CDS 101/110a: Lecture 8-1
Frequency Domain Design

Richard M. Murray
17 November 2008

Goals:

» Describe canonical control design problem and standard performance
measures

* Show how to use “loop shaping” to achieve a performance specification
* Work through a detailed example of a control design problem

Reading:
e Astrdm and Murray, Feedback Systems, Ch 11
* Advanced: Lewis, Chapter 12
* CDS 210: DFT, Chapters 4 and 6
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Frequency Domain Performance Specifications

Specify bounds on the loop transfer function to guarantee desired performance
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L(s) = P(s)C(s)

Her= 1 A L
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e Steady state error:
H,(0)=1/(1+L(0))=1/L(0)
=> zero frequency (“DC”) gain

e Bandwidth: assuming ~90°
phase margin
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* Tracking: X% error up to
frequency w; = determines gain
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Relative stability: how stable is system
to disturbances at certain frequencies?

e System can be stable but still have
bad response at certain frequencies

e Typically occurs if system has low phase
margin = get resonant peak in closed

loop (M,) + poor step response

e Solution: specify minimum phase
margin. Typically 45° or more 100}
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Overview of Loop Shaping

Performance specification

() D> Steady state error

[] Tracking error

\ L(s) — Bandwidth

& ] Relative stability

Approach: “shape” loop
transfer function using C(s)

v

® P(s) + specifications given

C(s
m ® [(s)=P(s) C(s)
- Use (C(s) to choose

' L(s) desired shape for L(s)
\ y .
P(s) e |mportant: can’t set gain and

phase independently

Frequency (rad/sec)
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Canonical Control Design Problem

Controller
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Noise and disturbances
* d = process disturbances

* N = sSensor noise
» Keep track of transfer
functions between all

possible inputs and outputs

Design represents a tradeoff

7 between the quantities

» Keep L=PC large for good
performance (H,,. << 1)

i » Keep L=PC small for good

noise rejection (H,,, << 1)

F = 1: Four unique transfer functions define performance (“Gang of Four”)
e Stability is always determined by 1/(1+PC) assuming stable process & controller
e Numerator determined by forward path between input and output

More generally: 6 primary transfer functions; simultaneous design of each
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Two Degree of Freedom Design

' d k Sensitivity Function

' 1 Sensitivity
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Typical design procedure o
* Design C to provide good load/noise response CS = 1+ PC Noise sensitivity
» Design F to provide good response to reference
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Algebraic Constraints on Performance

d o
oo 1 . g Sensitivity
r e u y er — — function
C(s) ~é>— P(s) 1+ PC
. PC T Complementary
n yn = =. sensitivity
1+ PC function
Goal: keep S & T small
e S small = low tracking error
e T small = good noise rejection (and ‘L(s)‘
robustness [CDS 110b]) & L(s) <1
Py
Problem: S+ T =1 2
e Can’t make both S & T small at the same § L(s)>1
frequency
e Solution: keep S small at low frequency
and T small at high frequency
e | oop gain interpretation: keep L large at * Transition between large gain and small
low frequency, and small at high gain complicated by stability (phase

frequency margin)
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Process Inversion

JoLGw)]
Simple trick: invert out process \
: : Loak digturbamce
e Write all performance specs in terms of the akc nuahion,
desired loop transfer function
Robustness

e Choose L(s) that satisfies specfiications
e Choose controller by inverting P(s)

C(s) = L(s)/P(s) | s
Pros »
® \ery easy design process High fresuency
® [(s) = 1/s often works very well ™A surewen ] neie

e Can be used as a first cut, with additional shaping to tune design

Cons
e High order controllers (at least same order as the process you are controlling)
e Requires “perfect” model of your process (since you are inverting it)
® Does not work if you have right half plane poles or zeros (get internal instability)

1 PC P C
T: P = —
1+ PC 1+ PC 5 14+ PC €5 1+ PC
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Lead compensation

Use to increase phase in frequency band

° ]IcEffect: lifts phase by increasing gain at high . e gsta u P(s) . ¥
requency s+bh

e \ery useful controller; increases PM

e Bode: add phase between zero and pole

e Nyquist: increase phase margin a<b K>0

100 T T 60

40}

20

20}

40}

-60

1
Il 1 1 \
= w =b -20 -10 0 10 20 30 40 50
W, =a »

CDS 101/110, 17 Nov 08 Richard M. Murray, Caltech CDS




Example: Control of Vectored Thrust Aircraft

System description
e Vector thrust engine
attached to wing

® |nputs: fan thrust,
thrust angle
(vectored)

e Qutputs: position and
orientation

e States: x, y,0 +
derivatives

e Dynamics: flight
aerodynamics

Control approach
» Design “inner loop” control law to regulate pitch (6 ) using thrust vectoring

» Second “outer loop” controller regulates the position and altitude by commanding
the pitch and thrust

» Basically the same approach as aircraft control laws
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Performance Specification and Design Approach

> Performance Specification
» < 1% steady state error
o Zero frequency gain > 100
\ e < 10% tracking error up to 10 rad/sec
o Gain > 10 from 0-10 rad/sec
» > 45° phase margin
o Gives good relative stability
S| o Provides robustness to uncertainty

Phase (deg); Magnitude (dB)

Frequency (rad/sec)

r

Design approach P(s) =
® Open loop plant has poor phase margin
e Add phase lead in 5-50 rad/sec range

Js* +ds + mgl

a=25
® Increase the gain to achieve steady state S+a
and tracking performance specs Cls)=K <+ b b =300
e Avoid integrator to minimize phase K =15x300
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Select parameters to satisfy specs

e Place phase lead in desired crossover
region (given by desired BW)

e Phase lead peaks at 10X of zero location

e Place pole sufficiently far out to insure that
phase does not decrease too soon

e Set gain as needed for tracking + BW
e \erify controller using Nyquist plot, etc

Control Design and Analysis
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Control Verification: Gang of 4
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e Check each transfer function to look for peaks, large magnitude, etc
e Example: Noise sensitivity function (CS) has very high gain; step response verifies

poor step response

e Implication: controller amplifies noise at high frequency = will generate /ots of

motion of control actuators (flaps)

e Fix: roll off the loop transfer function faster (high frequency pole)
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Summary: Loop Shaping

Loop Shaping for Stability & Performance Main ideas

e Steady state error, bandwidth, tracking * Performance specs give bounds on
loop transfer function

- - ' C(S) * Use controller to shape response
—H—A/_/—’— » Gain/phase relationships constrain
— ) design approach
\ e Standard compensators:

0 proportional, lead, Pl
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