CDS 101/110a: Lecture 8-2
Limits on Performance

Richard M. Murray
19 November 2008

Goals:
» Describe limits of performance on feedback systems
* Introduce Bode’s integral formula and the “waterbed” effect
» Show some of the limitations of feedback due to RHP poles and zeros

Reading:
* Astrém and Murray, Feedback Systems, Ch 11
* Advanced: Lewis, Chapters ?7?




Algebraic Constraints on Performance
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+ yn sensitivity
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Goal: keep S & T small
e S small = low tracking error
e T small = good noise rejection (and ‘L(s)‘
robustness [CDS 110b]) & L(s) <1
Py
Problem: S + T =1 2
e Can’t make both S & T small at the same § L(s)>1
frequency
e Solution: keep S small at low frequency
and T small at high frequency
e | oop gain interpretation: keep L large at * Transition between large gain and small
low frequency, and small at high gain complicated by stability (phase

frequency margin)
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Bode's Integral Formula and the Waterbed Effect

Bode’s integral formula for S = 1/(1+PC) = 1/(1+L):
e Let p, be the unstable poles of L(s) and assume relative degree of L(s) = 2

e Theorem: the area under the sensitivity function is a conserved quantity:
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Waterbed effect:
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Area below 0 dB +
area above 0 dB = you can do

n S Re py = constant * Note: area formula is linear in w; Bode

10

» Making sensitivity smaller over some

frequency range requires increase in
sensitivity someplace else

* Presence of RHP poles makes this
effect worse

e Actuator bandwidth further limits what

. , plots are logarithmic
10

Richard M. Murray, Caltech CDS




Example: Magnetic Levitation

| System description
a— g e Ball levitated by electromagnet
Eleetro- SR e |nputs: current thru electromagnet
| magnet SN e Outputs: position of ball (from IR sensor)
. e States: z, 3

e Dynamics: F = ma, F = magnetic force
generated by wire caoill

e See MATLAB handout for details

receivier " transmitter

Controller circuit
e Active R/C filter network

* Inputs: set point, disturbance, ball
position

» States: currents and voltages

* Outputs: electromagnet current

Magnetic Levitation System 33-210 |

BEYS 250
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receivier " transmitter

Equations of Motion

I | Rl Process: actuation, sensing, dynamics
Elegt‘rom yap mz =mg — kpy (kau)®/z*
‘ maénet = Vir = k2 + o

® 1 = current to electromagnet
® v,. = voltage from IR sensor

Linearization:

P(S):m k‘,'f’>0

e Poles at s = or = open loop unstable

Nyquist Diagram

Bode Diagram
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Control Design

Need to create encirclement Can accomplish using a lead
® | oop shaping is not useful here compensator
e Flip gain to bring Nyquist plot over -1 * Produce phase lead at crossover
point » Generates loop in Nyquist plot
® |nsert phase to create CCW
encirclement s+ a
C(s) = —k
s+ b
50 Bode Dilagram | Nyquist Diagram
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Nominal design gives low perf
e Not enough gain at low frequency

® Try to adjust overall gain to improve
low frequency response

e \Works well at moderate gain, but
notice waterbed effect

10

Performance Limits
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Bode integral limits improvement
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* Must increase sensitivity at some
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Right Half Plane Zeros

Right half plane zeros produce “non-minimum phase” behavior
e Phase of frequency response has additional phase lag for given magnitude
e Can cause output to move opposite from input for a short period of time

o
~

Example: s+a VS s—a
P HI(S)= 249 2 H2(S)= L) 2
s°+2Cw s+, s*+2Cw, s+,
Bode Diagrams Step Response
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Example: Lateral Control of the Ducted Fan

Source of non-minimum phase
behavior

e To move left, need to make 6 >0

e To generate positive 6, need f,> 0

e Positive f; causes fan to move right
initially

e Fan starts to move left after short time
(as fan rotates)

Amplitude
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. Poles: 0,0, -0+ wy

e Zeros: *+/ mgl
A

Step Response
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Stability in the Presence of Zeros

Loop gain limitations
e Poles of closed loop = poles of 1 + L. Suppose C = k n./d., where k is
the gain of the controller
nenp  dedp + knenyp
dedp dedyp
e For large k, closed loop poles approach open loop zeros
e RHP zeros limit maximum gain = serious design constraint!

14+L =14k

Root locus interpretation » 7
_ _ 6 Original pole
e Plot location of eigenvalues as a location (k = 0)

function of the loop gain k
e Can show that closed loop poles go

.&% X
from open loop poles (k = 0) to open §’°<— 2’\“
loop zeros (k = \infty) 2 Closed loop
-4r Zeros
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L 1 1 L L L \l 1
8 6 5 4 3 2 - 0o 1 2 3

Real Axis
CDS 101/110, 3 Nov 08 Richard M. Murray, Caltech CDS 10




Additional performance limits due to RHP zeros@

Another waterbed-like effect: look at maximum of H,. over frequency range:

M, = max |H,(jw)] M, = max | H,,(jo)]|

W =W=W, O=w=o

Thm: Suppose that P has a RHP zero at z. Then there exist constants ¢, and ¢,
(depending on w4, w,, Z) such that c logM, +c,logM, =0
e M, typically << 1 = M, must be larger than 1 (since sum is positive)

e |f we increase performance in active range (make M, and H,, smaller), we must lose
performance (H,, increases) some place else

e Note that this affects peaks not integrals (different from RHP poles)

peak
increases

, 1 ‘ —
H(s) = — & ~mgh) 1+ PC

s*(Js* +ds + mgl)

) . Poles: 0,0, -0 +j o, '
A Reduced sensitivity
\ « Zeros: *+mgl

Magnitude (dB)

= better performance
» up to higher frequency

A
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Magnitude (dB)

Summary: Limits of Performance

Many limits to performance Main message: try to avoid
e Algebraic: S+ T =1 RHP poles and zeros when-

® RHP poles: Bode integral formula ever possible (eg, re-design)

e RHP zeros: Waterbed effect on peak of S

w:ﬂ'ZRepk
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Sensitivity Function
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