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Preface

These notes serve as a supplement to Feedback Systems by Astrém and Murray
and expand on some of the topics introduced there. They are motivated by the
increasing role of online optimization in feedback systems. This is a change from
the traditional use of optimization in control theory for offline design of control
laws and state estimators. Fueled by Moore’s law and improvements in real-time
algorithms, it is now possible to perform estimation and control design algorithms
online, allowing the system to better account for nonlinearities and to adapt to
changes in the underlying dynamics of the controlled process. This changes the way
that we think about estimation and control since it allows much greater flexibility
in the design process and more modularity and flexibility in the overall system.

Our goal in this supplement is to introduce the keys formalisms and tools re-
quired to design optimization-based controllers. Key topics include real-time tra-
jectory generation using differential flatness, the maximum principle, dynamic pro-
gramming, receding horizon optimal control, stochastic processes, Kalman filtering,
moving horizon estimation and (distributed) sensor fusion. While these topics might
normal consititute separate textbooks, in this set of notes we attempt to present
them in a compact way that allows them to be used in engineering design. We also
briefly survey additional advanced topics through the text, with pointers to further
information for interested readers.

This supplement as been used in a second quarter controls course at Caltech,
taken by a mixture of advanced undergraduates and beginning graduate students
with interest in a variety of application areas. The first half of the 10 week course
focuses on trajectory generation and optimal control, ending with receding horizon
control. In the second half of the course, we introduce stochastic processes and
derive the Kalman filter and its various extensions, including the information filter
and sensor fusion. The prerequisites for the course are based on the material covered
in Feedback Systems, including basic knowledge in Lyapunov stability theory and
observers. If needed, these topics can be inserted at the appropriate point in covering
the material in this supplement.

The notation and conventions in the book follow those used in the main text.
Because the notes may not be used for a standalone class, we have attempted
to write each as a standalone reference for advanced topics that are introduced
in Feedback Systems. To this end, each chapter starts with a short description of
the prerequisites for the chapter and citations to the relevant literature. Advanced
sections, marked by the “dangerous bend” symbol shown in the margin, contain
material that requires a slightly more technical background, of the sort that would
be expected of graduate students in engineering. Additional information is available
on the Feedback Systems web site:

®



http://www.cds.caltech.edu/~murray/amwiki/0BC


http://www.cds.caltech.edu/~murray/amwiki/OBC
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Chapter 1

Trajectory Generation and Tracking

This chapter expands on Section 7.5 of Feedback Systems by Astrom and Murray
(AMO08), which introduces the use of feedforward compensation in control system
design. We begin with a review of the two degree of freedom design approach and
then focus on the problem of generating feasible trajectories for a (nonlinear) control
system. We make use of the concept of differential flatness as a tool for generating
feasible trajectories.

Prerequisites. Readers should be familiar with modeling of input/output control
systems using differential equations, linearization of a system around an equilibrium
point and state space control of linear systems, including reachability and eigenvalue
assignment. Although this material supplements concepts introduced in the context
of output feedback and state estimation, no knowledge of observers is required.

1.1 Two Degree of Freedom Design

A large class of control problems consist of planning and following a trajectory
in the presence of noise and uncertainty. Examples include autonomous vehicles
maneuvering in city streets, mobile robots performing tasks on factor floors (or
other planets), manufacturing systems that regulate the flow of parts and materials
through a plant or factory, and supply chain management systems that balance
orders and inventories across an enterprise. All of these systems are highly nonlinear
and demand accurate performance.

To control such systems, we make use of the notion of two degree of freedom
controller design. This is a standard technique in linear control theory that sepa-
rates a controller into a feedforward compensator and a feedback compensator. The
feedforward compensator generates the nominal input required to track a given ref-
erence trajectory. The feedback compensator corrects for errors between the desired
and actual trajectories. This is shown schematically in Figure 1.1.

In a nonlinear setting, two degree of freedom controller design decouples the
trajectory generation and asymptotic tracking problems. Given a desired output
trajectory, we first construct a state space trajectory x4y and a nominal input wug
that satisfy the equations of motion. The error system can then be written as a time-
varying control system in terms of the error, e = x — 4. Under the assumption that
that tracking error remains small, we can linearize this time-varying system about
e = 0 and stabilize the e = 0 state. (Note: in AMO8 the notation ug was used for
the desired [feedforward] input. We use ug here to match the desired state z4.)

More formally, we assume that our process dynamics can be described by a
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Figure 1.1: Two degree of freedom controller design for a process P with uncer-
tainty A. The controller consists of a trajectory generator and feedback controller.
The trajectory generation subsystem computes a feedforward command ug along
with the desired state x4. The state feedback controller uses the measured (or es-
timated) state and desired state to compute a corrective input ug,. Uncertainty is
represented by the block A, representing unmodeled dynamics, as well as distur-
bances and noise.

nonlinear differential equation of the form

= f(z,u), reR" ueR™, (11)

:h(m,u), y €RP, '
where z is the system state, u is a vector of inputs and f is a smooth function
describing the dynamics of the process. The smooth function i describes the output
y that we wish to control. We are particularly interested in the class of control
problems in which we wish to track a time-varying reference trajectory r(t), called
the trajectory tracking problem. In particular, we wish to find a control law u =
a(z,r(+)) such that

lim (y(¢) — r(t)) = 0.

t—o0

We use the notation r(-) to indicate that the control law can depend not only on
the reference signal r(¢) but also derivatives of the reference signal.

A feasible trajectory for the system (1.1) is a pair (z4(t), uq(t)) that satisfies the
differential equation and generates the desired trajectory:

iq(t) = f(za(t),ua(t))  r(t) = h(za(t), ua(t)).

The problem of finding a feasible trajectory for a system is called the trajectory
generation problem, with x4 representing the desired state for the (nominal) system
and ug representing the desired input or the feedforward control. If we can find a
feasible trajectory for the system, we can search for controllers of the form u =
alx,xq,uq) that track the desired reference trajectory.

In many applications, it is possible to attach a cost function to trajectories that
describe how well they balance trajectory tracking with other factors, such as the
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magnitude of the inputs required. In such applications, it is natural to ask that we
find the optimal controller with respect to some cost function. We can again use the
two degree of freedom paradigm with an optimal control computation for generating
the feasible trajectory. This subject is examined in more detail in Chapter 2. In
addition, we can take the extra step of updating the generated trajectory based
on the current state of the system. This additional feedback path is denoted by a
dashed line in Figure 1.1 and allows the use of so-called receding horizon control
techniques: a (optimal) feasible trajectory is computed from the current position
to the desired position over a finite time 7" horizon, used for a short period of time
0 < T, and then recomputed based on the new system state. Receding horizon
control is described in more detail in Chapter 3.

A key advantage of optimization-based approaches is that they allow the po-
tential for customization of the controller based on changes in mission, condition
and environment. Because the controller is solving the optimization problem online,
updates can be made to the cost function, to change the desired operation of the
system; to the model, to reflect changes in parameter values or damage to sensors
and actuators; and to the constraints, to reflect new regions of the state space that
must be avoided due to external influences. Thus, many of the challenges of de-
signing controllers that are robust to a large set of possible uncertainties become
embedded in the online optimization.

1.2 Trajectory Tracking and Gain Scheduling

We begin by considering the problem of tracking a feasible trajectory. Assume
that a trajectory generator is able to generate a trajectory (z4,u4) that satisfies
the dynamics (1.1) and satisfies r(¢t) = h(xq(t),uq(t)). To design the controller,
we construct the error system. Let e = x — x4 and v = u — ug and compute the
dynamics for the error:

e=x—iq= f(x,u) — f(zq,uq)
= f(@ +Tq,v+ ud) - f(xd) = F(em,xd(t),ud(t)).

The function F' represents the dynamics of the error, with control input v and
external inputs z4 and ug. In general, this system is time-varying through the
desired state and input.

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around e = 0:

% ~ Af)e + B(tw,  A(t) = %F ,
¢ € | (wa(t) ua(t)

oF
(@ (t),ua(t)

Tt is often the case that A(t) and B(t) depend only on x4, in which case it is
convenient to write A(t) = A(xq) and B(t) = B(xg).

We start by reviewing the case where A(t) and B(t) are constant, in which case
our error dynamics become

é = Ae + Buw.



1-4 CHAPTER 1. TRAJECTORY GENERATION AND TRACKING

This occurs, for example, if the original nonlinear system is linear. We can then
search for a control system of the form

v=—Ke+k,r.

In the case where r is constant, we can apply the results of Chapter 6 of AMO08
and solve the problem by finding a gain matrix K that gives the desired closed
loop dynamics (e.g., by eigenvalue assignment) and choosing k,. to give the desired
output value at equilibrium. The equilibrium point is given by

r,=—(A—-BK) 'Bk,r — y.=-C(A—BK) 'Bk.r
and if we wish the output to be y = r it follows that
k, = —1/(C(A— BK)™'B).

It can be shown that this formulation is equivalent to a two degree of freedom design
where x4 and uy are chosen to give the desired reference output (Exercise 1.1).

Returning to the full nonlinear system, assume now that x4 and ug are either
constant or slowly varying (with respect to the performance criterion). This allows
us to consider just the (constant) linearized system given by (A(xq), B(z4)). If we
design a state feedback controller K(z4) for each x4, then we can regulate the
system using the feedback

v=K(zg)e.

Substituting back the definitions of e and v, our controller becomes
u=—K(zq)(x — xq) + uq.

Note that the controller v = «a(z,z4,uq) depends on (24, uq), which themselves
depend on the desired reference trajectory. This form of controller is called a gain
scheduled linear controller with feedforward ug.

More generally, the term gain scheduling is used to describe any controller that
depends on a set of measured parameters in the system. So, for example, we might
write

U= _K(xvﬂ)'(x_xd)+uda

where K (x, 1) depends on the current system state (or some portion of it) and an
external parameter u. The dependence on the current state = (as opposed to the
desired state z4) allows us to modify the closed loop dynamics differently depending
on our location in the state space. This is particularly useful when the dynamics of
the process vary depending on some subset of the states (such as the altitude for
an aircraft or the internal temperature for a chemical reaction). The dependence
on g can be used to capture the dependence on the reference trajectory, or they
can reflect changes in the environment or performance specifications that are not
modeled in the state of the controller.

Example 1.1 Steering control with velocity scheduling
Consider the problem of controlling the motion of a automobile so that it follows a
given trajectory on the ground, as shown in Figure 1.2a. We use the model derived
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Figure 1.2: Vehicle steering using gain scheduling.

in AMO8, choosing the reference point to be the center of the rear wheels. This
gives dynamics of the form

T = cosfwv, Y =sinfwv, 6= %t&m¢7 (1.2)

where (z,y, 6) is the position and orientation of the vehicle, v is the velocity and ¢
is the steering angle, both considered to be inputs, and [ is the wheelbase.

A simple feasible trajectory for the system is to follow a straight line in the =
direction at lateral position y, and fixed velocity v,.. This corresponds to a desired
state 4 = (vpt, y,, 0) and nominal input ug = (v,.,0). Note that (z4,uq) is not an
equilibrium point for the system, but it does satisfy the equations of motion.

Linearizing the system about the desired trajectory, we obtain

of 0 0 —sinf 0 0 O
Ag= — = (0 0 cosf =10 0 1],
Pl o 00 f, . oo o
1 0
Bd:ﬂ =10 O
Ou (q,uq) 0 v/l

We form the error dynamics by setting e =z — x4 and w = u — ug:

. . . Uy

€x = Wiy, €y = €9, €y = TWQ-
We see that the first state is decoupled from the second two states and hence we
can design a controller by treating these two subsystems separately. Suppose that
we wish to place the closed loop eigenvalues of the longitudinal dynamics (e,) at Ay
and place the closed loop eigenvalues of the lateral dynamics (e, eg) at the roots
of the polynomial equation s2 + a;s + as = 0. This can accomplished by setting

w1, = —)\163c

wy = —(arey + asey).
vy
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Figure 1.3: Gain scheduling. A general gain scheduling design involves finding a
gain K at each desired operating point. This can be thought of as a gain surface,
as shown on the left (for the case of a scalar gain). An approximation to this gain
can be obtained by computing the gains at a fixed number of operating points
and then interpolated between those gains. This gives an approximation of the
continuous gain surface, as shown on the right.

Note that the gains depend on the velocity v, (or equivalently on the nominal input
uq), giving us a gain scheduled controller.
In the original inputs and state coordinates, the controller has the form

. M 0 0 T —vpt v
M P v sl
vp Uy
Kg e Uqg

The form of the controller shows that at low speeds the gains in the steering angle
will be high, meaning that we must turn the wheel harder to achieve the same
effect. As the speed increases, the gains become smaller. This matches the usual
experience that at high speed a very small amount of actuation is required to control
the lateral position of a car. Note that the gains go to infinity when the vehicle is
stopped (v, = 0), corresponding to the fact that the system is not reachable at this
point.

Figure 1.2b shows the response of the controller to a step change in lateral
position at three different reference speeds. Notice that the rate of the response
is constant, independent of the reference speed, reflecting the fact that the gain
scheduled controllers each set the closed loop poles to the same values. \Y%

One limitation of gain scheduling as we have described it is that a separate set of
gains must be designed for each operating condition z4. In practice, gain scheduled
controllers are often implemented by designing controllers at a fixed number of op-
erating points and then interpolating the gains between these points, as illustrated
in Figure 1.3. Suppose that we have a set of operating points z4;, 7 = 1,..., N.
Then we can write our controller as

N
u=ug— K(z)e K(x):Zaj(m)Kj,
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Figure 1.4: Simple model for an automobile. We wish to find a trajectory from an
initial state to a final state that satisfies the dynamics of the system and constraints
on the curvature (imposed by the limited travel of the front wheels).

where K is a set of gains designed around the operating point x4 ; and «;(x) is
a weighting factor. For example, we might choose the weights o (x) such that we
take the gains corresponding to the nearest two operating points and weight them
according to the Euclidean distance of the current state from that operating point;
if the distance is small then we use a weight very near to 1 and if the distance is
far then we use a weight very near to 0.

While the intuition behind gain scheduled controllers is fairly clear, some cau-
tion in required in using them. In particular, a gain scheduled controller is not
guaranteed to be stable even if K (x, 1) locally stabilizes the system around a given
equilibrium point. Gain scheduling can be proven to work in the case when the gain
varies sufficiently slowly (Exercise 1.3).

1.3 Trajectory Generation and Differential Flatness

We now return to the problem of generating a trajectory for a nonlinear system.
Consider first the case of finding a trajectory x4(¢) that steers the system from an
initial condition z( to a final condition z ;. We seek a feasible solution (z4(t), uq(t))
that satisfies the dynamics of the process:

Tq = f(acd,ud)7 xd(O) = Xy, .”L’d(T> =xy. (1.3)

Formally, this problem corresponds to a two-point boundary value problem and can
be quite difficult to solve in general.

In addition, we may wish to satisfy additional constraints on the dynamics.
These can include input saturation constraints |u(t)| < M, state constraints g(z) <
0 and tracking constraints h(x) = r(t), each of which gives an algebraic constraint
on the states or inputs at each instant in time. We can also attempt to optimize a
function by choosing (x4(t), uq(t)) to minimize

/0 L(z,u)dt + V(x(T),u(T)).

As an example of the type of problem we would like to study, consider the
problem of steering a car from an initial condition to a final condition, as show
in Figure 1.4. To solve this problem, we must find a solution to the differential
equations (1.2) that satisfies the endpoint conditions. Given the nonlinear nature
of the dynamics, it seems unlikely that one could find explicit solutions that satisfy
the dynamics except in very special cases (such as driving in a straight line).
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A closer inspection of this system shows that it is possible to understand the
trajectories of the system by exploiting the particular structure of the dynamics.
Suppose that we are given a trajectory for the rear wheels of the system, x4(t) and
ya(t). From equation (1.2), we see that we can use this solution to solve for the
angle of the car by writing

y  sinf

o I
== o0 = Oq =tan™ " (Yq/Zaq)-

Furthermore, given 6 we can solve for the velocity using the equation
T = vcosl — Vg = &q/ cos b,

assuming cos 0, # 0 (if it is, use v = ¢/ sinf). And given 6, we can solve for ¢ using
the relationship

. v

0 tan ¢ — dd :tan_l(lﬁ).

l Vd
Hence all of the state variables and the inputs can be determined by the trajectory of
the rear wheels and its derivatives. This property of a system is known as differential
flatness.

Definition 1.1 (Differential flatness). A nonlinear system (1.1) is differentially flat
if there exists a function « such that

z = az,u,u ...,u(p))

and we can write the solutions of the nonlinear system as functions of z and a finite
number of derivatives
x=0(z2..., ,2'(‘1))7

1.4
u:’y(z,z’,...,z(q)). 4

For a differentially flat system, all of the feasible trajectories for the system
can be written as functions of a flat output z(-) and its derivatives. The number
of flat outputs is always equal to the number of system inputs. The kinematic
car is differentially flat with the position of the rear wheels as the flat output.
Differentially flat systems were originally studied by Fliess et al. [FLMR92].

Differentially flat systems are useful in situations where explicit trajectory gen-
eration is required. Since the behavior of a flat system is determined by the flat
outputs, we can plan trajectories in output space, and then map these to appropri-
ate inputs. Suppose we wish to generate a feasible trajectory for the the nonlinear
system

z = f(z,u), z(0) =z, (T) = zy.
If the system is differentially flat then

2(0) = B(2(0), 2(0), ..., 2?(0)) = xo, 15)

2(T) = y(2(T1), (1), ..., 2 (1)) = zy, .

and we see that the initial and final condition in the full state space depends on just
the output z and its derivatives at the initial and final times. Thus any trajectory
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for z that satisfies these boundary conditions will be a feasible trajectory for the
system, using equation (1.4) to determine the full state space and input trajectories.

In particular, given initial and final conditions on z and its derivatives that
satisfy equation (1.5), any curve z(-) satisfying those conditions will correspond to
a feasible trajectory of the system. We can parameterize the flat output trajectory
using a set of smooth basis functions ;(t):

N
2(t) = aihi(t), ai€R
=1

We seek a set of coefficients «;, i = 1,..., N such that z(t) satisfies the boundary
conditions (1.5). The derivatives of the flat output can be computed in terms of the
derivatives of the basis functions:

N .
() = Z ()

N
201 = Y an((1).
i=1

We can thus write the conditions on the flat outputs and their derivatives as

[ ¥1(0) ¥2(0) ... Yn(0) [ 2(0)
¥1(0)  2(0) ... ¥n(0) 2(0)
Do o o] [ [0
W) el e | | «(T)
Pi(T)  o(T) .. Yn(T) N (T)
u0() w1y . @ )| =0(1)]

This equation is a linear equation of the form Ma = z. Assuming that M has a
sufficient number of columns and that it is full column rank, we can solve for a
(possibly non-unique) « that solves the trajectory generation problem.

Example 1.2 Nonholonomic integrator
A simple nonlinear system called a nonholonomic integrator [Bro81] is given by the
differential equations

1 = uq, To = ug, T3 = TalUy.

This system is differentially flat with flat output z = (x1,x3). The relationship
between the flat variables and the states is given by

1 = 21, X9 :.fg/jfl :2:’2/2:’1, T3 = 22. (16)
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Using simple polynomials as our basis functions,

Yra(t) =1, o) =t, Yis(t) =12, ¢ralt) =1,
Poi(t) =1 ahap(t) = Vos(t) =12, oa(t) =17,

the equations for the feasible (flat) trajectory become

t,
t,

10 0 0 OO0 0 0 a1 (21,0
0 1 0 0o 0 0 O 0 3P 1
0 0 0 0 1 0 0 0 Q13 Z3,0
0 0 0 0 0 1 0 0 Qi4| | 220
1 T T2 T3 0 0 0 0 91 o Ty, f
0 1 2T 31> 0 0 O 0 22 1
0 0 0 0 1 T T2 T3 23 €3, f
00 0 0 0 1 27T 37 | |ass| |2oy]

This is a set of 8 linear equations in 8 variables. It can be shown that the matrix
M is full rank when 7" # 0 and the system can be solved numerically. \%

Note that no ODEs need to be integrated in order to compute the feasible tra-
jectories for a differentially flat system (unlike optimal control methods that we
will consider in the next chapter, which involve parameterizing the input and then
solving the ODEs). This is the defining feature of differentially flat systems. The
practical implication is that nominal trajectories and inputs that satisfy the equa-
tions of motion for a differentially flat system can be computed in a computationally
efficient way (solving a set of algebraic equations). Since the flat output functions
do not have to obey a set of differential equations, the only constraints that must
be satisfied are the initial and final conditions on the endpoints, their tangents, and
higher order derivatives. Any other constraints on the system, such as bounds on
the inputs, can be transformed into the flat output space and (typically) become
limits on the curvature or higher order derivative properties of the curve.

If there is a performance index for the system, this index can be transformed
and becomes a functional depending on the flat outputs and their derivatives up
to some order. By approximating the performance index we can achieve paths for
the system that are suboptimal but still feasible. This approach is often much more
appealing than the traditional method of approximating the system (for example by
its linearization) and then using the exact performance index, which yields optimal
paths but for the wrong system.

In light of the techniques that are available for differentially flat systems, the
characterization of flat systems becomes particularly important. Unfortunately, gen-
eral conditions for flatness are not known, but many important class of nonlinear
systems, including feedback linearizable systems, are differential flat. One large class
of flat systems are those in “pure feedback form”:

1 = fi(z1, x2)

&9 = folx1, T2, 3)

Tn = fn(T1, ..., 20, u).
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(a) Kinematic car (b) Ducted fan

(¢) N trailers

(d) Towed cable

Figure 1.5: Examples of flat systems.

Under certain regularity conditions these systems are differentially flat with output
y = x1. These systems have been used for so-called “integrator backstepping”
approaches to nonlinear control by Kokotovic et al. [KKM91] and constructive
controllability techniques for nonholonomic systems in chained form [vINRM9S].
Figure 1.5 shows some additional systems that are differentially flat.

Example 1.3 Vectored thrust aircraft

Consider the dynamics of a planar, vectored thrust flight control system as shown
in Figure 1.6. This system consists of a rigid body with body fixed forces and is
a simplified model for a vertical take-off and landing aircraft (see Example 2.9 in
AMO8). Let (x,y,6) denote the position and orientation of the center of mass of
the aircraft. We assume that the forces acting on the vehicle consist of a force
F perpendicular to the axis of the vehicle acting at a distance r from the center
of mass, and a force F, parallel to the axis of the vehicle. Let m be the mass of
the vehicle, J the moment of inertia, and ¢ the gravitational constant. We ignore
aerodynamic forces for the purpose of this example.

The dynamics for the system are

mx = Fycos — Fysin 6,
mij = Fysin + Fy cos — my, (1.7)
Jt9 = ’]"Fl.

Martin et al. [MDP94] showed that this system is differentially flat and that one
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Figure 1.6: Vectored thrust aircraft (from AMOS8). The net thrust on the aircraft
can be decomposed into a horizontal force I} and a vertical force F» acting at a
distance r from the center of mass.

set of flat outputs is given by

z1 =x — (J/mr)sind,

1.8
zo =y + (J/mr)cosb. (18)

Using the system dynamics, it can be shown that
Z1co86 + (32 + g)sinf =0 (1.9)

and thus given z1(t) and z3(t) we can find 6(¢) except for an ambiguity of 7= and
away from the singularity 27 = 25 + ¢ = 0. The remaining states and the forces
Fi(t) and Fy(t) can then be obtained from the dynamic equations, all in terms of
21, 22, and their higher order derivatives. \%

1.4 Further Reading

The two degree of freedom controller structure introduced in this chapter is de-
scribed in a bit more detail in AMOS (in the context of output feedback control)
and a description of some of the origins of this structure are provided in the “Fur-
ther Reading” section of Chapter 8. Gain scheduling is a classical technique that is
often omitted from introductory control texts, but a good description can be found
in the survey article by Rugh [Rug90] and the work of Shamma [Sha90]. Differential
flatness was originally developed by Fliess, Levin, Martin and Rouchon [FLMR92].
See [Mur97] for a description of the role of flatness in control of mechanical systems
and [vNM98, MFHMO5] for more information on flatness applied to flight control
systems.
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Exercises

1.1 (Feasible trajectory for constant reference) Consider a linear input/output sys-
tem of the form
i = Az + Bu, y=Cx (1.10)

in which we wish to track a constant reference r. A feasible (steady state) trajectory
for the system is given by solving the equation

Fl=le o] ]

(a) Show that these equations always have a solution as long as the linear sys-
tem (1.10) is reachable.

(b) In Section 6.2 of AMO08 we showed that the reference tracking problem could be
solved using a control law of the form v = — Kz + k,.r. Show that this is equivalent
to a two degree of freedom control design using x4 and ug and give a formula for
k. in terms of x4 and ug. Show that this formula matches that given in AMOS.

for x4 and ug.

1.2 A simplified model of the steering control problem is described in Astrém and
Murray, Example 2.8. The lateral dynamics can be approximated by the linearized

dynamics
. 0 v 0
z—[o O}z—k{l]u, Yy =z,

where z = (y,0) € R? is the state of the system and v is the speed of the vehicle.
Suppose that we wish to track a piecewise constant reference trajectory

r = square(27t/20),

where square is the square wave function in MATLAB. Suppose further that the
speed of the vehicle varies according to the formula

v =5+ 3sin(27t/50).

Design and implement a gain-scheduled controller for this system by first de-
signing a state space controller that places the closed loop poles of the system at the
roots of s2 + 2¢wos + wg, where ¢ = 0.7 and wy = 1. You should design controllers
for three different parameter values: v = 2,5,10. Then use linear interpolation to
compute the gain for values of v between these fixed values. Compare the perfor-
mance of the gain scheduled controller to a simple controller that assumes v = 5 for
the purpose of the control design (but leaving v time-varying in your simulation).

1.3 (Stability of gain scheduled controllers for slowly varying systems) Consider a
nonlinear control system with gain scheduled feedback

é=fle,r)  v=k(we,

where u(t) € R is an externally specified parameter (e.g., the desired trajectory)
and k() is chosen such that the linearization of the closed loop system around the
origin is stable for each fixed pu.
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Show that if |/ is sufficiently small then the equilibrium point is locally asymp-
totically stable for the full nonlinear, time-varying system. (Hint: find a Lyapunov
function of the form V = 27 P(u)z based on the linearization of the system dy-
namics for fixed p and then show this is a Lyapunov function for the full system.)

1.4 (Flatness of systems in reachable canonical form) Consider a single input system
in reachable canonical form [AMOS8, Sec. 6.1]:

—aq —a9 —as —Qp 1
1 0 0 0 0

de Lo 10 .0 |,4]0],

dt : o : 1 (1.11)
0 1 0 0

y=1[b1 by by ... by]a+du

Suppose that we wish to find an input w that moves the system from zg to xy.
This system is differentially flat with flat output given by z = z,, and hence we can
parameterize the solutions by a curve of the form

N
2o (t) =Y opth, (1.12)
k=0

where N is a sufficiently large integer.

(a) Compute the state space trajectory x(t) and input u(t) corresponding to equa-
tion (1.12) and satisfying the differential equation (1.11). Your answer should be
an equation similar to equation (1.6) for each state x; and the input u.

(b) Find an explicit input that steers a double integrator system between any two
equilibrium points 2o € R? and « TS R2.

(¢) Show that all reachable systems are differentially flat and give a formula for
finding the flat output in terms of the dynamics matrix A and control matrix B.

1.5 Consider the lateral control problem for an autonomous ground vehicle as
described in Example 1.1 and Section 1.3. Using the fact that the system is dif-
ferentially flat, find an explicit trajectory that solves the following parallel parking
maneuver:
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Your solution should consist of two segments: a curve from zy to x; with v > 0 and
a curve from x; to x5 with v < 0. For the trajectory that you determine, plot the
trajectory in the plane (z versus y) and also the inputs v and ¢ as a function of
time.

1.6 Consider first the problem of controlling a truck with trailer, as shown in the
figure below:

T = cos O u

y =sinfu;

¢ = us

-1

0= 7tan¢u1

6, = % cos(0 — 61) sin(0 — 01)uq,

The dynamics are given above, where (x,y, #) is the position and orientation of the
truck, ¢ is the angle of the steering wheels, 6; is the angle of the trailer, and [ and
d are the length of the truck and trailer. We want to generate a trajectory for the
truck to move it from a given initial position to the loading dock. We ignore the
role of obstacles and concentrate on generation of feasible trajectories.

(a) Show that the system is differentially flat using the center of the rear wheels of
the trailer as the flat output.

(b) Generate a trajectory for the system that steers the vehicle from an initial
condition with the truck and trailer perpendicular to the loading dock into the
loading dock.

(c) Write a simulation of the system stabilizes the desired trajectory and demon-
strate your two-degree of freedom control system maneuvering from several different
initial conditions into the parking space, with either disturbances or modeling errors
included in the simulation.






Chapter 2
Optimal Control

This set of notes expands on Chapter 6 of Feedback Systems by Astrom and Murray
(AMOS), which introduces the concepts of reachability and state feedback. We also
expand on topics in Section 7.5 of AMO0S in the area of feedforward compensation.
Beginning with a review of optimization, we introduce the notion of Lagrange mul-
tipliers and provide a summary of the Pontryagin’s maximum principle. Using these
tools we derive the linear quadratic regulator for linear systems and describe its
usage.

Prerequisites. Readers should be familiar with modeling of input/output control
systems using differential equations, linearization of a system around an equilib-
rium point and state space control of linear systems, including reachability and
eigenvalue assignment. Some familiarity with optimization of nonlinear functions is
also assumed.

2.1 Review: Optimization

Optimization refers to the problem of choosing a set of parameters that maximize
or minimize a given function. In control systems, we are often faced with having to
choose a set of parameters for a control law so that the some performance condition
is satisfied. In this chapter we will seek to optimize a given specification, choosing
the parameters that maximize the performance (or minimize the cost). In this
section we review the conditions for optimization of a static function , and then
extend this to optimization of trajectories and control laws in the remainder of
the chapter. More information on basic techniques in optimization can be found
in [Lue97] or the introductory chapter of [LS95].

Consider first the problem of finding the minimum of a smooth function F :
R™ — R. That is, we wish to find a point 2* € R™ such that F(z*) < F(x) for all
x € R™. A necessary condition for z* to be a minimum is that the gradient of the

function be zero at x*:
oF

ox

The function F'(x) is often called a cost function and z* is the optimal value for z.

Figure 2.1 gives a graphical interpretation of the necessary condition for a minimum.

Note that these are not sufficient conditions; the points z; and x5 and z* in the
figure all satisfy the necessary condition but only one is the (global) minimum.

The situation is more complicated if constraints are present. Let G; : R" —

R, 7 = 1,...,k be a set of smooth functions with G;(z) = 0 representing the

constraints. Suppose that we wish to find z* € R"™ such that G;(z*) = 0 and

F(z*) < F(x) for all z € {x € R" : G;(x) = 0,i = 1,...,k}. This situation can be

(z")=0.
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F(x) A
T1
dx
g—idac
N
X2
=

Figure 2.1: Optimization of functions. The minimum of a function occurs at a
point where the gradient is zero.

F(z) . 2G
ox xs
G(x)=0
T2
T1
(a) Constrained optimization (b) Constraint normal
vectors

Figure 2.2: Optimization with constraints. (a) We seek a point z* that minimizes
F(z) while lying on the surface G(z) = 0 (a line in the z1z2 plane). (b) We can
parameterize the constrained directions by computing the gradient of the constraint
G. Note that = € R? in (a), with the third dimension showing F(z), while 2 € R?
in (b).

visualized as constraining the point to a surface (defined by the constraints) and
searching for the minimum of the cost function along this surface, as illustrated in
Figure 2.2a.

A necessary condition for being at a minimum is that there are no directions
tangent to the constraints that also decrease the cost. Given a constraint function
G(z) = (Gi(x),...,Gr(x)), * € R™ we can represent the constraint as a n — k
dimensional surface in R™, as shown in Figure 2.2b. The tangent directions to the
surface can be computed by considering small perturbations of the constraint that
remain on the surface:

0G;
ox ox

where dz € R™ is a vanishingly small perturbation. It follows that the normal
directions to the surface are spanned by G, /0x, since these are precisely the vectors
that annihilate an admissible tangent vector dzx.

Using this characterization of the tangent and normal vectors to the constraint, a
necessary condition for optimization is that the gradient of F is spanned by vectors

Gi(z 4 61) ~ Gi(z) + —L(x)6x = 0. (x)dz =0,
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that are normal to the constraints, so that the only directions that increase the

cost violate the constraints. We thus require that there exist scalars \;, i =1,...,k
such that i
oF , oG , ..
If we let G = [Gl Gy ... Gk}T, then we can write this condition as
OF oG
— + AT —==0 2.1
or + or (2.1)

the term OF /Ox is the usual (gradient) optimality condition while the term 0G/0x
is used to “cancel” the gradient in the directions normal to the constraint.

An alternative condition can be derived by modifying the cost function to incor-
porate the constraints. Defining F' = F'+ > \;G;, the necessary condition becomes

OF
—(z*)=0.
5 ()
The scalars \; are called Lagrange multipliers. Minimizing Fis equivalent to the
optimization given by

min (F(z) + \"G(z)) . (2.2)

The variables A can be regarded as free variables, which implies that we need to
choose x such that G(x) = 0 in order to insure the cost is minimized. Otherwise,
we could choose A to generate a large cost.

Example 2.1 Two free variables with a constraint
Consider the cost function given by

F(z) = Fy + (z1 —a)® + (2 — b)?,

which has an unconstrained minimum at = = (a,b). Suppose that we add a con-
straint G(z) = 0 given by
G(z) = 21 — za.

With this constraint, we seek to optimize F' subject to x1 = zo. Although in this
case we could do this by simple substitution, we instead carry out the more general
procedure using Lagrange multipliers.

The augmented cost function is given by

F(z) = Fy+ (z1 — a)® + (z2 — b)? + A1 — 22),

where X is the Lagrange multiplier for the constraint. Taking the derivative of F,
we have ~

oF

—_—= [2331 —2a+ A 2332—21)—)\} .

ox

Setting each of these equations equal to zero, we have that at the minimum

] =a—\/2, x5 =b+ A/2.
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The remaining equation that we need is the constraint, which requires that 7 = 3.
Using these three equations, we see that A\* = a — b and we have

a+b a+b

7 Ty

] =

To verify the geometric view described above, note that the gradients of ' and
G are given by
or oG _

oy = [2n-20 2=, X =[1 1]

At the optimal value of the (constrained) optimization, we have
oG
—=1lb—a a-0 — =11
ox [ I Ox [
Although the derivative of F' is not zero, it is pointed in a direction that is normal

to the constraint, and hence we cannot decrease the cost while staying on the
constraint surface. \Y

OF e

We have focused on finding the minimum of a function. We can switch back and
forth between maximum and minimum by simply negating the cost function:

max F(x) = rrgn(—F(:v))

We see that the conditions that we have derived are independent of the sign of F'
since they only depend on the gradient begin zero in approximate directions. Thus
finding z* that satisfies the conditions corresponds to finding an extremum for the
function.

Very good software is available for solving optimization problems numerically of
this sort. The NPSOL and SNOPT libraries are available in FORTRAN (and C).
In MATLAB, the fmin function can be used to solve a constrained optimization
problem.

2.2 Optimal Control of Systems

Consider now the optimal control problem:

T
I’LILI(II)l/O L(z,u)dt + V (2(T))

subject to the constraint
&= f(z,u), zeR" ueR™

Abstractly, this is a constrained optimization problem where we seek a feasible
trajectory (x(t),u(t)) that minimizes the cost function

T
J(x,u) = /0 L(z,u)dt + V (z(T)).
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More formally, this problem is equivalent to the “standard” problem of minimizing a
cost function J(x, u) where (z,u) € Lo[0,T] (the set of square integrable functions)
and h(z) = @(t) — f(x(t),u(t)) = 0 models the dynamics. The term L(x,u) is
referred to as the integral cost and V(x(7')) is the final (or terminal) cost.

There are many variations and special cases of the optimal control problem. We
mention a few here:

Infinite horizon optimal control. If we let T' = oo and set V' = 0, then we seek to
optimize a cost function over all time. This is called the infinite horizon optimal
control problem, versus the finite horizon problem with T" < oco. Note that if an
infinite horizon problem has a solution with finite cost, then the integral cost term
L(z,u) must approach zero as t — oo.

Linear quadratic (LQ) optimal control. If the dynamical system is linear and the
cost function is quadratic, we obtain the linear quadratic optimal control problem:

T
& = Ax + Bu, J = / (2" Qz +u" Ru) dt + 2™ (T) Pz (T).
0

In this formulation, @ > 0 penalizes state error, R > 0 penalizes the input and
P} > 0 penalizes terminal state. This problem can be modified to track a desired
trajectory (x4, uq) by rewriting the cost function in terms of (z — z4) and (u — ug).

Terminal constraints. It is often convenient to ask that the final value of the tra-
jectory, denoted z s, be specified. We can do this by requiring that z(T") = x or by
using a more general form of constraint:

Yi(x(T)) =0, i=1,...,q.

The fully constrained case is obtained by setting ¢ = n and defining ¢;(z(T)) =
2;(T) — ;. For a control problem with a full set of terminal constraints, V (z(T))
can be omitted (since its value is fixed).

Time optimal control. If we constrain the terminal condition to z(T) = xy, let the
terminal time T be free (so that we can optimize over it) and choose L(z,u) = 1,
we can find the time-optimal trajectory between an initial and final condition. This
problem is usually only well-posed if we additionally constrain the inputs u to be
bounded.

A very general set of conditions are available for the optimal control problem that
captures most of these special cases in a unifying framework. Consider a nonlinear

system
i':f(xvu)a x:Rna

x(0) given, wu € CR™,

where f(z,u) = (fi(z,u),... fu(z,u)) : R" x R™ — R". We wish to minimize a
cost function J with terminal constraints:

T
J :/ Liz,w)dt + V(@(T),  ((T)) = 0.
0

The function ¢ : R™ — RY gives a set of ¢ terminal constraints. Analogous to the
case of optimizing a function subject to constraints, we construct the Hamiltonian:

H:L—i—)\Tf:L—s—Z)\ifi.
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The variables A are functions of time and are often referred to as the costate vari-
ables. A set of necessary conditions for a solution to be optimal was derived by
Pontryagin [PBGM62].

Theorem 2.1 (Maximum Principle). If (z*,u*) is optimal, then there exists \*(t) €
R™ and v* € R? such that

. 0H o ®(0) gien, (x(T)) =0
Tq = O\ T oy NT) = % (2(T)) + UT%

and
H(x™(t),u™(t),\"(t)) < H(z"(t),u,\*(t)) forall we

The form of the optimal solution is given by the solution of a differential equation
with boundary conditions. If u = arg min H (z, u, A) exists, we can use this to choose
the control law u and solve for the resulting feasible trajectory that minimizes the
cost. The boundary conditions are given by the n initial states x(0), the ¢ terminal
constraints on the state 1(z(7T)) = 0 and the n — ¢ final values for the Lagrange

multipliers
oV 70
ANT) = s (z(T))+v s

In this last equation, v is a free variable and so there are n equations in n + ¢ free
variables, leaving n — ¢ constraints on A(T). In total, we thus have 2n boundary
values.

The maximum principle is a very general (and elegant) theorem. It allows the
dynamics to be nonlinear and the input to be constrained to lie in a set €2, allowing
the possibility of bounded inputs. If @ = R™ (unconstrained input) and H is
differentiable, then a necessary condition for the optimal input is

OH

— =0.
ou

We note that even though we are minimizing the cost, this is still usually called the

maximum principle (an artifact of history).

Sketch of proof. We follow the proof given by Lewis and Syrmos [LS95], omitting
some of the details required for a fully rigorous proof. We use the method of La-
grange multipliers, augmenting our cost function by the dynamical constraints and
the terminal constraints:

T
J(@(),ul-), AC),v) = J(z,u) +/0 =AE() (@(t) — flz,w)) dt + v ((T))

= /0 (L(z,u) = AT () (2(t) — f(z,u) dt
+V(x(T)) + vi(x(T)).

Note that \ is a function of time, with each A(¢) corresponding to the instantaneous
constraint imposed by the dynamics. The integral over the interval [0, T| plays the
role of the sum of the finite constraints in the regular optimization.
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Making use of the definition of the Hamiltonian, the augmented cost becomes

T
J(@(),u-), AC), v) = /0 (H(z,w) = AT(H)3) dt + V (@(T)) + v (x(T)).

We can now “linearize” the cost function around the optimal solution z(t) = z*(t)+
0x(t), u(t) = u*(t) + du(t), AM(t) = A*(t) +0A(¢t) and v = v* + dv. Taking T as fixed
for simplicity (see [LS95] for the more general case), the incremental cost can be
written as

00 = J(x* + Sz, u* + du, N + O\, vF + 0v) — J(aF, uF, \F,v)
T
OH OH OH
~ S bwt S du— AToi + (S —aT)on ) dt
/0<3:z: x+6‘uu T o
ov 0

+ %éx(T) + Z/T%(S.Z‘(T) + 5v" ) (2(T), u(T)),
where we have omitted the time argument inside the integral and all derivatives
are evaluated along the optimal solution.

We can eliminate the dependence on §& using integration by parts:

T T
- / MN6idt = —\T(T)62(T) + AT (0)62(0) + / Aoz dt.
0 0

Since we are requiring 2(0) = xo, the 6:(0) term vanishes and substituting this into
0J yields

5jz/0T [(?j+;\T>5x+aalibl6u+ (%Z—ﬂ)éx] dt
n (8V T@_

7_‘_1/

- - /\T(T))(Sx(T) + 00T (2(T), u(T)).

To be optimal, we require §J = 0 for all dz, du, 6\ and dv, and we obtain the
(local) conditions in the theorem. O

2.3 Examples

To illustrate the use of the maximum principle, we consider a number of analytical
examples. Additional examples are given in the exercises.

Example 2.2 Scalar linear system
Consider the optimal control problem for the system

& = ax + bu, (2.3)

where x = R is a scalar state, u € R is the input, the initial state x(to) is given,
and a,b € R are positive constants. We wish to find a trajectory (x(),u(t)) that
minimizes the cost function

ty
J = %/ W (t) dt + Sea®(ty),

to
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where the terminal time t; is given and ¢ > 0 is a constant. This cost function
balances the final value of the state with the input required to get to that state.

To solve the problem, we define the various elements used in the maximum
principle. Our integral and terminal costs are given by

L= 1u*(t) V= Ltea®(ty).

We write the Hamiltonian of this system and derive the following expressions for
the costate A:

H =L+ = 3u*+ Aaz + bu)
: OH aVv
A=——=—al Atr) = — =cx(ty).
8I a ’ ( f) ax CQ_':( f)
This is a final value problem for a linear differential equation in A and the solution
can be shown to be
A(t) = cax(ty)e®tr b,

The optimal control is given by

H
% =u+bA=0 = u'(t)=-b\(t) = —bcx(tf)e“(tf_t).
U

Substituting this control into the dynamics given by equation (2.3) yields a first-
order ODE in z:
@ = ax — b2ea(ty)err =Y,

This can be solved explicitly as

b c
2a

2

2(1) = 2(ty)e"t 1) 2 Cat (1) [enltr0 - enortr=2)]

Setting ¢t = ¢ and solving for z(t;) gives

2a et —to) g (t,)
2a — b2c (1 — e2alts—to))

z*(ty) =

and finally we can write

 2abce Pty (t,)
2a — b2c (1 — e?alts—to))
b2cedtr—to)y(t,)
2a — b2c (1 — e?alts—to))

wi(t) =

(2.4)

x*(t) = x(to)e“(t_t") +

[ea(tf—t) . ea(t+tf—2to)} . (2.5)

We can use the form of this expression to explore how our cost function affects
the optimal trajectory. For example, we can ask what happens to the terminal state
x*(ty) and ¢ — oo. Setting ¢ = t; in equation (2.5) and taking the limit we find
that

lim z*(t;) = 0.

Cc— 00
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Example 2.3 Bang-bang control
The time-optimal control program for a linear system has a particularly simple
solution. Consider a linear system with bounded input

i = Ax + Bu, lul <1,

and suppose we wish to minimize the time required to move from an initial state
zo to a final state xy. Without loss of generality we can take x; = 0. We choose
the cost functions and terminal constraints to satisfy

T
J= / Ldt,  w(@(T) = a(T).
0
To find the optimal control, we form the Hamiltonian
H=1+\'(Az + Bu) =1+ (AT A)z + A\ B)u.

Now apply the conditions in the maximum principle:

. OH
x—m Ax + Bu
. O0H
A= —=AT
A o A

u = arg min H = —sgn(\” B)

The optimal solution always satisfies this equation (since the maximum principle
gives a necessary condition) with z(0) = z¢ and z(T") = 0. It follows that the input
is always either +1 or —1, depending on A7 B. This type of control is called “bang-
bang” control since the input is always on one of its limits. If AT (¢) B = 0 then the
control is not well defined, but if this is only true for a specific time instant (e.g.,
AT (t)B crosses zero) then the analysis still holds. \Y

2.4 Linear Quadratic Regulators

In addition to its use for computing optimal, feasible trajectories for a system, we
can also use optimal control theory to design a feedback law u = «(x) that stabilizes
a given equilibrium point. Roughly speaking, we do this by continuously re-solving
the optimal control problem from our current state x(t) and applying the resulting
input u(t). Of course, this approach is impractical unless we can solve explicitly for
the optimal control and somehow rewrite the optimal control as a function of the
current state in a simple way. In this section we explore exactly this approach for
the linear quadratic optimal control problem.

We begin with the the finite horizon, linear quadratic regulator (LQR) problem,
given by

& = Ax + Bu, x € R" u e R"™ zy given,

T
T=3 [ T Qe+ T Quu) di+ 5aT () Pra(T),
0

where @, > 0, @, > 0, P, > 0 are symmetric, positive (semi-) definite matrices.
Note the factor of % is usually left out, but we included it here to simplify the
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derivation. (The optimal control will be unchanged if we multiply the entire cost
function by 2.)

To find the optimal control, we apply the maximum principle. We being by
computing the Hamiltonian H:

1 1
H = ixTQI:E + iuTQuu + M'(Az + Bu).

Applying the results of Theorem 2.1, we obtain the necessary conditions

T
¢:<8H> = Az + Bu x(0) = xo

B
T
= <?9€;I> = Qe+ AT NT) = Pra(T) 20
028 = Quu+ \TB.
ou

The last condition can be solved to obtain the optimal controller
u=—-Q, IBT ),

which can be substituted into the dynamic equation (2.6) To solve for the optimal
control we must solve a two point boundary value problem using the initial condition
2(0) and the final condition A(T'). Unfortunately, it is very hard to solve such
problems in general.

Given the linear nature of the dynamics, we attempt to find a solution by setting
A(t) = P(t)z(t) where P(t) € R™*". Substituting this into the necessary condition,
we obtain

\ = Pz + Pi = Pz + P(Az — BQ,'BTP)z,
—  —Pz— PAz + PBQ;'BPz = Q.z + AT Px.
This equation is satisfied if we can find P(t) such that
—P=PA+ATP-PBQ;'B"P+Q,, P(T)=P. (2.7)

This is a matriz differential equation that defines the elements of P(t) from a final
value P(T). Solving it is conceptually no different than solving the initial value
problem for vector-valued ordinary differential equations, except that we must solve
for the individual elements of the matrix P(t) backwards in time. Equation (2.7) is
called the Riccati ODE.

An important property of the solution to the optimal control problem when
written in this form is that P(t) can be solved without knowing either x(t) or u(t).
This allows the two point boundary value problem to be separated into first solving
a final-value problem and then solving a time-varying initial value problem. More
specifically, given P(t) satisfying equation (2.7), we can apply the optimal input

u(t) = Q' BT P(t)x.

and then solve the original dynamics of the system forward in time from the ini-
tial condition x(0) = x¢. Note that this is a (time-varying) feedback control that
describes how to move from any state to the origin.
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An important variation of this problem is the case when we choose T' = oo and
eliminate the terminal cost (set P; = 0). This gives us the cost function

J= /oo(xTwa + uT'Qyuu) dt. (2.8)
0

Since we do not have a terminal cost, there is no constraint on the final value of \ or,
equivalently, P(t). We can thus seek to find a constant P satisfying equation (2.7).
In other words, we seek to find P such that

PA+ATP - PBQ,'BTP+Q,=0. (2.9)

This equation is called the algebraic Riccati equation. Given a solution, we can
choose our input as

u=—Q,'B"Px.

This represents a constant gain K = Q;'BTP where P is the solution of the
algebraic Riccati equation.

The implications of this result are interesting and important. First, we notice
that if @, > 0 and the control law corresponds to a finite minimum of the cost,
then we must have that lim; ., 2(t) = 0, otherwise the cost will be unbounded.
This means that the optimal control for moving from any state = to the origin
can be achieved by applying a feedback u = —Kx for K chosen as described as
above and letting the system evolve in closed loop. More amazingly, the gain matrix
K can be written in terms of the solution to a (matrix) quadratic equation (2.9).
This quadratic equation can be solved numerically: in MATLAB the command K
= 1qr(A, B, Qx, Qu) provides the optimal feedback compensator.

In deriving the optimal quadratic regulator, we have glossed over a number of
important details. It is clear from the form of the solution that we must have Q,, > 0
since its inverse appears in the solution. We would typically also have @, > 0 so
that the integral cost is only zero when x = 0, but in some instances we might only
care about certain states, which would imply that @, > 0. For this case, if we let
Q. = HTH (always possible), our cost function becomes

oo oo
J:/ xTHTHm—i—uTQuudt:/ |Hz|? + u” Quudt.
0 0

A technical condition for the optimal solution to exist is that the pair (A4, H) be
detectable (implied by observability). This makes sense intuitively by considering
y = Hx as an output. If y is not observable then there may be non-zero initial
conditions that produce no output and so the cost would be zero. This would lead
to an ill-conditioned problem and hence we will require that @, > 0 satisfy an
appropriate observability condition.

We summarize the main results as a theorem.

Theorem 2.2. Consider a linear control system with quadratic cost:

& = Ax + Bu, J = / 2T Qur + uT Quudt.
0
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Assume that the system defined by (A, B) is reachable, Q, = QT > 0 and Q, =
QT > 0. Further assume that Q, = HT H and that the linear system with dynamics
matriz A and output matriz H is observable. Then the optimal controller satisfies

u=—Q, ' BT Px, PA+ ATP - PBQ,'B"P = -Q.,
and the minimum cost from initial condition z(0) is given by J* = 2T (0)Pz(0).

The basic form of the solution follows from the necessary conditions, with the
theorem asserting that a constant solution exists for 7' = co when the additional
conditions are satisfied. The full proof can be found in standard texts on optimal
control, such as Lewis and Syrmos [LS95] or Athans and Falb [AF06]. A simplified

version, in which we first assume the optimal control is linear, is left as an exercise.

Example 2.4 Optimal control of a double integrator
Consider a double integrator system

dx 0 1 0
dt [0 O}QHHU
with quadratic cost given by
2
_| 0 _
Qx - |:0 0:| b QU - 1'

The optimal control is given by the solution of matrix Riccati equation (2.9). Let
P be a symmetric positive definite matrix of the form

a b
P [b } .
Then the Riccati equation becomes
0> +¢> a-bc] [0 0
a—bc 2b—c* (0 O’

which has solution

The controller is given by
K=Q,'B"P=1[1/q /2/q].

The feedback law minimizing the given cost function is then u = —Kz.

To better understand the structure of the optimal solution, we examine the
eigenstructure of the closed loop system. The closed-loop dynamics matrix is given
by

0 1 ]
—1/q —v/2/q]"

The characteristic polynomial of this matrix is

2.1
)\2+\/>>\+.
¢ q

Acl:A—BK:{
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Comparing this to A + 2¢woA + w?, we see that

wo T L
0 qa \/§

Thus the optimal controller gives a closed loop system with damping ratio ¢ = 0.707,
giving a good tradeoff between rise time and overshoot (see AMOS). \Y

2.5 Choosing LQR weights

One of the key questions in LQR design is how to choose the weights @, and Q.
To choose specific values for the cost function weights @,. and @Q,,, we must use our
knowledge of the system we are trying to control. A particularly simple choice is to
use diagonal weights

Qz: ’ Qu: .
0 n 0 Pn

For this choice of @, and @, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we
can take states that should remain small and attach higher weight values to them.
Similarly, we can penalize an input versus the states and other inputs through
choice of the corresponding input weight p;.

Choosing the individual weights for the (diagonal) elements of the @, and @,
matrix can be done by deciding on a weighting of the errors from the individual
terms. Bryson and Ho [BHT75] have suggested the following method for choosing
the matrices @, and @, in equation (2.8): (1) choose ¢; and p; as the inverse of
the square of the maximum value for the corresponding z; or u;; (2) modify the
elements to obtain a compromise among response time, damping and control effort.
This second step can be performed by trial and error.

It is also possible to choose the weights such that only a given subset of variable
are considered in the cost function. Let z = Hz be the output we want to keep
small and verify that (A, H) is observable. Then we can use a cost function of the
form

Q.=H'H Q,=pl

The constant p allows us to trade off ||z||? versus p||ul|?.
We illustrate the various choices through an example application.

Example 2.5 Thrust vectored aircraft
Consider the thrust vectored aircraft example introduced in AMO08, Example 2.9.
The system is shown in Figure 2.3, reproduced from AMOS. The linear quadratic
regulator problem was illustrated in Example 6.8, where the weights were chosen
as @ = I and Q, = pI. Figure 2.4 reproduces the step response for this case.

A more physically motivated weighted can be computing by specifying the com-
parable errors in each of the states and adjusting the weights accordingly. Suppose,
for example that we consider a 1 cm error in z, a 10 cm error in y and a 5° error in 6
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(a) Harrier “jump jet” (b) Simplified model

Figure 2.3: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a)
redirects its engine thrust downward so that it can “hover” above the ground.
Some air from the engine is diverted to the wing tips to be used for maneuvering.
As shown in (b), the net thrust on the aircraft can be decomposed into a horizontal
force F; and a vertical force F> acting at a distance r from the center of mass.

to be equivalently bad. In addition, we wish to penalize the forces in the sidewards
direction since these results in a loss in efficiency. This can be accounted for in the
LQR weights be choosing

100

1 0
, Q. =0.1x [0 10].

O
8
Il
coococoo
coocor~o
o
coococoo
coocoocoo
coococoo

The results of this choice of weights are shown in Figure 2.5. v

2.6 Advanced Topics

In this section we briefly touch on some related topics in optimal control, with
reference to more detailed treatments where appropriate.

Singular extremals. The necessary conditions in the maximum principle enforce the
constraints through the of the Lagrange multipliers A(¢). In some instances, we can
get an extremal curve that has one or more of the \’s identically equal to zero. This
corresponds to a situation in which the constraint is satisfied strictly through the
minimization of the cost function and does not need to be explicitly enforced. We
illustrate this case through an example.

Example 2.6 Nonholonomic integrator
Consider the minimum time optimization problem for the nonholonomic integrator
introduced in Example 1.2 with input constraints |u;| < 1. The Hamiltonian for the
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(a) Step response in = and y (b) Effect of control weight p

Figure 2.4: Step response for a vectored thrust aircraft. The plot in (a) shows
the x and y positions of the aircraft when it is commanded to move 1 m in each
direction. In (b) the x motion is shown for control weights p = 1, 102, 10%. A higher
weight of the input term in the cost function causes a more sluggish response.
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(a) Step response in z and y (b) Inputs for the step response

Figure 2.5: Step response for a vector thrust aircraft using physically motivated
LQR weights (a). The rise time for  is much faster than in Figure 2.4a, but there
is a small oscillation and the inputs required are quite large (b).

system is given by
H=1 + )\1U1 + )\2”2 -+ )\31‘2’&1

and the resulting equations for the Lagrange multipliers are

/'\1 = O7 >.\2 = )\3332, )\3 =0. (210)

It follows from these equations that \; and A3 are constant. To find the input
corresponding to the extremal curves, we see from the Hamiltonian that

u; = —sgn(A1 + Agzauq), Uy = —SENAg.

These equations are well-defined as long as the arguments of sgn(-) are non-zero
and we get switching of the inputs when the arguments pass through 0.

An example of an abnormal extremal is the optimal trajectory between xy =
(0,0,0) to zf = (p,0,0) where p > 0. The minimum time trajectory is clearly given
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by moving on a straight line with u; = 1 and us = 0. This extremal satisfies the
necessary conditions but with Ao = 0, so that the “constraint” that &5 = us is not
strictly enforced through the Lagrange multipliers. \Y%

2.7 Further Reading

There are a number of excellent books on optimal control. One of the first (and
best) is the book by Pontryagin et al. [PBGM62]. During the 1960s and 1970s a
number of additional books were written that provided many examples and served
as standard textbooks in optimal control classes. Athans and Falb [AF06] and
Bryson and Ho [BH75] are two such texts. A very elegant treatment of optimal
control from the point of view of optimization over general linear spaces is given by
Luenberger [Lue97]. Finally, a modern engineering textbook that contains a very
compact and concise derivation of the key results in optimal control is the book by
Lewis and Syrmos [LS95].

Exercises

2.1 (a) Let G1,Gs,...,Gy be a set of row vectors on a R™. Let F' be another row

vector on R™ such that for every x € R” satisfying Gy« =0, =1,...,k, we have
Fxz = 0. Show that there are constants A, Ao, ..., \; such that
k
F=> NGy
i=1

(b) Let 2* € R™ be an the extremal point (maximum or minimum) of a function
f subject to the constraints g;(z) = 0, ¢ = 1,..., k. Assuming that the gradients
0g;(x*)/0x are linearly independent, show that there are k scalers A\, i =1,...,n
such that the function

fl@) = f@)+ Y Nigi(w)
i=1
has an extremal point at z*.

2.2 Consider the following control system

¢=u
Y = qut —ug”
where u € R™ and Y € R™*2 is a skew symmetric matrix, Y7 =Y.

(a) For the fixed end point problem, derive the form of the optimal controller
minimizing the following integral

1 /1

= / uudt.

2 Jo
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(b) For the boundary conditions ¢(0) = ¢(1) =0, Y(0) = 0 and

0 —Ys Y2
Y(1)= | ys 0 —wu
Y2 N 0

for some y € R3, give an explicit formula for the optimal inputs .

(c) (Optional) Find the input u to steer the system from (0,0) to (0, Y) e R™ x
R™*™ where Y7 = —Y.

(Hint: if you get stuck, there is a paper by Brockett on this problem.)

2.3 In this problem, you will use the maximum principle to show that the shortest
path between two points is a straight line. We model the problem by constructing
a control system

T = u,

where 2 € R? is the position in the plane and u € R? is the velocity vector along
the curve. Suppose we wish to find a curve of minimal length connecting x(0) =
and z(1) = x;. To minimize the length, we minimize the integral of the velocity
along the curve,

1 1
J::/mniﬂdt::/ Vil dt,
0 0

subject to to the initial and final state constraints. Use the maximum principle to
show that the minimal length path is indeed a straight line at maximum velocity.
(Hint: try minimizing using the integral cost #74 first and then show this also
optimizes the optimal control problem with integral cost ||Z]|.)

2.4 Consider the optimal control problem for the system
T = —ax + bu,

where x = R is a scalar state, u € R is the input, the initial state x(to) is given,
and a,b € R are positive constants. (Note that this system is not quite the same as
the one in Example 2.2.) The cost function is given by

ty
J:%/ () dt + Lea?(t),

to

where the terminal time ¢; is given and c is a constant.

(a) Solve explicitly for the optimal control u*(¢) and the corresponding state z*(¢)
in terms of tg, ty, z(tp) and ¢ and describe what happens to the terminal state
x*(ty) as ¢ — oo.

(b) Show that the system is differentially flat with appropriate choice of output(s)
and compute the state and input as a function of the flat output(s).

(c) Using the polynomial basis {t*, k = 0,..., M — 1} with an appropriate choice
of M, solve for the (non-optimal) trajectory between x(to) and x(¢s). Your answer
should specify the explicit input uq(t) and state x4(t) in terms of ¢y, t¢, x(to), z(ty)
and t.
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(d) Let @ = 1 and ¢ = 1. Use your solution to the optimal control problem and
the flatness-based trajectory generation to find a trajectory between z(0) = 0 and
z(1) = 1. Plot the state and input trajectories for each solution and compare the
costs of the two approaches.

(e) (Optional) Suppose that we choose more than the minimal number of basis
functions for the differentially flat output. Show how to use the additional degrees
of freedom to minimize the cost of the flat trajectory and demonstrate that you can
obtain a cost that is closer to the optimal.

2.5 Repeat Exercise 2.4 using the system
i = —ax® + bu.
For part (a) you need only write the conditions for the optimal cost.

2.6 Consider the problem of moving a two-wheeled mobile robot (e.g., a Segway)
from one position and orientation to another. The dynamics for the system is given
by the nonlinear differential equation

T = cosfuv, y =sinfo, 0=w,

where (z,y) is the position of the rear wheels, 6 is the angle of the robot with
respect to the x axis, v is the forward velocity of the robot and w is spinning rate.
We wish to choose an input (v,w) that minimizes the time that it takes to move
between two configurations (zo, 0, o) and (x5, ys, 0r), subject to input constraints
|[v]| < L and |w| < M.

Use the maximum principle to show that any optimal trajectory consists of
segments in which the robot is traveling at maximum velocity in either the forward
or reverse direction, and going either straight, hard left (w = —M) or hard right
(w=+M).

Note: one of the cases is a bit tricky and cannot be completely proven with the
tools we have learned so far. However, you should be able to show the other cases
and verify that the tricky case is possible.

2.7 Consider a linear system with input u and output y and suppose we wish to
minimize the quadratic cost function

J :/ (y"y + pu"u) dt.
0

Show that if the corresponding linear system is observable, then the closed loop
system obtained by using the optimal feedback u = —Kux is guaranteed to be
stable.

2.8 Consider the system transfer function
s+b

H(s) = i

i
s+a)

with state space representation
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and performance criterion
o0
V= / (z] +u?)dt.
0

P= P11 P12 ’
P21 P22
with p1o = po1 and P > 0 (positive definite). Write the steady state Riccati equation

as a system of four explicit equations in terms of the elements of P and the constants
a and b.

(a) Let

(b) Find the gains for the optimal controller assuming the full state is available for
feedback.

(¢) Find the closed loop natural frequency and damping ratio.

2.9 Consider the optimal control problem for the system

ty
& =ax+bu Jzé/ u?(t) dt + Sex(ty),
to
where x € R is a scalar state, u € R is the input, the initial state x(¢y) is given, and
a,b € R are positive constants. We take the terminal time ¢; as given and let ¢ > 0
be a constant that balances the final value of the state with the input required to
get to that position. The optimal trajectory is derived in Example 2.2.
Now consider the infinite horizon cost

J = %/ u?(t) dt
to

with z(t) at t = co constrained to be zero.

(a) Solve for u*(t) = —bPz*(t) where P is the positive solution corresponding
to the algebraic Riccati equation. Note that this gives an explicit feedback law
(u = —bPx).
(b) Plot the state solution of the finite time optimal controller for the following
parameter values
a=2, b=0.5, x(to) = 4,
c=0.1,10, t; =051, 10.

(This should give you a total of 6 curves.) Compare these to the infinite time optimal
control solution. Which finite time solution is closest to the infinite time solution?
Why?

2.10 Consider the lateral control problem for an autonomous ground vehicle from
Example 1.1. We assume that we are given a reference trajectory r = (z4,¥q)
corresponding to the desired trajectory of the vehicle. For simplicity, we will assume
that we wish to follow a straight line in the x direction at a constant velocity vy > 0
and hence we focus on the y and 6 dynamics:

. 1
Y = sinf vg, 0 zjtan¢vd.

We let vy =10 m/s and | = 2 m.
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(a) Design an LQR controller that stabilizes the position y to y; = 0. Plot the
step and frequency response for your controller and determine the overshoot, rise
time, bandwidth and phase margin for your design. (Hint: for the frequency domain
specifications, break the loop just before the process dynamics and use the resulting
SISO loop transfer function.)

(b) Suppose now that y4(t) is not identically zero, but is instead given by y4(t) =
r(t). Modify your control law so that you track r(¢) and demonstrate the perfor-
mance of your controller on a “slalom course” given by a sinusoidal trajectory with
magnitude 1 meter and frequency 1 Hz.



Chapter 3

Receding Horizon Control

(with J. E. Hauser and A. Jadbabaie)

This set of notes builds on the previous two chapters and explores the use of online
optimization as a tool for control of nonlinear control. We begin with a high-level
discussion of optimization-based control, refining some of the concepts initially in-
troduced in Chapter 1. We then describe the technique of receding horizon control
(RHC), including a proof of stability for a particular form of receding horizon con-
trol that makes use of a control Lyapunov function as a terminal cost. We conclude
the chapter with a detailed design example, in which we can explore some of the
computational tradeoffs in optimization-based control.

Prerequisites. Readers should be familiar with the concepts of trajectory generation
and optimal control as described in Chapters 1 and 2. For the proof of stability for
the receding horizon controller that we present, familiarity with Lyapunov stability
analysis at the level given in AMO08, Chapter 4 (Dynamic Behavior) is assumed.

The material in this chapter is based on part on joint work with John Hauser and
Ali Jadbabaie [MHJT03].

3.1 Optimization-Based Control

Optimization-based control refers to the use of online, optimal trajectory generation
as a part of the feedback stabilization of a (typically nonlinear) system. The basic
idea is to use a receding horizon control technique: a (optimal) feasible trajectory
is computed from the current position to the desired position over a finite time T'
horizon, used for a short period of time § < T, and then recomputed based on the
new system state starting at time ¢ 4+ 0 until time ¢ + 7" 4 §. Development and ap-
plication of receding horizon control (also called model predictive control, or MPC)
originated in process control industries where the processes being controlled are
often sufficiently slow to permit its implementation. An overview of the evolution
of commercially available MPC technology is given in [QB97] and a survey of the
state of stability theory of MPC is given in [MRRS00].

Design approach

The basic philosophy that we propose is illustrated in Figure 3.1. We begin with
a nonlinear system, including a description of the constraint set. We linearize this
system about a representative equilibrium point and perform a linear control design
using standard control design tools. Such a design can provide provably robust per-
formance around the equilibrium point and, more importantly, allows the designer
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Figure 3.1: Optimization-based control approach.

to meet a wide variety of formal and informal performance specifications through
experience and the use of sophisticated linear design tools.

The resulting linear control law then serves as a specification of the desired
control performance for the entire nonlinear system. We convert the control law
specification into a receding horizon control formulation, chosen such that for the
linearized system, the receding horizon controller gives comparable performance.
However, because of its use of optimization tools that can handle nonlinearities
and constraints, the receding horizon controller is able to provide the desired per-
formance over a much larger operating envelope than the controller design based
just on the linearization. Furthermore, by choosing cost formulations that have cer-
tain properties, we can provide proofs of stability for the full nonlinear system and,
in some cases, the constrained system.

The advantage of the proposed approach is that it exploits the power of humans
in designing sophisticated control laws in the absence of constraints with the power
of computers to rapidly compute trajectories that optimize a given cost function in
the presence of constraints. New advances in online trajectory generation serve as an
enabler for this approach and their demonstration on representative flight control
experiments shows their viability [MFHMO05]. This approach can be extended to
existing nonlinear paradigms as well, as we describe in more detail below.

An advantage of optimization-based approaches is that they allow the potential
for online customization of the controller. By updating the model that the opti-
mization uses to reflect the current knowledge of the system characteristics, the
controller can take into account changes in parameters values or damage to sensors
or actuators. In addition, environmental models that include dynamic constraints
can be included, allowing the controller to generate trajectories that satisfy complex
operating conditions. These modifications allow for many state- and environment-
dependent uncertainties to including the receding horizon feedback loop, providing
potential robustness with respect to those uncertainties.

A number of approaches in receding horizon control employ the use of termi-
nal state equality or inequality constraints, often together with a terminal cost,
to ensure closed loop stability. In Primbs et al. [PND99], aspects of a stability-
guaranteeing, global control Lyapunov function (CLF) were used, via state and
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control constraints, to develop a stabilizing receding horizon scheme. Many of the
nice characteristics of the CLF controller together with better cost performance
were realized. Unfortunately, a global control Lyapunov function is rarely available
and often not possible.

Motivated by the difficulties in solving constrained optimal control problems,
researchers have developed an alternative receding horizon control strategy for the
stabilization of nonlinear systems [JYHO1]. In this approach, closed loop stability is
ensured through the use of a terminal cost consisting of a control Lyapunov function
(defined later) that is an incremental upper bound on the optimal cost to go. This
terminal cost eliminates the need for terminal constraints in the optimization and
gives a dramatic speed-up in computation. Also, questions of existence and regular-
ity of optimal solutions (very important for online optimization) can be dealt with
in a rather straightforward manner.

Inverse Optimality

The philosophy presented here relies on the synthesis of an optimal control prob-
lem from specifications that are embedded in an externally generated controller
design. This controller is typically designed by standard classical control techniques
for a nominal process, absent constraints. In this framework, the controller’s per-
formance, stability and robustness specifications are translated into an equivalent
optimal control problem and implemented in a receding horizon fashion.

One central question that must be addressed when considering the usefulness
of this philosophy is: Given a control law, how does one find an equivalent optimal
control formulation? The paper by Kalman [Kal64] lays a solid foundation for this
class of problems, known as inverse optimality. In this paper, Kalman considers the
class of linear time-invariant (LTT) processes with full-state feedback and a single
input variable, with an associated cost function that is quadratic in the input and
state variables. These assumptions set up the well-known linear quadratic regulator
(LQR) problem, by now a staple of optimal control theory.

In Kalman’s paper, the mathematical framework behind the LQR problem is
laid out, and necessary and sufficient algebraic criteria for optimality are presented
in terms of the algebraic Riccati equation, as well as in terms of a condition on the
return difference of the feedback loop. In terms of the LQR problem, the task of
synthesizing the optimal control problem comes down to finding the integrated cost
weights @, and @, given only the dynamical description of the process represented
by matrices A and B and of the feedback controller represented by K. Kalman
delivers a particularly elegant frequency characterization of this map [Kal64], which
we briefly summarize here.

We consider a linear system

& = Az + Bu reR" ueR™ (3.1)

with state z and input u. We consider only the single input, single output case for
now (m = 1). Given a control law

u=Kzx
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we wish to find a cost functional of the form
T
J = / 27 Qux +u” Quudt + &7 (T) Pra(T) (3.2)
0

where @, € R™*" and @, € R™*™ define the integrated cost, Pr € R"*™ is the
terminal cost, and 7T is the time horizon. Our goal is to find Pr > 0, Q, > 0,
Q. > 0, and T > 0 such that the resulting optimal control law is equivalent to
u= K.

The optimal control law for the quadratic cost function (3.2) is given by

u=—R'BTP(t),
where P(t) is the solution to the Riccati ordinary differential equation
—P=ATP+PA—-PBR'B"P+Q (3.3)

with terminal condition P(T) = Pr. In order for this to give a control law of the
form v = Kz for a constant matrix K, we must find Pr, Q,, and @, that give
a constant solution to the Riccati equation (3.3) and satisfy —R™!BTP = K. It
follows that Pr, @, and @, should satisfy

ATPr+ PrA— PrBQ;'BTPr +Q =0

-Q;'BTPr = K. (3.4)
We note that the first equation is simply the normal algebraic Riccati equation of
optimal control, but with Pr, @, and R yet to be chosen. The second equation
places additional constraints on R and Pr.

Equation (3.4) is exactly the same equation that one would obtain if we had con-
sidered an infinite time horizon problem, since the given control was constant and
hence P(t) was forced to be constant. This infinite horizon problem is precisely the
one that Kalman considered in 1964, and hence his results apply directly. Namely,
in the single-input single-output case, we can always find a solution to the coupled
equations (3.4) under standard conditions on reachability and observability [Kal64].
The equations can be simplified by substituting the second relation into the first to
obtain

ATPr 4+ PrA— KTRK +Q = 0.

This equation is linear in the unknowns and can be solved directly (remembering
that Pr, Q. and @, are required to be positive definite).

The implication of these results is that any state feedback control law satisfy-
ing these assumptions can be realized as the solution to an appropriately defined
receding horizon control law. Thus, we can implement the design framework sum-
marized in Figure 3.1 for the case where our (linear) control design results in a
state feedback controller.

The above results can be generalized to nonlinear systems, in which one takes a
nonlinear control system and attempts to find a cost function such that the given
controller is the optimal control with respect to that cost.

The history of inverse optimal control for nonlinear systems goes back to the
early work of Moylan and Anderson [MAT73]. More recently, Sepulchre et al. [STK97]
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showed that a nonlinear state feedback obtained by Sontag’s formula from a control
Lyapunov function (CLF) is inverse optimal. The connections of this inverse opti-
mality result to passivity and robustness properties of the optimal state feedback
are discussed in Jankovic et al. [JSK99]. Most results on inverse optimality do not
consider the constraints on control or state. However, the results on the uncon-
strained inverse optimality justify the use of a more general nonlinear loss function
in the integrated cost of a finite horizon performance index combined with a real-
time optimization-based control approach that takes the constraints into account.

Control Lyapunov Functions

For the optimal control problems that we introduce in the next section, we will
make use of a terminal cost that is also a control Lyapunov function for the system.
Control Lyapunov functions are an extension of standard Lyapunov functions and
were originally introduced by Sontag [Son83]. They allow constructive design of
nonlinear controllers and the Lyapunov function that proves their stability. A more
complete treatment is given in [KKK95].

Consider a nonlinear control system

T = f(z,u), xr € R" ueR™. (3.5)

Definition 3.1 (Control Lyapunov Function). A locally positive function V' : R™ —
Ry is called a control Lyapunov function (CLF) for a control system (3.5) if

. ov
inf <(‘3x (IE,U)) <0 for all = # 0.

u€eR™

In general, it is difficult to find a CLF for a given system. However, for many
classes of systems, there are specialized methods that can be used. One of the
simplest is to use the Jacobian linearization of the system around the desired equi-
librium point and generate a CLF by solving an LQR problem.

As described in Chapter 2, the problem of minimizing the quadratic performance
index,

T = Ax + Bu,

2(0) = o, (3.6)

J = /OO(mT(t)Qm(t) + uT Ru(t))dt subject to
0

results in finding the positive definite solution of the following Riccati equation:
ATP4+ PA—-PBR'BTP+Q =0 (3.7)
The optimal control action is given by
u=-R'B"Pz

and V = 2T Px is a CLF for the system.
In the case of the nonlinear system & = f(z,u), A and B are taken as

o) g 0f)

A= lo “ou |00
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where the pairs (4, B) and (Qz, A) are assumed to be stabilizable and detectable
respectively. The CLF V(z) = z¥ Pz is valid in a region around the equilibrium
(0,0), as shown in Exercise 3.1.

More complicated methods for finding control Lyapunov functions are often
required and many techniques have been developed. An overview of some of these
methods can be found in [Jad01].

Finite Horizon Optimal Control

We briefly review the problem of optimal control over a finite time horizon as
presented in Chapter 2 to establish the notation for the chapter and set some more
specific conditions required for receding horizon control. This material is based
on [MHJT03].

Given an initial state o and a control trajectory u(-) for a nonlinear control
system & = f(z,u), let 2*(-;x0) represent the state trajectory. We can write this
solution as a continuous curve

t
e ts) =0+ [ f(@ (i) u(r) dr
0
for t > 0. We require that the trajectories of the system satisfy an a priori bound

@)l < B, T, [lu(-)l1) <oo,  t€][0,T],

where (3 is continuous in all variables and monotone increasing in 7" and |Ju(-)||; =
()| £, (0,7)- Most models of physical systems will satisfy a bound of this type.

The performance of the system will be measured by an integral cost L : R™ x
R™ — R. We require that L be twice differentiable (C?) and fully penalize both
state and control according to

L(z,u) > c([l]® + [lul?), = €R™ueR™

for some ¢, > 0 and L(0,0) = 0. It follows that the quadratic approximation of L
at the origin is positive definite,

oL

% 2Cq[>0

(0,0)

To ensure that the solutions of the optimization problems of interest are well
behaved, we impose some convexity conditions. We require the set f(xz, R™) C R"
to be convex for each x € R". Letting A\ € R”™ represent the co-state, we also
require that the pre-Hamiltonian function AT f(x,u) + L(x,u) =: K(x,u,)\) be
strictly convex for each (z,\) € R™ x R™ and that there is a C? function a* :
R™ x R® — R™ providing the global minimum of K(z,u,\). The Hamiltonian
H(z,\) := K(z,u*(x,\), \) is then C?, ensuring that extremal state, co-state, and
control trajectories will all be sufficiently smooth (C! or better). Note that these
conditions are automatically satisfied for control affine f and quadratic L.

The cost of applying a control u(-) from an initial state  over the infinite time
interval [0, c0) is given by

Joo (@, u(r)) = /000 L(z"(7;2),u(r)) dr .
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The optimal cost (from x) is given by

where the control function u(-) belongs to some reasonable class of admissible con-
trols (e.g., plecewise continuous). The function J% (z) is often called the optimal
value function for the infinite horizon optimal control problem. For the class of f
and L considered, it can be verified that J* (-) is a positive definite C? function in
a neighborhood of the origin [HOO01].

For practical purposes, we are interested in finite horizon approximations of the
infinite horizon optimization problem. In particular, let V(-) be a nonnegative C?
function with V' (0) = 0 and define the finite horizon cost (from 2 using u(+)) to be

T
JT(x,u«>>::]g L(a*(r; 2),u(r)) dr + V (z*(T; 2)) (3.8)

and denote the optimal cost (from z) as

Ti@) = inf Jr(e,u()).

As in the infinite horizon case, one can show, by geometric means, that J7(-) is
locally smooth (C?). Other properties will depend on the choice of V and T.

Let T'*° denote the domain of JZ (-) (the subset of R™ on which JZ% is finite).
It is not too difficult to show that the cost functions J% () and J3.(-), T > 0, are
continuous functions on I'o, [Jad01]. For simplicity, we will allow JZ% (-) to take
values in the extended real line so that, for instance, JX () = +o0o means that
there is no control taking x to the origin.

We will assume that f and L are such that the minimum value of the cost
functions JZ (x), J5(x), T > 0, is attained for each (suitable) x. That is, given x
and T > 0 (including T = oo when z € I'*™®), there is a (C" in t) optimal trajectory
(xk(t; ), uwh(t; ), t € [0,T], such that Jp(z,uk(;x)) = J5(x). For instance, if
f is such that its trajectories can be bounded on finite intervals as a function
of its input size, e.g., there is a continuous function § such that [|z*(t;zo)|| <
B(llzoll, ()l z,0.4), then (together with the conditions above) there will be a
minimizing control (cf. [LM67]). Many such conditions may be used to good effect;
see [Jad01] for a more complete discussion.

It is easy to see that JZ (-) is proper on its domain so that the sub-level sets

= {x eT™: J (z) <r?}

are compact and path connected and moreover I'* = |, ., I'?°. Note also that I"*
may be a proper subset of R™ since there may be states that cannot be driven to
the origin. We use 72 (rather than r) here to reflect the fact that our integral cost
is quadratically bounded from below. We refer to sub-level sets of J7(-) and V(-)
using

I'?" := path connected component of {z € T> : JX(x) < r?} containing 0,
and

Q, := path connected component of {z € R™ : V(z) < r?} containing 0.



3-8 CHAPTER 3. RECEDING HORIZON CONTROL

These results provide the technical framework needed for receding horizon con-
trol.

3.2 Receding Horizon Control with CLF Terminal Cost

In receding horizon control, a finite horizon optimal control problem is solved,
generating open-loop state and control trajectories. The resulting control trajectory
is applied to the system for a fraction of the horizon length. This process is then
repeated, resulting in a sampled data feedback law. Although receding horizon
control has been successfully used in the process control industry for many years,
its application to fast, stability-critical nonlinear systems has been more difficult.
This is mainly due to two issues. The first is that the finite horizon optimizations
must be solved in a relatively short period of time. Second, it can be demonstrated
using linear examples that a naive application of the receding horizon strategy can
have undesirable effects, often rendering a system unstable. Various approaches have
been proposed to tackle this second problem; see [MRRSO00] for a comprehensive
review of this literature. The theoretical framework presented here also addresses
the stability issue directly, but is motivated by the need to relax the computational
demands of existing stabilizing RHC formulations.

Receding horizon control provides a practical strategy for the use of information
from a model through on-line optimization. Every § seconds, an optimal control
problem is solved over a T second horizon, starting from the current state. The
first § seconds of the optimal control wi(-;z(t)) is then applied to the system,
driving the system from x(t) at current time ¢ to x%.(d,2(t)) at the next sample
time t+¢ (assuming no model uncertainty). We denote this receding horizon scheme
as RH(T,9).

In defining (unconstrained) finite horizon approximations to the infinite horizon
problem, the key design parameters are the terminal cost function V(-) and the
horizon length T' (and, perhaps also, the increment §). We wish to characterize the
sets of choices that provide successful controllers.

It is well known (and easily demonstrated with linear examples), that simple
truncation of the integral (i.e., V(z) = 0) may have disastrous effects if 7' > 0 is
too small. Indeed, although the resulting value function may be nicely behaved, the
“optimal” receding horizon closed loop system can be unstable.

A more sophisticated approach is to make good use of a suitable terminal cost
V(+). Evidently, the best choice for the terminal cost is V' (z) = JX (x) since then the
optimal finite and infinite horizon costs are the same. Of course, if the optimal value
function were available there would be no need to solve a trajectory optimization
problem. What properties of the optimal value function should be retained in the
terminal cost? To be effective, the terminal cost should account for the discarded
tail by ensuring that the origin can be reached from the terminal state z*(T; z) in
an efficient manner (as measured by L). One way to do this is to use an appropriate
control Lyapunov function, which is also an upper bound on the cost-to-go.

The following theorem shows that the use of a particular type of CLF is in fact
effective, providing rather strong and specific guarantees.
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Theorem 3.1. [JYHO1] Suppose that the terminal cost V (-) is a control Lyapunov
function such that

min (V + L)(z,u) <0 (3.9)

u€eR™

for each x € Q. for some r, > 0. Then, for every T > 0 and § € (0,T], the
resulting receding horizon trajectories go to zero exponentially fast. For each T > 0,
there is an 7(T) > r, such that Fz_j(T) is contained in the region of attraction of
RH(T,H). Moreover, given any compact subset A of T'°°, there is a T* such that
AC F?(T) for allT > T*.

Theorem 3.1 shows that for any horizon length 7" > 0 and any sampling time
§ € (0,7, the receding horizon scheme is exponentially stabilizing over the set '}, .
For a given T, the region of attraction estimate is enlarged by increasing r beyond
ry to #(T) according to the requirement that V(z%(T;z)) < r2 on that set. An
important feature of the above result is that, for operations with the set I‘ET ,
there is no need to impose stability ensuring constraints which would likely make
the online optimizations more difficult and time consuming to solve.

Sketch of proof. Let xz*(7;x) represent the state trajectory at time 7 starting from
initial state = and applying a control trajectory u(-), and let (z%., i) (-, ) represent
the optimal trajectory of the finite horizon, optimal control problem with horizon
T. Assume that z%.(T;z) € Q, for some r > 0. Then for any ¢ € [0,T] we want to
show that the optimal cost x¥.(J; z) satisfies

5
Jr (x*T((S,x)) < Ji(z) _/0 q(L(.’L‘;«(T;J}),u;(T;.T)) dr. (3.10)

This expression says that solution to the finite-horizon, optimal control problem
starting at time ¢ = ¢ has cost that is less than the cost of the solution from time
t = 0, with the initial portion of the cost subtracted off.. In other words, we are
closer to our solution by a finite amount at each iteration of the algorithm. It follows
using Lyapunov analysis that we must converge to the zero cost solution and hence
our trajectory converges to the desired terminal state (given by the minimum of
the cost function).

To show equation (3.10) holds, consider a trajectory in which we apply the op-
timal control for the first T seconds and then apply a closed loop controller using a
stabilizing feedback u = —Fk(x) for another T' seconds. (The stabilizing compensator
is guaranteed to exist since V' is a control Lyapunov function.) Let (z%, ukh)(¢; ),
t € [0,T) represent the optimal control and (2, u®)(t—T; 2% (T; x)), t € [T, 2T rep-
resent the control with u = —k(z) applied where k satisfies (V + L)(x, —k(z)) < 0.
Finally, let (Z(¢),u(t)), t € [0,2T] represent the trajectory obtained by concatenat-
ing the optimal trajectory (%, u%) with the CLF trajectory (z*,u").

We now proceed to show that the inequality (3.10) holds. The cost of using a(-)
for the first T seconds starting from the initial state z%(J;x)), 6 € [0,,T] is given
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T+0
Jr(z7(052), u()) =/5 L(z(7), a(r)) dr + V(&(T + 9))
0
= Jr(z) - /O L(zy (75 ), up(r; 2)) dr = V(27 (T; x))

T46
+/ L(z(1),a(r)) dr + V(Z(T + 9)).
T

Note that the second line is simply a rewriting of the integral in terms of the optimal
cost J7. with the necessary additions and subtractions of the additional portions of
the cost for the interval [0, T + 6]. We can how use the bound

L(&(7),a(r)) < V(&(r), a(r), T e [T, 2T),

which follows from the definition of the CLF V and stabilizing controller k(x). This
allows us to write

0
Jr(x7(6;2),u(-) < Jr(z) —/0 L(zg(7; ), up(r;2)) dr = V(27(T; )

T+6
f/T V(z(r),u(r))dr + V(Z(T +6))

0
= Jr(x) - /0 L(zp(r;2), up(r;2)) dr = V(27(T; x))

T+46
—V@EE)|, T+ VET+ )

4
= Ji(x) —/0 L(zh(r;2),uh(T;2)).

Finally, using the optimality of w}. we have that Ji(zh(0;x)) < Jr(zh(0;x),a(-))
and we obtain equation (3.10). O

An important benefit of receding horizon control is its ability to handle state
and control constraints. While the above theorem provides stability guarantees
when there are no constraints present, it can be modified to include constraints
on states and controls as well. In order to ensure stability when state and control
constraints are present, the terminal cost V() should be a local CLF satisfying
ming,ey V + L(x,u) <0 where U is the set of controls where the control constraints
are satisfied. Moreover, one should also require that the resulting state trajectory
x9LF () € X, where X is the set of states where the constraints are satisfied. (Both
X and U are assumed to be compact with origin in their interior). Of course, the
set €2, will end up being smaller than before, resulting in a decrease in the size of
the guaranteed region of operation (see [MRRS00] for more details).

3.3 Receding Horizon Control Using Differential Flatness

In this section we demonstrate how to use differential flatness to find fast numerical
algorithms for solving the optimal control problems required for the receding hori-
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zon control results of the previous section. We consider the affine nonlinear control
system

&= f(z)+ g(z)u, (3.11)
where all vector fields and functions are smooth. For simplicity, we focus on the
single input case, u € R. We wish to find a trajectory of equation (3.11) that
minimizes the performance index (3.8), subject to a vector of initial, final, and
trajectory constraints

Ibo < tpo(z(to), ulto)) < ubo,
by < tpy(x(ty),ulty)) < uby, (3.12)
by < S(x,u) < uby,

respectively. For conciseness, we will refer to this optimal control problem as

&= f(z) + g(x)u,

3.13
b < c(x,u) < ub. ( )

(l"u)

min J(z, u) subject to {

Numerical Solution Using Collocation

A numerical approach to solving this optimal control problem is to use the direct
collocation method outlined in Hargraves and Paris [HP87]. The idea behind this
approach is to transform the optimal control problem into a nonlinear programming
problem. This is accomplished by discretizing time into a grid of N — 1 intervals

t0:t1<t2<...<tN:tf (314)

and approximating the state x and the control input u as piecewise polynomials
T and u, respectively. Typically a cubic polynomial is chosen for the states and
a linear polynomial for the control on each interval. Collocation is then used at
the midpoint of each interval to satisfy equation (3.11). Let (x(t1), ..., z(tn)) and
w(u(t),...,u(ty)) denote the approximations to x and w, respectively, depending

n (z(ty),....z(ty)) € R™ and (u(ty),...,u(ty)) € RV corresponding to the value
of z and u at the grid points. Then one solves the following finite dimension ap-
proximation of the original control problem (3.13):

f(@(y)) + 9(2(y))aly) = 0,

min, Fy) = J(@(y) a(y))  subject to lb<6< (v), aly)) < ub,

S

! Vit = t+2”1 j=1,...,N—1
(3.15)

where y = (z(t1),u(t1),...,z(tn), u(tn)), and M = dimy = (n+ 1)N.

Seywald [Sey94] suggested an improvement to the previous method (see also [Bry99,
p. 362]). Following this work, one first solves a subset of system dynamics in equa-
tion (3.13) for the the control in terms of combinations of the state and its time
derivative. Then one substitutes for the control in the remaining system dynamics
and constraints. Next all the time derivatives @; are approximated by the finite
difference approximations
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to get
p(Z(t;), x(t;)) =0 o )
q(s*c(to,x(a))so} i=0,.. . N—1

The optimal control problem is turned into

p(E(t), z(t:))
q(z(t:), x(t:))

where y = (x(t1),...,2(ty)), and M = dimy = nN. As with the Hargraves and
Paris method, this parameterization of the optimal control problem (3.13) can be
solved using nonlinear programming.

The dimensionality of this discretized problem is lower than the dimensionality
of the Hargraves and Paris method, where both the states and the input are the
unknowns. This induces substantial improvement in numerical implementation.

0
(3.16)
yERM 0

IN

min F(y) subject to {

Differential Flatness Based Approach

The results of Seywald give a constrained optimization problem in which we wish
to minimize a cost functional subject to n —1 equality constraints, corresponding to
the system dynamics, at each time instant. In fact, it is usually possible to reduce
the dimension of the problem further. Given an output, it is generally possible to
parameterize the control and a part of the state in terms of this output and its
time derivatives. In contrast to the previous approach, one must use more than one
derivative of this output for this purpose.

When the whole state and the input can be parameterized with one output, the
system is differentially flat, as described in Section 1.3. When the parameteriza-
tion is only partial, the dimension of the subspace spanned by the output and its
derivatives is given by r the relative degree of this output [Isi89]. In this case, it is
possible to write the system dynamics as

r=o(z%,...,29)
u=p(z%...,29) (3.17)
B(2,%,...,2"") =0

where z € RP, p > m represents a set of outputs that parameterize the trajectory
and ® : R™ xR™ represents n—r remaining differential constraints on the output. In
the case that the system is flat, » = n and we eliminate these differential constraints.
Unlike the approach of Seywald, it is not realistic to use finite difference ap-
proximations as soon as r > 2. In this context, it is convenient to represent z using
B-splines. B-splines are chosen as basis functions because of their ease of enforcing
continuity across knot points and ease of computing their derivatives. A pictorial
representation of such an approximation is given in Figure 3.2. Doing so we get

pj
2= Bix,()C!,  pj=1i(kj —my)+m;
=1

where Bj i, (t) is the B-spline basis function defined in [dB78] for the output z; with
order kj, C7 are the coefficients of the B-spline, [; is the number of knot intervals,
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collocation point knotpoint

m; at knotpoints defines smoothness

kj — 1 degree polynomial between knotpoints

\J

Figure 3.2: Spline representation of a variable.

and my; is number of smoothness conditions at the knots. The set (21, 22, ..., Zn—r)
is thus represented by M =3,y ..y ., p; coefficients.

In general, w collocation points are chosen uniformly over the time interval
[to,tf] (though optimal knots placements or Gaussian points may also be consid-
ered). Both dynamics and constraints will be enforced at the collocation points.
The problem can be stated as the following nonlinear programming form:

D(2(y), 2(y),....2" " (y) =0

min F subject to 3.18
yERM ) ! { b <c(y) <ub ( )
where
_ 1 1 r4+1 r+1 n n
y—(Cl,...,Cpl,C1 »~~an:;1w~,C1a~~~ann)~

The coefficients of the B-spline basis functions can be found using nonlinear pro-
gramming.

A software package called Nonlinear Trajectory Generation (NTG) has been
written to solve optimal control problems in the manner described above (see [MMMO0]
for details). The sequential quadratic programming package NPSOL by [GMSW] is
used as the nonlinear programming solver in NTG. When specifying a problem to
NTG, the user is required to state the problem in terms of some choice of outputs
and its derivatives. The user is also required to specify the regularity of the vari-
ables, the placement of the knot points, the order and regularity of the B-splines,
and the collocation points for each output.

3.4 Implementation on the Caltech Ducted Fan

To demonstrate the use of the techniques described in the previous section, we
present an implementation of optimization-based control on the Caltech Ducted
Fan, a real-time, flight control experiment that mimics the longitudinal dynamics
of an aircraft. The experiment is show in Figure 3.3.
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Figure 3.3: Caltech ducted fan.

Description of the Caltech Ducted Fan Experiment

The Caltech ducted fan is an experimental testbed designed for research and devel-
opment of nonlinear flight guidance and control techniques for Uninhabited Combat
Aerial Vehicles (UCAVs). The fan is a scaled model of the longitudinal axis of a
flight vehicle and flight test results validate that the dynamics replicate qualities of
actual flight vehicles [MM99].

The ducted fan has three degrees of freedom: the boom holding the ducted fan
is allowed to operate on a cylinder, 2 m high and 4.7 m in diameter, permitting
horizontal and vertical displacements. A counterweight is connected to the vertical
axis of the stand, allowing the effective mass of the fan to be adjusted. Also, the
wing/fan assembly at the end of the boom is allowed to rotate about its center of
mass. Optical encoders mounted on the ducted fan, counterweight pulley, and the
base of the stand measure the three degrees of freedom. The fan is controlled by
commanding a current to the electric motor for fan thrust and by commanding RC
servos to control the thrust vectoring mechanism.

The sensors are read and the commands sent by a DSP-based multi-processor
system, comprised of a D/A card, a digital I/O card, two Texas Instruments C40
signal processors, two Compaq Alpha processors, and a high-speed host PC inter-
face. A real-time interface provides access to the processors and 1/0O hardware. The
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NTG software resides on both of the Alpha processors, each capable of running
real-time optimization.

The ducted fan is modeled in terms of the position and orientation of the fan,
and their velocities. Letting x represent the horizontal translation, z the vertical
translation and 6 the rotation about the boom axis, the equations of motion are
given by

mZ + Fx, — Fx, cosf — Fz, sinf =0,

mz+ Fz, + Fx, sin0 — Fz, cos) = mges, (3.19)

JO— M, + %Iinc cos — Fzry =0,

where F'x, = Dcosvy + Lsiny and Fz, = —Dsiny + Lcos~y are the aerodynamic
forces and Flx, and Fy, are thrust vectoring body forces in terms of the lift (L),
drag (D), and flight path angle (7). I, and € are the moment of inertia and angular
velocity of the ducted fan propeller, respectively. J is the moment of ducted fan and
¢ is the distance from center of mass along the X axis to the effective application
point of the thrust vectoring force. The angle of attack a can be derived from the
pitch angle 6 and the flight path angle + by

a=0-—r.

The flight path angle can be derived from the spatial velocities by

vy = arctan —.
T

The lift (L) ,drag (D), and moment (M) are given by
L =¢S5CL(a) D =¢SCp(a) M = eSChy(a),

respectively. The dynamic pressure is given by g = % pV2. The norm of the velocity is
denoted by V', S the surface area of the wings, and p is the atmospheric density. The
coefficients of lift (Cr(«)), drag (Cp(c)) and the moment coefficient (Cps(v)) are
determined from a combination of wind tunnel and flight testing and are described
in more detail in [MM99], along with the values of the other parameters.

Real-Time Trajectory Generation

In this section we describe the implementation of the trajectory generation al-
gorithms by using NTG to generate minimum time trajectories in real time. An
LQR-based regulator is used to stabilize the system. We focus in this section on
aggressive, forward flight trajectories. The next section extends the controller to
use a receding horizon controller, but on a simpler class of trajectories.

Stabilization Around Reference Trajectory

The results in this section rely on the traditional two degree of freedom design
paradigm described in Chapter 1. In this approach, a local control law (inner loop)
is used to stabilize the system around the trajectory computed based on a nominal
model. This compensates for uncertainties in the model, which are predominantly
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due to aerodynamics and friction. Elements such as the ducted fan flying through
its own wake, ground effects and velocity- and angle-of-attack dependent thrust
contribute to the aerodynamic uncertainty. Actuation models are not used when
generating the reference trajectory, resulting in another source of uncertainty.

Since only the position of the fan is measured, we must estimate the velocities.
We use an extended Kalman filter (described in later chapters) with the optimal
gain matrix is gain scheduled on the (estimated) forward velocity.

The stabilizing LQR controllers were gain scheduled on pitch angle, 6, and the
forward velocity, @. The pitch angle was allowed to vary from —7/2 to 7/2 and the
velocity ranged from 0 to 6 m/s. The weights were chosen differently for the hover-
to-hover and forward flight modes. For the forward flight mode, a smaller weight
was placed on the horizontal (x) position of the fan compared to the hover-to-hover
mode. Furthermore, the z weight was scheduled as a function of forward velocity
in the forward flight mode. There was no scheduling on the weights for hover-to-
hover. The elements of the gain matrices for each of the controller and observer are
linearly interpolated over 51 operating points.

Nonlinear Trajectory Generation Parameters

We solve a minimum time optimal control problem to generate a feasible trajectory
for the system. The system is modeled using the nonlinear equations described
above and computed the open loop forces and state trajectories for the nominal
system. This system is not known to be differentially flat (due to the aerodynamic
forces) and hence we cannot completely eliminate the differential constraints.

We choose three outputs, z;1 = z, 2o = 2z, and 23 = 6, which results in a
system with one remaining differential constraint. Each output is parameterized
with four, sixth order C* piecewise polynomials over the time interval scaled by the
minimum time. A fourth output, z4 = T, is used to represent the time horizon to
be minimized and is parameterized by a scalar. There are a total of 37 variables in
this optimization problem. The trajectory constraints are enforced at 21 equidistant
breakpoints over the scaled time interval.

There are many considerations in the choice of the parameterization of the
outputs. Clearly there is a trade between the parameters (variables, initial values
of the variables, and breakpoints) and measures of performance (convergence, run-
time, and conservative constraints). Extensive simulations were run to determine
the right combination of parameters to meet the performance goals of our system.

Forward Flight

To obtain the forward flight test data, an operator commanded a desired forward
velocity and vertical position with joysticks. We set the trajectory update time ¢ to
2 seconds. By rapidly changing the joysticks, NTG produces high angle of attack
maneuvers. Figure 3.4aa depicts the reference trajectories and the actual 6 and @
over 60 s. Figure 3.4b shows the commanded forces for the same time interval. The
sequence of maneuvers corresponds to the ducted fan transitioning from near hover
to forward flight, then following a command from a large forward velocity to a large
negative velocity, and finally returning to hover.
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Figure 3.4: Forward flight test case: (a)  and @ desired and actual, (b) desired
Fx, and Fz, with bounds.
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Figure 3.5: Forward flight test case: altitude and z position (actual (solid) and
desired (dashed)). Airfoil represents actual pitch angle (#) of the ducted fan.

Figure 3.5 is an illustration of the ducted fan altitude and z position for these
maneuvers. The air-foil in the figure depicts the pitch angle (6). It is apparent from
this figure that the stabilizing controller is not tracking well in the z direction. This
is due to the fact that unmodeled frictional effects are significant in the vertical
direction. This could be corrected with an integrator in the stabilizing controller.

An analysis of the run times was performed for 30 trajectories; the average com-
putation time was less than one second. Each of the 30 trajectories converged to
an optimal solution and was approximately between 4 and 12 seconds in length.
A random initial guess was used for the first NTG trajectory computation. Sub-
sequent NTG computations used the previous solution as an initial guess. Much
improvement can be made in determining a “good” initial guess. Improvement in
the initial guess will improve not only convergence but also computation times.
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Receding Horizon Control

The results of the previous section demonstrate the ability to compute optimal
trajectories in real time, although the computation time was not sufficiently fast
for closing the loop around the optimization. In this section, we make use of a
shorter update time ¢, a fixed horizon time T with a quadratic integral cost, and
a CLF terminal cost to implement the receding horizon controller described in
Section 3.2. We also limit the operation of the system to near hover, so that we can
use the local linearization to find the terminal CLF.

We have implemented the receding horizon controller on the ducted fan exper-
iment where the control objective is to stabilize the hover equilibrium point. The
quadratic cost is given by

2 (3.20)
V(z) = v2' P
where .
T=0—2eg = (v,2,0 —7/2,%,%,0)
U=u—ue = (Fx, —mg, Fz,)

Q = diag{4,15,4,1,3,0.3}
R = diag{0.5,0.5},

For the terminal cost, we choose v = 0.075 and P is the unique stable solution to
the algebraic Riccati equation corresponding to the linearized dynamics of equa-
tion (3.19) at hover and the weights @ and R. Note that if v = 1/2, then V(+) is the
CLF for the system corresponding to the LQR problem. Instead V is a relaxed (in
magnitude) CLF, which achieved better performance in the experiment. In either
case, V is valid as a CLF only in a neighborhood around hover since it is based
on the linearized dynamics. We do not try to compute off-line a region of attrac-
tion for this CLF. Experimental tests omitting the terminal cost and/or the input
constraints leads to instability. The results in this section show the success of this
choice for V for stabilization. An inner-loop PD controller on 9,9 is implemented
to stabilize to the receding horizon states 03, 6%.. The 6 dynamics are the fastest
for this system and although most receding horizon controllers were found to be
nominally stable without this inner-loop controller, small disturbances could lead
to instability.

The optimal control problem is set-up in NTG code by parameterizing the three
position states (x, z,6), each with 8 B-spline coefficients. Over the receding horizon
time intervals, 11 and 16 breakpoints were used with horizon lengths of 1, 1.5, 2,
3, 4 and 6 seconds. Breakpoints specify the locations in time where the differential
equations and any constraints must be satisfied, up to some tolerance. The value
of Fg* for the input constraints is made conservative to avoid prolonged input
saturation on the real hardware. The logic for this is that if the inputs are saturated
on the real hardware, no actuation is left for the inner-loop 6 controller and the
system can go unstable. The value used in the optimization is Fi¢** =9 N.

Computation time is non-negligible and must be considered when implementing
the optimal trajectories. The computation time varies with each optimization as



3.4. IMPLEMENTATION ON THE CALTECH DUCTED FAN 3-19

Legend

---computed -3 applied — unused

Input Se(i) dc(it+1)
iy (i-1)
X
— == — _ \/
NN o ,M (i+1)
sl —
computation computation r (1)
(i) (i+1)
time
ti ti+1 ti+2

Figure 3.6: Receding horizon input trajectories.

the current state of the ducted fan changes. The following notational definitions
will facilitate the description of how the timing is set-up:

i Integer counter of RHC computations
t; Value of current time when RHC computation 4 started
0c(1) Computation time for computation 4

uwi(7)(t) Optimal output trajectory corresponding to computation
i, with time interval ¢ € [t;,t; + T

A natural choice for updating the optimal trajectories for stabilization is to do so
as fast as possible. This is achieved here by constantly resolving the optimization.
When computation ¢ is done, computation ¢ 4+ 1 is immediately started, so t;41 =
t; + 0.(7). Figure 3.6 gives a graphical picture of the timing set-up as the optimal
input trajectories wi.(-) are updated. As shown in the figure, any computation
i for wh(i)(-) occurs for t € [t;,t;+1] and the resulting trajectory is applied for
t € [tig1,tiyo]. At t = t; 41 computation i + 1 is started for trajectory wi(i + 1)(-),
which is applied as soon as it is available (¢ = ¢;y2). For the experimental runs
detailed in the results, d.(7) is typically in the range of [0.05, 0.25] seconds, meaning
4 to 20 optimal control computations per second. Each optimization ¢ requires the
current measured state of the ducted fan and the value of the previous optimal
input trajectories uf.(i — 1) at time ¢ = ¢;. This corresponds to, respectively, 6
initial conditions for state vector x and 2 initial constraints on the input vector w.
Figure 3.6 shows that the optimal trajectories are advanced by their computation
time prior to application to the system. A dashed line corresponds to the initial
portion of an optimal trajectory and is not applied since it is not available until that
computation is complete. The figure also reveals the possible discontinuity between
successive applied optimal input trajectories, with a larger discontinuity more likely
for longer computation times. The initial input constraint is an effort to reduce
such discontinuities, although some discontinuity is unavoidable by this method.
Also note that the same discontinuity is present for the 6 open-loop optimal state
trajectories generated, again with a likelihood for greater discontinuity for longer
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Figure 3.7: Receding horizon control: (a) moving one second average of compu-
tation time for RHC implementation with varying horizon time, (b) response of
RHC controllers to 6 meter offset in « for different horizon lengths.

computation times. In this description, initialization is not an issue because we
assume the receding horizon computations are already running prior to any test
runs. This is true of the experimental runs detailed in the results.

The experimental results show the response of the fan with each controller to a
6 meter horizontal offset, which is effectively engaging a step-response to a change
in the initial condition for x. The following details the effects of different receding
horizon control parameterizations, namely as the horizon changes, and the responses
with the different controllers to the induced offset.

The first comparison is between different receding horizon controllers, where
time horizon is varied to be 1.5, 2.0, 3.0, 4.0 or 6.0 seconds. Each controller uses 16
breakpoints. Figure 3.7a shows a comparison of the average computation time as
time proceeds. For each second after the offset was initiated, the data correspond
to the average run time over the previous second of computation. Note that these
computation times are substantially smaller than those reported for real-time tra-
jectory generation, due to the use of the CLF terminal cost versus the terminal
constraints in the minimum-time, real-time trajectory generation experiments.

There is a clear trend toward shorter average computation times as the time
horizon is made longer. There is also an initial transient increase in average compu-
tation time that is greater for shorter horizon times. In fact, the 6 second horizon
controller exhibits a relatively constant average computation time. One explanation
for this trend is that, for this particular test, a 6 second horizon is closer to what
the system can actually do. After 1.5 seconds, the fan is still far from the desired
hover position and the terminal cost CLF is large, likely far from its region of at-
traction. Figure 3.7b shows the measured x response for these different controllers,
exhibiting a rise time of 89 seconds independent of the controller. So a horizon
time closer to the rise time results in a more feasible optimization in this case.
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3.5 Further Reading

Exercises

3.1 Consider a nonlinear control system

&= f(z,u)

with linearization
T = Az + Bu.

Show that if the linearized system is reachable, then there exists a (local) control
Lyapunov function for the nonlinear system. (Hint: start by proving the result for
a stable system.)

3.2 In this problem we will explore the effect of constraints on control of the linear
unstable system given by

(tl = 08.%1 - O5.’£2 + 0.5u

o = x1 + 0.5u
subject to the constraint that |u| < a where a is a postive constant.

(a) Ignore the constraint (¢ = co) and design an LQR controller to stabilize the
system. Plot the response of the closed system from the initial condition given by
x = (1,0).

(b) Use SIMULINK or ode45 to simulate the system for some finite value of a
with an initial condition z(0) = (1,0). Numerically (trial and error) determine the
smallest value of a for which the system goes unstable.

(¢) Let amin(p) be the smallest value of a for which the system is unstable from
x(0) = (p,0). Plot amin(p) for p =1, 4, 16, 64, 256.

(d) Optional: Given a > 0, design and implement a receding horizon control law for
this system. Show that this controller has larger region of attraction than the con-
troller designed in part (b). (Hint: solve the finite horizon LQ problem analytically,
using the bang-bang example as a guide to handle the input constraint.)

3.3 Consider the optimal control problem given in Example 2.2:

tf
& = ax + bu, Jzé/ u(t) dt + Sea®(ty),

to
where z € R is a scalar state, u € R is the input, the initial state z(to) is given,
and a,b € R are positive constants. We take the terminal time ¢ as given and let
¢ > 0 be a constant that balances the final value of the state with the input required
to get to that position. The optimal control for a finite time 7" > 0 is derived in
Example 2.2. Now consider the infinite horizon cost

J= %/t u?(t) dt
0

with z(t) at t = co constrained to be zero.
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(a) Solve for u*(t) = —bPx*(t) where P is the positive solution corresponding
to the algebraic Riccati equation. Note that this gives an explicit feedback law
(u = —bPx).

(b) Plot the state solution of the finite time optimal controller for the following
parameter values

a=2 b=0.5 x(tg) =4

c=01,10 t; =05, 1,10

(This should give you a total of 6 curves.) Compare these to the infinite time optimal
control solution. Which finite time solution is closest to the infinite time solution?
Why?

Using the solution given in equation (2.5), implement the finite-time optimal
controller in a receding horizon fashion with an update time of § = 0.5. Using
the parameter values in part (b), compare the responses of the receding horizon
controllers to the LQR controller you designed for problem 1, from the same initial
condition. What do you observe as ¢ and ¢y increase?

(Hint: you can write a MATLAB script to do this by performing the following
steps:

(i) set to =0

(ii) using the closed form solution for z* from problem 1, plot z(t), t € [to,ts] and
save x5 = x(to + 9)

(iii) set x(tp) = xs and repeat step (ii) until = is small.)

3.4 In this problem we will explore the effect of constraints on control of the linear
unstable system given by

.’tl = 08$1 — 05552 + 05U, (tg =2+ 05u,
subject to the constraint that |u| < a where a is a postive constant.

(a) Ignore the constraint (¢ = co) and design an LQR controller to stabilize the
system. Plot the response of the closed system from the initial condition given by
x = (1,0).

(b) Use SIMULINK or ode45 to simulate the system for some finite value of a
with an initial condition x(0) = (1, 0). Numerically (trial and error) determine the
smallest value of a for which the system goes unstable.

(¢) Let amin(p) be the smallest value of a for which the system is unstable from
2(0) = (p,0). Plot amin(p) for p =1, 4, 16, 64, 256.

(d) Optional: Given a > 0, design and implement a receding horizon control law for
this system. Show that this controller has larger region of attraction than the con-
troller designed in part (b). (Hint: solve the finite horizon LQ problem analytically,
using the bang-bang example as a guide to handle the input constraint.)



Chapter 4

Stochastic Systems

In this chapter we present a focused overview of stochastic systems, oriented toward
the material that is required in Chapters 5 and 6. After a brief review of random
variables, we define discrete-time and continuous-time random processes, including
the expectation, (co-)variance and correlation functions for a random process. These
definitions are used to describe linear stochastic systems (in continuous time) and
the stochastic response of a linear system to a random process (e.g., noise). We
initially derive the relevant quantities in the state space, followed by a presentation
of the equivalent frequency domain concepts.

Prerequisites. Readers should be familiar with basic concepts in probability, in-
cluding random variables and standard distributions. We do not assume any prior
familiarity with random processes.

Caveats. This chapter is written to provide a brief introduction to stochastic pro-
cesses that can be used to derive the results in the following chapters. In order to
keep the presentation compact, we gloss over several mathematical details that are
required for rigorous presentation of the results. A more detailed (and mathemati-
cally precise) derivation of this material is available in the book by Astrém [Ast06].

4.1 Brief Review of Random Variables

To help fix the notation that we will use, we briefly review the key concepts of
random variables. A more complete exposition is available in standard books on
probability, such as Hoel, Port and Stone [HPS71].

Random variables and processes are defined in terms of an underlying proba-
bility space that captures the nature of the stochastic system we wish to study. A
probability space has three elements:

e a sample space € that represents the set of all possible outcomes;

e a set of events F the captures combinations of elementary outcomes that are
of interest; and

e a probability measure P that describes the likelihood of a given event occur-
ring.

Q) can be any set, either with a finite, countable or infinite number of elements. The
event space F consists of subsets of 2. There are some mathematical limits on the
properties of the sets in F, but these are not critical for our purposes here. The
probability measure P is a mapping from P : F — [0, 1] that assigns a probability
to each event. It must satisfy the property that given any two disjoint set A, B C F,
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P(AUB) = P(A) + P(B). The term probability distribution is also to describe a
probability measure.

With these definitions, we can model many different stochastic phenomena.
Given a probability space, we can choose samples w € Q and identify each sam-
ple with a collection of events chosen from F. These events should correspond to
phenomena of interest and the probability measure P should capture the likelihood
of that even occurring in the system that we are modeling. This definition of a
probability space is very general and allows us to consider a number of situations
as special cases.

A random variable X is a function X :  — S that gives a value in S, called
the state space, for any sample w € €. Given a subset A C S, we can write the
probability that X € A as

P(XeA)=PweQ: X(w)ecA).

We will often find it convenient to omit w when working random variables and
hence we write X € S rather than the more correct X (w) € S.

A continuous (real-valued) random variable X is a variable that can take on any
value in the set of real numbers R. We can model the random variable X according
to its probability distribution P:

P(x; < X < a,) = probability that = takes on a value in the range x;, x,,.

More generally, we write P(A) as the probability that an event A will occur (e.g.,
A={z <X <uz,}). It follows from the definition that if X is a random variable
in the range [L,U] then P(L < X < U) = 1. Similarly, if Y € [L,U] then P(L <
X<Y)=1-PY <X<<U).

We characterize a random variable in terms of the probability density function
(pdf) p(x). The density function is defined so that its integral over an interval gives
the probability that the random variable takes its value in that interval:

Pla < X < ay) = /w p(z)dz. (4.1)

It is also possible to compute p(z) given the distribution P as long as the distribu-
tion is suitably smooth:

OP(x; <x <uwm,)
0xy

p(x) = 2, fixed, x> x.

Ty = T,

We will sometimes write px(x) when we wish to make explicit that the pdf is
associated with the random variable X. Note that we use capital letters to refer to
a random variable and lower case letters to refer to a specific value.

Probability distributions provide a general way to describe stochastic phenom-
ena. Some standard probability distributions include a uniform distribution,

p(z) = (4.2)




4.1. BRIEF REVIEW OF RANDOM VARIABLES 4-3

b p(x) p(z)
o
\
L U I
(a) Uniform distribution (b) Gaussian distribution

Figure 4.1: Probability density function (pdf) for uniform and Gaussian distri-
butions.

and a Gaussian distribution (also called a normal distribution),

1)
p(x) Wc . (4.3)
In the Gaussian distribution, the parameter p is called the mean of the distribution
and o is called the standard deviation of the distribution. Figure 4.1 gives a graph-
ical representation of uniform and Gaussian pdfs. There many other distributions
that arise in applications, but for the purpose of these notes we focus on uniform
distributions and Gaussian distributions.

If two random variables are related, we can talk about their joint probability
distribution: Px y (A, B) is the probability that both event A occurs for X and B
occurs for Y. This is sometimes written as P(A N B), where we abuse notation
by implicitly assuming that A is associated with X and B with Y. For continuous
random variables, the joint probability distribution can be characterized in terms
of a joint probability density function

Yu Loy
P <X <aw <Y <yu) = / / p(z, y) dzdy. (4.4)
Yt Ty

The joint pdf thus describes the relationship between X and Y, and for sufficiently
smooth distributions we have

PP <X <y, i <Y < )

( ) xr > x,
T,y) =
Py 3%&%

T, Y ﬁxed, Yy >y
Ly =Ty Yu =Y,

We say that X and Y are independent if p(x,y) = p(x)p(y), which implies that
Px y (A, B) = Px(A)Py(B) for events A associated with X and B associated with
Y. Equivalently, P(AN B) = P(A)P(B) if A and B are independent.

The conditional probability for an event A given that an event B has occurred,
written as P(A|B), is given by

P(ANB)
P(B)
If the events A and B are independent, then P(A|B) = P(A). Note that the

individual, joint and conditional probability distributions are all different, so we
should really write Px y (AN B), Px|y(A|B) and Py (B).

P(A|B) = (4.5)
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If X is dependent on Y then Y is also dependent on X. Bayes’ theorem relates
the conditional and individual probabilities:

P(BJA)P(A)

P(AIB) = =

P(B) #0. (4.6)
Bayes’ theorem gives the conditional probability of event A on event B given the
inverse relationship (B given A). It can be used in situations in which we wish to
evaluate a hypothesis H given data D when we have some model for how likely the
data is given the hypothesis, along with the unconditioned probabilities for both
the hypothesis and the data.

The analog of the probability density function for conditional probability is the
conditional probability density function p(x|y)

p(x,y)

0<ply) <oo
p(zly) =9 PW) ) (4.7)
0 otherwise.
It follows that
p(z,y) = p(z|y)p(y) (4.8)
and
Plr; < X <ayly) == Pla < X <a,]Y =)
I pla, y)da (4.9)
= p(zly)de = —————.
o p(y)

If X and Y are independent than p(x|y) = p(x) and p(y|z) = p(y). Note that
p(z,y) and p(z|y) are different density functions, though they are related through
equation (4.8). If X and Y are related with joint probability density function p(z, y)
and conditional probability density function p(z|y) then

o) = [ " play)dy = / " plaly)p(y)dy.

— 00 — 00

Example 4.1 Conditional probability for sum
Consider three random variables X, Y and Z related by the expression

Z=X+Y.

In other words, the value of the random variable Z is given by choosing values
from two random variables X and Y and adding them. We assume that X and
Y are independent Gaussian random variables with mean p; and ps and standard
deviation o = 1 (the same for both variables).

Clearly the random variable Z is not independent of X (or Y') since if we know
the values of X then it provides information about the likely value of Z. To see
this, we compute the joint probability between Z and X. Let

A={y <z <uz,}, B={z<z<z}
The joint probability of both events A and B occurring is given by

Pxz(ANB) =Pz <z <ay, 51 <x4+y < 2y)
=Plx<z<wzy, z1—x<y<z,—1).
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We can compute this probability by using the probability density functions for X

and Y:
P(ANB) = /xu (/:_j py(y)dy)px(%)dm

xT

l
= / / py (z — 2)px (x)dzdx =: / / pz x (2, x)dzrdz.
x 21 Zl x

Using Gaussians for X and Y we have

L s—e—py)” L —J(r—px)
Z,r) = —F——e 2 : 2

pZ,X( ) \/ﬂ m

_ 1 (=)’ + (2 px)?)

2w

A similar expression holds for pzy. A\

Given a random variable X, we can define various standard measures of the
distribution. The expectation or mean of a random variable is defined as

and the mean square of a random variable is

oo

E[X?] = (X?) :/ 22 p(z) de.

—00

If we let u represent the expectation (or mean) of X then we define the variance of
X as ~
E[(X — p)?] = (X = (X))?) :/ (= p)? p(z) da.
—0o0
We will often write the variance as ¢2. As the notation indicates, if we have a
Gaussian random variable with mean p and (stationary) standard deviation o,
then the expectation and variance as computed above return u and o2.
Several useful properties follow from the definitions.

Proposition 4.1 (Properties of random variables).

1. If X is a random variable with mean . and variance o2, then aX is random
variable with mean oX and variance ao?.

2. If X and Y are two random variables, then ElaX + Y] = aE[X] + SE[Y].

3. If X and Y are Gaussian random variables with means px , iy and variances

2 2
Ox,; Oy,

(z) = () (y) = 1 ()
pe= \/2mo% 7 = \/2mo% ’

then X +Y s a Gaussian random variable with mean py = px + py and

i 2 _ 52 2
variance 0y = 0y + 0y,

1 _%<w+y7uz>2
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Proof. The first property follows from the definition of mean and variance:

EjaX] = /OO az p(z) dr = a/m az p(z) dz = aE[X]

E[(aX)?] = /_OO (ox)? p(x) do = o /_OO 22 p(z) de = *E[X?].

The second property follows similarly, remembering that we must take the expecta-
tion using the joint distribution (since we are evaluating a function of two random
variables):

ElaX + gY] = /oo /oo (ax + By) px,y (2, y) dedy

—a/ / xpxyxyda:dy—i—ﬁ/ / ypx,y(x,y) dedy

fa/i xpx()derﬁ/ ypy (y) dy = oE[X] + FE[Y].

The third item is left as an exercise. O

4.2 Introduction to Random Processes

A random process is a collection of time-indexed random variables. Formally, we
consider a random process X to be a joint mapping of sample and a time to a state:
X :Qx7T — S, where 7 is an appropriate time set. We view this mapping as a
generalized random variable: a sample corresponds to choosing an entire function
of time. Of course, we can always fix the time and interpret X (w,t) as a regular
random variable, with X (w,t') representing a different random variable if ¢ # ¢'.
Our description of random processes will consist of describing how the random
variable at a time ¢ relates to the value of the random variable at an earlier time s.
To build up some intuition about random processes, we will begin with the discrete
time case, where the calculations are a bit more straightforward, and then proceed
to the continuous time case.

A discrete-time random process is a stochastic system characterized by the evo-
lution of a sequence of random variables X [k], where k is an integer. As an example,
consider a discrete-time linear system with dynamics

xzlk + 1] = Az[k] + Bulk] + Fwlk], ylk] = Cz[k] + v[k]. (4.10)

As in AMO08, = € R™ represents the state of the system, u € R™ is the vector of
inputs and y € RP is the vector of outputs. The (possibly vector-valued) signal
w represents disturbances to the process dynamics and v represents noise in the
measurements. To try to fix the basic ideas, we will take u = 0, n = 1 (single state)
and F' =1 for now.

We wish to describe the evolution of the dynamics when the disturbances and
noise are not given as deterministic signals, but rather are chosen from some proba-
bility distribution. Thus we will let W k] be a collection of random variables where
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the values at each instant k are chosen from the probability distribution P[W,k].
As the notation indicates, the distributions might depend on the time instant k,
although the most common case is to have a stationary distribution in which the
distributions are independent of k (defined more formally below).

In addition to stationarity, we will often also assume that distribution of values
of W at time k is independent of the values of W at time [ if k # [. In other words,
W k] and W] are two separate random variables that are independent of each
other. We say that the corresponding random process is uncorrelated (also defined
more formally below). As a consequence of our independence assumption, we have
that

2 —
BIW W (1] = BV [K](k ~ 1) = {f[W e

In the case that Wk] is a Gaussian with mean zero and (stationary) standard
deviation o, then E[W[k]W[l]] = o2 6(k —1).

We next wish to describe the evolution of the state z in equation (4.10) in the
case when W is a random variable. In order to do this, we describe the state = as a
sequence of random variables X [k], k = 1,--- , N. Looking back at equation (4.10),
we see that even if Wk] is an uncorrelated sequence of random variables, then the
states X [k] are not uncorrelated since

X[k +1) = AX[k] + FW[k],

and hence the probability distribution for X at time k 4+ 1 depends on the value
of X at time k (as well as the value of W at time k), similar to the situation in
Example 4.1.

Since each X [k] is a random variable, we can define the mean and variance as
ulk] and o?[k] using the previous definitions at each time k:

pli) = B (K] = | " zp(e, k) da,

1K) = BICC — k2] = [ (o= ulb])? plo )

— 0o

To capture the relationship between the current state and the future state, we define
the correlation function for a random process as

o0

pk1, k2) = B[X k1] X [ko]] :/ 122 p(X1, T2 k1, ko) doidao

— 00

The function p(x;, x;; k1, k2) is the joint probability density function, which depends
on the times k1 and ks. A process is stationary if p(z,k + d) = p(x,d) for all k,
p(xi, xj3 k1 +d, ko + d) = p(x;, z5; k1, kz), ete. In this case we can write p(x;, z;; d)
for the joint probability distribution. We will almost always restrict to this case.
Similarly, we will write p(k1, k2) as p(d) = p(k, k + d).

We can compute the correlation function by explicitly computing the joint pdf
(see Example 4.1) or by directly computing the expectation. Suppose that we take
a random process of the form (4.10) with x[0] = 0 and W having zero mean and
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standard deviation o. The correlation function is given by

k1—1 ko—1
E[X k1] X[ko]) = B{ (Y A"~ BW) (Y- A%~ BWj)) }
i=0 Jj=0
k1—1ko—1
- E{ 3 A’“l*iBW[i]W[j]BA’“H}.

i=0 j=0

We can now use the linearity of the expectation operator to pull this inside the
summations:

k1—1ko—1
E[X [k X[ko)] = > Y AMTIBEWi|W[j]| BA*=

i=0 j=0
k1—1ko—1

=Y Y AMT'Bo®§(i — j)BA*
i=0 j=0
ki—1

=Y _ AMTBo?BAk
i=0

Note that the correlation function depends on ki and ko.

We can see the dependence of the correlation function on the time more clearly
by letting d = ko — k1 and writing

p(k,k+d) = E[X[k] X[k +d]] = Z Ak—i g 2B AdtE—i
i=0
=Y 4Bo*BaT = (3 A1 B2 BAT) A"
Jj=1 j=1

In particular, if the discrete time system is stable then |A| < 1 and the correla-
tion function decays as we take points that are further departed in time (d large).
Furthermore, if we let k& — oo (i.e., look at the steady state solution) then the
correlation function only depends on d (assuming the sum converges) and hence
the steady state random process is stationary.

In our derivation so far, we have assumed that X[k + 1] only depends on the
value of the state at time k (this was implicit in our use of equation (4.10) and the
assumption that Wk] is independent of X). This particular assumption is known
as the Markov property for a random process: a Markovian process is one in which
the distribution of possible values of the state at time k depends only on the values
of the state at the prior time and not earlier. Written more formally, we say that a
discrete random process is Markovian if

pxr(el X[k — 1, X[k — 2,....X[0) = pxxr(X[k - 1]). (411)

Markov processes are roughly equivalent to state space dynamical systems, where
the future evolution of the system can be completely characterized in terms of the
current value of the state (and not it history of values prior to that).
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4.3 Continuous-Time, Vector-Valued Random Processes

We now consider the case where our time index is no longer discrete, but instead
varies continuously. A fully rigorous derivation requires careful use of measure the-
ory and is beyond the scope of this text, so we focus here on the concepts that will
be useful for modeling and analysis of important physical properties.

A continuous-time random process is a stochastic system characterized by the
evolution of a random variable X (¢), t € [0,T]. We are interested in understanding
how the (random) state of the system is related at separate times. The process is
defined in terms of the “correlation” of X (¢;) with X (t2).

We call X (t) € R" the state of the random process at time ¢. For the case n > 1,
we have a vector of random processes:

We can characterize the state in terms of a (vector-valued) time-varying pdf,

Loy

Pz < X;(t) < ) :/ px, (z;t)dz.

Ty

Note that the state of a random process is not enough to determine the next state
(otherwise it would be a deterministic process). We typically omit indexing of the
individual states unless the meaning is not clear from context.

We can characterize the dynamics of a random process by its statistical charac-
teristics, written in terms of joint probability density functions:

P(zy < Xi(t) < 1w, 29 < Xj(t2) < 224)

T2y Tl
:/ / Px.,v: (21, w25 t1, t2) doyday
T2l Tl

The function p(z;, z;; 1, t2) is called a joint probability density function and depends
both on the individual states that are being compared and the time instants over
which they are compared. Note that if ¢ = j, then px, x, describes how X; at time
t1 is related to X; at time t».

In general, the distributions used to describe a random process depend on the
specific time or times that we evaluate the random variables. However, in some cases
the relationship only depends on the difference in time and not the absolute times
(similar to the notion of time invariance in deterministic systems, as described
in AMO8). A process is stationary if p(z,t + 1) = p(x,t) for all 7, p(z;, 3t +
T,to + 7) = p(a;, ;5 t1,t2), ete. In this case we can write p(z;,x;;7) for the joint
probability distribution. Stationary distributions roughly correspond to the steady
state properties of a random process and we will often restrict our attention to this
case.

In looking at biomolecular systems, we are going to be interested in random
processes in which the changes in the state occur when a random event occurs (such
as a molecular reaction or binding event). In this case, it is natural to describe the
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state of the system in terms of a set of times to < t; < to < -+ < t,, and X (¢t;)
is the random variable that corresponds to the possible states of the system at
time ¢;. Note that time time instants do not have to be uniformly spaced and most
often (for biomolecular systems) they will not be. All of the definitions above carry
through, and the process can now be described by a probability distribution of the
form

P(X(ti) € |wi, oy +dzg],i=1,. .. n) =

/"'/p(xnaxn—lw--7m0;tnatn—17~-~7t0)dxndxn—1 del,

where dx; are taken as infinitesimal quantities.

An important class of stochastic systems is those for which the next state of the
system depends only on the current state of the system and not the history of the
process. Suppose that

P(X(tn) € [Tn, 0 + dn| X (1) € [ws, 25 +dai]|i=1,...,n — 1)
= P(X(tn) € [Tn,xn + dz,]| X (tn-1) € [Tn-1,Tn-1 +drp_1]). (4.12)

That is, the probability of being in a given state at time ¢,, depends only on the
state that we were in at the previous time instant ¢,,_; and not the entire history
of states prior to t,_1. A stochastic process that satisfies this property is called a
Markov process.

In practice we do not usually specify random processes via the joint probabil-
ity distribution p(z;, z;;t1,t2) but instead describe them in terms of a propogater
function. Let X (t) be a Markov process and define the Markov propogater as

E(dt;x,t) = X(t+dt) — X(t), given X () = x.

The propogater function describes how the random variable at time ¢ is related to
the random variable at time ¢ + dt. Since both X (¢ + dt) and X (¢) are random
variables, Z(dt; x,t) is also a random variable and hence it can be described by its
density function, which we denote as II(&, x; dt, t):
z+&
Plz<X(t+dt)<z+§) = / H(dz, x; dt, t) d.
xT
The previous definitions for mean, variance and correlation can be extended to
the continuous time, vector-valued case by indexing the individual states:

[E{X1(t)}
E{X(t)} = : =: u(t)
L E{ X (1)}
(E{Xi()X:(t)} ... E{Xi(H)X.(t)}
B{(X(t) = p(®)(X(t) = u(t)"} = : =: (1)
L E{X, (1) Xn(t)}
[E{Xi(t)X1(s)} ... E{X1(t)Xa(s)}
BE{X(t)X"(s)} = : =: R(t,s)
I E{ X0 () Xn(s)}
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p(t1 — t2)

‘ T:tlftg

Figure 4.2: Correlation function for a first-order Markov process.

Note that the random variables and their statistical properties are all indexed by the
time ¢ (and s). The matrix R(t,s) is called the correlation matriz for X (t) € R™.
If ¢ = s then R(t,t) describes how the elements of x are correlated at time ¢
(with each other) and in the case that the processes have zero mean, R(t,t) =
Y(t). The elements on the diagonal of 3(t) are the variances of the corresponding
scalar variables. A random process is uncorrelated if R(t,s) = 0 for all ¢ # s. This
implies that X (¢) and X(s) are independent random events and is equivalent to
pxy(2,y) = px(z)py (y).

If a random process is stationary, then it can be shown that R(t + 7,5 + 7) =
R(t, s) and it follows that the correlation matrix depends only on ¢ — s. In this case
we will often write R(t,s) = R(s—t) or simple R(7) where 7 is the correlation time.
The correlation matrix in this case is simply R(0).

In the case where X is also scalar random process, the correlation matrix is
also a scalar and we will write p(7), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar random processes, the correla-
tion function depends only on the absolute value of the correlation function, so
p(1) = p(—=7) = p(|7|). This property also holds for the diagonal entries of the
correlation matrix since R;;(s,t) = Ry;(t, s) from the definition.

Example 4.2 Ornstein-Uhlenbeck process
Consider a scalar random process defined by a Gaussian pdf with u = 0,

(0,0) = S—ge b8
p\x, = € 77y
V2mo?
and a correlation function given by
Q  _uoltam
ti,t) = ~Lewolta—tal,
p(t1,t2) 20

The correlation function is illustrated in Figure 4.2. This process is also known
as an Ornstein-Uhlenbeck process, a term that is commonly used in the scientific
literature. This is a stationary process. \Y%

The terminology and notation for covariance and correlation varies between
disciplines. The term covariance is often used to refer to both the relationship be-
tween different variables X and Y and the relationship between a single variable
at different times, X (¢) and X(s). The term “cross-covariance” is used to refer to
the covariance between two random vectors X and Y, to distinguish this from the
covariance of the elements of X with each other. The term “cross-correlation” is
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sometimes also used. Finally, the term “correlation coefficient” refers to the nor-
malized correlation p(t, s) = E[X (¢) X (s)]/E[X (£) X (t)]..

MATLAB has a number of functions to implement covariance and correlation,
which mostly match the terminology here:

e cov(X) - this returns the variance of the vector X that represents samples of a
given random variable or the covariance of the columns of a matrix X where
the rows represent observations.

e cov(X, Y) - equivalent to cov([X(:), Y(:)]). Computes the covariance be-
tween the columns of X and Y, where the rows are observations.

e xcorr (X, Y) -the “cross-correlation” between two random sequences. If these
sequences came from a random process, this is correlation function p(t).

e xcov(X, Y) - this returns the “cross-covariance”, which MATLAB defines as the
“mean-removed cross-correlation”.

The MATLAB help pages give the exact formulas used for each, so the main point
here is to be careful to make sure you know what you really want.

We will also make use of a special type of random process referred to as “white
noise”. A white noise process X (t) satisfies E{X ()} = 0 and R(t,s) = Wd(s — t),
where 0(7) is the impulse function and W is called the noise intensity. White noise
is an idealized process, similar to the impulse function or Heaviside (step) function
in deterministic systems. In particular, we note that p(0) = E{X2%(t)} = oo, so
the covariance is infinite and we never see this signal in practice. However, like the
step function, it is very useful for characterizing the responds of a linear system,
as described in the following proposition. It can be shown that the integral of a
white noise process is a Wiener process, and so often white noise is described as
the derivative of a Wiener process.

[43

4.4 Linear Stochastic Systems with Gaussian Noise

We now consider the problem of how to compute the response of a linear system to
a random process. We assume we have a linear system described in state space as

X=AX+FW, Y =CX (4.13)

Given an “input” W, which is itself a random process with mean p(t), variance
0?(t) and correlation p(t,t + 7), what is the description of the random process Y'?
Let W be a white noise process, with zero mean and noise intensity :

p() = Q0(7).
We can write the output of the system in terms of the convolution integral
t
Y(t) = / h(t — )W (1) dr,
0

where h(t — 7) is the impulse response for the system

h(t —7) = Ce*™ T B+ Dt — 7).
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We now compute the statistics of the output, starting with the mean:
t
BY(0) = B( | it~ )W () dn)
0

t
= [ hle = mEOV ) dn =0,
0
Note here that we have relied on the linearity of the convolution integral to pull
the expectation inside the integral.

We can compute the covariance of the output by computing the correlation p(7)
and setting o2 = p(0). The correlation function for y is

py(t,s) = E{Y (t)Y(s)} = E{/O h(t —mW(n) dn - /O h(s — W () d&}

~of [ bt — )W ()W ()h(s — &) dnde}

Once again lincarity allows us to exchange expectation and integration
prites) = [ [0t - B W (s - dnde
-/ t / "t~ 1)Q8( — E)h(s — &) dnde
= /t h(t —n)Qh(s —n)dn

0

Now let 7 = s — t and write
t
pr(r) = py(t,t+7) = [ h(t=n)Qh(t-+ 7~ n)dy
0

t
~ [ meane e erting e =)

Finally, we let ¢ — oo (steady state)

Jim py (et +7) = pr(r) = [ QNS + 71 (414

If this integral exists, then we can compute the second order statistics for the output
Y.

We can provide a more explicit formula for the correlation function p in terms of
the matrices A, F and C by expanding equation (4.14). We will consider the general
case where W € R™ and Y € R? and use the correlation matrix R(t,s) instead of
the correlation function p(t, s). Define the state transition matriz ®(t,to) = e(t—t0)
so that the solution of system (4.13) is given by

w(t) = B(t, to)z(to) + / t B(t, \) Fw(X)d\

to
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Proposition 4.2 (Stochastic response to white noise). Let E{X (to)XT (o)}

P(to) and W be white noise with E{W (MW7 (&)} = Rwd(\ — €). Then the corre-

lation matriz for X is given by

Rx(t,s) = P(t)®% (s,1)
where P(t) satisfies the linear matriz differential equation

P(t)= AP + PAT + FRwF,  P(0) =P
Proof. Using the definition of the correlation matrix, we have
E{X#)X"(s)} = E{®(t,0)X(0)XT(0)@" (t,0) + cross terms
+ /t O(t, ) FW (&) d¢ /S WHNFT®(s,\) d)\}
:@(t,O)E{)?(O)XT(O)}d)(s,O) 0
+ /Ot /O (t, ) FE{W (WT (N }IFT (s, \) dé d

t

= ®(t,0)P(0)¢” (5,0) + / O(t, \)F Ry (N FT®(s,\) d\.

0
Now use the fact that ®(s,0) = ®(s,¢)®(t,0) (and similar relations) to obtain
RX (t7 S) = P(t)q)T(‘S) t)
where
T
P(t) = ®(t,0)P(0)®7 (t,0) + / O(t, \)FRw FT (\)®” (¢, \)d\
0
Finally, differentiate to obtain
P(t) = AP+ PAT + FRwF,  P(0) =P,

(see Friedland for details).

O

The correlation matrix for the output Y can be computing using the fact that
Y = CX and hence Ry = CTRxC. We will often be interested in the steady state

properties of the output, which given by the following proposition.

Proposition 4.3 (Steady state response to white noise). For a time-invariant
linear system driven by white noise, the correlation matrices for the state and output

converge in steady state to
Rx(t) = Rx(t,t+7)=Pe*’ ™,  Ry(r) = CRx(r)CT

where P satisfies the algebraic equation

AP+ PAT + FRywFT =0 P >0. (4.15)
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Equation (4.15) is called the Lyapunov equation and can be solved in MATLAB
using the function lyap.

Example 4.3 First-order system
Consider a scalar linear process

X =—aX+W, Y =X,

where W is a white, Gaussian random process with noise intensity o2. Using the
results of Proposition 4.2, the correlation function for X is given by

Rx(t,t+7)=p(t)e "
where p(t) > 0 satisfies
p(t) = —2ap + °.

We can solve explicitly for p(t) since it is a (non-homogeneous) linear differential
equation:

2
— o, 2at 1— —2at O; .
plt) = e 201p(0) + (1 — e72) 2

Finally, making use of the fact that Y = ¢X we have

2
i —at
2a)6 )

In steady state, the correlation function for the output becomes

p(t,t +71) = (e 2 p(0) + (1 — e~

co?

p(r) =~ ¢

Note correlation function has the same form as the Ornstein-Uhlenbeck process in
Example 4.2 (with Q = c?0?). \Y

—aT

4.5 Random Processes in the Frequency Domain

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain
approach provides a very rich set of tools for modeling and analysis of interconnected
systems, relying on the frequency response and transfer functions to represent the
flow of signals around the system.

Given a random process X (t), we can look at the frequency content of the
properties of the response. In particular, if we let p(7) be the correlation function
for a (scalar) random process, then we define the power spectral density function as
the Fourier transform of p:

S(w) = / p(T)e 4T dr, p(t) = ﬂ/ S(w)e?“T dr.
— 00 — 00

The power spectral density provides an indication of how quickly the values of a

random process can change through the frequency content: if there is high frequency

content in the power spectral density, the values of the random variable can change

quickly in time.
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log S(w)

wo logw

Figure 4.3: Spectral power density for a first-order Markov process.

Example 4.4 First-order Markov process
To illustrate the use of these measures, consider a first-order Markov process as
defined in Example 4.2. The correlation function is

p(T) = Qefwo(f).
The power spectral density becomes

S@)= [ keereiorar

0
:/ Q e(w—jw)T dr + /OO Q e(—w—jw)T dr = Q
—o0 2wo 0 2wo

w2—|—w(2)'

We see that the power spectral density is similar to a transfer function and we
can plot S(w) as a function of w in a manner similar to a Bode plot, as shown in
Figure 4.3. Note that although S(w) has a form similar to a transfer function, it is
a real-valued function and is not defined for complex s. \Y%

Using the power spectral density, we can more formally define “white noise”:
a white noise process is a zero-mean, random process with power spectral density
S(w) = W = constant for all w. If X(¢) € R™ (a random vector), then W € R"*™,
We see that a random process is white if all frequencies are equally represented in
its power spectral density; this spectral property is the reason for the terminology
“white”. The following proposition verifies that this formal definition agrees with
our previous (time domain) definition.

Proposition 4.4. For a white noise process,
1 [ »
p(T) = 2—/ S(w)e!T dr = Wé(r),
T J_00

where §(T) is the unit impulse function.

Proof. If T # 0 then

p(T) = % /fo W (cos(wT) + jsin(wr)dr =0
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If 7 = 0 then p(7) = oo. Can show that

2(0) = lim / /O;(--~)dwd7' — W5(0)

e—0

Given a linear system
X = AX + FW, Y =CX,

with W given by white noise, we can compute the spectral density function cor-
responding to the output Y. We start by computing the Fourier transform of the
steady state correlation function (4.14):

sv) = [ [ / N h(&)Qh(é“JrT)df] eI dr

— 00

- [ mee [ | e dT] d

— 00

= [T e [ a0

- /O°° h(§)e’* d¢ - QH (jw) = H(—jw)QuH (jw)

This is then the (steady state) response of a linear system to white noise.

As with transfer functions, one of the advantages of computations in the fre-
quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer function H (s) followed by transfer function Ha(s),
the resulting power spectral density of the output is given by

Sy (w) = Hy(—jw)Ha(—jw)QuHz(jw)H; (jw).

As stated earlier, white noise is an idealized signal that is not seen in practice.
One of the ways to produced more realistic models of noise and disturbances it
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covariance W and filter H(s) such that we match
the statistics S(w) of a measured noise or disturbance signal. In other words, given
S(w), find W > 0 and H(s) such that S(w) = H(—jw)W H (jw). This problem is
know as the spectral factorization problem.

Figure 4.4 summarizes the relationship between the time and frequency domains.

4.6 Further Reading

There are several excellent books on stochastic systems that cover the results in this
chapter in much more detail. For discrete-time systems, the textbook by Kumar and
Varaiya [KV86] provides an derivation of the key results. Results for continuous-
time systems can be found in the textbook by Friedland [Fri04]. Astrom [Ast06]
gives a very elegant derivation in a unified framework that integrates discrete-time
and continuous-time systems.
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2 2

Sho v
= 2Ry = T2R
)= e V| B |—y PO gt
Sv(w) = Ry Sy (w) = H(—jw)Ry H(jw)
X =AX+FV py (1) = Ry (1) = CPe AI"CT
pv(T) = Rvd(T) . .
Y=0X AP+ PAT + FRyFT =0

Figure 4.4: Summary of steady state stochastic response.

Exercises

4.1 Let Z be a random random variable that is the sum of two independent
normally (Gaussian) distributed random variables X; and X5 having means my,
moy and variances o7, o3 respectively. Show that the probability density function

for Z is
p(z) = — /oo Cxp{—(zxml)z - (me)Q}dx

20109 J_ o 20% 20%

and confirm that this is normal (Gaussian) with mean m; +ms and variance o% +073.
(Hint: Use the fact that p(z|xs) = px, (x1) = px, (2 — x2).)

4.2 (AMO& Exercise 7.13) Consider the motion of a particle that is undergoing a
random walk in one dimension (i.e., along a line). We model the position of the
particle as

zlk + 1] = x[k] 4+ ulk],

where x is the position of the particle and u is a white noise processes with E{u[i]} =
0 and E{u[i] u[j]} R,6(i—j). We assume that we can measure x subject to additive,
zero-mean, Gaussian white noise with covariance 1. Show that the expected value
of the particle as a function of k is given by

k—1
E{a[k]} = E{z[0]} + ZE{UU]} = E{x[0]} =

and the covariance E{(z[k] — u.)?} is given by

k—1
E{(z[k] = u2)*} = Y E{u?[i]} = kR,
i=0

4.3 Consider a second order system with dynamics
X\ [-a 07[X; 1 B X
B P R T
that is forced by Gaussian white noise with zero mean and variance o2. Assume

a,b> 0.

(a) Compute the correlation function p(7) for the output of the system. Your answer
should be an explicit formula in terms of a, b and o.
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(b) Assuming that the input transients have died out, compute the mean and vari-
ance of the output.

4.4 Find a constant matrix A and vectors F' and C such that for
X=AX+FW, Y=CX
the power spectrum of Y is given by

1+ w?

S =TTl

Describe the sense in which your answer is unique.






Chapter 5

Kalman Filtering

In this chapter we derive the optimal estimator for a linear system in continuous
time (also referred to as the Kalman-Bucy filter). This estimator minimizes the
covariance and can be implemented as a recursive filter.

Prerequisites. Readers should have basic familiarity with continuous-time stochastic
systems at the level presented in Chapter 4.

5.1 Linear Quadratic Estimators

Consider a stochastic system
X=AX+Bu+FW, Y =CX+V,

where X represents that state, u is the (deterministic) input, W represents distur-
bances that affect the dynamics of the system and V represents measurement noise.
Assume that the disturbance W and noise V are zero-mean, Gaussian white noise
(but not necessarily stationary):

_ 1 e—%wTR‘jvlw S T _ — s
p(w) = KNy E{W(s)W"(t)} = Rw (t)o(t — s)
! —gv R E{V(s)VT(t)} = Ro()8(t — s)

PO) = e

We also assume that the cross correlation between W and V' is zero, so that the
disturbances are not correlated with the noise. Note that we use multi-variable
Gaussians here, with noise intensities Ry € R™*™ and Ry € RP*P. In the scalar
case, Ry = 03, and Ry = o%.

We formulate the optimal estimation problem as finding the estimate X (t) that
minimizes the mean square error E{(X(t) — X (t))(X(t) — X(t))"} given {Y (1) :
0 <7 < t}. It can be shown that this is equivalent to finding the expected value of
X subject to the “constraint” given by all of the previous measurements, so that
X(t) = E{X(t)|Y (), < t}. This was the way that Kalman originally formulated
the problem and it can be viewed as solving a least squares problem: given all
previous Y (t), find the estimate X that satisfies the dynamics and minimizes the
square error with the measured data. We omit the proof since we will work directly
with the error formulation.

Theorem 5.1 (Kalman-Bucy, 1961). The optimal estimator has the form of a
linear observer . . R
X =AX+ BU + L(Y — CX)
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where L(t) = P(t)CTR; and P(t) = E{(X(t) — X (t))(X(t) — X(t))T} satisfies

P = AP+ PAT — PCTR;'(t)CP 4 FRw (t)FT,
P(0) = B{X(0)XT(0)}.

Sketch of proof. The error dynamics are given by
E=(A-LC)E+¢, — €=FW LV, Re=FRyFT + LR, LT
The covariance matrix P = P for this process satisfies

P=(A-LC)P+P(A-LC)' + FRywFT + LR,L"
= AP + PAT + FRyFT — LCP - PCTLT + LR, LT
= AP + PA" + FRwF" + (LR, — PCT)R; (LR, + PCT)"
— PCTR,CP,

where the last line follows by completing the square. We need to find L such that
P(t) is as small as possible, which can be done by choosing L so that P decreases
by the maximum amount possible at each instant in time. This is accomplished by
setting

LR, = PCT — L=PCTR;!.

O

Note that the Kalman filter has the form of a recursive filter: given P(t) =
E{E(#)ET(t)} at time ¢, can compute how the estimate and covariance change.
Thus we do not need to keep track of old values of the output. Furthermore, the
Kalman filter gives the estimate X (¢) and the covariance Pg(t), so you can see how
well the error is converging.

If the noise is stationary (Rw, Ry constant) and if the dynamics for P(t) are
stable, then the observer gain converges to a constant and satisfies the algebraic
Riccati equation:

L=PC'R;' AP+ PAT — PCTR;'CP+ FRwF".

This is the most commonly used form of the controller since it gives an explicit
formula for the estimator gains that minimize the error covariance. The gain matrix
for this case can solved use the 1ge command in MATLAB.

Another property of the Kalman filter is that it extracts the maximum possible
information about output data. To see this, consider the residual random process

R=Y -CX

(this process is also called the innovations process). It can be shown for the Kalman
filter that the correlation matrix of R is given by

Rp(t,s) =W(t)i(t — s).

This implies that the residuals are a white noise process and so the output error
has no remaining dynamic information content.
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5.2 Extensions of the Kalman Filter
Correlated disturbances and noise

The derivation of the Kalman filter assumes that the disturbances and noise are in-
dependent and white. Removing the assumption of independence is straightforward
and simply results in a cross term (E{W (t)V(s)} = Rwvd(s —t)) being carried
through all calculations.

To remove the assumption of white noise disturbances, we can construct a filter
that takes white noise as an input and produces a disturbance source with the
appropriate correlation function (or equivalently, spectral power density function).
The intuition behind this approach is that we must have an internal model of
the noise and/or disturbances in order to capture the correlation between different
times.

Eliminating correlated sensor noise is more difficult.

Extended Kalman filters
Consider a nonlinear system

X = f(X,U,W), X € R",u € R™,
Y =CX+V, Y € RP,

where W and V are Gaussian white noise processes with covariance matrices Ry
and Ry. A nonlinear observer for the system can be constructed by using the
process

X = f(X,U,0) + L(Y — CX).
If we define the error as E = X — X, the error dynamics are given by
E=f(X.UW)-f(X,U,0)-LOKX - X)
= F(BE,X,U,W) - LCe

where
F(E7X7U7W) :f<E+X7U7W)_f(XaUaO)

We can now linearize around current estimate X:

. oF - oF
F=—F+F(0X —W — L h.o.t
9E + F(0, ,U,0)+8WW Ce + ho
N—— ~—~
=0 noise obserwer gain
~ AE+ FW — LCE,
where the matrices
- F
i or _ 9
de (0,X,U,0) 0X (X,U,0)
po OF _of
ow (0,X,U,0) ow (X,U,0)
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depend on current estimate X. We can now design an observer for the linearized
system around the current estimate:

X
P

f(X,U,0)+L(Y —CX), L=PCTR;?,
(A—LC)P + P(A— LC)T + FRwFT + LR, L7,
P(to) = E{X(to) X" (to)}

This is called the (Schmidt) extended Kalman filter (EKF).

The intuition in the Kalman filter is that we replace the prediction portion of
the filter with the nonlinear modeling while using the instantaneous linearization
to compute the observer gain. Although we lose optimality, in applications the
extended Kalman filter works very well and it is very versatile, as illustrated in the
following example.

Example 5.1 Online parameter estimation
Consider a linear system with unknown parameters &

X =AX+BEU+FW, (cR?,

Y =CE)X +V.
We wish to solve the parameter identification problem: given U(t) and Y (¢), esti-
mate the value of the parameters €.

One approach to this online parameter estimation problem is to treat £ as an
unknown state that has zero derivative:

X =AX +BEU+FW, €& =0.

We can now write the dynamics in terms of the extended state Z = (X, &):

sz ]ow
411 AT Pl

Y =C)X+V.
~——
W(F]w

This system is nonlinear in the extended state Z, but we can use the extended
Kalman filter to estimate Z. If this filter converges, then we obtain both an estimate
of the original state X and an estimate of the unknown parameter £ € RP.
Remark: need various observability conditions on augmented system in order
for this to work. \Y

5.3 LQG Control

Return to the original “Hs” control problem

' X = AX + BU + FW W,'V G.aussian White
Figure noise with covariance
Y=CX+V Rw, Ry
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Stochastic control problem: find C(s) to minimize
J=E {/ (Y =)"Rw(Y —r)" + UTR,U] dt}
0

Assume for simplicity that the reference input r = 0 (otherwise, translate the state
accordingly).

Theorem 5.2 (Separation principle). The optimal controller has the form

X = AX + BU + L(Y — CX)
U=KX - Xy)

where L is the optimal observer gain ignoring the controller and K is the optimal
controller gain ignoring the noise.

This is called the separation principle (for Hy control).

5.4 Application to a Thrust Vectored Aircraft

To illustrate the use of the Kalman filter, we consider the problem of estimating
the state for the Caltech ducted fan, described already in Section 3.4.

The following code implements an extended Kalman filter in MATLAB, by
constructing a state vector that consists of the actual state, the estimated state
and the elements of the covariance matrix P(t):

pvtol.m - nonlinear PVTOL model, with LQR and EKF
RMM, 5 Feb 06

This function has the dynamics for a nonlinear planar vertical takeoff
and landing aircraft, with an LQR compensator and EKF estimator.

state(1) x position, in meters

state(2) y position, in meters

state(3) theta angle, in radians

state(4-6) velocities

state(7-12) estimated states

state(13-48) covariance matrix (ordered rowise)

S ST 52 5T 5T 5T 58 58 s oseosEoss

function deriv = pvtol(t, state, flags)
global pvtol_K; % LQR gain

global pvtol_L; % LQE gain (temporary)
global pvtol_Rv; J Disturbance covariance
global pvtol_Rw; 7% Noise covariance
global pvtol_C; 7% outputs to use

global pvtol_F; % disturbance input

% System parameters
J = 0.0475; % inertia around pitch axis
m = 1.5; % mass of fan
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r = 0.25; % distance to flaps
g = 10; % gravitational constant
d = 0.2; % damping factor (estimated)

% Initialize the derivative so that it is correct size and shape
deriv = zeros(size(state));

% Extract the current state estimate
x = state(1:6);
xhat = state(7:12);

% Get the current output, with noise
y = pvtol_C*x + pvtol C * ...
[0.1*sin(2.1%t); 0.1*sin(3.2*t); 0; 0; 0; 0];

% Compute the disturbance forces

fd = [

0.01%sin(0.1%t); 0.01%cos(0.027*t); O
1;

% Compute the control law
F = -pvtol_K * xhat + [0; mx*g];

% A matrix at current estimated state

A=1[ 0 0 0 1 0 0;
0 0 0 0 1 0;
0 0 0 0 0 1;
0, 0, (-F(1)*sin(xhat(3)) - F(2)*cos(xhat(3)))/m, -d, 0, O;
0, 0, (F(1)*cos(xhat(3)) - F(2)*sin(xhat(3)))/m, 0, -d, O;
0 0 0 0 0 01;

% Estimator dynamics (prediction)
deriv(7) = xhat(4); deriv(8) = xhat(5); deriv(9) = xhat(6);

deriv(10) = (F(1) * cos(xhat(3)) - F(2) * sin(xhat(3)) - d*xhat(4)) / m;
deriv(11l) = (F(1) * sin(xhat(3)) + F(2) * cos(xhat(3)) - m*g - d*xhat(5)) / m;
deriv(12) = (F(1) * r) / J;

% Compute the covariance

P = reshape(state(13:48), 6, 6);

dP = A *x P+ P *x A> - P x pvtol_C’ * inv(pvtol_Rw) * pvtol_C * P + ...
pvtol_F * pvtol_Rv * pvtol_F’;

L = P * pvtol_C’ * inv(pvtol_Rw);

% Now compute correction
xcor = L * (y - pvtol_C*xhat);
for i = 1:6, deriv(6+i) = deriv(6+i) + xcor(i); end;

% PVTOL dynamics

deriv(1l) = x(4); deriv(2) = x(5); deriv(3) = x(6);

deriv(4) (F(1)*cos(x(3)) - F(2)*sin(x(3)) - d*x(4) + £d(1)) / m;
deriv(5) (F(1)*sin(x(3)) + F(2)*cos(x(3)) - m*xg - d*x(5) + £d(2)) / m;
deriv(6) = (F(1) * r + £d(3)) / J;
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%
fo

en

%

re

YA
"

%

global pvtol_K pvtol_L pvtol_C pvtol_Rv pvtol_Rw pvtol_F;

N

%% Ducted fan dynamics

N

%% These are the dynamics for the ducted fan, written in state space
%t form.

N

% System parameters

J = 0.0475; % inertia around pitch axis
m = 1.5; % mass of fan

r = 0.25; % distance to flaps

g = 10; % gravitational constant

d = 0.2; % damping factor (estimated)

Copy in the covariance updates
ri=1:6,
for j = 1:6,

deriv(6+6*i+j) = dP(i, j);
end;
d;

A1l domne
turn;

To show how this estimator can be used, consider the problem of stabilizing the
system to the origin with an LQR controller that uses the estimated state. The
following MATLAB code implements the controller, using the previous simulation:

kf_dfan.m - Kalman filter for the ducted fan
RMM, 5 Feb 06

Global variables to talk to simulation modle

System matrices (entire plant: 2 input, 2 output)

=[ 0 0 0 1 0 0;
0 0 0 0 1 0;
0 0 0 0 0 1;
0 0 -g -d/m 0 0;
0 0 0 0 -d/m 0;
0 0 0 0 0 01;
=[ 0 0;
0 0;
0 0;
1/m 0;
0 1/m;
r/J 0 1;
=[ 1 0 0 0 0 0;
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D=1[ 0 0; 0 0l;

dfsys = ss(4, B, C, D);

T

%% State space control design

T

%% We use an LQR design to choose the state feedback gains

hh

K = 1qr(A, B, eye(size(A)), 0.0lxeye(size(B’*B)));

pvtol_K = K;

Boo

%% Estimator #1
YA

% Set the disturbances and initial condition
pvtol_F = eye(6);
pvtol_Rv = diag([0.0001, 0.0001, 0.0001, 0.01, 0.04, 0.0001]);

x0 = [0.1 0.2 00 0 0];
R11 = 0.1; R22 = 0.1; R33 = 0.001;

% Set the weighting matrices (L is computed but not used)
pvtol_ C=[100000; 01000 0];

pvtol_Rw = diag([R11 R22]);

pvtol_L = 1lqe(A, pvtol_F, pvtol_C, pvtol_Rv, pvtol_Rw);

[t1, y1] = ode45(@pvtol, [0, 15],
[x0 0*x0 reshape(x0’*x0, 1, 36)]);

subplot (321);
plot(tl, yi1(:,1), ’b-’, t1, y1(:,2), ’g-=’);
legend x y;
xlabel(’time’);
ylabel(’States (no \theta)’);
axis([0 15 -0.3 0.31);

subplot (323);

plot(tl, y1(:,7) - y1(:,1), ’b-’,
t1, y1(:,8) - y1(:,2), ’g--7,
t1, y1(:,9) - y1(:,3), ’r=’);

legend xerr yerr terr;

xlabel(’time’);

ylabel (’Errors (no \theta)’);

axis([0 15 -0.2 0.2]);

subplot (325) ;
plot(tl, yi1(:,13), ’b-’, t1, y1(:,19), ’g--’, t1, y1(:,25), ’r-’);
legend P11 P22 P33
xlabel(’time’);



5.5. FURTHER READING

ylabel(’Covariance (w/ \theta)’);
axis([0 15 -0.2 0.2]1);

%ot
%% Estimator #2
%

% Now change the output and see what happens (L computed but not used)

pvtol_ C=[100000; 010000; 00100 0];
pvtol_Rw = diag([R11 R22 R33]);
pvtol_L = 1lqge(A, pvtol_F, pvtol_C, pvtol_Rv, pvtol_Rw);

[t2, y2] = ode45(@pvtol, [0, 15],
[x0 0%x0 reshape(x0’*x0, 1, 36)]1);
subplot (322) ;
plot(t2, y2(:,1), ’b-’, t2, y2(:,2), ’g-=’);
legend x y;
xlabel(’time’);
ylabel(’States (w/ \theta)’);
axis([0 15 -0.3 0.31);

subplot (324) ;

plot(t2, y2(:,7) - y2(:,1), ’b-’,
t2, y2(:,8) - y2(:,2), ’g—-’,
t2, y2(:,9) - y2(:,3), ’r-’);

legend xerr yerr terr;

xlabel(’time’);

ylabel(’Errors (w/ \theta)’);

axis([0 15 -0.2 0.2]1);

subplot (326) ;

plot(t2, y2(:,13), ’b-’, t2, y2(:,19), ’g--’, t2, y2(:,25), ’r-’);

legend P11 P22 P33
xlabel(’time’);
ylabel(’Covariance (w/ \theta)’);
axis([0 15 -0.2 0.21);

print -dpdf dfan_kf.pdf

5.5 Further Reading

Exercises

5.1 Consider the problem of estimating the position of an autonomous mobile
vehicle using a GPS receiver and an IMU (inertial measurement unit). The dynamics

of the vehicle are given by
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y & = cosfv
y =sinfv
|
0= Ztan¢v,

We assume that the vehicle is disturbance free, but that we have noisy measure-
ments from the GPS receiver and IMU and an initial condition error.

In this problem we will utilize the full form of the Kalman filter (including the
P equation).

(a) Suppose first that we only have the GPS measurements for the zy position of
the vehicle. These measurements give the position of the vehicle with approximately
1 meter accuracy. Model the GPS error as Gaussian white noise with ¢ = 1.2 meter
in each direction and design an optimal estimator for the system. Plot the estimated
states and the covariances for each state starting with an initial condition of 5 degree
heading error at 10 meters/sec forward speed (i.e., choose x(0) = (0,0, 57/180) and
Z=(0,0,0)).

(b) An IMU can be used to measure angular rates and linear acceleration. Assume
that we use a Northrop Grumman LN200 to measure the angular rate 6. Use the
datasheet on the course web page to determine a model for the noise process and
design a Kalman filter that fuses the GPS and IMU to determine the position of
the vehicle. Plot the estimated states and the covariances for each state starting
with an initial condition of 5 degree heading error at 10 meters/sec forward speed.

Note: be careful with units on this problem!



Chapter 6

Sensor Fusion

In this chapter we consider the problem of combining the data from different sensors
to obtain an estimate of a (common) dynamical system. Unlike the previous chap-
ters, we focus here on discrete-time processes, leaving the continuous-time case to
the exercises. We begin with a summary of the input/output properties of discrete-
time systems with stochastic inputs, then present the discrete-time Kalman filter,
and use that formalism to formulate and present solutions for the sensor fusion
problem. Some advanced methods of estimation and fusion are also summarized at
the end of the chapter that demonstrate how to move beyond the linear, Gaussian
process assumptions.

Prerequisites. The material in this chapter is designed to be reasonably self-contained,
so that it can be used without covering Sections ??-4.4 or Chapter 5 of this sup-
plement. We assume rudimentary familiarity with discrete-time linear systems,, at
the level of the brief descriptions in Chapters 2 and 5 of AMO08, and discrete-time
random processes as described in Section 4.2 of these notes.

6.1 Discrete-Time Stochastic Systems

We begin with a concise overview of stochastic system in discrete time, echoing
our development of continuous-time random systems described in Chapter 4. We
consider systems of the form

X[k + 1] = AX[K] + Bulk] + FW[k],  Y[k] =CX[k]+ VK], (6.1)

where X € R”™ represents the state, u € R™ represents the (deterministic) input,
W € R? represents process disturbances, Y € R? represents the system output and
W € RP represents measurement noise.

As in the case of continuous-time systems, we are interested in the response
of the system to the random input W[k]. We will assume that W is a Gaussian
process with zero mean and correlation function py (k, k+d) (or correlation matrix
Rw (k,k + d) if W is vector valued). As in the continuous case, we say that a
random process is white noise if Ry (k, k+d) = Rwd(d) with §(d) = 1if d = 0 and
0 otherwise. (Note that in the discrete-time case, white noise has finite covariance.)

To compute the response Y[k] of the system, we look at the properties of the
state vector X [k]. For simplicity, we take u = 0 (since the system is linear, we can
always add it back in by superposition). Note first that the state at time k 41 can
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be written as

Xk+1=AX[Ek+1—-1]+ FW[z+1-1]
= AAX[k+1 -2+ FW[z +1-2]) + FW[z +1—1]
l
= AX[k] + Y AT FWk+1-j].

j=1
The mean of the state at time k is given by

k
E[X[k]] = AE[E[0] + > AT FE[W [k — j]] = AE[X][0]).
j=1

To compute the covariance Rx (k,k + d), we start by computing Rx (k, k + 1):
Rx(k,k+1) = B{X[k]XT[k + 1]}
= B{(AFz[0] + A* "1 Fw[0] + - -- + ABw([k — 2] + B[k — 1])-
(A 1z[0] + A*Bw([0] + - - - + Bw[k])T}
Performing a similar calculation for Rx (k, k + 1), it can be shown that
Rx(k,k+1) = (A*P0](AT)" + A" 'FRy [0]FT (AT)F 1 + ...
+ FRw[K]F")(A")" =: PlK](AT)", (6.2)

where
Plk 4 1] = AP[K]AT + FRy [k]F™. (6.3)

The matrix P[k] is the covariance of the state matrix and we see that its value
can be computed recursively starting with P[0] = E[X[0]X[0]] and then applying
equation (6.3). Equations (6.2) and (6.3) are the equivalent of Proposition 4.2 for
continuous-time processes. If we additionally assume that W is stationary and focus
on the steady state response, we obtain the following.

Proposition 6.1 (Steady state response to white noise). For a discrete-time, time-
invariant, linear system driven by white noise, the correlation matrices for the state
and output converge in steady state to

Rx(d) = Rx(k,k +d) = PA?, Ry (d) = CRx(d)C7,
where P satisfies the algebraic equation

APAT + FRwyFT =0 P >0. (6.4)

6.2 Kalman Filters in Discrete Time (AMO08)

We now consider the optimal estimator in discrete time. This material is presented
in AMOS in slightly simplified (but consistent) form.
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Consider a discrete time, linear system with input, having dynamics

X[k +1] = AX[k] + Bulk] + FW k],

Y[kl = CX[k] + V[k], (6.5)
where Wk| and V[k] are Gaussian, white noise processes satisfying
E{WIk]} =0 E{V[k]} =0
E{WHWT[j]} = {(j{w ’,j’_fj E{VIRV[j]} = {(;V ’;ﬁj (6.6)

E{WIKIVT[j]} = 0.
We assume that the initial condition is also modeled as a Gaussian random variable
with
E{X[0]} =xo  E{X[0]XT[0]} = P[0]. (6.7)

We wish to find an estimate X [k] that gives the minimum mean square error

(MMSE) for E{(X[k] — X[k])(X[k] — X[k])T} given the measurements {Y[l] : 0 <
I < k}. We consider an observer of the form

X[k + 1] = AX[k] 4+ Bulk] + LE|(Y [k] — CX[k]). (6.8)
The following theorem summarizes the main result.

Theorem 6.2. Consider a random process X [k| with dynamics (6.5) and noise
processes and initial conditions described by equations (6.6) and (6.7). The observer
gain L that minimizes the mean square error is given by

L[k] = AP[K]CT(Ry + CP[k|CT)™!,

where

Plk+1] = (A — LO)P[k](A— LC)" + FRwFT + LRy L™
P[0] = E{X[0]X"[0]}.
Proof. We wish to minimize the mean square of the error, E{(X[k] — X[k])(X[k] —
X[k])T}. We will define this quantity as P[k] and then show that it satisfies the

recursion given in equation (6.9). Let E[k] = Y [k] — CX[k] be the residual between
the measured output and the estimated output. By definition,

Plk+1] = E{E[k + 1]ET [k + 1]}
= (A—LC)PK)(A - LC)T + FRywF' + LRy L™
= AP[k]AT — AP[K]CT LT — LCP[k]AT +
L(Ry + CP[k|CT)LT + FRy FT.

(6.9)

Letting R, = (Ry + CP[k]CT), we have
Plk +1] = AP[k]AT — AP[K]CT LT — LCP[k]AT + LR.L" + FRwF”
— AP[K]A” + (L — AP[K|CT R, ") R.(L — AP[K|CT R )"
— AP[K|]CTR;*'CP[k)]" AT + FRw F”.

In order to minimize this expression, we choose L = AP[k]CT R-! and the theorem
is proven. U
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Note that the Kalman filter has the form of a recursive filter: given P[k] =
E{E[k|E[k]T} at time k, can compute how the estimate and covariance change.
Thus we do not need to keep track of old values of the output. Furthermore, the
Kalman filter gives the estimate X[k] and the covariance P[k], so we can see how
reliable the estimate is. It can also be shown that the Kalman filter extracts the
maximum possible information about output data. It can be shown that for the
Kalman filter the correlation matrix for the error is

RElj, k] = Rdji.

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

In the special case when the noise is stationary (Ry, Ry constant) and if P[k]
converges, then the observer gain is constant:

L = APCT(Ry + CPCT),
where P satisfies
P = APA” + FRyFT — APC™ (Ry + CPCT)"'CPAT.

We see that the optimal gain depends on both the process noise and the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choose state feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is solved
by the dlge command in MATLAB.

6.3 Predictor-Corrector Form

The Kalman filter can be written in a two step form by separating the correction
step (where we make use of new measurements of the output) and the prediction
step (where we compute the expected state and covariance at the next time instant).

We make use of the notation X[k|j] to represent the estimated state at time
instant k given the information up to time j (where typically j = k —1). Using this
notation, the filter can be solved using the following algorithm:

Step 0: Initialization.
k=1
X[o0j0] = E{X[0]}
P[0j0] = E{X[0]XT[0]}

Step 1: Prediction. Update the estimates and covariance matrix to account for all
data taken up to time k — 1:

X[k|lk—1] = AX[k—1|k—1] + Bu[k — 1]
Plk|k—1] = AP[k—1|k—1]AT + FRw [k — 1|FT
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Step 2: Correction. Correct the estimates and covariance matrix to account for the
data taken at time step k:

L[k] = P[k|k—1]CT(Ry + CP[k|k—1]CT)™,
X[k|k] = X[k|k—1] + L[k)(Y[k] — CX[k|k—1]),
Pk|k] = P[k|k—1] — L[k]CP[k|k—1].

Step 3: Iterate. Set k to k + 1 and repeat steps 1 and 2.

Note that the correction step reduces the covariance by an amount related to the
relative accuracy of the measurement, while the prediction step increases the co-
variance by an amount related to the process disturbance.

This form of the discrete-time Kalman filter is convenient because we can rea-
son about the estimate in the case when we do not obtain a measurement on every
iteration of the algorithm. In this case, we simply update the prediction step (in-
creasing the covariance) until we receive new sensor data, at which point we call
the correction step (decreasing the covariance).

The following lemma will be useful in the sequel:

Lemma 6.3. The optimal gain L[k] satisfies
L[k] = Plk|k]CT R};!
Proof. L[k] is defined as
L[k] = P[k|k—1]CT(Ry + CP[k|k—1]CT)~ .
Multiplying through by the inverse term on the right and expanding, we have

L[k](Ry + CP[k|k—1]CT) = P[k|k—1]CT,
L[k|Ry + L[k]CP[k|k—1]CT = P[k|k—1]CT,

and hence
L[k]Ry = P[k|k—1]CT — L[k]CP[k|k—1]CT,
= (I — L[k]C)P[k|k—1)CT = P[k|k]CT.
The desired results follows by multiplying on the right by Ry . O

6.4 Sensor Fusion

We now return to the main topic of the chapter: sensor fusion. Consider the situation
described in Figure 6.1, where we have an input/output dynamical system with
multiple sensors capable of taking measurements. The problem of sensor fusion
involves deciding how to best combine the measurements from the individual sensors
in order to accurately estimate the process state X. Since different sensors may have
different noise characteristics, evidently we should combine the sensors in a way that
places more weight on sensors with lower noise. In addition, in some situations we
may have different sensors available at different times, so that not all information
is available on each measurement update.
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Figure 6.1: Sensor fusion

To gain more insight into how the sensor data are combined, we investigate the
functional form of L[k]. Suppose that each sensor takes a measurement of the form

Yi=ClX 4+ Vi, i=1,...,p,

where the superscript i corresponds to the specific sensor. Let V? be a zero mean,
white noise process with covariance 0? = Ry (0). It follows from Lemma 6.3 that

L[k] = Plk|k]CT R}

First note that if P[k|k] is small, indicating that our estimate of X is close to the
actual value (in the MMSE sense), then L[k] will be small due to the leading P[k|k]
term. Furthermore, the characteristics of the individual sensors are contained in the
different 02 terms, which only appears in Ry, . Expanding the gain matrix, we have

1/o%
Llk] = P[k|k]CT Ry}, Ryl =
1/o?
We see from the form of R‘jvl that each sensor is inversely weighted by its covariance.
Thus noisy sensors (o7 > 1) will have a small weight and require averaging over
many iterations before their data can affect the state estimate. Conversely, if 02 <
1, the data is “trusted” and is used with higher weight in each iteration.

6.5 Information Filters

An alternative formulation of the Kalman filter is to make use of the inverse of
the covariance matrix, called the information matriz, to represent the error of the
estimate. It turns out that writing the state estimator in this form has several
advantages both conceptually and when implementing distributed computations.
This form of the Kalman filter is known as the information filter.

We begin by defining the information matrix I and the weighted state estimate
Z:

Ik|k) = P7Yk|K],  Z[k|k] = P\ [k|k] X [k|k].

We also make use of the following quantities, which appear in the Kalman filter
equations:

Qi[k|k] = (CHT Ry, [k|K]CY, W [k|k] = (C)T Ry [k K] C X [K| ).



6.6. ADDITIONAL TOPICS 6-7
Using these quantities, we can rewrite the Kalman filter equations as

Prediction Correction

Iklk—1] = (Al—l[k—l\k—l]AT ¥ RW>71, I[k|k] = I[k|k—1] + Zp: Qu[k|K],

i=1

Zlk|lk—1] = Ik|k—1AI ' [k—1|k—1)Z[k—1|k—1] + Bu[k—1],  Z[k|k] = Z[k|k—1] + ZP: W, [k| k.

Note that these equations are in a particularly simple form, with the information
matrix being updated by each sensor’s €2; and similarly the state estimate being
updated by each sensors ;.

Remarks:

1. Information form allows simple addition for correction step. Intuition: add
information through additional data.

2. Sensor fusion: information content = inverse covariance (for each sensor)

3. Variable rate: incorporate new information whenever it arrives. No data —-
no information = prediction update only.

6.6 Additional topics
Converting continuous time stochastic systems to discrete time
X = AX + Bu+ Fuw

x(t + h) ~ x(t) + hi(t)
= x(t) + hAz(t) + hBu(t) + hFW (t)

= (I +hA)X(t)+ (hB)u(t) + (hF)W (t)

w
X[k+1]= (I+hA)X[k]+@u[k]+@W[k].
i B P

Correlated disturbances and noise

As in the case of continuous-time Kalman filters, in the discrete time we can include
noise or disturbances that are non-white by using a filter to generate noise with the
appropriate correlation function.

On practical method to do this is to collect samples W[1], W[2],..., W[N] and
then numerically compute the correlation function

N—1

R () = BEQWEW(+1)} = 57— S WHIWL +1)

Jj=1
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Figure 6.2: Sensor fusion with correlated measurement noise

6.7 Further Reading

Exercises

6.1 Consider the problem of estimating the position of an autonomous mobile ve-
hicle using a GPS receiver and an IMU (inertial measurement unit). The continuous
time dynamics of the vehicle are given by

y & = cosfv
y=sinfv
.1
0= Ztand)v,

We assume that the vehicle is disturbance free, but that we have noisy measure-
ments from the GPS receiver and IMU and an initial condition error.

(a) Rewrite the equations of motion in discrete time, assuming that we update the
dynamics at a sample time of h = 0.005 sec and that we can take & to be roughly
constant over that period. Run a simulation of your discrete time model from initial
condition (0,0,0) with constant input ¢ = 7/8, v = 5 and compare your results
with the continuous time model.

(b) Suppose that we have a GPS measurement that is taken every 0.1 seconds and
an IMU measurement that is taken every 0.01 seconds. Write a MATLAB program
that that computes the discrete time Kalman filter for this system, using the same
disturbance, noise and initial conditions as Exercise 5.1.

6.2 Consider a continuous time dynamical system with multiple measurements,

X = AX + Bu+ FV, Yi=Clz4+W!, i=1,...,q.
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Assume that the measurement noises W' are indendendent for each sensor and
have zero mean and variance 2. Show that the optimal estimator for X weights
the measurements by the inverse of their covariances.

6.3 Show that if we formulate the optimal estimate using an estimator of the form
X[k+41] = AX[k] + LIK](Y[k + 1] — CAX[k])

that we recover the update law in the predictor-corrector form.
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