
CDS 101/110a: Lecture 8-1
 Frequency Domain Design

Richard M. Murray
17 November 2008

Goals:
 Describe canonical control design problem and standard performance 

measures
 Show how to use “loop shaping” to achieve a performance specification
 Work through a detailed example of a control design problem

Reading: 
 Åström and Murray, Feedback Systems, Ch 11
 Advanced: Lewis, Chapter 12
 CDS 210: DFT, Chapters 4 and 6
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Frequency Domain Performance Specifications
Specify bounds on the loop transfer function to guarantee desired performance

Tracking

BW

SS

 Steady state error: 

 ⇒ zero frequency (“DC”) gain

 Bandwidth: assuming ~90˚ 
phase margin

 ⇒ sets crossover freq

 Tracking: X% error up to 
frequency ωt ⇒ determines gain 
bound (1 + PC  > 100/X)

PC > 100/X
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Relative Stability
Relative stability: how stable is system 
to disturbances at certain frequencies?
• System can be stable but still have 

bad response at certain frequencies
• Typically occurs if system has low phase 

margin ⇒ get resonant peak in closed 
loop (Mr) + poor step response

• Solution: specify minimum phase 
margin.  Typically 45˚ or more Ph
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Overview of Loop Shaping
Performance specification

 Steady state error

 Tracking error

 Bandwidth

 Relative stability

Approach: “shape” loop 
transfer function using C(s)

• P(s) + specifications given

• L(s) = P(s) C(s)

- Use C(s) to choose 
desired shape for L(s)

• Important: can’t set gain and 
phase independently
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Canonical Control Design Problem

F = 1: Four unique transfer functions define performance (“Gang of Four”)
• Stability is always determined by 1/(1+PC) assuming stable process & controller
• Numerator determined by forward path between input and output

More generally: 6 primary transfer functions; simultaneous design of each

Noise and disturbances
 d = process disturbances
 n = sensor noise
 Keep track of transfer 

functions between all 
possible inputs and outputs

Design represents a tradeoff 
between the quantities
 Keep L=PC large for good 

performance (Her << 1)
 Keep L=PC small for good 

noise rejection (Hyn << 1)
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Two Degree of Freedom Design
Sensitivity Function

•

6

S =
1

1 + PC

T =
PC

1 + PC

PS =
P

1 + PC

CS =
C

1 + PC

Sensitivity
function

Complementary 
sensitivity

Load
sensitivity

Noise sensitivity
Typical design procedure
 Design C to provide good load/noise response
 Design F to provide good response to reference
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Algebraic Constraints on Performance

Goal: keep S & T small

• S small ⇒ low tracking error

• T small ⇒ good noise rejection (and 
robustness [CDS 110b])

Problem: S + T = 1
• Can’t make both S & T small at the same 

frequency

• Solution: keep S small at low frequency 
and T small at high frequency

• Loop gain interpretation: keep L large at 
low frequency, and small at high 
frequency

 Transition between large gain and small 
gain complicated by stability (phase 
margin)
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Process Inversion
Simple trick: invert out process
• Write all performance specs in terms of the

desired loop transfer function
• Choose L(s) that satisfies specfiications
• Choose controller by inverting P(s)

Pros
• Very easy design process
• L(s) = 1/s often works very well
• Can be used as a first cut, with additional shaping to tune design

Cons
• High order controllers (at least same order as the process you are controlling)
• Requires “perfect” model of your process (since you are inverting it)
• Does not work if you have right half plane poles or zeros (get internal instability)

8

C(s) = L(s)/P (s)

S =
1

1 + PC
T =

PC

1 + PC
PS =

P
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CS =

C
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• Effect: lifts phase by increasing gain at high 

frequency
• Very useful controller; increases PM
• Bode: add phase between zero and pole
• Nyquist: increase phase margin
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Example: Control of Vectored Thrust Aircraft
System description
• Vector thrust engine 

attached to wing
• Inputs: fan thrust, 

thrust angle 
(vectored)

• Outputs: position and 
orientation

• States: x, y, θ  + 
derivatives

• Dynamics: flight 
aerodynamics

Control approach
 Design “inner loop” control law to regulate pitch (θ ) using thrust vectoring
 Second “outer loop” controller regulates the position and altitude by commanding 

the pitch and thrust
 Basically the same approach as aircraft control laws
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Performance Specification and Design Approach

Design approach
• Open loop plant has poor phase margin
• Add phase lead in 5-50 rad/sec range
• Increase the gain to achieve steady state 

and tracking performance specs
• Avoid integrator to minimize phase

Performance Specification
 ≤ 1% steady state error

 Zero frequency gain > 100
 ≤ 10% tracking error up to 10 rad/sec

 Gain > 10 from 0-10 rad/sec
 ≥ 45˚ phase margin

 Gives good relative stability
 Provides robustness to uncertainty
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Control Design and Analysis
Select parameters to satisfy specs
• Place phase lead in desired crossover 

region (given by desired BW)

• Phase lead peaks at 10X of zero location

• Place pole sufficiently far out to insure that 
phase does not decrease too soon

• Set gain as needed for tracking + BW

• Verify controller using Nyquist plot, etc
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Control Verification: Gang of 4

Remarks
• Check each transfer function to look for peaks, large magnitude, etc
• Example: Noise sensitivity function (CS) has very high gain; step response verifies 

poor step response
• Implication: controller amplifies noise at high frequency ⇒ will generate lots of 

motion of control actuators (flaps)
• Fix: roll off the loop transfer function faster (high frequency pole)

13
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Summary: Loop Shaping
Loop Shaping for Stability & Performance
• Steady state error, bandwidth, tracking

Main ideas
 Performance specs give bounds on 

loop transfer function
 Use controller to shape response
 Gain/phase relationships constrain 

design approach
 Standard compensators: 

proportional, lead, PI
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