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Linear Systems
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Richard M. Murray
18 October 2004

Goals:
» Describe linear system models: properties, examples, and tools

» Characterize stability and performance of linear systems in terms of
eigenvalues

» Compute linearization of a nonlinear systems around an equilibrium point

Reading:
* Astrom and Murray, Analysis and Design of Feedback Systems, Ch 4

» Packard, Poola and Horowitz, Dynamic Systems and Feedback, Sections
19, 20, 22 (available via course web page)



Review from Last Week

Key topics for this lecture

e« Stability of equilibrium points
(@

27

* Local versus global behavior

* Performance specification via
step and frequency response
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What is a Linear System?

Linearity of functions: f:0" —>0O"

e Zero at the origin:f (0) =0 f(ax+ BY) = Canonical example:
e Addition: f(x+y)=f(x)+ f(y) } 2t ()4 AT (Y) £ (x) = AX
e Scaling: f (ax) = af (x)

Linearity of systems: sums of solutions

Dynamical system Control system
<= Ax X = Ax+ Bu
y=Cx+Du
x(0) = Xy X(0) = Xy x(0)=0, u(t)=u,(t)  x(0)=0, u(t)=u,(t)
2xO=xl = xO=%0 = y(1) = (1) = y(1) =y,
U U
x(0) = Xy + PXog x(0)=0, u(t)= aul(t) + pu, (t)
— X(t) = ax,(t) + BX, (1) = y(t) =ay,(t) + BY,(t)
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Linear Systems

Input/output linearity at x(0) =0

X = Ax+ Bu : : L
u y * Linear systems are linear in initial
— y=Cx+Du > condition and input = need to use
x(0)=0 x(0) = 0 to add outputs together

* For different initial conditions, you

1 1 need to be more careful (sounds
like a good midterm question)
0 —} yl 0
5

1 10 + 1 : ,, Linear system = step response
1 05 and frequency response scale
with input amplitude
0 — Y5 0 P P
e 2X Input = 2X output
o 5 10 0% 5 10 * Allows us to use ratios and

u, +u,

percen-tages in step/freq

(Q\| .
> response. These are independent
OWW m—p + 0 of input amplitude
—
5 >, * Limitation: input saturation = only
0 > 10 0 > 10 holds up to certain input amplitude
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Why are Linear Systems Important?

Many important examples
Electronic circuits

e &
Ll
a—tos
2

. Especiall)} true after feedback

* Frequency response is key performance
specification (think telephones)

Many mechanical systems

2 o >
E 4 > <>
—4—» )
ok K, K, i
LE—
b

Quantum mechanics, Markov
chains, ...
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Many important tools

Frequency response, step
response, etc

* Traditional tools of control theory
* Developed in 1930’'s at Bell Labs;

intercontinental telecom

Classical control design toolbox
* Nyquist plots, gain/phase margin
* Loop shaping

Optimal control and estimators
e Linear quadratic regulators
e Kalman estimators

Robust control design
* H__ control design
 n analysis for structured

uncertainty ’
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Solutions of Linear Systems: The Matrix Exponential

X = AX + Bu

y =Cx+ Du y{t) =722

Scalar linear system, with no input

X =ax x(0) = x X(t) = e*x (t) = ce®x
y = CX =Xy =€ X y(l) = 0

Matrix version, with no input
X = AX
y =CX

X(0) =%, —— x(t) =e x, —|y(t) = CeAlx,

_ _ initial(A,B,C,D,x0);
Matrix exponential

* Analog to the scalar case; defined by series expansion:

M 1 1
e :I+M+EM2+§M3+L P = expm(M)
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Stability of Linear Systems

0

>'<=Ax+/B€

Yy=Cx+Dt-

X(t)=e

At X,

Q: when is the system
asymptotically stable?

limx(t)=0

t—>w

Stability is determined by the eigenvalues of the matrix A
» Simple case: diagonal system

—

X(t) =

gt

0

* More generally: transform to “Jordan” form

X =T 'JTx

J =

,

0

O

0

J

J. =

A

0

g™t

O

S = O

Form of eigenvalues determines system behavior
Linear systems are automatically globally stable or unstable
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Xo

Stable if 4, <0
Asy stable if 4. <0
Unstable if 4, >0

Asy stable if Re(4) <0
Unstable if Re( 4,) >0
Indeterminate if Re( 4,) =0



Eigenstructure of Linear Systems

Re(4)=0

R. M. Murray, Caltech CDS
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Step and Frequency Response

X =Ax+ Bu
u(t) =1(t u(t) = Asin(wt
y = Cx+ DU (t) =1(t) (t) = Asin(at)
Pole-zero map Step Response
Effect of eigenstructure on step 2 0.2
response $ 1 Dy . Soss |€]T=2m/a,
e Complex eigenvalues with small g 0 x S 01
real part lead to oscillatory ! . < 008
response " | 0
. ] -15 -10 -5 0 5 0O 5 10 15 20 25 30
* Frequency of oscillations = @, Real Axis Time (sec.)

Bode Diagrams

Effects of eigenstructure on
frequency response

* Eigenvalues determine “break
points” for frequency response

* Complex eigenvalues lead to

peaks in response function near

@ Frequency (rad/sec)

o

-100

o

e

=
o
s}

——

g); Magnitude (dB)
&
o

-200

Phase (d

10 10 10
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Computing Frequency Responses

Technique #1: plot input and output, measure relative amplitude and

phase

* Use MATLAB or SIMULINK to generate

response of system to sinusoidal output

* Gain = A/A,
e Phase = 2n - AT/T

* Note: In general, gain and phase will
depend on the input amplitude

Technique #2 (linear systems): use MATLAB bode command

» Assumes linear dynamics in state

space form:
X = Ax+ Bu
y =Cx+ Du

» Gain plotted on log-log scale
o dB = 20 log,, (gain)
* Phase plotted on linear-log scale

18 Oct 04
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Example: Electrical Circuit
LS,
|

1 1 | - v Qz J_si;‘ {? 2%’ @ \/\/\/\ @ \/\/\/\_@
= BT R
= 4 50uF S R,=4.7K VI <~> C . — VO

“Bridged Tee Circuit”

Derivation based on Kirchoff’'s laws for electrical circuits (Ph 2)
e Sum of currents at nodes = 0O:
dV2:V1_V2_V2_V3 C d(Vs_Vl):_Ve,_Vz

't R, R, *dt R,
* Rewrite in terms of new states: v ,=V,, V,=V;—V,

1(1 1 1 - -
dfv,] | c\rR "R ) "CR, [V 2 IR v
_{ 01}: AL 112 {“} C.\R R JIv | v,=[0 1]{VC1}+vi

VCZ V c2
c2
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Linear Control Systems and Convolution

X =Ax+ Bu 0 = Celx(Q) 4777
— =Ce X + 77
y =Cx+ Du y(®) ﬁ,(—)/
homogeneous
Impulse response, h(t) = ce”lB

/
* Response to input “impulse” )\ : /\
* Equivalent to “Green’s function”

N
7

Vv

Linearity = compose response to arbitrary u(t) using convolution

e Decompose input into “sum” of
shifted impulse functions

» Compute impulse response for each —
* “Sum” impulse response to find y(t)

Complete solution: use integral instead of “sum”

o linear with respect to initial

t
y(t) = Ce™x(0) + I Ce " Bu(zr)dz + Du(t) condition and input
0 e 2X input = 2X output when
x(0)=0
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Matlab Tools for Linear Systems

t
y(t) = Ce™x(0) + j Ce**"Bu(z)dr + Du(t)
N =0 7 _/
/ /\/ Initial Condition Results

A=1]-11; 0 -1];
C = [10]; D = [0];
x0 = [1; 0.5];

sys = ss(A,B,C,D);
inttial(sys, x0);
impulse(sys);

t = 0:0.1:10;
u = 0.2*sin(5*t) + cos(2*t);
Isim(sys, u, t, x0);

Amplitude

Amplitude

Other MATLAB commands

* gensig, square, sawtooth — produce signals of diff. types
e step, impulse, initial, Isim — time domain analysis
* bode, freqresp, evalfr — frequency domain analysis

18 Oct 04
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Linear Simulation Results
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Linearization Around an Equilibrium Point
X = f(x,u) Z=Az+Bv 2
—_—
y =h(x,u) w=Cz + Dv
“Linearize” around x=x, XZO‘D)
f(x.,,u,)=0 vy, =h(x,u,) —
Z=X—-X, V=U—-U, W=Yy-Y,

-2
A= ﬂ B = @ -2 0 2m
Xl ) Uiy, u,)
e p_éh
OX| (s, u,) U, u,)
Remarks

* In examples, this is often

equivalent to small angle ) \\
approximations, etc 0453

03 -02 -01 0 0.1 02 03

-0. x
-04

03 -02 -01 0 0.1 02 03

* Only works near to equili-
brium point Full nonlinear model Linear model (honest!)
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Local Stability of Nonlinear Systems

Asymptotic stability of the linearization implies local asymptotic stability
of equilibrium point
* Linearization around equilibrium point captures “tangent” dynamics

X=f(X)=A-(X-X,)+0(X—Xx,)*—— higher order terms

e If linearization is unstable, can conclude that nonlinear system is locally
unstable

* If linearization is stable but not asymptotically stable, can’t conclude anything
about nonlinear system:

linearize « linearization is stable (but not asy stable)
* nonlinear system can be asy stable or unstable

3

X =*X

Local approximation particularly appropriate for control systems design
e Control often used to ensure system stays near desired equilibrium point

* If dynamics are well-approximated by linearization near equilibrium point,
can use this to design the controller that keeps you there (!)
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Example: Inverted Pendulum on a Cart
| m

| 0
T (M + m)i + mlcos0d = —bi + mlsin 062 + f
(J 4+ ml?)d + mlcosbi = —mglsinf

e State: X, 6, X, 60

* Input: u=F

* Qutput: y = x

* Linearize according to previous

1 O M Q formula around 6= =
0 0 1 0] [ 0
n 0 0 0 1 0
d o] _ | m2gl2 —(J 4+ ml?)b 0 J + mli?
i el =10 T Fm)+ Mmi2 JM+m)+ Mmi2 | T T+ m) + Mmi2
6. mgl(M + m) —mlb 0 ml
J(M +m)+ Mmi2 J(M+m)+ Mmil2 | J(M 4+ m) + Mmi?]

y=[_1 0 0 0|z
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Summary: Linear Systems

u X = Ax+ Bu y
— y=Cx+Du —>
X(0)=0
1 1
_|_'1 5 10 +0' 5 10
0 O\/W\/\/\/\/\/\/\
5 10 0 5 10 Properties of linear systems
2 2 * Linearity with respect to initial
OWW 9 condition and inputs
' 5 10 K 5 10 » Stability characterized by eigenvalues

* Many applications and tools available

t
y(t) = Ce™x(0) + _[ Ce” "7 Bu(r)dr + Du(t)| e Provide local description for nonlinear
0 systems
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