ANUTEG,
f/\\* (3 2

CDS 110: Lecture 2-2
| %/) Modeling Using Differential Equations
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Richard M. Murray and Hideo Mabuchi
4 October 2006

Goals:
* Provide a more detailed description of the use of ODEs for modeling
* Provide examples of the type of analysis that can be done using ODEs

Reading:

o Astrom and Murray, Analysis and Design of Feedback Systems, Ch 2
* Advanced: Lewis, A Mathematical Approach to Classical Control, Ch 1
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Review: Second Order Differential Equations (Ma 1)
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Damped oscillator dynamics

mq + cq + kg = f(t)

= (({]

AL ELELEREN!

HE

|-
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Homogeneous solution: f(t) = !
« Guess form of the solution: (J(t) = e*(Acoswt + Bsinwt)

e Substitute into ODE and solve for the constants
0 =e™ ((B(c + 2am)w 4+ A (ma? + ca — mw? + k)) cos(wt)
+ (Bma? + Bea — 2Amwa — Bmw? 4 Bk — Acw) sin(wt))

= A
40 \ Coefficents of sin/cos must be zero
vg = Ao+ Bw Solve for A & B Use to solve for a, w

e Simplify the solution by pulling out common terms

0
1
o(0) = 6ot (s cosut + (a0 + Luo) sinwat) €= VP
w

wd wd

* Note: this solution holds when £ < 1
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Second Order Differential Equations, ctd

(1!
it

m§ +cq + kg = f(t) 3 i
5
Particular response: zero initial conditions =1 » » » o
« ¢(0)=0,¢(0)=0 &
» Response to constant (step) input, f(t) = F
F
g(t) = —— |1 — e 0t coswt + __& ~Cwotgin wgt
mwy 1 — CQ

» Response to sinusoidal input, f(f) = Asin wt
2

“a
wg — w2 4 2jCwow
* Form of the solution: sinusoid at same frequency, with shift in mag & phase
e Solving by hand is a mess; we will learn much better ways later

q(t) = M Asin(wt+0) Mel? =

Complete solution: homogeneous + particular
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More General Forms of Differential Equations

State space form
dx
— = f(x,u
=)
y = h(z,u)
General form

Higher order, linear ODE

dnq dn—l
am T g1
. dn—lq
y==m dtn—l
EZl A 1g/dgn—1]
_ T2 _ :
T T dq/dt
| Ln i q i

dx
— = A B
” x + Bu

y=Cx—+ Du

r €R"™ uweRP
y € RY
e x = state; nth order

 u = input; will usually set p = 1
e y = output; will usually set q =1

Linear system

++ang=u

+ -+ bp_1d+ bng
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Analytical Solutions of ODEs

Scalar systems
dx

W ar4u zp(t) = ez u = Asinwit
dt B B A—wleat + wq coSwit + asinwit
y—=x ¥ = a2 + w%
Decoupled systems
)\ 0] [31] T; = Nx; + Giu
d
51—3 = )\2 . T —|— 5:2 u N
' ' z;(t) = etz (0)
i O )\n_ _/Bn_ t )\(t—T)

/

» Effect of input modeled by “convolution integral”

General solutions
 Linear systems: use Jordan canonical form and “matrix exponential” (more later)
* Nonlinear system: generally no closed form solutions, expect in special cases
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Numerical Solution of ODEs

Numerical simulation: Euler integration

dz — lim x(t+¢€)— x(t)
dt e—0 €

— (i) ~ 2(D)def (x(t), u(t)).

* If £ chosen sufficently small, get good approximation analytical solution
e Solution is in the form of a difference equation (with step size ¢)
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e More accurate algorithms: build better approximation to the derivative

e Faster algorithms: choose the step size based on how quickly solution is changing
e Example: Runga Kutta (ode45)
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Analyzing Models using ODEs: Frequency Response

How does linear system respond to
sinusoidal inputs?

mq + cq + kg = f(t).
f(t) = Asinwt.

q(t) = g(w) sin(wt + ¢(w)),

magnitude phase
4
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General properties

 Linear systems: sinusoidal input at
frequency w = sinusoidal output at
frequency w

output magnitude
input magnitude

_ g(w)
A

e Phase: shift in input sinusoid versus
output sinusoid

e Gain =

10 ,
R
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Analyzing Models Using ODEs: Stability

ODEs can also be used to prove stability of a systems
* Try to reason about the long term behavior of all solutions
 Stability = all solutions return to equilibrium point (more precise defn later)
mq ~+ cq + kq=20
Example: spring mass system

e Can we show that all solutions return
to rest w/out explicitly solving ODE?

 |dea: look at how energy evolves in time

.
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i . . dx 4 i) r1 —=dq
 Start by writing equations in state space form T — b e :

— Ty — T
« Compute energy and its derivative m72 " mTl

1 1 dv
V(z) = Ekm% + meg. —- = kayiy + maoio

b k
= kx12p + mao(——xp — —x1) = —bx3,
m m

e Energy is positive = x, must eventually go to zero
« If x, goes to zero, can show that x, must also approach zero (Lasalle, W3)
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Modeling from Experiments

Example: spring mass system
* Measure response of system to a step input

g(t) = 20 (1 _ & {cos(v%m b2 4y —

sin (Y 4km=b® t)D

1
\ Akm — b2

n.a

pit1)
0.6F /\ pl(i2) plinfty)
\—’/A‘“K
0.4 \ /
- >
0 1 |
0 35 40 45 50
tlme (sec)

p (meters)

on /4km 2 log(q(t1) — Fo/k)— glos) = Fo
' 2m log(q(to) — Fp/k) = %(tQ —t1) "
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Block Diagrams

Block diagrams separate components of a system into manageable units

" Example: cruise control
o~ ne ™ Wheet Body —1— « Each block corresponds

ngine

to a portion of the overall
dynamics
' * Write out the individual
Human [w— st /decel blocks as input/output

Interface (w—— Pesume wooel
Body 1 y

_ dv
» Dynamics: m—_ = F' — Fy.

» State: v - velocity of vehicle

Actuator = Controller

e Inputs: F, F, - force from wheels, external disturbances (wind, hills, etc)
e QOutput: v - velocity of vehicle

Dynamic versus state blocks
e Some blocks represent static relationships (no states); eg, gears and wheels
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Standard Block Diagram Notation

iy iy + U2
—b@—- L Nu i sal ': i :|
— . e — e

?

o

Summing junction (Gain block Saturation

w(t) dt rf o\
i 0 4 (! i i flu)
System[™™ = \\u/(" .

[ntegrator [nput /output system Nonlinear map

Remarks
e SIMULINK uses slightly different symbols in a few places (eg, gain block)
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Example: Hovering Mesoscale Robot (HOMER)

Project Goals

hind wing
gyroscopes » Characterize and reverse engineer the

sensory-motor control system of the fly

» Apply salient features to the design of micro
air vehicles and other autonomous systems

» Experimentation and modeling key comp-
onents of flight control system: (1) take-off,
(2) robustness to wing gust, (3) chemical
tracking, and (4) sensory fusion (visual, gyro)

micro
cameras

control
muscles

bio-inspired
flexible
exoskeleton

power
muscles

Computation Power
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Vision as a Compensatory Mechanism for Disturbance
Rejection in Upwind Flight

Michael Reiser Sean Humbert Drag
Domitilla Del Vecchio Mary Dunlop Aerodynamics

Michael Dickinson Richard Murray

Wing Body

Aerodynamics - Dynamics

Vision

System

. Project results

«* * Interconnected simplified models that provide
. bio-realistic behavior for upwind flight

©0000000© ©

?
]

e Insights
7, .
N * Low level (fast!) vision and sensory motor
2 S processing capable of generated complex

I meter ¢ %a behaviors that achieve desired response

P
P

CDS 110, 4 Oct 06 R. Murray/H. Mabuchi, Caltech 13



Vision-Based Navigation Using Wide-Field Integration
Sean Humbert (U. Maryland)

« Approach

* Understand & characterize wide field
integration processing in Drosophila

* Near 360° optical flow processing
* Very fast coupling to flight actuation

; Q
u Plant L1 Wide-Field [
\gd Dynamics receptors Integration

+ EMDs

— n

Flight Stabilization and Obstacle Avoidance
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Engineering Applications in Vision-Based Navigation

Optic Flow
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Preview: Linear Control Systems and Convolution

X = Ax + Bu , _
—  y(t) = Ce”"x(0) + particular

y=Cx+ Du

Homogeneous via matrix exponential

Impulse response, h(t) = ceAlB
e Response to input “impulse” |
e Equivalent to “Green’s function” AN

Linearity = compose response to arbitrary u(f) using convolution

* Decompose input into “sum” of
shifted impulse functions

 Compute impulse response for each —>
e “Sum” impulse response to find y(f) ?

Complete solution: use integral instead of “sum”

* linear with respect to initial

t
y(t) = Ce™x(0) + f Ce""™™ Bu(t)dt + Du(t) condition and input
0 » 2X input = 2X output when
x(0)=0
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