainty for linear systems. A simple criterion isttttee Nyquist curve is
sufficiently far from the critical point-1. Recall that the shortest distance from
the Nyquist curve to the critical point &, = 1/Ms whereMs is the maximum
of the sensitivity function andy, the stability margin introduced in Section 9.3.
The maximum sensitivitys or the stability margirs;, is thus a good robustness
measure, as illustrated in Figure 12.5a.

We will now derive explicit conditions for permissible pess uncertainties.
Consider a stable feedback system with a pro¢essid a controllelC. If the
process is changed fromto P+ AP, the loop transfer function changes fré?@
to PC+ CAP, as illustrated in Figure 12.5b. If we have a bound on the size o
AP (represented by the dashed circle in the figure), then thersystmains stable
as long as the process variations never overlap-thg@oint, since this leaves the
number of encirclements efl unchanged.
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(b)

Figure 12.5: Robust stability using the Nyquist criterion. The left figure shows that ke d
tance to the critical point/Ms is a robustness measure. The right figure shows the Nyquist
curve of a nominal loop transfer function and its uncertainty causeddditize process
variationsAP.

Some additional assumptions are required for the analydislth Most im-
portantly, we require that the process perturbatidRsbe stable so that we do
not introduce any new right half plane poles that would remjaidditional encir-
clements in the Nyquist criterion. Also, we note that thisdition is conservative:
it allows for any perturbation that satisfies the given boumdsle in practice we
may have more information about possible perturbations.

We now compute an analytical bound on the allowable procestsrdances.
The distance from the critical pointl to the loop transfer functioh is |1+ L]|.
This means that the perturbed Nyquist curve will not reachctitecal point —1

provided that
|CAP| < |14L],

which implies

1+ PC’ ; ‘E - 1
C P IT|
This condition must be valid for all points on the Nyquist aeirize pointwise
for all frequencies. The condition for robust stability cang be written as

AP(iw) ) - 1

P(iw) IT(iw)]
This condition allows us to reason about uncertainty withexact knowledge of
the process perturbations. Namely, we can verify stalfitityany uncertaintyAP
that satisfies the given bound. From an analysis perspediiggjives us a measure

of the robustness for a given design. Conversely, if we regubustness of a
given level, we can attempt to choose our contrdlesuch that the desired level

AP| < ‘ (12.2)

forall w > 0. (12.3)
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of robustness is available (by askifigto be small) in the appropriate frequency
bands.

The formula given by equation (12.3) is one of the reasons whyliack sys-
tems work so well in practice. The mathematical models usetesign control
system are often strongly simplified. There may be model eandsthe proper-
ties of a process may change during operation. Equation)(i@8ies that the
closed loop system will at least be stable for substantiahtrans in the process
dynamics.

It follows from equation (12.3) that the variations can beyéafor those fre-
guencies wher& is small and that smaller variations are allowed for frecues
whereT is large. A conservative estimate of permissible processtians that
will not cause instability is given by

AP(iw)‘ 1
P(IC&)) M ’
whereM; is the largest value of the complementary sensitivity
PC
M; = sup|T (ie :H H . 12.4
t gp\ (iw)] 11 PClleo ( )

The value ofV; is influenced by the design of the controller. For examples it i
shown in Exercise 12.1 that Wiy = 2 then pure gain variations of 50% or pure
phase variations of 3Care permitted without making the closed loop system un-
stable.

Example 12.5 Cruise control
Consider the cruise control system discussed in SectionfBd.model of the car
in fourth gear at speed 25 m/s is

(9= 1.38
- 5+0.0142

and the controller is a PI controller with gaiks= 0.72 andk; = 0.18. Fig-
ure 12.6 plots the allowable size of the process uncertaisiyg the bound in
equation (12.3). At low frequencie3,(0) = 1 and so the perturbations can be
as large as the original procesAR/P| < 1). The complementary sensitivity has
its maximumM; = 1.14 atwn = 0.35 and hence this gives the minimum allow-
able process uncertainty, withP/P| < 0.87 or |AP| < 3.47. Finally, at high
frequenciesT — 0 and hence the relative error can get very large. For example
at w =5 we have T (iw)| = 0.195 which means that the stability requirement is
|AP/P| < 5.1. The analysis clearly indicates that the system has goadtobss
and that the high frequency properties of the transmisgistes are not important
for the design of the cruise controller.

Another illustration of the robustness of the system is mjiirethe right dia-
gram of Figure 12.6, which shows the Nyquist curve of the fienfsinction of the
process and the uncertainty boudd3= |P|/|T| for a few frequencies. Note that
the controller can tolerate large amounts of uncertaintysifl maintain stability
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Figure 12.6: Robustness for a cruise controller. The left figure shows the maxirelative
error (1/|T|, dot-dashed) and absolute errd®|(|T|, solid) for the process uncertainiyP.
The Nyquist curve is shown in the right figure, as a solid line. The daslrels show
permissible perturbations in the process dynamidi8, = |P|/|T|, at the frequencie® = 0,
0.0142 and 0.05.

of the closed loop. O

The situation illustrated in the previous example is typafamnany processes:
moderately small uncertainties are only required arouedgiin crossover fre-
guencies, but large uncertainties can be permitted at hagitelower frequencies.
A consequence of this is that a simple model that descrilepritcess dynamics
well around the crossover frequency is often sufficient fa@igle Systems with
many resonance peaks are an exception to this rule becaugedtess transfer
function for such systems may have large gains also for hiffleguencies, as
shown for instance in Example 9.9.

Notice that the results we have given can be conservativéeriRey to Fig-
ure 12.5, the critical perturbations, which were the basigtir analysis, are in the
direction towards the critical point. It is possible to hawach larger perturbations
in the opposite direction.

The robustness result given by equation (12.3) can be givethaninterpre-
tation by using the small gain theorem, Theorem 9.4 on page Z82pply the
theorem we start with block diagrams of a closed loop systetim & perturbed
process and we make a sequence of transformations of thie dilagram which
isolates the block which represents the uncertainty, assto Figure 12.7. The
result is the two-block interconnection shown in Figure &2vhich has the loop
transfer function PC AP TAP

“1+PCP P’
Equation (12.3) implies that the largest loop gain is less thi@e and hence the
systems is stable via the small gain theorem.
The small gain theorem can be used to check robust stabitityrfcertainty in

a variety of other situations. Table 12.1 summarizes a feth@common cases;
the proofs (all via the small gain theorem) are left as eseti
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Figure 12.7: lllustration of robustness to process perturbations. A system with additive
uncertainty (left) can be manipulated via block diagram algebra (centisgl&de the uncer-
tainty in a manner that allows application of the small gain theorem (right)

The following example illustrates that it is possible to dessystems that are
robust to parameter variations.

Example 12.6 Bode’s loop transfer function

A major problem in design of electronic amplifiers was to abtaiclosed loop
system that was insensitive to changes in the gain of théreféc components.
Bode found that the loop transfer functituis) = ks, with —5/3 < n < —1 was
an ideal loop transfer function. Figure 12.8a shows that tbdeBand Nyquist
plots of the loop transfer function. Notice that the gainveus a straight line with
slopen and that the phase is constafit(iw) = nrr/2. The phase margin is thus
constanty, = —sin~*(n7r/2) for all values of controller gaik. The Nyquist curve
is a straight line from the origin. The transfer function cainhe realized with
physical components, but it can be approximated over a dgiegmency range with
a rational function that can be implemented. An operatianaplifier circuit that
has the approximate transfer functiGts) = k/(s+ a) is a realization of Bode’s
ideal transfer function witm = 1, as described in Example 8.3. Designers of
operational amplifiers make great effort to make the appration valid over a
wide frequency range. O

Youla Parameterization

Since stability is such an essential property it is usefulliaracterize all con-
trollers that will stabilize a given process. Consider dt@rocess with a rational

Table 12.1: Conditions for robust stability for different types of uncertainty.

Process Type Robust Stability
P+ AP Additive |ICSAP|, < 1
P(1+AP) Multiplicative  [[SAP||o < 1
P/(1+AP-P) Feedback |IPAP||o < 1
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Figure 12.8: Bode’s ideal loop transfer function. Bode and Nyquist plots are shiown
Bode's ideal loop transfer functidn(s) = ks, fork =1 andn =5/3.

transfer functiorP. A system with the complementary sensitivity functibrcan
be obtained by feedforward control with the stable trani&fectionQ if

T=PQ (12.5)

Notice thatT must have the same right half plane zerofasinceQ is stable.
Now assume that we want to obtain the complementary trafgsfetion T by
using unit feedback with the controll€: SinceT = PC/(1+ PC) = PQwe find
that the controller transfer function is

Q

C= 1 op (12.6)
A straightforward calculation gives
1 P C PC
=1-T =P—PT, — = =T
1+PC " 1+4PC " 1+4PC Q 1+PC

which are all stable. It can be shown that all stabilizingtooliers for a stable
processP(s) are given by equation (12.6) for some stafigs). Equation (12.6)
is called aYoula parameterizatianit characterizes all controllers that stabilize a
stable process. The parameterization is illustrated by libekldiagrams in Fig-
ure 12.9a.

A similar characterization can be obtained for unstabléesys. Consider a
process with a rational transfer functi®(s) = a(s)/b(s) wherea(s) andb(s) are
polynomials. By introducing a stable polynomék) we can write

()
(8)’

whereA(s) = a(s)/c(s) andB(s) = b(s)/c(s) are stable rational functions. We

>

P(s):ig:

v}
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Figure 12.9: Youla parameterization. Block diagrams of Youla parameterizations for a
stable system (left) and an unstable system (right). Notice that the sighaéro in steady
state.

have

1 AR P  BR
1+PCo_AFo+BGo_SO 1+PC0_AF0+BG0_PS)

Co _ AGy _cs PG _ BGo T
1+PC, AR+ BGo 1+ PG, AR +BGy °

SinceC is a stabilizing controller the functiodly + BGy must have all its zeros in
the left half plane. All stabilizing controllers are now givby

Go+ QA
C_FO—QB (12.7)
and we have
1 AR-QG) P  BR-QPF
1+PC  AR+BGy 1+PC AR+BGy
C  AG+0QA? PC  AR+BG
1+PC  AR+BG 1+PC AR+BGy’

Equation (12.7) reduces to equation (12.6)Fg= 1 andGy = 0. A block diagram
is shown in Figure 12.9b. Notice that the transfer functipappears affinely in
the expressions for the Gang of Four, which is very usefukifwvant to determine
the transfer functiolQ to obtain specific properties.

12.3 PERFORMANCE IN THE PRESENCE OF UNCERTAINTY

So far we have investigated the risk for instability and rabess to process un-
certainty. We will now explore how responses to load distades, measurement
noise and command signal following are influenced by procasgations. To do
this we will analyze the system in Figure 12.10, which is it=itto the basic
feedback loop analyzed in Chapter 11.
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Figure 12.10: Block diagram of a basic feedback loop. The external signals are the co
mand signat, the load disturbancd and the measurement noise The process output
is y and the control signal is. The proces$ may include unmodeled dynamics, such as
additive perturbations.

Disturbance Attenuation

The sensitivity functiors gives a rough characterization of the effect of feedback
on disturbances as was discussed in Section 11.1. A moréediatharacterization
is given by the transfer function from load disturbancesrtcpss output:

P
~1+PC
Load disturbances typically have low frequencies and itésdfore important that
the transfer function is small for low frequencies. For mgges with constant low
frequency gain and a controller with integral action we h@yg~ s/ki. Integral
gaink; is thus a simple measure of attenuation of load disturbances

To find how the transfer functioGyq is influenced by small variations in the
process transfer function we wriktasP + AP and try to find the corresponding
AGyq. If the perturbations are sufficiently small, we can show that

P+aP P 4P
1+(P+AP)C ~ 14+PC  1+PC

Gyd PS (12.8)

G
— PS+SAP=Gyg+ %dAP,

where we have ignored terms that are quadratic and high&®.iit follows that

dGyg _dP
— S 12.

where we writed G anddP as a reminder that this expression holds for small vari-
ations. The response to load disturbances is thus insentitiprocess variations
for frequencies wheré(iw)| is small, i.e. for those frequencies where load dis-
turbances are important.

A drawback with feedback is that the controller feeds measent noise into
the system. In addition to the load disturbance rejectiois, thus also important
that the control actions generated by measurement noiseoateo large. It fol-
lows from Figure 12.10 that the transfer functi@g, from measurement noise to
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controller output is given by

C T
Gin=-11pc= p (12.10)

Since measurement noise typically has high frequenciesiahsfer functiorGyy
should not be too large for high frequencies. The loop trarigfection PC s typ-
ically small for high frequencies, which implies thag, ~ C for large s. To avoid
injecting too much measurement noise it is therefore ingmrthatC(s) is small
for larges. This property is called high frequency roll-off. An examdfilter-
ing of the measured signal in a PID controller to reduce img@ocbf measurement
noise; see Section 10.5.

To find how the transfer functio®,, is influenced by small variations in the
process transfer function we expand equation (12.10) atairothe first order

variations, which gives 4G, 4P
n
=T—. 12.11
Gon 5 ( )
Note that this same expression can be also be obtained lyatiffation of equa-
tion (12.10):

dGn_d ( C y_ C . .G
dP  dP\ 1+PC/ (1+PC2~ P’

Measurement noise typically has high frequencies. Sincedhglementary sen-

sitivity function is also small for high frequencies, we fittét process uncertainty
has little influence on the transfer functi@, for frequencies where measure-
ments are important.

Command Signal Following

The transfer function from reference to output is given by

~ PCF
- 1+PC
which contains the complementary sensitivity function.sée how variations in

P affect the performance of the system, we differentiate gegug12.12) with

respect to the process transfer function:
dG, CF  PCFC _ CF _ Gy
dP  14+PC (1+PC)2 (14+PC2 T~ P°

and it follows that

Gyr _TF, (12.12)

dGy  dP
G =S5 (12.13)

The relative error in the closed loop transfer function thysads the product of the
sensitivity function and the relative error in the procebsparticular, it follows

from equation (12.13) that the relative error in the closmapltransfer function is
small when the sensitivity is small. This is one of the usefaperties of feedback.
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Figure 12.11: Op amp with uncertain dynamics. The op amp circuit (right) is modeled
usingG(s) to capture its dynamic properties and includes a load at the output. The block
diagram (right) shows the input/output relationships. The load is repgezsas a disturbance

d applied at the output dB(s).

As in the last section, there are some mathematical assoumsptihat are re-
quired in order for the analysis presented here to hold. Asadly stated, we
require that the perturbatiodd® be small (as indicated by writinglP). Secondly,
we require that the perturbations be stable, so that we dintroduce any new
right half plane poles that would require additional ereineents in the Nyquist
criterion. Also, as before this condition is conservatiiteallows for any pertur-
bation that satisfies the given bounds, while in practice #réupbations may be
more restricted.

Example 12.7 Op amp
To illustrate the use of these tools, consider the perfoomaf an op amp based
amplifier, as shown in Figure 12.11. We wish to analyze the padace of the
amplifier in the presence of uncertainty in the dynamic respasf the op amp
and changes in the loading on the output. We model the syssamg the block
diagram in Figure 12.11b, which is based on the derivation eniple 9.1.
Consider first the effect of unknown dynamics for the operati@mplifier. If
we model the dynamics of the op amp as

Vout= G(S) (V4 —V_)
then transfer function for the overall circuit is given by
R Gly
R1G(S)+Ry/Ri+1
We see that if5(s) is large over the desired frequency range, then the closgd lo

system is very close to the ideal respoRs¢R;. We can make this more explicit
by assuming thaB(s) has the form
b a— @nom
G(s) = —, — <0, Bmin < b < bmax
( ) S+a anom min max
The termais the bandwidth of the amplifier ards the bandwidth product for the
amplifier as discussed in Example 8.3.
The sensitivity function and complementary sensitivitydtion for the nomi-

HV2V1 =
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nal dynamics are given by

_ s+ta . ab
~ st+a+ab ~ s+a+tab’

wherea = Ry/R;. The sensitivity function around the nominal values tell agh
the tracking response response varies as a function ofgs@asturbations:

dG, _dP
—S—

We see that for low frequencies, whe3és small, variations in the bandwidth or
the gain-bandwidth product will have relatively little et on the performance of
the amplifier (under the assumption thas sufficiently large.

To model the effects of unknown load, we consider the aduiifa disturbance
at the output of the system, as shown in Figure 12.11b. Thigrbishce represents
changes in the output voltage to due loading effects. ThefieafunctionGyyg =S
gives the response of the output to the load disturbance arsgethat iSis small
then we are able to reject such disturbances. The sensiiMdyy to perturbations
in the process dynamics can be computed by taking the degvat G,y with
respect td>:

dGg -C T dGya _dP

aP(@+PCZ P T Gy P

Thus we see that the relative changes in the disturbancdiogjere roughly the
same as the process perturbations at low frequency (Whisrapproximately 1)
and drop off at higher frequencies. However, it is importaremember thaBGyq
itself is small at low frequency, and so these variationglative performance may
not be an issue in many applications. O

12.4 ROBUST POLE PLACEMENT

In Chapters 6 and 7 we saw how to design controllers by settingocations
of the eigenvalues of the closed loop system. If we analyeedBulting system
in the frequency domain, the closed loop eigenvalues qooresto the poles of
the closed loop transfer function and hence these methedsfi@n referred to as
design by “pole placement”.

The design methods we used in the state space, as with mangdaeatbavel-
oped for control system design, did not explicitly take rstijess into account.
In such cases it is essential to always investigate the tobss because there are
seemingly reasonable designs that give controllers with pabustness. We illus-
trate this by analyzing controllers designed by state faekiland observers. The
closed loop poles can be assigned to arbitrary locatiohgifystem is observable
and reachable. However if we want to have a robust closeddgsigm, the poles
and zeros of the process impose severe restrictions on ¢hédo of the closed
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Figure 12.12: Observer-based control of steering. The Nyquist plot (left) andeBudt

(right) of the loop transfer function for vehicle steering with a controllesdahon state
feedback and an observer. The controller provides stable operatibwjth very low gain

and phase margin.

loop poles. Some examples are first given; based on analys$ies# examples we
then describe design rules for robust pole placement.

Slow Stable Zeros

We will first explore the effects of slow stable zeros, and weitbevith a simple
example.

Example 12.8 Vehicle steering
Consider the linearized model for vehicle steering in Exan@6, which has the
transfer function

~ 05s+1

P(S) =~

A controller based on an observer and state feedback witbltised loop poles
given byw. =1, {c =0.707,w, = 2 and{, = 0.707 was designed in Example 7.3.
Assume that we want a faster closed loop system and chiaos€l0, {; = 0.707,
wp = 20 andl, = 2. A pole placement design gives state feedback kaia 100
and k, = —35.86 and observer gairls = 28.28 andl, = 400. The controller

transfer function is o - 11516+ 40000
- 244245+ 66579°

Figure 12.12 shows Nyquist and Bode plots of the loop trarfsfiection. The
Nyquist plot indicates that the robustness is poor sincéthygtransfer function is
very close to the critical point1. The phase margin is only .7This also shows
up in the Bode plot where the gain curve hovers around theevalnd the phase
curve is close to 180for a wide frequency range.

More insight is obtained by analyzing the sensitivity fuons, shown by full
lines in Figure 12.13. The maximum sensitivities &e= 13 andM; = 12, indi-
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cating that the system has poor robustness.

Atfirst sight it is surprising that a controller where the naalisystem has well
damped poles and zeros is so sensitive to process variatdmisave an indication
that something is unusual because the controller has a&szeB9 in the right half
plane. To understand what happens we will investigate theorefor the peaks of
the sensitivity functions.

Let the transfer functions of the process and the contro#er b

el o
R RCI i xe)

whereny(s), n¢(s), dp(s) andd(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

B PC B n (S)nC(S)
T(s) = 1+PC dp(S)dc(pS) +Np(s)np(s)”

T(s) is 1 for low frequency and starts to increase at its first zefoichvis the
process zero at = 2. It increases further at the controller zerosat 3.9 and
it does not start to decrease until the closed loop polesaapgies, = 10 and
o = 20. We can thus conclude that there will be a peak in the camgary
sensitivity function. The magnitude of the peak depends ernrdkio of the zeros
and the poles of the transfer function.

The peak of the complementary sensitivity function can bédebby assign-
ing a closed loop zero close to the slow process zero. We daievacthis by
choosingw, = 10 and{; = 2.6 which gives the closed loop polesst —2 and
s= —50. The controller transfer function then becomes

~ 362&8+40000 3628 s+11.02

- $2+8028s+15656 (s+2)(s+78.28)
The sensitivity functions are shown in dashed lines in Fig2ré3. The controller
gives the maximum sensitivitidds = 1.34 andM; = 1.41, which gives much better
robustness. Notice that the controller has a polg-at—2 that cancels the slow
process zero. The design can also be done simply by canchingjdw, stable
process zero and designing the system for the simplifiedrayste O

C(s)

One lesson from the example is that it is necessary to chdosed:loop poles
that are equal to or close to slow, stable process zerosh&nlgsson is that slow,
unstable process zeros impose limitations on the achievadnhdwidth, as was
already noted in Section 11.5.

Fast Stable Process Poles

The next example shows the effect of fast stable poles.

Example 12.9 Fast system poles
Consider a PI controller for a first order system, where thege®@nd the con-
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Figure 12.13: Sensitivity functions for observer-based control of vehicle steefihg.com-
plementary sensitivity function (left) and sensitivity function (right) for thréginal con-
troller with a = 10, {c = 0.707, wy = 20, {, = 0.707 (solid) and the improved controller
with ax = 10, {c = 2.6 (dashed).

troller have the transfer functions

b ki
P(s)_s+—al C(s)—k+g.
The loop transfer function is
_ b(ks+k)
L(s) = s(s+a)

and the closed loop characteristic polynomial is
S(s+a) +b(ks+k) =+ (a+bk)s+k.
If we let the desired closed loop characteristic polynorhél
(s+ p1)(s+ P2),
we find that the controller parameters are given by

Pi+p2—2a P12
k= —F"—— = ——.
b ki b
The sensitivity functions are then
s(s+a) (p1+ p2—a)s+ pip2

Se) = (S+p1)(s+ p2) T = (s+p1)(s+p2)

Assume that the process paéds much larger than the closed loop polasand
p2, say p1 < p2 < a. Notice that the proportional gain is negative and that the
controller has a zero in the right half planeait> p; + p2, an indication that the
system has bad properties.

Next consider the sensitivity function, which is 1 for higleduencies. Mov-
ing from high to low frequencies we find that the sensitivitgreases at the pro-
cess poles= a. The sensitivity does not decrease until the closed loopspare
reached, resulting in a large sensitivity peak that is agpratelya/p,. The mag-
nitude of the sensitivity function is shown in Figure 12.14de=b =1, p; = 0.05,
p2 = 0.2. Notice the high sensitivity peak. For comparison we hdse shown
the gain curve for the case when the closed loop poles arer fdgin the than
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Figure 12.14: Gain curves for Bode plots of the sensitivity functi@for designs with
p1 < p2 < a(left) anda < py < p2 (right). The full lines are the true sensitivities and the
dashed lines are the asymptotes

the process polepg = 5, p2 = 20). The problem with the poor robustness can be
avoided by choosing one closed loop pole equal to the prquassi.e. p, = a.
The controller gains then become

P1 ap

5 k=T

which means that the fast process pole is canceled by a tlentzero. The loop
transfer function and the sensitivity functions are

L= 2K gg=_S T(s):sf';k.

s ~ s+bk
The maximum sensitivities are less than 1 for all frequendistice that this is
possible because the process transfer function goes t@gsré. O

k=

Design Rules for Pole-Placement

Based on the insight gained from the examples it is now plestilobtain design
rules that give designs with good robustness. Considerxpeession (12.8) for
the complementary sensitivity function, repeated here:

M = suplT (i) = H 1t PCH
Let wyc be the desired gain crossover frequency. Assume that tihegsdas ze-
ros that are slower thamy.. The complementary sensitivity function is 1 for low
frequencies and it increases for frequencies close to theeps zeros unless there
is a closed loop pole in the neighborhood. To avoid largeeslf the comple-
mentary sensitivity function we find that the closed loop egsshould have poles
close to or equal to the slow stable zeros. This means thatstéisle zeros should
be canceled by controller poles. Since unstable zeros caereatnceled, the pres-
ence of slow unstable zeros means that achievable gairogerssequency must
be smaller than the slowest unstable process zero.

Now consider process poles that are faster than the desare¢gpssover fre-
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guency. Consider the expression for the maximum of the sétsfunction.

=l

The sensitivity function is 1 for high frequencies. Movingrn high to low fre-
guencies the sensitivity function increases at the fastqs® poles. Large peaks
can result unless there are closed loop poles close to therasess poles. To
avoid large peaks in the sensitivity the closed loop systeoulsl have poles that
match the fast process poles. This means that the contrbbbetdscancel the fast
process poles by controller zeros. Since unstable mode®tharcanceled, the
presence of a fast unstable pole implies that the gain cves$@quency must be
sufficiently large.

To summarize, we obtain the following simple design rulewsktable pro-
cess zeros should be matched slow closed loop poles anddhks process poles
should be matched by fast process poles. Slow unstable graeess and fast
unstable process poles impose severe limitations.

Ms = sup|S(iw
w

Example 12.10 Nanopositioner

A simple nanopositioner was explored in Example 9.9 whereag shown that
the system could be controlled using a an integrating cbetrd he performance
of the closed loop was poor, because the gain cross-overdney was limited
to 2{pan(1— sym). In Exercise?? it was also shown that little could be gained
by adding proportional action. To obtain improved perfoncewe will therefore
us a PID controller. For modest increases we will use the desilg derived in
Example 12.9 that fast stable process poles should be cdrmetontroller zeros.
The controller transfer function should thus be chosen as

: g 2
Cls) = kdsz+:ps+k. _ 232+2§23+a

which giveskp, = 2k /a andkq = ki /a2.

Figure 12.15 shows the gain curves for the Gang of Four fortsydesigned
with ki = 0.5. A comparison with Figure 9.12 on page 287 shows that the-band
width is increased significantly fromyc = 0.01 to wyc = ki = 0.5. Since the
process pole is canceled the system will however still bg gensitive to load
disturbances with frequencies close to the resonant frexyuelhe gain curve of
CS(s) has a dip or a notch at the resonance frequency, which intpigshe con-
troller gain is very low for frequencies around the resorarihe gain curve also
shows that the system is very sensitive to high frequencgenorhe system will
likely be unusable because the gain goes to infinity for highuencies.

This can easily be remedied by modifying the controller to

95 £ +2(s+a
s a2(1+sTi +(sTf)2/2)’

which has high-frequency roll off. Selection of the constanof the filter is a
compromise between attenuation of high frequency measmenvoise and ro-

(12.14)

(12.15)
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Figure 12.15:Nanopositioner control via cancellation of the fast process pole. Galesu
for the Gang of Four for PID control with second order filtering (12.4& shown in full
and the dashed lines show results for an ideal PID controller without filgétin.14).

bustness. A large value d% reduces effects of sensor noise significantly but it
also reduces the stability margin. A bit of experimentatising the Gang of Four
givesT; = 0.75 as a good compromise and the curves shown in full lines in Fig
ure 12.15. The curves f@Ss) shown that the effect of high-frequency roll-off
due to filtering is quite dramatic. Notice that the poor attdimn of disturbances
with frequencies close to the resonance are not visiblearsénsitivity function
because of the cancellation of poles and zeros.

The designs thus far have the drawback that load disturbavitefequencies
close to the resonance are not attenuated. We will now censidiesign that
that actively attenuates the poorly damped modes. We vaiit stith an ideal
PID controller where the design can be done analytically aadm¥ add high
frequency roll-off. The loop transfer function obtainedwihis controller is

kaS® + Kps+ ki

L(8) = S(s?+2¢as+a?)’ (12.16)

The closed loop system is of third order and its charactenistiynomial is
S+ (kga® +2¢@)s* + (kp + L)a’s+ kia?. (12.17)
A general third order polynomial can be parameterized as

(s+ o) (S* + 2{otns+ wf) = S+ (a0 +240) oS + (14 2a00) S+ A0GE.
(12.18)
Parametersrg and o give the configuration of the poles and parametgitheir
magnitudes and therefore also the bandwidth of the system.
Identification of coefficients of equal powerssif equations (12.17) and (12.18)
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Figure 12.16: Nanopositioner control using active damping. Gain curves for the ®ang
Four for PID control using the controller (12.16). The controller hiash irequency roll-
off and has been designed to give active damping of the oscillatory m®de different
curves correspond to different choices of magnitudes of the padeameterized by in
equation (12.16).

gives the following equations for the controller parameter

kga®+27a = (0o +2{o)wo
a®(kp+ 1) = (1+2a0do) wh (12.19)
a%k = dowy.
To obtain a design with active damping it is necessary thattbsed loop band-

width is at least as fast as the oscillatory modes. Adding figquency roll-off
the controller becomes

kg +kps+k
&= STrsht 22

The valueT; = Tq/10=ky/(10k) is a good value of the filtering time constant.

In Figure 12.16 we show the gain curves of the Gang of Four feigtks with
{ =0.707,a0 = 2 anday = a, 2a and 4. The figure shows that the largest values
of the sensitivity function and the complementary senjtiftunction are small.
The gain curve folPSs) shows that load disturbances are now well attenuated
over the whole frequency range. The gain curve@&shows that large control
signals are required to provide active damping. The highesatdC S(iw) for high
frequencies also show that low noise sensors and actuaiibrs wide range are
required. The largest gains f@Ss) are 60 , 262 and 1074 faw = a, 2a and &
respectively. The high frequency gain of the controller timeseases dramatically
with the value ofay. A comparison of Figures 12.15 and 12.16 illustrates the
trade-offs between control action and disturbance attenéor the designs with
cancellation of the fast process pole and active damping. O
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12.5 DESIGN FOR ROBUST PERFORMANCE

Control design is a rich problem where many factors have taken into account.
Typical requirements are that load disturbances shoulttéewmted, the controller
should only inject a moderate amount of measurement ndiseputput should
follow variations in the command signal well and the clossapl system should be
insensitive to process variations. For the system in FigRréQlithese requirements
can be captured by specifications on the sensitivity funst®and T and the
transfer functiongsyq, Gun, Gyr andGy. Notice that it is necessary to consider
at least six transfer functions, as discussed Section 11.&. rdduirements are
mutually conflicting and it is necessary to make tradeoffsteddation of load
disturbances will be improved if the bandwidth is increabatiso will the noise
injection.

It is highly desirable to have design methods that can gteeaiobust perfor-
mance. Such design methods did not appear until the late 19883y of these
design methods result in controllers having the same streics the controller
based on state feedback and an observer. In this sectionowiel@m brief review
of some of the techniques as a preview for those interestedone specialized
study.

Linear Quadratic Control (LQG)

One way to make the trade-off between attenuation of loadrthiances and injec-
tion of measurement noise is to design a controller thatmmizgs the loss function

T/ t) + pu(t)) dt,

wherep is a weighting parameter as discussed in Section 6.3. Thiguasson
gives a compromise between load disturbance attenuatidmligturbance injec-
tion because it balances control actions against deviatiotihe output. If all state
variables are measured, the controller is a state feedback

u=—Kx

The controller has the same form as the controller obtainegigsnvalue assign-
ment (pole placement) in Section 6.2. However, the contrghén is obtained by
solving an optimization problem. It has been shown that ¢listroller is very
robust. It has a phase margin of at least &0d an infinite gain margin. The con-
troller is called dinear quadratic controbr LQ controlbecause the process model
is linear and the criterion is quadratic.

When all state variables are not measured, the state cacdmestaucted using
an observer, as discussed in Section 7.3. It is also possiligroduce process
disturbances and measurement noise explicitly in the menatbto reconstruct the
states using a Kalman filter as discussed briefly in Section 7.4 K&tman filter
has the same structure as the observer designed by polarassigin Section 7.3,
but the observer gainls are now obtained by solving an optimization problem.
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C |= —C

Figure 12.17:H., robust control formulation. The left figure shows a general regmiegion

of a control problem used in robust control. The inpuepresents the control signal, the
input w represents the external influences on the system, the omiguthe generalized
error and the output is the measured signal. The right figure shows the special case of the
basic feedback loop in Figure 12.10 where the reference signalds Izethis case we have
w= (—n,d) andz= (x,V).

The control law obtained by combining linear quadratic colnivith a Kalman
filter is calledlinear quadratic Gaussian contrar LQG Control The Kalman
filter is optimal when the models for load disturbances andsmeament noise are
Gaussian.

It is interesting that the solution to the optimization desh leads to a con-
troller having the structure of a state feedback and an gbserhe state feedback
gains depend on the parameteand the filter gains depend on the parameters in
the model that characterize process noise and measureaisai(see Section 7.4).
There are efficient programs to compute these feedback andvebgains.

The nice robustness properties of state feedback are un&bely lost when the
observer is added. Itis possible to choose parametersitieatigsed loop systems
with poor robustness, similar to Example 12.8. We can thuslade that there
is a fundamental difference between using sensors fora#sand reconstructing
the states using an observer.

H. Control @

Robust control design is often callét}, control for reasons that will be explained
shortly. The basic ideas are simple but the details are coatpli and we will
therefore just give the flavor of the results. A key idea issilitated in Figure 12.17
where the closed loop system is represented by two blockspithcess? and
the controllerC as discussed in Section 11.1. The prodes$ms two inputs, the
control signalu which can be manipulated by the controller, and the gerzemli
disturbancev, which represents all external influences, for example conasay-
nals and disturbances. The process has two outputs, theatizedrerrorz which

is a vector of error signals representing the deviationgrials from their desired
values and the measured siggathich can be used by the controller to compute
u. For a linear system and a linear controller the closed lgstesn can be repre-
sented by the linear system

z=H(P(s),C(s))w (12.20)
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which tells how the generalized ernordepends on the generalized disturbanees
The control design problemis to find a controlsuch that the gain of the transfer
function H is small even when the process has uncertainties. There arg ma
different ways to specify uncertainty and gain, giving rieedifferent designs.
The names$1, andH. control correspond to the nornfisi |2 and||H||.

To illustrate the ideas we will consider a regulation probfer a system where
the reference signal is assumed to be zero and the extegmallsiare the load
disturbanced and the measurement noiseas shown in Figure 12.17b. The gen-
eralized input isv= (—n,d). (The negative sign afis not essential, but is chosen
to get somewhat nicer equations.) The generalized errorasecthaz = (n,Vv),
wheren is the process output, andis the part of the load disturbance that is not
compensated by the controller. The closed loop system isttaakeled by

1 P
_(n) _ -n] | 1+PC 1+PC -n
z= [v] =H(PC) [ d ] = c PC [ d ] , (12.21)
1+PC 1+PC

which is the same as equation (12.20). A straightforwardutation shows that

V(1 +[P(iw)[?)(1+[Ciw)?)
|14+ P(iw)C(iw)| '

[H(P.C))[leo = sup (12.22)

There are efficient numerical methods to find a controller suah|th(P,C) | <
y, if such a controller exists. The best controller can therobed by iterating ory.

The calculations can be made by solvadgebraic Riccatiequations, for example

by using the commankli nf syn in MATLAB. The controller has the same order
as the process and the same structure as the controller tmastate feedback and
an observer; see Figure 7.7 and equation (7.18) on page 220.

Notice that if we minimize|H (P,C)||.. we make sure that the transfer functions
Gya = P/(1+4 PC), representing transmission of load disturbances to theubut
andGyn = —C/(1+ PC), representing how measurement noise is transmitted to
the control signal, are small. Since the sensitivity and tmementary sen-
sitivity functions are also elements bf(P,C) we have also guaranteed that the
sensitivities are also less thgn The design methods thus balance performance
and robustness.

There are strong robustness results associated witHth@ontroller. We can
understand this intuitively by comparing equations (124l (12.22). We can
then conclude that

1

IHPOle= g5 17y

(12.23)

The inverse of|H(P,C)||» is thus equal to chordal distance betwé&eand 1/C. If
we find a controlleC with ||H(P,C)||. < y this controller will then stabilize any
proces<, such thaty, (P,P,) <.
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Figure 12.18: Block diagrams of a system with disturbance weighting. The left figure pro
vides a frequency weight on processes disturbances. Throughdikgram manipulation,
this can be converted to the standard problem on the right.

Disturbance Weighting

Minimizing the gain||H(P,C)||. means that gains of all individual signal trans-
missions from disturbances to outputs are less yhetr all frequencies of the
input signals. The assumption that the disturbances ardlgdomgportant and
that all frequencies are also equally important is not vealistic, recall that load
disturbances typically have low frequencies and measurenmase is typically
dominated by high frequencies. It is straightforward to ifyothe problem so that
disturbances of different frequencies are given diffemmphasis, by introducing
a weighting filter on the load disturbance as shown in Figur&ZL2-or example
low frequency load disturbances will be enhanced by chgdéinas a low pass
filter because the actual load disturbanc@/isl.

By using block diagram manipulation as shown in Figure 12.&8find that
the system with frequency weighting is equivalent to theesyiswith no frequency
weighting in Figure 12.18 and the signals are related through

1 R
n 1+RCw  14+RCw | (_p
2 (1] (&) ~HRCow 229
Co R

1+P+wCy 1+RiCy

whereR, = PW; andC,, = Wd*lC. The problem of finding a controlleZ,, that
minimizes the gain oH(Ry,Cy) is thus equivalent to the problem without distur-
bance weighting; having obtain€x, the controller for the original system is then
C =W4C. Notice that if we introduce the frequency weight\g = k/s we will
automatically get a controller with integral action.

Limits of Robust Design

There is a limit to what can be achieved by robust design. Ite gfithe nice
properties of feedback, there are situations where theepsovariations are so
large that it is not possible to find a linear controller thategi a robust system
with good performance. It is then necessary to use othestgpeontrollers. In
some cases it is possible to measure a variable that is weélated with the
process variations. Controllers for different parameédues can then be designed
and the corresponding controller can be chosen based oretheuned signal. This
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type of control design is calleglain scheduling The cruise controller is a typical
example where the measured signal could be gear positiorvelodity. Gain
scheduling is the common solution for high performanceaitevhere scheduling
is done based on Mach number and dynamic pressure. Whengasimgcheduling
it is important to make sure that switches between the cthatsodo not create
undesirable transients (often referred tdampless transfér

If it is not possible to measure variables related to therpatars, it is possi-
ble to useautomatic tuningandadaptive contral In automatic tuning the process
dynamics are measured by perturbing the system and a denisathen designed
automatically. Automatic tuning requires that parametersain constant and it
has been widely applied for PID control. It is a reasonablesgukat in the fu-
ture many controllers will have features for automatic mgni If parameters are
changing it is possible to use adaptive methods where whiecegs dynamics are
measured on-line.

12.6 FURTHER READING

The topic of robust control is a large one, with many articled &xtbooks devoted
to the subject. Robustness was a central issue in classicabtas described in
Bode's classical book [Bod45]. Robustness was deemplibsizbe euphoria of
the development of design methods based on optimizationsffbeg robustness
of controllers based on state feedback shown by AndersorVarate [AM90]
contributed to the optimism. The poor robustness of outpediiack was pointed
out by Rosenbrock [RM71], Horowitz [Hor75] and Doyle [Doy7éhd resulted
in a renewed interest in robustness. A major step forwardtheslevelopment
of desigh methods where robustness was explicitly takendotount such as the
seminal work by Zames [Zam81]. Robust control was originallyedoped us-
ing powerful results from the theory of complex variablediat unfortunately
gave controllers of high order. A major breakthrough waggily Doyle, Glover,
Khargonekar, and Francis [DGKF89], who showed that the swiut the prob-
lem could be obtained using Riccati equations and that a@ltert of low order
could be found. This paper led to an extensive treatment cddhealledH., con-
trol, including books by Francis [Fra87], McFarlane and GidiG90], Doyle,
Francis and Tannenbaum [DFT92], Green and Limebeer [GL95], Zhoyieland
Glover [ZDG96], Skogestand and Postlethwaite [SP05], and Vimie [Vin01].
A major advantage of the theory is that it combines much oirthétion from ser-
vomechanism theory with sound numerical algorithms basedumerical linear
algebra and optimization. The results have been extendezhimear systems by
treating the design problem as a game where the disturbanegenerated by an
adversary, as described in the book by Basare and BeerrBiad J.
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EXERCISES

12.1 Consider a feedback loop with a process and a controllembavansfer
functionsP andC. Assume that the maximum sensitivityNg = 2. Show that the
phase margin is at least 3@nd that the closed loop system will be stable if the
gain is changed by 50%.

12.2 Show that a stable additive perturbatiPR,qq can create right half plane
zeros, but not right half plane poles, and that a stable feadperturbatior\Py
can create right half plane poles but not right half plan@gefive constructive
examples of each.

12.3 Compute thegu-gap metric between the systems

k
s—11

k
P]_(S) - a and PZ(S) ==

fork=1,2 and 5.

12.4 The distance measure is closely related to closed loop sgsteimunit feed-
back. Show how the measure can be modified to apply to an agbimdback.

12.5 Consider the Nyquist curve in Figure 12.12. Explain why pathefcurve is
approximately a circle. Derive a formula for the center dreradius and compare
with the actual Nyquist curve.

12.6 Consider the transfer functions in examples 12.2 and 12&glite the dis-
tance measura, (P;, ) in both cases. Repeat the calculations when the controller
isC=0.1.

12.7 (ldeal delay compensator) Consider a process whose dysargca pure
time delay with transfer functio(s) = e 5. The ideal delay compensator is a
controller with the transfer functio@(s) = 1/(1— e ®). Show that the sensitivity
functions areT (s) = e andS(s) = 1— e ° and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

12.8 Let P andC be matrices whose entries are complex numbers. Show that the
singular values of the matrix
1 P
_ | 1+PC 1+PC
HPC)=| "¢ pC

1+PC 1+PC
are L VA |P(iw)2)(1+[Cliw)?)
01=0 G =sup e i)

12.9 Show that
sup |1+ P(iw)C(iw)|
w /(1+[P(iw)[?)(1+[C(iw)?)

= d(P,—-1/C).
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12.10(Bode’s ideal loop transfer function) When designing eteac amplifiers
Bode proposed that the loop transfer function should hasddmL(s) = ks ™"
with 0 < n < 2. Show that such a loop transfer function has constant gyabil
marginsy = arcsini(1 — n/2). Plot the Nyquist curve of the system and determine
phase and gain margins.



GLOSSARY

This section provides a list of some of the standard terms msexdgineering and
control theory that may be unfamiliar to some readers. Speeificnical terms
that are defined as part of the material presented in the textedined in the body
of book and can be found in the index.

Closed form
CPU

Setpoint A reference value for a control system, such as the desireddrature
for a heating or cooling system. Sometimes written as “setitpoi

Reviewer: reference signal, hysteresis, dead zone, pglsal sinitial condition
response, control authority, relay feedback, bandwidtsomance.
Trajectory

383






NOTATION

Throughout the text we make use of standard mathematicatiomotasome of
which is given here for easy reference.

term := expr When we are defining a term or a symbol, we will ugentbtation
.= to indicated that the term is being defined. A variant is =hjol is use
when the term being defined is on the right hand side of the mquat

x,%, ..., X" We use the shorthandto represent the time derivative xfx for the
second derivative with respect to time ad@l for thenth derivative. Thus

dx _ d?> ddx m _ d" X

“da YT de Tdtdt 0 Tdet
R The set of real numbers.
R" The set of vectors af real numbers.
R™"M The set ofm x nreal-valued matrices.
C The set of complex numbers.

(a,b] Describes the set of numberghat satisfya < x < b. The parenthesis and
bracket can be used on either end of the expression to iedicabpen<)
or closed €) boundary to the interval.

arg The “argument” of a complex numbee= a+ jb is the angle formed by the
vectorzin the complex plane: am= arctarib/a). This number is typically
in the rangg — 1, 11].

Z The angle of a complex number (in degree§};= argz- 180/ . This notation
is used for the phase of a transfer function and by converitignusally
taken as a continuous variable, so it does not “wrap arouhd”180 or
360°.

|-l The norm of a quantity. For a vectare R", ||x|| = vxTx, also called the
2-norm and sometimes writtéx||2. Other norms include the-norm|| ||«
defined on pag@~.

f:A—B

(X1,X2,...,%n) foracolumn vector in row notation.

sgn(v)
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