

CDS 101: Lecture 4.1 Linear Systems

Richard M. Murray 18 October 2004

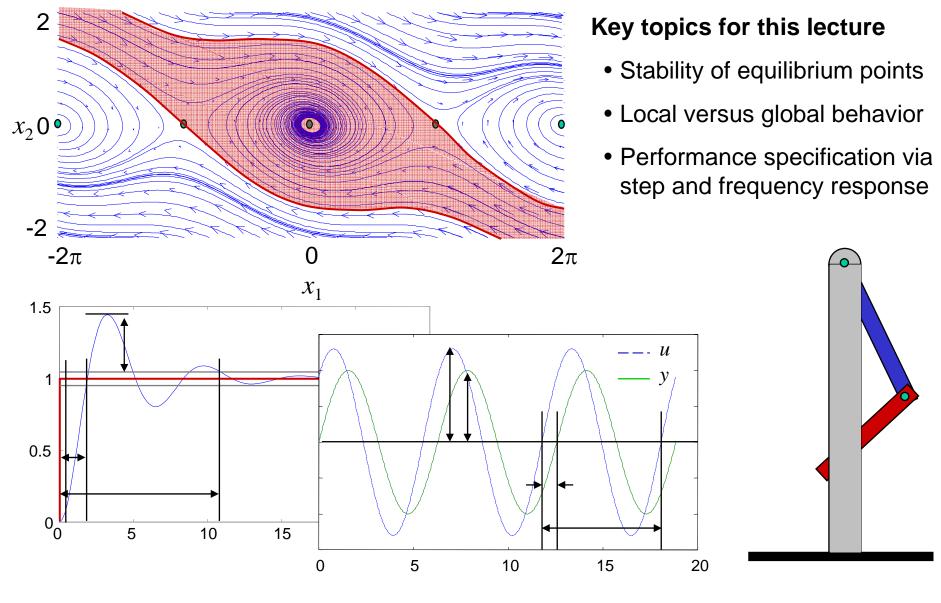
Goals:

- Describe linear system models: properties, examples, and tools
- Characterize stability and performance of linear systems in terms of eigenvalues
- Compute linearization of a nonlinear systems around an equilibrium point

Reading:

- Åström and Murray, Analysis and Design of Feedback Systems, Ch 4
- Packard, Poola and Horowitz, *Dynamic Systems and Feedback*, Sections 19, 20, 22 (available via course web page)

Review from Last Week



What is a *Linear* System?

Linearity of functions: $f: \square^n \to \square^m$

- Scaling: $f(\alpha x) = \alpha f(x)$

• Zero at the origin:
$$f(0) = 0$$

• Addition: $f(x + y) = f(x) + f(y)$
• Scaling: $f(\alpha x) = \alpha f(x)$

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

Canonical example:

$$f(x) = Ax$$

Linearity of systems: sums of solutions

Dynamical system

$$\dot{x} = Ax$$

$$x(0) = x_{10} x(0) = x_{20}$$

$$\rightarrow x(t) = x_1(t) \rightarrow x(t) = x_2(t)$$

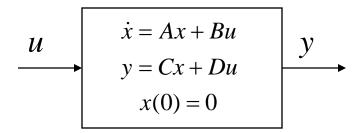
$$\downarrow \downarrow x(0) = \alpha x_{10} + \beta x_{20}$$

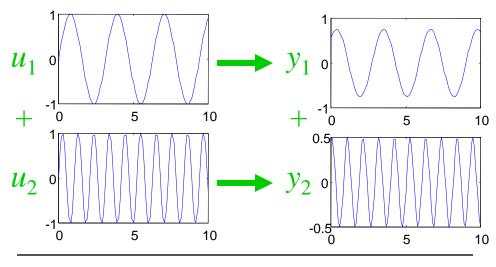
$$\rightarrow x(t) = \alpha x_1(t) + \beta x_2(t)$$

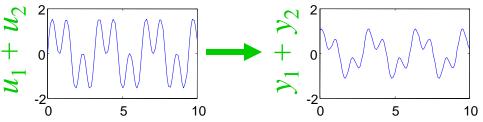
Control system

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Linear Systems







Input/output linearity at x(0) = 0

- Linear systems are linear in initial condition and input ⇒ need to use x(0) = 0 to add outputs together
- For different initial conditions, you need to be more careful (sounds like a good midterm question)

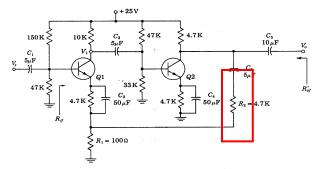
Linear system ⇒ step response and frequency response scale with input amplitude

- 2X input ⇒ 2X output
- Allows us to use ratios and percen-tages in step/freq response. These are independent of input amplitude
- Limitation: input saturation ⇒ only holds up to certain input amplitude

Why are Linear Systems Important?

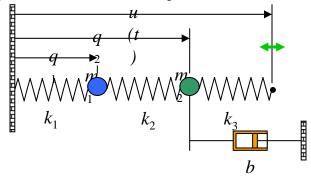
Many important examples

Electronic circuits



- Especially true after feedback
- Frequency response is key performance specification (think telephones)

Many mechanical systems



Quantum mechanics, Markov chains, ...

Many important tools

Frequency response, step response, etc

- Traditional tools of control theory
- Developed in 1930's at Bell Labs; intercontinental telecom

Classical control design toolbox	CDS
 Nyquist plots, gain/phase margin 	101/
 Loop shaping 	110a

Optimal control and estimators Linear quadratic regulators Kalman estimators

Robust control design	CDS
• H_{∞} control design	\ 110b/
• μ analysis for structured	212
uncertainty	J

Solutions of Linear Systems: The Matrix Exponential

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

$$y(t) = ???$$

Scalar linear system, with no input

$$\dot{x} = ax$$

$$y = cx$$

$$x(0) = x_0 \longrightarrow x(t) = e^{at}x_0 \longrightarrow y(t) = ce^{at}x_0$$

Matrix version, with no input

$$\dot{x} = Ax$$

$$y = Cx$$

$$x(0) = x_0 \qquad x(t) = e^{At}x_0 \qquad y(t) = Ce^{At}x_0$$
initial(A,B,C,D,x0);

• Analog to the scalar case; defined by series expansion:

$$e^{M} = I + M + \frac{1}{2!}M^{2} + \frac{1}{3!}M^{3} + L$$
 $P = expm(M)$

Stability of Linear Systems

$$\dot{x} = Ax + Bu^{0}$$

$$y = Cx + Du^{0}$$

$$x(t) = e^{At} x_0$$

Q: when is the system asymptotically stable?

$$\lim_{t\to\infty} x(t) = 0$$

Stability is determined by the eigenvalues of the matrix A

Simple case: diagonal system

$$\dot{x} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix} x \qquad \Rightarrow \qquad x(t) = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & O \\ 0 & e^{\lambda_n t} \end{bmatrix} x_0 \qquad \text{Stable if } \lambda_i \leq 0$$

$$\text{On the expression of the expression$$

More generally: transform to "Jordan" form

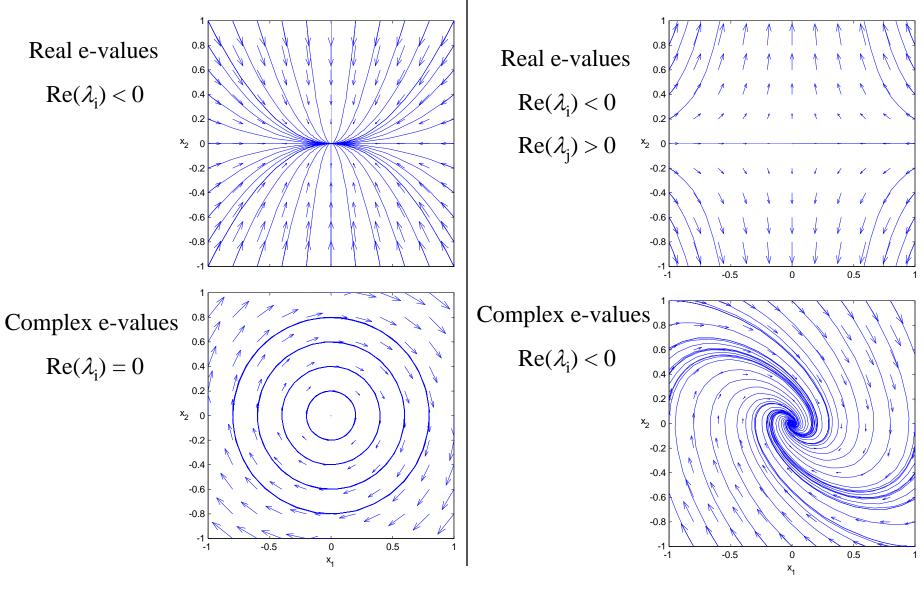
$$\dot{x} = T^{-1}JTx \qquad J = \begin{bmatrix} J_1 & 0 \\ 0 & J_k \end{bmatrix} \qquad J_i = \begin{bmatrix} \lambda_i & 1 & 0 \\ 0 & 0 & 1 \\ 0 & \lambda_i \end{bmatrix} \qquad \text{Asy stable if } \operatorname{Re}(\lambda_i) < 0$$

$$\text{Unstable if } \operatorname{Re}(\lambda_i) > 0$$

$$Indeterminate \text{ if } \operatorname{Re}(\lambda_i) = 0$$

Form of eigenvalues determines system behavior Linear systems are automatically *globally* stable or unstable

Eigenstructure of Linear Systems



Step and Frequency Response

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

$$u(t) = 1(t)$$

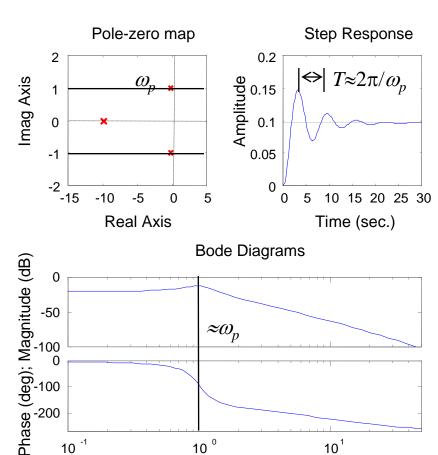
$$u(t) = A\sin(\omega t)$$

Effect of eigenstructure on step response

- Complex eigenvalues with small real part lead to oscillatory response
- Frequency of oscillations $\approx \omega_i$

Effects of eigenstructure on frequency response

- Eigenvalues determine "break points" for frequency response
- Complex eigenvalues lead to peaks in response function near ω_i



10 °

Frequency (rad/sec)

10 -1

10¹

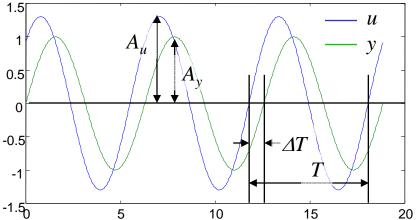
Computing Frequency Responses

Technique #1: plot input and output, measure relative amplitude and

phase

 Use MATLAB or SIMULINK to generate response of system to sinusoidal output

- Gain = $A_{\nu}/A_{\rm u}$
- Phase = $2\pi \cdot \Delta T/T$
- Note: In general, gain and phase will depend on the input amplitude

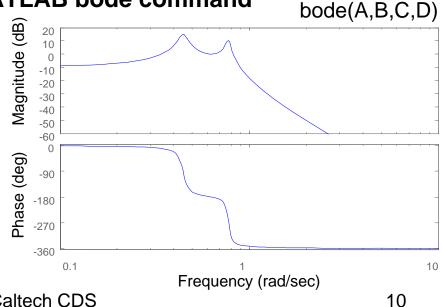


Technique #2 (linear systems): use MATLAB bode command

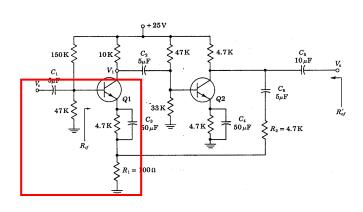
 Assumes linear dynamics in state space form:

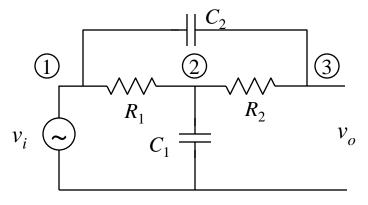
$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

- Gain plotted on log-log scale $dB = 20 \log_{10} (gain)$
- Phase plotted on linear-log scale



Example: Electrical Circuit





"Bridged Tee Circuit"

Derivation based on Kirchoff's laws for electrical circuits (Ph 2)

Sum of currents at nodes = 0:

$$C_1 \frac{dv_2}{dt} = \frac{v_1 - v_2}{R_1} - \frac{v_2 - v_3}{R_2} \qquad C_2 \frac{d(v_3 - v_1)}{dt} = -\frac{v_3 - v_2}{R_2}$$

$$C_2 \frac{d(v_3 - v_1)}{dt} = -\frac{v_3 - v_2}{R_2}$$

• Rewrite in terms of new states: $v_{c1}=v_2$, $v_{c2}=v_3-v_1$

$$\frac{d}{dt} \begin{bmatrix} v_{c1} \\ v_{c2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{C_1} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) & -\frac{1}{C_1 R_2} \\ -\frac{1}{C_2 R_2} & -\frac{1}{C_2 R_2} \end{bmatrix} \begin{bmatrix} v_{c1} \\ v_{c2} \end{bmatrix} + \begin{bmatrix} \frac{1}{C_1} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \\ V_{c2} \end{bmatrix} v_i \\ V_{c2} \end{bmatrix} v_i \quad v_o = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} v_{c1} \\ v_{c2} \end{bmatrix} + v_i$$

Linear Control Systems and Convolution

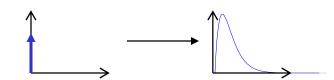
$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

$$y(t) = \underbrace{Ce^{At}x(0)}_{\text{homogeneous}} + ???$$

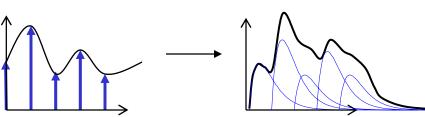
Impulse response, $h(t) = Ce^{At}B$

- Response to input "impulse"
- Equivalent to "Green's function"



Linearity \Rightarrow compose response to arbitrary u(t) using convolution

- Decompose input into "sum" of shifted impulse functions
- Compute impulse response for each
- "Sum" impulse response to find y(t)

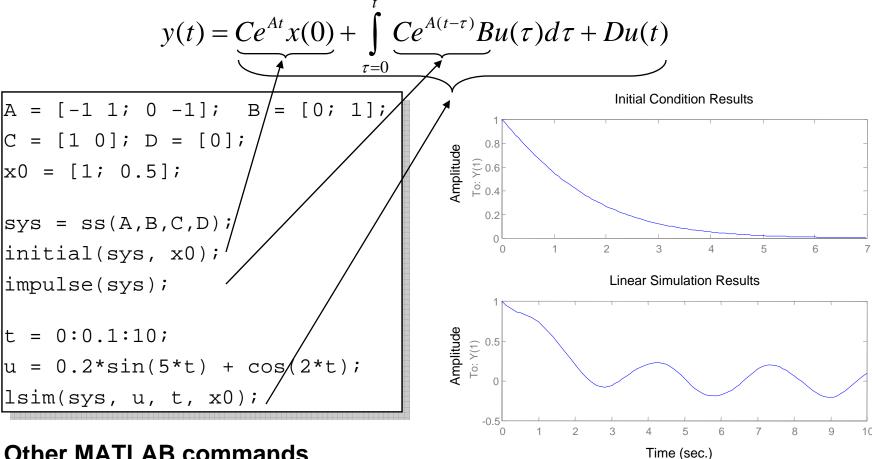


Complete solution: use integral instead of "sum"

$$y(t) = Ce^{At}x(0) + \int_{\tau=0}^{t} Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

- linear with respect to initial condition *and* input
- 2X input \Rightarrow 2X output when x(0) = 0

Matlab Tools for Linear Systems



Other MATLAB commands

- gensig, square, sawtooth produce signals of diff. types
- step, impulse, initial, Isim time domain analysis
- bode, freqresp, evalfr frequency domain analysis

ltiview – linear time invariant system plots

Linearization Around an Equilibrium Point

$$\dot{x} = f(x, u)$$

$$y = h(x, u)$$

$$\dot{z} = Az + Bv$$

$$w = Cz + Dv$$

"Linearize" around $x=x_e$

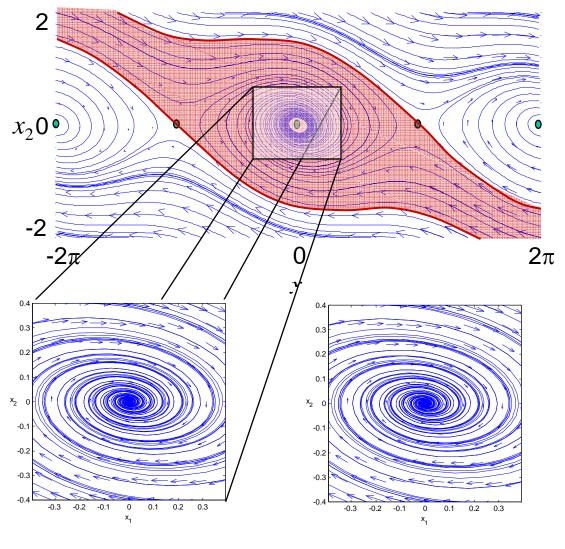
$$f(x_e, u_e) = 0 \quad y_e = h(x_e, u_e)$$
$$z = x - x_e \quad v = u - u_e \quad w = y - y_e$$

$$A = \frac{\partial f}{\partial x}\bigg|_{(x_e, u_e)} \qquad B = \frac{\partial f}{\partial u}\bigg|_{(x_e, u_e)}$$

$$C = \frac{\partial h}{\partial x}\bigg|_{(x_e, u_e)} \qquad D = \frac{\partial h}{\partial u}\bigg|_{(x_e, u_e)}$$

Remarks

- In examples, this is often equivalent to small angle approximations, etc
- Only works near to equilibrium point



Full nonlinear model

Linear model (honest!)

Local Stability of Nonlinear Systems

Asymptotic stability of the linearization implies *local* asymptotic stability of equilibrium point

Linearization around equilibrium point captures "tangent" dynamics

$$\dot{x} = f(x) = A \cdot (x - x_e) + o(x - x_e)$$
 higher order terms

- If linearization is *unstable*, can conclude that nonlinear system is locally unstable
- If linearization is stable but not asymptotically stable, can't conclude anything about nonlinear system:

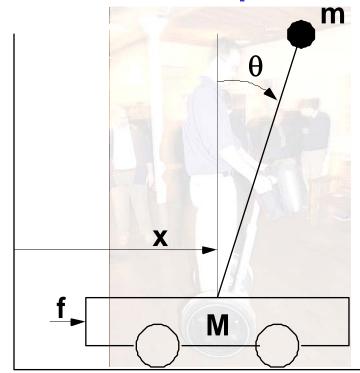
$$\dot{x} = \pm x^3 \qquad \begin{array}{c} linearize \\ \longrightarrow \\ \dot{x} = 0 \end{array}$$

- $\dot{x} = \pm x^3$ $\xrightarrow{linearize}$ $\dot{x} = 0$ linearization is stable (but not asy stable) nonlinear system can be asy stable or unstable

Local approximation particularly appropriate for control systems design

- Control often used to *ensure* system stays near desired equilibrium point
- If dynamics are well-approximated by linearization near equilibrium point, can use this to design the controller that keeps you there (!)

Example: Inverted Pendulum on a Cart



$$(M+m)\ddot{x} + ml\cos\theta\ddot{\theta} = -b\dot{x} + ml\sin\theta\dot{\theta}^2 + f$$

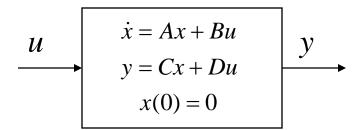
$$(J+ml^2)\ddot{\theta} + ml\cos\theta\ddot{x} = -mgl\sin\theta$$

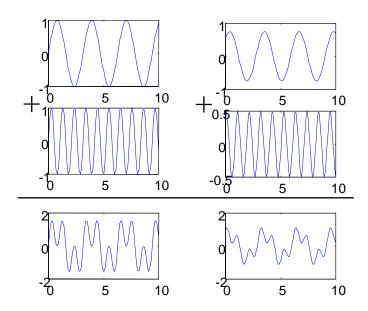
- State: $x, \theta, \dot{x}, \dot{\theta}$
- Input: *u* = *F*
- Output: y = x
- Linearize according to previous formula around $\theta = \pi$

$$\frac{d}{dt} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{m^2 g l^2}{J(M+m) + Mml^2} & \frac{-(J+ml^2)b}{J(M+m) + Mml^2} & 0 \\ 0 & \frac{mgl(M+m)}{J(M+m) + Mml^2} & \frac{-mlb}{J(M+m) + Mml^2} & 0 \end{bmatrix} x + \begin{bmatrix} 0 & 0 & 0 \\ J+ml^2 & 0 & 0 \\ \frac{ml}{J(M+m) + Mml^2} & 0 & 0 \end{bmatrix} u$$

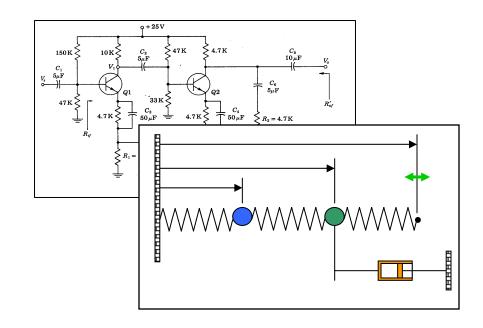
$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} x$$

Summary: Linear Systems





$$y(t) = Ce^{At}x(0) + \int_{\tau=0}^{t} Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$



Properties of linear systems

- Linearity with respect to initial condition and inputs
- Stability characterized by eigenvalues
- Many applications and tools available
- Provide local description for nonlinear systems