
Chapter 6

State Feedback

Intuitively, the state may be regarded as a kind of information storage or

memory or accumulation of past causes. We must, of course, demand that

the set of internal states Σ be sufficiently rich to carry all information about

the past history of Σ to predict the effect of the past upon the future. We do

not insist, however, that the state is the least such information although this

is often a convenient assumption.

R. E. Kalman, P. L. Falb and M. A. Arbib, 1969 [KFA69].

This chapter describes how feedback of a system’s state can be used
shape the local behavior of a system. The concept of reachability is intro-
duced and used to investigate how to “design” the dynamics of a system
through assignment of its eigenvalues. In particular, it will be shown that
under certain conditions it is possible to assign the system eigenvalues to
arbitrary values by appropriate feedback of the system state.

6.1 Reachability

One of the fundamental properties of a control system is what set of points in
the state space can be reached through the choice of a control input. It turns
out that the property of “reachability” is also fundamental in understanding
the extent to which feedback can be used to design the dynamics of a system.

Definition

We begin by disregarding the output measurements of the system and fo-
cusing on the evolution of the state, given by

dx

dt
= Ax + Bu, (6.1)
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Figure 6.1: The reachable set for a control system: (a) the set R(x0,≤ T ) is the set
of points reachable from x0 in time less than T ; (b) phase portrait for the double
integrator showing the natural dynamics (horizontal arrows), the control inputs
(vertical arrows) and a sample path to the origin.

where x ∈ R
n, u ∈ R, A is an n × n matrix and B an n × 1 matrix. A

fundamental question is whether it is possible to find control signals so that
any point in the state space can be reached through some choice of input.
To study this, we define the reachable set R(x0,≤ T ) as the set of all points
xf such that there exists an input u(t), 0 ≤ t ≤ T that steers the system
from x(0) = x0 to x(T ) = xf , as illustrated in Figure 6.1.

Definition 6.1 (Reachability). A linear system is reachable if for any x0, xf ∈
R

n there exists a T > 0 and u : [0, T ] → R such that the corresponding so-
lution satisfies x(0) = x0 and x(T ) = xf .

The set of points that we are most interested in reaching is the set of
equilibrium points of the system (since we can remain at those points once
we get there). The set of all possible equilibria for constant controls is given
by

E = {xe : Axe + bue = 0 for some ue ∈ R}.
This means that possible equilibria lie in a one (or possibly higher) dimen-
sional subspace. If the matrix A is invertible this subspace is spanned by
A−1B.

In addition to reachability of equilibrium points, we can also ask whether
it is possible to reach all points in the state space in a transient fashion. The
following example provides some insight into the possibilities.

Example 6.1 (Double integrator). Consider a linear system consisting of
a double integrator, whose dynamics are given by

ẋ1 = x2

ẋ2 = u.
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Figure 6.1b shows a phase portrait of the system. The open loop dynamics
(u = 0) are shown as horizontal arrows pointed to the right for x2 > 0 and
the the left for x2 < 0. The control input is represented by a double arrow
in the vertical direction, corresponding to our ability to set the value of ẋ2.
The set of equilibrium points E corresponds to the x1 axis, with ue = 0.

Suppose first that we wish to reach the origin from an initial condition
(a, 0). We can directly move the state up and down in the phase plane, but
we must rely on the natural dynamics to control the motion to the left and
right. If a > 0, we can move the origin by first setting u < 0, which will case
x2 to become negative. Once x2 < 0, the value of x1 will begin to decrease
and we will move to the left. After a while, we can set u2 to be positive,
moving x2 back toward zero and slowing the motion in the x1 direction. If
we bring x2 > 0, we can move the system state in the opposite direction.

Figure 6.1b shows a sample trajectory bringing the system to the origin.
Note that if we steer the system to an equilibrium point, it is possible to
remain there indefinitely (since ẋ1 = 0 when x2 = 0), but if we go to any
other point in the state space, we can only pass through the point in a
transient fashion. ∇

To find general conditions under which a linear system is reachable, we
will first give a heuristic argument based on formal calculations with impulse
functions. We note that if we can reach all points in the state space through
some choice of input, then we can also reach all equilibrium points. Hence
reachability of the entire state space implies reachability of all equilibrium
points.

Testing for Reachability

When the initial state is zero, the response of the state to a unit step in the
input is given by

x(t) =

∫ t

0
eA(t−τ)Bdτ = A−1(eAt − I)B (6.2)

The derivative of a unit step function is the impulse function, δ(t), defined in
Section 5.2. Since derivatives are linear operations, it follows (see Exercise 7)
that the response of the system to an impulse function is thus the derivative
of equation (6.2) (i.e., the impulse response),

dx

dt
= eAtB.
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Similarly we find that the response to the derivative of a impulse function
is

d2x

dt2
= AeAtB.

Continuing this process and using the linearity of the system, the input

u(t) = α1δ(t) + α2δ̇(t) + αδ̈(t) + · · · + αnδ(n−1)(t)

gives the state

x(t) = α1e
AtB + α2AeAtB + α3A

2eAtB + · · · + αnAn−1eAtB.

Hence, right after the initial time t = 0, denoted t = 0+, we have

x(0+) = α1B + α2AB + α3A
2B + · · · + αnAn−1B.

The right hand is a linear combination of the columns of the matrix

Wr =


B AB · · · An−1B


 . (6.3)

To reach an arbitrary point in the state space we thus require that there are
n linear independent columns of the matrix Wr. The matrix is called the
reachability matrix.

An input consisting of a sum of impulse functions and their derivatives
is a very violent signal. To see that an arbitrary point can be reached with
smoother signals we can also argue as follows. Assuming that the initial
condition is zero, the state of a linear system is given by

x(t) =

∫ t

0
eA(t−τ)Bu(τ)dτ =

∫ t

0
eAτBu(t − τ)dτ.

It follows from the theory of matrix functions, specifically the Cayley-Hamilton
theorem [Str88] that

eAτ = Iα0(τ) + Aα1(τ) + · · · + An−1αn−1(τ),

where αi(τ) are scalar functions, and we find that

x(t) = B

∫ t

0
α0(τ)u(t − τ) dτ + AB

∫ t

0
α1(τ)u(t − τ) dτ+

· · · + An−1B

∫ t

0
αn−1(τ)u(t − τ) dτ.

Again we observe that the right hand side is a linear combination of the
columns of the reachability matrix Wr given by equation (6.3). This basic
approach leads to the following theorem.
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Figure 6.2: Balance system: (a) Segway human transportation system and (b)
simplified diagram.

Theorem 6.1. A linear system is reachable if and only the reachability

matrix Wr is invertible.

The formal proof of this theorem is beyond the scope of this text, but
follows along the lines of the sketch above and can be found in most books
on linear control theory, such as [CD91]. We illustrate the concept of reach-
ability with the following example.

Example 6.2 (Reachability of balance systems). Consider the balance sys-
tem introduced in Example 2.1 and shown in Figure 6.2. Recall that this
system is a model for a class of examples in which the center of mass is
balanced above a pivot point. One example is the Segway transportation
system shown in the left hand figure, in which a natural question to ask is
whether we can move from one stationary point to another by appropriate
application of forces through the wheels.

The nonlinear equations of motion for the system are given in equa-
tion (2.7) and repeated here:

(M + m)p̈ − ml cos θ θ̈ = −cṗ + ml sin θ θ̇2 + F

(J + ml2)θ̈ − ml cos θ p̈ = −γ+̇θmgl sin θ,
(6.4)

For simplicity, we take c = γ = 0. Linearizing around the equilibrium point



192 CHAPTER 6. STATE FEEDBACK

S

S

Figure 6.3: A non-reachable system.

xe = (p, 0, 0, 0), the dynamics matrix and the control matrix are

A =



































0 0 1 0
0 0 0 1

0 m2l2g
MtJt−m2l2

0 0

0 Mtmgl
MtJt−m2l2

0 0



































B =

































0
0

Jt

MtJt−m2l2

lm
MtJt−m2l2

































,

The reachability matrix is

Wr =







































0 Jt

MtJt−m2l2
0 gl3m3

(MtJt−m2l2)2

0 lm
MtJt−m2l2

0 gl2m2(m+M)
(MtJt−m2l2)2

Jt

MtJt−m2l2
0 gl3m3

(MtJt−m2l2)2
0

lm
MtJt−m2l2

0 g2l2m2(m+M)
(MtJt−m2l2)2

0







































. (6.5)

This matrix has determinant

det(Wr) =
g2l4m4

(MtJt − m2l2)4
6= 0

and we can conclude that the system is reachable. This implies that we can
move the system from any initial state to any final state and, in particular,
that we can always find an input to bring the system from an initial state
to an equilibrium point. ∇

Systems That Are Not Reachable

It is useful of have an intuitive understanding of the mechanisms that make
a system unreachable. An example of such a system is given in Figure 6.3.
The system consists of two identical systems with the same input. Clearly,
we can not separately cause the first and second system to do something
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different since they have the same input. Hence we cannot reach arbitrary
states and so the system is not reachable (Exercise 1).

More subtle mechanisms for non-reachability can also occur. For exam-
ple, if there is a linear combination of states that always remains constant,
then the system is not reachable. To see this, suppose that there exists a
row vector H such that

0 =
d

dt
Hx = H(Ax + Bu) for all u.

Then H is in the left null space of both A and B and it follows that

HWr = H


BAB · · ·An−1B


 = 0.

Hence the reachability matrix is not full rank. In this case, if we have an
initial condition x0 and we wish to reach a state xf for which Hx0 6= Hxf ,
then since Hx(t) is constant, no input u can move from x0 to xf .

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient to change
coordinates and write the dynamics of the system in the transformed coor-
dinates z = Tx. One application of a change of coordinates is to convert a
system into a canonical form in which it is easy to perform certain types of
analysis. Once such canonical form is called reachable canonical form.

Definition 6.2 (Reachable canonical form). A linear state space system is
in reachable canonical form if its dynamics are given by

dz

dt
=



































−a1 −a2 −a3 . . . −an

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0



































z +



































1
0
0
...
0



































u

y =


b1 b2 b3 . . . bn



 z.

(6.6)

A block diagram for a system in reachable canonical form is shown in
Figure 6.4. We see that the coefficients that appear in the A and B matrices
show up directly in the block diagram. Furthermore, the output of the
system is a simple linear combination of the outputs of the integration blocks.
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Σ

∫

a1

Σ

Σ

b1

−1

∫

u

Σ

a2

Σ

. . .

. . .

. . .

b2

∫

Σ

Σ

an−1 an

bnbn−1

∫

y

Figure 6.4: Block diagram for a system in reachable canonical form.

The characteristic polynomial for a system in reachable canonical form
is given by

λ(s) = sn + a1s
n−1 + · · · + an−1s + an. (6.7)

The reachability matrix also has a relatively simple structure:

Wr =


B AB . . . An−1B


 =



































1 −a1 a2
1 − a2 · · · ∗

0 1 −a1 · · · ∗
...

...
. . .

. . .
...

0 0 0 1 ∗
0 0 0 · · · 1



































,

where ∗ indicates a possibly nonzero term. This matrix is clearly full rank
since no column can be written as a linear combination of the others due to
the triangular structure of the matrix.

We now consider the problem of changing coordinates such that the dy-
namics of a system can be written in reachable canonical form. Let A, B
represent the dynamics of a given system and Ã, B̃ be the dynamics in reach-
able canonical form. Suppose that we wish to transform the original system
into reachable canonical form using a coordinate transformation z = Tx. As
shown in the last chapter, the dynamics matrix and the control matrix for
the transformed system are

Ã = TAT−1

B̃ = TB.

The reachability matrix for the transformed system then becomes

W̃r =


B̃ ÃB̃ · · · Ãn−1B̃


 .
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Transforming each element individually, we have

ÃB̃ = TAT−1TB = TAB

Ã2B̃ = (TAT−1)2TB = TAT−1TAT−1TB = TA2B

...

ÃnB̃ = TAnB.

and hence the reachability matrix for the transformed system is

W̃r = T


B AB · · · An−1B


 = TWr. (6.8)

Since Wr is invertible, we can thus solve for the transformation T that takes
the system into reachable canonical form:

T = W̃rW
−1
r .

The following example illustrates the approach.

Example 6.3. Consider a simple two dimensional system of the form

ẋ =









α ω
−ω α








x +









0
1








u.

We wish to find the transformation that converts the system into reachable
canonical form:

Ã =









−a1 −a2

1 0








B̃ =









1
0








.

The coefficients a1 and a2 can be determined by looking at the characteristic
equation for the original system:

λ(s) = det(sI − A) = s2 − 2αs + (α2 + ω2) =⇒
a1 = −2α

a2 = α2 + ω2.

The reachability matrix for each system is

Wr =









0 ω
1 α








W̃r =









1 −a1

0 1








.

The transformation T becomes

T = W̃rW
−1
r











−a1+α
ω 1

1
ω 0











=











α
ω 1

1
ω 0
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and hence the coordinates









z1

z2








= Tx =











α
ωx1 + x2

x2











put the system in reachable canonical form. ∇

We summarize the results of this section in the following theorem.

Theorem 6.2. Let (A, B) be the dynamics and control matrices for a reach-

able system. Then there exists a transformation z = Tx such that in the

transformed coordinates the dynamics and control matrices are in reachable

canonical form (6.6) and the characteristic polynomial for A is given by

det(sI − A) = sn + a1s
n−1 + · · · + an−1s + an.

One important implication of this theorem is that for any reachable
system, we can always assume without loss of generality that the coordinates
are chosen such that the system is in reachable canonical form. This is
particularly useful for proofs, as we shall see later in this chapter.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variables that permits
prediction of the future development of a system. We now explore the idea
of designing the dynamics a system through feedback of the state. We
will assume that the system to be controlled is described by a linear state
model and has a single input (for simplicity). The feedback control will be
developed step by step using one single idea: the positioning of closed loop
eigenvalues in desired locations.

Figure 6.5 shows a diagram of a typical control system using state feed-
back. The full system consists of the process dynamics, which we take to
be linear, the controller elements, K and kr, the reference input, r, and
processes disturbances, d. The goal of the feedback controller is to regulate
the output of the system, y, such that it tracks the reference input in the
presence of disturbances and also uncertainty in the process dynamics.

An important element of the control design is the performance specifi-
cation. The simplest performance specification is that of stability: in the
absence of any disturbances, we would like the equilibrium point of the
system to be asymptotically stable. More sophisticated performance speci-
fications typically involve giving desired properties of the step or frequency
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Figure 6.5: A feedback control system with state feedback.

response of the system, such as specifying the desired rise time, overshoot
and settling time of the step response. Finally, we are often concerned with
the disturbance rejection properties of the system: to what extent can we
tolerate disturbance inputs d and still hold the output y near the desired
value.

Consider a system described by the linear differential equation

dx

dt
= Ax + Bu

y = Cx,
(6.9)

where we have taken D = 0 for simplicity and ignored the disturbance signal
d for now. Our goal is to drive the output y to a given reference value, r,
and hold it there.

We begin by assuming that all components of the state vector are mea-
sured. Since the state at time t contains all information necessary to predict
the future behavior of the system, the most general time invariant control
law is a function of the state and the reference input:

u = α(x, r).

If the feedback is restricted to be a linear, it can be written as

u = −Kx + krr (6.10)

where r is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figure 6.5. The
negative sign is simply a convention to indicate that negative feedback is the
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normal situation. The closed loop system obtained when the feedback (6.9)
is applied to the system (6.10) is given by

dx

dt
= (A − BK)x + Bkrr (6.11)

We attempt to determine the feedback gain K so that the closed loop system
has the characteristic polynomial

p(s) = sn + p1s
n−1 + · · · + pn−1s + pn (6.12)

This control problem is called the eigenvalue assignment problem or “pole
placement” problem (we will define “poles” more formally in a later chapter).

Note that the kr does not affect the stability of the system (which is
determined by the eigenvalues of A−BK), but does affect the steady state
solution. In particular, the equilibrium point and steady state output for
the closed loop system are given by

xe = −(A − BK)−1Bkrr ye = Cxe,

hence kr should be chosen such that ye = r (the desired output value). Since
kr is a scalar, we can easily solve to show

kr = −1/
(

C(A − BK)−1B
)

. (6.13)

Notice that kr is exactly the inverse of the zero frequency gain of the closed
loop system.

Using the gains K and kr, we are thus able to design the dynamics of the
closed loop system to satisfy our goal. To illustrate how to such construct a
state feedback control law, we begin with a few examples that provide some
basic intuition and insights.

Examples

Example 6.4 (Vehicle steering). In Example 5.12 we derived a normal-
ized linear model for vehicle steering. The dynamics describing the lateral
deviation where given by

A =









0 1
0 0








B =









α
1









C =


1 0


 D = 0.
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The reachability matrix for the system is thus

Wr =


B AB


 =









α 1
1 0








.

The system is reachable since det Wr = −1 6= 0.
We now want to design a controller that stabilizes the dynamics and

tracks a given reference value r of the lateral position of the vehicle. To do
this we introduce the feedback

u = −Kx + krr = −k1x1 − k2x2 + krr,

and the closed loop system becomes

dx

dt
= (A − BK)x + Bkrr =









−αk1 1 − αk2

−k1 −k2








x +









αkr

kr








r

y = Cx + Du =


1 0


x.

(6.14)

The closed loop system has the characteristic polynomial

det (sI − A + BK) = det









s + αk1 αk2 − 1
k1 s + k2








= s2 + (αk1 + k2)s + k1.

Suppose that we would like to use feedback to design the dynamics of the
system to have a characteristic polynomial

p(s) = s2 + 2ζcωcs + ω2
c .

Comparing this with the characteristic polynomial of the closed loop system
we see that the feedback gains should be chosen as

k1 = ω2
c , k2 = 2ζcωc − αω2

c .

To have x1 = r in the steady state it must be required that the parameter
kr equal to k1 = ω2

c . The control law can thus be written as

u = k1(r − x1) − k2x2 = ω2
c (r − x1) − (2ζcωc − αω2

c )x2.

∇

The example of the vehicle steering system illustrates how state feedback
can be used to set the eigenvalues of the closed loop system to arbitrary
values. The next example demonstrates that this is not always possible.
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Example 6.5 (An unreachable system). Consider the system

dx

dt
=









0 1
0 0








x +









1
0








u

y =


1 0


x

with the control law
u = −k1x1 − k2x2 + krr.

The closed loop system is

dx

dt
=









−k1 1 − k2

0 0








x +









kr

0








r.

This system has the characteristic polynomial

det









s + k1 −1 + k2

0 s








= s2 + k1s = s(s + k1),

which has zeros at s = 0 and s = −k1. Since one closed loop eigenvalue is
always equal to s = 0, independently of our choice of gains, it is not possible
to obtain an arbitrary characteristic polynomial.

A visual inspection of the equations of motion shows that this system
also has the property that it is not reachable. In particular, since ẋ2 = 0,
we can never steer x2 between one value and another. Computation of the
reachability matrix Wr verifies that the system is not reachable. ∇

The reachable canonical form has the property that the parameters of
the system are the coefficients of the characteristic equation. It is therefore
natural to consider systems on this form when solving the eigenvalue assign-
ment problem. In the next example we investigate the case when the system
is in reachable canonical form.

Example 6.6 (System in reachable canonical form). Consider a system in
reachable canonical form, i.e,

dz

dt
= Ãz + B̃u =



































−a1 −a2 −a3 . . . −an

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0



































z +



































1
0
...
0
0



































u

y = C̃z =


b1 b2 · · · bn



 z.

(6.15)
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The open loop system has the characteristic polynomial

det(sI − A) = sn + a1s
n−1 + · · · + an−1s + an,

as we saw in Example 6.6.
Before making a formal analysis we will investigate the block diagram

of the system shown in Figure 6.4. The characteristic polynomial is given
by the parameters ak in the figure. Notice that the parameter ak can be
changed by feedback from state xk to the input u. It is thus straight forward
to change the coefficients of the characteristic polynomial by state feedback.

Having developed some intuition we will now proceed formally. Intro-
ducing the control law

u = −K̃z + krr = −k̃1z1 − k̃2z2 − · · · − k̃nzn + krr, (6.16)

the closed loop system becomes

dz

dt
=





































−a1 − k̃1 −a2 − k̃2 −a3 − k̃3 . . . −an − k̃n

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0





































z +



































kr

0
0
...
0



































r

y =


bn · · · b2 b1



 z.

(6.17)
The feedback changes the elements of the first row of the A matrix, which
corresponds to the parameters of the characteristic equation. The closed
loop system thus has the characteristic polynomial

sn + (al + k̃1)s
n−1 + (a2 + k̃2)s

n−2 + · · · + (an−1 + k̃n−1)s + an + k̃n.

Requiring this polynomial to be equal to the desired closed loop polyno-
mial (6.12) we find that the controller gains should be chosen as

k̃1 = p1 − a1

k̃2 = p2 − a2

...

k̃n = pn − an.

This feedback simply replaces the parameters ai in the system (6.17) by pi.
The feedback gain for a system in reachable canonical form is thus

K̃ =


p1 − a1 p2 − a2 · · · pn − an



 . (6.18)
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To have zero frequency gain equal to unity, the parameter kr should be
chosen as

kr =
an + k̃n

bn
=

pn

bn
. (6.19)

Notice that it is essential to know the precise values of parameters an and bn

in order to obtain the correct zero frequency gain. The zero frequency gain
is thus obtained by precise calibration. This is very different from obtaining
the correct steady state value by integral action, which we shall see in later
sections. We thus find that it is easy to solve the eigenvalue assignment
problem when the system has the structure given by equation (6.15). ∇

The General Case

We have seen through the examples how feedback can be used to design
the dynamics of a system through assignment of its eigenvalues. To solve
the problem in the general case, we simply change coordinates so that the
system is in reachable canonical form. Consider the system (6.9). Change
the coordinates by a linear transformation

z = Tx

so that the transformed system is in reachable canonical form (6.15). For
such a system the feedback is given by equation (6.16), where the coefficients
are given by equation (6.18). Transforming back to the original coordinates
gives the feedback

u = −K̃z + krr = −K̃Tx + krr.

The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedback). Consider the

system given by equation (6.9),

dx

dt
= Ax + Bu

y = Cx,

with one input and one output. Let λ(s) = sn + d1s
n−1 + · · · + an−1s + an

be the characteristic polynomial of A. If the system is reachable then there

exists a feedback

u = −Kx + krr



6.2. STABILIZATION BY STATE FEEDBACK 203

that gives a closed loop system with the characteristic polynomial

p(s) = sn + p1s
n−1 + · · · + pn−1s + pn

and unity zero frequency gain between r and y. The feedback gain is given

by

K = K̃T =


p1 − a1 p2 − a2 · · · pn − an



 W̃rW
−1
r (6.20)

kr =
pn

an
, (6.21)

where ai are the coefficients of the characteristic polynomial of the matrix

A and the matrices Wr and W̃r are given by

Wr =


B AB · · · An−1B


 W̃r =



































1 a1 a2 · · · an−1

0 1 a1 · · · an−2
...

. . .
. . .

...

0 0 · · · 1 a1

0 0 0 · · · 1



































−1

.

We have thus obtained a solution to the problem and the feedback has
been described by a closed form solution.

For simple problems, the eigenvalue assignment problem can be solved
by introducing the elements ki of K as unknown variables. We then compute
the characteristic polynomial

λ(s) = det(sI − A + BK)

and equate coefficients of equal powers of s to the coefficients of the desired
characteristic polynomial

p(s) = sn + p1s
n−1 + · · · + pn−1 + pn.

This gives a system of linear equations to determine ki. The equations can
always be solved if the system is observable, exactly as we did in Exam-
ple 6.4.

For systems of higher order it is more convenient to use equation (6.21),
which can also be used for numeric computations. However, for large sys-
tems this is not numerically sound, because it involves computation of the
characteristic polynomial of a matrix and computations of high powers of
matrices. Both operations lead to loss of numerical accuracy. For this rea-
son there are other methods that are better numerically. In MATLAB the
state feedback can be computed by the procedure place or acker.



204 CHAPTER 6. STATE FEEDBACK

Example 6.7 (Predator prey). To illustrate how state feedback might be
applied, consider the problem of regulating the population of an ecosystem
by modulating the food supply. We use the predator prey model introduced
in Section 3.7. The dynamics for the system are given by

dH

dt
= (rh + u)H

(

1 − H

K

)

− aHL

1 + aHTh
H ≥ 0

dL

dt
= rlL

(

1 − L

kH

)

L ≥ 0

We choose the following nominal parameters for the system, which corre-
spond to the values used in previous simulations:

rh = 0.02 K = 500 a = 0.03

rl = 0.01 k = 0.2 Th = 5

We take the parameter rh, corresponding to the growth rate for hares, as
the input to the system, which we might modulate by controlling a food
source for the hares. This is reflected in our model by the term (rh + u) in
the first equation.

To control this system, we first linearize the system around the equilib-
rium point of the system, (He, Le), which can be determined numerically to
be H ≈ (6.5, 1.3). This yields a linear dynamical system

dd

ddt









z1

z2








=









0.001 −0.01
0.002 −0.01

















z1

z2








+









6.4
0








v

where z1 = L − Le, z2 = H − He and v = u. It is easy to check that the
system is reachable around the equilibrium (z, v) = (0, 0) and hence we can
assign the eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system requires balancing
the ability to modulate the input against the natural dynamics of the system.
This can be done by the process of trial and error or by using some of the
more systematic techniques discussed in the remainder of the text. For now,
we simply choose the desired closed loop poles to be at λ = {−0.01,−0.02}.
We can then solve for the feedback gains using the techniques described
earlier, which results in

K =


0.005 −0.15


 .

Finally, we choose the reference number of hares to be r = 20 and solve for
the reference gain, kr, using equation 6.13 to obtain kr = 0.003.
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Figure 6.6: Simulation results for the controlled predatory prey system: (a) popu-
lation of lynxes and hares as a function of time; (b) phase portrait for the controlled
system.

Putting these steps together, our control law becomes

v = −Kz + krr.

In order to implement the control law, we must rewrite it using the original
coordinates for the system, yielding

u = ue + K(x − xe) + krr =


0.005 −0.15












H − 6.5
L − 1.3








+ 0.003 r.

This rule tells us how much we should modulate rh as a function of the
current number of lynxes and hares in the ecosystem. Figure 6.6a shows a
simulation of the resulting closed loop system using the parameters defined
above and starting an initial population of 15 hares and 5 lynxes. Note
that the system quickly stabilizes the population of lynxes at the reference
value (r = 20). A phase portrait of the system is given in Figure 6.6b,
showing how other initial conditions converge to the stabilized equilibrium
population. Notice that the dynamics are very different than the natural
dynamics (shown in Figure 4.6 on page 120). ∇

6.3 State Feedback Design Issues

The location of the eigenvalues determines the behavior of the closed loop
dynamics and hence where we place the eigenvalue is the main design de-
cision to be made. As with all other feedback design problems, there are
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tradeoffs between the magnitude of the control inputs, the robustness of
the system to perturbations and the closed loop performance of the system,
including step response, disturbance attenuation and noise injection. For
simple systems, there are some basic guidelines that can be used and we
briefly summarize them in this section.

We start by focusing on the case of second order systems, for which the
closed loop dynamics have a characteristic polynomial of the form

λ(s) = s2 + 2ζω0s + ω2
0. (6.22)

Since we can solve for the step and frequency response of such a system
analytically, we can compute the various metrics described in Sections 5.3
and 5.3 in closed form and write the formulas for these metrics in terms of
ζ and ω0.

As an example, consider the step response for a control system with
characteristic polynomial (6.22). This was derived in Section 5.4 and has
the form

y(t) =
k

ω2
0

(

1 − e−ζω0t cos ωdt +
ζ

√

1 − ζ2
e−ζω0t sinωdt

)

ζ < 1

y(t) =
k

ω2
0

(

1 − eω0t − ω0t
)

ζ = 1

y(t) =
k

ω2
0

(

1 − e−ω0t − 1

2(1 + ζ)
eω0(1−2ζ)t

)

ζ ≥ 1.

We focus on the case of 0 < ζ < 1 and leave the other cases as an exercise
for the reader.

To compute the maximum overshoot, we rewrite the output as

y(t) =
k

ω2
0

(

1 − 1
√

1 − ζ2
e−ζω0t sin(ωdt + ϕ)

)

(6.23)

where ϕ = arccos ζ. The maximum overshoot will occur at the first time in
which the derivative of y is zero, and hence we look for the time tp at which

0 =
k

ω2
0

(

ζω0
√

1 − ζ2
e−ζω0t sin(ωdt + ϕ) − ωd

√

1 − ζ2
e−ζω0t cos(ωdt + ϕ)

)

.

(6.24)
Eliminating the common factors, we are left with

tan(ωdtp + ϕ) =

√

1 − ζ2

ζ
.
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Table 6.1: Properties of the response to reference values of a second order system
for |ζ‖ < 1. The parameter ϕ = arccos ζ.

Property Value ζ = 0.5 ζ = 1/
√

2 ζ = 1

Steady state error 1/ω2
0 1/ω2

0 1/ω2
0 1/ω2

0

Rise time Tr = 1/ω0 · eϕ/ tan ϕ 1.8/ω0 2.2/ω0 2.7/ω0

Overshoot Mp = e−πζ/
√

1−ζ2

16% 4% 0%

Settling time (2%) Ts ≈ 4/ζω0 8/ω0 5.7/ω0 4/ω0

Since ϕ = arccos ζ, it follows that we must have ωdtp = π (for the first
non-trivial extremum) and hence tp = π/ωd. Substituting this back into
equation (6.23), subtracting off the steady state value and normalizing, we
have

Mp = e−πζ/
√

1−ζ2

.

Similar computations can be done for the other characteristics of a step
response. Table 6.1 summarizes the calculations.

One way to visualize the effect of the closed loop eigenvalues on the
dynamics is to use the eigenvalue plot in Figure 6.7. This charge shows
representative step and frequency responses as a function of the location
of the eigenvalues. The diagonal lines in the left half plane represent the
damping ratio ζ =

√
2 ≈ 0.707, a common value for many designs.

One important consideration that is missing from the analysis so far is
the amount of control authority required to obtain the desired dynamics.

Example 6.8 (Drug administration). To illustrate the usage of these formu-
las, consider the two compartment model for drug administration, described
in Section 3.6. The dynamics of the system is

dc

dt
=









−k0 − k1 k1

k2 −k2








c +









b0

0








u

y =


0 1


x,

where c1 and c2 are the concentrations of the drug in each compartment,
ki, i = 0, . . . , 2 and b are parameters of the system, u is the flow rate of
the drug into compartment 1 and y is the concentration of the drug in
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Figure 6.7: Representative step and frequency responses for second order systems.
Step responses are shown in the upper half of the plot, with the location of the origin
of the step response indicating the value of the eigenvalues. Frequency reponses are
shown in the lower half of the plot.

compartment 2. We assume that we can measure the concentrations of the
drug in each compartment and we would like to design a feedback law to
maintain the output at a given reference value r.

We choose ζ = 0.9 to minimize the overshoot and choose the rise time
to be Tr = 10 min. This gives a value for ω0 = 0.22 using the formulas
in Table 6.1. We then compute the gain to place the eigenvalues at this
location. The response of the controller is shown in Figure 6.8 and compared
with an “open loop” strategy involving administering periodic doses of the
drug. ∇

Our emphasis so far has only considered second order systems. For
higher order systems, eigenvalue assignment is considerably more difficult,
especially when trying to account for the many tradeoffs that are present in
a feedback design. We illustrate some of the main ideas using the balance
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Figure 6.8: Comparison between drug administration using a sequence of doses
versus continuously monitoring the concentrations and adjusting the dosage con-
tinuously.

system as an example.

To design state feedback controllers for more complicated systems, more
sophisticated tools are needed. Optimal control techniques, such as the
linear quadratic regular problem discussed below, are one approach that is
available. One can also focus on the frequency response for performing the
design, which is the subject of Chapters 8–12.

6.4 Integral Action

The controller based on state feedback achieves the correct steady state
response to reference signals by careful calibration of the gain kr. However,
one of the primary uses of feedback is to allow good performance in the
presence of uncertainty, and hence requiring that we have an exact model
of the process is undesirable. An alternative to calibration is to make use
of integral feedback, in which the controller uses an integrator to provide
zero steady state error. The basic concept of integral feedback was already
given in Section 1.5 and in Section 3.1; here we provide a more complete
description and analysis.

The basic approach in integral feedback is to create a state within the
controller that computes the integral of the error signal, which is then used
as a feedback term. We do this by augmenting the description of the system
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with a new state z:

d

dt









x
z








=









Ax + Bu
y − r








=









Ax + Bu
Cx − r









The state z is seen to be the integral of the error between the desired out-
put, r, and the actual output, y. Note that if we find a compensator that
stabilizes the system then necessarily we will have ż = 0 in steady state and
hence y = r in steady state.

Given the augmented system, we design a state space controller in the
usual fashion, with a control law of the form

u = −Kx − kiz + krr

where K is the usual state feedback term, ki is the integral term and kr is
used to set the nominal input for the desired steady state. The resulting
equilibrium point for the system is given as

xe = −(A − BK)−1B(krr − kize)

Note that the value of ze is not specified, but rather will automatically settle
to the value that makes ż = y − r = 0, which implies that at equilibrium
the output will equal the reference value. This holds independently of the
specific values of A, B and K, as long as the system is stable (which can be
done through appropriate choice of K and ki).

The final compensator is given by

u = −Kx − kiz + krr

ż = y − r,

where we have now included the dynamics of the integrator as part of the
specification of the controller. This type of compensator is known as a
dynamic compensator since it has its own internal dynamics. The following
example illustrates the basic approach.

Example 6.9 (Cruise control). Consider the speed control example intro-
duced in Section 3.1 and considered further in Example 5.10.

The linearized dynamics of the process around an equilibrium point ve,
ue are given by

˙̃v = aṽ − bggθ + bũ

y = v = ṽ + ve,
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where ṽ = v − ve, ũ = u− ue, m is the mass of the car and θ is the angle of
the road. The constant a depends on the throttle characteristic and is given
in Example 5.10.

If we augment the system with an integrator, the process dynamics be-
come

˙̃v = aṽ − gθ + bũ

ż = r − y = (r − ve) − ṽ,

or, in state space form,

d

dt









ṽ
z








=









a 0
−1 0

















ṽ
z








+









b
0








u +









−g
0








θ +









0
r − ve








.

Note that when the system is at equilibrium we have that ż = 0 which
implies that the vehicle speed, v = ve + ṽ, should be equal to the desired
reference speed, r. Our controller will be of the form

ż = r − y

u = −kpṽ − kiz + krr

and the gains kp, ki and kr will be chosen to stabilize the system and provide
the correct input for the reference speed.

Assume that we wish to design the closed loop system to have charac-
teristic polynomial

λ(s) = s2 + a1s + a2.

Setting the disturbance θ = 0, the characteristic polynomial of the closed
loop system is given by

det
(

sI − (A − BK)
)

= s2 + (bK − a)s − bki

and hence we set

K =
a1 + a

b
ki = −a2

b
.

The resulting controller stabilizes the system and hence brings ż = y − r to
zero, resulting in perfect tracking. Notice that even if we have a small error
in the values of the parameters defining the system, as long as the closed
loop poles are still stable then the tracking error will approach zero. Thus
the exact calibration required in our previous approach (using kr) is not
required. Indeed, we can even choose kr = 0 and let the feedback controller
do all of the work (Exercise 5).

Integral feedback can also be used to compensate for constant distur-
bances. Suppose that we choose θ 6= 0, corresponding to climbing a (lin-
earized) hill. The stability of the system is not affected by this external
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disturbance and so we once again see that the car’s velocity converges to
the reference speed.

This ability to handle constant disturbances is a general property of
controllers with integral feedback and is explored in more detail in Exercise 6.

∇

6.5 Linear Quadratic Regulators�

In addition to selecting the closed loop eigenvalue locations to accomplish a
certain objective, another way that the gains for a state feedback controller
can be chosen is by attempting to optimize a cost function.

The infinite horizon, linear quadratic regulator (LQR) problem is one
of the most common optimal control problems. Given a multi-input linear
system

ẋ = Ax + Bu x ∈ R
n, u ∈ R

m,

we attempt to minimize the quadratic cost function

J̃ =

∫

∞

0

(

xT Qxx + uT Quu
)

dt

where Qx ≥ 0 and Qu > 0 are symmetric, positive (semi-) definite matrices
of the appropriate dimension. This cost function represents a tradeoff be-
tween the distance of the state from the origin and the cost of the control
input. By choosing the matrices Qx and Qu, described in more detail below,
we can balance the rate of convergence of the solutions with the cost of the
control.

The solution to the LQR problem is given by a linear control law of the
form

u = −Q−1
u BT Px

where P ∈ R
n×n is a positive definite, symmetric matrix that satisfies the

equation
PA + AT P − PBQ−1

u BT P + Qx = 0. (6.25)

Equation (6.25) is called the algebraic Riccati equation and can be solved
numerically (for example, using the lqr command in MATLAB).

One of the key questions in LQR design is how to choose the weights Qx

and Qu. In order to guarantee that a solution exists, we must have Qx ≥ 0
and Qu > 0. In addition, there are certain “observability” conditions on Qx

that limit its choice. We assume here Qx > 0 to insure that solutions to the
algebraic Riccati equation always exists.
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To choose specific values for the cost function weights Qx and Qu, we
must use our knowledge of the system we are trying to control. A particu-
larly simple choice of weights is to use diagonal weights

Qx =



















q1 0 · · ·
. . .

0 · · · qn



















Qu = ρ



















r1 0 · · ·
. . .

· · · 0 rn



















.

For this choice of Qx and Qu, the individual diagonal elements describe how
much each state and input (squared) should contribute to the overall cost.
Hence, we can take states that should remain very small and attach higher
weight values to them. Similarly, we can penalize an input versus the states
and other inputs through choice of the corresponding input weight.

6.6 Further Reading

The importance of state models and state feedback was discussed in the
seminal paper by Kalman [Kal60] where the state feedback gain was obtained
by solving an optimization problem that minimized a quadratic loss function.
The notions of reachability and observability (next chapter) are also due to
Kalman [Kal61b];see also [Gil63, KHN63]. We note that in most textbooks
the term “controllability” is used instead of “reachability”, but we prefer
the latter term because it is more descriptive of the fundamental property
of being able to reach arbitrary states.

Most undergraduate textbooks on control will contain material on state
space systems, including, for example, Franklin, Powell and Emami-Naeini [FPEN05]
and Ogata [Oga01]. Friedland’s textbook [Fri04] covers the material in the
previous, current and next chapter in considerable detail, including the topic
of optimal control.

6.7 Exercises

1. Consider the system shown in Figure 6.3. Write the dynamics of the
two systems as

dx

dt
= Ax + Bu

dz

dt
= Az + Bu.
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Observe that if x and z have the same initial condition, they will
always have the same state, regardless of the input that is applied.
Show that this violates the definition of reachability and further show
that the reachability matrix Wr is not full rank.

2. Show that the characteristic polynomial for a system in reachable
canonical form is given by equation (6.7).

3. Consider a system on reachable canonical form. Show that the inverse
of the reachability matrix is given by

W̃−1
r =



























1 a1 a2 · · · an

0 1 a1 · · · an−1
...
0 0 0 · · · 1



























(6.26)

4. Extend the argument in Section 6.1 to show that if a system is reach-
able from an initial state of zero, it is reachable from a non-zero initial
state.

5. Build a simulation for the speed controller designed in Example 6.9
and show that with kr = 0, the system still achieves zero steady state
error.

6. Show that integral feedback can be used to compensate for a constant
disturbance by giving zero steady state error even when d 6= 0.

7. Show that if y(t) is the output of a linear system corresponding to
input u(t), then the output corresponding to an input u̇(t) is given by
ẏ(t). (Hint: use the definition of the derivative: ẏ(t) = limǫ→0

(

y(t +
ǫ) − y(t)

)

/ǫ.)


