
Chapter 12

Robust Performance

However, by building an amplifier whose gain is deliberately made, say 40
decibels higher than necessary (10000 fold excess on energy basis), and then
feeding the output back on the input in such a way as to throw away that
excess gain, it has been found that extraordinary improvements in constancy
of amplification and freedom from non-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers”, 1934 [Bla34].

The above quote illustrates that one the key uses of feedback is to pro-
vide robustness to uncertainty. It is one of the most useful properties of
feedback and is what makes it possible to design feedback systems based
on strongly simplified models. This chapter focuses on the analysis of ro-
bustness of feedback systems. We consider the stability and performance of
systems who process dynamics are uncertain and derive fundamental limits
for robust stability and performance. To do this we develop ways to model
uncertainty, both in the form of parameter variations and in the form of
neglected dynamics. We also discuss how to design controllers to achieve
robust performance. One limitation of the tools we present here is that they
are usually restricted to linear systems, although some nonlinear extensions
have been developed.

12.1 Modeling Uncertainty

One form of uncertainty in dynamical systems is that the parameters de-
scribing the system are unknown, which is called parametric uncertainty. A
typical example is the variation of the mass of a car, which changes with
the number of passengers and the weight of the baggage. When linearizing
a nonlinear system, the parameters of the linearized model also depend on
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Figure 12.1: Responses of the cruise control system to a slo[pe increase of 3◦ (left)
and the eigenvalues of the closed loop system (right). Model parameters are swept
over a wide range.

the operating condition. It is straightforward to investigate effects of para-
metric uncertainty simply by evaluating the performance criteria for a range
of parameters. Such a calculation will directly reveal the consequences of
parameter variations. We illustrate by a simple example.

Example 12.1 (Cruise control). The cruise control problem was described
in Section 3.1 and a PI controller was designed in Example 10.1. To investi-
gate the effect of parameter variations we will choose a controller designed
for a nominal operating condition corresponding to mass m = 1600, fourth
gear α = 12 and speed v = 25 m/s, the controller gains are k = 0.72 and
ki = 0.18. Figure 12.1 shows the velocity v and the throttle u when encoun-
tering a hill with a 3◦ slope with masses in the range 1600 < m < 2000,
gear ratios 10 ≤ α ≤ 16 and velocity 10 ≤ v ≤ 40 m/s. The simulations
were done using models that were linearized around the different operating
conditions. The figure shows that there are variations in the response but
that they are quite reasonable. The largest velocity error is in the range of
0.2 to 0.6 m/s, and the response time is about 15 s. The control signal is
marginally larger than 1 in some cases which implies that the throttle is fully
open. A full nonlinear simulation using a controller with windup protection
is required if we want to explore these cases in more detail. Figure 12.1 also
shows the eigenvalues of the closed loop system for the different operating
conditions. The figure shows that the closed loop system is well damped in
all cases. ∇
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This example indicates that at least as far as parametric variations are
concerned, the design based on a simple nominal model will give satisfactory
control. The example also indicates that a controller with fixed parameters
can be used in all cases. Notice however that we have not considered oper-
ating conditions in low gear and at low speed.

Unmodeled Dynamics

It is generally fairly easy to investigate the effects of parametric variations.
There are however other uncertainties that also are important. The sim-
ple model of the cruise control system only captures the dynamics of the
forward motion of the vehicle and the torque characteristics of the engine
and transmission. It does not, for example, include a detailed model of the
engine dynamics (whose combustion processes are extremely complex), nor
the slight delays that can occur in modern electronically controlled engines
(due to the processing time of the embedded computers). These neglected
mechanisms that are called unmodeled dynamics.

Unmodeled dynamics can be accounted for by developing a more com-
plex model. Such models are commonly used for controller development
but is is a substantial effort to develop the models. An alternative is to
investigate if the closed loop system is sensitive to generic forms of unmod-
eled dynamics. The basic idea is to describe the “unmodeled” dynamics
by including a transfer function in the system description whose frequency
response is bounded, but otherwise unspecified. For example, we might
model the engine dynamics in the speed control example as a system that
very quickly provides the torque that is requested through the throttle, giv-
ing a small deviation from the simplified model, which assumed the torque
response was instantaneous. This technique can also be used in many in-
stances to model parameter variations, allowing a quite general approach to
uncertainty management.

In particular we wish to explore if additional linear dynamics may cause
difficulties. A simple way is to assume that the transfer function of the pro-
cess is P (s) + ∆P (s) where P (s) is the nominal simplified transfer function
and δa = δP (s) represents the unmodeled dynamics. This case is called
additive uncertainty. Figure 12.2 shows some other cases to represent un-
certainties in a linear system.
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Figure 12.2: Representation of system with additive (left), multiplicative (mid-
dle) and feedback uncertainties (right). The nominal system is P systems and δ
represents the uncertainties.

When are Two Systems Similar

A fundamental issue is to determine when two systems are close. This
seemingly innocent problem is not as simple as it may appear. A naive idea
is to say that two systems are close if their open loop responses are close.
Even if this appears natural, there are complications as is illustrated by the
following examples.

Example 12.2 (Similar in open loop but large differences in closed loop).
The systems with the transfer functions

P1(s) =
100

s + 1
, P2(s) =

100

(s + 1)(sT + 1)2

have very similar open loop responses for small values of T , as illustrated in
the top left corner of Figure 12.3, where T = 0.025. The differences between
the step responses are barely noticeable in the figure. The step responses
with unit gain error feedback are shown in the figure to the right. Notice
that one closed loop system is stable and the other one is unstable. The
transfer functions from reference to output are

T1 =
100

s + 101
T2 =

1161600

(s + 83.93)(s2 − 2.92s + 1925.37)
.

∇

Example 12.3 (Different in open loop but similar in closed loop). Consider
the systems

P1(s) =
100

s + 1
, P2(s) =

100

s − 1
.

The open loop responses have very different because P1 is stable and P2 is
unstable, as shown in the bottom left plot in Figure 12.3. Closing a feedback
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Figure 12.3: Open loop step responses and corresponding closed loop step responses
for (a) Example 12.2 and (b) Example 12.3.

loop with unit gain around the systems we find that the closed loop transfer
functions are

T1(s) =
100

s + 101
T2(s) =

100

s + 99

which are very close as is also shown in Figure 12.3. ∇
These examples show that if our goal is to close a feedback loop it may be

very misleading to compare the open loop responses of the system. Inspired
by the examples we will introduce a distance measure that is more appro-
priate for closed loop operation. Consider two systems with the rational
transfer functions

P1(s) =
n1(s)

d1(s)
and P2(s) =

n2(s)

d2(s)
,

where n1(s), n2(s), d1(s) and d2(s) are polynomials. Let

p(s) = d1(s)n2(−s) − n1(s)d2(−s)

and define the chordal distance between the transfer functions is defined as

dν(P1, P2) =







supω
|P1(jω)−P2(jω)|√

(1+|P1(jω)|2)(1+|P2(jω)|2)
if p(s) has no RHP zeros

1 otherwise.

(12.1)
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Figure 12.4: Geometric interpretation of the distance d(P1, P2) between two transfer
functions.

The distance has a nice geometric interpretation, as shown in Figure 12.4,
where the Nyquist plots of P1 and P2 are projected on the Riemann sphere.
The Riemann sphere is located above the complex plane. It has diameter
1 and its south pole is at the origin of the complex plane. Points in the
complex plane are projected onto the sphere by a line through the point and
the north pole (Figure 12.4). The distance dν(P1, P2) is simply the shortest
chordal distance between the projections of the Nyquist curves. Since the
diameter of the Riemann sphere is 1, it follows that the distance is never
larger than 1.

The distance dν(P1, P2) is similar to |P1−P2| when the transfer functions
are small, but very different when |P1| and |P2| are large. It is also related
to the behavior of the systems under unit feedback as will be discussed in
Section 12.6.

12.2 Stability in the Presence of Uncertainty

We begin by considering the problem of robust stability: when can we show
that the stability of a system is robust with respect to process variations.
This is an important question since the potential for instability is one of
the main drawbacks of feedback. Hence we want to ensure that even if we
have small inaccuracies in our model, we can still guarantee stability and
performance.
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Figure 12.5: The left figure shows that the distance to the critical point 1/Ms is
a robustness measure. The right figure shows the Nyquist curve of a nominal loop
transfer function and its uncertainty caused by additive process variations ∆P .

Using Nyquist’s Stability Criterion

The Nyquist criterion provides a powerful and elegant way to study the ef-
fects of uncertainty for linear systems. A simple criterion is that the Nyquist
curve is sufficiently far from the critical point −1. Recall that the shortest
distance from the Nyquist curve is 1/Ms where Ms is the maximum of the
sensitivity function. The maximum sensitivity Ms is thus a good robustness
measure, as illustrated Figure 12.5a.

We will now derive explicit conditions for permissible process uncertain-
ties. Consider a feedback system with a process P and a controller C. If the
process is changed from P to P + ∆P , the loop transfer function changes
from PC to PC + C∆P , as illustrated in Figure 12.5b. If we have a bound
on the size of ∆P (represented by the dashed circle in the figure), then the
system remains stable as long as the process variations never overlap the −1
point, since this leaves the number of encirclements of −1 unchanged.

Some additional assumptions required for the analysis to hold. Most im-
portantly, we require that the process perturbations ∆P be stable so that we
do not introduce any new right half plane poles that would require additional
encirclements in the Nyquist criterion. Also, we note that this condition is
conservative: it allows for any perturbation that satisfies the given bounds,
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while in practice we may have more information about possible perturba-
tions.

The distance from the critical point −1 to the loop transfer function L
is |1 + L|. This means that the perturbed Nyquist curve will not reach the
critical point −1 provided that

|C∆P | < |1 + L|,

which implies

|∆P | <
∣

∣

∣

1 + PC

C

∣

∣

∣
or

∣

∣

∣

∆P

P

∣

∣

∣
<

1

|T | . (12.2)

This condition must be valid for all points on the Nyquist curve, i.e
pointwise for all frequencies. The condition for stability can thus be written
as

∣

∣

∣

∆P (jω)

P (jω)

∣

∣

∣
<

1

|T (jω)| for all ω ≥ 0. (12.3)

This condition allows us to reason about uncertainty without exact knowl-
edge of the process perturbations. Namely, we can verify stability for any
uncertainty ∆P that satisfies the given bound. From an analysis perspec-
tive, this gives us a measure of the robustness of a given design. Conversely,
if we require robustness of a given level, we can attempt to choose our con-
troller C such that the desired level of robustness is available (by asking T
to be small).

The formula given by equation (12.3) is one of the reasons why feedback
systems work so well in practice. The mathematical models used to design
control system are often strongly simplified. There may be model errors and
the properties of a process may change during operation. Equation (12.3)
implies that the closed loop system will at least be stable for substantial
variations in the process dynamics.

It follows from equation (12.3) that the variations can be large for those
frequencies where T is small and that smaller variations are allowed for
frequencies where T is large. A conservative estimate of permissible process
variations that will not cause instability is given by

∣

∣

∣

∆P (jω)

P (jω)

∣

∣

∣
<

1

Mt
,

where Mt is the largest value of the complementary sensitivity

Mt = sup
ω

|T (jω)| =
∥

∥

∥

PC

1 + PC

∥

∥

∥

∞
. (12.4)



12.2. STABILITY IN THE PRESENCE OF UNCERTAINTY 355

10
−1

10
0

10
1

10
0

10
1

−50 0 50 100 150 200

−100

−50

0

50

100

Re L(jω)

Im
L

(j
ω
)

ω

1
/
|T

|(

·−),|P|/|T|(−
)

Figure 12.6: Illustration of the robustness for a cruise controller. The left figure
shows the maximum relative error (1/|T |, dot-dashed) and absolute error (|P |/|T |,
solid) for the process uncertainty ∆P . The Nyquist curve is shown in the right
figure, as a solid line. The dashed circles show permissible perturbations in the
process dynamics, |∆P | = |P |/|T |, at the frequencies ω = 0, 0.0142 and 0.05.

The value of Mt is influenced by the design of the controller. For example,
if Mt = 2 then pure gain variations of 50% or pure phase variations of 30◦

are permitted without making the closed loop system unstable.

Example 12.4 (Cruise control). Consider the cruise control system dis-
cussed in Section 3.1. The model of the car in fourth gear at speed 25 m/s
is

P (s) =
1.38

s + 0.0142
,

and the controller is a PI controller with gains k = 0.72 and ki = 0.18. Fig-
ure 12.6 plots the allowable size of the process uncertainty using the bound
in equation (12.3). At low frequencies, T (0) = 1 and so the perturbations
can be as large as the original process (|∆P/P | < 1). The complemen-
tary sensitivity has its maximum Mt = 1.14 at ωmt = 0.35 and hence this
gives the minimum allowable process uncertainty, with |∆P/P | < 0.87 or
|∆P | < 3.47. Finally, at high frequencies T → 0 and hence the relative
error can get very large. For example, at ω = 5 we have |T (jω)| = 0.195
which means that the stability requirement is |∆P/P | < 5.1. The analysis
clearly indicates that the system has good robustness and that that the high
frequency properties of the transmission system are not important for the
design of the cruise controller.

Another illustration of the robustness of the system is given in the right
diagram of Figure 12.6, which shows the Nyquist curve of the transfer func-
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Figure 12.7: Illustration of robustness to process perturbations.

tion of the process and the uncertainty bounds ∆P = |P |/|T | for a few
frequencies. Note that the controller can tolerate very large amounts of
uncertainty and still maintain stability of the closed loop. ∇

The situation illustrated in the previous example is typical for many
processes: moderately small uncertainties are only required around the gain
crossover frequencies, but large uncertainties can be permitted at higher
and lower frequencies. A consequence of this is that a simple model that
describes the process dynamics well around the crossover frequency is often
sufficient for design. Systems with many resonance peaks are an exception
to this rule because the process transfer function for such systems may have
large gains also for higher frequencies.

Notice that the results we have given can be very conservative. Refer-
ring to Figure 12.5, the critical perturbations, which were the basis for our
analysis, are in the direction towards the critical point. It is possible to have
much larger perturbations in the opposite direction.

The Small Gain Theorem
�

The robustness result given by equation (12.3) can be given another inter-
pretation by using the small gain theorem, introduced in Section 9.5. It
is convenient to choose a particular form of the small gain theorem where
the gain of a system is defined in terms of the maximum amplitude of the
frequency response. We first define the gain of a system as the H∞ norm of
its transfer function H(s):

‖H‖∞ = sup
ω

|H(jω)|.

The small gain theorem can now be written as follows.
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Table 12.1: Conditions for robust stability for different types of uncertainty

Process Type Robust Stability

P + ∆P Additive |CS∆P‖∞ < 1
P (1 + ∆P ) Multiplicative ‖S∆P‖∞ < 1

P/(1 + ∆P · P ) Feedback ‖PS∆P‖∞ < 1

Theorem 12.1 (Small gain theorem). Consider two stable, linear time in-
variant processes with transfer functions P1(s) and P2(s). The feedback
interconnection of these two systems is stable if ‖P1P2‖∞ < 1.

The proof of this theorem follows directly from the Nyquist criterion
applied to the loop transfer functions L = P1P2.

The application of this theorem is illustrated in Figure 12.7, which shows
a sequence of block diagrams of a closed loop system with a perturbed pro-
cess. Using block diagram manipulation, we can isolate the uncertainty from
the remaining dynamics and obtain the two block interconnection shown in
Figure 12.7c. The loop transfer function of the resulting system is

L =
PC

1 + PC

∆P

P
= T∆P = CS∆P.

Equation (12.3) implies that the largest loop gain is less than one and hence
the systems is stable via the small gain theorem.

The small gain theorem can be used to check robust stability for uncer-
tainty in a variety of situations. Table 12.1 summarizes a few of the common
cases; the proofs (all via the small gain theorem) are left to the exercises.

Youla Parameterization
�

Since stability is such an essential property it is useful to characterize all con-
troller that will stabilize a given process. Consider a stable process with the
rational transfer function P , to simplify the writing we drop the arguments
of the functions. A system with the complementary sensitivity function T
can be obtained by feedforward control with the stable transfer function Q
if

T = PQ (12.5)

Notice that T must have the same RHP zeros as P since Q is stable. Now
assume that we want to obtain the complementary transfer function T by
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Figure 12.8: Block diagrams of Youla parameterizations of stable (left) and unstable
systems (right). Notice that the signal v is zero.

using unit feedback with the controller C. Since T = PC/(1 + PC) = PQ
we find that the controller transfer function is

C =
Q

1 − QP
. (12.6)

A straight forward calculation gives

1

1 + PC
= 1 − T,

P

1 + PC
= P − PT,

C

1 + PC
= Q,

PC

1 + PC
= T

which are all stable. All stabilizing controller are thus given by equa-
tion (12.6). Equation (12.6) is called a Youla parameterization because it
characterizes all controllers that stabilizes a stable process. The parameter-
ization is be illustrated by the block diagrams in Figure 12.8.

The feedforward controller (12.5) is given by Q = P−1T . In particular if
it is desired to have T close to one it follows that the feedforward controller
is the inverse of the process transfer function. Comparing with the feedback
controller (12.6) we find that the feedback controller obtains the desired
result by using high gain feedback.

A similar characterization can be obtained also for unstable systems.
Consider a process with a rational transfer function P = a/b where a and b
are polynomials, by introducing a stable polynomial c we can write

P (s) =
a

b
=

A

B
,

where A = a/c and B = b/c are stable rational functions. We have

1

1 + PC0
=

AF0

AF0 + BG0
= S0

P

1 + PC0
=

BF0

AF0 + BG0
= PS0

C0

1 + PC0
=

AG0

AF0 + BG0
= CS0

PC0

1 + PC0
=

BG0

AF0 + BG0
= T0
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Figure 12.9: Block diagram of a basic feedback loop.

Since C is a stabilizing controller the function AF0 + BG0 must have all its
zeros in the left half plane. All stabilizing controllers are now given by

C =
G0 + QA

F0 − QB
. (12.7)

We have

1

1 + PC
=

A(F0 − QG)

AF0 + BG0

P

1 + PC
=

BF0 − QB2

AF0 + BG0

C

1 + PC
=

AG0 + QA2

AF0 + BG0

PC

1 + PC
=

AF0 + BG0

AF0 + BG0
.

All these transfer functions are stable and equation(12.7) is therefore a Youla
parameterization. Notice that equation (12.7) reduces to equation(12.6) for
F0 = 1 and G0 = 0.

12.3 Performance in the Presence of Uncertainty

So far we have investigated the risk for instability and robustness to pro-
cess uncertainty. We will now explore how responses to load disturbances,
measurement noise and command signal following are influenced by process
variations. To do this we will analyze the system in Figure 12.9.

Disturbance Attenuation

A simple criterion for disturbance attenuation is to compare the output of
the closed loop system in Figure 12.9 with the output of the corresponding
open loop system. If we let the disturbances for the open and closed loop
systems be identical, the output of the closed loop system is then obtained
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simply by passing the open loop output through a system with the transfer
function S. The sensitivity function thus tells how the variations in the
output are influenced by feedback. Disturbances with frequencies such that
|S(jω)| < 1 are attenuated but disturbances with frequencies such that
|S(jω)| > 1 are amplified by feedback. The maximum sensitivity Ms and
the sensitivity crossover frequency ωsc are simple performance measures.

The sensitivity function S gives a gross characterization of the effect of
feedback on disturbances. A more detailed characterization is given by the
transfer function from load disturbances to process output:

Gyd =
P

1 + PC
= PS. (12.8)

Load disturbances typically have low frequencies and it is therefore impor-
tant that the transfer function is small for low frequencies. For processes
with constant low frequency gain and a controller with integral action we
have Gyd ≈ s/ki. Integral gain ki is thus a simple measure of attenuation of
load disturbances.

To find how the transfer function Gyd is influenced by small variations
in the process transfer function we differentiate equation (12.8) which gives

dGyd

Gyd

= S
dP

P
. (12.9)

The response to load disturbances is thus insensitive to process variations
for frequencies where |S(jω)| is small, i.e. for those frequencies where load
disturbances are important.

A drawback with feedback is that the controller feeds measurement noise
into the system. In addition to the load disturbance rejection, it thus is also
important that the control actions generated by measurement noise are not
too large. It follows from Figure 12.9 that the transfer function Gun from
measurement noise to controller output is given by

Gun = − C

1 + PC
= −T

P
(12.10)

Since measurement noise typically has high frequencies it is important that
the transfer function Gun is not too large for high frequencies. The loop
transfer function PC is typically small for high frequencies, which implies
that Gun ≈ C for large s. To avoid injecting too much measurement noise it
is therefore important that C(s) is small for large s. This property is called
high frequency roll-off. Filtering of the measured signal in a PID controller
is done to reduce injection of measurement noise, see Section 10.5.
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To find how the transfer function Gun is influenced by small variations
in the process transfer function we differentiate equation (12.10) which gives

dGun

Gun
= T

dP

P
. (12.11)

Measurement noise typically has high frequencies. Since the complementary
sensitivity function also is small for high frequencies we find that process
uncertainty has little influence on the transfer function Gun for frequencies
where measurement are important.

Command Signal Following

The transfer function from reference to output is given by

Gyr =
PCF

1 + PC
= T, (12.12)

which is the complementary sensitivity function. To see how variations in P
affect the performance of the system, we differentiate equation (12.12) with
respect to the process transfer function:

dGyr

dP
=

CF

1 + PC
− PCFC

(1 + PC)2
=

CF

(1 + PC)2
= S

Gyr

P
.

and it follows that
dGyr

Gyr
= S

dP

P
. (12.13)

The relative error in the closed loop transfer function thus equals the product
of the sensitivity function and the relative error in the process. In particular,
it follows from equation (12.13) that the relative error in the closed loop
transfer function is small when the sensitivity is small. This is one of the
very useful properties of feedback.

When analyzing robust stability we were able to deal with large distur-
bances. In this section we have limited the analysis to small (differential)
perturbations. There are some additional assumptions required for the anal-
ysis to hold. Most importantly, we require that the process perturbations
dP be stable so that we do not introduce any new right half plane poles
that would require additional encirclements in the Nyquist criterion. Also,
we note that this condition is conservative: it allows for any perturbation
that satisfies the given bounds, while in practice we have more information
about possible perturbations.
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12.4 Limits on the Sensitivities

The sensitivity function S and the complementary sensitivity function T
tell us a great deal about the feedback loop. Disturbance rejection and
sensitivity to process uncertainties are low for frequencies where S is small
and tracking performance is good when T is close to 1. In this section
we explore some of the limitations on robust performance by looking at
algebraic and integral constraints on the functions.

Since

S =
1

1 + PC
and T =

PC

1 + PC

it follows that the sensitivity functions are related through

S + T = 1. (12.14)

A useful design goal is to make S close to zero and T close to one, a design
goal that is compatible with equation (12.14). The loop transfer function L
is typically large for small values of s and it goes to zero as s goes to infinity.
This means that S is typically small for small s and close to 1 for large s.
The complementary sensitivity function is close to 1 for small s and it goes
to 0 as s goes to infinity.

Bode’s Integral Formula

A basic problem is to investigate if S can be made small over a large fre-
quency range. We will start by investigating an example.

Example 12.5 (System that admits small sensitivities). Consider a closed
loop system consisting of a first order process and a proportional controller.
Let the loop transfer function

L = PC =
k

s + 1

where parameter k is the controller gain. The sensitivity function is

S =
s + 1

s + 1 + k

and we have

|S(jω)| =

√

1 + ω2

1 + 2k + k2 + ω2

This implies that |S(jω)| < 1 for all finite frequencies and that the sensitivity
can be made arbitrary small for any finite frequency by making k sufficiently
large. ∇



12.4. LIMITS ON THE SENSITIVITIES 363

The system in Example 12.5 is unfortunately an exception. The key
feature of the system is that the Nyquist curve of the process is completely
contained in the right half plane. Such systems are called positive real. For
these systems the Nyquist curve never enters the region shown in Figure 11.6
where the sensitivity is greater than one.

For typical control systems there are unfortunately severe constraints
on the sensitivity function. The following theorem, due to Bode, provides
fundamental insights into the limits of performance under feedback.

Theorem 12.2 (Bode’s integral formula). Let S(s) be the sensitivity func-
tion for a feedback system and assume that it goes to zero faster than 1/s
for large s. If the loop transfer has poles pk in the right half plane then the
sensitivity function satisfies the following integral:

∫ ∞

0
log |S(jω)| dω =

∫ ∞

0
log

1

|1 + L(jω)| dω = π
∑

Re pk. (12.15)

Equation (12.15) implies that there are fundamental limitations to what
can be achieved by control and that control design can be viewed as a
redistribution of disturbance attenuation over different frequencies. This
equation shows that if the sensitivity function is made smaller for some
frequencies it must increase at other frequencies. This means that if dis-
turbance attenuation is improved in one frequency range it will be worse in
other. This is called the waterbed effect. It also follows that systems with
poles in the right half plane have larger sensitivity.

For a loop transfer function without poles in the right half plane equa-
tion (12.15) reduces to

∫ ∞

0
log |S(jω)|dω = 0.

This formula can be given a nice geometric interpretation as shown in Fig-
ure 12.10, which shows log |S(jω)| as a function of ω. The area over the
horizontal axis must be equal to the area under the axis when frequency is
plotted on a linear scale.

There is an analogous result for the complementary sensitivity function
which tells that

∫ ∞

0
log |T

( 1

jω

)

| dω = π
∑ 1

zi
,

where the summation is over all right half plane zeros. Notice that small
right half plane zeros are worse than large ones and that large right half
plane poles are worse than small ones.
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Figure 12.10: Geometric interpretation of the waterbed effect given by Bode’s inte-
gral formula (12.15).

Derivation of Bode’s Formula
�

This is a technical section which requires some knowledge of the theory of
complex variables, in particular contour integration. Assume that the loop
transfer function has distinct poles at s = pk in the right half plane and that
L(s) goes to zero faster than 1/s for large values of s.

Consider the integral of the logarithm of the sensitivity function S(s) =
1/(1 + L(s)) over the contour shown in Figure 12.11.

The contour encloses the right half plane except the points s = pk where
the loop transfer function L(s) = P (s)C(s) has poles and the sensitivity
function S(s) has zeros. The direction of the contour is counter clockwise.

The integral of the log of the sensitivity function around this contour is
given by

∫

Γ
log(S(s)) ds =

∫ −jR

jR

log(S(s)) ds +

∫

R

log(S(s)) ds +
∑

k

∫

γ

log(S(s)) ds

= I1 + I2 + I3 = 0,

where R is a large semi circle on the right and γk is the contour starting on
the imaginary axis at s = Impk and a small circle enclosing the pole pk. The
integral is zero because the function log S(s) is regular inside the contour.
We have

I1 = −j

∫ jR

−jR

log(S(jω))dω = −2j

∫ jR

0
log(|S(jω)|)dω

because the real part of log S(jω) is an even function and the imaginary
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Figure 12.11: Contour used to prove Bode’s theorem. To avoid clutter we have
shown only one of the paths that enclose the right half plane.

part is an odd function. Furthermore we have

I2 =

∫

R

log(S(s)) ds =

∫

R

log(1 + L(s)) ds ≈
∫

R

L(s) ds.

Since L(s) goes to zero faster than 1/s for large s the integral goes to zero
when the radius of the circle goes to infinity.

Next we consider the integral I3, for this purpose we split the contour
into three parts X+, γ and X− as indicated in Figure 12.11. We can then
write the integral as

I3 =

∫

X+

log S(s) ds +

∫

γ

log S(s) ds +

∫

X−
log S(s) ds.

The contour γ is a small circle with radius r around the pole pk. The
magnitude of the integrand is of the order log r and the length of the path is
2πr. The integral thus goes to zero as the radius r goes to zero. Furthermore,
making use of the fact that X− is oriented oppositely from X+, we have
∫

X+

log S(s) ds+

∫

X
−

log S(s) ds =

∫

X+

(

log S(s)−log S(s − 2πj
)

ds = 2πpk.

Since |S(s)| = |S(s − 2πj)| we have

log S(s) − log S(s − 2πj) = arg S(s) − arg S(s − 2πj = 2π)
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and we find that

I3 = 2πΣpk

Letting the small circles go to zero and the large circle go to infinity and
adding the contributions from all right half plane poles pk gives

I1 + I2 + I3 = −2i

∫ R

0
log |S(jω)|dω +

∑

k

2πpk = 0.

which is Bode’s formula (12.15).

12.5 Robust Pole Placement

Many design methods for control systems do not take robustness into ac-
count. In such cases it is essential to always investigate the robustness be-
cause there are seemingly reasonable designs that give controller with poor
robustness. Any design method which does not take robustness explicitly
into account can give controllers with poor robustness. We illustrate this by
analyzing controllers designed by state feedback and observers. The closed
loop poles can be assigned to arbitrary locations if the system is observable
and controllable. However if we want to have a robust closed loop system,
the poles and zeros of the process impose severe restrictions on the location
of the closed loop poles. Some examples are first given; based on analysis of
these examples we then obtain design rules for robust pole placement.

Slow Stable Zeros

We will first explore the effects of slow stable zeros, and we begin with a
simple example.

Example 12.6 (Vehicle steering). Consider the linearized model for vehicle
steering in Example 8.4 which has the transfer function.

P (s) =
0.5s + 1

s2
.

A controller based on an observer and state feedback, where the closed loop
poles were given by ωc = 1, ζc = 0.707, ωo = 2 and ζo = 0.707 was designed
in Example 7.3. Assume that we want a faster closed loop system and
choose ωc = 10, ζc = 0.707, ωo = 20 and ωo = 2. A pole assignment design
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Figure 12.12: Nyquist (left) and Bode (right) plots of the loop transfer function for
vehicle steering with a controller based on state feedback and an observer.

gives state feedback gain k1 = 100 and k2 = −35.86 and an observer gains
l1 = 28.28 and l2 = 400. The controller transfer function is

C(s) =
−11516s + 40000

s2 + 42.4s + 6657.9
.

Figure 12.12 shows Nyquist and Bode plots of the loop transfer function.
The Nyquist plot indicates that the robustness is very poor since the loop
transfer function is very close to the critical point −1. The phase margin is
only 7◦. This also shows up in the Bode plot where the gain curve hovers
around the value 1 and the phase curve is close to 180◦ for a wide frequency
range.

More insight is obtained by analyzing the sensitivity functions. The
full lines in Figure 12.13 shows the sensitivity functions. The maximum
sensitivities are Ms = 13 and Mt = 12, which are much too large indicating
that the system has very poor robustness. ∇

At first sight it is very surprising that a controller where the nominal
system has well damped poles and zeros which are far to the left in the
right half plane is so sensitive to process variations. We have an indication
that something is unusual because the controller has a zero s = 3.9 in the
right half plane. To understand what happens we will investigate the reason
for the peaks of the sensitivity functions. Let the transfer functions of the
process and the controller be

P (s) =
np(s)

dp(s)
C(s) =

nc(s)

dc(s)
,
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Figure 12.13: Sensitivity function for the system with ωc = 10, ζc = 0.707, ωo = 20,
ζo = 0.707 (solid) and with ωc = 10, ζc = 2.6 (dashed).

where np(s), nc(s), dp(s) and dc(s) are polynomials.

The complementary sensitivity function is

T (s) =
PC

1 + PC
=

np(s)nc(s)

dp(s)dc(s) + np(s)dp(s)
.

It is is 1 for low frequency and start to increase at its first zero which is
the process zero at s = 2, it increases further at the controller zero at
s = 3.9 and it does not start to decrease until the closed loop poles appear
at ωc = 10 and ωo = 20. We can thus conclude that there will be a peak in
the complementary sensitivity function. The magnitude of the peak depends
on the ratio of the zeros and the poles of the transfer function.

The peak of the complementary sensitivity function can be avoided by
assigning a closed loop zero close to the slow process zero. We can achieve
this by choosing ωc = 10 and ζc = 2.6 which gives the closed loop poles at
s = −2 and s = −50. The controller transfer function then becomes

C(s) =
3628s + 40000

s2 + 80.28s + 156.56
= 3628

s + 11.02

(s + 2)(s + 78.28)

The sensitivity functions are shown in dashed lines in Figure 12.13. The
controller gives the maximum sensitivities Ms = and Mt = which give a good
robustness. Notice that the controller has a pole at s = 2 which cancels the
slow process zero. The design can also be done simply by canceling the slow
stable process zero and designing the system for the simplified system. One
lesson from the example is that it is necessary to choose closed loop poles
that are equal to or close to slow stable process zeros. Another lesson is that
slow unstable process zeros impose limitations on the achievable bandwidth
as was already noted in Section 11.4.
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Fast Stable Process Poles

The next example shows the effect of fast stable poles.

Example 12.7 (Fast system poles). Consider PI control of a first order
system, where the process and the controller have the transfer functions

P (s) =
b

s + a
C(s) = k +

ki

s
.

The loop transfer function is

L(s) =
b(ks + ki)

s(s + a)

The closed loop characteristic polynomial is

s(s + a) + b(ks + ki) = s2 + (a + bk)s + ki

Let the desired closed loop characteristic polynomial be

(s + p1)(s + p2),

we find that the controller parameters are given by

k =
p1 + p2 − a

b
ki =

p1p2

b
.

The sensitivity functions are then

S(s) =
s(s + a)

(s + p1)(s + p2)
T (s) =

(p1 + p2 − a)s + p1p2

(s + p1)(s + p2)
.

Assume that the process pole a is much larger than the closed loop poles
p1 and p2, say a > p2 > p1. Notice that the proportional gain is negative
and that the controller has a zero in the left half plane if a > p1 + p2, an
indication that the system has bad properties..

Next consider the sensitivity function, which is 1 for high frequencies.
Moving from high to low frequencies we find that the sensitivity increases at
the process pole s = a. The sensitivity does not decrease until the closed loop
poles are reached resulting in a large sensitivity peak which is approximately
a/p2. The magnitude of the sensitivity function is shown in Figure 12.14
for a = b = 1, p1 = 0.05, p2 = 0.2. Notice the high sensitivity peak. For
comparison we have also shown the gain curve for the when the process pole
is slower than the process pole (a = b = a, p1 = 5, p2 = 200 The problem
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Figure 12.14: Gain curves for Bode plots of the sensitivity function S for designs
with p1 < p2 < a (left) and a < p1 < p2 (right). The full lines are the true
sensitivities and the dashed lines are the asymptotes

with the poor robustness can be avoided by choosing one closed loop pole
equal to the process pole, i.e. p2 = a. The controller gains then becomes

k =
p1

b
ki =

ap1

l
,

which means that the fast process pole is canceled by a controller zero. The
loop transfer function and the sensitivity functions are

L(s) =
bk

s
S(s) =

s

s + bk
T (s) =

bk

s + bk
.

The maximum sensitivities are less than 1 for all frequencies. ∇

Design Rules for Pole-Placement

Based on the insight gained from the examples it is now possible to obtain
design rules the give designs with good robustness. Consider the expres-
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sion (12.5) for the complementary sensitivity function. Let wgc be the de-
sired gain crossover frequency. Assume that the process has zeros which
are slower than ωgc. The complementary sensitivity function is one for low
frequencies and it increases for frequencies close to the process zeros unless
there is a closed loop pole in the neighborhood. To avoid large values of
the complementary sensitivity function we find that the closed loop system
should have poles close to or equal to the slow stable zeros. This means
that slow stable zeros should be canceled by controller poles. Since unsta-
ble zeros cannot be canceled slow stable zeros the presence of slow unstable
zeros means that achievable gain crossover frequency must be smaller than
the slowest unstable process zero, (see Section 11.3).

Now consider process poles that are faster than the desired gain crossover
frequency. Consider the expression (12.5) for the sensitivity function. The
sensitivity function is 1 for high frequencies. Moving from high to low fre-
quencies the sensitivity function increases at the fast process poles. Large
peaks can be obtained unless there are closed loop poles close to the fast
process poles. To avoid large peaks in the sensitivity the closed loop system
should be have poles close that matches the fast process poles. This means
that the controller should cancel the fast process poles by controller zeros.
Since unstable modes cannot be canceled, the presence of a fast unstable
pole implies that the gain crossover frequency must be sufficiently large,
(see Section 11.3).

To summarize, we obtain the following simple design rule: slow stable
process zeros should be matched slow closed loop poles and fast stable pro-
cess poles should be matched by fast process poles. Slow unstable process
zeros and fast unstable process poles impose severe limitations.

12.6 Design for Robust Performance

Control design is a rich problem where many factors have to be taken into
account. Typical requirements are that load disturbances should be attenu-
ated, the controller should only inject a moderate amount of measurement
noise, the output should follow variations in the command signal well and
the closed loop system should be insensitive to process variations. For the
system in Figure 12.9 these requirements can be captured by specifications
on the sensitivity functions S and T and the transfer functions Gyd, Gun,
Gyr and Gur. Notice that it is necessary to consider at least six transfer func-
tions, as discussed Section 11.1. The requirements are mutually conflicting
and it is necessary to make trade-offs. Attenuation of load disturbances will
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be improved if the bandwidth is increased but so will the noise injection.

It is highly desirable to have design methods that can guarantee ro-
bust performance. Such design methods did not appear until the late 1980.
There are many issues to consider in control design. It is interesting that
many design methods result in controllers having the same structure as the
controller based on state feedback and an observer.

Linear Quadratic Control LQG

One way to make the trade-off between attenuation of load disturbances and
injection of measurement noise is to design a controller which minimizes the
loss function

J =
1

T

∫ T

0
(y2(t) + ρu2(t))dt,

where ρ is a weighting parameters as discussed in Section 6.5. This loss
function gives a compromise between load disturbance attenuation and dis-
turbance injection because it balances control actions against deviations in
the output. If all state variables are measured, the controller is a state
feedback

u = K(xm − x).

The controller has the same form as the controller obtained by pole assign-
ment in Section 6.2. The controller gain is, however, obtained by solving
the optimization problem. It has been shown that this controller is very
robust. It has a phase margin of at least 60◦ and an infinite gain margin.
The controller is called a linear quadratic control or LQ control because the
process model is linear and the criterion is quadratic.

When all state variables are not measured, the state can be reconstructed
using an observer as discussed in Section 7.3. It is also possible to introduce
process disturbances and measurement noise explicitly in the model and to
reconstruct the states using a Kalman filter. The Kalman filter has the
same structure as the observer designed by pole assignment in Section 7.3,
but the observer gains L are now obtained by solving an optimization prob-
lem. The control law obtained by combining linear quadratic control with
a Kalman filter is called linear quadratic Gaussian control or LQG Control.
The Kalman filter is optimal when the models for load disturbances and
measurement noise are Gaussian.

It is interesting that the solution to the optimization problem leads to
a controller having the structure of a state feedback and an observer. The
state-feedback gains depend on the parameter ρ and the filter gains depend
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Figure 12.15: The left figure shows a general representation of a control problem
used in robust control. The input u represents the control signal, the input w
represents the external influences on the system, the output z is the generalized
error and the output y is the measured signal. The right figure shows the special
case of the system in Figure 12.9 where the reference signal is zero. In this case we
have w = (−n, d) and z = (x, v).

on the parameters in the model that characterize process noise and mea-
surement noise, see Section 7.4. There are efficient programs to compute
the feedback and observer gains.

The nice robustness properties of state feedback are unfortunately lost
when the observer is added. It is possible to choose parameters which give
closed loop systems with very poor robustness similar. We can thus con-
clude that it is a fundamental difference between using sensors for all states
and reconstructing the states using an observer.

H∞ Control
�

Robust control design is called H∞ for reasons that will be explained shortly.
The basic ideas are simple but the details are complicated and we will there-
fore just give the flavor of the results. A key idea is illustrated in Figure 12.15
where the closed loop system is represented by two blocks, the process P and
the controller C. The process P has two inputs, the control signal u which
can be manipulated by the controller, and the generalized disturbance w,
which represents all external influences, for example command signals and
disturbances. The process has two outputs, the generalized error z which
is a vector of error signals representing the deviation of signals from their
desired values and the measured signal y which can be used by the controller
to compute u. For a linear system and a linear controller the closed loop
system can be represented the linear system

z = H(P (s), C(s))w (12.16)
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which tells how the generalized error w depends on the generalized distur-
bances w. The control design problem is to find a controller C such that
the gain of the transfer function H is small even when the process has un-
certainties. There are many different ways to specify uncertainty and gain,
giving rise to different designs. The names H2 and H∞ control corresponds
to the corresponding norms ‖H‖2 and ‖H‖∞.

To illustrate the ideas we will consider a regulation problem for the
system in Figure 12.9. The reference signal is assumed to be zero and
the external signals are the load disturbance d and the measurement noise
n. The generalized input is w = (−n, d). (The negative sign of n is
not essential, it is chosen taken to get somewhat nicer equations.) The
generalized error is chosen as z = (x, v), where x is the process output, and
v which the part of the load disturbance that is not compensated by the
controller Figure 12.9. The closed loop system is thus modeled by

z =









x
v








= H(P, C)









−n
d








=
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1 + PC
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1 + PC
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1 + PC































−n
d








, (12.17)

which is the same as equation (12.16). A straight forward calculation shows
that

‖H(P, C))‖∞ = sup
ω

√

(1 + |P (jω)|2)(1 + |C(jω)|2)
|1 + P (jω)C(jω)| . (12.18)

There are efficient numerical methods to find a controller such that
‖H(P, T )‖∞ < γ, if such a controller exist. The best controller can then
be found by iterating on γ. The calculations can be made by solving al-
gebraic Riccati equations for example by using the command hinfsyn in
MATLAB. The controller has the same order as the process, and the same
structure as the controller based on state feedback and an observer, see
Figure 7.5 and Equation (7.17).

Notice that if we minimize ‖H(P, T )‖∞ we make sure that the transfer
functions Gyd = P/(1 + PC), that represent transmission of load distur-
bances to the output, and Gun = −C/(1 + PC), that represent how mea-
surement noise is transmitted to the control signal, are small. Since the
sensitivity and the complementary sensitivity functions are also elements of
H(P, C) we have also guarantees that the sensitivities are also less than γ.
The design methods thus balances performance and robustness.
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Figure 12.16: Block diagrams of a system with disturbance weighting.

Disturbance Weighting

Minimizing the gain ‖H(P, C)‖∞ means that gains of all individual signal
transmissions from disturbances to outputs are less that γ for all frequen-
cies of the input signals. The assumption that the disturbances are equally
important and that all frequencies are also equally important is not very
realistic, recall that load disturbances typically have low frequencies and
measurement noise is typically dominated by high frequencies. It is straight
forward to modify the problem so that disturbances of different frequencies
are given different emphasis, by introducing a weighting filter on the load
disturbance as shown in Figure 12.15. For example low frequency load dis-
turbances will be enhanced by choosing Wd as a low pass filter because the
actual load disturbance is Wdd̄. By using block diagram manipulation as
shown in Figure 12.16 we find that the system with frequency weighting is
equivalent to the system with no frequency weighting in Figure 12.16 and
the signals are related through

zw =









x
v̄





































1

1 + PwCw

Pw

1 + PwCw

Cw

1 + P + wCw

PwCw

1 + PwCw





































−n
d̄








= H(Pw, Cw)ww

(12.19)
where Pw = PWd and Cw = W−1

d C. The problem of finding a controller Cw

which minimizes the gain of H(Pw, Cw) is thus equivalent to the problem
without disturbance weighting, having obtained Cw the controller for the
original system is then C = WdC. Notice that if we introduce the frequency
weighting Wd = k/s we will automatically get a controller with integral
action.
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Robustness

There are strong robustness results associated with the H∞ controller. We
can understand this intuitively by comparing Equations (12.1) and (12.18).
We can then conclude that

‖H(P, C)‖∞ =
1

d(P,−1/C)
(12.20)

The inverse of ‖H(P, C)‖∞ is thus equal to chordal distance between P and
1/C. If we find a controller C with ‖H(P, C)‖∞ < γ this controller will
then stabilize any process P∗ such that d(P, P∗) < γ.

Limits of Robust Design

There is a limit to what can be achieved by robust design. In spite of the nice
properties of feedback there are situations where the process variations are
so large that it is not possible to find a linear controller which gives a robust
system with good performance. It is then necessary to use other controllers.
In some cases it is possible to measure a variable that is well correlated
with the process variations. Controllers for different parameters values can
then be designed and the corresponding controller can be chosen based on
the measured signal. This type of controller is called gain scheduling. The
cruise controller is a typical example where the measured signal could be
gear position and velocity. Gain scheduling is the common solution for high
performance aircraft where scheduling is done based on Mach number and
dynamic pressure. When using gain scheduling it is important to make sure
that switches between the controllers do not create undesirable transients.

If it is not possible to measure variables related to the parameters, it is
possible to use automatic tuning and adaptive control. In automatic tuning
process dynamics is measured by perturbing the system and a controller
is then designed automatically. Automatic tuning requires that parameters
remain constant, it has been widely applied for PID control, it is a reasonable
guess that, in the future, many controllers will have features for automatic
tuning. If parameters are changing it is possible to use adaptive methods
where where process dynamics is measured on-line.

12.7 Further Reading

Robustness was a central issue in classical control, see [Bod45]. It was
deemphasized in the euphoria of the development of design methods based
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on optimization. The strong robustness of LQ control based on state feed-
back shown by Anderson and Moore [?] contributed to the optimism. The
poor robustness of output feedback based on LQG was pointed out by Rosen-
brock [RM71], Horowitz [Hor75] and Doyle [Doy78] resulted in a renewed
interest in robustness. A major step forward was the development of design
methods where robustness was explicitly taken into account. Seminal work
by Zames [Zam81] was a major step forward. Robust control was origi-
nally developed using powerful results from the theory of complex variables
which unfortunately gave controllers of very high order. A major break
through was given by Doyle, Glover, Khargonekar, and Francis [DGKF89]
who showed that the solution could be obtained using Riccati equations and
that a controller of low order could be found. This paper led to an exten-
sive treatment of the so-called H∞ control [Fra87, MG90, DFT92, GL95,
ZDG96, SP96, Vin01]. A major advantage of the theory is that it combines
much of the intuition from servomechanism theory with sound numerical
algorithms based on numerical linear algebra and optimization. The results
have been extended to nonlinear systems by treating the design problem as
a game where the disturbances are generated by an adversary as described
in [BB91]. Auto-tuning and adaptive control are treated in [ÅW95] and
automatic tuning is dealt with in depth in [ÅH05].

12.8 Exercises

1. Show that an additive disturbance δadd, show that it can create RHP
zeros, but not RHP poles, and that a feedback disturbance δfbk can
create RHP poles but not RHP zeros. Also give constructive examples.

2. Compute the distance between the systems

P1(s) =
k

s + 1
, andP2(s) =

k

s − 11
.

for k = 1, 2 and 5.

3. The distance measure is closely related to closed loop systems with
unit feedback. Show how the measure can be modified to applied to
an arbitrary feedback.

4. Consider the Nyquist curve in Figure 12.12. Explain why part of the
curve is approximately a circle. Derive a formula for the center and
the radius and compare with the actual Nyquist curve.
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5. Consider the transfer functions in examples 12.2 and 12.3. Compute
the distance measure δ(P1, P1) in both cases. Repeat the calculations
when the controller is C = 0.1.

6. (Ideal Delay Compensator) Consider a process whose dynamics is a
pure time delay, the transfer function is P (s) = e−s. The ideal delay
compensator is a controller with the transfer function C(s) = 1/(1 −
e−s). Show that the sensitivity functions are T (s) = e−s and S(s) =
1− e−s and that the closed loop system will be unstable for arbitrary
small changes in the delay.

7. Let P and C be matrices whose entries are complex numbers, show
that the singular values of the matrix

H(P, C) =



















1

1 + PC

P

1 + PC
C

1 + PC

PC

1 + PC



















are σ1 = 0 and σ2 = supω

√

(1 + |P (jω)|2)(1 + |C(jω)|2)
|1 + P (jω)C(jω)

.

8. Show that

sup
w

|1 + P (jω)C(jω)|
√

(1 + |P (jω)|2)(1 + |C(jω)|2)
= d(P,−1/C)


