/1 CDS 101: Lecture 7.1
)Lf Loop Analysis of Feedback Systems

Richard M. Murray
8 November 2004

Goals:
» Show how to compute closed loop stability from open loop properties
» Describe the Nyquist stability criterion for stability of feedback systems
» Define gain and phase margin and determine it from Nyquist and Bode plots

Reading:
* Astréom and Murray, Analysis and Design of Feedback Systems, Ch 7



Review from Last Week
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Closed Loop Stability
d

Q: how do open loop dynamics affect
‘ SRR
, e c(s) u P(s) .y the §Iosed loop stability” |
- * Given open loop transfer function
C(s)P(s) determine when system is

stable

Brute force answer: compute poles closed loop transfer function

__PC _ N » Poles of H,, = zeros of 1+ PC
" 1+PC d,d.+n,n, - Easy to compute, but not so good for design

Alternative: look for conditions on PC

@ P(s)C(s)
that lead to instability 5 2 i
« Example: if PC(s) = -1 for some s = o, é c [ AT
then system is not asymptotically stable & gg | o
» Condition on PC is much nicer because 3 %+ | i1
we can design PC(s) by choice of C(s) 5 ! i
* However, checking PC(s) = -1 is not é;iz

enough; need more sophisticated check -

1 10
Frequency (rad/sec)
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(dB)

Magnitude

Phase (deg)

Game Plan: Frequency Domain Design

Goal: figure out how to design C(s) so that 1+C(s)P(s) is stable and we get

good performance
PC * Poles of H,, = zeros of 1 + PC

H, = * Would also like to “shape” H,, to specify
1+ PC : yr :
performance at differenct frequencies
o o | | oC * Low frequency range:
o A " |
. PC? 1 PC? 1 = PC ~
1+PC
M (good tracking)
T » Bandwidth: frequency at
0 66— which closed loop gain = 2
. = open loop gain = 1
| e ldea: use C(s) to shape PC
| |1 | (under certain constraints)
. * Need tools to analyze
ol b stability and performance
Fraquency (e for closed loop given PC
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Nyquist Criterion

Imag

d

e % u
r C(s)

Determine stability from (open) loop
transfer function, L(s) = P(s)C(s).
» Use “principle of the argument” from
complex variable theory (see
reading)

v
<

P(s)

Thm (Nyquist). Consider the Nyquist
plot for loop transfer function L(s). Let

P # RHP poles of L(s)
N # clockwise encirclements of -1 -
Z # RHP zeros of 1 + L(S)
Then
/=N+P
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Nyquist Diagrams
From: U(1)

T - — T

J@<O

w=+joo

Real Axis

R. M. Murray, Caltech CDS

Nyquist “D”
contour

Take limit as
r-+0,R— o0

Trace from
—o0 to +oo
along
imaginary axis

Trace
frequency
response for
L(s) along the
Nyquist “D”
contour
Count net # of
clockwise
encirclements
of the -1 point
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Simple Interpretation of Nyquist

d Basic idea: avoid positive feedback
e % y e If L(s) has 180° phase (or greater)
r —’@—’ C(s) P(s) >y and gain greater than 1, then

signals are amplified around loop
* Use when phase is monotonic
» General case requires Nyquist

Can generate Nyquist plot from Bode plot + reflection around real axis

Bode Diagrams Nyquist Diagrams
From: U(1)

From: U(1) 3
T

Phase (deg); Magnitude (dB)
o B
Imaginary Axis
To: Y(1)
o

To: Y(1)
)
o

-200
10" 10° 10' 2

Frequency (rad/sec) Real Axis

bode(sys) nyquist(sys)
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Example: Proportional + Integral* speedOI controller

v
<

r —®= ) @ P(s)

Nyquist Diagrams

2000

1500 ~

1000 ~

500 -

Imaginary Axis
To: Y(1)

-500 |-

-1000 -

-1500 -

-2000

Frorr‘w: u(1) | | | P(S) _ 1/ m ) r
S+b/m s+a
K.
C(s)=K, +——1—
(5) " s4+0.01

Remarks
*N=0,P=0=2Z=0 (stable)

* Need to zoom in to make sure
there are no net encirclements

* Note that we don’t have to

-500

0 500 10001002000 2600 compute closed loop response

Real Axis

* slightly modified; more on the design of this compensator in next week’s lecture
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More complicated systems

What happens when open loop plant has RHP poles?
* 1 + PC has singularities inside D countour = these must be taken into

account
Pole-zero map Nyquist Diagrams
1 i ‘ . From: U(1)
08(—x —_]
(2 0.4
<>:< I | g 05
> °rO x 1 <
g 0.2 4 %’- § -
04 f= 5 0 —
06' I 8)
0.8 g -0.5
x L L Il
Real Axis i
L(S) . S +1 1 e 2 18 16 14 12 -1 —0‘8 —0‘6 0.4 70‘2 0
5—-05 s?+s+1 Real Axis
N=-1,P=1=Z=N+P =0 (stable)
unstable pole
1 s+1

1+L (s+0.35)(s+0.07+1.2))(s+0.07-1.2))
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Comments and cautions

Why is the Nyquist plot useful?
* Old answer: easy way to compute stability (before computers and MATLAB)
* Real answer: gives insight into stability and robustness; very useful for
reasoning about stability

Nyquist plots for systems with poles on the jw axis H (s) 1

N e e e e ]
~

x  chose contour to \
avoid poles on axis \

\ * need to carefully N No=+] \
© I > compute Nyquist : i
plot at these points
(% - evaluate H(J+0j) to
’ determine direction
o w=07"
Cautions with using MATLAB
* MATLAB doesn’t generate portion of plot for poles on imaginary axis

* These must be drawn in by hand (make sure to get the orientation right!)

~
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Robust stability: gain and phase margins

Nyquist plot tells us if closed loop is ; Nyauist Diagram

stable, but not how stable

===

Gain margin
e How much we can modify the loop gain v
and still have the system be stable

* Determined by the location where the :
loop transfer function crosses 180° ,
phase

Phase margin Bode Diagram

° HOW muCh we can add “phase delay” - Gm=7.005 dB (at 0.34641 rad/sec), Pm=18.754 deg. (at 0.26853 rad/sec)
and still have the system be stable |

* Determined by the phase at which the
loop transfer function has unity gain

0 GM

Bode plot interpretation
* Look for gain = 1, 180° phase crossings

e MATLAB: margin(sys) }3?% ]

30
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Example: cruise control

d
P(s) = Um r
e % u S+b/m s+a
r —1 C(s) P(s) >y K
- C(s) =K, +———
s+0.01
G(s) G(s) - 10
Effect of additional sensor dynamics ~ s+10

* New speedometer has pole at s = 10 (very fast); problems develop in the field
* What's the problem? A: insufficient phase margin in original design (not robust)

Bode Diagram

100

Nyquist plots

Magnitude (dB)

Phase (deg)

-225

270 = Ll Ll Ll Lol L T I TS B e e
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Preview: control design
d 1/m r

P(s) = :
e % u s+b/m s+a
r —1 C(s) P(s) >y K.
- C(s)@K +— J
" s+0.01
10

G(s)
Approach: Increase phase margin C(s) = s+10

* Increase phase margin by reducing gain = can accommodate new sensor dynamics
» Tradeoff: lower gain at low frequencies = less bandwidth, larger steady state error

Bode Diagram
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Summary: Loop Analysis of Feedback Systems

Bode Diagram

d

50 Gm=7.005 dB (at 0.34641 rad/sec), Pm=18.754 deg. (at 0.26853 rad/sec)

- - 2 . GM
' C(s) Hér)—» P(s) >y 5
) 2 5
P
ERR
* Nyquist criteria for loop stability § 10¢
« Gain, phase margin for robustness 208 PM
-300 !
10° 10" 18 "
ﬂoor_\\\ Thm (Nyquist). ;
R/ ™ P #RHP poles of L(s) -
N # CW encirclements |
EA > 7 #RHP zeros
r | 0
/I Z=N+P 7
“joo il

_3 Il Il
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