

CDS 101/110a: Lecture 8-2 Limits on Performance

Richard M. Murray 19 November 2008

Goals:

- Describe limits of performance on feedback systems
- Introduce Bode's integral formula and the "waterbed" effect
- Show some of the limitations of feedback due to RHP poles and zeros

Reading:

- Åström and Murray, Feedback Systems, Ch 11
- Advanced: Lewis, Chapters ??

Algebraic Constraints on Performance

Sensitivity function

Complementary sensitivity function

Goal: keep S & T small

- S small \Rightarrow low tracking error
- T small ⇒ good noise rejection (and robustness [CDS 110b])

Problem: S + T = 1

- Can't make *both* S & T small at the same frequency
- Solution: keep S small at low frequency and T small at high frequency
- Loop gain interpretation: keep L large at low frequency, and small at high frequency

 Transition between large gain and small gain complicated by stability (phase margin)

Bode's Integral Formula and the Waterbed Effect

Bode's integral formula for S = 1/(1+PC) = 1/(1+L):

- Let p_k be the *unstable* poles of L(s) and assume relative degree of $L(s) \ge 2$
- **Theorem**: the area under the sensitivity function is a conserved quantity:

$$\int_0^\infty \log_e |S(j\omega)| d\omega = \int_0^\infty \log_e \frac{1}{|1 + L(j\omega)|} d\omega = \pi \sum \operatorname{Re} p_k$$

Waterbed effect:

- Making sensitivity smaller over some frequency range requires *increase* in sensitivity someplace else
- Presence of RHP poles makes this effect worse
- Actuator bandwidth further limits what you can do
- Note: area formula is linear in ω ; Bode plots are logarithmic

CDS 101/110, 3 Nov 08

Example: Magnetic Levitation

System description

- Ball levitated by electromagnet
- Inputs: current thru electromagnet
- Outputs: position of ball (from IR sensor)
- States: z, \dot{z}
- Dynamics: F = ma, F = magnetic force generated by wire coil
- See MATLAB handout for details

Controller circuit

- Active R/C filter network
- Inputs: set point, disturbance, ball position
- States: currents and voltages
- Outputs: electromagnet current

CDS 101/110, 3 Nov 08

Equations of Motion

Process: actuation, sensing, dynamics

$$m\ddot{z} = mg - k_m (k_A u)^2 / z^2$$

$$v_{ir} = k_T z + v_0$$

- u = current to electromagnet
- v_{ir} = voltage from IR sensor

Linearization:

$$P(s) = \frac{-k}{s^2 - r^2}$$
 $k, r > 0$

• Poles at $s = \circ r \Rightarrow$ open loop unstable

5

Control Design

Need to create encirclement

- Loop shaping is not useful here
- Flip gain to bring Nyquist plot over -1 point
- Insert phase to create CCW encirclement

Can accomplish using a lead compensator

- Produce phase lead at crossover
- Generates loop in Nyquist plot

$$C(s) = -k\frac{s+a}{s+b}$$

Performance Limits

Nominal design gives low perf

- Not enough gain at low frequency
- Try to adjust overall gain to improve low frequency response
- Works well at moderate gain, but notice waterbed effect

Bode integral limits improvement

$$\int_{0}^{\infty} \log |S(j\omega)| d\omega = \pi r$$

 Must increase sensitivity at some point

Right Half Plane Zeros

Right half plane zeros produce "non-minimum phase" behavior

- Phase of frequency response has additional phase lag for given magnitude
- Can cause output to move opposite from input for a short period of time

Example: Lateral Control of the Ducted Fan

$$H_{xf_1}(s) = \frac{(s^2 - mgl)}{s^2(Js^2 + ds + mgl)}$$

• Poles: 0, 0, $-\sigma \pm j \omega_d$
• Zeros: $\pm \sqrt{mgl}$

Source of non-minimum phase behavior

- To move left, need to make $\theta > 0$
- To generate positive θ , need $f_1 > 0$
- Positive *f*₁ causes fan to move *right* initially
- Fan starts to move left after short time (as fan rotates)

Stability in the Presence of Zeros

Loop gain limitations

• Poles of closed loop = poles of 1 + L. Suppose $C = k n_c/d_c$, where k is the gain of the controller

$$1 + L = 1 + k \frac{n_c n_p}{d_c d_p} = \frac{d_c d_p + k n_c n_p}{d_c d_p}$$

- For large k, closed loop poles approach open loop zeros
- RHP zeros limit maximum gain \Rightarrow serious design constraint!

Root locus interpretation

- Plot location of eigenvalues as a function of the loop gain k
- Can show that closed loop poles go from open loop poles (k = 0) to open loop zeros ($k = \ln t$)

Additional performance limits due to RHP zeros

Another waterbed-like effect: look at maximum of H_{er} over frequency range:

$$M_{1} = \max_{\omega_{1} \le \omega \le \omega_{2}} |H_{er}(j\omega)| \qquad M_{2} = \max_{0 \le \omega \le \infty} |H_{er}(j\omega)|$$

Thm: Suppose that P has a RHP zero at z. Then there exist constants c_1 and c_2 (depending on ω_1, ω_2, z) such that $c_1 \log M_1 + c_2 \log M_2 \ge 0$

- M_1 typically << 1 \Rightarrow M_2 must be larger than 1 (since sum is positive)
- If we increase performance in active range (make M_1 and H_{er} smaller), we must lose performance (H_{er} increases) some place else
- Note that this affects peaks not integrals (different from RHP poles)

Summary: Limits of Performance

Many limits to performance

• Algebraic: S + T = 1

Magnitude (dB)

CDS 101/110, 3 Nov 08

- RHP poles: Bode integral formula
- RHP zeros: Waterbed effect on peak of S

Frequency (rad/sec)

Main message: try to avoid RHP poles and zeros whenever possible (eg, re-design)

$$\int_{0}^{\infty} \log_{e} |S(j\omega)| d\omega = \int_{0}^{\infty} \log_{e} \frac{1}{|1 + L(j\omega)|} d\omega = \pi \sum \operatorname{Re} p_{k}$$
Sensitivity Function
$$\int_{0}^{4} \int_{0}^{4} \int_{0}^{$$

Richard M. Murray, Caltech CDS

12