

CDS 101/110a: Lecture 1.1 Introduction to Feedback & Control

Richard M. Murray 29 September 2008

Goals:

- Give an overview of CDS 101/110/210: course structure & administration
- Define feedback systems and learn how to recognize main features
- Describe what control systems do and the primary principles of feedback

Reading:

• Åström and Murray, *Feedback Systems: An Introduction for Scientists and Engineers*, Chapter 1 [30 min]

Course Administration

navigation

- Main Page
- Events
- Projects
- Courses

courses

- CDS 90abc
- = CDS 101/110a
- CDS 110b

search

toolbox

- What links here
- Related changes
- Upload file
- Special pages
- Printable version

article discussion ed	it history				
CDS 101/110a, Fall 2008				Course syllabus	
CDS 101/110a Schedule This is the homepage for CDS 101 (Analysis and (Introduction to Control Theory) for Fall 2008. Instructor = Richard Murray, murray@cds.caltech.edu = Doug MacMynowski, macmardg@cds.caltech.edu = Lectures: MWF, 2-3 pm, 74 JRG = Office hours: Fridays, 3-4 pm (by appt) = Prior years: FA03 @, FA04 @, FA06, FA07		d Design o Teact = Ju = Lu = Of 11 Cours = TE	Recit of Feed ing • ia Bre s Sold ice • 4 STL ice • i 4 STL ice • i 1 0 •	 CDS 101 vs 110a vs 210 Lectures, recitations Office hours Grading Homework policy (+ grace period) Course text and references Class homepage Software 	
 21 Aug 08: created cours Course Syllabus 	e homepage		•	Course outline	
CDS 101/110 provides an introduction to feedback and co Basic principles of feedback and its use as a tool for alter throughout the course will include input/output response, r versus global behavior. CDS 101 is a 6 unit (2-0-4) class intended for advanced st and tools of feedback control, but not the analytical techn class (3-0-6) that provides a traditional first course in cont mathematical background, including working knowledge of transforms, residue theory) is helpful but not required.					

CDS 101/110, 29 Sep 08

Richard M. Murray, Caltech CDS

& Create an account or log in

CDS 101/110 Instructional Staff

Lecturer: Richard Murray (CDS)

- Professor of Control & Dynamical Systems
- Research in networked control systems, autonomous systems, biological systems

Lecturer Doug MacMynowski (CDS)

- Senior Research Associated in CDS
- Research in climate modeling, fluid dynamics, and telescope control

Head TA: Julia Braman

ME, fault-toleran control and verification

TAs

- Shuo Han (EE) bio-inspired flight control
- Gentian Buzi (CDS) biological dynamics
- Max Merfeld (ME) undergraduate
- Luis Soto (CDS) ecosystems

Mud Cards

Mud cards

- 3 x 5 cards passed out at beginning of each lecture
- Describe "muddiest" part of the lecture (or other questions)
- Turn in cards at end of class
- Responses posted on FAQ list by 8 pm on the day of the lecture (make sure to look!)

Class FAQ list

- Responses to mud cards and other frequently asked questions in the class
- Previous FAQs available on AM wiki

AMwiki

• Additional exercises, FAQs, examples

with complex variables (Laplace transforms, residue theory) is helpful but not required.

What is Feedback?

Merriam Webster:

the return to the input of a part of the output of a machine, system, or process (as for producing changes in an electronic circuit that improve performance or in an automatic control device that provide self-corrective action) [1920]

Feedback = mutual interconnection of two (or more) systems

- System 1 affects system 2
- System 2 affects system 1
- Cause and effect is tricky; systems are mutually dependent

Feedback is ubiquitous in natural and engineered systems

Example #1: Flyball Governor

"Flyball" Governor (1788)

- Regulate speed of steam engine
- Reduce effects of variations in load (disturbance rejection)
- Major advance of industrial revolution

CDS 101/110, 29 Sep 08

Richard M. Murray, Caltech CDS

Other Examples of Feedback

Biological Systems

- Physiological regulation (homeostasis)
- Bio-molecular regulatory networks

Environmental Systems

- Microbial ecosystems
- Global carbon cycle

Financial Systems

- Markets and exchanges
- Supply and service chains

CDS 101/110, 29 Sep 08

Goals

- Stability: system maintains desired operating point (hold steady speed)
- Performance: system responds rapidly to changes (accelerate to 6 m/sec)
- Robustness: system tolerates perturbations in dynamics (mass, drag, etc)

Two Main Principles of Feedback

Richard M. Murray, Caltech CDS

Robustness to Uncertainty through Feedback

- Feedback allows high performance in the presence of uncertainty
- Example: repeatable performance of amplifiers with 5X component variation
- Key idea: accurate *sensing* to compare actual to desired, correction through *computation* and *actuation*

Design of Dynamics through Feedback

- Feedback allows the dynamics (behavior) of a system to be modified
- Example: stability augmentation for highly agile, unstable aircraft
- Key idea: interconnection gives *closed loop* that modifies natural behavior

CDS 101/110, 29 Sep 08

Example #2: Speed Control

$$m\dot{v} = -av + F_{eng} + F_{hill}$$

 $F_{eng} = k_p(v_{des} - v)$

time

Stability/performance

- Steady state velocity approaches desired velocity as *k* → ∞
- Smooth response; no overshoot or oscillations

Disturbance rejection

 Effect of disturbances (eg, hills) approaches zero as k → ∞

Robustness

 Results don't depend on the specific values of *a*, *m* or *k*_p, for *k*_p sufficiently large

Control Tools

Modeling

- Input/output representations for subsystems + interconnection rules
- System identification theory and algorithms
- Theory and algorithms for reduced order modeling + model reduction

Analysis

- Stability of feedback systems, including robustness "margins"
- Performance of input/output systems (disturbance rejection, robustness)

Synthesis

- Constructive tools for design of feedback systems
- Constructive tools for signal processing and estimation (Kalman filters)

MATLAB Toolboxes

- SIMULINK
- Control System
- Neural Network
- Data Acquisition
- Optimization
- Fuzzy Logic
- Robust Control
- Instrument Control
- Signal Processing
- LMI Control
- Statistics
- Model Predictive Control
- System Identification
- µ-Analysis and Synthesis
- Systems biology (SBML)

Summary: Introduction to Feedback and Control

Control =

Sensing + Computation + Actuation

Feedback Principles

- Robustness to Uncertainty
- Design of Dynamics

Many examples of feedback and control in natural & engineered systems:

