
Chapter 4

Dynamic Behavior

Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off a Tor-

nado in Texas?

Talk given by Edward Lorenz, December 1972 meeting of the American As-
sociation for the Advancement of Science.

In this chapter we give a broad discussion of the behavior of dynamical
systems, focused on systems modeled by nonlinear differential equations.
This allows us to discuss equilibrium points, stability, limit cycles and other
key concepts of dynamical systems. We also introduce some methods for
analyzing global behavior of solutions.

4.1 Solving Differential Equations

In the last chapter, we saw that one of the methods of modeling dynamical
systems is through the use of ordinary differential equations (ODEs). A
state space, input/output system has the form

dx

dt
= f(x, u)

y = h(x, u),
(4.1)

where x = (x1, . . . , xn) ∈ R
n is the state, u ∈ R

p is the input, and y ∈ R
q

is the output. The smooth maps f : R
n × R

p → R
n and h : R

n × R
p → R

q

represent the dynamics and measurements for the system. We will focus in
this text on single input, single output (SISO) systems, for which p = q = 1.

We begin by investigating systems in which the input has been set to a
function of the state, u = α(x). This is one of the simplest types of feedback,
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112 CHAPTER 4. DYNAMIC BEHAVIOR

in which the system regulates its own behavior. The differential equations
in this case become

dx

dt
= f(x, α(x)) = F (x). (4.2)

In order to understand the dynamic behavior of this system, we need to
analyze the features of the solutions of equation (4.2). While in some simple
situations we can write down the solutions in analytical form, more often we
must rely on computational approaches. We begin by describing the class
of solutions for this problem.

Initial Value Problems

We say that x(t) is a solution of the differential equation (4.2) on the time
interval t0 ∈ R to tf ∈ R if

dx(t)

dt
= F (x(t)) for all t0 ≤ t ≤ tf .

A given differential equation may have many solutions. We will most often
be interested in the initial value problem, where x(t) is prescribed at a given
time t0 ∈ R and we wish to find a solution valid for all future time, t > t0.

We say that x(t) is a solution of the differential equation (4.2) with initial

value x0 ∈ R
n at t0 ∈ R if

x(t0) = x0 and
dx(t)

dt
= F (x(t)) for all t0 ≤ t ≤ tf .

For most differential equations we will encounter, there is a unique solution
that is defined for t0 ≤ t ≤ tf . The solution may defined for all time t ≥ t0,
in which case we take tf = ∞. Because we will primarily be interested in
solutions of the initial value problem for ODEs, we will often refer to this
simply as the solution of an ODE.

We will usually assume that t0 is equal to 0. In the case when F is inde-
pendent of time (as in equation (4.2)), we can do so without loss of generality
by choosing a new independent (time) variable, τ = t − t0 (Exercise 2).

Example 4.1 (Damped oscillator). Consider a damped, linear oscillator,
introduced in Example 2.4. The equations of motion for the system are

mq̈ + cq̇ + kq = 0,

where q is the displacement of the oscillator from its rest position. We
assume that c2 < 4km, corresponding to a lightly damped system (the
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Figure 4.1: Response of the damped oscillator to the initial condition x0 = (1, 0).

reason for this particular choice will become clear later). We can rewrite
this in state space form by setting x1 = q and x2 = q̇, giving

ẋ1 = x2

ẋ2 = − k

m
x1 −

c

m
x2.

In vector form, the right hand side can be written as

F (x) =









x2

− k
m

x1 − c
m

x2








.

The solution to the initial value problem can be written in a number of
different ways and will be explored in more detail in Chapter 5. Here we
simply assert that the solution can be written as

x1(t) = e−
ct

2m

(

x10 cos ωdt +
(cx10 + 2mx20

2mωd

)

sinωdt

)

x2(t) = e−
ct

2m

(

x20 cos ωdt −
(2kx10 + cx20

2mωd

)

sinωdt

)

,

where x0 = (x10, x20) is the initial condition and ωd =
√

4km − c2/2m. This
solution can be verified by substituting it into the differential equation. We
see that the solution is explicitly dependent on the initial condition and it
can be shown that this solution is unique. A plot of the initial condition
response is shown in Figure 4.1. We note that this form of the solution only
holds for c2 − 4km < 0, corresponding to an “underdamped” oscillator. ∇
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Numerical Solutions

One of the benefits of the computer revolution that is that it is very easy
to obtain a numerical solution of a differential equation when the initial
condition is given. A nice consequence of this is as soon as we have a model
in the form of equation (4.2), it is straightforward to generate the behavior
of x for different initial conditions, as we saw briefly in the previous chapter.

Modern computing environments such as LabVIEW, MATLAB and Math-
ematica allow simulation of differential equations as a basic operation. For
example, these packages provides several tools for representing, simulating,
and analyzing ordinary differential equations of the form in equation (4.2).
To define an ODE in MATLAB or LabVIEW, we define a function repre-
senting the right hand side of equation (4.2):

function xdot = system(t, x)

xdot(1) = F1(x);

xdot(2) = F2(x);

...

Each expression Fi(x) takes a (column) vector x and returns the ith el-
ement of the differential equation. The second argument to the function
system, t, represents the current time and allows for the possibility of time-
varying differential equations, in which the right hand side of the ODE in
equation (4.2) depends explicitly on time.

ODEs defined in this fashion can be simulated by using the ode45 com-
mand:

ode45(’file’, [0,T], [x10, x20, ..., xn0])

The first argument is the name of the function defining the ODE, the second
argument gives the time interval over which the simulation should be per-
formed and the final argument gives the vector of initial conditions. Similar
capabilities exist in other packages such as Octave and Scilab.

Example 4.2 (Balance system). Consider the balance system given in Ex-
ample 2.1 and reproduced in Figure 4.2a. Suppose that a coworker has
designed a control law that will hold the position of the system steady in
the upright position at p = 0. The form of the control law is

F = −Kx,

where x = (p, θ, ṗ, θ̇) ∈ R
4 is the state of the system, F is the input, and

K = (k1, k2, k3, k4) is the vector of “gains” for the control law.
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Figure 4.2: Balance system: (a) simplified diagram and (b) initial condition re-
sponse.

The equations of motion for the system, in state space form, are

d

dt

























p
θ
ṗ

θ̇

























=











































ṗ

θ̇

−ml sin θθ̇2 + mg(ml2/Jt) sin θ cos θ − cṗ + u

Mt − m(ml2/Jt) cos2 θ

−ml2 sin θ cos θθ̇2 + Mtgl sin θ + cl cos θṗ + γθ̇ + l cos θu

Jt(Mt/m) − m(l cos θ)2











































y =









p
θ








,

where Mt = M + m and Jt = J + ml2. We use the following parameters
for the system (corresponding roughly to a human being balanced on a
stabilizing cart):

M = 10 kg m = 80 kg c = 0.1 Ns/m

J = 100 kg m2/s2 l = 1 m g = 9.8 m/s2

K =


−1 120 −4 20




This system can now be simulated using MATLAB or a similar numerical
tool. The results are shown in Figure 4.2b, with initial condition x0 =
(1, 0, 0, 0). We see from the plot that after an initial transient, the angle and
position of the system return to zero (and remain there). ∇
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Figure 4.3: Solutions to the differential equations (4.3) and (4.4).

Existence and Uniqueness
�

Without imposing some conditions on the function F , the differential equa-
tion (4.2) may not have a solution for all t, and there is no guarantee that
the solution is unique. We illustrate these possibilities with two examples.

Example 4.3 (Finite escape time). Let x ∈ R and consider the differential
equation

dx

dt
= x2 (4.3)

with initial condition x(0) = 1. By differentiation we can verify that the
function

x(t) =
1

1 − t
(4.4)

satisfies the differential equation and it also satisfies the initial condition. A
graph of the solution is given in Figure 4.3a; notice that the solution goes
to infinity as t goes to 1. Thus the solution only exists in the time interval
0 ≤ t < 1. ∇

Example 4.4 (No unique solution). Let x ∈ R and consider the differential
equation

dx

dt
=

√
x

with initial condition x(0) = 0. We can show that the function

x(t) =

{

0 if 0 ≤ t ≤ a
1
4(t − a)2 if t > a
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satisfies the differential equation for all values of the parameter a ≥ 0. To
see this, we differentiate x(t) to obtain

dx

dt
=

{

0 if 0 ≤ t ≤ a
1
2(t − a) if t > a

and hence ẋ =
√

x for all t ≥ 0 with x(0) = 0. A graph of some of the
possible solutions is given in Figure 4.3b. Notice that in this case there are
many solutions to the differential equation. ∇

These simple examples show that there may be difficulties even with
simple differential equations. Existence and uniqueness can be guaranteed
by requiring that the function F has the property that for some fixed c ∈ R

‖F (x) − F (y)‖ < c‖x − y‖ for all x, y,

which is called Lipschitz continuity. A sufficient condition for a function to
be Lipschitz is that the Jacobian, ∂F/∂x, is uniformly bounded for all x.
The difficulty in Example 4.3 is that the derivative ∂F/∂x becomes large
for large x and the difficulty in Example 4.4 is that the derivative ∂F/∂x is
infinite at the origin.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is important for understanding
some of the key concepts of stability in nonlinear dynamics. We will focus on
an important class of systems known as planar dynamical systems. These
systems have two state variables x ∈ R

2, allowing their solutions to be
plotted in the (x1, x2) plane. The basic concepts that we describe hold
more generally and can be used to understand dynamical behavior in higher
dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems with
state x ∈ R

2 is to plot the phase portrait of the system, briefly introduced
in Chapter 2. We start by introducing the concept of a vector field. For a
system of ordinary differential equations

dx

dt
= F (x),
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Figure 4.4: Vector field plot (a) and phase portrait (b) for a damped oscillator.
This plots were produced using the phaseplot command in MATLAB.

the right hand side of the differential equation defines at every x ∈ R
n

a velocity F (x) ∈ R
n. This velocity tells us how x changes and can be

represented as a vector F (x) ∈ R
n. For planar dynamical systems, we can

plot these vectors on a grid of points in the plane and obtain a visual image
of the dynamics of the system, as shown in Figure 4.4a.

A phase portrait is constructed by plotting the flow of the vector field
corresponding to the planar dynamical system. That is, for a set of initial
conditions, we plot the solution of the differential equation in the plane R

2.
This corresponds to following the arrows at each point in the phase plane
and drawing the resulting trajectory. By plotting the resulting trajectories
for several different initial conditions, we obtain a phase portrait, as show
in Figure 4.4b.

Phase portraits give us insight into the dynamics of the system by show-
ing us the trajectories plotted in the (two dimensional) state space of the
system. For example, we can see whether all trajectories tend to a single
point as time increases or whether there are more complicated behaviors as
the system evolves. In the example in Figure 4.4, corresponding to a damped
oscillator, we see that for all initial conditions the system approaches the ori-
gin. This is consistent with our simulation in Figure 4.1 (also for a damped
oscillator), but it allows us to infer the behavior for all initial conditions
rather than a single initial condition. However, the phase portrait does not
readily tell us the rate of change of the states (although this can be inferred
from the length of the arrows in the vector field plot).
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Figure 4.5: An inverted pendulum: (a) motivating application, a Saturn rocket; (b)
a simplified diagram of the model; (c) phase portrait. In the phase portrait, the
equilibrium points are marked by solid dots along the x2 = 0 line.

Equilibrium Points

An equilibrium point of a dynamical system represents a stationary condition
for the dynamics. We say that a state xe is an equilibrium point for a
dynamical system

dx

dt
= F (x)

if F (xe) = 0. If a dynamical system has an initial condition x(0) = xe then
it will stay at the equilibrium point: x(t) = xe for all t ≥ 0.1

Equilibrium points are one of the most important features of a dynami-
cal system since they define the states corresponding to constant operating
conditions. A dynamical system can have zero, one or more equilibrium
points.

Example 4.5 (Inverted pendulum). Consider the inverted pendulum in Fig-
ure 4.5, which is a portion of the balance system we considered in Chapter 2.
The inverted pendulum is a simplified version of the problem of stabilizing
a rocket: by applying forces at the base of the rocket, we seek to keep the
rocket stabilized in the upright position. The state variables are the angle
θ = x1 and the angular velocity dθ/dt = x2, the control variable is the
acceleration u of the pivot, and the output is the angle θ.

For simplicity we ignore any damping (γ = 0) and assume that mgl/Jt =
1 and ml/Jt = 1, where Jt = J +ml2, so that the dynamics (equation (2.8))

1We take t0 = 0 from here on.
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become
dx

dt
=









x2

sinx1 + u cos x1









y = x1.

(4.5)

This is a nonlinear time-invariant system of second order.
The equilibrium points for the system are given by

xe =









0
±nπ









where n = 0, 1, 2, . . . . The equilibrium points for n even correspond to the
pendulum pointing up and those for n odd correspond to the pendulum
hanging down. A phase portrait for this system (without corrective inputs)
is shown in Figure 4.5c. The phase plane shown in the figure is R×R, which
results in our model having an infinite number of equilibria, corresponding
to 0, ±π, ±2π, . . . ∇

Limit Cycles

Nonlinear systems can exhibit very rich behavior. Consider the differential
equation

dx1

dt
= −x2 − x1(1 − x2

1 − x2
2)

dx2

dt
= x1 − x2(1 − x2

1 − x2
2).

(4.6)

The phase portrait and time domain solutions are given in Figure 4.6. The
figure shows that the solutions in the phase plane converge to a circular
trajectory. In the time domain this corresponds to an oscillatory solution.
Mathematically the circle is called a limit cycle. More formally, we call a
solution x(t) a limit cycle of period T > 0 if x(t + T ) = x(t) for all t ∈ R.

Example 4.6 (Predator prey). Consider the predator prey example intro-
duced in Section 3.7. The dynamics for the system are given by

dH

dt
= rhH

(

1 − H

K

)

− aHL

1 + aHTh

H ≥ 0

dL

dt
= rlL

(

1 − L

kH

)

L ≥ 0.

The phase portrait for this system is shown in Figure 4.7. In addition to the
two equilibrium points, we see a limit cycle in the diagram. This limit cycle



4.2. QUALITATIVE ANALYSIS 121

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x
2

(a)

0 10 20 30
−2

−1

0

1

2

time (sec)

x 1, x
2

x
1

x
2

(b)

Figure 4.6: Phase portrait and time domain simulation for a system with a limit
cycle.

is attracting or stable since initial conditions near the limit cycle approach it
as time increases. It divides the phase space into two different regions: one
inside the limit cycle in which the size of the population oscillations growth
with time (until they rich the limit cycle) and one outside the limit cycle in
which they decay. ∇

There are methods for determining limit cycles for second order systems,
but for general higher order systems we have to resort to computational
analysis. Computer algorithms find limit cycles by searching for periodic
trajectories in state space that satisfy the dynamics of the system. In many
situations, stable limit cycles can be found by simulating the system with
different initial conditions.
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Figure 4.7: Phase portrait and time domain simulation for the predator prey sys-
tem.
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Figure 4.8: Phase portrait and time domain simulation for a system with a single
stable equilibrium point.

4.3 Stability

The stability of an equilibrium point determines whether or not solutions
nearby the equilibrium point remain nearby, get closer, or move further
away.

Definitions

An equilibrium point is stable if initial conditions that start near an equi-
librium point stay near that equilibrium point. Formally, we say that an
equilibrium point xe is stable if for all ǫ > 0, there exists an δ > 0 such that

‖x(0) − xe‖ < δ =⇒ ‖x(t) − xe‖ < ǫ for all t > 0.

Note that this definition does not imply that x(t) gets closer to xe as time
increases, but just that it stays nearby. Furthermore, the value of δ may
depend on ǫ, so that if we wish to stay very close to the equilibrium point, we
may have to start very, very close (δ ≪ ǫ). This type of stability is sometimes
called stability “in the sense of Lyapunov”. If a system is stable in the sense
of Lyapunov and the trajectories don’t converge to the equilibrium point,
we say that the equilibrium point is neutrally stable.

An example of a neutrally stable equilibrium point is shown in Figure 4.8.
From the phase portrait, we see that if we start near the equilibrium then
we stay near the equilibrium. Indeed, for this example, given any ǫ that
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Figure 4.9: Phase portrait and time domain simulation for a system with a single
asymptotically stable equilibrium point.

defines the range of possible initial conditions, we can simply choose δ = ǫ
to satisfy the definition of stability.

An equilibrium point xe is (locally) asymptotically stable if it is stable in
the sense of Lyapunov and also x(t) → xe as t → ∞ for x(t) sufficiently close
to xe. This corresponds to the case where all nearby trajectories converge
to the equilibrium point for large time. Figure 4.9 shows an example of an
asymptotically stable equilibrium point. Note from the phase portraits that
not only do all trajectories stay near the equilibrium point at the origin, but
they all approach the origin as t gets large (the directions of the arrows on
the phase plot show the direction in which the trajectories move).

An equilibrium point is unstable if it is not stable. More specifically, we
say that an equilibrium point is unstable if given some ǫ > 0, there does not
exist a δ > 0 such that if ‖x(0) − xe‖ < δ then ‖x(t) − xe‖ < ǫ for all t. An
example of an unstable equilibrium point is shown in Figure 4.10.

The definitions above are given without careful description of their do-
main of applicability. More formally, we define an equilibrium point to be
locally stable (or asymptotically stable) if it is stable for all initial conditions
x ∈ Br(xe) where

Br(xe) = {x : ‖x − xe‖ < δ}

is a ball of radius r around xe and r > 0. A system is globally stable if it
stable for all r > 0. Systems whose equilibrium points are only locally stable
can have interesting behavior away from equilibrium points, as we explore
in the next section.
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Figure 4.10: Phase portrait and time domain simulation for a system with a single
unstable equilibrium point.

For planar dynamical systems, equilibrium points have been assigned
names based on their stability type. An asymptotically stable equilibrium
point is called a sink or sometimes an attractor. An unstable equilibrium
point can either be a source, if all trajectories lead away from the equilibrium
point, or a saddle, if some trajectories lead to the equilibrium point and
others move away (this is the situation pictured in Figure 4.10). Finally, an
equilibrium point which is stable but not asymptotically stable (such as the
one in Figure 4.8) is called a center.

Example 4.7 (Damped inverted pendulum). Consider the damped inverted
pendulum introduced Example 2.2. The equations of motion are

d

dt









θ

θ̇








=











θ̇
mgl
Jt

sin θ − γ
Jt

θ̇ + l
Jt

cos θ u











(4.7)

A phase diagram for the system is shown in Figure 4.11. The equilibrium
point at x = (0, 0) is a locally unstable equilibrium point (corresponding to
the inverted position). The equilibrium points at x = (±π, 0) correspond
to locally asymptotically stable equilibrium points. An example of locally
stable (but not asymptotically) stable points is the undamped pendulum,
shown in Figure 4.5 on page 119.

It is much more natural to describe the pendulum in terms of an angle ϕ�
and an angular velocity. The phase space is then a manifold S1 × R, where
S1 represents the unit circle. Using this description, the dynamics evolve on
a cylinder and there are only two equilibria, as shown in Figure 4.11c. ∇
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Figure 4.11: Phase portrait for a damped inverted pendulum: (a) diagram of the
inverted pendulum system; (b) phase portrait with θ ∈ [2π, 2π]; (c) phase portrait
with θ periodic.

Example 4.8 (Congestion control). The model for congestion control in a
network consisting of a single computer connected to a router, introduced
in Example 2.12, is given by

dx

dt
= −b

x2

2
+ (bmax − b)

db

dt
= x − c,

where x is the transmission rate from the source and b is the buffer size
of the router. The phase portrait is shown in Figure 4.12 for two different
parameter values. In each case we see that the system converges to an
equilibrium point in which the full capacity of the link is used and the
router buffer is not at capacity. The horizontal and vertical lines on the
plots correspond to the router buffer limit and link capacity limits. When
the system is operating outside these bounds, packets are being lost.

We see from the phase portrait that the equilibrium point at

x∗ = c b∗ =
2bmax

2 + c2
,

is stable, since all initial conditions result in trajectories that converge to
this point. Note also that some of the trajectories cross outside of the region
where x > 0 and b > 0, which is not possible in the actual system; this shows
some of the limits of this model away from the equilibrium points. A more
accurate model would use additional nonlinear elements in the model to
insure that the quantities in the model always stayed positive. ∇
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Figure 4.12: Phase portraits for a congestion control protocol running with a single
source computer: (a) with router buffer size bmax = 2 Mb and link capacity c = 1
Mb/sec and (b) router buffer size bmax = 1 Mb and link capacity c = 2 Mb/sec.

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible to
determine the local stability of an equilibrium point by approximating the
system by a linear system. We shall explore this concept in more detail
later, but the following examples illustrates the basic idea.

Example 4.9 (Inverted pendulum). Consider again the inverted pendulum,
whose dynamics are given by

dx

dt
=













x2

mgl
Jt

sinx1 − γ
Jt

x2 + l
Jt

cos x1 u













y = x1,

where we have defined the state as x = (θ, θ̇). We first consider the equi-
librium point at x = (0, 0), corresponding to the straight up position. If we
assume that the angle θ = x1 remains small, then we can replace sin x1 with
x1 and cos x1 with 1, which gives the approximate system

dx

dt
=













x2

mgl
Jt

x1 − γ
Jt

x2 + l
Jt

u













y = x1.

(4.8)

Intuitively, this system should behave similarly to the more complicated
model as long as x1 is small. In particular, it can be verified that the
system (4.5) is unstable by plotting the phase portrait or computing the
eigenvalues of the system matrix (as described in the next chapter).
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Figure 4.13: Comparison between the phase portraits for the full nonlinear systems
(left) and its linear approximation around the origin (right).

We can also approximate the system around the stable equilibrium point
at x = (π, 0). In this case we have to expand sinx1 and cos x1 around x1 = π,
according to the expansions

sin(π + θ) = − sin θ ≈ −θ cos(π + θ) = cos(θ) ≈ 1.

If we define z1 = x1 − π and z2 = x2, the resulting approximate dynamics
are given by

dx

dt
=













z2

−mgl
Jt

z1 − γ
Jt

z2 + l
Jt

u













y = z1.

(4.9)

Note that z = (0, 0) is the equilibrium point for this system and that it
has the same basic form as the dynamics shown in Figure 4.9. Figure 4.13
shows the phase portraits for the original system and the approximate sys-
tem around the corresponding equilibrium points. Note that they are very
similar (although not exactly the same). More generally, it can be shown
that if a linear approximation has either asymptotically stable or unstable
equilibrium point, then the local stability of the original system must be the
same. ∇

The fact that a linear model can sometimes be used to study the be-
havior of a nonlinear system near an equilibrium point is a powerful one.
Indeed, we can take this even further and use local linear approximations
of a nonlinear system to design a feedback law that keeps the system near
its equilibrium point (design of dynamics). By virtue of the fact that the
closed loop dynamics have been chosen to stay near the equilibrium, we can
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even use the linear approximation to design the feedback that ensures this
condition is true!

Lyapunov Functions
�

A powerful tool for determining stability is the use of Lyapunov functions.
A Lyapunov function V : R

n → R is an energy-like function that can be
used to determine stability of a system. Roughly speaking, if we can find a
non-negative function that always decreases along trajectories of the system,
we can conclude that the minimum of the function is a stable equilibrium
point (locally).

To describe this more formally, we start with a few definitions. We say
that a continuous function V (x) is positive definite if V (x) > 0 for all x 6= 0
and V (0) = 0. We will often write this as V (x) ≻ 0. Similarly, a function
is negative definite if V (x) < 0 for all x 6= 0 and V (0) = 0. We say that
a function V (x) is positive semidefinite if V (x) can be zero at points other
than x = 0 but otherwise V (x) is strictly positive. We write this as V (x) � 0
and define negative semi-definite functions analogously.

To illustrate the difference between a positive definite function and a
positive semi-definite function, suppose that x ∈ R

2 and let

V1(x) = x2
1 V2(x) = x2

1 + x2
2.

Both V1 and V2 are always non-negative. However, it is possible for V1 to
be zero even if x 6= 0. Specifically, if we set x = (0, c) where c ∈ R is any
non-zero number, then V1(x) = 0. On the other hand, V2(x) = 0 if and only
if x = (0, 0). Thus V1(x) � 0 and V2(x) ≻ 0.

We can now characterize the stability of a system

dx

dt
= F (x) x ∈ R

n.

Theorem 4.1. Let V (x) be a non-negative function on R
n and let V̇ rep-

resent the time derivative of V along trajectories of the system dynamics:

dV (x)

dt
=

∂V

∂x

dx

dt
=

∂V

∂x
F (x).

Let Br = Br(0) be a ball of radius r around the origin. If there exists r > 0
such that V̇ � 0 for all x ∈ Br, then x = 0 is locally stable in the sense of

Lyapunov. If V̇ ≺ 0 in Br, then x = 0 is locally asymptotically stable.
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V (x) = c1

dx

dt

∂V

∂x

V (x) = c1

Figure 4.14: Geometric illustration of Lyapunov’s stability theorem. The dashed el-
lipses correspond to level sets of the Lyapunov function; the solid line is a trajectory
of the system.

If V satisfies one of the conditions above, we say that V is a (local)
Lyapunov function for the system. These results have a nice geometric
interpretation. The level curves for a positive definite function are closed
contours as shown in Figure 4.14. The condition that V̇ (x) is negative simply
means that the vector field points towards lower level curves. This means
that the trajectories move to smaller and smaller values of V and, if V̇ ≺ 0,
then x must approach 0.

A slightly more complicated situation occurs if V̇ (x) � 0. In this case it
is possible that V̇ (x) = 0 when x 6= 0 and hence x could stop decreasing in
value. The following example illustrates these two cases.

Example 4.10. Consider the second order system

dx1

dt
= −ax1

dx2

dt
= −bx1 − cx2.

Suppose first that a, b, c > 0 and consider the Lyapunov function candidate

V (x) =
1

2
x2

1 +
1

2
x2

2.

Taking the derivative of V and substituting the dynamics, we have

dV (x)

dt
= −ax2

1 − bx1x2 − cx2
2.
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To check whether this is negative definite, we complete the square by writing

dV

dt
= −a(x1 +

b

a
x2)

2 − (c − b2

a
)x2

2.

Clearly V̇ ≺ 0 if a > 0 and (c − b2

a
) > 0.

Suppose now that a, b, c > 0 and c = b2/a. Then the derivative of the
Lyapunov function becomes

dV

dt
= −a(x1 +

b

a
x2)

2 ≤ 0.

This function is not negative definite since if x1 = − b
a
x2 then V̇ = 0 but

x 6= 0. Hence we cannot include asymptotic stability, but we can say the
system is stable (in the sense of Lyapunov).

The fact that V̇ is not negative definite does not mean that this system
is not asymptotically stable. As we shall see in Chapter 5, we can check
stability of a linear system by looking at the eigenvalues of the dynamics
matrix for the model

dx

dt
=









−a 0
−b −c








x.

By inspection (since the system is lower triangular), the eigenvalues are
λ1 = −a < 0 and λ2 = −c < 0, and hence the system can be shown to be
asymptotically stable.

To demonstrate asymptotic stability using Lyapunov functions, we must
try a different Lyapunov function candidate. Suppose we try

V (x) =
1

2
x2

1 +
1

2
(x2 −

b

c − a
x1)

2.

It is easy to show that V (x) ≻ 0 since V (x) ≥ 0 for all x and V (x) = 0
implies that x1 = 0 and x2 − b

c−a
x1 = x2 = 0. We now check the time

derivative of V :

dV (x)

dt
= x1ẋ1 + (x2 −

b

c − a
x1)(ẋ2 −

b

c − a
ẋ1)

= −ax2
1 + (x2 −

b

c − a
x1)(−bx1 − cx2 +

b

c − a
x1)

= −ax2
1 − c(x2 −

b

c − a
x1)

2.

We see that V̇ ≺ 0 as long as c 6= a and hence we can show stability except
for this case (explored in more detail in the exercises). ∇
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As this example illustrates, Lyapunov functions are not unique and hence
we can use many different methods to find one. It turns out that Lyapunov
functions can always be found for any stable system (under certain condi-
tions) and hence one knows that if a system is stable, a Lyapunov function
exists (and vice versa). Recent results using “sum of squares” methods have
provided systematic approaches for finding Lyapunov systems [PPP02]. Sum
of squares techniques can be applied to a broad variety of systems, including
systems whose dynamics are described by polynomial equations as well as
“hybrid” systems, which can have different models for different regions of
state space.

Lyapunov Functions for Linear Systems
�

For a linear dynamical system of the form

ẋ = Ax

it is possible to construct Lyapunov functions in a systematic manner. To
do so, we consider quadratic functions of the form

V (x) = xT Px

where P ∈ R
n×x is a symmetric matrix (P = P T ). The condition that

V ≻ 0 is equivalent to the condition that P is a positive definite matrix:

xT Px > 0 for all x 6= 0,

which we write as P > 0. It can be shown that if P is symmetric and
positive definite then all of its eigenvalues are real and positive.

Given a candidate Lyapunov function, we can now compute its derivative
along flows of the system:

dV

dt
=

∂V

∂x

dx

dt
= xT (AT P + PA)x.

The requirement that V̇ ≺ 0 (for asymptotic stability) becomes a condition
that the matrix Q = AT P + PA be negative definite:

xT Qx < 0 for all x 6= 0.

Thus, to find a Lyapunov function for a linear system it is sufficient to choose
a Q < 0 and solve the Lyapunov equation:

AT P + PA = Q.

This is a linear equation in the entries of P and hence it can be solved using
linear algebra. The following examples illustrate its use.
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Example 4.11. Consider the linear system from Example 4.10, for which
we have

A =









−a 0
−b −c








P =









p11 p12

p21 p22








.

We choose Q = −I ∈ R
2×2 and the corresponding Lyapunov equation is









−a −b
0 −c

















p11 p12

p21 p22








+









p11 p12

p21 p22

















−a 0
−b −c








=









1 0
0 1









and solving for the elements of P yields

P =













b2+ac+c2

2a2c+2ac2
−b

2c(a+c)

−b
2c(a+c)

1
2













or

V (x) =
b2 + ac + c2

2a2c + 2ac2
x2

1 −
b

c(a + c)
x1x2 +

1

2
x2

2.

It is easy to verify that P > 0 (check its eigenvalues) and by construction
Ṗ = −I < 0. Hence the system is asymptotically stable. ∇

This same technique can also be used for searching for Lyapunov func-
tions for nonlinear systems. If we write

dx

dt
= f(x) =: Ax + f̃(x),

where f̃(x) contains terms that are second order and higher in the elements
of x, then we can find a Lyapunov function for the linear portion of the
system and check to see if this is a Lyapunov function for the full nonlinear
system. The following example illustrates the approach.

Example 4.12 (Congestion control). Consider the congestion control prob-
lem described in Example 4.8, where we used phase portraits to demonstrate
stability of the equilibrium points under different parameter values. We now
wish to consider the general set of equations (from Example 2.12):

dxi

dt
= −b

x2
i

2
+ (bmax − b)

db

dt
=

N
∑

i=1

xi − c,
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The equilibrium points are given by

x∗

i =
c

N
for all i b∗ =

2N2bmax

2N2 + c2
,

To check for stability, we search for an appropriate Lyapunov function.
For notational simplicity, we choose N = 3. It will also be convenient to
rewrite the dynamics about the equilibrium point by choosing variables

z =

















z1

z2

x3

















=

















x1 − x∗

1

x2 − x∗

2

b − b∗

















.

The dynamics written in terms of z become

d

dt

















z1

z2

x3

















=

























− b∗(z1+c)z1

N2 −
(

1 + (2c+Nz1)2

2N2

)

− b∗(z2+c)z2

2 −
(

1 + (2c+Nz2)2

2N2

)

z1 + z2

























=: F (z)

and z = 0 is an equilibrium point for the transformed system.
We now write F (z) as a linear portion plus higher order terms:

F (z) =























− b∗c
N

z1 − c2+2N2

2N2 z3

− b∗c
N

z2 − c2+2N2

2N2 z3

z1 + z2























+























− b∗

2 z2
1

z1(2c+Nz1)z3

2N

− b∗

2 z2
2

z2(2c+Nz2)z3

2N

z1 + z2























=























− b∗c
N

0 − c2+2N2

2N2

0 − b∗c
N

− c2+2N2

2N2

1 1 0







































z1

z2

z3

















+























− b∗

2 z2
1

z1(2c+Nz1)z3

2N

− b∗

2 z2
2

z2(2c+Nz2)z3

2N

z1 + z2























.

To find a candidate Lyapunov function, we solve the equation

AT P + PA = Q

where A is the linear portion of F and Q < 0. Choosing Q = −I ∈ R
3×3,

we obtain

P =

























c2N+3N3

2b∗c3+4b∗cN2

N3

2b∗c3+4b∗cN2

N2

2c2+4N2

N3

2b∗c3+4b∗cN2

c2N+3N3

2b∗c3+4b∗cN2

N2

2c2+4N2

N2

2c2+4N2

N2

2c2+4N2

c2N+4N3

4b∗cN
+ b∗cN

2c2+4N2 .
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We now check to see if this is a Lyapunov function for the original system:

V̇ =
∂V

∂x

dx

dt
= (zT AT + F̃ T (z))Pz + zT P (Az + F̃ (z))

= zT (AT P + PA)z + F̃ T (z)Pz + zT PF̃ (z).

Note that all terms in F̃ are quadratic or higher order in z and hence it
follows that F̃ T (z)Pz and zT PF̃ (z) consist of terms that are at least third
order in z. It follows that if z is sufficiently close to zero then the cubic
and higher order terms will be smaller than the quadratic terms. Hence,
sufficiently close to z = 0, V̇ ≺ 0. ∇

This technique for proving local stability of a nonlinear system by looking
at the linearization about an equilibrium point is a general one that we shall
return to in Chapter 5.

Krasovskii-Lasalle Invariance Principle
�

For general nonlinear systems, especially those in symbolic form, it can
be difficult to find a function V ≻ 0 whose derivative is strictly negative
definition (V̇ ≺ 0). The Krasovskii-Lasalle theorem enables us to conclude
asymptotic stability of an equilibrium point under less restrictive conditions,
namely in the case that V̇ � 0, which is often much easier to construct.
However, it applies only to time-invariant or periodic systems.

We will deal with the time-invariant case and begin by introducing a few
more definitions. We denote the solution trajectories of the time-invariant
system

dx

dt
= F (x) (4.10)

as x(t; x0, t0), which is the solution of equation (4.10) at time t starting
from x0 at t0. We write x( · ; x0, t0) for the set of all points lying along the
trajectory.

Definition 4.1 (ω limit set). The ω limit set of a trajectory x( · ; x0, t0)
is the set of all points z ∈ R

n such that there exists a strictly increasing
sequence of times tn such that

s(tn; x0, t0) → z

as n → ∞.
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Definition 4.2 (Invariant set). The set M ⊂ R
n is said to be an invariant

set if for all y ∈ M and t0 ≥ 0, we have

x(t; y, t0) ∈ M for all t ≥ t0.

It may be proved that the ω limit set of every trajectory is closed and
invariant. We may now state the Krasovskii-Lasalle principle.

Theorem 4.2 (Krasovskii-Lasalle principle). Let V : R
n → R be a locally

positive definite function such that on the compact set Ωr = {x ∈ R
n :

V (x) ≤ r} we have V̇ (x) ≤ 0. Define

S = {x ∈ Ωr : V̇ (x) = 0}.

As t → ∞, the trajectory tends to the largest invariant set inside S; i.e., its

ω limit set is contained inside the largest invariant set in S. In particular,

if S contains no invariant sets other than x = 0, then 0 is asymptotically

stable.

A global version of the preceding theorem may also be stated. An appli-
cation of the Krasovskii-Lasalle principle is given in the following example.

Example 4.13 (Damped spring mass system). Consider a damped spring
mass system with dynamics

mq̈ + cq̇ + kq = 0.

A natural candidate for a Lyapunov function is the total energy of the
system, given by

V =
1

2
mq̇2 +

1

2
kq2.

The derivative of this function along trajectories of the system is

V̇ = mq̇q̈ + kqq̇ = −cq̇.

This function is only negative semi-definite and hence we cannot conclude
asymptotic stability using Theorem 4.1. However, note that V̇ = 0 implies
that q̇ = 0. If we define

S = {(q, q̇) : q̇ = 0}
then we can compute the largest invariant set inside S. For this set, we
must have q̇(t) = 0 for all t and hence q̈(t) = 0 as well.

Using the dynamics of the system, we see that if q̇(t) = 0 and q̈(t) = 0
then q̇(t) = 0 as well. hence the largest invariant set inside S is (q, q̇) = 0
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and we can use the Krasovskii-Lasalle principle to conclude that the origin
is asymptotically stable. Note that we have not made use of Ωr in this
argument; for this example we have V̇ (x) ≤ 0 for any state and hence we
can choose r arbitrarily large. ∇

4.4 Parametric and Non-Local Behavior�

Most of the tools that we have explored are focused on the local behavior of
a fixed system near an equilibrium point. In this section we briefly introduce
some concepts regarding the global behavior of nonlinear systems and the
dependence of the behavior on parameters in the system model.

Regions of attraction

To get some insight into the behavior of a nonlinear system we can start
by finding the equilibrium points. We can then proceed to analyze the
local behavior around the equilibria. The behavior of a system near an
equilibrium point is called the local behavior of the system.

The solutions of the system can be very different far away from this
equilibrium point. This is seen, for example, in the inverted pendulum
in Example 4.7. The downward hanging equilibrium point is stable, with
small oscillations that eventually converge to the origin. But far away from
this equilibrium point there are trajectories for which the pendulum swings
around the top multiple times, giving very long oscillations that are topo-
logically different than those near the origin.

To better understand the dynamics of the system, we can examine the
set of all initial conditions that converge to a given asymptotically stable
equilibrium point. This set is called the region of attraction for the equilib-
rium point. An example is shown in Figure 4.15. In general, computing
regions of attraction is extremely difficult. However, even if we cannot de-
termine the region of attraction, we can often obtain patches around the
stable equilibria that are attracting. This gives partial information about
the behavior of the system.

One method for approximating the region of attraction is through the
use of Lyapunov functions. Suppose that V is a local Lyapunov function for
a system around an equilibrium point x0. Let Γr be set on which V (x) has
value less than c,

Γr = {x ∈ R
n : V (x) ≤ r},
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Figure 4.15: Phase portrait for an inverted pendulum with damping. Shaded re-
gions indicate the regions of attraction for the two stable equilibrium points.

and suppose that V̇ (x) ≤ 0 for all x ∈ Γr, with equality only at the equilib-
rium point x0. Then Γr is inside the region of attraction of the equilibrium
point. Since this approximation depends on the Lyapunov function and
the choice of Lyapunov function is not unique, it can sometimes be a very
conservative estimate.

The Lyapunov tests that we derived for checking stability were local in
nature. That is, we asked that a Lyapunov function satisfy V ≻ 0 and V̇ ≺ 0
for x ∈ Br. If it turns out that the conditions on the Lyapunov function are
satisfied for all x ∈ R

n, then it can be shown that the region of attraction
for the equilibrium point is the entire state space and the equilibrium point
is said to be globally stable.

Bifurcations

Another very important property of nonlinear systems is how their behavior
changes as the parameters governing the dynamics change. We can study
this in the context of models by exploring how the location of equilibrium
points and their stability, regions of attraction and other dynamic phenom-
ena such as limit cycles vary based on the values of the parameters in the
model.

Consider a family of differential equations

dx

dt
= F (x, µ), x ∈ R

n, µ ∈ R
k, (4.11)
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(b) subcritical pitchfork

µ

x∗

µ

x∗

(a) supercritical pitchfork

Figure 4.16: Pitchfork bifurcation.

where x is the state and µ is a set of parameters that describe the family of
equations. The equilibrium solutions satisfy

F (x, µ) = 0

and as µ is varied, the corresponding solutions xe(µ) vary. We say that
the system (4.11) has a bifurcation at µ = µ∗ if the behavior of the system
changes qualitatively at µ∗. This can occur either due to a change in stability
type or a change in the number of solutions at a given value of µ. The
following examples illustrate some of the basic concepts.

Example 4.14 (Simple exchange of stability). Consider the scalar dynam-
ical system

ẋ = µx.

This system has a bifurcation at µ = 0 since the stability of the system
changes from asymptotically stable (for µ < 0) to neutrally stable (µ = 0)
to unstable (for µ > 0). ∇

This type of bifurcation is very common in control systems when a system
changes from being stable to unstable when a parameter is changed.

Example 4.15 (Pitchfork bifurcation). Consider the scalar dynamical sys-
tem

ẋ = µx − x3.

The equilibrium values of x are plotted in Figure 4.16a, with solid lines rep-
resenting stable equilibria and dashed lines representing unstable equilibria.
As illustrated in the figure, the number and type of the solutions changes
at µ = 0 and hence we say there is a bifurcation at µ = 0.
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Note that the sign of the cubic term determines whether the bifurcation
generates a stable branch (called a supercritical bifurcation and shown in
Figure 4.16a) or a unstable branch (called a subcritical bifurcation and shown
in Figure 4.16b). ∇

Bifurcations provide a tool for studying how systems evolve as operating
parameters change and are particularly useful in the study of stability of
differential equations. To illustrate how bifurcations arise in the context of
feedback systems, we consider the predator prey system introduced earlier.

Example 4.16 (Predator prey). Consider the predator prey system de-
scribed in Section 3.7. The dynamics of the system is given by

dH

dt
= rhH

(

1 − H

K

)

− aHL

1 + aHTh

dL

dt
= rlL

(

1 − L

kH

)

,

(4.12)

where H and L are the number of hares (prey) and lynxes (predators),
and rh, rl, K, k, a and Th are parameters that model a given predator
prey system (described in more detail in Section 3.7). The system has an
equilibrium point at He > 0 and Le > 0 that can be solved for numerically.

To explore how the parameters of the model affect the behavior of the
system, we choose to focus on two specific parameters of interest: rl, the
growth rate of the lynxes, and Th, the time constant for prey consumption.
Figure 4.17a is a numerically computed parametric stability diagram showing
the regions in the chosen parameter space for which the equilibrium point
is stable (leaving the other parameters at their nominal values). We see
from this figure that for certain combinations of rl and Th we get a stable
equilibrium point while at other values this equilibrium point is unstable.

Figure 4.17b shows a numerically computed bifurcation diagram for the
system. In this plot, we choose one parameter to vary (Th) and then plot the
equilibrium value of one of the states (L) on the vertical axis. The remaining
parameters are set to their nominal values. A solid line indicates that the
equilibrium point is stable; a dashed line indicates that the equilibrium
point is unstable. Note that the stability in the bifurcation diagram matches
that in the parametric stability diagram for rl = 0.01 (the nominal value)
and Th varying from 0 to 20. For the predator prey system, when the
equilibrium point is unstable, the solution converges to a stable limit cycle.
The amplitude of this limit cycle is shown using the dot-dashed line in
Figure 4.17b. ∇
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Figure 4.17: Bifurcation analysis of the predator prey system: (a) parametric stabil-
ity diagram showing the regions in parameter space for which the system is stable;
(b) bifurcation diagram showing the location and stability of the equilibrium point
as a function of Th. The dotted lines indicate the upper and lower bounds for the
limit cycle at that parameter value (computed via simulation). The nominal values
of the parameters in the model are rh = 0.02, K = 500, a = 0.03, Th = 5, rl = 0.01
and k = 0.2.

Parametric stability diagrams and bifurcation diagrams can provide valu-
able insights into the dynamics of a nonlinear system. It is usually neces-
sary to careful choose the parameters that one plots, including combining
the natural parameters of the system to eliminate extra parameters when
possible.

Control of bifurcations via feedback

Now consider a family of control systems

ẋ = F (x, u, µ), x ∈ R
n, u ∈ R

m, µ ∈ R
k, (4.13)

where u is the input to the system. We have seen in the previous sections
that we can sometimes alter the stability of the system by choice of an
appropriate feedback control, u = α(x). We now investigate how the control
can be used to change the bifurcation characteristics of the system. As in
the previous section, we rely on examples to illustrate the key points. A
more detailed description of the use of feedback to control bifurcations can
be found in the work of Abed and co-workers [LA96].

A simple case of bifurcation control is when the system can be stabilized

near the bifurcation point through the use of feedback. In this case, we
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can completely eliminate the bifurcation through feedback, as the following
simple example shows.

Example 4.17 (Stabilization of the pitchfork bifurcation). Consider the
subcritical pitchfork example from the previous section, with a simple addi-
tive control:

ẋ = µx + x3 + u.

Choosing the control law u = −kx, we can stabilize the system at the
nominal bifurcation point µ = 0 since µ − k < 0 at this point. Of course,
this only shifts the bifurcation point and so k must be chosen larger than
the maximum value of µ that can be achieved.

Alternatively, we could choose the control law u = −kx3 with k > 1.
This changes the sign of the cubic term and changes the pitchfork from a
subcritical bifurcation to a supercritical bifurcation. The stability of the x =
0 equilibrium point is not changed, but the system operating point moves
slowly away from zero after the bifurcation rather than growing without
bound. ∇

4.5 Further Reading

The field of dynamical systems has a rich literature that characterizes the
possible features of dynamical systems and describes how parametric changes
in the dynamics can lead to topological changes in behavior. A very read-
able introduction to dynamical systems is given by Strogatz [Sto94]. More
technical treatments include Guckenheimer and Holmes [GH83] and Wig-
gins [Wig90]. For students with a strong interest in mechanics, the text by
Marsden and Ratiu [MR94] provides a very elegant approach using tools
from differential geometry. Finally, very nice treatments of dynamical sys-
tems methods in biology are given by Wilson [Wil99] and Ellner and Guck-
enheimer [EG05].

There is a large literature on Lyapunov stability theory. We highly
recommend the very comprehensive treatment by Khalil [Kha92].

4.6 Exercises

1. Consider the cruise control system described in Section 3.1. Plot the
phase portrait for the combined vehicle dynamics and PI compensator
with k = 1 and ki = 0.5.
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2. Show that if we have a solution of the differential equation (4.1) given
by x(t) with initial condition x(t0) = x0, then x̃(τ) = x(t− t0)− x0 is
a solution of the differential equation

dx̃

dτ
= F (x̃)

with initial condition x̃(0) = 0.

3. We say that an equilibrium point x∗ = 0 is an exponentially stable�
equilibrium point of (4.2) if there exist constants m, α > 0 and ǫ > 0
such that

‖x(t)‖ ≤ me−α(t−t0)‖x(t0)‖ (4.14)

for all ‖x(t0)‖ ≤ ǫ and t ≥ t0. Prove that an equilibrium point is
exponentially stable if and only if there exists an ǫ > 0 and a function
V (x, t) that satisfies

α1‖x‖2 ≤ V (x, t) ≤ α2‖x‖2

dV

dt

∣

∣

∣

∣

ẋ=f(x,t)

≤ −α3‖x‖2

‖∂V

∂x
(x, t)‖ ≤ α4‖x‖

for some positive constants α1, α2, α3, α4, and ‖x‖ ≤ ǫ.

4. Consider the asymptotically stable system

dx

dt
=









−λ 0
b −λ








x,

where λ > 0. Find a Lyapunov function for the system that proves
asymptotic stability.


