
CDS 101: Lecture 5-1
 Reachability and State Space Feedback

Richard M. Murray
23 October 2006

Goals:
 Define reachability of a control system
 Give tests for reachability of linear systems and apply to examples
 Describe the design of state feedback controllers for linear systems

Reading: 
 Åström and Murray, Feedback Systems, Ch 6
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Review from Last Week 
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Control Design Concepts
System description: single input, single output system (MIMO also OK)

Stability: stabilize the system around an equilibrium point
 Given equilibrium point              , find control “law” u=α(x) 

such that

Reachability: steer the system between two points
 Given                   , find an input u(t) such that

Tracking: track a given output trajectory
 Given yd(t), find u=α(x,t) such that

x0

xf

y(t

tyd(t

ẋ = f(x, u(t)) takes x(t0) = x0 → x(T ) = xf

xe ∈ Rn

xo, xf ∈ Rn
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Reachability of Input/Output Systems

Defn  An input/output system is reachable if for any                    and any time T > 0 
there exists an input                 such that the solution of the dynamics starting from 
x(0)=x0 and applying input u(t) gives x(T)=xf .

Remarks
 In the definition, x0 and xf  do not have to be equilibrium points ⇒ we don’t 

necessarily stay at xf  after time T.
 Reachability is defined in terms of states ⇒ doesn’t depend on output
 For linear systems, can characterize reachability by looking at the general 

solution:

 If integral is “surjective” (as a linear operator), then we can find an input to 
achieve any desired final state.

xo, xf ∈ Rn

u[0,T ] ∈ R
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Tests for Reachability

Thm  A linear system is reachable if and only if the n × n reachability matrix

is full rank.

Remarks
 Very simple test to apply.  In MATLAB, use ctrb(A,B) and check rank w/ det()
 If this test is satisfied, we say “the pair (A,B) is reachable”
 Some insight into the proof can be seen by expanding the matrix exponential
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Example #1: Linearized pendulum on a cart
Question: can we locally control the 
position of the cart by proper choice of 
input?

Approach: look at the linearization around 
the upright position (good approximation to 
the full dynamics if θ remains small)

F

p

θ
m

M

d

dt





p
θ
ṗ
θ̇



 =





0 0 1 0
0 0 0 1

0 m2l2g
MtJt−m2l2

−cJt
MtJt−m2l2

−γJtlm
MtJt−m2l2

0 Mtmgl
MtJt−m2l2

−clm
MtJt−m2l2

−γMt

MtJt−m2l2









p
θ
ṗ
θ̇



 +





0
0
Jt

MtJt−m2l2

lm
MtJt−m2l2




u

y =
[
1 0 0 0

]
x,
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Wr =





0 Jt
µ 0 gl3m3

µ2

0 lm
µ 0 gl2m2(m+M)

µ2

Jt
µ 0 gl3m3

µ2 0
lm
µ 0 gl2m2(m+M)

µ2 0




.

7

B AB A2B A3B

Example #1, con’t: Linearized pendulum on a cart

Reachability matrix
• Full rank as long as 

constants are such that 
columns 1 and 3 are not 
multiples of each other

• ⇒ reachable as long as

• ⇒ can “steer” lineariza-
tion between points by 
proper choice of input

u

p

θ
m

M

0

0

• Simplify by setting c, γ = 0

d

dt





p
θ
ṗ
θ̇



 =





0 0 1 0
0 0 0 1

0 m2l2g
µ

−cJt
µ

−γJtlm
µ

0 Mtmgl
µ

−clm
µ

−γMt

µ









p
θ
ṗ
θ̇



 +





0
0
Jt
µ

lm
µ




u

µ = MtJt −m2l2

0

0

Wr =





0 Jt
µ 0 gl3m3

µ2

0 lm
µ 0 gl2m2(m+M)

µ2

Jt
µ 0 gl3m3

µ2 0
lm
µ 0 gl2m2(m+M)

µ2 0




.

det(Wr) =
g2l4m4

µ4
!= 0
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Control Design Concepts
System description: single input, single output system (MIMO also OK)

Stability: stabilize the system around an equilibrium point

 Given equilibrium point xe 2 Rn, find control “law” u=α(x) 

such that

Reachability: steer the system between two points

 Given x0, xf 2 Rn, find an input u(t) such that

Tracking: track a given output trajectory
 Given yd(t), find u=α(x,t) such that

 x0

xf

y(t

tyd(t



23 Oct 06 R. M. Murray, Caltech CDS 9

State space controller design for linear systems

Goal: find a linear control law u = -K x such that the closed loop system

is stable at xe=0.

Remarks
 Stability based on eigenvalues ⇒ use K to make eigenvalues of (A+BK) stable
 Can also link eigenvalues to performance (eg, initial condition response)
 Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (A - BK) can be set to arbitrary values if and only if the 
pair (A, B) is reachable.

MATLAB: K = place(A, B, eigs) 

ẋ = Ax−BKx = (A−BK)x



23 Oct 06 R. M. Murray, Caltech CDS

Example #2: Predator prey
Natural dynamics

Controlled dynamics: modulate food supply

Q1: can we move from some initial population 
of foxes and rabbits to a specified one in time 
T by modulation of the food supply?

Q2: can we stabilize the population around
the desired equilibrium point

Approach: try to answer this question locally, 
around the natural equilibrium point

dH

dt
= rhH

(
1− H

K

)
− aHL

1 + aHTh
H ≥ 0

dL

dt
= rlL

(
1− L

kH

)
L ≥ 0

dH

dt
= (rh + u)H

(
1− H

K

)
− aHL

1 + aHTh

dL

dt
= rlL

(
1− L

kH

)

Unstable

Stable
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Example #2: Problem setup
Equilibrium point calculation

 xe = (6.5, 1.3), ue = 0, ye = 6.5

Linearization
 Compute linearization around equil.

point, xe:

 Redefine local variables:  z=x-xe, v=u-ue

% Compute the equil point
% predprey.m contains dynamics
f = inline('predprey(0,x)');
xeq = fsolve(f, [10, 2]);

% Compute linearization
A = [
  rH - (2*H0*rH)/K - (a*L0)...
  ..., rL - (2*L0*rL)/(H0*k)
];
B = [H0*(1 - H0/K); 0];

dH

dt
= (rh + u)H

(
1− H

K

)
− aHL

1 + aHTh

dL

dt
= rlL

(
1− L

kH

)

d

dt

[
z1

z2

]
=

[
− aL0

(aH0Th+1)2 −
2H0rh

K + rh − aH0
aH0Th+1

L2
0rl

H2
0k

rl − 2L0rl
H0k

] [
z1

z2

]
+

[
H0

(
1− H0

K

)

0

]
v
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Example #2: Stabilization via eigenvalue assignment

Control design:

Place poles at stable values
 Choose λ=-1, -2
 K = place(A, B, [-1; -2]);

Modify NL dynamics to include control

d

dt

[
z1

z2

]
=

[
− aL0

(aH0Th+1)2 −
2H0rh

K + rh − aH0
aH0Th+1

L2
0rl

H2
0k

rl − 2L0rl
H0k

] [
z1

z2

]
+

[
H0

(
1− H0

K

)

0

]
v

dH

dt
= (rh + u)H

(
1− H

K

)
− aHL

1 + aHTh

dL

dt
= rlL

(
1− L

kH

)

v = −Kz + krr

u = ue + K(x− xe) + kr(r − ye)

Stable
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Implementation Details
Eigenvalues determine performance
 For each eigenvalue λi=σi + jωi, get 

contribution of the form

 Repeated eigenvalues can give addi-
tional terms of the form tkeσ + jω

Use estimator to determine the current state if you can’t measure it

 Estimator looks at inputs and outputs of 
plant and estimates the current state

 Can show that if a system is observable 
then you can construct and estimator

 Use the estimated state as the feedback

 Kalman filter is an example of an estimator

Time (sec.)

Am
pl

itu
de

Step Response

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2
From: U(1)

To
: Y

(1
)

T≈2π
/ωp

Real Axis

Im
ag

 A
xis

Pole-zero map

-15 -10 -5 0 5
-2

-1

0

1

2
 

ω

u y

Estimator



23 Oct 06 R. M. Murray, Caltech CDS 14

Summary: Reachability and State Space Feedback

Key concepts
 Reachability: find u 

s.t. x0 → xf

 Reachability rank 
test for linear 
systems

 State feedback to 
assign eigen-
values

x0

xf

u = −Kx + krr


