
Chapter 3

Examples

... Don’t apply any model until you understand the simplifying assumptions

on which it is based, and you can test their validity. Catch phrase: use only

as directed. Don’t limit yourself to a single model: More than one model may

be useful for understanding different aspects of the same phenomenon. Catch

phrase: legalize polygamy.”

Saul Golomb in his 1970 paper “Mathematical Models—Uses and Limita-
tions” [Gol70].

In this chapter we present a collection of examples spanning many differ-
ent fields of science and engineering. These examples will be used throughout
the text and in exercises to illustrate different concepts. First time read-
ers may wish to focus only on a few examples with which they have the
most prior experience or insight to understand the concepts of state, input,
output, and dynamics in a familiar setting.

3.1 Cruise Control

The cruise control system of a car is one of the most common control systems
encountered in everyday life. The system attempts to keep the speed of the
car constant in spite of disturbances caused by changes in the slope of a road
and variations in the wind and road surface. The controller compensates for
these unknowns by measuring the speed of the car and adjusting the throttle
appropriately.

To model the complete system we start with the block diagram in Fig-
ure 3.1. Let v be the speed of the car and vr the desired (reference) speed.
The controller, which typically is of the proportional-integral (PI) type de-
scribed briefly in Chapter 1, receives the signals v and vr and generates a
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Figure 3.1: Block diagram of a cruise control system for an automobile.

control signal u that is sent to an actuator that controls throttle position.
The throttle in turn controls the torque T delivered by the engine, which is
then transmitted through gears and the wheels, generating a force F that
moves the car. There are disturbance forces Fd due to variations in the
slope of the road, the effects of rolling resistance and aerodynamic forces.
The cruise controller also has a man-machine interface that allows the driver
to set and modify the desired speed. There are also functions that discon-
nects cruise control when the brake is touched as well as functions to resume
cruise control operation.

The system has many individual components—actuator, engine, trans-
mission, wheels and car body—and a detailed model can be very compli-
cated. In spite of this, the model required to design the cruise controller can
be quite simple. In essence the model should describe how the car’s speed
is influenced by the slope of the road and the control signal u that drives
the throttle actuator.

To model the system, it is natural to start with a momentum balance
for the car body. Let v be the speed measured in m/s, m the total mass of
the car in kg (including passengers), F the force generated by the contact of
the wheels with the road, and Fd the disturbance force due to gravity and
friction. The equation of motion of the car is simply

m
dv

dt
= F − Fd. (3.1)

The force F is generated by the engine, whose torque is proportional to
the rate of fuel injection, which is itself proportional to the control signal
0 ≤ u ≤ 1 that controls throttle position. The torque also depends on engine
speed ω. A simple representation of the torque at full throttle is given by



3.1. CRUISE CONTROL 79

0 200 400 600
100

120

140

160

180

200

Angular velocity (rad/s)

T
or

qu
e 

(N
m

)

(a)

0 20 40 60
100

120

140

160

180

200

n=1 n=2 n=3 n=4

n=5

Velocity (m/s)

T
or

qu
e 

(N
m

)

(b)

Figure 3.2: Torque curves for typical car engine: (a) torque as a function of the
angular velocity of the engine and (b) torque as a function of car speed for different
gears.

the torque curve

T (ω) = Tm

(

1 − β

(

ω

ωm
− 1

)2
)

, (3.2)

where the maximum torque Tm is obtained at engine speed ωm. Typical
parameters are Tm = 190 Nm, ωm = 420 rad/sec (about 4000 RPM) and
β = 0.4.

Let n be the gear ratio and r the wheel radius. The engine speed is
related to the velocity through the expression

ω =
n

r
v =: αnv,

and the driving force can be written as

F =
nu

r
T (ω) = αnuT (αnv).

Typical values of αn for gears 1 through 5 are α1 = 40, α2 = 25, α3 = 16,
α4 = 12 and α5 = 10. The inverse of αn has physical interpretation as the
effective wheel radius. Figure 3.2 shows the torque as function of engine
speed and vehicle speed. The figure shows that the effect of the gear is
to “flatten” the torque curve so that a torque close to maximum can be
obtained almost over the full speed range.

The disturbance force Fd has three major components: Fg, the forces due
to gravity; Fr, the forces due to rolling friction; and Fa, the aerodynamic
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Figure 3.3: Car with cruise control encountering a sloping road: a schematic di-
agram is shown in (a) and (b) shows the response in speed and throttle when a
slope of 4◦ is encountered. The hill is modeled as a net change in hill angle, θ,
of 4 degrees, with a linear change in the angle between t = 5 and t = 6. The PI
controller has proportional gain is kp = 0.5 and the integral gain is ki = 0.1.

drag, Letting the slope of the road be θ, gravity gives the retarding force
Fg = mg sin θ, as illustrated in Figure 3.3a, where g = 9.8 m/sec2 is the
gravitational constant. A simple model of rolling friction is

Fr = mgCr

where Cr is the coefficient of rolling friction; a typical value is Cr = 0.01.
Finally, the aerodynamic drag is proportional to the square of the speed:

Fa =
1

2
ρCdAv2,

where ρ is the density of air, Cd is the shape-dependent aerodynamic drag
coefficient and A is the frontal area of the car. Typical parameters are
ρ = 1.3 kg/m3, Cd = 0.32 and A = 2.4 m2.

Summarizing, we find that the car can be modeled by

m
dv

dt
= αnuT (αnv) − mgCr −

1
2ρCvAv2

− mg sin θ, (3.3)

where the function T is given by equation (3.2). The model (3.3) is a
dynamical system of first order. The state is the car velocity v, which is also
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the output. The input is the signal u that controls the throttle position, and
the disturbance is the force Fd, which depends on the slope of the road. The
system is nonlinear because of the torque curve and the nonlinear character
of the aerodynamic drag. There can also be variations in the parameters,
e.g. the mass of the car depends on the number of passengers and the load
being carried in the car.

We add to this model a feedback controller that attempts to regulate
the speed of the car in the presence of disturbances. We shall use a PI
(proportional-integral) controller, which has the form

u(t) = kpe(t) + ki

∫ t

0
e(τ) dτ.

This controller can itself be realized as an input/output dynamical system
by defining a controller state z and implementing the differential equation

dz

dt
= vr − v u = kp(vr − v) + kiz, (3.4)

where vr is the desired (reference) speed. As discussed briefly in the intro-
duction, the integrator (represented by the state z) insures that in steady
state the error will be driven to zero, even when there are disturbances or
modeling errors. (The design of PI controllers is the subject of Chapter 10.)
Figure 3.3b shows the response of the closed loop system, consisting of equa-
tions (3.3) and (3.4), when it encounters a hill. The figure shows that even
if the hill is so steep so that the throttle changes from 0.17 to almost full
throttle, the largest speed error is less than 1 m/s, and the desired velocity
is recovered after 20s.

The model (3.3) is essentially a momentum balance for the car. Many
approximations were made when deriving it. It may be surprising that such
a seemingly complicated system can be described by the simple model (3.3).
As we shall see in later chapters, the reason for this is the inherent robustness
of feedback systems: even if the model is not perfectly accurate, we can use
it to design a controller and make use of the feedback in the controller to
manage the uncertainty in the system.

The cruise control system also has a human-machine interface (HMI)
that allows the driver to communicate with the system. There are many dif-
ferent ways to implement this system; one version is illustrated in Figure 3.4.
The system has four buttons: on-off, set/decelerate, resume/accelerate and
cancel. The operation of the system is governed a finite state system and
which controls the modes of the PI controller and the reference generator.
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Figure 3.4: Finite state machine for cruise control system.

The controller can operate in two ways: in the normal cruise control
mode and in a tracking mode, where the integral is adjusted to match
given process inputs and outputs. The tracking mode is introduced to avoid
switching transients when the system is controlled manually. The generator
for the reference signal has three modes: a normal control mode when the
output is controlled by the set/accelerate and resume/decelerate buttons, a
tracking mode and a hold mode where the reference is held constant.

To control the overall operation of the controller and reference generator,
we use a finite state machine with four states: off, standby, cruise and hold.
The states of the controller and the reference generator in the different modes
are given in Figure 3.4. The cruise mode is the normal operating mode where
the speed can be then be decreased by pushing set/decelerate and increased
by pushing the resume/accelerate. When the system is switched on it goes
to standby mode. The cruise mode is activated by pushing the set/accelerate
button. If the brake is touched or if the gear is changed, the system goes
into hold mode and the current velocity is stored in the reference generator.
The controller is then switched to tracking mode and the reference generator
is switched to hold mode, where it holds the current velocity. Touching the
resume button then switches the system to cruise mode. The system can be
switched to standby mode from any state by pressing the cancel button.

The PI controller should be designed to have good regulation properties
and to give good transient performance when switching between resume
and control modes. Implementation of controllers and reference generators
will be discussed more fully in Chapter 10. A popular description of cruise
control system can be found on the companion web site. Many automotive
applications are discussed in detail in [BP96] and [KN00].



3.2. BICYCLE DYNAMICS 83

ξ

η

η

ζ

a
b

h
δ

ϕ

P1 P2

O

   

 

 

a
b

h

c

C1 C2

P1 P2P3

λ

Figure 3.5: Schematic top (left), rear (middle), and side (right) views of a bicycle.
The steering angle is δ, the roll angle is ϕ. The center of mass has height h and on
the distance a from a vertical through the contact point P1 of the rear wheel. The
wheel base is b and the trail is c.

3.2 Bicycle Dynamics

The bicycle is an interesting dynamical system system with the feature that
one of its key properties is due to a feedback mechanism that is created
by a clever design of the front fork. A detailed model of a bicycle is com-
plex because the system has many degrees of freedom and the geometry is
complicated. However, a great deal of insight can be obtained from simple
models.

To derive the equations of motion we assume that the bicycle rolls on
the horizontal xy plane. Introduce a coordinate system that is fixed to the
bicycle with the ξ-axis through the contact points of the wheels with the
ground, the η-axis horizontal and the ζ-axis vertical, as shown in Figure 3.5.
Let v0 be the velocity of the bicycle at the rear wheel, b the wheel base,
ϕ the tilt angle and δ the steering angle. The coordinate system rotates
around the point O with the angular velocity ω = v0δ/b, and an observer
fixed to the bicycle experiences forces due to the motion of the coordinate
system.

The tilting motion of the bicycle is similar to an inverted pendulum, as
shown in the rear view in Figure 3.5b. To model the tilt, consider the rigid
body obtained when the wheels, the rider and the front fork assembly are
fixed to the rear frame. Let m be the total mass of the system, J the moment
of inertia of this body with respect to the ξ-axis, and D the product of inertia
with respect to the ξζ axes. Furthermore, let the ξ and ζ coordinates of the
center of mass be a and h, respectively. We have J ≈ mh2 and D = mah.
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Figure 3.6: Block diagram of the bicycle with a front fork. The steering torque
applied to the handlebars is T , the roll angle is ϕ, and the steering angle δ. Notice
that the front fork creates a feedback from the roll angle ϕ to the steering angle δ
that under certain conditions can stabilize the system.

The torques acting on the system are due to gravity and centripetal action.
Assuming that the steering angle δ is small, the equation of motion becomes

J
d2ϕ

dt2
−

Dv0

b

dδ

dt
= mgh sin ϕ +

mv2
0h

b
δ, (3.5)

The term mgh sin ϕ is the torque generated by gravity. The terms con-
taining δ and its derivative are the torques generated by steering, with the
term (Dv0/b) dδ/dt due to inertial forces and the term (mv2

0h/b) δ due to
centripetal forces.

The steering angle is influenced by the torque the rider applies to the
handle bar. Because of the tilt of the steering axis and the shape of the front
fork, the contact point of the front wheel with the road P2 is behind the axis
of rotation of the front wheel assembly, as shown in Figure 3.5. The distance
c between the contact point of the front wheel P2 and the projection of the
axis of rotation of the front fork assembly P3 is called the trail. The steering
properties of a bicycle depend critically on the trail. A large trail increases
stability but make the steering less agile.

A consequence of the design of the front fork is that the steering angle δ
is influence both by steering torque T and by the tilt of the frame ϕ. This
means that the bicycle with a front fork is a feedback system as illustrated
by the block diagram in Figure 3.6. The steering angle δ influences the tilt
angle ϕ and the tilt angle influences the steering angle giving rise to the
circular causality that is characteristic for reasoning about feedback. For
a front fork with positive trail, the bicycle will steer into the lean creating



3.3. OPERATIONAL AMPLIFIER 85

a centrifugal force that attempts to diminish the lean. The effect can be
verified experimentally by biking on a straight path, creating a lean by tilting
the body and observing the steering torque required to keep the bicycle
on a straight path when leaning. Under certain conditions, the feedback
can actually stabilize the bicycle. A crude empirical model is obtained by
assuming that the blocks A and B are static gains k1 and k2 respectively:

δ = k1T − k2ϕ. (3.6)

This model neglects the dynamics of the front fork, the tire-road interaction
and the fact that the parameters depend on the velocity. A more accurate
model is obtained by the rigid body dynamics of the front fork and the
frame. Assuming small angles this model becomes
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where the elements of the 2 × 2 matrices M , C, K0 and K2 depend on
the geometry and the mass distribution of the bicycle. Even this model
is inaccurate because the interaction between tire and road are neglected.
Taking this into account requires two additional state variables.

Interesting presentations of the development of the bicycle are given in
the books by D. Wilson [Wil04] and Herlihy [Her04]. More details on bicycle
modeling is given in the paper [ÅKL05], which has many references. The
model (3.7) was presented in a paper by Whipple in 1899 [Whi99].

3.3 Operational Amplifier

The operational amplifier (op amp) is a modern implementation of Black’s
feedback amplifier. It is a universal component that is widely used for for
instrumentation, control and communication. It is also a key element in
analog computing.

Schematic diagrams of the operational amplifier are shown in Figure 3.7.
The amplifier has one inverting input (v−), one non-inverting input (v+),
and one output (vout). There are also connections for the supply voltages,
e− and e+ and a zero adjustment (offset null). A simple model is obtained
by assuming that the input currents i− and i+ are zero and that the output
is given by the static relation

vout = sat(vmin,vmax)

(

k(v+ − v−)
)

, (3.8)
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Figure 3.7: An operational amplifier and two schematic diagrams. The figure on
the left shows the amplifier pin connections on an integrated circuit chip, the middle
figure shows a schematic with all connections, and the diagram on the right shows
only the signal connections.

where sat denotes the saturation function

sat(a,b)(x) =











a if x < a

x if a ≤ x ≤ b

b if x > b.

(3.9)

We assume that the gain k is very large, in the range of 106–108, and the
voltages vmin and vmax satisfy

e− ≤ vmin < vmax ≤ e+

and hence are in the range of the supply voltages. More accurate models
are obtained by replacing the saturation function with a smooth function as
shown in Figure 3.8. For small input signals the amplifier characteristic (3.8)
is linear

vout = k(v+ − v−) =: −kv. (3.10)

vmin

vout

v+ − v−

vmax

Figure 3.8: Input-output characteristics of an operational amplifier.
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Figure 3.9: Circuit diagram of a stable amplifier based on negative feedback around
an operational amplifier (a) and the corresponding block diagram (b).

Since the open loop gain k is very large, the range of input signals where
the system is linear is very small.

A simple amplifier is obtained by arranging feedback around the basic
operational amplifier as shown in Figure 3.9a. To model the feedback am-
plifier in the linear range, we assume that the current i0 = i− + i+ is zero,
and that the gain of the amplifier is so large that the voltage v = v− − v+

is also zero. It follows from Ohm’s law that the currents through resistors
R1 and R2 are given by

v1

R1
= −

v2

R2

and hence
v2

v1
= −kcl where kcl =

R2

R1
(3.11)

is the closed loop gain of the amplifier.
A more accurate model is obtained by neglecting the current i0 but

assuming that the voltage v is small but not negligible. The current balance
then becomes

v1 − v

R1
=

v − v2

R2
. (3.12)

Assuming that the amplifier operates in the linear range and using equa-
tion (3.10) the gain of the closed loop system becomes

kcl = −
v2

v1
=

R2

R1

1

1 + 1
k

(

1 + R2

R1

) (3.13)

If the open loop gain k of the operational amplifier is large, the closed loop
gain kcl is the same as in the simple model given by equation (3.11). Notice
that the closed loop gain only depends on the passive components, and
that variations in k only have a marginal effect on the closed loop gain.
For example if k = 106 and R2/R1 = 100, a variation of k by 100% only
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gives a variation of 0.01% in the closed loop gain. The drastic reduction in
sensitivity is a nice illustration of how feedback can be used to make good
systems from bad components. In this particular case, feedback is used
to trade high gain and low robustness for low gain and high robustness.
Equation (3.13) was the formula that inspired Black when he invented the
feedback amplifier.

It is instructive to develop a block diagram for the feedback amplifier in
Figure 3.9a. To do this we will represent the pure amplifier with input v and
output v2 as one block. To complete the block diagram we must describe
how v depends on v1 and v2. Solving equation (3.12) for v gives

v =
R2

R1 + R2
v1 +

R1

R1 + R2
v2 =

R2

R1 + R2

(

v1 +
R1

R2

)

,

and we obtain the block diagram shown in Figure 3.9b. The diagram clearly
shows that the system has feedback and that the gain from v2 to v is
R1/(R1 + R2), which can also be read from the circuit diagram in Fig-
ure 3.9a. If the loop is stable and if gain of the amplifier is large it follows
that the error e is small and then we find that v2 = −(R2/R1)v1. Notice
that the resistor R1 appears in two blocks in the block diagram. This situa-
tion is typical in electrical circuits and it is one reason why block diagrams
are not always well suited for some types of physical modeling.

The simple model of the amplifier given by equation (3.10) gives qualita-
tive insight but it neglects the fact that the amplifier is a dynamical system.
A more realistic model is

dvout

dt
= −avout − bv. (3.14)

The parameter b which has dimensions of frequency is called the gain-
bandwidth product of the amplifier.

The operational amplifier is very versatile and many different systems
can be built by combining it with resistors and capacitors. Figure 3.10
shows the circuit diagram for analog PI (proportional-integral) controller.
To develop a simple model for the circuit we assume that the current i0 is
zero and that the open loop gain k is so large that the input voltage v is
negligible. The current i through the capacitor is i = Cdvc/dt, where vc is
the voltage across the capacitor. Since the same current goes through the
resistor R1 we get

i =
v1

R1
= C

dvc

dt
,
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around an
operational amplifier.

which implies that

vc(t) =
1

C

∫

i(t) dt =
1

R1C

∫ t

0
v1(τ)dτ.

The output voltage is thus given by

v2(t) = −R2i − vc = −
R2

R1
v1(t) −

1

R1C

∫ t

0
v1(τ)dτ,

which is the input/output relation for a PI controller.

The development of operational amplifiers is based on the work of Philbrick [Lun05,
Phi48] and their usage is described in many textbooks (e.g. [CD75]). Very
good information is also available from suppliers [Jun02, Man02].

3.4 Web Server Control

Control is important to ensure proper functioning of web servers, which are
key components of the Internet. A schematic picture of a server is shown
in Figure 3.11. Requests are arriving, queued and processed by the server,
typically on a first-come-first-serve basis. There are typically large variations
in arrival rates and service rates. The queue length builds up when the

messages

x

µλ

message queuemessages
incoming outgoing

Figure 3.11: Schematic diagram of a web server.
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arrival rate is larger than the service rate. When the queue becomes too
large, service is denied using some admission control policy.

The system can be modeled in many different ways. One way is to model
each incoming request, which leads to an event-based model, where the state
is an integer that represents the queue length. The queue changes when a
request arrived or a request is served. A discrete time model that captures
these dynamics is given by the difference equation

xk+1 = xk + ui − uo, x ∈ I

where ui and uo are random variables representing incoming and outgoing
requests on the queue. These variables take on the values 0 or 1 with some
probability at each time instant. To capture the statistics of the arrival and
servicing of messages, we model each of these as a Poisson process in which
the number of events occurring in a fixed time has a given rate, with the
specific timing of events independent of the time since the last event. (The
details of random processes are beyond the scope of this text, but can be
found in standard texts such as [?].)

The system can also described using a flow model by approximating
the requests and services by continuous flows and the queue length by a
continuous variable. A flow model can be obtained by making probabilistic
assumptions on arrival and service rates and computing the average queue
length. For example, assuming that the arrival and service rates are Poisson
processes with intensities λ and µ it can be shown that the average queue
length x is described by the first-order differential equation

dx

dt
= λu − µ

x

x + 1
. (3.15)

The control variable 0 ≤ u ≤ 1 is the fraction of incoming requests that are
serviced, giving an effective arrival rate of uµ. The average time to serve a
request is

Ts =
x

λ
.

If µ, λ and u are constants with µ > uλ, the queue length x approaches the
steady state value

xss =
uλ

µ − uλ
. (3.16)

Figure 3.12a shows the steady state queue length as a function of µ−uλ, the
effective service rate excess. Notice that the queue length increases rapidly
as µ − uλ approaches zero. To have a queue length less than 20 requires
µ > uλ + 0.05.
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Figure 3.12: The figure on the left shows steady state queue length as a function
of uλ − µ, and the figure on the right shows the behavior of the queue length
when there is a temporary overload in the system. The full line shows a realization
of an event based simulation and the dashed line shows the behavior of the flow
model (3.15).

Figure 3.12b illustrates the behavior of the server in a typical overload
situation. The service rate is µ = 1, while the arrival rate starts at λ = 0.5.
The arrival rate is increased to λ = 4 at time 20, and it returns to λ = 0.5 at
time 25. The figure shows that the queue builds up quickly and clears very
slowly. Since the response time is proportional to queue length, it means
that the quality of service is poor for a long period after an overload. The
behavior illustrated in Figure 3.12b, which is called the rush-hour effect,
has been observed in web servers and in many other queuing systems like
automobile traffic. Congestion avoidance is a main reason for controlling
queues.

The dashed line in Figure 3.12b shows the behavior of the flow model,
which describes the average queue length. The simple model captures be-
havior qualitatively, but since the queue length is short there is significant
variability from sample to sample. The behavior shown in Figure 3.12b can
be explained quantitatively by observing that the queue length increases
at constant rate over large time intervals. It follows from equation (3.15)
that the rate of change is approximately 3 messages/second when the queue
length builds up at time t = 20, and approximately 0.5 messages/second
when the queue length decreases after the build up. The time to return to
normal is thus approximately 6 times the overload time.

Admission Control

The long delays created by temporary overloads can be reduced by access
control. The queue length can be controlled by only admitting a fraction of
the incoming requests. Figure 3.13 shows what happens when a simple ad-
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Figure 3.13: Behavior of queue length for a server with admission control when
there is a temporary overload in the system. The figure on the left has r = 2 and
the right figure has r = 5, with k = 1 in both cases. Compare with a simulation of
the uncontrolled system in Figure 3.12b.

mission control strategy is introduced. The feedback used in the simulation
is a simple proportional control with saturation described by

u = sat(0,1)(k(r − x)), (3.17)

where sat(a,b) is defined in equation (3.9) and r is the desired (reference)
queue length. The feedback gain is k = 1, and the saturation ensures that
the control variable is in the interval 0 ≤ u ≤ 1. Comparing Figures 3.12b
and 3.13, we see that simple access control works very well in comparison
with the uncontrolled server. The control law ensures that the access is
restricted when overload occurs.

The maximum queue length is determined by the reference value r. A
low value of r gives a short queue length and the service delay is short,
as is clearly seen in Figure 3.13a. A number of customers are, however,
denied service. The simulation also indicates that the control problem is
not too difficult and that a simple control strategy works quite well. It
allows all requests arrived to be serviced if the arrival rate is slow and it
restricts admission when the system is overloaded. Admission control is
activated when the queue length approaches the value r. Since service time
is proportional to queue length, r is a measure of service time.

Notice that the web server control problem we have discussed is not a
conventional regulation problem where we wish to keep a constant queue
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length. The problem is instead to make sure that the queue length does not
become too large when there are many service requests. The key trade-off
is to find a good reference value r. A large value gives few rejections but
long service time after an overload; a small value guarantees a short service
time but more messages will be rejected. The simulation of the simple flow
model indicates that the simple admission control strategy works well.

To execute admission control in a real queue, where arrival and departure
from the queue are discrete events, we argue as follows. Figure 3.13 shows
that all requests are serviced (u = 1) except when the system is overloaded,
at which point service is reduced significantly. A simple strategy that mimics
this for event-based systems is to admit customers as long as the queue
length is less than r and deny service for requests if the queue length is
greater than r.

Delay Control

An alternative to admission control is delay control, where the goal is to
keep the delay for serving individual requests constant. An advantage of
this approach is that all requests are treated fairly. A block diagram of such
a system, with a controller combining feedback ufb and feedforward uff, is
shown in Figure 3.14a. The server delay is estimated based on arriving server
requests and queue waiting times of requests that have not been serviced.
Feedforward control requires good models and the simple model (3.15) that
captures the average behavior of the system is not sufficient.

The control variable is the processing speed u, which can be varied by the
changing the number of servers and their processing capacity. It is assumed
that u can be regarded as a continuous variable. The delays in serving the
requests is the output of the system. An average of past service is easily
obtained, but this information is only available with a time delay.

To obtain a better model we consider the situation in Figure 3.14b. A
request has just been serviced at time t = tk and N requests are waiting
to be serviced. The average delay of the N requests that are waiting to be
serviced is d−k , which is a measurable quantity. To predict the additional
time required to serve these request we assume that they require the same
service time C/u where u is the service rate. The average additional service
time for the requests that are processed is then d+

k = (N + 1)C/(2u), as
indicated in Figure 3.14b. Combining this with the measurable quantity
d−k we obtain the following estimate of the average service time for the N
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(a) (b)

Figure 3.14: The left figure (a) shows a block diagram of a web server system with
a controller based on a combination of feedback and feedforward. The right figure
(b) shows the history of arrivals and departures of requests. The dashed square
indicates the time used to service the requests. The true delay of the request
serviced at time tk is dk, d−k + d+

k is an estimate of future delays used to calculate
the service rate.

requests that are waiting to be serviced

dk = d−k + d+
k = d−k +

(N + 1)C

2u
.

Requiring that dk is equal to the desired delay time dr, we find that the
service rate at instant k should be chosen as

uk =
(N + 1)C

2(dr − d−k )
, (3.18)

which is the formula used to calculate the feedforward control signal at time
tk. The control action can recalculated at each time instant, resulting in
a control strategy called receding horizon control. The choice of recalcula-
tion rate is a compromise because frequent recalculations improves control
quality but it also consumes computer resources.

The feedforward is complemented with a feedback controller in the form
of a PI controller based on the measured delay at event k. Since the queue
dynamics varies with the delay time it is useful to let the parameters of the
PI controller depend on the desired delay dr, an example of gain scheduling.

The control algorithm has been tested experimentally on a testbed of
PC’s connected via Ethernet. One PC was was assigned to run the web
server, and the others were generating a synthetic workload. The goal of
the system was to provide the delay guarantee for that class with as few
resources as possible. The input load patterns generated by the clients are
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Figure 3.15: Arrival rate (top) and average service delay (bottom) for an experiment
with web server control (from [HLA04]).

shown in Figure 3.15. The desired delay for the class was set to dr = 4s in all
experiments. The figure shows that the control algorithm keeps the service
time reasonably constant and that the PI controller reduces the variations
in delay compared with a pure feedforward controller.

This example illustrates that simple models can give good insight and
that nonlinear control strategies are useful. The example also illustrates
that continuous time models can be useful for phenomena that are basically
discrete. There are also converse examples. Therefore it is a good idea to
keep an open mind and master both discrete and continuous time modeling.

The book by Hellerstein et al. [HDPT04] gives many examples of use of
feedback in computer systems. The example on delay control is based on
the work of Henriksson [HLA04, Hen06].

3.5 Atomic Force Microscope

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Heinrich
Rohrer for their design of the scanning tunneling microscope (SCM). The
idea of an SCM is to bring an atomically sharp tip so close to a conducting
surface that tunneling occurs. An image is obtained by traversing the tip
and measuring the tunneling current as a function of tip position. The
image reflects the electron structure of the upper atom-layers of the sample.
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(a) (b)

Figure 3.16: Schematic diagram of an atomic force microscope and a sample AFM
image of DNA.

This invention has stimulated development of a family of instruments that
permit visualization of surface structure at the nanometer scale, including
the atomic force microscope (AFM). These instruments are now standard
tools for exploring nanoscale structures.

In the atomic force microscope, a sample is probed by a tip on a cantilever
which is controlled to exert a constant force on the sample. The control
system is essential because it has a direct influence on picture quality and
scanning rate. Since the dynamic behavior of the system changes with the
properties of the sample, it is necessary to tune the feedback loop, which is
currently done manually by adjusting parameters of a PI controller. There
are interesting possibilities to make the systems easier to use by introducing
automatic tuning and adaptation.

A schematic picture of an atomic force microscope is shown in Fig-
ure 3.16a. A micro-cantilever with a tip having a radius of the order of
10 nm is placed close to the sample. The tip can be moved vertically and
horizontally using a piezoelectric scanner. Atomic forces bend the cantilever
and the cantilever tilt is measured by sensing the deflection of the beam us-
ing a photo diode. The signal from the photo diode is amplified and sent
to a controller that drives the amplifier for the vertical deflection of the
cantilever. By controlling the piezo scanner so that the deflection of the
cantilever is constant, the signal driving the vertical deflection of the scan-
ner is a measure of the atomic forces between the cantilever tip and the
atoms of the sample. An image of the surface is obtained by scanning the
cantilever along the sample. The resolution makes it possible to see the
structure of the sample on the atomic scale, as illustrated in Figure 3.16b,
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Figure 3.17: Block diagram of the system for vertical positioning of the cantilever.

which shows an AFM image of DNA.

To model the system, we start with the block diagram shown in Fig-
ure 3.17, which shows the major components. Signals that are easily acces-
sible are: the voltage Vp that drives the piezo scanner, the input voltage u
to its power amplifier and the output voltage y of the signal amplifier for
the photo diode. The controller is a PI controller implemented by a com-
puter, which is connected to the system by A/D and D/A converters. The
deflection of the cantilever, ϕ, is also shown.

For a more detailed model we will start with the cantilever, which is at
the heart of the system. The micro-cantilever is modeled as a spring-mass-
damper system. Let z be the distance from the tip of the cantilever to the
sample and let v be the position of the cantilever base. Furthermore let m,
k and c be the effective values of mass, spring and damping coefficients. The
equation of motion of the cantilever is then

m
d2z

dt2
+ c

dz

dt
+ k(z − v) = F, (3.19)

where F is the atomic force between the sample and the cantilever tip.

Neutral atoms and molecules are subject to two forces, an attractive van
der Waals force, and a repulsion force due to the Pauli exclusion princi-
ple. The force between two atoms can be approximately described by the
Lennard-Jones potential given by

VLJ(z) = A

(

(σ

z

)12
−

(σ

z

)6
)

,

where σ is the atom radius and r the distance between the atoms. Ap-
proximating the cantilever tip by a sphere with radius R and the sample by
a flat surface then integrating the Lennard-Jones potential, the interaction
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(a) (b)

Figure 3.18: Measured step response and model of piezo scanner. The left figure
shows a measured step response. The blue signal shows the input is the voltage
applied to the drive amplifier (50 mV/div), the red curve is the output of the power
amplifier (500 mV/div) and the red curve is the output of the signal amplifier (500
mV/div). The time scale is 25 µs/div. The right figure is a simple mechanical
model for the vertical positioner and the piezo crystal.

between the cantilever and the sample can be described by the following
potential

V (z) =
HR

6σ

(

1

120

(σ

z

)7
−

σ

z

)

,

where H ≈ 10−19 J is the Hamaker constant, and a typical atom radius
is σ = 0.4 nm. The potential has a minimum where the distance between
the tip is less than an atom size from the sample and the tip is essentially
clamped at the minimum by the atomic forces. The natural frequency of
the clamped cantilever is so high that the dynamics of the cantilever can
be neglected and we can model the cantilever as a static system. For small
deviations, the bending ϕ of the cantilever is then proportional to the vertical
translation of the cantilever.

The piezo scanner gives a deflection that is proportional to the applied
voltage, but the system and the amplifiers also have dynamics. Figure 3.18a
shows a step response of a scanner from the input voltage u to the drive
amplifier to the output voltage y of the signal amplifier for the photo diode.
A schematic mechanical representation of the vertical motion of the scanner
is shown in Figure 3.18b. The figure shows that the system responds quickly
but that there is a poorly damped oscillatory mode caused by the dynamics
of the scanner. The instrument designer has two choices, either to accept
the oscillation and to have a slow response time or else to design a control
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system that can damp the oscillations which gives a faster response and a
faster imaging. Damping the oscillations is a significant challenge because
there are many oscillatory modes and they can change depending on how the
instrument is used. An instrument designer also has the choice to redesign
the mechanics so that the resonances occur at higher frequencies.

The book by Sarid [Sar91] gives a broad coverage of atomic force micro-
scopes. The interaction of atoms close to surfaces is fundamental to solid
state physics. A good source is Kittel [Kit95] where the Lennard-Jones po-
tential is discussed. Modeling and control of atomic force microscopes are
discussed by Schitter [Sch01].

3.6 Drug Administration

The phrase “take two pills three times a day” is a recommendation that we
are all familiar with. Behind this recommendation is a solution of an open
loop control problem. The key issue is to make sure that the concentration
of a medicine in a part of our bodies will be sufficiently high to be effective
but not so high that it will cause undesirable side effects. The control action
is quantized, take two pills, and sampled, every 8 hours. The prescriptions
can be based on very simple models in terms of empirical tables where the
dosage is based on the age and weight of the patient. A more sophisticated
administration of medicine is used to keep concentration of insulin and glu-
cose at a right level. In this case the substances are controlled by continuous
measurement and injection, and the control schemes are often model based.

Drug administration is clearly a control problem. To do it properly it
is necessary to understand how a drug spreads in the body after it is ad-
ministered. This topic, called pharmacokinetics, is now its own discipline
and the models used are called compartment models. They go back to 1920
when Widmark modeled propagation of alcohol in the body [WT24]. Phar-
macokinetics describes how drugs are distributed in different organs of the
body. Compartment models are now important for screening of all drugs
used by humans. The schematic diagram in Figure 3.19 illustrates the idea
of a compartment model. Compartment models are also used in many other
fields such as environmental science.

One-Compartment Model

The simplest dynamic model is obtained by assuming that the body behaves
like a single compartment: that the drug is spread evenly in the body after
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Figure 3.19: Schematic diagram of the circulation system (from Teorell [Teo37]).

it has been administered, and that it is then removed at a rate proportional
to the concentration. Let c be the concentration, V the volume and q the
outflow rate or the clearance. Converting the description of the system into
differential equations, the model becomes

V
dc

dt
= −qc. (3.20)

This equation has the solution

c(t) = c0e
−qt/V = c0e

−kt,

which shows that the concentration decays exponentially after an injection.
The input is introduced implicitly as an initial condition in the model (3.20).
The way the input enters the model depends on how the drug is adminis-
tered. The input can be represented as a mass flow into the compartment
where the drug is injected. A pill that is dissolved can also be interpreted
as an input in terms of a mass flow rate.

The model (3.20) is called a a one-compartment model or a single pool

model. The parameter q/V is called the elimination rate constant. The
simple model is often used in studies where the concentration is measured
in the blood plasma. By measuring the concentration at a few times, the
initial concentration can be obtained by extrapolation. If the total amount
of injected substance is known, the volume V can then be determined as
V = m/c0; this volume is called the the apparent volume of distribution.
This volume is larger than the real volume if the concentration in the plasma
is lower than in other parts of the body. The model (3.20) is very simple
and there are large individual variations in the parameters. The parameters
V and q are often normalized by dividing with the weight of the person.
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Figure 3.20: Schematic diagram of a model with two compartments.

Typical parameters for aspirin are V = 0.2 l/kg and q = 0.01 l/h/kg. These
numbers can be compared with a blood volume of 0.07 l/kg, a plasma volume
of 0.05 l/kg and intracellular fluid volume of 0.4 l/kg.

The simple one compartment model gives the gross behavior but it is
based on strong simplifications. Improved models can be obtained by con-
sidering the body as composed of several compartments. We will work out
the details for a system with two compartments.

Two-Compartment Model

Consider the system shown in Figure 3.20, where the compartments are
represented as circles and the flows by arrows. We assume that there is
perfect mixing in each compartment and that the transport between the
compartments are driven by concentration differences. We further assume
that a drug with concentration c0 is injected in compartment 1 at a volume
flow rate of u and that the concentration in compartment 2 is the output.

Let x1 and x2 be the total mass of the drug in the compartments and
let V1 and V2 be the volumes of the compartments. A mass balance for the
system gives

dx1

dt
= q(c2 − c1) − q0c1 + c0u = q

(x2

V2
−

x1

V1

)

−
q0

V1
c1 + c0u

= −(k1 + k0)x1 + k2x2 + c0u

dx2

dt
= q(c1 − c2) = q

(x1

V1
−

x2

V2

)

= k1x1 − k2x2

y = c2 =
1

V2
x2,

where k0 = q0/V1, k1 = q/V1 and k2 = q/V2. Introducing matrices, this
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model can be written as

dx

dt
=









−k0 − k1 k2

k1 −k2








x +









c0

0








u

y =


0 1/V2



x.

(3.21)

In this model we have used the total mass of the drug in each compartment
as state variables. If we instead choose to use the concentrations as state
variables, the model becomes

dc

dt
=









−k0 − k1 k1

k2 −k2








c +









b0

0








u

y =


0 1


x,

(3.22)

where b0 = c0/V1. Mass is called an extensive variable and concentration is
called an intensive variable.

The papers by Widmark and Tandberg [WT24] and Teorell [Teo37] are
classics. Pharmacokinetics is now an established discipline with many text-
books [Dos68, Jac72, GP82]. Because of its medical importance pharmacoki-
netics is now an essential component of drug development. Compartment
models are also used in other branches of medicine and in ecology. The
problem of determining rate coefficients from experimental data is discussed
in [BÅ70] and [God83].

3.7 Population Dynamics

Population growth is a complex dynamic process that involves the interac-
tion of one or more species with their environment and the larger ecosystem.
The dynamics of population groups are interesting and important in many
different areas of social and environmental policy. There are examples where
new species have been introduced in new habitats, sometimes with disas-
trous results. There are also been attempts to control population growth
both through incentives and through legislation. In this section we describe
some of the models that can be used to understand how populations evolve
with time and as a function of their environment.

Simple Growth Model

Let x the the population of a species at time t. A simple model is to assume
that the birth and death rates are proportional to the total population. This



3.7. POPULATION DYNAMICS 103

gives the linear model

dx

dt
= bx − dx = (b − d)x = rx (3.23)

where birth rate b and death rate d are parameters. The model gives an
exponential increase if b > d or an exponential decrease if B < d. A more
realistic model is to assume that the birth rate decreases when the pop-
ulation is large. The following modification of the model (3.23) has this
property:

dx

dt
= rx(1 −

x

xc
) = f(x), (3.24)

where xc is the carrying capacity of the environment. The model (3.24) is
called the logistic growth model.

Predator Prey Models

A more sophisticated model of population dynamics includes the effects
of competing populations, where one species may feed on another. This
situation, referred to as the predator prey problem, was already introduced
in Example 2.3, where we developed a discrete time model that captured
some of the features of historical records of lynx and hare populations.

In this section, we replace the difference equation model used there with
a more sophisticated differential equation model. Let H(t) represent the
number of hares (prey) and L(t) represent the number of lynxes (predator).
The dynamics of the system are modeled as

dH

dt
= rhH

(

1 −
H

K

)

−
aHL

1 + aHTh
H ≥ 0

dL

dt
= rlL

(

1 −
L

kH

)

L ≥ 0.

In the first equation, rh represents the growth rate of the hares, K represents
the maximum population of hares (in the absence of lynxes), a represents
the interaction term that describes how the hares are diminished as a func-
tion of the lynx population, and Th depends is a time constant for prey
consumption. In the second equation, rl represents the growth rate of the
lynxes and k represents the fraction of hares versus lynxes at equilibrium.
Note that both the hare and lynx dynamics include terms that resemble the
logistic growth model (3.24).

Of particular interest are the values at which the population values re-
main constant, called equilibrium points. The equilibrium points for this
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Figure 3.21: A simulation of the predator prey model with rh = 0.02, K = 500,
a = 0.03, Th = 5, rl = 0.01, k = 0.2 and time scale chosen to correspond to weeks.

system can be determined by setting the right hand side of the above equa-
tions to zero. Letting He and Le represent the equilibrium state, from the
second equation we have

Le = kHe.

Substituting this into the first equation, we must solve

rhHe

(

1 −
He

K

)

−
akH2

e

1 + aHeTh
= 0.

Multiplying through by the denominator, we get

0 = He · (rh

(

1 −
He

K

)

(1 + aHeTh) − akHe

)

= He · (rhaTh

K
H2

e + (ak + rh/K − rhaTh)He − rh

)

.

This gives one solution at He = 0 and a second that can be solved analyti-
cally or numerically.

Figure 3.21 shows a simulation of the dynamics starting from a set of
population values near the nonzero equilibrium values. We see that for this
choice of parameters, the simulation predicts an oscillatory population count
for each species, reminiscent of the data shown in Figure 2.6 (page 48).

Fisheries Management

We end this section by discussing a control problem that has had significant
impact on international legislation for fishing.

The dynamics of a commercial fishery can be described by the following
simple model

dx

dt
= f(x) − h(x, u), (3.25)
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where x be the total biomass, f(x) the growth rate and h(x, u) the harvesting
rate. The logistic function (3.24) is a simple model for the growth rate and
the harvesting can be modeled by

h(x, u) = axu, (3.26)

where the control variable u is the harvesting effort, and a is a constant.
The rate of revenue is

g(x, u) = bh(x, u) − cu, (3.27)

where b and c are constants representing the price of fish and the cost of
fishing. Using equations (3.26) and (3.27) we find that the rate of revenue
is

g(x, u) = (abx − c)u.

In a situation where there are many fishermen and no concern for the envi-
ronment, it is economic to fish as long as abx > c and there will then be an
equilibrium where the biomass is

x∞ =
c

ab
, (3.28)

which is the equilibrium with unrestricted fishing.
Assume that the population is initially at equilibrium at x(0) = xc. The

revenue rate with unrestricted fishing is then (abxc − c)u, which can be very
large. The fishing effort then naturally increases until the equilibrium (3.28),
where the revenue rate is zero.

We can contrast unrestricted fishing with the situation for a single fish-
ery. A typical case is when a country has all fishing rights in a large area.
In such a case it is natural to maximize the rate of sustainable revenue.
This can be accomplished by adding the constraint that the biomass x in
equation (3.25) is constant, which implies that

f(x) = h(x, u).

Solving this equation for u gives

u = ud(x) =
f(x)

ax
.

Inserting the value of u into equation (3.27) gives the following rate of rev-
enue

g(x) = bh(x, ud) − cud(x) =
(

b −
c

ax

)

f(x)

= rx
(

b −
c

ax

)(

1 −
x

xc

)

=
r

xc

(

−abx2 + (c + abxc)x − cxc

)

.
(3.29)
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Figure 3.22: Simulation of a fishery. The curves show total biomass x, harvesting
rate u and revenue rate g as a function of time t. The fishery is modeled by
equations (3.25), (3.26), (3.27) with parameters xc = 100, a = 0.1, b = 1 and c = 1.
Initially fishing is unrestricted at rate u = 3, at time t = 15 fishing is changed to
harvesting at a sustainable rate, accomplished by a PI controller with parameters
k = 0.5 and ki = 0.5.

The rate of revenue has a maximum

r0 =
r(c − abxc)

2

4abxc
, (3.30)

for
x0 =

xc

2
+

c

2ab
. (3.31)

Figure 3.22 shows a simulation of a fishery. The system is initially in equi-
librium with x = 100. Fishing begins with constant harvesting rate u = 3
at time t = 0. The initial revenue rate is large, but it drops rapidly as the
population decreases. At time t = 12 the revenue rate is practically zero.
The fishing policy is changed to a sustainable strategy at time t = 15. This
is accomplished by using a PI controller where the reference is the optimal
sustainable population size x0 = 55, given by equation (3.31). The feedback
stops harvesting for a period but the biomass increases rapidly. At time
t = 28 the harvesting rate increases rapidly and a sustainable steady state
is reached in a short time.

Volume I of the two volume set by J. Murray [Mur04] give a broad
coverage of population dynamics. Maintaining a sustainable fish population
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is a global problem that has created many controversies and conflicts. A
detailed mathematical treatment is given in [?]. The mathematical analyses
has influenced international agreement on fishing.

3.8 Exercises

1. Consider the cruise control example described in Section 3.1. Build a
simulation that recreates the response to a hill shown in Figure 3.3b
and show the effects of increasing and decreasing the mass of the car
by 25%. Redesign the controller (using trail and error is fine) so that
it returns to the within 10% of the desired speed within 3 seconds of
encountering the beginning of the hill.

2. Consider the inverted pendulum model of the bicycle given in Fig-
ure 3.6. Assume that the block labeled body is modeled by equa-
tion (3.5) and that the front fork is modeled by (3.6). Derive the
equations for the closed loop. Show that when T = 0 the equation
is the same as for a mass spring damper system. Also show that
the spring coefficient is negative for low velocities but positive if the
velocity is sufficiently large.

3. Show that the dynamics of a bicycle frame given by equation (3.5) can
be written in state space form as

d

dt









x1

x2








=









0 mgh/J
1 0

















x1

x2








+









1
0








u

y =







Dv0

bJ

mv2
0h

bJ





x,

where the input u is the torque applied to the handle bars and the
output y is the title angle ϕ. What do the states x1 and x2 represent?

4. Combine the bicycle model given by equation (3.5) and the model for
steering kinematics in Example 2.8 to obtain a model that describes
the path of the center of mass of the bicycle.

5. Consider the op amp circuit shown below:
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Show that the dynamics can be written in state space form as

dx

dt
=













−
1
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−

1
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0
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x +
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0











u

y =


0 1


x

where u = v1 and y = v3. (Hint: Use v2 and v3 as your state variables.)

6. (Atomic force microscope) A simple model for the vertical motion of
the scanner is shown in Figure 3.18b, where the system is approxi-
mated with two masses. The mass m1 is half of the piezo crystal and
the mass m2 is the other half of the piezo crystal and the mass of
the support. A simple model is obtained by assuming that the piezo
crystal generates a force F between the masses and that there is a
damping c in the spring. Let the positions of the center of the masses
be x1 and x2, and let the elongation of the piezo stack is u = x1 − x2.
A momentum balance gives the following model for the system.

m1
d2x1

dt2
= F

m2
d2x2

dt2
= −c

dx2

dt
− kx2 − F

u = x1 − x2.

Review the assumptions made in the simplified model. Let the elon-
gation u of the piezo stack be the control variable and the height of
the sample x1 be the output. Show that the relation between x1 and
u is given by

(m2 − m1)
d2x1

dt2
+ c

dx1

dt
+ kx1 = m1

d2u

dt2
+ c

du

dt
+ ku.

Simulate the system and show that the response is qualitatively the
same as the one shown in Figure 3.18a. Can the parameters of the
model be determined from a step response experiment of the type
shown in Figure 3.18a?
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7. (Drug administration) Consider the compartment model in Figure 3.20.
Assume that there is no outflux, i.e. k0 = 0. Compare the models
where the states are masses and concentrations. Compute the steady
state solutions for the different cases. Give a physical interpretation
of the results.

8. (Drug administration) Show that the model represented by the schematic
diagram in Figure 3.19 can be represented by the compartment model
shown below:

D B T I

K

k1
k2

k3

k4

k5

where compartment D represents the issue where the drug is injected,
compartment B represents the blood, compartment T represents tissue
where the drug should be active, compartment K the kidney where
the drug is eliminated, and I a part of the body where the drug is
inactive.

Write a simulation for the system and explore how the amount of
the drug in the different compartments develops over time. Relate
you observations to your physical intuition and the schematic diagram
above. Modify your program so that you can investigate what happens
if the drug is injected directly to the blood stream, compartment B,
instead of in compartment D.

9. (Drug administration) The metabolism of alcohol in the body has can
be modeled by the nonlinear compartment model

Vb
dcb

dt
= q(cl − cb) + qiv

Vl
dcl

dt
= q(cb − cl) − qmax

cl

c0 + cl
+ qgi

where Vb = 48 l and Vl = 0.6 l are the effective distribution volume of
body water and liver water, cb and cl the corresponding concentrations
of alcohol, qiv and qgi are the injection rates for intravenously and
gastrointestinal intake, q = 1.5 l/min is the total hepatic blood flow,
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qmax = 2.75 mmol/min and km = 0.1 mmol. Simulate the system and
compute the concentration in the blood for oral and intravenous doses
of 12 g and 40 g of alcohol.

10. (Population dynamics) Consider the model for logistic growth given
by equation (3.24). Show that the maximum growth rate occurs when
the size of the population is half of the steady state value.

11. (Population dynamics) Verify the curves in Figure 3.21 by creating a
program that integrates the differential equations.


