
Chapter 2

System Modeling

... I asked Fermi whether he was not impressed by the agreement between

our calculated numbers and his measured numbers. He replied, “How many

arbitrary parameters did you use for your calculations?” I thought for a

moment about our cut-off procedures and said, “Four.” He said, “I remember

my friend Johnny von Neumann used to say, with four parameters I can fit

an elephant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for meson-proton
scattering to Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamics used to answer
questions via analysis and simulation. The model we choose depends on the
questions we wish to answer, and so there may be multiple models for a single
physical system, with different levels of fidelity depending on the phenomena
of interest. In this chapter we provide an introduction to the concept of
modeling, and provide some basic material on two specific methods that are
commonly used in feedback and control systems: differential equations and
difference equations.

2.1 Modeling Concepts

A model is a mathematical representation of a physical, biological or in-
formation system. Models allow us to reason about a system and make
predictions about how a system will behave. In this text, we will mainly
be interested in models of dynamical systems describing the input/output
behavior of systems and often in so-called “state space” form.

Roughly speaking, a dynamical system is one in which the effects of
actions do not occur immediately. For example, the velocity of a car does not
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change immediately when the gas pedal is pushed nor does the temperature
in a room rise instantaneously when a heater is switched on. Similarly,
a headache does not vanish right after an aspirin is taken, requiring time
to take effect. In business systems, increased funding for a development
project does not increase revenues in the short term, although it may do so
in the long term (if it was a good investment). All of these are examples of
dynamical systems, in which the behavior of the system evolves with time.

Dynamical systems can be viewed in two different ways: the internal
view or the external view. The internal view attempts to describe the in-
ternal workings of the system and originates from classical mechanics. The
prototype problem was describing the motion of the planets. For this prob-
lem it was natural to give a complete characterization of the motion of all
planets. This involves careful analysis of the effects of gravitational pull and
the relative positions of the planets in a system. A major tool in the internal
view is differential equations.

The other view on dynamics originated in electrical engineering. The
prototype problem was to describe electronic amplifiers, where it was natural
to view an amplifier as a device that transforms input voltages to output
voltages and disregard the internal details of the amplifier. This resulted in
the input/output, or external, view of systems. For this type of model, much
more emphasis is placed on how a system is driven through and external
input and how the system evolves in terms of a fixed set of sensed (or
output) measurements. A major tool in the external view is the frequency
response.

The two different views have been amalgamated in control theory. Mod-
els based on the internal view are called internal descriptions, state models,
or white box models. The external view is associated with names such as
external descriptions, input/output models or black box models. In this
book we will mostly use the terms state models and input/output models.

In the remainder of this section we provide an overview of some of the
key concepts in modeling. The mathematical details introduced here are
explored more fully in the remainder of the chapter.

The Heritage of Mechanics

The study of dynamics originated in the attempts to describe planetary
motion. The basis was detailed observations of the planets by Tycho Brahe
and the results of Kepler, who found empirically that the orbits of the planets
could be well described by ellipses. Newton embarked on an ambitious
program to try to explain why the planets move in ellipses and he found that
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Figure 2.1: Mass and spring system, with nonlinear damping. The position of the
mass is denoted by q, with q = 0 corresponding to the rest position of the spring.

the motion could be explained by his law of gravitation and the formula that
force equals mass times acceleration. In the process he also invented calculus
and differential equations. Newton’s result was the first example of the idea
of reductionism, i.e. that seemingly complicated natural phenomena can be
explained by simple physical laws. This became the paradigm of natural
science for many centuries.

One of the triumphs of Newton’s mechanics was the observation that the
motion of the planets could be predicted based on the current positions and
velocities of all planets. It was not necessary to know the past motion. The
state of a dynamical system is a collection of variables that characterizes the
motion of a system completely for the purpose of predicting future motion.
For a system of planets the state is simply the positions and the velocities
of the planets. We call the set of all possible states the state space.

A common class of mathematical models for dynamical systems is ordi-
nary differential equations (ODEs). In mechanics, one of the simplest such
differential equation is that of a mass and spring system, with damping:

mq̈ + c(q̇) + kq = 0. (2.1)

This system is illustrated in Figure 2.1. The variable q ∈ R represents the
position of the mass m with respect to its rest position. We use the notation
q̇ to denote the derivative of q with respect to time (i.e., the velocity of the
mass) and q̈ to represent the second derivative (acceleration). The spring is
assumed to be a satisfy Hooke’s law, which says that the force is proportional
to the displacement. The friction element (damper) is taken as a nonlinear
function, c(q̇), which can model effects such as stiction and viscous drag. The
position q and velocity q̇ represent the instantaneous “state” of the system.
We say that this system is a second order system since the dynamics depend
on the second derivative of q.
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Figure 2.2: Illustration of a state model. A state model gives the rate of change of
the state as a function of the state. The plot on the left shows the evolution of the
state as a function of time. The plot on the right shows the evolution of the states
relative to each other, with the velocity of the state denoted by arrows.

The evolution of the position and velocity can be described using either
a time plot or a phase plot, both of which are shown in Figure 2.2. The
time plot, on the left, shows the values of the individual states as a function
of time. The phase plot, on the right, shows the vector field for the system,
which gives the state velocity (represented as an arrow) at every point in
the state space. In addition, we have superimposed the traces of some of
the states from different conditions. The phase plot gives a strong intuitive
representation of the equation as a vector field or a flow. While systems of
second order (two states) can be represented in this way, it is unfortunately
difficult to visualize equations of higher order using this approach.

The ideas of dynamics and state have had a profound influence on phi-
losophy, where they inspired the idea of predestination. If the state of a
natural system is known at some time, its future development is completely
determined. However, we know that for many natural systems it can be
impossible to make predications of the detailed behavior of the system far
into the future. This problem has been resolved in part by the advent of
the theory of chaos. As the development of dynamics continued in the 20th
century, it was discovered that there are simple dynamical systems that are
extremely sensitive to initial conditions; small perturbations may lead to
drastic changes in the behavior of the system. The behavior of the system
could also be extremely complicated. The emergence of chaos thus resolved
the problem of determinism: even if the solution is uniquely determined by
the initial conditions, in practice it can be impossible to make predictions
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Figure 2.3: Illustration of the input/output view of a dynamical system. The figure
on the left shows a detailed circuit diagram for an electronic amplifier; the one of
the right its representation as a block diagram.

because of the sensitivity of these initial conditions.

The differential equation (2.1) is called an autonomous system because
there are no external influences. Such a model is natural to use for celestial
mechanics, because it is difficult to influence the motion of the planets. In
many examples, it is useful to model the effects of external disturbances
or controlled forces on the system. One way to capture this is to replace
equation (2.1) by

mq̈ + c(q̇) + kq = u (2.2)

where u represents the effect of external influences. The model (2.2) is called
a forced or controlled differential equation. The model implies that the rate
of change of the state can be influenced by the input, u(t). Adding the input
makes the model richer and allows new questions to be posed. For example,
we can examine what influence external disturbances have on the trajectories
of a system. Or, in the case when the input variable is something that can
be modulated in a controlled way, we can analyze whether it is possible to
“steer” the system from one point in the state space to another through
proper choice of the input.

The Heritage of Electrical Engineering

A very different view of dynamics emerged from electrical engineering, where
the design of electronic amplifiers led to a focus on input/output behavior.
A system was considered as a device that transformed inputs to outputs,
as illustrated in Figure 2.3. Conceptually an input/output model can be
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viewed as a giant table of inputs and outputs. Given an input signal u(t),
the model should produce the resulting output y(t).

The input/output framework is used in many engineering systems since
it allows us to decompose a problem into individual components, connected
through their inputs and outputs. Thus, we can take a complicated system
such as a radio or a television and break it down into manageable pieces,
such as the receiver, demodulator, amplifier and speakers. Each of these
pieces has a set of inputs and outputs and, through proper design, these
components can be interconnected to form the entire system.

The input/output view is particularly useful for the special class of linear,

time-invariant systems. This term will be defined more carefully later in
this chapter, but roughly speaking a system is linear if the superposition
(addition) of two inputs yields an output which is the sum of the outputs
that would correspond to individual inputs being applied separately. A
system is time-invariant if the output response for a given input does not
depend on when that input is applied. (Chapter 5 provides a much more
detailed analysis of linear systems.)

Many electrical engineering systems can be modeled by linear, time-
invariant systems and hence a large number of tools have been developed
to analyze them. One such tool is the step response, which describes the
relationship between an input that changes from zero to a constant value
abruptly (a “step” input) and the corresponding output. As we shall see in
the latter part of the text, the step response is extremely useful in character-
izing the performance of a dynamical system and it is often used to specify
the desired dynamics. A sample step response is shown in Figure 2.4a.

Another possibility to describe a linear, time-invariant system is to rep-
resent the system by its response to sinusoidal input signals. This is called
the frequency response and a rich powerful theory with many concepts and
strong, useful results has emerged. The results are based on the theory of
complex variables and Laplace transforms. The basic idea behind the fre-
quency response is that we can completely characterize the behavior of a
system by its steady state response to sinusoidal inputs. Roughly speaking,
this is done by decomposing any arbitrary signal into a linear combination
of sinusoids (e.g., by using the Fourier transform) and then using linearity to
compute the output by combining the response to the individual frequencies.
A sample frequency response is shown in Figure 2.4b.

The input/output view lends itself naturally to experimental determi-
nation of system dynamics, where a system is characterized by recording
its response to a particular input, e.g. a step or a sweep across a range of
frequencies.
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Figure 2.4: Input/output response of a linear system. The step response (a) shows
the output of the system due to an input that changes from 0 to 1 at time t = 5
s. The frequency response (b) shows the amplitude gain and phase change due to
a sinusoidal input at different frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach to
dynamics was strongly influenced by the electrical engineering (input/output)
view. A second wave of developments in control, starting in the late 1950s,
was inspired by mechanics, where the state space perspective was used. In
addition, there was a shift over this period from autonomous systems (with
no inputs) to those where inputs to the process were available to modify the
dynamics of the process. The emergence of space flight is a typical example,
where precise control of the orbit is essential.

The models from mechanics were thus modified to include external con-
trol forces and sensors, and more general forms of equations were considered.
In control, the model given by equation (2.2) was replaced by

dx

dt
= f(x, u)

y = h(x, u),
(2.3)

where x is a vector of “state” variables, u is a vector of control signals, and
y a vector of measurements. As before, ẋ represents the derivative of x with
respect to time, now considered as a vector, and f and h are mappings of
their arguments to vectors of the appropriate dimension.

This viewpoint has added to the richness of the classical problems and
led to many new concepts. For example it is natural to ask if possible
states x can be reached with the proper choice of u (reachability) and if
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the measurement y contains enough information to reconstruct the state
(observability) (these topics will be addressed in greater detail in Chapters 6
and 7).

A final development in building the control point of view was the emer-
gence of disturbance and model uncertainty as critical elements in the theory.
The simple way of modeling disturbances as deterministic signals like steps
and sinusoids has the drawback that such signals can be predicted precisely.
A much more realistic approach is to model disturbances like random signals.
This viewpoint gives a natural connection between prediction and control.
The dual views of input/output representations and state space representa-
tions are particularly useful when modeling uncertainty, since state models
are very convenient to describe a nominal model but uncertainties are eas-
ier to describe using input/output models (often via a frequency response
description). Uncertainty will be a constant theme throughout the text and
will be studied in particular detail in Chapter 12.

An interesting experience in design of control system is that feedback
systems can often be analyzed and designed based on comparatively simple
models. The reason for this is the inherent robustness of feedback systems.
However, other uses of models may require more complexity and more accu-
racy. One example is feedforward control strategies, where one uses a model
to pre-compute the inputs that will cause the system to respond in a certain
way. Another area is in system validation, where one wishes to verify that
the detailed response of the system performs as it was designed. Because of
these different uses of models, it is therefore common to use a hierarchy of
models having different complexity and fidelity.

Multi-Domain Modeling

Modeling is an essential element of many disciplines, but traditions and
methods from individual disciplines in can be very different from each other,
as illustrated by the previous discussion of mechanical and electrical engi-
neering. A difficulty in systems engineering is that it is frequently necessary
to deal with heterogeneous systems from many different domains, including
chemical, electrical, mechanical and information systems.

To deal with such multi-domain systems, we start by cutting a system
into smaller subsystems. Each subsystem is modeled either by balance equa-
tions for mass, energy, and momentum or by appropriate descriptions of the
information processing in the subsystem. The behavior at the interfaces is
captured by describing how the variables of the subsystem behave when the
subsystems are interconnected. These interfaces often act by constraining
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variables within the individual subsystems to be equal (such as mass, energy
or momentum fluxes). The complete model is then obtained by combining
the descriptions of the subsystems and the interfaces.

Using this methodology it is possible to build up libraries of subsystems
that correspond to physical, chemical and informational components. The
procedure mimics the engineering approach where systems are built from
subsystems that are themselves built from smaller components. As experi-
ence is gained, the components and their interfaces can be standardized and
collected in model libraries. In practice, it takes several iterations to obtain
a good library that can be reused for many applications.

State models or ordinary differential equations are not suitable for com-
ponent based modeling of this form because states may disappear when
components are connected. This implies that the internal description of a
component may change when it is connected to other components. As an il-
lustration we consider two capacitors in an electrical circuit. Each capacitor
has a state corresponding to the voltage across the capacitors, but one of the
states will disappear if the capacitors are connected in parallel. A similar
situation happens with two rotating inertias, each of which are individually
modeled using the the angle of rotation and the angular velocity. Two states
will disappear when the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations by dif-

ferential algebraic equations, which have the form

F (z, ż) = 0

where z ∈ R
n. A simple special case is

ẋ = f(x, y), g(x, y) = 0 (2.4)

where z = (x, y) and F = (ẋ−f(x, y), g(x, y)). The key property is that the
derivative ż is not given explicitly and there may be pure algebraic relations
between the components of the vector z.

A differential equation is an imperative description: if it tells how to
calculate ẋ from x. The differential algebraic equation is a declarative de-
scription: it gives a relation between z and ż, without explicitly describing
how to compute ż. The model (2.4) captures the examples of the parallel
capacitors and the linked rotating inertias. For example, when two capaci-
tors are connected we simply include the algebraic equation expressing that
the voltages across the capacitors are the same.

A practical difficulty with component-based declarative descriptions is a
that the model may contain many auxiliary variables. This was a severe lim-
itation for hand calculations, but fortunately there are methods for symbolic
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calculation that can be used to eliminate the auxiliary variables. Symbolic
calculations can also be used to transform and simplify the models.

Modelica is a language that has been developed to support component
based modeling. Differential algebraic equations are used as the basic de-
scription, object-oriented programming is used to structure the models.
Modelica is used to model the dynamics of technical systems in domains
such as, mechanical, electrical, thermal, hydraulic, thermo-fluid, and con-
trol subsystems. Modelica is intended to serve as a standard format so that
models arising in different domains can be exchanged between tools and
users. A large set of free and commercial Modelica component libraries
are available and are utilized by a growing number of people in indus-
try, research and academia. For further information about Modelica, see
http://www.modelica.org.

2.2 State Space Models

In this section we introduce the two primary forms of models that we use
in this text: differential equations and difference equations. Both of these
make use of the notions of state, inputs, outputs and dynamics to describe
the behavior of a system.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the past of
a system for the purpose of prediction the future. For an engineering system
the state is composed of the variables required to account for storage of mass,
momentum and energy. A key issue in modeling is to decide how accurately
this storage has to be represented. The state variables are gathered in a
vector, x ∈ R

n, called the state vector. The control variables are represented
by another vector u ∈ R

p and the measured signal by the vector y ∈ R
q. A

system can then be represented by the differential equation

dx

dt
= f(x, u)

y = h(x, u),
(2.5)

where f : R
n × R

p → R
n and h : R

n × R
p → R

q are smooth mappings. We
call a model of this form a state space model.

The dimension of the state vector is called the order of the system.
The system is called time-invariant because the functions f and g do not
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depend explicitly on time t. It is possible to have more general time-varying
systems where the functions do depend on time. The model thus consists
of two functions: the function f gives the velocity of the state vector as a
function of state x and control u, and the function g gives the measured
values as functions of state x and control u.

A system is called linear if the functions f and g are linear in x and u.
A linear state space system can thus be represented by

dx

dt
= Ax + Bu

y = Cx + Du,

where A, B, C and D are constant matrices. Such a system is said to be lin-
ear and time-invariant, or LTI for short. The matrix A is called the dynamics

matrix, the matrix B is called the control matrix, the matrix C is called the
sensor matrix and the matrix D is called the direct term. Frequently sys-
tems will not have a direct term, indicating that the control signal does not
influence the output directly.

A different form of linear differential equations, generalizing the second
order dynamics from mechanics, is an equation of the form

dnq

dtn
+ a1

dn−1q

dtn−1
+ · · · + anq = u, (2.6)

where t is the independent (time) variable, q(t) is the dependent (output)
variable, and u(t) is the input. This system is said to be an nth order system.
This system can be converted into state space form by defining
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With the appropriate definition of A, B, C and D, this equation is in linear
state space form.

An even more general system is obtained by letting the output be a
linear combination of the states of the system, i.e.

y = b1x1 + b2x2 + · · · + bnxn + du

This system can be modeled in state space as

d

dt
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x + du.

This particular form of a linear state space system is called reachable canon-
ical form and will be studied in more detail in later chapters.

Example 2.1 (Balance systems). An example of a class of systems that
can be modeled using ordinary differential equations is the class of “balance
systems.” A balance system is a mechanical system in which the center of
mass is balanced above a pivot point. Some common examples of balance
systems are shown in Figure 2.5. The Segway human transportation system
(Figure 2.5a) uses a motorized platform to stabilize a person standing on
top of it. When the rider leans forward, the vehicle propels itself along the
ground, but maintains its upright position. Another example is a rocket
(Figure 2.5b), in which a gimbaled nozzle at the bottom of the rocket is
used to stabilize the body of the rocket above it. Other examples of bal-
ance systems include humans or other animals standing upright or a person
balancing a stick on their hand.

Figure 2.5c shows a simplified diagram for a balance system. To model
this system, we choose state variables that represent the position and veloc-
ity of the base of the system, p and ṗ, and the angle and angular rate of the
structure above the base, θ and θ̇. We let F represent the force applied at
the base of the system, assumed to be in the horizontal direction (aligned
with p), and choose the position and angle of the system as outputs. With
this set of definitions, the dynamics of the system can be computed using
Newtonian mechanics and has the form









(M + m) −ml cos θ
−ml cos θ (J + ml2)

















p̈

θ̈








+









cṗ + ml sin θ θ̇2

mgl sin θ + γθ̇








=









F
0








, (2.7)
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Figure 2.5: Balance systems: (a) Segway human transportation systems, (b) Saturn
rocket and (c) simplified diagram. Each of these examples uses forces at the bottom
of the system to keep it upright.

where M is the mass of the base, m and J are the mass and moment of
inertia of the system to be balanced, l is the distance from the base to
the center of mass of the balanced body, c and γ are coefficients of viscous
friction, and g is the acceleration due to gravity.

We can rewrite the dynamics of the system in state space form by defining
the state as x = (p, θ, ṗ, θ̇), the input as u = F and the output as y = (p, θ).
If we define the total mass and total inertia as

Mt = M + m Jt = J + ml2,

respectively, the equations of motion then become

d

dt
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In many cases, the angle θ will be very close to 0 and hence we can
approximate sin θ ≈ θ and cos θ ≈ 1. Furthermore, if θ̇ is small, we can
ignore quadratic and higher terms in θ̇. Substituting these approximations
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into our equations, we see that we are left with a linear state space equation
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x,

where µ = MtJt − m2l2g. ∇
Example 2.2 (Inverted pendulum). A variation of this example is one in
which the location of the base, p, does not need to be controlled. This hap-
pens, for example, if we are only interested in stabilizing a rocket’s upright
orientation, without worrying about the location of base of the rocket. The
dynamics of this simplified system is given by

d

dt
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mgl

Jt
sin θ − γ

Jt
θ̇ + l

Jt
cos θ u















y =


1 0


 x,

(2.8)

where γ is the coefficient of rotational friction, Jt = J + ml2 and u is the
force applied at the base. This system is referred to as an inverted pendulum.

∇

Difference Equations

In some circumstances, it is more natural to describe the evolution of a
system at discrete instants of time rather than continuously in time. If
we refer to each of these times by an integer k = 0, 1, 2, . . . , then we can
ask how the state of the system changes for each k. Just as in the case of
differential equations, we shall define the state to be those sets of variables
that summarize the past of the system for the purpose of predicting its
future. Systems described in this manner are referred to as discrete time

systems.
The evolution of a discrete time system can written in the form

xk+1 = f(xk, uk)

yk = h(xk, uk)
(2.9)
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where xk ∈ R
n is the state of the system at “time” k (an integer), uk ∈ R

m

is the input and yk ∈ R
p is the output. As before, f and h are smooth

mappings of the appropriate dimension. We call equation (2.9) a difference

equation since it tells us now xk+1 differs from xk. The state xk can either
be a scalar or a vector valued quanity; in the case of the latter we use
superscripts to denote a particular element of the state vector: xi

k is the
value of the ith state at time k.

Just as in the case of differential equations, it will often be the case that
the equations are linear in the state and input, in which case we can write
the system as

xk+1 = Axk + Buk

yk = Cxk + Duk.

As before, we refer to the matrices A, B, C and D as the dynamics matrix,
the control matrix, the sensor matrix and the direct term. The solution of
a linear difference equation with initial condition x0 and input u1, . . . , uT is
given by

xk = Akx0 +
k

∑

i=0

AiBui

yk = CAkx0 +
k

∑

i=0

CAiBui + Duk

(2.10)

Example 2.3 (Predator prey). As an example of a discrete time system,
we consider a simple model for a predator prey system. The predator prey
problem refers to an ecological system in which we have two species, one
of which feeds on the other. This type of system has been studied for
decades and is known to exhibit very interesting dynamics. Figure 2.6 shows
a historical record taken over 50 years in the population of lynxes versus
hares [Mac37]. As can been seen from the graph, the annual records of the
populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete
time model by keeping track of the rate of births and deaths of each species.
Letting H represent the population of hares and L represent the population
of lynxes, we can describe the state in terms of the populations at discrete
periods of time. Letting k be the discrete time index (e.g., the day number),
we can write

Hk+1 = Hk + br(u)Hk − aLkHk

Lk+1 = Lk − dfLk + aLkHk,
(2.11)

where br(u) is the hare birth rate per unit period and as a function of the
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Figure 2.6: Predator versus prey. The photograph shows a Canadian lynx and a
snowshoe hare. The graph on the right shows the populations of hares and lynxes
between 1845 and 1935 [MS93]. Photograph courtesy Rudolfo’s Usenet Animal
Pictures Gallery.

food supply u, df is the lynx death rate, and a is the interaction term. The
interaction term models both the rate at which lynxes eat hares and the
rate at which lynxes are produced by eating hares. This model makes many
simplifying assumptions—such as the fact that hares never die of old age
or causes other than being eaten—but it often is sufficient to answer basic
questions about the system.

To illustrate the usage of this system, we can compute the number of
lynxes and hares from some initial population. This is done by starting with
x0 = (H0, L0) and then using equation (2.11) to compute the populations
in the following year. By iterating this procedure, we can generate the
population over time. The output of this process for a specific choice of
parameters and initial conditions is shown in Figure 2.7. While the details
of the simulation are different from the experimental data (to be expected
given the simplicity of our assumptions), we see qualitatively similar trends
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Figure 2.7: A simulation of the predator prey model with a = 0.007, br(u) = 0.7
and d = 0.5.
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Figure 2.8: A driven mass spring system, with damping.

and hence we can use the model to help explore the dynamics of the system.
∇

Simulation and Analysis

State space models can be used to answer many questions. One of the most
common, as we saw in the previous examples, is to predict the evolution
of the system state from a given initial condition. While for simple mod-
els this can be done in closed form, more often it is accomplished through
computer simulation. One can also use state space models to analyze the
overall behavior of the system, without making direct use of simulation. For
example, we can ask whether a system that is perturbed from an equilib-
rium configuration will return to that configuration; such a system is said
to be stable. While one could in principle answer this question by simu-
lating many trajectories, it turns out that we can use analysis techniques
to answer this much more easily and completely. We illustrate some of the
concepts of simulation and analysis through a series of examples; a more
formal treatment is provided in the next chapter.

Example 2.4 (Damped spring mass system). Consider again the damped
spring mass system from Section 2.1, but this time with an external force
applied, as shown in Figure 2.8. We wish to predict the motion of the system
for a periodic forcing function, with a given initial condition, and determine
the amplitude, frequency, and decay rate of the resulting motion.

We choose to model the system using a linear ordinary differential equa-
tion. Using Hooke’s law to model the spring and assuming that the damper
exerts a force that is proportional to the velocity of the system, we have

mq̈ + cq̇ + kq = f(t), (2.12)
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where m is the mass, q is the displacement of the mass, c is the coefficient of
viscous friction, k is the spring constant and f is the applied force. In state
space form, using x = (q, q̇) as the state, u = f as the input and choosing
y = q as the output, we have

dx

dt
=









x2

− c
m

x2 − k
m

x1 + u/m









y = x1.

We see that this is a linear, second order differential equation with one input
and one output.

We now wish to compute the response of the system to an input of
the form u = A sin ωt. Although it is possible to solve for the response
analytically, we instead make use of computational approach that does not
rely on the specific form of this system. Consider the general state space
system

dx

dt
= f(x, u).

Given the state x at time t, we can approximate the value of the state at
a short time ǫ > 0 later by assuming that x and u are constant over the
interval ǫ. This gives us that

x(t + ǫ) = x(t) + ǫf(x(t), u(t)). (2.13)

Iterating this equation, we can thus solve for x as a function of time. This
approximation is known as Euler integration, and is in fact a difference
equation if we let ǫ represent the time increment and write xk = x(kǫ).
Although modern simulation tools use much more accurate methods than
Euler integration, it still illustrates some of the basic tradeoffs.

Returning to our specific example, Figure 2.9 shows the results of com-
puting x(t) using equation (2.13), along with the analytical computation.
We see that as h gets smaller, the compute solution converges to the exact
solution. The form of the solution is also worth noticing: after an initial
transient, the system settles into a period motion that is the same frequency
as the input term, but at a different amplitude and slightly shifted in time.
The portion of the response after the transient is called the steady state

response to the input. ∇

In addition to performing simulations, models can also be used to answer
other types of questions. Two that are central to the methods described in
this text are stability of an equilibrium point and the input/output frequency
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Figure 2.9: Simulation of the forced spring mass system with different simulation
time constants.

response. We illustrate these two computations through the examples below,
and return to the general computations in later chapters.

Example 2.5 (Stability). Consider the damped spring mass system given
in the previous example, but with no input forcing. The equations of motion
are given by

dx

dt
=









x2

− b
m

x2 − k
m

x1








, (2.14)

where x1 is the position of the mass (relative to the rest position) and x2 its
velocity. We wish to show that if the initial state of the system is away from
the rest position, the system will return to the rest position eventually (we
will later define this situation to mean that the rest position is asymptotically

stable). While we could heuristically show this by simulating many, many
initial conditions, we seek instead to prove that this is true for any initial
condition.

To do so, we construct a function V : R
n → R that maps the system

state to a positive real number. For mechanical systems, a convenient choice
is the energy of the system,

V (x) =
1

2
kx2

1 +
1

2
mẋ2

2. (2.15)

If we look at the time derivative of the energy function, we see that

dV

dt
= kx1ẋ1 + mx2ẋ2

= kx1x2 + mx2(−
b

m
x2 −

k

m
x1)

= −bx2
2,
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which is always either negative or zero. Hence V (x(t)) is never increasing
and, using a bit of analysis that we will see formally in the next chapter,
the individual states must remain bounded.

If we wish to show that the states eventually return to the origin, we
must use a more slightly more detailed analysis. Intuitively, we can reason
as follows: suppose that for some period of time, V (x(t)) stops decreasing.
Then it must be true that V̇ (x(t)) = 0, which in turn implies that x2(t) = 0
for that same period. In that case, ẋ2(t) = 0 and we can substitute into the
second line of equation (2.14) to obtain:

0 = ẋ2 = − b

m
x2 −

k

m
x1 =

k

m
x1.

Thus we must have that x1 also equals zero and so the only time that
V (x(t)) can stop decreasing is if the state is at the origin (and hence this
system is at its rest position). Since we know that V (x(t)) is never increasing
(since V̇ ≤ 0), we therefore conclude that the origin is stable (for any initial
condition.

This type of analysis, called Lyapunov analysis, is considered in detail
in Chapter 4 but shows some of the power of using models for analysis of
system properties. ∇
Example 2.6 (Frequency response). A second type of analysis that we can
perform with models is to compute the output of a system to a sinusoidal
input. We again consider the spring mass system, but this time keeping the
input and leaving the system in its original form:

mq̈ + cq̇ + kq = f(t). (2.16)

We wish to understand what the response of the system is to a sinusoidal
input of the form

f(t) = A sin ωt.

We will see how to do this analytically in Chapter 8, but for now we make
use of simulations to compute the answer.

We first begin with the observation that if q(t) is the solution to equa-
tion (2.16) with input f(t), then applying an input f ′(t) = 2f(t) will give
a solution q′(t) = 2q(t) (this is easily verified by substitution). Hence it
suffices to look at an an input with unit magnitude, A = 1. A second obser-
vation, which we will prove in Chapter 5, is that the long term response of
the system to a sinusoidal input is itself a sinusoid (at the same frequency)
and so the output has the form

q(t) = g(ω) sin(ωt + ϕ(ω)),
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Figure 2.10: A frequency response (magnitude only) computed by measuring the
response of individual sinusoids. The figure on the left shows the response of the
system to a number of different unit magnitude inputs (at different frequencies).
The figure on the right shows this same data in a different way, with the magnitude
of the response plotted as a function of the input frequency.

where g(ω) is the “gain” of the system and ϕ(ω) is the phase offset.

To compute the frequency response numerically, we can simply simulate
the system at a set of frequencies ω1, . . . , ωN and plot the gain and phase at
each of these frequencies. An example of this type of computation is shown
in Figure 2.10. ∇

Modeling from Experiments

Since control systems are provided with sensors and actuators it is also pos-
sible to obtain models of system dynamics from experiments on the process.
The models are restricted to input/output models since only these signals
are accessible to experiments, but modeling from experiments can also be
combined with modeling from physics through the use of feedback and in-
terconnection.

A simple way to determine a system’s dynamics is to observe the re-
sponse to a step change in the control signal. Such an experiment begins
by setting the control signal to a constant value, then when steady state
is established the control signal is changed quickly to a new level and the
output is observed. The experiment will thus directly give the step response
of the system. The shape of the response gives useful information about the
dynamics. It immediately gives an indication of the response time and it
tells if the system is oscillatory or if the response in monotone. By repeating
the experiment for different steady state values and different amplitudes of
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Figure 2.11: Step response for a spring mass system. The magnitude of the step
input is F0 = 20 N.

the change of the control signal we can also determine ranges where the
process can be approximated by a linear system.

Example 2.7 (Identification of a spring mass system). Consider the spring
mass system from Section 2.1, whose dynamics are given by

mq̈ + bq̇ + kq = u. (2.17)

We wish to determine the constants m, b and k by measuring the response
of the system to a step input of magnitude F0.

We will show in Chapter 5 that when b2 < 4km, the step response for
this system from the rest configuration is given by

q(t) =
F0

k

(

1 − e−
bt
2m

[

cos(
√

4km−b2

2m
t) − 1√

4km − b2
sin(

√
4km−b2

2m
t)

])

From the form of the solution, we see that the form of the response is
determined by the parameters of the system. Hence, by measuring certain
features of the step response we can determine the parameter values.

Figure 2.11 shows the response of the system to a step of magnitude F0 =
20 N, along with some measurements. We start by noting that the steady
state position of the mass (after the oscillations die down) is a function of
the spring constant, k:

q(∞) =
F0

k
, (2.18)

where F0 is the magnitude of the applied force (F0 = 1 for a unit step input).
The period of the oscillation can be measured between two peaks and must
satisfy

2π

T
=

√
4km − b2

2m
. (2.19)
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Finally, the rate of decay of the oscillations is given by the exponential factor
in the solution. Measuring the amount of decay between two peaks, we have
(using Exercise 2)

log(q(t1) − F0/k) − log(q(t2) − F0/k) =
b

2m
(t2 − t1) (2.20)

Using this set of three equations, we can solve for the parameters and deter-
mine that for the step response in Figure 2.11 we have m ≈ 250 kg, b ≈ 60
N-sec/m and k ≈ 40 N/m. ∇

Modeling from experiments can also be done using many other signals.
Sinusoidal signals are commonly used particularly for systems with fast dy-
namics and very precise measurements can be obtained by exploiting correla-
tion techniques. An indication of nonlinearities can be obtained by repeating
experiments with input signals having different amplitudes.

2.3 Schematic Diagrams

To deal with large complex systems, it is useful to have different represen-
tations of the system that capture the essential features and hide irrelevant
details. In all branches of science and engineering, it is common practice
to use some graphical description of systems. They can range from stylistic
pictures to drastically simplified standard symbols. These pictures make it
possible to get an overall view of the system and to identify the physical com-
ponents. Examples of such diagrams are shown in Figure 2.12. Schematic
diagrams are useful because they give an overall picture of a system, show-
ing different physical processes and their interconnection, and indicating
variables that can be manipulated and signals that can be measured.

Block Diagrams

A special graphical representation called block diagrams has been developed
in control engineering. The purpose of block diagrams is to emphasize the
information flow and to hide details of the system. In a block diagram,
different process elements are shown as boxes and each box has inputs de-
noted by lines with arrows pointing toward the box and outputs denoted by
lines with arrows going out of the box. The inputs denote the variables that
influence a process and the outputs denote signals that we are interested
in or signals that influence other subsystems. Block diagrams can also be
organized in hierarchies, where individual blocks may themselves contain
more detailed block diagrams.
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(a) (b)

(c) (d)

Figure 2.12: Examples of schematic descriptions: (a) schematic picture of an micro
gas turbine using Modelica, (b) neuronal network for respiratory control, (c) process
and instrumentation diagram and (d) Petri net description of a communication
protocol.

Figure 2.13 shows some of the notation that we use for block diagrams.
Signals are represented as lines, with arrows to indicate inputs and outputs.
The first diagram is the representation for a summation of two signals. An
input/output response is represent as a rectangle with the system name (or
mathematical description) in the block. Two special cases are a proportional
gain, which scales the input by a multiplicative factor, and an integrator,
which outputs the integral of the input signal.

Figure 2.14 illustrates the use of a block diagram, in this case for mod-
eling the flight response of a fly. The flight dynamics of an insect are
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Figure 2.13: Some standard notation for block diagrams.

incredibly intricate, involving a careful coordination of the muscles within
the fly to maintain stable flight in response to external stimuli. One known
characteristic of flies is their ability to fly upwind by making use of the
optical flow in their compound eyes as a feedback mechanism. Roughly
speaking, the fly controls its orientation so that the point of contraction of
the visual field is centered in its visual field.

To understand this complex behavior, we can decompose the overall dy-
namics of the system into a series of interconnected subsystems (or “blocks”).
Referring to Figure 2.14, we can model the insect navigation system through
an interconnection of five blocks. The sensory motor system (a) takes the
information from the visual system (b) and generates muscle commands
that attempt to steer the fly so that the point of contraction is centered.

Ref

Drag
Aero-

Wing

dynamics
Aero- Dynamics

Body

Wind
Velocity

System
Vision

Motor
System

Sensory

-1

Σ Σ

dynamics

Figure 2.14: A block diagram representation of the flight control system for an
insect flying against the wind.
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These muscle commands are converted into forces through the flapping of
the wings (c) and the resulting aerodynamic forces that are produced. The
forces from the wings are combined with the drag on the fly (d) to produce
a net force on the body of the fly. The wind velocity enters through the drag
aerodynamics. Finally, the body dynamics (e) describe how the fly trans-
lates and rotates as a function of the net forces that are applied to it. The
insect position, speed and orientation is fed back to the drag aerodynamics
and vision systems blocks as inputs.

Each of the blocks in the diagram can itself be a very complicated sub-
system. For example, the fly visual system of a tiny fruit fly consists of
two complicated compound eyes (with about 700 elements per eye) and the
sensory motor system has about 200,000 neurons that are used to process
that information. A more detailed block diagram of the insect flight con-
trol system would show the interconnections between these elements, but
here we have used one block to represent how the motion of the fly affects
the output of the visual system and a second block to represent how the
visual field is processed by the fly’s brain to generate muscle commands.
The choice of the level of detail of the blocks and what elements to separate
into different blocks often depends on experience and the questions that one
wants to answer using the model. One of the powerful features of block
diagrams is their ability to hide information about the details of a system
that may not be needed to gain an understanding of the essential dynamics
of the system.

Modeling Tools

One of the reasons that block diagrams have emerged as a common repre-
sentation of a model is the development of software tools for manipulating
these diagrams. Modern modeling environments provide libraries of stan-
dard elements that can be interconnected to form more complex systems.
We briefly describe two such environments here.

SIMULINK is a toolbox for MATLAB that allows the user to make use
of either pre-defined or custom blocks that represent input/output com-
ponents. Blocks can themselves be constructed from other blocks, allowing
very complex models to be manipulated. SIMULINK allows continuous-time
and discrete-time blocks to be interspersed, which is useful when building
models of computer-controlled systems. Standard blocks include linear and
nonlinear ordinary differential equations, summation and gain blocks, and
common mathematical operations. Optional toolboxes allow SIMULINK di-
agrams to be compiled into machine executable code, so that controllers can
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Figure 2.15: An example of a SIMULINK block diagram, corresponding to the
body dynamics block of Figure 2.14.

be simulated in SIMULINK and then transferred to a hardware platform for
implementation on a physical system. An example of a SIMULINK block
diagram is shown in Figure 2.15. This diagram represents the insect body
dynamics block of the larger block diagram in Figure 2.14.

LabVIEW is a graphical programming language developed by National
Instruments that can be executed directly on a wide range of computer plat-
forms and embedded targets. The Simulation Module is an add-on numerical
simulation package that includes continuous and discrete-time blocks, non-
linear blocks, and various mathematical operations. All LabVIEW functions
and toolkits can be used with the Simulation Module, allowing for both of-
fline simulation and real-time control implementation of complex models.
LabVIEW also has a scripting language, MathScript, and toolboxes which
can be used run many of the examples in this book.

Models for large systems are often built by combining models of different
subsystems. Block diagram modeling has severe drawbacks in this context,
as discussed in Section 2.1. There is software for modeling and simulation
tailored to specific domains that overcome these difficulties. Typical exam-
ples are SPICE for electrical circuits, Adams for multi-body mechanical sys-
tems, AUTOSIM for cars and SBML (Systems Biology Markup Language)
for biological systems. Modelica that was discussed in Section 2.1 covers
several domains. Dymola from Dynasim is an environment for modeling
and simulation of complex systems based on Modelica.
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2.4 Examples

In this section we introduce some additional examples that illustrate some
of the different types of systems for which one can develop differential equa-
tion and difference equation models. These examples are specifically chosen
from a range of different fields to highlight the broad variety of systems to
which feedback and control concepts can be applied. A more detailed set of
examples that serve as running examples throughout the text are given in
the next chapter.

Motion Control Systems

Motion control system involve the use of computation and feedback to con-
trol the movement of a mechanical system. Motion control systems range
from nano-positioning systems (atomic force microscopes, adaptive optics),
to control systems for the read/write heads in a disk drive of CD player, to
manufacturing systems (transfer machines and industrial robots), to auto-
motive control systems (anti-lock breaks, suspension control, traction con-
trol), to air and space flight control systems (for airplanes, satellites, rockets
and planetary rovers).

Example 2.8 (Vehicle steering). Consider a vehicle with two wheels as
shown in Figure 2.16. For the purpose of steering we are interested in a
model that describes how the velocity of the vehicle depends on the steer
angle δ. To be specific, we will consider the velocity at a point A at the
distance a from the rear wheel. We take the wheel base to be b and let θ
denote the heading angle and x and y be the coordinates of the point A
as shown in Figure 2.16. Since b = r0 tan u and a = r0 tan δ we get the
following relation between α and the steer angle δ

α = arctan
(a tan δ

b

)

. (2.21)

Assume that the wheels are rolling without slip, and that the velocity of the
rear wheel is v0. The vehicle speed at A is v = v0/ cos α and we find that
the velocity of point A on the vehicle is given by

dx

dt
= v cos (α + θ) = v0

cos (α + θ)

cos α
dy

dt
= v sin (α + θ) = v0

sin (α + θ)

cos α
.

(2.22)
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Figure 2.16: Schematic figure of a vehicle with two wheels. The steer angle is δ,
and the heading angle is θ.

To see how the angle θ is influenced by the steer angle we observe from
Figure 2.16 that the vehicle rotates with the angular velocity v0/r0 around
the point O. Hence

dθ

dt
=

v0

b
tan δ, (2.23)

where α is a function of θ given by equation (2.21).

The simple kinematics model given by equations (2.21), (2.22) and (2.23)
captures the essence of steering for many vehicles, including an automobile
(with the approximate that the two front wheels can be a approximate by
a single wheel at the center of the car). The assumption of no slip can be
relaxed by adding an extra state variable gives a more realistic model. Such
a model describes steering dynamics of cars and ships and pitch dynamics
of aircrafts and missiles.

The situation in Figure 2.16 represents the situation when the vehicle
moves forward and has front-wheel steering. The case when the vehicle
reverses is obtained simply by changing the sign of the velocity. Changing
the sign of the velocity also represents a vehicle with rear-wheel steering.

The simple kinematics model captures the essence of steering for many
vehicles, including an automobile (with the approximate that the two front
wheels can be a approximate by a single wheel at the center of the car).
The assumption of no slip can be relaxed by adding an extra state variable
gives a more realistic model. Such a model describes steering dynamics of
cars and ships and pitch dynamics of aircrafts and missiles. ∇

Example 2.9 (Vectored thrust aircraft). Consider the motion of vectored
thrust aircraft, such as the Harrier “jump jet” shown Figure 2.17a. The
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Figure 2.17: Vectored thrust aircraft: (a) Harrier AV-8B military aircraft and (b)
a simplified planar model.

Harrier is capable of vertical takeoff by redirecting its thrust downward and
through the use of smaller maneuvering thrusters located on its wings. A
simplified model of the Harrier is shown in Figure 2.17b, where we focus
on the motion of the vehicle in a vertical plane through the wings of the
aircraft. We resolve the forces generated by the main downward thruster
and the maneuvering thrusters as a pair of forces f1 and fs acting at a
distance r below the aircraft (determined by the geometry of the engines).

Let (x, y, θ) denote the position and orientation of the center of mass of
aircraft. Let m be the mass of the vehicle, J the moment of inertia, g the
gravitational constant, and c the damping coefficient. Then the equations
of motion for the fan are given by:

mẍ = f1 cos θ − f2 sin θ − cẋ

mÿ = f1 sin θ + f2 cos θ − mg − cẏ

Jθ̈ = rf1.

It is convenient to redefine the inputs so that the origin is an equilibrium
point of the system with zero input. Letting u1 = f1 and u2 = f2 − mg,
then the equations become

mẍ = −mg sin θ − cẋ + u1 cos θ − u2 sin θ

mÿ = mg(cos θ − 1) − cẏ + u1 sin θ + u2 cos θ

Jθ̈ = ru1.

(2.24)

These equations described the motion of the vehicle as a set of three coupled
second order differential equations. ∇
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Figure 2.18: Schematic diagram of a delta-sigma converter.

Electronics and Instrumentation

Black’s invention of the negative feedback amplifier paved the way for the
use of feedback in electronic circuits. Electronics are ubiquitous in the world
around us and many electronic devices involve feedback and control systems
at a variety of levels. Some of the most common examples include video and
audio systems, instrumentation systems, and a whole host control systems
in transportation, manufacturing and communication systems.

Example 2.10 (Delta-sigma converters). Delta-sigma converters are used
for analog to digital conversion in high-quality audio and communication.
Common examples are one-bit AD converters and digital audio amplifiers.
Delta-sigma converters are also used to generate pulse-width modulated sig-
nals for motor drives. The converter generates an output signal with quan-
tized amplitude that resembles the input signal in the sense that the filtered
output is close to the input. In the extreme case of a one-bit converter the
output has only two levels.

A schematic diagram of a delta-sigma converter is shown in Figure 2.18.
The system is a feedback loop with a quantizer and a low pass filter. A
particularly simple version is when the quantizer is a relay with hysteresis
and the filter is an integrator. Figure 2.19 shows a simulation of such a
converter when the input is a sinusoid. A feedback loop will normally act to
make the error small. In this particular case the instantaneous value cannot
be made small because the output switches between -1 and 1. The integral
of the error is however small because it can be shown that

∫ t2

t1

∣

∣

∣
Vin(t) − Vout(t)

∣

∣

∣
dt ≤ a, (2.25)
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Figure 2.19: Simulation of a delta-sigma converter. The upper curve shows the
input r (full) and the filtered output yf (dashed), the next curves show the error
e, the filtered error v and the converter output y. The loop filter is an integrator,
the quantizer a relay with hysteresis a = 0.009. The pulse output y is filtered with
a second order low-pass filter with time constant T = 0.04s.

where the interval (t1, t2) covers a full cycle, and a is the hysteresis of the
relay. The filtered output yf is also close to the input r.

Digital signals are formed by sampling in time and by quantization in
amplitude. The delta-sigma modulator shows that a good digital representa-
tion can be obtained with a very crude quantization of the amplitude, only 0
and 1, provided that the time resolution is sufficiently high (oversampling).
The pulsed output signal interesting signal form. It encodes the original
continuous signal into a pulse-width modulated signal where the average
value corresponds to the signal amplitude. The pulse width is proportional
to the rate of change of the continuous signals. It is interesting to note that
pulsed signals are common in biological systems. ∇

Example 2.11 (Josephson junction). Josephson received the Nobel Prize in
Physics 1973 for discovery of the Josephson effect which occurs in two super-
conducting layers separated by an insulating oxide. Under certain conditions
current can pass through the insulator through tunneling of Cooper pairs
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Figure 2.20: An electric circuit with a Josephson junction.

of electrons. The effect has been used to design superconducting quantum
interference devices (SQUID), because switching is very fast, in the order of
picoseconds. Tunneling in the Josephson junctions is very sensitive to mag-
netic fields and can therefore be used to measure extremely small magnetic
fields, the threshold is as low as 10−14 T. Josephson junctions are also used
for other precision measurements. The standard volt is now defined as the
voltage required to produce a frequency of 483,597.9 GHz in a Josephson
junction oscillator.

A schematic diagram of a circuit with a Josephson junction is shown
in Figure 2.20. The quantum effects can be modeled by the Schrödinger
equation. In spite of this it turns out that the circuit can be modeled as a
system with lumped parameters. Let ϕ be the flux which is the integral of
the voltage V across the device, hence

V =
dϕ

dt
. (2.26)

It follows from quantum theory, see Feynman [Fey70], that the current I
through the device is a function of the flux ϕ

I = I0 sin kϕ, (2.27)

where I0 is a device parameter, and the Josephson parameter k is given by

k = 4π
e

h
V−1s−1 = 2

e

h
HzV−1, (2.28)

where e = 1.602× 10−19 C is the charge of an electron and h = 6.62× 10−34

V−1s−1 is Planck’s constant.
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The circuit in Figure 2.20 has two storage elements the capacitor and
the Josephson junction. We choose the states as the voltage V across the
capacitor and the flux ϕ of the Josephson junction. Let IR, IC and IJ be
the currents through the resistor, the capacitor and the Josephson junction.
We have

IR =
V

R
, IC = C

dV

dt
, IJ = I0 sin kϕ,

and a current balance gives

IR + IC + IJ = Id,

which can be rewritten as

C
dV

dt
= Id −

V

R
− I0 sin kϕ.

Combining this equation with equation (2.26) gives the following state equa-
tion for the circuit

dϕ

dt
= V

C
dV

d
= −I0 sin kϕ − V

R
+ Id.

(2.29)

Notice that apart from parameter values equation (2.29) is identical to the
equation for the inverted pendulum given in equation (2.8). ∇

Information Systems

Information systems can range from communication systems for transmit-
ting data from one location to another, to software systems that manipulate
data or manage enterprise-wide resources, to economies and financial mar-
kets, that use prices to reflect current and future value. Feedback is present
in all of these systems, although it is often not directly visible.

Example 2.12 (Congestion control). The Internet was created to obtain
a large, highly decentralized, efficient, and expandable communication sys-
tem. The system consists of a large number of interconnected gateways. A
message is split into several packets that are transmitted over different paths
in the network. The packages are joined to recover the message at the re-
ceiver. A message is sent back to the sender when a packet is received. The
operation of the system is governed by a simple but powerful decentralized
control structure which evolved over time.
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The system is governed by two control mechanisms, called protocols:
the Transmission Control Protocol (TCP) for end-to-end network commu-
nication and the Internet Protocol (IP) for routing packets and for host-
to-gateway or gateway-to-gateway communication. The current protocols
evolved after some spectacular congestion collapses in the mid 1980s, when
throughput unexpectedly could drop by a factor of 1000. The control mech-
anism in TCP is based on conserving the number of packets in the loop from
sender to receiver and back to the sender. The sending rate is increased ex-
ponentially when there is no congestion and it is dropped drastically to a
very low level when there is congestion.

A simple model for congestion control between N computers connected
by a single router is given by the differential equation

dxi

dt
= −b

x2
i

2
+ (bmax − b)

db

dt
=

N
∑

i=1

xi − c,

(2.30)

where xi ∈ R, i = 1, . . . , N are the transmission rates for the sources of
data, b ∈ R is the current buffer size of the router, bmax > 0 is the maximum
buffer size, and c > 0 is the capacity of the link connecting the router to
the computers. The ẋi equation represents the control law that the individ-
ual computers use to determine how fast to send data across the network
(this version is motivated by a protocol called “Reno”) and the ḃ equation
represents the rate at which the buffer on the router fills up.

The nominal operating point for the system can be found by setting
ẋi = ḃ = 0:

0 =
x2

i

2
+

(

1 − bmax

b

)

for all i

0 =
N

∑

i=1

xi − c

From the first equation we notice that the equilibria for all the xi should be
the same and it follows that there is a unique equilibrium

x∗
i =

c

N
for all i

b∗ =
2N2bmax

2N2 + c2
,

which corresponds to each of the sources sending data at rate c/N and the
buffer size in the router staying constant.
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Figure 2.21: Congestion control simulation: (a) Multiple sources attempt to com-
municate through a router across a single link. (b) Simulation with 6 sources
starting random rates, with 2 sources dropping out at t = 20 s.

Figure 2.21 shows a simulation of 6 sources communicating across a single
link, with two sources dropping out at T = 1 s and the remaining courses
increasing their rates to compensate. Note that the solutions oscillate before
approaching their equilibrium values, but that the transmission rates and
buffer size automatically adjust depending on the number of sources.

A good presentation of the ideas behind the control principles for the
Internet are given by one of its designers in [Jac88]. The paper [Kel85] is
an early effort of analysis of the system. The book [HDPT04] gives many
interesting examples of control of computer systems. ∇

Example 2.13 (Consensus protocols in sensor networks). Sensor networks
are used in a variety of applications where we want to collect and aggregate
information over a region of space using multiple sensors that are connected
together via a communications network. Examples include monitoring en-
vironmental conditions in a geographical area (or inside a building), moni-
toring movement of animals or vehicles, or monitoring the resource loading
across a group of computers. In many sensor networks the computational
resources for the system are distributed along with the sensors and it can
be important for the set of distributed agents to reach a consensus about a
certain property across the network, such as the average temperature in a
region or the average computational load amongst a set of computers.

To illustrate how such a consensus might be achieved, we consider the
problem of computing the average value of a set of numbers that are locally
available to the individual agents. We wish to design a “protocol” (algo-
rithm) such that all agents will agree on the average value. We consider the
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Figure 2.22: Consensus protocols for sensor networks: (a) a simple sensor network
with five notes; (b) simulation demonstrating convergence of the network to the
average value of the initial conditions.

case in which all agents cannot necessarily communicate with each other
directly, although we will assume that the communications network is con-
nected (meaning that no agents are completely isolated from the group).
Figure 2.22a shows a simple situation of this type.

We model the connectivity of the sensor network using a graph, with
nodes corresponding to the sensors and edges corresponding to the existence
of a direct communications link between two nodes. For any such graph, we
can build an adjacency matrix, where each row and column of the matrix
corresponds to a node and a 1 in the respective row and column indicates
that the two nodes are connected. For the network shown in Figure 2.22a,
the corresponding adjacency matrix is

A =

































0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
0 1 0 0 0

































.

We also use the notation Ni to represent the set of neighbors of a node i.
For example, N2 = {1, 3, 4, 5} and N3 = {2, 4}.

To solve the consensus problem, we let xi be the state of the ith sensor,
corresponding to that sensor’s estimate of the average value that we are
trying to compute. We initialize the state to the value of the quantity
measured by the individual sensor. Our consensus protocol can now be
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realized as a local update law of the form

xi
k+1 = xi

k + γ
∑

i∈Ni

(xj
k − xi

k). (2.31)

This protocol attempts to compute the average by updating the local state
of each agent based on the value of its neigbors. The combined dynamics of
all agents can be written in the form

xk+1 = xk − γ(D − A)xk (2.32)

where A is the adjacency matrix and D is a diagonal matrix whose entries
correspond to the number of neighbors of the corresponding node. The
constant γ describes the rate at which we update our own estimate of the
average based on the information from our neighbors. The matrix L :=
D − A is called the Laplacian of the graph.

The equilibrium points of equation (2.32) are the set of states such that
x∗

k+1 = x∗
k. It is easy to show that x∗ = α(1, 1, . . . , 1) is an equilibrum state

for the system, corresponding to each sensor having an identical estimate
α for the average. Furthermore, we can show that α is the precisely the
average value of the initial states. To see this, let

Wk =
N
∑

n

i=1

xi
k

where N is the number of nodes in the sensor network. W0 is the average of
the initial states of the network, which is the average quantity we are trying
to compute. Wk is given by the difference equation

Wk+1 =
1

N

n
∑

i=1

xi
k+1 =

1

N

n
∑

i=1

(

xi
k + γ

∑

j∈Ni

(xj
k − xi

k)
)

.

Since i ∈ Nj implies that j ∈ Ni, it follows that each term in the second sum
occurs twice with opposite sign. Thus we can conclude that Wk+1 = Wk

and hence Wk = W0 for all k, which implies that at the equilibrium point α
must be W0, the average of the initial states. W is called an invariant and
the use of invariants is an important technique for verifying correctness of
computer programs.

Having shown that the desired consensus state is an equilibrium point
for our protocol, we still must show that the algorithm actually converges
to this state. Since there can be cycles in the graph, it is possible that
the state of the system could get into an “infinite loop” and never converge
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to the desired consensus state. A formal analysis requires tools that will
be introduced later in the text, but it can be shown that for any given
graph, we can always find a γ such that the states of the individual agents
converge to the average. A simulation demonstrating this property is shown
in Figure 2.22b.

Although we have focused here on consensus to the average value of a
set of measurements, other consensus states can be achieved through choice
of appropriate feedback laws. Examples include finding the maximum or
minimum value in a network, counting the number of nodes in a network, and
computing higher order statistical moments of a distributed quantity. ∇

Biological Systems

Biological systems are filled with feedback loops and provide perhaps the
richest source of feedback and control examples. The basic problem of
homeostasis, in which a quantity such as temperature or blood sugar level
is regulated to a fixed value, is but one of the many types of complex feed-
back interactions that can occur in molecular machines, cells, organisms and
ecosystems.

Example 2.14 (Transcriptional regulation). Transcription is the process
by which mRNA is generated from a segment of DNA. The promoter region
of a gene allows transcription to be controlled by the presence of other
proteins, which bind to the promoter region and either repress or activate
RNA polymerase (RNAP), the enzyme that produces mRNA from DNA.
The mRNA is then translated into a protein according to its nucleotide
sequence.

A simple model of the transcriptional regulation process is the use of
a Hill function [dJ02, Mur04]. Consider the regulation of a protein A with
concentration given by pA and corresponding mRNA concentration mA. Let
B be a second protein with concentration pB that represses the production
of protein A through transcriptional regulation. The resulting dynamics of
pA and mA can be written as

dmA

dt
= −τmA +

α

1 + pn
B

+ α0

dpA

dt
= β(mA − pA),

(2.33)

where α + α0 is the basal transcription rate, τ represents the rate of degre-
dation of mRNDA, α and n are parameters that describe how B represses
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Figure 2.23: The repressilator genetic regulatory network: (a) a schematic diagram
of the repressilator, showing the layout of the genes in the plasmid that holds the
circuit as well as the circuit diagram (center); (b) simulation of a simple model of
the repressilator.

A and β represents both the rate of production of the protein from its cor-
responding mRNA and also the rate of degradation of A. The parameter
α0 describes the “leakiness” of the promotor and n is called the Hill coef-
ficient and relates to the cooperativity of the promotor. For simplicity we
will assume that τ = 1, which corresponds to choosing units of time that
correspond to the mRNA decay rate.

A similar model can be used when a protein activates the production of
another protein, rather than repressing it. In this case, the equations have
the form

dmA

dt
= −τmA +

αpn
B

1 + pn
B

+ α0

dpA

dt
= β(mA − pA),

(2.34)

where the variables are the same as described. Note that in the case of the
activator, if pB is zero then the production rate is α0 (versus α + α0 for
the repressor). As pB gets large, the second term in the expression for ṁA

approaches 1 and the transcription rate becomes α + α0 (versus α0 for the
repressor). Thus we see that the activator and repressor act in opposite
fashion from each other.

As an example of how these models can be used, we consider the model of
a “repressilator”, originally due to Elowitz and Leibler [EL00]. The repressi-
lator is a synthetic circuit in which three proteins each repressor another in a
cycle. This is shown schematically in Figure 2.23a, where the three proteins
are tetR, λ cI and LacI. The basic idea of the repressilator is that if tetR
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is present then it represses the production of λ cI. If λ cI is represent, then
LacI is produced (at the basal transcription rate), which in turn represses
TetR. Once TetR is repressed then λ cI is no longer repressed and so on.
If the dynamics of the circuit are designed properly, the resulting protein
concentrations will oscillate.

We can model this system using three copies of equation (2.33), with A
and B replaced by the appropriate combination of TetR, cI and LacI. The
state of the system is then given by x = (mTetR, pTetR, mcI, pcI, mLacI, pLacI).
Figure 2.23b shows the traces of the three protein concentrations for pa-
rameters α0 = 0, α = 50, β = 0.2 and n = 2 and initial conditions
x(0) = 0.2, 0.1, 0.1, 0.4, 0.3, 0.5) (from [EG05]). ∇

Example 2.15 (Hodgkin-Huxley equations1). The dynamics of the mem-
brane potential in a cell is a fundamental mechanism in discussing signaling
in cells. The Hodgkin-Huxley equations provide a simple model for studying
propagation waves in networks of neurons. The model for a single neuron
has the form

C
dV

dt
= −INa − IK − Ileak + Iinput

where V is the membrane potential, C the capacitance, INa and IK the
current caused by transport of sodium and potassium across the cell mem-
brane, Ileak is a leakage current ant Iinput is the external stimulation of the
cell. Each current obeys Ohms law, i.e.

I = g(V − E)

where g is the conductance and E the equilibrium voltage. The equilibrium
voltage is given by Nernst’s law

E =
RT

xF
log(Cout/Cin)

where R is Boltzmann’s constant, T the absolute temperature, F Faraday’s
constant, Cout and Cin the ion concentrations outside and inside the cell.
At 20◦ we have RT/F = 20 mV.

The Hodgkin-Huxley model was originally developed as a means to pre-
dict the quantitative behavior of the squid giant axon [?]. Hodgkin and
Huxley shared the 1963 Nobel Prize in Physiology (along with J. C. Eccles)
for analysis of the electrical and chemical events in nerve cell discharge. ∇

1H. R. Wilson, Spikes, Decisions and Actions—Dynamical Foundations of Neuro-

science. Oxford University Press.
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2.5 Further Reading

Modeling is ubiquitous in engineering and science and has a long history
in applied mathematics. For example, the Fourier series was introduced in
connection with modeling of heat conduction in solids. Models of dynamics
have been developed in many different fields, including mechanics [Gol53],
heat conduction [CJ59], fluids![BS60], vehicles [Abk69, Bla91, Ell94], cir-
cuit theory [Gui63], acoustics [Ber54] and micromechanical systems [Sen01].
Control theory requires modeling from many different domains and most
texts control theory contain several chapters on modeling using ordinary
differential equations and difference equations (see, for example, [FPEN05]).

A classic book on modeling of physical systems, especially mechanical,
electrical and thermo-fluid systems, is Cannon’s Dynamics of Physical Sys-

tems [Can03]. Two of the authors’ favorite books on modeling of biological
systems are Mathematical Biology by J. D. Murray [Mur04] and Spikes, De-

cision and Actions: The Dynamical Foundations of Neuroscience by H. R.
Wilson [Wil99]. For readers interested in learning more about object ori-
ented modeling and Modelica, the edited volume by Tiller [Til01] provides
an excellent introduction.

2.6 Exercises

1. Use the equations of motion for a balance system to derive a dynamic
model for the inverted pendulum described in Example 2.2 and verify
that for small θ they are approximated by equation (2.8).

2. (Second order system identification) Verify that equation (2.20) in
Example 2.7 is correct and use this formula and the others in the
example to compute the parameters corresponding to the step response
in Figure 2.11.

3. (Least squares system identification) Consider a nonlinear differential�
equation that can be written in the form

dx

dt
=

M
∑

i=1

αifi(x)

where fi(x) are known nonlinear functions and αi are unknown, but
constant, parameters. Suppose that we have measurements (or esti-
mates) of the state x at time instants t1, t2, . . . , tN , with N > M .
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Show that the parameters αi can be determined by finding the least
squares solution to a linear equation of the form

Hα = b

where α ∈ R
M is the vector of all parameters and H ∈ R

N×M and
b ∈ R

N are appropriately defined.

4. Consider the following discrete time system

zk+1 = Azk + Buk

yk = Czk

where

z =









z1

z2








A =









a11 a12

0 a22








B =









0
1








C =



1 0




In this problem, we will explore some of the properties of this discrete
time system as a function of the parameters, the initial conditions,
and the inputs.

(a) Assume that the off diagonal element a12 = 0 and that there is
no input, u = 0. Write a closed form expression for the output of
the system from a nonzero initial condition z0 = (z1

0 , z
2
0) and give

conditions on a11 and a22 under which the output gets smaller as
k gets larger.

(b) Now assume that a12 6= 0 and write a closed form expression
for the response of the system from a nonzero initial conditions.
Given a condition on the elements of A under which the output
gets smaller as k gets larger.

(c) Write a MATLAB program to plot the output of the system in
response to a unit step input, u[k] = 1, k ≥ 0. Plot the response
of your system with z0 = 0 and A given by

A =









0.5 1
0 0.25









5. Consider the delta-sigma converter in Example 2.10. Propose a way
to obtain an estimate of the instantaneous value of the reference signal
and its derivative from the pulsed output.
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6. Consider the linear ordinary differential equation (2.6). Show that by
choosing a state space representation with x1 = y, the dynamics can
be written as

A =



























0 1 0

0
. . .

. . . 0
0 · · · 0 1

−an −an−1 −a1



























B =



























0
0
...
1



























C =


1 . . . 0 0




This canonical form is called chain of integrators form.


