
Chapter 7

Output Feedback

There are none.

Abstract for “Gauranteed Margins for LQG Regulators”, John Doyle, 1978 [Doy78].

In the last chapter we considered the use of state feedback to modify
the dynamics of a system through feedback. In many applications, it is not
practical to measure all of the states directly and we can measure only a
small number of outputs (corresponding to the sensors that are available).
In this chapter we show how to use output feedback to modify the dynamics
of the system, through the use of observers (also called “state estimators”).
We introduce the concept of observability and show that if a system is
observable, it is possible to recover the state from measurements of the
inputs and outputs to the system.

7.1 Observability

In Section 6.2 of the previous chapter it was shown that it is possible to
find a feedback that gives desired closed loop eigenvalues provided that the
system is reachable and that all states are measured. For many situations,
it is highly unrealistic to assume that all states are measured. In this section
we will investigate how the state can be estimated by using a mathematical
model and a few measurements. It will be shown that the computation of
the states can be done by a dynamical system called an observer.

Consider a system described by

dx

dt
= Ax + Bu

y = Cx + Du,
(7.1)
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Figure 7.1: Block diagram for an observer.

where x ∈ R
n is the state, u ∈ R the input, and y ∈ R the measured output.

We wish to estimate the state of the system from its inputs and outputs, as
illustrated in Figure 7.1. We assume that there is only one measured signal,
i.e. that the signal y is a scalar and that C is a (row) vector. This signal
may be corrupted by noise, n, although we shall start by considering the
noise-free case. We write x̂ for the state estimate given by the observer.

Definition 7.1 (Observability). A linear system is observable if for any
T > 0 it is possible to determine the state of the system x(T ) through
measurements of y(t) and u(t) on the interval [0, T ].

The problem of observability is one that has many important applica-
tions, even outside of feedback systems. If a system is observable, then there
are no “hidden” dynamics inside it; we can understand everything that is
going on through observation (over time) of the inputs and outputs. As
we shall see, the problem of observability is of significant practical interest
because it will tell if a set of sensors are sufficient for controlling a system.
Sensors combined with a mathematical model can also be viewed as a “vir-
tual sensor” that gives information about variables that are not measured
directly. The definition above holds for nonlinear systems as well, and the
results discussed here have extensions to the nonlinear case.

When discussing reachability in the last chapter we neglected the output
and focused on the state. Similarly, it is convenient here to initially neglect
the input and focus on the system

dx

dt
= Ax

y = Cx.
(7.2)

We wish to understand when it is possible to determine the state from
observations of the output.
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The output itself gives the projection of the state on vectors that are
rows of the matrix C. The observability problem can immediately be solved
if the matrix C is invertible. If the matrix is not invertible we can take
derivatives of the output to obtain

dy

dt
= C

dx

dt
= CAx.

From the derivative of the output we thus get the projection of the state on
vectors which are rows of the matrix CA. Proceeding in this way we get
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We thus find that the state can be determined if the matrix
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(7.4)

has n independent rows. It turns out that we need not consider any deriva-
tives higher than n− 1 (this is an application of the Cayley-Hamilton theo-
rem [Str88]).

The calculation can easily be extended to systems with inputs. The state
is then given by a linear combination of inputs and outputs and their higher
derivatives. We leave this as an exercise for the reader.

In practice, differentiation can give very large errors when there is mea-
surement noise and therefore the method sketched above is not particularly
practical. We will address this issue in more detail in the next section, but
for now we have the following basic result:

Theorem 7.1. A linear system of the form (7.1) is observable if and only
if the observability matrix Wo is full rank.

Proof. The sufficiency of the observability rank condition follows from the �
analysis above. To prove necessity, suppose that the system is observable
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but Wo is not full rank. Let v ∈ R
n, v 6= 0 be a vector in the null space of Wo,

so that Wov = 0. If we let x(0) = v be the initial condition for the system
and choose u = 0, then the output is given by y(t) = CeAtv. Since eAt can
be written as a power series in A and since An and higher powers can be
rewritten in terms of lower powers of A (by the Cayley-Hamilton theorem),
it follows that the output will be identically zero (the reader should fill in
the missing steps if this is not clear). However, if both the input and output
of the system are 0, then a valid estimate of the state is x̂ = 0 for all time,
which is clearly incorrect since x(0) = v 6= 0. Hence by contradiction we
must have that Wo is full rank if the system is observable.

Example 7.1 (Bicycle dynamics). To demonstrate the concept of observ-
ability, we consider the bicycle system, introduced in Section 3.2. Consider
the linearized model for the dynamics in equation (3.5), which has the form

J
d2ϕ

dt2
− Dv0

b

dδ

dt
= mghϕ +

mv2
0h

b
δ,

where ϕ is the tilt of the bicycle and δ is the steering angle. Taking the torque
on the handle bars as an input and the lateral deviation as the output, we
can write the dynamics in state space form as (Exercise 3.3)
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The observability of this system determines whether it is possible to deter-
mine the entire system state (tilt angle and tilt rate) from observations of
the input (steering angle) and output (vehicle position).

The observability matrix is
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and its determinant is
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.
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Figure 7.2: A non-observable system.

Under most choices of parameters, the determinant will be nonzero and
hence the system is observable. However, if the parameters of the system
are chosen such that

mv0h

D
=

√

mgh

J

then we see that Wo becomes singular and the system is not observable.
This case is explored in more detail in the exercises. ∇

Example 7.2 (Unobservable systems). It is useful to have an understanding
of the mechanisms that make a system unobservable. Such a system is
shown in Figure 7.2. The system is composed of two identical systems whose
outputs are added. It seems intuitively clear that it is not possible to deduce
the states from the output since we cannot deduce the individual output
contributions from the sum. This can also be seen formally (Exercise 1). ∇

As in the case of reachability, certain canonical forms will be useful in
studying observability. We define the observable canonical form to be the
dual of the reachable canonical form.

Definition 7.2 (Observable canonical form). A linear state space system is
in observable canonical form if its dynamics are given by
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Figure 7.3 shows a block diagram for a system in observable canonical
form. As in the case of reachable canonical form, we see that the coeffi-
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Figure 7.3: Block diagram of a system on observable canonical form.

cients in the system description appear directly in the block diagram. The
characteristic equation for a system in observable canonical form is given by

λ(s) = sn + a1s
n−1 + · · · + an−1s + an. (7.5)

It is possible to reason about the observability of a system in observable
canonical form by studying the block diagram. If the input u and the out-
put are available the state x1 can clearly be computed. Differentiating x1

we also obtain the input to the integrator that generates x1 and we can
now obtain x2 = ẋ1 + a1x1 − b1u. Proceeding in this way we can clearly
compute all states. The computation will however require that the signals
are differentiated.

We can now proceed with a formal analysis. The observability matrix
for a system in observable canonical form is given by
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where * represents as entry whose exact value is not important. The rows of
this matrix are linearly independent (since it is lower triangular) and hence
Wo is full rank. A straightforward but tedious calculation shows that the
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inverse of the observability matrix has a simple form, given by
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As in the case of reachability, it turns out that if a system is observable
then there always exists a transformation T that converts the system into
reachable canonical form (Exercise 3). This is very useful for proofs, since
it lets us assume that a system is in reachable canonical form without any
loss of generality.

7.2 State Estimation

Having defined the concept of observability, we now return to the question
of how to construct an observer for a system. We will look for observers
that can be represented as a linear dynamical system that takes the inputs
and outputs of the system we are observing and produces an estimate of
the system’s state. That is, we wish to construct a dynamical system of the
form

dx̂

dt
= Fx̂ + Gu + Hy,

where u and y are the input and output of the original system and x̂ ∈ R
n

is an estimate of the state with the property that x̂(t) → x(t) as t → ∞.

The Basic Observer

For a system governed by equation (7.1), we can attempt to determine the
state simply by simulating the equations with the correct input. An estimate
of the state is then given by

dx̂

dt
= Ax̂ + Bu. (7.6)

To find the properties of this estimate, introduce the estimation error

x̃ = x − x̂.

It follows from equations (7.1) and (7.6) that

dx̃

dt
= Ax̃.
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If matrix A has all its eigenvalues in the left half plane, the error x̃ will thus
go to zero and hence equation (7.6) is a dynamical system whose output
converges to the state of the system (7.1).

The observer given by equation (7.6) uses only the process input u; the
measured signal does not appear in the equation. We must also require
that the system is stable and essentially our estimator converges because
the state of both the observer and the estimator are going zero. This is not
very useful in a control design context since we want to have our estimate
converge quickly to a nonzero state, so that we can make use of it in our
controller. We will therefore attempt to modify the observer so that the
output is used and its convergence properties can be designed to be fast
relative to the system’s dynamics. This version will also work for unstable
systems.

Consider the observer

dx̂

dt
= Ax̂ + Bu + L(y − Cx̂). (7.7)

This can be considered as a generalization of equation (7.6). Feedback from
the measured output is provided by adding the term L(y − Cx̂), which is
proportional to the difference between the observed output and the output
that is predicted by the observer. To investigate the observer (7.7), form
the error x̃ = x − x̂. It follows from equations (7.1) and (7.7) that

dx̃

dt
= (A − LC)x̃.

If the matrix L can be chosen in such a way that the matrix A − LC has
eigenvalues with negative real parts, the error x̃ will go to zero. The con-
vergence rate is determined by an appropriate selection of the eigenvalues.

The problem of determining the matrix L such that A − LC has pre-
scribed eigenvalues is very similar to the eigenvalue assignment problem that
was solved in the previous chapter. In fact, since the eigenvalues of the ma-
trix and its transpose are the same, it is equivalent to search for LT such
that AT −CT LT has the desired eigenvalues. This is precisely the eigenvalue
assignment problem that we solved in the previous chapter, with Ã = AT ,
B̃ = CT and K̃ = LT . Thus, using the results of Theorem 6.3, we can have
the following theorem on observer design:

Theorem 7.2 (Observer design by eigenvalue assignment). Consider the
system given by

dx

dt
= Ax + Bu

y = Cx
(7.8)
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with one input and one output. Let λ(s) = sn + a1s
n−1 + · · · + an−1s + an

be the characteristic polynomial for A. If the system is observable then the
dynamical system

dx̂

dt
= Ax̂ + Bu + L(y − Cx̂) (7.9)

is an observer for the system, with L chosen as
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and the matrices Wo and W̃o given by
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The resulting observer error x̃ = x− x̂ is governed by a differential equation
having the characteristic polynomial

p(s) = sn + p1s
n−1 + · · · + pn.

The dynamical system (7.9) is called an observer for (the states of) the
system (7.8) because it will generate an approximation of the states of the
system from its inputs and outputs. This particular form of an observer
is a much more useful form than the one given by pure differentiation in
equation (7.3).

Interpretation of the Observer

The observer is a dynamical system whose inputs are the process input u
and process output y. The rate of change of the estimate is composed of two
terms. One term, Ax̂ + Bu, is the rate of change computed from the model
with x̂ substituted for x. The other term, L(y − ŷ), is proportional to the
difference e = y − ŷ between measured output y and its estimate ŷ = Cx̂.
The estimator gain L is a matrix that tells how the error e is weighted and
distributed among the states. The observer thus combines measurements
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Figure 7.4: Block diagram of the observer. Notice that the observer contains a copy
of the process.

with a dynamical model of the system. A block diagram of the observer is
shown in Figure 7.4.

Notice the similarity between the problems of finding a state feedback
and finding the observer. The key is that both of these problems are equiva-
lent to the same algebraic problem. In eigenvalue assignment it is attempted
to find K so that A−BK has given eigenvalues. For the observer design it
is instead attempted to find L so that A − LC has given eigenvalues. The
following equivalence can be established between the problems:

A ↔ AT

B ↔ CT

K ↔ LT

Wr ↔ W T
o

The observer design problem is often called the dual of the state feedback de-
sign problem. The similarity between design of state feedback and observers
also means that the same computer code can be used for both problems.

Computing the Observer Gain

The observer gain can be computed in several different ways. For simple
problems it is convenient to introduce the elements of L as unknown param-
eters, determine the characteristic polynomial of the observer and identify it
with the desired characteristic polynomial. Another alternative is to use the
fact that the observer gain can be obtained by inspection if the system is in
observable canonical form. The observer gain is then obtained by transfor-
mation to the canonical form. There are also reliable numerical algorithms,
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which are identical to the algorithms for computing the state feedback. The
procedures are illustrated by example.

Example 7.3 (Vehicle steering). Consider the normalized, linear model for
vehicle steering in Example 5.12. The dynamics relating steering angle u to
lateral path deviation y is given by the state space model

dx

dt
=









0 1
0 0








x +









α
1








u

y =


1 0


 x.

(7.11)

Recall that the state x1 represents the lateral path deviation and that x2

represents turning rate. We will now derive an observer that uses the system
model to determine turning rate from the measured path deviation.

The observability matrix is
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i.e., the identity matrix. The system is thus observable and the eigenvalue
assignment problem can be solved. We have
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which has the characteristic polynomial
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Assuming that it is desired to have an observer with the characteristic poly-
nomial

s2 + p1s + p2 = s2 + 2ζoωos + ω2
o ,

the observer gains should be chosen as

l1 = p1 = 2ζoωo

l2 = p2 = ω2
o .

The observer is then
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∇
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For larger systems, the place or acker commands can be used in MAT-
LAB. Note that these functions are the same as the ones used for eigenvalue
assignment with state feedback; for estimator design, one simply uses the
transpose of the dynamics matrix and the output matrix.

7.3 Control using Estimated State

In this section we will consider the same system as in the previous sections,
i.e., the state space system described by

dx

dt
= Ax + Bu

y = Cx.
(7.12)

We wish to design a feedback controller for the system where only the output
is measured. As before, we will be assume that u and y are scalars. We also
assume that the system is reachable and observable. In Chapter 6 we found
a feedback of the form

u = Kx + krr

for the case that all states could be measured and in Section 7.2 we have
developed an observer that can generate estimates of the state x̂ based
on inputs and outputs. In this section we will combine the ideas of these
sections to find a feedback that gives desired closed loop eigenvalues for
systems where only outputs are available for feedback.

If all states are not measurable, it seems reasonable to try the feedback

u = −Kx̂ + krr (7.13)

where x̂ is the output of an observer of the state, i.e.

dx̂

dt
= Ax̂ + Bu + L(y − Cx̂). (7.14)

Since the system (7.12) and the observer (7.14) both are of state dimen-
sion n, the closed loop system has state dimension 2n. The states of the
combined system are x and x̂. The evolution of the states is described by
equations (7.12), (7.13) and (7.14). To analyze the closed loop system, the
state variable x̂ is replaced by

x̃ = x − x̂. (7.15)



7.3. CONTROL USING ESTIMATED STATE 227

Subtraction of equation (7.14) from equation (7.12) gives

dx̃

dt
= Ax − Ax̂ − L(y − Cx̂) = Ax̃ − LCx̃ = (A − LC)x̃.

Returning to the process dynamics, introducing u from equation (7.13)
into equation (7.12) and using equation (7.15) to eliminate x̂ gives

dx

dt
= Ax + Bu = Ax − BKx̂ + Bkrr = Ax − BK(x − x̃) + Bkrr

= (A − BK)x + BKx̃ + Bkrr.

The closed loop system is thus governed by
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x
x̃








=









A − BK BK
0 A − LC

















x
x̃








+









Bkr

0








r. (7.16)

Notice that the state x̃, representing the observer error, is not affected by
the command signal r. This is desirable since we do not want the reference
signal to generate observer errors.

Since the dynamics matrix is block diagonal, we find that the character-
istic polynomial of the closed loop system is

λ(s) = det (sI − A + BK) det (sI − A + LC).

This polynomial is a product of two terms: the characteristic polynomial of
the closed loop system obtained with state feedback and the characteristic
polynomial of the observer error. The feedback (7.13) that was motivated
heuristically thus provides a very neat solution to the eigenvalue assignment
problem. The result is summarized as follows.

Theorem 7.3 (Eigenvalue assignment by output feedback). Consider the
system

dx

dt
= Ax + Bu

y = Cx.

The controller described by

u = −Kx̂ + krr

dx̂

dt
= Ax̂ + Bu + L(y − Cx̂)
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Figure 7.5: Block diagram of a control system that combines state feedback with
an observer.

gives a closed loop system with the characteristic polynomial

λ(s) = det (sI − A + BK) det (sI − A + LC).

This polynomial can be assigned arbitrary roots if the system is reachable
and observable.

The controller has a strong intuitive appeal: it can be thought of as
composed of two parts, one state feedback and one observer. The feedback
gain K can be computed as if all state variables can be measured. This
property is called the separation principle and it allows us to independently
solve for the state space controller and the state space estimator.

A block diagram of the controller is shown in Figure 7.5. Notice that
the controller contains a dynamical model of the plant. This is called the
internal model principle: the controller contains a model of the process being
controlled. Indeed, the dynamics of the controller is due to the observer and
can thus be viewed as a dynamical system with input y and output u:

dx̂

dt
= (A − BK − LC)x̂ + Ly

u = −Kx̂ + krr.
(7.17)
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Example 7.4 (Vehicle steering). Consider again the normalized, linear
model for vehicle steering in Example 5.12. The dynamics relating steering
angle u to lateral path deviation y is given by the state space model (7.11).
Combining the state feedback derived in Example 6.4 with the observer
determined in Example 7.3 we find that the controller is given by

dx̂

dt
= Ax̂ + Bu + L(y − Cx) =









0 1
0 0








x̂ +









0
1








u +









l1
l2








(y − x̂1)

u = −Kx̂ + krr = k1(r − x1) − k2x2

The controller is thus a dynamical system of second order. Elimination of
the variable u gives

dx̂

dt
= (A − BK − LC)x̂ + Ly + Bkrr

=









−l1 − αk1 1 − αk2

−k1 − l2 −k2








x̂ +









l1
l2








y +









α
1








k1r

u = −Kx̂ + krr = −


k1 k2



 x̂ + k1r.

The controller is a dynamical system of second order, with two inputs y and
r and one output u. ∇

7.4 Kalman Filtering ��

One of the principal uses of observers in practice is to estimate the state of
a system in the presence of noisy measurements. We have not yet treated
noise in our analysis and a full treatment of stochastic dynamical systems is
beyond the scope of this text. In this section, we present a brief introduction
to the use of stochastic systems analysis for constructing observers. We work
primarily in discrete time to avoid some of the complications associated
with continuous time random processes and to keep the mathematical pre-
requisites to a minimum. This section assumes basic knowledge of random
variables and stochastic processes.

Consider a discrete time, linear system with dynamics

xk+1 = Axk + Buk + Fvk

yk = Cxk + wk,
(7.18)
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where vk and wk are Gaussian, white noise processes satisfying

E{vk} = 0 E{wk} = 0

E{vkv
T
j } =

{

0 k 6= j

Rv k = j
E{wkw

T
j } =

{

0 k 6= j

Rw k = j

E{vkw
T
j } = 0.

(7.19)

We assume that the initial condition is also modeled as a Gaussian random
variable with

E{x0} = x0 E{x0x
T
0 } = P0. (7.20)

We wish to find an estimate x̂k that minimizes the mean square error
E{(xk − x̂k)(xk − x̂k)

T } given the measurements {y(δ) : 0 ≤ τ ≤ t}. We
consider an observer in the same basic form as derived previously:

x̂k+1 = Ax̂k + Buk + Lk(yk − Cx̂k). (7.21)

The following theorem summarizes the main result.

Theorem 7.4. Consider a random process xk with dynamics (7.18) and
noise processes and initial conditions described by equations (7.19) and (7.20).
The observer gain L that minimizes the mean square error is given by

Lk = AT PkC
T (Rw + CPkC

T )−1,

where
Pk+1 = (A − LC)Pk(A − LC)T + Rv + LRwLT

P0 = E{X(0)XT (0)}.
(7.22)

Before we prove this result, we reflect on its form and function. First,
note that the Kalman filter has the form of a recursive filter: given Pk =
E{EkE

T
k } at time k, can compute how the estimate and covariance change.

Thus we do not need to keep track of old values of the output. Furthermore,
the Kalman filter gives the estimate x̂k and the covariance PE,k, so we can
see how reliable the estimate is. It can also be shown that the Kalman filter
extracts the maximum possible information about output data. If we form
the residual between the measured output and the estimated output,

ek = yk − Cx̂k,

we can can show that for the Kalman filter the correlation matrix is

Re(j, k) = Wδjk.
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In other words, the error is a white noise process, so there is no remaining
dynamic information content in the error.

In the special case when the noise is stationary (Q, R constant) and if
Pk converges, then the observer gain is constant:

K = AT PCT (Rw + CPCT ),

where

P = APAT + Rv − APCT
(

Rw + CPCT
)

−1
CPAT .

We see that the optimal gain depends on both the process noise and the
measurement noise, but in a nontrivial way. Like the use of LQR to choose
state feedback gains, the Kalman filter permits a systematic derivation of
the observer gains given a description of the noise processes. The solution
for the constant gain case is solved by the dlqe command in MATLAB.

Proof (of theorem). We wish to minimize the mean square of the error,
E{(xk − x̂k)(xk − x̂k)

T }. We will define this quantity as Pk and then show
that it satisfies the recursion given in equation (7.22). By definition,

Pk+1 = E{xk+1x
T
k+1}

= (A − LC)Pk(A − LC)T + Rv + LRwLT

= APkA
T − APkC

T LT − LCAT + L(Rw + CPkC
T )LT

Letting Rǫ = (Rw + CPkC
T ), we have

Pk+1 = APkA
T − APkC

T LT − LCAT + LRǫL
T

= APkA
T +

(

L − APkC
T R−1

ǫ

)

Rǫ

(

L − APKCT R−1
ǫ

)T

− APkC
T R−1

ǫ CP T
k AT + Rw.

In order to minimize this expression, we choose L = APkC
T R−1

ǫ and the
theorem is proven.

The Kalman filter can also be applied to continuous time stochastic pro-
cesses. The mathematical derivation of this result requires more sophisti-
cated tools, but the final form of the estimator is relatively straightforward.

Consider a continuous stochastic system

ẋ = Ax + Bu + Fv E{v(s)vT (t)} = Q(t)δ(t − s)

y = Cx + w E{w(s)wT (t)} = R(t)δ(t − s)
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Assume that the disturbance v and noise w are zero-mean and Gaussian
(but not necessarily stationary):

pdf(v) =
1

n
√

2π
√

detQ
e−

1

2
vT Q−1v

pdf(w) = . . . (using R)

We wish to find the estimate x̂(t) that minimizes the mean square error
E{(x(t) − x̂(t))(x(t) − x̂(t))T } given {y(τ) : 0 ≤ τ ≤ t}.
Theorem 7.5 (Kalman-Bucy, 1961). The optimal estimator has the form
of a linear observer

˙̂x = Ax̂ + Bu + L(y − Cx̂)

where L(t) = P (t)CT R−1 and P (t) = E{(x(t) − x̂(t))(x(t) − x̂(t))T } and
satisfies

Ṗ = AP + PAT − PCT R−1(t)CP + FQ(t)F T

P (0) = E{x(0)xT (0)}

7.5 State Space Control Systems

In this section we consider a collection of additional topics on the design
and analysis of control systems using state space tools.

Computer Implementation

The controllers obtained so far have been described by ordinary differential
equations. They can be implemented directly using analog components,
whether electronic circuits, hydraulic valves or other physical devices. Since
in modern engineering applications most controllers are implemented using
computers we will briefly discuss how this can be done.

A computer controlled system typically operates periodically: every cy-
cle, signals from the sensors are sampled and converted to digital form by
the A/D converter, the control signal is computed, and the resulting output
is converted to analog form for the actuators (as shown in Figure 1.3 on
page 5). To illustrate the main principles of how to implement feedback in
this environment, we consider the controller described by equations (7.13)
and (7.14), i.e.,

u = −Kx̂ + krr

dx̂

dt
= Ax̂ + Bu + K(y − Cx̂).
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The first equation consists only of additions and multiplications and can
thus be implemented directly on a computer. The second equation has
to be approximated. A simple way is to approximate the derivative by a
difference

dx

dt
≈ x̂(tk+1) − x̂(tk)

h
= Ax̂(tk) + Bu(tk) + K(y(tk) − Cx̂(tk))

where tk are the sampling instants and h = tk+1− tk is the sampling period.
Rewriting the equation to isolate x(tk+1), we get

x̂(tk+1) = x̂(tk) + h
(

Ax̂(tk) + Bu(tk) + K(y(tk) − Cx̂(tk))
)

. (7.23)

The calculation of the estimated state at time tk+1 only requires addition
and multiplication and can easily be done by a computer. A section of
pseudo code for the program that performs this calculation is

% Control algorithm - main loop

r = adin(ch1) % read setpoint from ch1

y = adin(ch2) % get process output from ch2

u = C*xhat + Kr*r % compute control variable

daout(ch1, u) % set analog output on ch1

xhat = xhat + h*(A*x+B*u+L*(y-C*x)) % update state estimate

The program runs periodically at a fixed rate h. Notice that the number
of computations between reading the analog input and setting the analog
output has been minimized. The state is updated after the analog output
has been set. The program has an array of states, xhat, that represents the
state estimate. The choice of sampling period requires some care.

There are several practical issues that also must be dealt with. For ex-
ample it is necessary to filter a signal before it is sampled so that the filtered
signal has little frequency content above fs/2 where fs is the sampling fre-
quency. If controllers with integral action are used, it is also necessary to
provide protection so that the integral does not become too large when the
actuator saturates. This issue, called integrator windup, is studied in more
detail in Chapter 10. Care must also be taken so that parameter changes
do not cause disturbances.

A General Controller Structure
�

We now consider a general control structure that pulls together the various
results the the previous and current chapters. This structure is one that
appears in may places in control theory and is the heart of most modern
control systems.
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Figure 7.6: Block diagram of a controller based on a structure with two degrees
of freedom. The controller consists of a command signal generator, state feedback
and an observer.

We begin by generalizing the way we handle the reference input. So
far reference signals have been introduced simply by adding them to the
state feedback through a gain kr. A more sophisticated way of doing this
is shown by the block diagram in Figure 7.6, where the controller consists
of three parts: an observer that computes estimates of the states based on
a model and measured process inputs and outputs, a state feedback and
a trajectory generator that generates the desired behavior of all states xd

and a feedforward signal ud. The signal ud is such that it generates the
desired behavior of the states when applied to the system, under the ideal
conditions of no disturbances and no modeling errors. The controller is said
to have two degrees of freedom because the response to command signals
and disturbances are decoupled. Disturbance responses are governed by the
observer and the state feedback and the response to command signals is
governed by the trajectory generator (feedfoward).

We start with the full nonlinear dynamics of the process

ẋ = f(x, u)

y = h(x, u).
(7.24)

Assume that the trajectory generator is able to generate a desired trajectory
(xd, ud) that satisfies the dynamics (7.24) and satisfies r = h(xd, ud). To
design the controller, we construct the error system. We will assume for
simplicity that f(x, u) = f(x) + g(x)u (i.e., the system is nonlinear in the
state, but linear in the input; this is often the case in applications). Let
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e = x − xd, v = u − ud and compute the dynamics for the error:

ė = ẋ − ẋd = f(x) + g(x)u − f(xd) + g(xd)ud

= f(e + xd) − f(xd) + g(e + xd)(v + ud) − g(xd)ud

= F (e, v, xd(t), ud(t))

In general, this system is time varying.
For trajectory tracking, we can assume that e is small (if our controller

is doing a good job) and so we can linearize around e = 0:

ė ≈ A(t)e + B(t)v

where

A(t) =
∂F

∂e

∣

∣

∣

∣

(xd(t),ud(t))

B(t) =
∂F

∂v

∣

∣

∣

∣

(xd(t),ud(t)

.

It is often the case that A(t) and B(t) depend only on xd, in which case it
is convenient to write A(t) = A(xd) and B(t) = B(xd).

Assume now that xd and ud are either constant or slowly varying (with
respect to the performance criterion). This allows us to consider just the
(constant) linear system given by (A(xd), B(xd)). If we design a state feed-
back controller K(xd) for each xd, then we can regulate the system using
the feedback

v = K(xd)e.

Substituting back the definitions of e and v, our controller becomes

u = K(xd)(x − xd) + ud

This form of controller is called a gain scheduled linear controller with feed-
forward ud.

Finally, we consider the observer. We can use the full nonlinear dynamics
for the prediction portion of the observer and the linearized system for the
correction term:

˙̂x = f(x̂, u) + L(x̂)(y − h(x̂, u))

where L(x̂) is the observer gain obtained by linearizing the system around
the currently estimate state. This form of the observer is known as an
extended Kalman filter and has proven to be a very effective means of esti-
mating the state of a nonlinear system.

To get some insight into the overall behavior of the system, we consider
what happens when the command signal is changed. To fix the ideas let us
assume that the system is in equilibrium with the observer state x̂ equal to
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the process state x. When the command signal is changed a feedforward
signal ud(t) is generated. This signal has the property that the process
output gives the desired state xd(t) when the feedforward signal is applied
to the system. The process state changes in response to the feedforward
signal. The observer tracks the state perfectly because the initial state was
correct. The estimated state x̂ will thus be equal to the desired state xd and
the feedback signal L(xd− x̂) is zero. If there are some disturbances or some
modeling errors the feedback signal will be different from zero and attempt
to correct the situation.

The controller given in Figure 7.6 is a very general structure. There
are many ways to generate the feedforward signal and there are also many
different ways to compute the feedback gain K and the observer gain L.
Note that once again the internal model principle applies: the controller
contains a model of the system to be controlled.

The Kalman Decomposition
�

In this chapter and the previous one, we have seen that two fundamental
properties of a linear input/output system are reachability and observability.
It turns out that these two properties can be used to classify the dynamics
of a system. The key result is Kalman’s decomposition theorem, which
says that a linear system can be divided into four subsystems: Sro which
is reachable and observable, Srō which is reachable but not observable, Sr̄o

which is not reachable but is observable, and Sr̄ō which is neither reachable
nor observable.

We will first consider this in the special case of systems where the matrix
A has distinct eigenvalues. In this case we can find a set of coordinates such
that the A matrix is diagonal and, with some additional reordering of the
states, the system can be written as

dz

dt
=
























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
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
















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0
0

























u

y =


γro 0 γr̄o 0


 z + Du.

All states zk such that βk 6= 0 are controllable and all states such that γk 6= 0
are observable. The frequency response of the system is given by

G(s) = γro(sI − Aro)
−1βro + D
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Figure 7.7: Kalman’s decomposition of a linear system with distinct eigenvalues.

and it is uniquely given by the subsystem that is reachable and observable.
Thus from the input/output point of view, it is only the reachable and
observable dynamics that matter. A block diagram of the system illustrating
this property is given in Figure 7.7.

The general case of the Kalman decomposition is more complicated and
requires some additional linear algebra. Introduce the reachable subspace
Xr which is the linear subspace spanned by the columns of the reachability
matrix Wr. The state space is the direct sum of Xr and another linear
subspace Xr̄. Notice that Xr is unique but that Xr̄ can be chosen in many
different ways. Choosing coordinates with xr ∈ Xr and xr̄ ∈ Xr̄ the system
equations can be written as

d

dt
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
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






u, (7.25)

where the states xr are reachable and xr̄ are non-reachable.

Introduce the unique subspace Xō of non-observable states. This is the
right null space of the observability matrix Wo. The state space is the direct
sum of Xō and the non-unique subspace Xo. Choosing a coordinate system
with xo ∈ Xo and xō ∈ Xō the system equations can be written as

d

dt
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xō









y =


C1 0












xo

xō
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
,

(7.26)
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Figure 7.8: Kalman’s decomposition of a linear system with general eigenvalues.

where the states xo are observable and xō are not observable.
The intersection of two linear subspaces is also a linear subspace. In-

troduce Xrō as the intersection of Xr and Xō and the complementary linear
subspace Xro, which together with Xrō spans Xr. Finally, we introduce the
linear subspace Xr̄o which together with Xrō, Xrō and Xrō spans the full
state space. Notice that the decomposition is not unique because only the
subspace Xrō is unique.

Combining the representations (7.25) and (7.26) we find that a linear
system can be transformed to the form
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(7.27)

where the state vector has been partitioned as

x =
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A block diagram of the system is shown in Figure 7.8. By tracing the
arrows in the diagram we find that the input influences the systems Sro and
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Sr̄o and that the output is influenced by Sro and Sr̄o. The system Sr̄ō is
neither connected to the input nor the output. The frequency response of
the system is thus

G(s) = C1(sI − A11)
−1B1, (7.28)

which is the dynamics of the reachable and observable subsystem Sro.

7.6 Further Reading

The notion of observability is due to Kalman [Kal61b] and, combined with
the dual notion of reachability, it was a major stepping stone toward estab-
lishing state space control theory beginning in the 1960s. For linear systems
the output is a projection of the state and it may seem unnecessary to esti-
mate the full state since a projection is already available. Luenberger [Lue71]
constructed an reduced order observer that only reconstructs the state that
is not measured directly.

The main result of this chapter is the general controller structure in Fig-
ure 7.6. This controller structure emerged as a result of solving optimization
problems. The observer first appeared as the Kalman filter which was also
the solution to an optimization problem [Kal61a, KB61]. It was then shown
that the solution to an optimization with output feedback could be obtained
by combining a state feedback with a Kalman filter [JT61, GF71]. Later
it was found that the controller with the same structure also emerged as
solutions of other simpler deterministic control problems like the ones dis-
cussed in this chapter [?, ?]. Much later it was shown that solutions to
robust control problems also had a similar structure but with different ways
of computing observer and state feedback gains [DGKF89]. The material is
now an essential part of the tools in control.

A more detailed presentation of stochastic control theory is given in [Åst70].

7.7 Exercises

1. Show that the system depicted in Figure 7.2 is not observable.

2. Consider a system under a coordinate transformation z = Tx, where
T ∈ R

n×n is an invertible matrix. Show that the observability ma-
trix for the transformed system is given by W̃o = WoT

−1 and hence
observability is independent of the choice of coordinates.
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3. Show that if a system is observable, then there exists a change of
coordinates z = Tx that puts the transformed system into reachable
canonical form.


