
Chapter 9

Loop Analysis

Regeneration or feed-back is of considerable importance in many applications
of vacuum tubes. The most obvious example is that of vacuum tube oscil-
lators, where the feed-back is carried beyond the singing point. Another ap-
plication is the 21-circuit test of balance, in which the current due to the
unbalance between two impedances is fed back, the gain being increased until
singing occurs. Still other applications are cases where portions of the output
current of amplifiers are fed back to the input either unintentionally or by de-
sign. For the purpose of investigating the stability of such devices they may
be looked on as amplifiers whose output is connected to the input through a
transducer. This paper deals with the theory of stability of such systems.

Abstract for “Regeneration Theory”, Harry Nyquist, 1932 [Nyq32].

In this chapter we study how how stability and robustness of closed loop
systems can be determined by investigating how signals propagate around
the feedback loop. The Nyquist stability theorem is a key result that pro-
vides a way to analyze stability and introduce measures of degrees of stabil-
ity.

9.1 The Loop Transfer Function

The basic idea of loop analysis is to trace how a sinusoidal signal propagates
in the feedback loop and explore the resulting stability by investigating if
the signal grows or decays around the loop. This is easy to do because the
transmission of sinusoidal signals through a (linear) dynamical system is
characterized by the frequency response of the system. The key result is the
Nyquist stability theorem, which provides a great deal of insight regarding
the stability of a system. Unlike proving stability with Lyapunov functions,
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Figure 9.1: Block diagram of a (a) simple feedback system with (b) the loop opened
at AB.

studied in Chapter 4, the Nyquist criterion allows us to determine more than
just whether a system is stable or unstable. It provides a measure of the
degree of stability through the definition of stability margins. The Nyquist
theorem also indicates how an unstable system should be changed to make
it stable, which we shall study in detail in Chapters 10–12.

Consider the system in Figure 9.1a. The traditional way to determine
if the closed loop system is stable is to investigate if the closed loop char-
acteristic polynomial has all its roots in the left half plane. If the process
and the controller have rational transfer functions P (s) = np(s)/dp(s) and
C(s) = nc(s)/dc(s), then the closed loop system has the transfer function

Gyr =
PC

1 + PC
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)
,

and the characteristic polynomial is

λ(s) = dp(s)dc(s) + np(s)nc(s).

To check stability, we simply compute the roots of the characteristic poly-
nomial and verify that they all have negative real part. This approach is
straightforward but it gives little guidance for design: it is not easy to tell
how the controller should be modified to make an unstable system stable.

Nyquist’s idea was to investigate conditions under which oscillations can
occur in a feedback loop. To study this, we introduce the loop transfer
function,

L = PC,

which is the transfer function obtained by breaking the feedback loop, as
shown in Figure 9.1. The loop transfer function is simply the transfer func-
tion from the input at position A to the output at position B.



9.2. THE NYQUIST CRITERION 279

We will first determine conditions for having a periodic oscillation in
the loop. Assume that a sinusoid of frequency ω0 is injected at point A. In
steady state the signal at point B will also be a sinusoid with the frequency
ω0. It seems reasonable that an oscillation can be maintained if the signal
at B has the same amplitude and phase as the injected signal, because we
could then connect A to B. Tracing signals around the loop we find that the
signals at A and B are identical if

L(jω0) = −1, (9.1)

which provides a condition for maintaining an oscillation. The key idea of
the Nyquist stability criterion is to understand when this can happen in a
very general setting. As we shall see, this basic argument becomes more
subtle when the loop transfer function has poles in the right half plane.

One of the powerful concepts embedded in Nyquist’s approach to sta-
bility analysis is that it allows us to determine the stability of the feedback
system by looking at properties of the open loop transfer function. This idea
will turn out to be very important in how we approach designing transfer
functions.

9.2 The Nyquist Criterion

In this section we present Nyquist’s criterion for determining the stability of
a feedback system through analysis of the loop transfer function. We begin
by introducing a convenient graphical tool, the Nyquist plot, and showing
how it can be used to ascertain stability.

The Nyquist Plot

The frequency response of the loop transfer function can be represented by
plotting the complex number L(jω) as a function of ω. Such a plot is called
a Nyquist plot and the curve is called a Nyquist curve. An example of a
Nyquist plot is given in Figure 9.2. The magnitude |L(jω)| is called the
loop gain because it tells how much the signal is amplified as is passes around
the feedback loop.

The condition for oscillation given in equation (9.1) implies that the
Nyquist curve of the loop transfer function goes through the point L = −1,
which is called the critical point. Intuitively it seems reasonable that the
system is stable if |L(jωc)| < 1, which means that the critical point −1
is on the left hand side of the Nyquist curve, as indicated in Figure 9.2.
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Figure 9.2: Nyquist plot of the transfer function L(s) = 1.4e−s/(s + 1)2. The gain
and phase at the frequency ω are g = |L(jω)| and ϕ = arg L(jω).

This means that the signal at point B will have smaller amplitude than the
injected signal. This is essentially true, but there are several subtleties that
requires a proper mathematical analysis to clear up, and which we defer
until the next section. For now we consider a simplified case, when the loop
transfer function is stable.

For loop transfer functions that do not have poles in the right half plane,
the precise stability condition is that the complete Nyquist plot does not en-
circle the critical point −1. The complete Nyquist plot is obtained by adding
the plot for negative frequencies shown in the dashed curve in Figure 9.2.
This plot is the mirror image of the Nyquist curve about the real axis.

Theorem 9.1 (Simplified Nyquist criterion). Let L(s) be the loop transfer
function for a negative feedback system (as shown in Figure 9.1) and assume
that L has no poles in the closed right half plane (Re s ≥ 0). Then the closed
loop system is stable if and only if the closed contour given by Ω = {L(jω) :
−∞ < ω < ∞} ⊂ C has no net encirclements of s = −1.

The following conceptual procedure can be used to determine that there
are no encirclements: Fix a pin at the critical point s = −1 orthogonal to
the plane. Attach a string with one end at the critical point and the other
to the Nyquist plot. Let the end of the string attached to the Nyquist curve
traverse the whole curve. There are no encirclements if the cord does not
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wind up on the pin when the curve is encircled.

Example 9.1 (Cruise control). Consider the speed control system intro-
duced in Section 3.1 and analyzed using state space techniques in Exam-
ple 6.9. In this example, we study the stability of the system using the
Nyquist criterion.

The linearized dynamics around the equilibrium speed ve and throttle
position ue are given by

˙̃v = aṽ − gθ + bũ

y = v = ṽ + ve,

where ṽ = v − ve, ũ = u− ue, m is the mass of the car and θ is the angle of
the road. The constant a < 0 depends on the throttle characteristic and is
given in Example 5.10.

The transfer function from throttle to speed is given by

P (s) = Gyu(s) =
b

s − α
.

We consider a controller that is a modified version of the proportional-
integral (PI) controller given previously. Assume that the transfer function
of the controller is

C(s) = Gue(s) = kp +
ki

s + β
=

kps + ki + kpβ

s + β

giving a loop transfer function of

L(s) = b
kps + ki + kpβ

(s + a)(s + β)
.

The Nyquist plot for the system, using a = 0.0101, b = 1.3203, kp = 0.5,
ki = 0.1 and β = 0.1, is shown in Figure 9.3. We see from the Nyquist plot
that the closed loop system is stable, since there are no net encirclements of
the -1 point. ∇

One nice property of the Nyquist stability criterion is that it can be applied �
to infinite dimensional systems, as is illustrated by the following example.

Example 9.2 (Heat conduction). Consider a temperature control system
where the heat conduction process has the transfer function

P (s) = e−
√

s
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Figure 9.3: Nyquist plot for the speed control system.

and the controller is a proportional controller with gain k. The loop transfer
function is L(s) = ke−

√
s and its Nyquist plot for k = 1 is shown in Fig-

ure 9.4. To compute the stability condition for the system as a function of
the gain k, we analyze the transfer function a bit more carefully. We have

P (jω) = e−
√

jω = e−
√

ω/2−i
√

ω/2

and hence

log P (jω) = −
√

jω = −ω
√

2

2
− i

ω
√

2

2

and

arg L(jω) = −ω
√

2

2
.

The phase is −π for ω = ωc = π/
√

2 and the gain at that frequency is
ke−π ≈ 0.0432k. The Nyquist plot for a system with gain k is obtained
simply by multiplying the Nyquist curve in the figure by k. The Nyquist
curve reaches the critical point L = −1 for k = eπ = 23.1. The complete
Nyquist curve in Figure 9.4 shows that the Nyquist curve does not encircle
the critical point if k < eπ, giving a stability condition for the system. ∇
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Figure 9.4: Nyquist plot of the transfer function L(s) = e−
√

s

Nyquist’s Stability Theorem
�

We will now state and prove the Nyquist stability theorem for a general loop
transfer function L(s). This requires some results from the theory of complex
variables, for which the reader can consult [?] and the references therein.
Since some precision is needed in stating Nyquist’s criterion properly, we
will also use a more mathematical style of presentation. The key result is
the following theorem about functions of complex variables.

Theorem 9.2 (Principle of variation of the argument). Let D be a closed
region in the complex plane and let Γ be the boundary of the region. Assume
the function f : C → C is analytic in D and on Γ, except at a finite number
of poles and zeros. Then the winding number, wn, is given by

wn =
1

2π
∆Γ arg f(z) =

1

2πi

∫

Γ

f ′(z)

f(z)
dz = N − P,

where ∆Γ is the net variation in the angle along the contour Γ, N is the
number of zeros and P the number of poles in D. Poles and zeros of multi-
plicity m are counted m times.

Proof. Assume that z = a is a zero of multiplicity m. In the neighborhood
of z = a we have

f(z) = (z − a)mg(z),
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where the function g is analytic and different from zero. The ratio of the
derivative of f to itself is then given by

f ′(z)

f(z)
=

m

z − a
+

g′(z)

g(z)

and the second term is analytic at z = a. The function f ′/f thus has a
single pole at z = a with the residue m. The sum of the residues at the
zeros of the function is N . Similarly we find that the sum of the residues of
the poles of is −P . Furthermore we have

d

dz
log f(z) =

f ′(z)

f(z)
,

which implies that
∫

Γ

f ′(z)

f(z)
dz = ∆Γ log f(z),

where ∆Γ again denotes the variation along the contour Γ. We have

log f(z) = log |f(z)| + i arg f(z).

Since the variation of |f(z)| around a closed contour is zero we have

∆Γ log f(z) = i∆Γ arg f(z)

and the theorem is proven.

This theorem is useful for determining the number of poles and zeros of a
function of complex variables in a given region. By choosing an appropriate
closed region D with boundary Γ, we can determine the difference between
the number of poles and zeros through computation of the winding number.

Theorem 9.2 can be used to prove Nyquist’s stability theorem by choos-
ing Γ as the Nyquist contour shown in Figure 9.5, which encloses the right
half plane. To construct the contour, we start with part of the imaginary
axis −iR ≤ s ≤ iR, and a semicircle to the right with radius R. If the
function f has poles on the imaginary axis we introduce small semicircles
with radii r to the right of the poles as shown in the figure. The Nyquist
contour is obtained by letting R → ∞ and r → 0. We call the contour Γ
the full Nyquist contour, sometimes call the “D contour”.

To see how we used this to compute stability, consider a closed loop
system with the loop transfer function L(s). The closed loop poles of the
system are the zeros of the function

f(s) = 1 + L(s).
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Figure 9.5: The Nyquist contour Γ.

To find the number of zeros in the right half plane, we investigate the winding
number of the function f(s) = 1 + L(s) as s moves along the Nyquist con-
tour Γ in the clockwise direction. The winding number can conveniently be
determined from the Nyquist plot. A direct application of the Theorem 9.2
gives the following result.

Theorem 9.3 (Nyquist’s stability theorem). Consider a closed loop system
with the loop transfer function L(s), which which has P poles in the region
enclosed by the Nyquist contour. Let wn be the winding number of the func-
tion f(s) = 1 + L(s) when s encircles the Nyquist contour Γ. The closed
loop system then has wn + P poles in the right half plane.

Since the image of 1+L(s) is simply a shifted version of L(s), we usually
restate the Nyquist criterion as net encirclements of the −1 point by the
image of L(s).

There is a subtlety with the Nyquist plot when the loop transfer function
has poles on the imaginary axis because the gain is infinite at the poles. This
means that the map of the small semicircles are infinitely large half circles.
When plotting Nyquist curves on the computer, one must be careful to see
that the such poles are properly handled and often one must sketch those
portions of the Nyquist plot by hand, being careful to loop the right way
around the poles.

We illustrate Nyquist’s theorem by a series of examples.
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Figure 9.6: The complete Nyquist curve for the loop transfer function L(s) =
k

s(s+1)2 . The curve is drawn for k < 2. The map of the positive imaginary axis

is shown in full lines, the map of the negative imaginary axis and the small semi
circle at the origin in dashed lines.

Example 9.3. Consider a closed loop system with the loop transfer function

L(s) =
k

s(s + 1)2
.

Figure 9.6 shows the image of the contour Γ under the map L. The loop
transfer function does not have any poles in the region enclosed by the
Nyquist contour. By computing the phase of L, one can show that the
Nyquist plot intersects the imaginary axis for ω = 1 and the intersection is
at −k/2. It follows from Figure 9.6 that the winding number is zero if k < 2
and 2 if k > 2. We can thus conclude that the closed loop system is stable if
k < 2 and that the closed loop system has two roots in the right half plane
if k > 2. ∇

Next we will consider a case where the loop transfer function has a pole
inside the Nyquist contour.

Example 9.4 (Loop transfer function with RHP pole). Consider a feedback
system with the loop transfer function

L(s) =
k

s(s − 1)(s + 5)
.
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Figure 9.7: Complete Nyquist plot for the loop transfer function L(s) = k
s(s−1)(s+5) .

The map of the positive imaginary axis is shown in full lines, the map of the negative
imaginary axis and the small semi circle at the origin in dashed lines.

This transfer function has a pole at s = 1 which is inside the Nyquist
contour. The complete Nyquist plot of the loop transfer function is shown in
Figure 9.7. Traversing the contour Γ in clockwise we find that the winding
number is wn = 1. It follows from the principle of the variation of the
argument that the closed loop system has wn +P = 2 poles in the right half
plane and hence is unstable. ∇

Normally, we find that unstable systems can be stabilized simply by re-
ducing the loop gain. There are however situations where a system can be
stabilized by increasing the gain. This was first encountered by electrical
engineers in the design of feedback amplifiers who coined the term condi-
tional stability. The problem was actually a strong motivation for Nyquist
to develop his theory. We will illustrate by an example.

Example 9.5 (Conditional stability). Consider a feedback system with the
loop transfer function

L(s) =
3(s + 1)2

s(s + 6)2
. (9.2)

The Nyquist plot of the loop transfer function is shown in Figure 9.8. Notice
that the Nyquist curve intersects the negative real axis twice. The first
intersection occurs at L = −12 for ω = 2 and the second at L = −4.5 for
ω = 3. The intuitive argument based on signal tracing around the loop in
Figure 9.1 is strongly misleading in this case. Injection of a sinusoid with
frequency 2 rad/s and amplitude 1 at A gives, in steady state, an oscillation
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Figure 9.8: Nyquist curve for the loop transfer function L(s) = 3(s+1)2

s(s+6)2 . The plot

on the right is an enlargement of the area around the origin of the plot on the left.

at B that is in phase with the input and has amplitude 12. Intuitively it
is seems unlikely that closing of the loop will result a stable system. It
follows from Nyquist’s stability criterion that the system is stable because
the critical point is to the left of the Nyquist curve when it is traversed for
increasing frequencies. ∇

9.3 Stability Margins

In practice it is not enough that a system is stable. There must also be some
margins of stability that describe how stable the system is and its robustness
to perturbations. There are many ways to express this, but one of the most
common is the use of gain and phase margins, inspired by Nyquist’s stability
criterion. The key idea is that it is easy to plot of the loop transfer function
L(s). An increase of controller gain simply expands the Nyquist plot radially.
An increase of the phase of the controller twists the Nyquist plot clockwise.
Hence from the Nyquist plot we can easily pick off the amount of gain or
phase that can be added without causing the system to go unstable.

Let ω180 be the phase crossover frequency, which is the smallest frequency
where the phase of the loop transfer function L(s) is −180◦. The gain margin
is defined as

gm =
1

|L(jω180)|
. (9.3)

It tells how much the controller gain can be increased before reaching the
stability limit.
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Figure 9.9: Nyquist plot of the loop transfer function L with gain margin gm, phase
margin ϕm and stability margin sm.

Similarly, let ωgc be the gain crossover frequency, the lowest frequency
where the loop transfer function L(s) has unit magnitude. The phase margin
is

ϕm = π + arg L(jωgc), (9.4)

the amount of phase lag required to reach the stability limit. The margins
have simple geometric interpretations in the Nyquist diagram of the loop
transfer function as is shown in Figure 9.9.

A drawback with gain and phase margins is that it is necessary to give
both of them in order to guarantee that the Nyquist curve not is close to the
critical point. An alternative way to express margins is by a single number,
the stability margin, sm, which is the shortest distance from the Nyquist
curve to the critical point. This number also has other nice interpretations
as will be discussed in Chapter 12.

When we are designing feedback systems, it will often be useful to define
the robustness of the system using gain, phase and stability margins. These
numbers tell us how much the system can vary from our nominal model
and still be stable. Reasonable values of the margins are phase margin
ϕm = 30◦−60◦, gain margin gm = 2−5, and stability margin sm = 0.5−0.8.

There are also other stability measures, such as the delay margin, which
is the smallest time delay required to make the system unstable. For loop
transfer functions that decay quickly the delay margin is closely related to
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Figure 9.10: Finding gain and phase margins from the Bode plot of the loop transfer
function. The loop transfer function is L(s) = 1/(s(s + 1)(s + 2)), the gain margin
is gm = 6.0, the gain crossover frequency ωgc = 1.42., the phase margin is ϕm = 53◦

at the phase crossover frequency ω = 0.44.

the phase margin but for systems where the amplitude ratio of the loop
transfer function has several peaks at high frequencies the delay margin is a
more relevant measure. A more detailed discussion of robustness measures
is given in Chapter 12.

Gain and phase margins can also be determined from the Bode plot of
the loop transfer function. A change of controller gain translates the gain
curve vertically and it has no effect on the phase curve. To determine the
gain margin we first find the phase crossover frequency ω180 where the phase
is −180◦. The gain margin is the inverse of the gain at that frequency. To
determine the phase margin we first determine the gain crossover frequency
ωgc, i.e. the frequency where the gain of the loop transfer function is one.
The phase margin is the phase of the loop transfer function at that frequency
plus 180◦. Figure 9.10 illustrates how the margins are found in the Bode
plot of the loop transfer function. The stability margin cannot easily be
found from the Bode plot of the loop transfer function. There are however
other Bode plots that will give sm; these will be discussed in Chapter 12.

Example 9.6 (Vehicle steering). Consider the linearized model for vehicle
steering with a controller based on state feedback. The transfer function of
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Figure 9.11: Nyquist (left) and Bode (right) plots of the loop transfer function for
vehicle steering with a controller based on state feedback and an observer.

the process is

P =
αs + 1

s2
.

and the controller has the transfer function

C =
s(k1l1 + k2l2) + k1l2

s2 + s(αk1 + k2 + l1) + k1 + l2 + k2l1 − αk2l2
,

as computed in Example 8.4. The Nyquist and Bode plots of the loop
transfer function L = PC for the process parameter a = 0.5, and a controller
characterized by ωc = 1, ζc = 0.707, ωo = 2, ζo = 0.707 are shown in
Figure 9.11. The gains of the state feedback are k1 = 1 and k2 = 0.914,
and the observer gains are l1 = 2.828 and l2 = 4. The phase margin of the
system is 44◦ and the gain margin is infinite since the phase lag is never
greater than 180◦, indicating that the closed loop system is robust. ∇

Example 9.7 (Pupillary light reflex dynamics). The pupillary light reflex
dynamics was discussed in Example 8.7. Stark found a clever way to
artificially increase the loop gain by focusing a narrow beam at the boundary
of the pupil. It was possible to increase the gain so much that the pupil
started to oscillate. The Bode plot in Figure 9.12b shows that the phase
crossover frequency is ωgc = 8 rad/s. This is in good agreement with Stark’s
experimental investigations which gave an average frequency of 1.35 Hz or
8.5 rad/s. ∇



292 CHAPTER 9. LOOP ANALYSIS

2 5 10 20
0.01

0.02

0.05

0.1

0.2

2 5 10 20

−360

−180

0

ω

|G
(j

ω
)|

∠
G

(j
ω
)

Figure 9.12: Sample curves from open loop frequency response of the eye (left)
and Bode plot for the open loop dynamics (right). See Example 8.7 for a detailed
description.

9.4 Bode’s Relations

An analysis of Bode plots reveals that there appears to be be a relation
between the gain curve and the phase curve. Consider for example the Bode
plots for the differentiator and the integrator (shown in Figure 8.10). For
the differentiator the slope is +1 and the phase is constant π/2 radians.
For the integrator the slope is −1 and the phase is −π/2. For the first
order system G(s) = s + a, the amplitude curve has the slope 0 for small
frequencies and the slope +1 for high frequencies and the phase is 0 for low
frequencies and π/2 for high frequencies.

Bode investigated the relations between the curves for systems with no
poles and zeros in the right half plane. He found that the phase was a
uniquely given by the gain and vice versa:

arg G(jω0) =
1

π

∫ ∞

0

d log |G(jω)|
d log ω

log
∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣
d log ω

π

2

∫ ∞

0

f(ω)
d log |G(jω)|

d log ω
d log ω ≈ π

2

d log |G(jω)|
d log ω

, (9.5)

where f is the weighting kernel

f(ω) =
2

π2
log

∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣
=

2

π2
log

∣

∣
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∣
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ω
ω0

+ 1
ω
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− 1
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∣
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.



9.4. BODE’S RELATIONS 293

10
−2

10
−1

10
0

10
1

10
2

0

2

4

6

f

ω/ω0

Figure 9.13: The weighting kernel f in Bode’s formula for computing the phase
curve from the gain curve for minimum phase systems.

The phase curve is thus a weighted average of the derivative of the gain
curve. The weight w is shown in Figure 9.13. Notice that the weight falls
off rapidly and it is practically zero when the frequency has changed by a
factor of ten. It follows from equation (9.5) that a slope of +1 corresponds
to a phase of π/2 or 90◦. Compare with Figure 8.10, where the Bode plots
have constant slopes −1 and +1.

Non-Minimum Phase Systems

Bode’s relations hold for systems that do not have poles and zeros in the
left half plane. Such systems are called minimum phase systems because
systems with poles and zeros in the right half plane have larger phase lag.
The distinction is important in practice because minimum phase systems
are easier to control than systems with larger phase lag. We will now give a
few examples of non-minimum phase transfer functions.

Example 9.8 (Time delay). The transfer function of a time delay of T
units is G(s) = e−sT . This transfer function has unit gain, |G(jω)| = 1, and
the phase is

arg G(jω) = −ωT.

The corresponding minimum phase system with unit gain has the transfer
function G(s) = 1. The time delay thus has an additional phase lag of
ωT . Notice that the phase lag increases linearly with frequency. Figure 9.14
shows the Bode plot of the transfer function. (Because we use a log scale
for frequency, the phase falls off much faster than linearly in the plot.) ∇
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Figure 9.14: Bode plots of a time delay G(s) = e−sT (left) and a system with a
right half plane zero G(s) = (a − s)/(a + s) (right). The dashed lines show the
phase curves of the corresponding minimum phase systems.

It seems intuitively reasonable that it is impossible to make a system
with a time delay respond faster than without the time delay. The presence
of a time delay will thus limit the response speed of a system.

Example 9.9 (System with a RHP zero). Consider a system with the trans-
fer function

G(s) =
a − s

a + s
, a > 0,

which has a zero s = a in the right half plane. The transfer function has
unit gain, |G(jω)| = 1, and

arg G(jω) = −2 arctan
ω

a
.

The corresponding minimum phase system with unit gain has the transfer
function G(s) = 1. Figure 9.14 shows the Bode plot of the transfer func-
tion. The Bode plot resembles the Bode plot for a time delay, which is not
surprising because the exponential function e−sT can be approximated by

e−sT ≈ 1 − sT/2

1 + sT/2
.

As far as minimum phase properties are concerned, a right half plane zero
at s = a is thus similar to a time delay of T = 2/a. Since long time delays
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Figure 9.15: Step responses (left) and Bode plots (right) of a system with a zero
in the right half plane (full lines) and the corresponding minimum phase system
(dashed).

create difficulties in controlling a system we may expect that systems with
zeros close to the origin are also difficult to control. ∇

Figure 9.15 shows the step response of a system with the transfer function

G(s) =
6(−s + 1)

s2 + 5s + 6
,

which has a zero in the right half plane. Notice that the output goes in the
wrong direction initially, which is also referred to as an inverse response.
The figure also shows the step response of the corresponding minimum phase
system, which has the transfer function

G(s) =
6(s + 1)

s2 + 5s + 6
.

The curves show that the minimum phase system responds much faster.
It thus appears that a the non-minimum phase system is more difficult to
control. This is indeed the case, as will be shown in Section 11.4.

The presence of poles and zeros in the right half plane imposes severe
limitations on the achievable performance. Dynamics of this type should
be avoided by redesign of the system, whenever possible. While the poles
are intrinsic properties of the system and they do not depend on sensors
and actuators, the zeros depend on how inputs and outputs of a system
are coupled to the states. Zeros can thus be changed by moving sensors
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Figure 9.16: Step responses from steer angle to lateral translation for simple kine-
matics model when driving forward (full) and reverse (dashed).

and actuators or by introducing new sensors and actuators. Non-minimum
phase systems are unfortunately not uncommon in practice.

The following example gives a system theoretic interpretation of the
common experience that it is more difficult to drive in reverse gear and
illustrates some of the properties of transfer functions in terms of their poles
and zeros.

Example 9.10 (Vehicle steering). The un-normalized transfer function
from steer angle to lateral translation for the simple vehicle model is

P (s) = Gyδ(s) =
av0s + v2

0

bs2

The transfer function has a zero at s = v0/a. In normal driving this zero is in
the left half plane but when reversing the zero moves to the right half plane,
which makes the system more difficult to control. Figure 9.16 shows the
step response for forward and reverse driving, the parameters are a = b = 1,
v0 = 1 for forward driving and v0 = −1 for reverse driving. The figure
shows that with reverse driving the lateral motion is initially opposite to the
desired motion. The action of the zero can also be interpreted as a delay of
the control action. ∇

9.5 The Notion of Gain�

A key idea in loop analysis it to trace the behavior of signals through a
system. The concepts of gain and phase represented by the magnitude and
the angle of a transfer function are strongly intuitive because they describe
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how sinusoidal signals are transmitted. We will now show that the notion of
gain can be defined in a much more general way. Something has to be given
up to do this and it turns out that it is difficult to define gain for transmission
of general signal but that it is easy to define the maximum gain. For this
purpose we first define appropriate classes of input and output signals, u ∈ U
and u ∈ Y, where U and Y are spaces where a notion of magnitude is defined.
The gain of a system is defined as

γ = sup
u∈U

‖y‖
‖u‖ , (9.6)

where sup is the supremum, defined as the smallest number that is larger
than its argument. The reason for using supremum is that the maximum
may not be defined for u ∈ U . A correct treatment requires considerable
care and space so will will only give a few examples.

Example 9.11 (Linear systems with square integrable inputs). Let the
input space U be square integrable functions, and consider a stable linear
system with transfer function G(s). The norm of a signal is given by

‖u‖2 =

√

∫ ∞

0

u2(τ) dτ

where the subscript 2 refers to the fact that U is the set of square integrable
functions. Using the same norm for Y, the gain of the system can be shown
to be

γ = sup
ω

|G(jω)| := ‖G‖∞. (9.7)

∇

Example 9.12 (Static nonlinear system). Consider a nonlinear static sys-
tem with scalar inputs and outputs described by y = f(u). The gain ob-
tained γ is a number such that −γu ≤ |f(u)| ≤ γu. The gain thus defines a
sector that encloses the function. ∇

Example 9.13 (Multivariable static system). Consider a static multivari-
able system y = Au, where A is a matrix, whose elements are complex
numbers. The matrix does not have to be square. Let the and inputs and
outputs be vectors whose elements are complex numbers and use the Eu-
clidean norm

‖u‖ =
√

Σ|ui|2.



298 CHAPTER 9. LOOP ANALYSIS

Σ H1

H2

Figure 9.17: A simple feedback loop.

The norm of the output is

‖y‖2 = u∗A∗Au,

where ∗ denotes the complex conjugate transpose. The matrix A∗A is sym-
metric and positive semidefinite, and the right hand side is a quadratic form.
The eigenvalues λ(A) of the matrix A∗A are all real and we have

‖y‖2 ≤ λmax(A∗A)‖u‖2.

The gain is thus
γ =

√

λmin(A∗A) (9.8)

The eigenvalues of the matrix A∗A are called the singular values of the
matrix and the largest singular values is denoted σ̄(A) respectively. ∇
Example 9.14 (Linear multivariable dynamic system). For a linear system
multivariable system with a real rational transfer function matrix G(s). Let
the input be square integrable functions. The gain of the system is then we
have

γ = ‖G(jω)‖∞ = inf
ω

σ̄(G(jω)). (9.9)

∇
For linear systems it follows from Nyquist’s theorem that the closed

loop is stable if the gain of the loop transfer function is less than one for all
frequencies. This result can be extended to much larger class of systems by
using the concept of the gain of a system. Consider the closed loop system
in Figure 9.17. Let the gains of the systems H1 and H2 be γ1 and γ2. The
small gain theorem says that the closed loop system is input/output stable
if γ1γ2 < 1, and the gain of the closed loop system is

γ =
γ1

1 − γ1γ2
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Notice that if systems H1 and H2 are linear it follows from the Nyquist
stability theorem that the closed loop is stable, because if γ1γ2 < 1 the
Nyquist curve is always inside the unit circle. The small gain theorem is
thus an extension of the Nyquist stability theorem.

It also follows from the Nyquist stability theorem that a closed loop
system is stable if the phase of the loop transfer function is between −π and
π. This result can also be extended to nonlinear systems as well. It is called
the passivity theorem and is closely related to the small gain theorem.

Additional applications of the small gain theorem and its application to
robust stability are given in Chapter 12.

9.6 Further Reading

Nyquist’s original paper giving his now famous stability criterion was pub-
lished in the Bell Systems Technical Journal in 1932 [Nyq32].

9.7 Exercises

1. Use the Nyquist theorem to analyze the stability of the speed con-
trol system in Example 9.1, but using the original PI controller from
Example 6.9.

2. Discrete time Nyquist

3. Example systems:
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