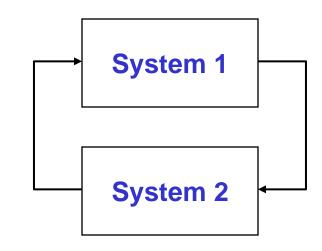


CDS 101: Lecture 1.1 Introduction to Feedback and Control

Richard M. Murray 27 September 2004

Goals:

- Give an overview of CDS 101/110; describe course structure, administration
- Define feedback systems and learn how to recognize main features
- Describe what control systems do and the primary principles of feedback

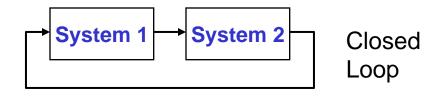

Reading (available on course web page):

 Åström and Murray, Analysis and Design of Feedback Systems, Ch 1 (available from course web page)

What is Feedback?

Miriam Webster:

the return to the input of a part of the output of a machine, system, or process (as for producing changes in an electronic circuit that improve performance or in an automatic control device that provide self-corrective action) [1920]

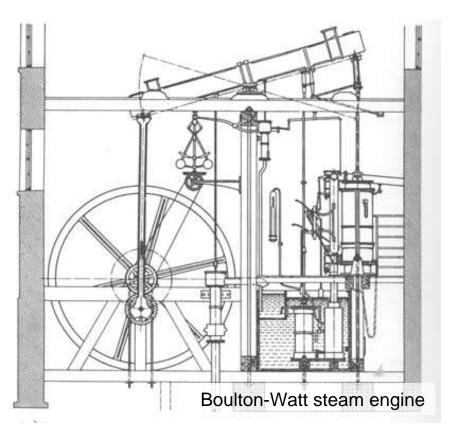


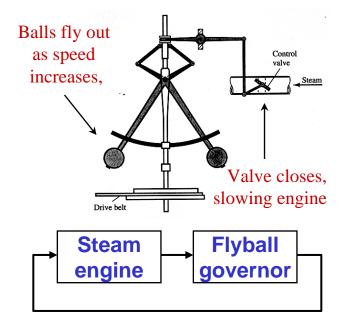
Feedback = mutual interconnection of two (or more) systems

- System 1 affects system 2
- System 2 affects system 1
- Cause and effect is tricky; systems are mutually dependent

Feedback is ubiquitous in natural and engineered systems

Terminology





Example #1: Flyball Governor

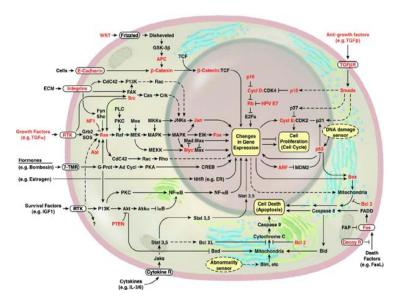
"Flyball" Governor (1788)

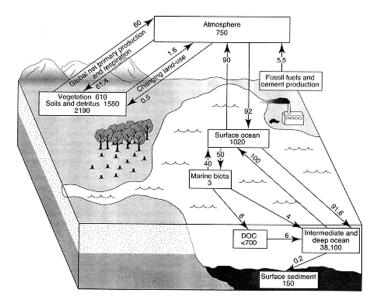
- Regulate speed of steam engine
- Reduce effects of variations in load (disturbance rejection)
- Major advance of industrial revolution

Other Examples of Feedback

Biological Systems

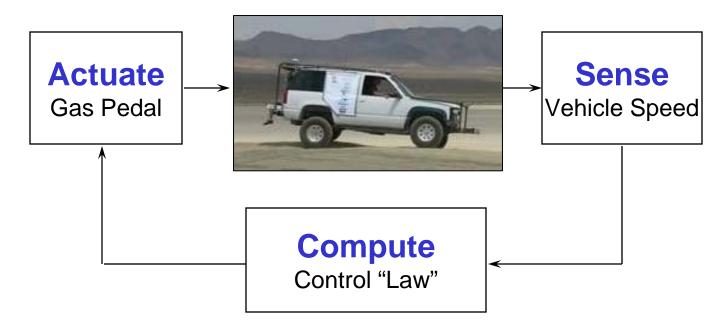
- Physiological regulation (homeostasis)
- Bio-molecular regulatory networks


Environmental Systems


- Microbial ecosystems
- Global carbon cycle

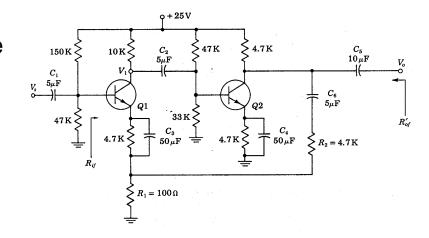
Financial Systems

- Markets and exchanges
- Supply and service chains



Control = Sensing + Computation + Actuation

In Feedback "Loop"


Goals

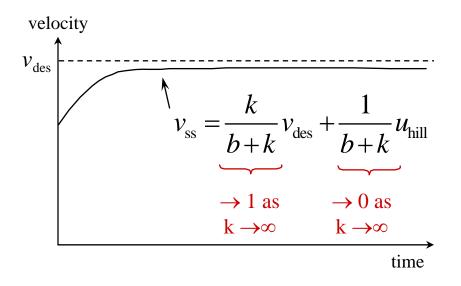
- Stability: system maintains desired operating point (hold steady speed)
- Performance: system responds rapidly to changes (accelerate to 6 m/sec)
- Robustness: system tolerates perturbations in dynamics (mass, drag, etc)

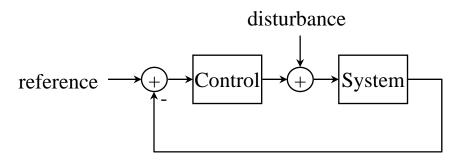
Two Main Principles of Feedback

Robustness to Uncertainty through Feedback

- Feedback allows high performance in the presence of uncertainty
- Example: repeatable performance of amplifiers with 5X component variation
- Key idea: accurate sensing to compare actual to desired, correction through computation and actuation

Design of Dynamics through Feedback


- Feedback allows the dynamics (behavior) of a system to be modified
- Example: stability augmentation for highly agile, unstable aircraft
- Key idea: interconnection gives closed loop that modifies natural behavior

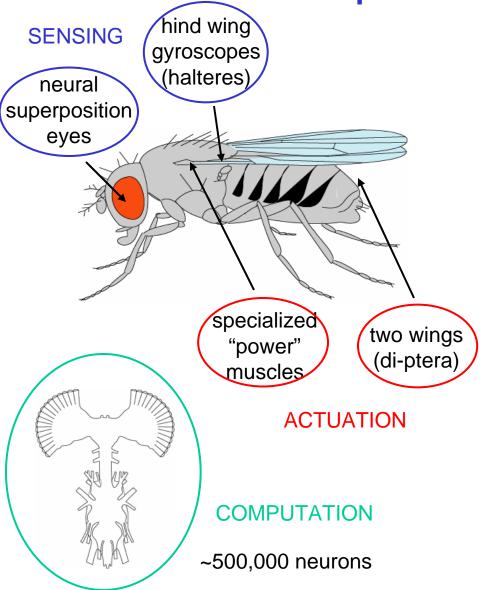


Example #2: Speed Control

$$m\dot{v} = -bv + f_{\text{engine}} + f_{\text{hill}}$$
$$f_{\text{engine}} = k(v_{\text{desired}} - v)$$

Stability/performance

- Steady state velocity approaches desired velocity as $k \to \infty$
- Smooth response; no overshoot or oscillations


Disturbance rejection


• Effect of disturbances (eg, hills) approaches zero as $k \to \infty$

Robustness

 Results don't depend on the specific values of b, m or k, for k sufficiently large

Example #3: Insect Flight

More information:

- M. D. Dickinson, Solving the mystery of insect flight, Scientific American, June 2001
- CDS 101 seminar : Friday, 10 Oct 03

Control Tools

Modeling

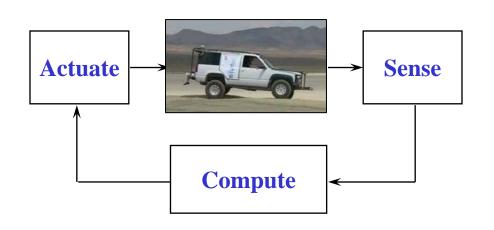
- Input/output representations for subsystems + interconnection rules
- System identification theory and algorithms
- Theory and algorithms for reduced order modeling + model reduction

Analysis

- Stability of feedback systems, including robustness "margins"
- Performance of input/output systems (disturbance rejection, robustness)

Synthesis

- Constructive tools for design of feedback systems
- Constructive tools for signal processing and estimation (Kalman filters)

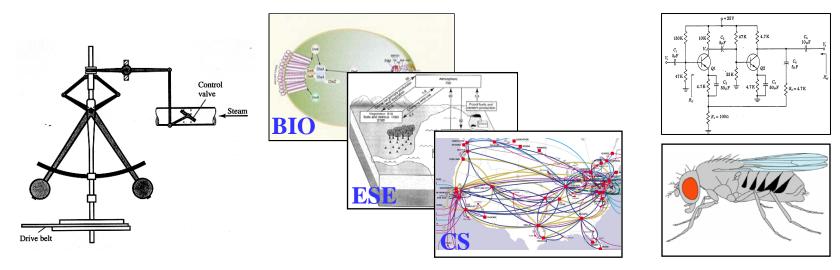

MATLAB Toolboxes

- SIMULINK
- Control System
- Neural Network
- Data Acquisition
- Optimization
- Fuzzy Logic
- Robust Control
- Instrument Control
- Signal Processing
- LMI Control
- Statistics
- Model Predictive Control
- System Identification
- µ-Analysis and Synthesis

Overview of the Course

Wk	Mon/Wed	Fri
1	Introduction to Feedback and Control	MATLAB tutorial, Steve W.
2	System Modeling	Linear algebra/ODE review, Steve W.
3	Stability and Performance	Control of cavity oscillations, T. Colonius
4	Linear Systems	Internet Congestion Control, S. Low
5	Controllability and Observability Midterm exam	Review for midterm, Steve W.
6	Transfer Functions	Piloted flight, D. McRuer (tentative)
7	Loop Analysis of Feedback Systems	Stability in Electronic Circuits, A. Hajimiri
8	Frequency Domain Design	Molecular Feedback Mechanisms, A. Asthagiri
9	Limits on Performance	Thanksgiving holiday
10	Uncertainty Analysis and Robustness Final exam	Review for final, TBD

Summary: Introduction to Feedback and Control


Control =

Sensing + Computation + Actuation

Feedback Principles

- Robustness to Uncertainty
- Design of Dynamics

Many examples of feedback and control in natural & engineered systems:

