
CDS 101: Lecture 5-1
 Reachability and State Space Feedback

Richard M. Murray
23 October 2006

Goals:
 Define reachability of a control system
 Give tests for reachability of linear systems and apply to examples
 Describe the design of state feedback controllers for linear systems

Reading: 
 Åström and Murray, Feedback Systems, Ch 6
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Review from Last Week 
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Control Design Concepts
System description: single input, single output system (MIMO also OK)

Stability: stabilize the system around an equilibrium point
 Given equilibrium point              , find control “law” u=α(x) 

such that

Reachability: steer the system between two points
 Given                   , find an input u(t) such that

Tracking: track a given output trajectory
 Given yd(t), find u=α(x,t) such that

x0

xf

y(t

tyd(t

ẋ = f(x, u(t)) takes x(t0) = x0 → x(T ) = xf

xe ∈ Rn

xo, xf ∈ Rn



23 Oct 06 R. M. Murray, Caltech CDS 4

Reachability of Input/Output Systems

Defn  An input/output system is reachable if for any                    and any time T > 0 
there exists an input                 such that the solution of the dynamics starting from 
x(0)=x0 and applying input u(t) gives x(T)=xf .

Remarks
 In the definition, x0 and xf  do not have to be equilibrium points ⇒ we don’t 

necessarily stay at xf  after time T.
 Reachability is defined in terms of states ⇒ doesn’t depend on output
 For linear systems, can characterize reachability by looking at the general 

solution:

 If integral is “surjective” (as a linear operator), then we can find an input to 
achieve any desired final state.

xo, xf ∈ Rn

u[0,T ] ∈ R
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Tests for Reachability

Thm  A linear system is reachable if and only if the n × n reachability matrix

is full rank.

Remarks
 Very simple test to apply.  In MATLAB, use ctrb(A,B) and check rank w/ det()
 If this test is satisfied, we say “the pair (A,B) is reachable”
 Some insight into the proof can be seen by expanding the matrix exponential
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Example #1: Linearized pendulum on a cart
Question: can we locally control the 
position of the cart by proper choice of 
input?

Approach: look at the linearization around 
the upright position (good approximation to 
the full dynamics if θ remains small)
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Example #1, con’t: Linearized pendulum on a cart

Reachability matrix
• Full rank as long as 

constants are such that 
columns 1 and 3 are not 
multiples of each other

• ⇒ reachable as long as

• ⇒ can “steer” lineariza-
tion between points by 
proper choice of input

u
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0

• Simplify by setting c, γ = 0
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Control Design Concepts
System description: single input, single output system (MIMO also OK)

Stability: stabilize the system around an equilibrium point

 Given equilibrium point xe 2 Rn, find control “law” u=α(x) 

such that

Reachability: steer the system between two points

 Given x0, xf 2 Rn, find an input u(t) such that

Tracking: track a given output trajectory
 Given yd(t), find u=α(x,t) such that

 x0

xf

y(t

tyd(t
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State space controller design for linear systems

Goal: find a linear control law u = -K x such that the closed loop system

is stable at xe=0.

Remarks
 Stability based on eigenvalues ⇒ use K to make eigenvalues of (A+BK) stable
 Can also link eigenvalues to performance (eg, initial condition response)
 Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (A - BK) can be set to arbitrary values if and only if the 
pair (A, B) is reachable.

MATLAB: K = place(A, B, eigs) 

ẋ = Ax−BKx = (A−BK)x
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Example #2: Predator prey
Natural dynamics

Controlled dynamics: modulate food supply

Q1: can we move from some initial population 
of foxes and rabbits to a specified one in time 
T by modulation of the food supply?

Q2: can we stabilize the population around
the desired equilibrium point

Approach: try to answer this question locally, 
around the natural equilibrium point

dH

dt
= rhH

(
1− H

K

)
− aHL

1 + aHTh
H ≥ 0

dL

dt
= rlL

(
1− L

kH

)
L ≥ 0

dH

dt
= (rh + u)H

(
1− H

K

)
− aHL

1 + aHTh

dL

dt
= rlL

(
1− L

kH

)

Unstable

Stable
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Example #2: Problem setup
Equilibrium point calculation

 xe = (6.5, 1.3), ue = 0, ye = 6.5

Linearization
 Compute linearization around equil.

point, xe:

 Redefine local variables:  z=x-xe, v=u-ue

% Compute the equil point
% predprey.m contains dynamics
f = inline('predprey(0,x)');
xeq = fsolve(f, [10, 2]);

% Compute linearization
A = [
  rH - (2*H0*rH)/K - (a*L0)...
  ..., rL - (2*L0*rL)/(H0*k)
];
B = [H0*(1 - H0/K); 0];

dH

dt
= (rh + u)H

(
1− H

K

)
− aHL

1 + aHTh

dL

dt
= rlL

(
1− L

kH

)

d

dt

[
z1

z2

]
=

[
− aL0

(aH0Th+1)2 −
2H0rh

K + rh − aH0
aH0Th+1

L2
0rl

H2
0k

rl − 2L0rl
H0k

] [
z1

z2

]
+

[
H0

(
1− H0

K

)

0

]
v
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Example #2: Stabilization via eigenvalue assignment

Control design:

Place poles at stable values
 Choose λ=-1, -2
 K = place(A, B, [-1; -2]);

Modify NL dynamics to include control

d

dt

[
z1

z2

]
=

[
− aL0

(aH0Th+1)2 −
2H0rh

K + rh − aH0
aH0Th+1

L2
0rl

H2
0k

rl − 2L0rl
H0k

] [
z1

z2

]
+

[
H0

(
1− H0

K

)

0

]
v

dH

dt
= (rh + u)H

(
1− H

K

)
− aHL

1 + aHTh

dL

dt
= rlL

(
1− L

kH

)

v = −Kz + krr

u = ue + K(x− xe) + kr(r − ye)

Stable
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Implementation Details
Eigenvalues determine performance
 For each eigenvalue λi=σi + jωi, get 

contribution of the form

 Repeated eigenvalues can give addi-
tional terms of the form tkeσ + jω

Use estimator to determine the current state if you can’t measure it

 Estimator looks at inputs and outputs of 
plant and estimates the current state

 Can show that if a system is observable 
then you can construct and estimator

 Use the estimated state as the feedback

 Kalman filter is an example of an estimator
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Summary: Reachability and State Space Feedback

Key concepts
 Reachability: find u 

s.t. x0 → xf

 Reachability rank 
test for linear 
systems

 State feedback to 
assign eigen-
values

x0

xf

u = −Kx + krr


