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CDS 110: Lecture 2-2

 Modeling Using Differential Equations

Richard M. Murray and Hideo Mabuchi

4 October 2006

Goals:

• Provide a more detailed description of the use of ODEs for modeling

• Provide examples of the type of analysis that can be done using ODEs

Reading:

• Åström and Murray, Analysis and Design of Feedback Systems, Ch 2

• Advanced: Lewis, A Mathematical Approach to Classical Control, Ch 1
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Review: Second Order Differential Equations (Ma 1)

Damped oscillator dynamics

Homogeneous solution: f(t) = 0

• Guess form of the solution:

• Substitute into ODE and solve for the constants

• Simplify the solution by pulling out common terms

• Note: this solution holds when ! < 1

Coefficents of sin/cos must be zero
Use to solve for ", #Solve for A & B
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Second Order Differential Equations, ctd

Particular response: zero initial conditions

•

• Response to constant (step) input, f(t) = F

• Response to sinusoidal input, f(t) = A sin # t

• Form of the solution: sinusoid at same frequency, with shift in mag & phase

• Solving by hand is a mess; we will learn much better ways later

Complete solution: homogeneous + particular
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More General Forms of Differential Equations

State space form

Higher order, linear ODE

• x = state; nth order

• u = input; will usually set p = 1

• y = output; will usually set q = 1

General form Linear system
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Analytical Solutions of ODEs

Scalar systems

Decoupled systems

• Effect of input modeled by “convolution integral”

General solutions

• Linear systems: use Jordan canonical form and “matrix exponential” (more later)

• Nonlinear system: generally no closed form solutions, expect in special cases
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Numerical Solution of ODEs

Numerical simulation: Euler integration

• If $ chosen sufficently small, get good approximation analytical solution

• Solution is in the form of a difference equation (with step size $)

• More accurate algorithms: build better approximation to the derivative

• Faster algorithms: choose the step size based on how quickly solution is changing

• Example: Runga Kutta (ode45)
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Analyzing Models using ODEs: Frequency Response

How does linear system respond to

sinusoidal inputs?

General properties

• Linear systems: sinusoidal input at
frequency # ! sinusoidal output at
frequency #

• Gain  =

• Phase: shift in input sinusoid versus
output sinusoid

magnitude phase
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Analyzing Models Using ODEs: Stability

ODEs can also be used to prove stability of a systems

• Try to reason about the long term behavior of all solutions

• Stability " all solutions return to equilibrium point (more precise defn later)

Example: spring mass system

• Can we show that all solutions return
to rest w/out explicitly solving ODE?

• Idea: look at how energy evolves in time

• Start by writing equations in state space form

• Compute energy and its derivative

• Energy is positive ! x2 must eventually go to zero

• If x2 goes to zero, can show that x1 must also approach zero (Lasalle, W3)
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Modeling from Experiments

Example: spring mass system

• Measure response of system to a step input
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Block Diagrams

Block diagrams separate components of a system into manageable units

Body

• Dynamics:

• State: v - velocity of vehicle

• Inputs: F, Fd - force from wheels, external disturbances (wind, hills, etc)

• Output: v - velocity of vehicle

Dynamic versus state blocks

• Some blocks represent static relationships (no states); eg, gears and wheels

Example: cruise control

• Each block corresponds
to a portion of the overall
dynamics

• Write out the individual
blocks as input/output
systems
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Standard Block Diagram Notation

Remarks

• SIMULINK uses slightly different symbols in a few places (eg, gain block)
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hind wing
gyroscopes

control
muscles

micro
cameras

Computation Power

power
muscles

bio-inspired
flexible

exoskeleton

Example: Hovering Mesoscale Robot (HOMER)

Project Goals

• Characterize and reverse engineer the
sensory-motor control system of the fly

• Apply salient features to the design of  micro
air vehicles and other autonomous systems

• Experimentation and modeling key comp-
onents of flight control system: (1) take-off,
(2) robustness to wing gust, (3) chemical
tracking, and (4) sensory fusion (visual, gyro)

Courtesy Michael Dickinson
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Vision as a Compensatory Mechanism for Disturbance

Rejection in Upwind Flight

Project results

• Interconnected simplified models that provide
bio-realistic behavior for upwind flight

Insights

• Low level (fast!) vision and sensory motor
processing capable of generated complex
behaviors that achieve desired response

Michael Reiser    Sean Humbert
Domitilla Del Vecchio    Mary Dunlop
Michael Dickinson    Richard Murray

1 meter
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• Approach

• Understand & characterize wide field

integration processing in Drosophila

• Near 360° optical flow processing

• Very fast coupling to flight actuation

Vision-Based Navigation Using Wide-Field Integration
Sean Humbert (U. Maryland)

Flight Stabilization and Obstacle Avoidance
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Engineering Applications in Vision-Based Navigation
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Preview: Linear Control Systems and Convolution

Impulse response, h(t) = CeAtB

• Response to input “impulse”

• Equivalent to “Green’s function”

Linearity ! compose response to arbitrary u(t) using convolution

• Decompose input into “sum” of
shifted impulse functions

• Compute impulse response for each

• “Sum” impulse response to find y(t)

Complete solution: use integral instead of “sum”

x Ax Bu

y Cx Du

= +

= +

&

( ) (0) ???At
y t Ce x= +

Homogeneous via matrix exponential

( )

0

( ) (0) ( ) ( )

t

At A ty t Ce x Ce Bu d Du t!

!

! !"

=

= + +#
• linear with respect to initial

condition and input

• 2X input ! 2X output when

x(0) = 0

particular


