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Preface

This text serves as a supplement toFeedback Systemsby Åström and Murray [1]
(refered to throughout the text as AM08) and is intended for researchers interested
in the application of feedback and control to biomolecular systems. The text has
been designed so that it can be used in parallel withFeedback Systemsas part of a
course on biomolecular feedback and control systems, or as a standalone reference
for readers who have had a basic course in feedback and control theory. The full
text for AM08, along with additional supplemental material and a copy of these
notes, is available on a companion web site:

http://www.cds.caltech.edu/∼murray/amwiki/BFS

The text is intended to be useful to three overlapping audiences: graduate stu-
dents in biology and bioengineering interested in understanding the role of feed-
back in natural and engineered biomolecular systems; advanced undergraduates
and graduate students in engineering disciplines who are interested the useof feed-
back in biological circuit design; and established researchers in the the biological
sciences who want to explore the potential application of principles and toolsfrom
control theory to biomolecular systems. We have written the text assuming some
familiarity with basic concepts in feedback and control, but have tried to provide
insights and specific results as needed, so that the material can be learnedin paral-
lel. We also assume some familiarity with cell biology, at the level of a first course
for non-majors. The individual chapters in the text indicate the pre-requisites in
more detail, most of which are covered either in AM08 or in the supplemental
information available from the companion web site.

http://www.cds.caltech.edu/~murray/amwiki/BFS
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Notation

This is an internal chapter that is intended for use by the authors in fixing thenota-
tion that is used throughout the text. In the first pass of the book we are anticipating
several conflicts in notation and the notes here may be useful to early users of the
text.

Protein dynamics

For a gene ‘genX’, we writegenXfor the gene, mgenX for the mRNA and GenX
for the protein when they appear in text or chemical formulas. We use superscripts
to differentiate between isomers, so m∗genX might be used to refer to mature RNA

or GenXf to refer to the folded versions of a protein, if required. Mathematical
formulas use the italic version of the variable name, but roman font for the gene or
isomeric state. The concentration of mRNA is written in text or formulas asmgenX

(m∗genX for mature) and the concentration of protein aspgenX (pf
genX for folded). The

same naming conventions are used for common gene/protein combinations: the
mRNA concentration oftetRis mtetR, the concentration of the associated protein is
ptetR and parameters areαtetR, δtetR, etc.

For generic genes and proteins, use X to refer to a protein, mx to refer to the
mRNA associated with that protein andx to refer to the gene that encodes X. The
concentration of X can be written either asX, px or [X], with that order of pref-
erence. The concentration of mx can be written either asmx (preferred) or [mx].
Parameters that are specific to genep are written with a subscripted p:αp, δp, etc.
Note that although the protein is capitalized, the subscripts are lower case (so in-
dexed by the gene, not the protein) and also in roman font (since they arenot a
variable).

The dynamics of protein production are given by

dmp

dt
= αp,0−µmp−γpmp,

dP
dt
= βpmp−µP−δpP,

whereαp,0 is the (basal) rate of production,γp parameterizes the rate of dilution
and degradation of the mRNA mp, βp is the kinetic rate of protein production,µ is
the growth rate that leads to dilution of concentrations andδp parameterizes the rate
of degradation of the protein P. Since dilution and degradation enter in a similar
fashion, we use ¯γ = γ+µ andδ̄ = δ+µ to represent the aggregate degradation and
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dilution rate. If we are looking at a single gene/protein, the various subscripts can
be dropped.

When we ignore the mRNA concentration, we write the simplified protein dy-
namics as

dP
dt
= βp,0− δ̄pP.

Assuming that the mRNA dynamics are fast compared to protein production, then
the constantβp,0 is given by

βp,0 = βp
γ̄p

αp,0
.

For regulated production of proteins using Hill functions, we modify the con-
stitutive rate of production to befp(Q) instead ofαp,0 or βp,0 as appropriate. The
Hill function is written in the form

Fp,q(Q) =
αp,q

Kp,q+Qnp,q
.

The notation forF mirrors that of transfer functions:Fp,q represents the input/output
relationship between inputQ and outputP (rate). The comma can be dropped when
the genes in question are single letters:

Fpq(Q) =
αpq

Kpq+Qnpq
.

The subscripts can be dropped completely if there is only one Hill function in use.

Chemical reactions

We write the symbol for a chemical species A using roman type. The number of
molecules of a species A is written asna. The concentration of the species is oc-
casionally written as [A], but we more often use the notationA, as in the case of
proteins, orxa. For a reaction A+B←−→ C, we use the notation

R1: A+B
k f

r1−−⇀↽−−
kr

r1

C
dC
dt
= k f

r1AB−kr
r1C

This notation is primarily intended for situations where we have multiple reactions
and need to distinguish between many different constants. For a small number of
reactions, the reaction number can be dropped or replaced with a single digit (kf

1,
kr

2, etc).
It will often be the case that two species A and B will form a covalent bond,

in which case we write the resulting species as AB. We will distinguish covalent
bonds from much weaker hydrogen bonding by writing the latter as A:B. Finally, in
some situations we will have labeled section of DNA that are connected together,
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which we write as A−B, where here A represents the first portion of the DNA
strand and B represents the second portion. When describing (single) strands of
DNA, we write A′ to represent the Watson-Crick complement of the strand A.
Thus A−B:B′−A′ would represent a double stranded length of DNA with domains
A and B.

The choice of representing covalent molecules using the convential chemical
notation AB can lead to some confusion when writing the reaction dynamics using
A andB to represent the concentrations of those species. Namely, the symbolAB
could represent either the concentration of A times the concentration of B orthe
concentration of AB. To remove this ambiguity, when using this notation we write
[A][B] as A·B.

When working with a system of chemical reactions, we write Si , i = 1, . . . ,n for
the species and Rj , j = 1, . . . ,m for the reactions. We writeni to refer to the molecu-
lar count for speciesi andxi = [Si ] to refer to the concentration of the species. The
individual equations for a given species are written

Missing. Figure out notation here. BST?

The collection of reactions are written as

ẋ= Nv(x, θ), ẋi = Ni j v j(x, θ),

wherexi is the concentration of species Si , N ∈ Rn×m is the stochiometry matrix,v j

is the reaction flux vector for reactionj, andθ is the collection of parameters that
the define the reaction rates. Occassionaly it will be useful to write the fluxes as
polynomials, in which case we use the notation

v j(x, θ) =
∑

k

E jk

∏

l

x
ǫ

jk
l

l

whereE jk is the rate constant for thekth term of the jth reaction andǫ jk
l is the

stochiometry coefficient for the speciesxl .
Generally speaking, coefficients for propensity functions and reation rate con-

stants are written using lower case (cξ, ki , etc). Two exceptions are the dissociation
constant, which we write asKd, and the Michaelis-Menten constant, which we
write asKm.

Figures

In the public version of the text, certain copyrighted figures are missing. The file-
names for these figures are listed and the figures can be looked up in the following
references:

• Cou08 - Mechanisms in Transcriptional Regulationby A. J. Courey [16]

Cou08
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• GNM93 - J. Greenblatt, J. R. Nodwell and S. W. Mason [32]

• Mad07 - From a to alpha: Yeast as a Model for Cellular Differentiationby
H. Madhani [48]

• MBoC - The Molecular Biology of the Cellby Alberts et al. [2]

• PKT08 - Physical Biology of the Cell[56]

The remainder of the filename lists the chapter and figure number.

GNM93
Mad07
MBoC
PKT08


Chapter 1
Introductory Concepts

This chapter provides a brief introduction to concepts from systems biology, tools
from control theory, and approaches to modeling, analysis and design of biomolec-
ular feedback systems. We begin with a discussion of the role of modeling, analy-
sis and feedback in biological systems, followed by an overview of basic concepts
from cell biology, focusing on the dynamics of protein production and control. This
is followed by a short review of key concepts and tools from control anddynamical
systems theory, intended to provide insight into the main methodology described
in the text. Finally, we give a brief introduction to the field of synthetic biology,
which is the primary topic of the latter half of the text.

1.1 Systems Biology: Modeling, Analysis and the Role of
Feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abstractap-
proaches to synthesis. Conversely, the accelerating pace of discovery in biological
science is suggesting new design principles that may have important practical ap-
plications in man-made systems. This synergy at the interface of biology and en-
gineering offers unprecedented opportunities to meet challenges in both areas. The
guiding principles of feedback and control are central to many of the keyques-
tions in biological engineering and can play a enabling role in understandingthe
complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study and understanding of biological systems, and
discuss some of the ways in which an understanding of feedback principles in biol-
ogy can help us better understand and design complex biomolecular circuits.There
are a wide variety of biological phenomena that provide a rich source of examples
for control, including gene regulation and signal transduction; hormonal,immuno-
logical, and cardiovascular feedback mechanisms; muscular control andlocomo-
tion; active sensing, vision, and proprioception; attention and consciousness; and
population dynamics and epidemics. Each of these (and many more) provide op-
portunities to figure out what works, how it works and what can be doneto affect
it. Our focus here is at the molecular scale, but the principles and approach that we
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describe can also be applied at larger time and length scales.

Modeling and analysis

Over the past several decades, there have been huge advances in modeling capabil-
ities for biological systems that have provided new insights into the complex inter-
actions of the molecular-scale processes that implement life. Reduced-order mod-
eling has become commonplace as a mechanism for describing and documenting
experimental results and high-dimensional stochastic models can now be simulated
in reasonable periods of time to explore underlying stochastic effects. Coupled with
our ability to collect large amounts of data from flow cytometry, micro-array anal-
ysis, single-cell microscopy and other modern experimental techniques, our under-
standing of biomolecular processes is advancing at a rapid pace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining complex
biological phenomena. Although there are exceptions, the predominant use of mod-
els is to “document” experimental results: a hypothesis is proposed and tested us-
ing careful experiments, and then a model is developed to match the experimental
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenomena
to those for which controlled experimental evidence of the desired phenomena can
be obtained.

This situation is much different than what is standard practice in the physi-
cal sciences and engineering. In those disciplines, experiments are routinely used
to help build models for individual components at a variety of levels of detail,
and then these component-level models are interconnected to obtain a system-level
model. This system-level model, carefully built to capture the appropriate level of
detail for a given question or hypothesis, is used to explain, predict andsystemati-
cally analyze the behaviors of a system. Because of the ways in which modelsare
viewed, it becomes possible to prove (or invalidate) a hypothesis through analysis
of the model, and the fidelity of the models is such that decisions can be made
based on them. Indeed, in many areas of modern engineering—including electron-
ics, aeronautics, robotics and chemical processing, to name a few—modelsplay a
primary role in the understanding of the underlying physics and/or chemistry, and
these models are used in predictive ways to explore design tradeoffs and failure
scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use ofreduced-order modelsthat capture the underlying dynamics
of the system without necessarily modeling every detail of the underlying mech-
anisms. The generation of these reduced-order models, either directly from data
or through analytical or computational methods, is critical in the effective applica-
tion of modeling since modeling of the detailed mechanisms produces high fidelity
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models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced order models is fairly advanced is in
control theory, where input/output models such as transfer functions [1], describing
functions [31], Volterra series [41] and behavioral models [57] are used to capture
structured representations of dynamics at the appropriate level of fidelityfor the
task at hand.

While developing predictive models and corresponding analysis tools for biol-
ogy is much more difficult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central element of under-
standing. Biological systems are by their nature extremely complex and can be-
have in counter-intuitive ways. Only by capturing the many interacting aspects of
the system in a formal model can we ensure that we are reasoning properly about
its behavior, especially in the presence of uncertainty. To do this will require sub-
stantial effort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked) as well as building an analytical
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from experiments
to computation to theory, are enabling us to explore new approaches to modeling
that attempt to address some of these challenges. In this text we focus on theuse
of a relevant classes of reduced-order models that can be used to capture many
phenomena of biological relevance.

Input/output formalisms for biomolecular modeling

A key challenge in developing models for any class of problems is the selectionof
an appropriate mathematical framework for the models. Among the features that
we believe are important for a wide variety of biological systems are capturing the
temporal response of a biomolecular system to various inputs and understanding
how the underlying dynamic behavior leads to a given phenotypes. The models
should reflect the subsystem structure of the underlying dynamical system to al-
low prediction of results, but need not necessarily be mechanistically accurate at
a detailed biochemical level. We are particularly interested in those problems that
include a number of molecular “subsystems” that interact with each other, and so
our models should support a level of modularity (with the additional advantage of
allowing multiple groups to develop detailed models for each module that can be
combined to form more complex models of the interacting components). Since we
are likely to be building models based on high-throughput experiments, it is also
key that the models capture the measurable outputs of the systems.

For many of the systems that we are interested in, a good starting point is to
use reduced-order models consisting of nonlinear differential equations, possible
with some time delay. In this setting, the model of a given componenti in a multi-
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component system might be modeled using a differential equation of the form

ẋi = Ai xi +Ni(xi ,Li
jy
∗ j , θ)+Biui +F iw,

yi =Ci xi +Hiv y∗i(t) = yi(t−τi).
(1.1)

The internal state of the subsystem is captured by the statexi ∈ Rni , which might
capture the concentrations of various species and complexes as well as other in-
ternal variables required to describe the dynamics. The “outputs” of the system,
which describe those species (or other quantities) that interact with other subsys-
tems in the cell is captured by the variableyi ∈ Rpi . The internal dynamics consist
of a set of linear dynamics (Ai xi) as well as nonlinear terms that depend both on
the internal state and the state of other subsystems (Ni( · )), whereθ is a set of pa-
rameters that represent the context of the system (described in more detailbelow).
We also allow for the possibility of time delays (due to folding, transport or other
processes) and writey∗i for the “functional” output seen by other subsystems.

The coupling between subsystems is captured using a weighted graph, whose
elements are represented by the coefficientsLi

j of an interconnection matrixL. In
the simplest version of the model, we simply combine different outputs from other
modules in some linear combination to obtain the “input”Li

jy
∗ j (summation over

repeated indices is assumed). More general interconnections are possible, including
allowing multiple outputs from different subsystems to interact in nonlinear ways
(such as one often sees on combinatorial promoters in gene regulatory networks).

Finally, in addition to the internal dynamics and nonlinear coupling, we sepa-
rately keep track of external inputs to the subsystem (Biui), stochastic disturbances
(F iwi) and measurement noise (Hivi). We treat the external inputsui as determinis-
tic variables (representing inducer concentrations, nutrient levels, temperature, etc)
and the disturbances and noisewi andvi as random processes (representing extrin-
sic and intrinsic stochasticity). If desired, the mappings from the various inputs to
the states an outputs, represented by the matricesB, F andH can also depend on
the system statex (resulting in additional nonlinearities).

This particular structure is useful because it captures a large number ofmod-
eling frameworks in a single formalism. In particular, mass action kinetics and
chemical reaction networks can be represented by equating the stoichiometry ma-
trix with the interconnection matrixL and using the nonlinear terms to capture
the fluxes, withθ representing the rate constants. We can also represent typical
reduced-order models for transcriptional regulatory networks by lettingthe nonlin-
ear functionsNi represent various types of Hill functions and including the effects
of mRNA/protein production, degradation and dilution through the linear dynam-
ics. These two classes of systems can also be combined, allowing a very expressive
set of dynamics that is capable of capturing many relevant phenomena of interest
in molecular biology.

Figure1.1shows a graphical representation of this structure applied to a set of
M subsystems, where for simplicity, we omit the stochastic disturbances and mea-
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y

Λ

Crosstalk

Unmodeled Dynamics

∆

L

Interconnection Matrix

N( · ) θ

∑

Couping
Nonlinear

System Dynamics

. . .

0

0

P1(s)

PM(s)

External inputs Observed outputs
u

Figure 1.1: Modeling framework. The dynamics consist of a set of linear dynamics, rep-
resented by the multi-input, multi-output transfer function P(s), a static nonlinear mapN
and an interconnection matrixL. Uncertainty is represented as unmodeled dynamics∆,
crosstalkΛ and system contextθ. The inputs and outputs to the system are denoted byu
andy.

surement noise. The linear dynamics of the system are captured via the frequency
response (represented in the diagram by its Laplace transform,P(s)). The intercon-
nection matrixL is a matrix that takes outputs from the individual subsystems as
outputs and provides linear combinations of these variables as potential inputs to
the nonlinear maps represented byN. This graphical representation makes more
evident the role of feedback through the interconnection matrixL.

In addition to the nominal dynamics described in equation (1.1), two other fea-
tures are present in Figure1.1. The first is the uncertainty operator∆, attached to
the linear dynamics block. This operator represents both parametric uncertainty
in the dynamics as well as unmodeled dynamics that have known (timescale de-
pendent) bounds. Tools for understanding this class of uncertainty areavailable
for both linear and nonlinear control systems and allow stability and performance
analyses in the presence of uncertainty. A similar termΛ is included in the inter-
connection matrix and represents “crosstalk” between subsystems. While existing
tools in distributed control systems do not formally handle crosstalk, we believe
that it will be important to capture its effects and that it will be possible to use tools
similar to those developed in control theory to analyze them.

One of the appealing features of this particular structure is that variants ofit
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are well studied and characterized in the control and dynamical systems literature.
For example, the effect of the nonlinearities can be studied using the method of
harmonic balance [44] or the related technique of describing functions (see Sec-
tion 3.4). Describing function analysis allows prediction of stability boundaries
and the onset of limit cycles, as well as some characterization of robustness. Sim-
ilarly, in the absence of the nonlinearities and with simplifying assumptions on
the linear dynamics, the effect of the interconnection topology can be captured by
investigating the location of the eigenvalues of the graph LaplacianL [25].

Despite being a well-studied class of systems, there are still many open ques-
tions with this framework, especially in the context of biomolecular systems. For
example, a rigorous theory of the effects of crosstalk, the role of context on the
nonlinear elements, and combining the effects of interconnection, uncertainty and
nonlinearity is just emerging. Adding stochastic effects, either through the distur-
bance and noise terms, initial conditions or in a more fundamental way, is also
largely unexplored. And the critical need for methods for performing modelre-
duction in a way that respects of the structure of the subsystems has only recently
begun to be explored. Nonetheless, many of these research directions are being
pursued and we attempt to provide some insights in this text into the underlying
techniques that are available.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the use of mod-
els in biology is to become more rigorous about the various behaviors that are im-
portant for biological systems. One of the key concepts that needs to be formalized
is the notion of “phenotype”. This term is often associated with the existence of an
equilibrium point in a reduced-order model for a system, but clearly more complex
(non-equilibrium) behaviors can occur and the “phenotypic response”of a system
to an input may not be well-modeled by a steady operating condition. Even more
problematic is determining which regulatory structures are “active” in a given phe-
notype (versus those for which there is a regulatory pathway that is saturated and
hence not active).

In the context of the modeling framework described in equation (1.1) and Fig-
ure 1.1, it is possible to consider a working definition of phenotype in terms of
the patterns of the dynamics that are present. In the simplest case, consisting of
operation near equilibrium points, we can look at the effective gain of the different
nonlinearities as a measure of which regulatory pathways are “active” in agiven
state. Consider, for example, labeling each nonlinearity in a system as beingeither
on, off or active. A nonlinearity that is on or off represents one in which changes
of the input produce very small deviations in the output, such as those that occur at
very high or low concentrations in interactions modeled by a Hill function. An ac-
tive nonlinearity is one in which there is a proportional response to changes in the
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input, with the slope of the nonlinearity giving the effective gain. In this setting, the
phenotype of the system would consist of both a description of the nominal con-
centrations of the measurable species (y) as well as the state of each nonlinearity
(on, off, active).

For more complex phenotypes, where the subsystems are not at a steady op-
erating point, one can consider the temporal patterns that are exhibited at various
points in Figure1.1. This could correspond to traditional modal patterns such as
those that are obtained via either principle component analysis or balancedtrunca-
tion (the latter being a generalization of the former), or temporal patterns of regu-
lation represented in the nonlinearities. Extending these ideas to consider changes
in context and changes in input combinations is harder still, but the structureof the
proposed representation presents several starting points for exploration.

Additional types of analysis that can be applied to systems of this form include
sensitivity analysis (dependence of solution properties on selected parameters), un-
certainty analysis (impact of disturbances, unknown parameters and unmodeled dy-
namics), bifurcation analysis (changes in phenotype as a function of input levels,
context or parameters) and probabilistic analysis (distributions of states asa func-
tion of distributions of parameters, initial conditions or inputs). In each of these
cases, there is a need to extend existing tools to exploit the particular structure of
the problems we consider, as well as modify the techniques to provide relevance to
biological questions.

Stochastic behavior

The role of feedback

One may view life in a cell as a huge “wireless” network of interactions among
proteins, DNA, and smaller molecules involved in signaling and energy transfer. As
a large system, the external inputs to a cell include physical signals (UV radiation,
temperature) as well as chemical signals (drugs, hormones, nutrients). Its outputs
include chemicals that affect other cells. Each cell can be thought of, in turn, as
composed of a large number of subsystems involved in cell growth, maintenance,
division and death. A typical diagram describing this complex set of interactions is
shown in Figure1.2.

The study of cell networks leads to the formulation of a large number of ques-
tions, some of which we have already alluded to above. For example, what isspe-
cial about the information-processing capabilities, or input/output behaviors, of
such biological networks? What “modules” appear repeatedly in cellular signal-
ing cascades, and what are their system-theoretic properties? Inverseor “reverse
engineering” issues include the estimation of system parameters (such as reaction
constants) as well as the estimation of state variables (concentration of protein,
RNA, and other chemical substances) from input/output experiments.

One can also attempt to better understand the temporal properties of the various
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Figure 1.2: The wiring diagram of the growth signaling circuitry of the mammalian
cell [34].

cascades and feedback loops that appear in cellular signaling networks. Dynami-
cal properties such as stability and existence of oscillations in such networks are
of interest, and techniques from control theory such as the calculation ofrobust-
ness margins will likely play a central role in the future. At a more speculative
(but increasingly realistic) level, one wishes to study the possibility of using con-
trol strategies (both open and closed loop) for therapeutic purposes, such as drug
dosage scheduling.

From a theoretical perspective, feedback serves to minimize uncertainty and
increase accuracy in the presence of noise. The cellular environment isextremely
noisy in many ways, while at the same time variations in levels of certain chemi-
cals (such as transcriptional regulators) may be lethal to the cell. Feedback loops
are omnipresent in the cell and help regulate the appropriate variations. Itis esti-
mated, for example, that inE. coli about 40% of transcription factors self-regulate.
One may ask whether the role of these feedback loops is indeed that of reducing
variability, as expected from principles of feedback theory. Recent work tested this
hypothesis in the context of tetracycline repressor protein (TetR) [11]. An experi-
ment was designed in which feedback loops in TetR production were modifiedby
genetic engineering techniques, and the increase in variability of gene expression
was correlated with lower feedback “gains,” verifying the role of feedback in re-
ducing the effects of uncertainty. Modern experimental techniques will afford the
opportunity for testing experimentally (and quantitatively) other theoretical predic-
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tions, and this may be expected to be an active area of study at the intersection of
control theory and molecular biology.

Another illustration of the interface between feedback theory and modern molec-
ular biology is provided by recent work on chemotaxis in bacterial motion.E. coli
moves, propelled by flagella, in response to gradients of chemical attractants or re-
pellents, performing two basic types of motions:tumbles(erratic turns, with little
net displacement) andruns. In this process,E. coli carries out a stochastic gradi-
ent search strategy: when sensing increased concentrations it stops tumbling (and
keeps running), but when it detects low gradients it resumes tumbling motions (one
might say that the bacterium goes into “search mode”).

The chemotactic signaling system, which detects chemicals and directs motor
actions, behaves roughly as follows: after a transient nonzero signal(“stop tum-
bling, run toward food”), issued in response to a change in concentration, the sys-
tem adapts and its signal to the motor system converges to zero (“OK, tumble”).
This adaptation happens for any constant nutrient level, even over large ranges of
scale and system parameters, and may be interpreted as robust (structurally stable)
rejection of constant disturbances. The internal model principle of control theory
implies (under appropriate technical conditions) that there must be an embedded
integral controller whenever robust constant disturbance rejection is achieved. Re-
cent models and experiments succeeded in finding, indeed, this embedded struc-
ture [10, 73].

This is only one of the many possible uses of control theoretic knowledge in
reverse engineering of cellular behavior. Some of the deepest parts ofthe theory
concern the necessary existence of embedded control structures, and in this man-
ner one may expect the theory to suggest appropriate mechanisms and validation
experiments for them.

1.2 Dynamics and Control in the Cell

The molecular processes inside a cell determine its behavior and are responsible
for metabolizing nutrients, generating motion, enabling procreation and carrying
out the other functions of the organism. In multi-cellular organisms, different types
of cells work together to enable more complex functions. In this section we briefly
describe the role of dynamics and control within a cell and discuss the basicpro-
cesses that govern its behavior and its interactions with its environment (including
other cells). We assume knowledge of the basics of cell biology at the levelpro-
vided in AppendixA; a much more detailed introduction to the biology of the cell
and some of the processes described here can be found in standard textbooks on
cell biology such as Albertset al. [2] or Phillips et al. [56]. (Readers who are fa-
miliar with the material at the level described in these latter references can skipthis
section without any loss of continuity.)
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(a) Base pairs (b) Double stranded

Figure 1.3: Molecular structure of DNA. (a) Individual bases (nucleotides) that make up
DNA: adenine (A), cytocine (C), guanine (G) and thymine (T).(b) Double stranded DNA
formed from individual nucleotides, with A binding to T and Cbinding to G. Each strand
contains a 5’ and 3’ end, determined by the locations of the carbons where the next nu-
cleotide binds. Figure from Phillips, Kondev and Theriot [56]; used with permission of
Garland Science.

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the responseof a
cell to various conditions. DNA is organized into collections of genes, with each
gene encoding a corresponding protein that performs a set of functions in the cell.
The activation and repression of genes are determined through a seriesof complex
interactions that give rise to a remarkable set of circuits that perform the functions
required for life, ranging from basic metabolism to locomotion to procreation.Ge-
netic circuits that occur in nature are robust to external disturbances and can func-
tion in a variety of conditions. To understand how these processes occur(and some
of the dynamics that govern their behavior), it will be useful to present arelatively
detailed description of the underlying biochemistry involved in the production of
proteins.

DNA is double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone (see Figure1.3).
The complementary strands of DNA are composed of a sequence of nucleotides
that consist of a sugar molecule (deoxyribose) bound to one of 4 bases: adenine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand (by convention
the top row of a DNA sequence when it is written in text form) is specified fromthe
5’ end of the DNA to the 3’ end of the DNA. (As described briefly in Appendix A,
5’ and 3’ refer to carbon locations on the deoxyribose backbone that are involved
in linking together the nucleotides that make up DNA.) The DNA that encodes
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Figure 1.4: Geometric structure of DNA. The layout of the DNAis shown at the top. RNA
polymerase binds to the promoter region of the DNA and transcribes the DNA starting at
the+1 side and continuing to the termination site.

proteins consists of a promoter region, regulator regions (described in more detail
below), a coding region and a termination region (see Figure1.4).

RNA polymerase enzymes are present in the nucleus (for eukaryotes) or cyto-
plasm (for prokaryotes) and must localize and bind to the promoter region of the
DNA template. Once bound, the RNA polymerase “opens” the double stranded
DNA to expose the nucleotides that make up the sequence, as shown in Figure1.5.
This reversible reaction, calledisomerization, is said to transform the RNA poly-
merase and DNA from aclosed complexto anopen complex. After the open com-
plex is formed, RNA polymerase begins to travel down the DNA strand and con-
structs an mRNA sequence that matches the 5’ to 3’ sequence of the DNA to which
it is bound. By convention, we number the first base pair that is transcribed as ‘+1’
and the base pair prior to that (which is not transcribed) is labeled as ‘-1’. The
promoter region is often shown with the -10 and -35 regions indicated, sincethese
regions contain the nucleotide sequences to which the RNA polymerase enzyme
binds (the locations vary in different cell types, but these two numbers are typically
used).

The RNA strand that is produced by RNA polymerase is also a sequence of
nucleotides with a sugar backbone. The sugar for RNA is ribose instead of de-
oxyribose and mRNA typically exists as a single stranded molecule. Another dif-
ference is that the base thymine (T) is replaced by uracil (U) in RNA sequences.
RNA polymerase produces RNA one base pair at a time, as it moves from in the5’
to 3’ direction along the DNA coding strand. RNA polymerase stops transcribing
DNA when it reaches atermination region(or terminator) on the DNA. This ter-
mination region consists of a sequence that causes the RNA polymerase to unbind
from the DNA. The sequence is not conserved across species and in many cells the
termination sequence is sometimes “leaky”, so that transcription will occasionally
occur across the terminator (we will see examples of this in theλ phage circuitry
described in Chapter5).

Once the mRNA is produced, it must be translated into a protein. This process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, there is a region
of the mRNA in which the ribosome (a molecular complex consisting of of both
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Figure 1.5: Production of messenger RNA from DNA. RNA polymerase, along with other
accessory factors, binds to the promoter region of the DNA and then “opens” the DNA to
begin transcription (initiation). As RNA polymerase movesdown the DNA, producing an
RNA transcript (elongation), which is later translated into a protein. The process ends when
the RNA polymerase reaches the terminator (termination). Reproduced from Courey [16];
permission pending.

proteins and RNA) binds. This region, called theribosome binding site (RBS), has
some variability between different cell species and between different genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the consensussequence
for the RBS. (A consensus sequence is a pattern of nucleotides that implements
a given function across multiple organisms; it is not exactly conserved, sosome
variations in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps beforeit is trans-
lated. The RNA sequence that has been created by RNA polymerase consists of
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only theexons, which contain the coding sequence for the
protein. The term “pre-mRNA” is often used to distinguish between the raw tran-
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script and the spliced mRNA sequence, which is called “mature RNA”. In addition
to splicing, the mRNA is also modified to contain apoly(A)(polyadenine)tail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3’ end of the mRNA.
This processed sequence is then transported out of the nucleus into the cytoplasm,
where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well defined ribosome binding se-
quence and hence the process of the binding of the ribosome to the mRNA is more
complicated. TheKozak sequenceA/GCCACCAUGG is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codon (described
below). However, mRNA lacking the Kozak sequence can also be translated.

Once the ribosome is bound to the mRNA, it begins the process of translation.
Proteins consist of a sequence of amino acids, with each amino acid specified by
a codon that is used by the ribosome in the process of translation. Each codon
consists of three base pairs and corresponds to one of the 20 amino acidsor a “stop”
codon. The genetic code mapping between codons and amino acids is shownin
TableA.1. The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (which binds
to the tRNA) into the polypeptide chain, as shown in Figure1.6. The start codon
(AUG) specifies the location at which translation begins, as well as coding for the
amino acid methionine (a modified form is used in prokaryotes). All subsequent
codons are translated by the ribosome into the corresponding amino acid untilit
reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide chain
that folds on itself to form a protein. The process of folding is complicated and
involves a variety of chemical interactions that are not completely understood. Ad-
ditional post-translational processing of the protein can also occur at thisstage,
until a folded and functional protein is produced. It is this molecule that is able to
bind to other species in the cell and perform the chemical reactions that underly
the behavior of the organism.

Each of the processes involved in transcription, translation and folding ofthe
protein takes time and affects the dynamics of the cell. Table1.1shows the rates of
some of the key processes involved in the production of proteins. It is important to
note that each of these steps is highly stochastic, with molecules binding together
based on some propensity that depends on the binding energy but also theother
molecules present in the cell. In addition, although we have described everything
as a sequential process, each of the steps of transcription, translation and folding
are happening simultaneously. In fact, there can be multiple RNA polymerasesthat
are bound to the DNA, each producing a transcript. In prokaryotes, assoon as
the ribosome binding site has been transcribed, the ribosome can bind and begin
translation. It is also possible to have multiple ribosomes bound to a single piece of
mRNA. Hence the overall process can be extremely stochastic and asynchronous.
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Figure 1.6: Translation is the process of translating the sequence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic
code describes the relationship between the sequence of base pairs in a gene and the cor-
responding amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemble the protein. Figure and
caption courtesy the National Human Genome Research Institute.

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the production of proteins.
These regulatory mechanisms can occur at various points in the overall process that
produces the protein.Transcriptional regulationrefers to regulatory mechanisms
that control whether or not a gene is transcribed.

Table 1.1: Rates of core processes involved in the creation of proteins from DNA inE. coli.

Process Characteristic rate Source
mRNA production 10–30 bp/sec Vogel and Jensen
Protein production 10–30 aa/sec PKT08
Protein folding ???
mRNA half life ∼ 100 sec YM03
Cell division time ∼ 3000 sec ???
Protein half life ∼ 5×104 sec YM03
Protein diffusion along DNA up to 104 bp/sec
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(a) Repression of gene expression
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Figure 1.7: Repression of gene expression. Figure from Phillips, Kondev and Theriot [56];
used with permission of Garland Science.

The simplest forms of transcriptional regulation are repression and activation,
which are controlled throughtranscription factors. In the case of repression, the
presence of a transcription factor (often a protein that binds near the promoter)
turns off the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the case of activation (or positive reg-
ulation), transcription is enhanced when an activator protein binds to the promoter
site (facilitating binding of the RNA polymerase).

A common mechanism for repression is that a protein binds to a region of DNA
near the promoter and blocks RNA polymerase from binding. The region ofDNA
in which the repressor protein binds is called anoperator region(see Figure1.7a).
If the operator region overlaps the promoter, then the presence of a protein at the
promoter “blocks” the DNA at that location and transcription cannot initiate, as
illustrated in Figure1.7a. Repressor proteins often bind to DNA as dimers or pairs
of dimers (effectively tetramers). Figure1.7bshows some examples of repressors
bound to DNA.

A related mechanism for repression isDNA looping. In this setting, two repres-
sor complexes (often dimers) bind in different locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly-
merase to bind to the promoter, thus inhibiting transcription. Figure1.8 shows an
example of this type of repression, in thelac operon. (Anoperonis a set of genes
that is under control of a single promoter; this is discussed in more detail below.)
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(a) DNA looping
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(b) lac repressor

Figure 1.8: Repression via DNA looping. Figure from Phillips, Kondev and Theriot [56];
used with permission of Garland Science.

A feature that is present in some types of repressor proteins is the existence of
an inducer moleculethat combines with the protein to either activate or inactivate
its repression function. Apositive induceris a molecule that must be present in
order for repression to occur. Anegative induceris one in which the presence of
the inducer molecule blocks repression, either by changing the shape of the repres-
sor protein or by blocking active sites on the repressor protein that wouldnormally
bind to the DNA. Figure1.9a summarizes the various possibilities. Common ex-
amples of repressor-inducer pairs includelacI and lactose (or IPTG),tetRand ATc,
and tryptophan repressor and tryptophan. Lactose/IPTG and ATc are both negative
inducers, so their presence causes the otherwise repressed gene to be expressed,
while tryptophan is a positive inducer.

The process of activation of a gene requires that an activator protein be present
in order for transcription to occur. In this case, the protein must work to either
recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the pro-
moter sequence bind RNA polymerase. One of the most well-studied examples
is thecatabolite activator protein (CAP)—also sometimes called thecAMP recep-
tor protein (CRP)—shown in Figure1.10. Like repressors, many activators have
inducers, which can act in either a positive or negative fashion (see Figure1.9b).
For example, cyclic AMP (cAMP) acts as a positive inducer for CAP.

Another mechanism for activation of transcription, specific to prokaryotes, is
the use ofsigma factors. Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs transcrip-
tion. Different sigma factors enable RNA polymerase to bind to different promot-
ers, so the sigma factor acts as a type of activating signal for transcription. Table1.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, such aswhen the
cell undergoesheat shock(discussed in more detail in Chapter5). Another use is to
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Figure 1.9: Effects of inducers. Reproduced from Alberts et al. [2]; permission pending.

control the timing of the expression of certain genes, as illustrated in Figure1.11.

In addition to repressors and activators, many genetic circuits also make use of
combinatorial promotersthat can act as either repressors or activators for genes.
This allows genes to be switched on and off based on more complex conditions,
represented by the concentrations of two or more activators or repressors.

Figure1.12shows one of the classic examples, a promoter for thelac system.
In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induced by
cAMP, acts as an activator and LacI (also called “lac repressor”), which is neg-
atively induced by lactose, acts as a repressor. In addition, the inducercAMP is

Table 1.2: Sigma factors inE. coli [2].

Sigma factor Promoters recognized
σ70 most genes
σ32 genes associated with heat shock
σ28 genes involved in stationary phase and stress response
σ28 genes involved in motility and chemotaxis
σ24 genes dealing with misfolded proteins in the periplasm
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(a) Activation mechanism
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Figure 1.10: Activation of gene expression. Figure from Phillips, Kondev and Theriot [56];
used with permission of Garland Science.

expressed only when glucose levels are low. The resulting behavior is that the pro-
teins for metabolizing lactose are expressed only in conditions where there isno
glucose (so CAP is active)and lactose is present.

More complicated combinatorial promoters can also be used to control tran-
scription in two different directions, a example that is found in some viruses.

A final method of activation in prokaryotes is the use ofantitermination. The
basic mechanism involves a protein that binds to DNA and deactivates a site that
would normally serve as a termination site for RNA polymerase. Additional genes
are located downstream from the termination site, but without a promoter region.
Thus, in the presence of the anti-terminator protein, these genes are not expressed
(or expressed with low probability). However, when the antitermination protein
is present, the RNA polymerase maintains (or regains) its contact with the DNA

./intro/figures/MBoC09_07_43.eps

Figure 1.11: Use of sigma factors to controlling the timing of expression. Reproduced from
Alberts et al. [2]; permission pending.
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Figure 1.12: Combinatorial logic for thelac operator. Figure from Phillips, Kondev and
Theriot [56]; used with permission of Garland Science.

and expression of the downstream genes is enhanced. In this way, antitermination
allows downstream genes to be regulated by repressing “premature” termination.
An example of an antitermination protein is the protein N in phageλ, which binds
to a region of DNA labeled Nut (for N utilization), as shown in Figure1.13and
discussed in more detail in Section5.3.

./intro/figures/GNM93-antitermination.eps

Figure 1.13: Antitermination. Reproduced from [33]; permission pending.
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Figure 1.14: Phosphorylation of a protein via a kinase. Reproduced from Madhani [48];
permission pending.

Post-transcriptional regulation of protein production

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is produced.
These include control of splicing and transport from the nucleus (in eukaryotes),
the use of various secondary structure patterns in mRNA that can interfere with
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada-
tion of mRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape and activity
level. We briefly describe some of the major mechanisms here.

Material to be written.

One of the most common types of post-transcriptional regulation is through the
phosphorylationof proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation of the protein
changes, usually from an inactive configuration to an active one. The enzyme that
adds the phosphate group is called akinase(or sometimes aphosphotransferase)
and it operates by transferring a phosphate group from a bound ATP molecule to the
protein, leaving behind ADP and the phosphorylated protein.Dephosphorylation
is a complementary enzymatic process that can remove a phosphate group from
a protein. The enzyme that performs dephosphorylation is called aphosphotase.
Figure1.14shows the process of phosphorylation in more detail.

Phosphorylation is often used as a regulatory mechanism, with the phosphory-
lated version of the protein being the active conformation. Since phosphorylation
and dephosphorylation can occur much more quickly than protein production and
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degradation, it is used in my biological circuits in which a rapid response is re-
quired. One common motif is that a signaling protein will bind to a ligand and the
resulting allosteric change allows the signaling protein to serve as a kinase. The
newly active kinase then phosphorylates a second protein, which modulates other
functions in the cell. Phosphorylation cascades can also be used to amplify the
effect of the original signal; we will describe this in more detail in Section2.5.

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphotases, on the other hand,are much
less specific, and a given phosphotase species may desphosphorylate many dif-
ferent types of proteins. The combined action of kinases and phosphotases is im-
portant in signaling since the only way to deactivate a phosphorylated protein is
by removing the phosphate group. Thus phosphotases are constantly “turning off”
proteins, and the protein is activated only when sufficient kinase activity is present.

Phosphorylation of a protein occurs by the addition of a charged phosphate
(PO4) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amino acids. Sim-
ilar covalent modifications can occur by the attachment of other chemical groups
to select amino acids.Methylationoccurs when a methyl group (CH3) is added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structures.Acetylationoccurs when an acetyl
group (COCH3) is added to lysine and is also used to modify histones.Ubiquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

1.3 Control and Dynamical Systems Tools [AM08]

In this section we present a brief introduction to some of the key concepts from
control and dynamical systems that are relevant for the study of biological systems.
More details on the application of specific concepts listed here to biomolecular
systems is provided in the main body of the text. Readers who are familiar with
introductory concepts in dynamical systems and control, at the level described in
Åströ and Murray [1] for example, can skip this section.

Dynamics, feedback and control

A dynamical systemis a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The termfeedbackrefers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult because the first system in-
fluences the second and the second system influences the first, leading toa circular
argument. This makes reasoning based on cause and effect tricky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that the behavior
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Figure 1.15: Open and closed loop systems. (a) The output of system 1 is used as the input
of system 2, and the output of system 2 becomes the input of system 1, creating a closed
loop system. (b) The interconnection between system 2 and system 1 is removed, and the
system is said to be open loop.

of feedback systems is often counterintuitive, and it is therefore necessary to resort
to formal methods to understand them.

Figure1.15 illustrates in block diagram form the idea of feedback. We often
use the termsopen loopandclosed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
shown in Figure1.15a. If we break the interconnection, we refer to the configura-
tion as an open loop system, as shown in Figure1.15b.

A major source of examples of feedback systems is biology. Biological sys-
tems make use of feedback in an extraordinary number of ways, on scalesranging
from molecules to cells to organisms to ecosystems. One example is the regulation
of glucose in the bloodstream through the production of insulin and glucagon by
the pancreas. The body attempts to maintain a constant concentration of glucose,
which is used by the body’s cells to produce energy. When glucose levelsrise (after
eating a meal, for example), the hormone insulin is released and causes the body to
store excess glucose in the liver. When glucose levels are low, the pancreas secretes
the hormone glucagon, which has the opposite effect. Referring to Figure1.15, we
can view the liver as system 1 and the pancreas as system 2. The output from the
liver is the glucose concentration in the blood, and the output from the pancreas
is the amount of insulin or glucagon produced. The interplay between insulinand
glucagon secretions throughout the day helps to keep the blood-glucoseconcentra-
tion constant, at about 90 mg per 100 mL of blood.

Feedback has many interesting properties that can be exploited in designingsys-
tems. As in the case of glucose regulation, feedback can make a system resilient
toward external influences. It can also be used to create linear behavior out of non-
linear components, a common approach in electronics. More generally, feedback
allows a system to be insensitive both to external disturbances and to variations in
its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabilities
in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons



1.3. CONTROL AND DYNAMICAL SYSTEMS TOOLS [AM08] 1-23

that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

Feedback systems are ubiquitous in both natural and engineered systems.Con-
trol systems maintain the environment, lighting and power in our buildings and
factories; they regulate the operation of our cars, consumer electronicsand manu-
facturing processes; they enable our transportation and communications systems;
and they are critical elements in our military and space systems. For the most part
they are hidden from view, buried within the code of embedded microprocessors,
executing their functions accurately and reliably. Feedback has also madeit pos-
sible to increase dramatically the precision of instruments such as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintains thermal, chemical and
biological conditions through feedback. At the other end of the size scale, global
climate dynamics depend on the feedback interactions between the atmosphere, the
oceans, the land and the sun. Ecosystems are filled with examples of feedback due
to the complex interactions between animal and plant life. Even the dynamics of
economies are based on the feedback between individuals and corporations through
markets and the exchange of goods and services.

The mathematical study of the behavior of feedback systems is an area known
ascontrol theory. The term control has many meanings and often varies between
communities. In engineering applications, we typical define control to be the use
of algorithms and feedback in engineered systems. Thus, control includes such ex-
amples as feedback loops in electronic amplifiers, setpoint controllers in chemical
and materials processing, “fly-by-wire” systems on aircraft and even router proto-
cols that control traffic flow on the Internet. Emerging applications include high-
confidence software systems, autonomous vehicles and robots, real-time resource
management systems and biologically engineered systems. At its core, control is an
informationscience and includes the use of information in both analog and digital
representations.

A modern engineering control system senses the operation of a system, com-
pares it against the desired behavior, computes corrective actions based on a model
of the system’s response to external inputs and actuates the system to effect the
desired change. This basicfeedback loopof sensing, computation and actuation is
the central concept in control. The key issues in designing control logic are ensur-
ing that the dynamics of the closed loop system are stable (bounded disturbances
give bounded errors) and that they have additional desired behavior(good distur-
bance attenuation, fast responsiveness to changes in operating point,etc). These
properties are established using a variety of modeling and analysis techniques that
capture the essential dynamics of the system and permit the exploration of possible
behaviors in the presence of uncertainty, noise and component failure.

A typical example of a control system is shown in Figure1.16. The basic el-
ements of sensing, computation and actuation are clearly seen. In modern control
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Figure 1.16: Components of a computer-controlled system. The upper dashed box rep-
resents the process dynamics, which include the sensors andactuators in addition to the
dynamical system being controlled. Noise and external disturbances can perturb the dy-
namics of the process. The controller is shown in the lower dashed box. It consists of a
filter and analog-to-digital (A/D) and digital-to-analog (D/A) converters, as well as a com-
puter that implements the control algorithm. A system clockcontrols the operation of the
controller, synchronizing the A/D, D/A and computing processes. The operator input is
also fed to the computer as an external input.

systems, computation is typically implemented on a digital computer, requiring the
use of analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty
enters the system through noise in sensing and actuation subsystems, external dis-
turbances that affect the underlying system operation and uncertain dynamics in the
system (parameter errors, unmodeled effects, etc). The algorithm that computes the
control action as a function of the sensor values is often called acontrol law. The
system can be influenced externally by an operator who introducescommand sig-
nalsto the system.

Control engineering relies on and shares tools from physics (dynamics and
modeling), computer science (information and software) and operations research
(optimization, probability theory and game theory), but it is also different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control and other disciplines is in
the modeling of physical systems, which is common across all areas of engineering
and science. One of the fundamental differences between control-oriented model-
ing and modeling in other disciplines is the way in which interactions between
subsystems are represented. Control relies on a type of input/output modeling that
allows many new insights into the behavior of systems, such as disturbance attenu-
ation and stable interconnection. Model reduction, where a simpler (lower-fidelity)
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Figure 1.17: A feedback system for controlling the speed of avehicle. In the block diagram
on the left, the speed of the vehicle is measured and comparedto the desired speed within
the “Compute” block. Based on the difference in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehicle by the engine, drivetrain and
wheels. The figure on the right shows the response of the control system to a commanded
change in speed from 25 m/s to 30 m/s. The three different curves correspond to differing
masses of the vehicle, between 1000 and 3000 kg, demonstrating the robustness of the
closed loop system to a very large change in the vehicle characteristics.

description of the dynamics is derived from a high-fidelity model, is also naturally
described in an input/output framework. Perhaps most importantly, modeling in a
control context allows the design ofrobust interconnections between subsystems,
a feature that is crucial in the operation of all large engineered systems.

Feedback properties

Feedback is a powerful idea that is used extensively in natural and technological
systems. The principle of feedback is simple: implement correcting actions based
on the difference between desired and actual performance. In engineering, feed-
back has been rediscovered and patented many times in many different contexts.
The use of feedback has often resulted in vast improvements in system capability,
and these improvements have sometimes been revolutionary, as discussed above.
The reason for this is that feedback has some truly remarkable properties, which
we discuss briefly here.

Robustness to Uncertainty.One of the key uses of feedback is to provide robust-
ness to uncertainty. By measuring the difference between the sensed value of a
regulated signal and its desired value, we can supply a corrective action. If the sys-
tem undergoes some change that affects the regulated signal, then we sense this
change and try to force the system back to the desired operating point. Thisis pre-
cisely the effect that Watt exploited in his use of the centrifugal governor on steam
engines.

As an example of this principle, consider the simple feedback system shown in
Figure1.17. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simpleproportional-integral(PI) feedback
is used to make the amount of gas depend on both the error between the current
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and the desired speed and the integral of that error. The plot on the right shows
the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from having a different number of
passengers or towing a trailer. Notice that independent of the mass (whichvaries by
a factor of 3!), the steady-state speed of the vehicle always approaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustness is theneg-
ative feedback amplifier. When telephone communications were developed,ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuumtube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black usednegative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Design of Dynamics.Another use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meet the needs of
an application: systems that are unstable can be stabilized, systems that are slug-
gish can be made responsive and systems that have drifting operating points can
be held constant. Control theory provides a rich collection of techniques toanalyze
the stability and dynamic response of complex systems and to place bounds on the
behavior of such systems by analyzing the gains of linear and nonlinear operators
that describe their components.

An example of the use of control in the design of dynamics comes from the area
of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [50], illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the age
of flying will have arrived, for all other difficulties are of minor impor-
tance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
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Figure 1.18: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [39].

an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By usingtheir
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of feedback in aero-
nautical engineering, and Sperry won a prize in a competition for the safest airplane
in Paris in 1914. Figure1.18shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilize an unsta-
ble system and hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By using feedback to
create a system whose response matches a desired profile, we can hide the com-
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the responses
of a large number of interacting components. This was one of the advantages of
Black’s use of negative feedback in vacuum tube amplifiers: the resultingdevice
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had a well-defined linear input/output response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of Feedback.While feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesireable effects of feedback
when the amplification on a microphone is turned up too high in a room. This is an
example of feedback instability, something that we obviously want to avoid. This
is tricky because we must design the system not only to be stable under nominal
conditions but also to remain stable under all possible perturbations of the dynam-
ics.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects measurement
noise into the system. Measurements must be carefully filtered so that the actuation
and process dynamics do not respond to them, while at the same time ensuring that
the measurement signal from the sensor is properly coupled into the closedloop
dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding a control
system in a product. While the cost of sensing, computation and actuation hasde-
creased dramatically in the past few decades, the fact remains that control systems
are often complicated, and hence one must carefully balance the costs andbenefits.
An early engineering example of this is the use of microprocessor-based feedback
systems in automobiles.The use of microprocessors in automotive applications be-
gan in the early 1970s and was driven by increasingly strict emissions standards,
which could be met only through electronic controls. Early systems were expensive
and failed more often than desired, leading to frequent customer dissatisfaction. It
was only through aggressive improvements in technology that the performance,
reliability and cost of these systems allowed them to be used in a transparent fash-
ion. Even today, the complexity of these systems is such that it is difficult for an
individual car owner to fix problems.

Feedforward.Feedback is reactive: there must be an error before corrective actions
are taken. However, in some circumstances it is possible to measure a disturbance
before it enters the system, and this information can then be used to take corrective
action before the disturbance has influenced the system. The effect of the distur-
bance is thus reduced by measuring it and generating a control signal that coun-
teracts it. This way of controlling a system is calledfeedforward. Feedforward is
particularly useful in shaping the response to command signals because command
signals are always available. Since feedforward attempts to match two signals, it
requires good process models; otherwise the corrections may have the wrong size
or may be badly timed.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
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based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology,feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties.

Positive Feedback.In most of control theory, the emphasis is on the role ofnegative
feedback, in which we attempt to regulate the system by reacting to disturbances in
a way that decreases the effect of those disturbances. In some systems, particularly
biological systems,positive feedbackcan play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a situation in
which that quantity is further increased through its dynamics. This has a destabi-
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior is usedin bio-
logical (and engineering) systems to obtain a very fast response to a condition or
signal.

One example of the use of positive feedback is to create switching behavior,
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do notcause the
system to jitter. This type of behavior is calledbistability and is often associated
with memory devices.

Simple forms of feedback

The idea of feedback to make corrective actions based on the difference between
the desired and the actual values of a quantity can be implemented in many different
ways. The benefits of feedback can be obtained by very simple feedback laws such
as on-off control, proportional control and proportional-integral-derivative control.
In this section we provide a brief preview of some of these topics to provide abasis
of understanding for their use in the chapters that follows.

On-Off Control.A simple feedback mechanism can be described as follows:

u=






umax if e> 0

umin if e< 0,
(1.2)

where thecontrol error e= r −y is the difference between the reference signal (or
command signal)r and the output of the systemy andu is the actuation command.
Figure1.19ashows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equation (1.2) is calledon-off control. One of its chief advan-
tages is that it is simple and there are no parameters to choose. On-off control often



1-30 CHAPTER 1. INTRODUCTORY CONCEPTS

u

e

(a) On-off control

u

e

(b) Dead zone

u

e

(c) Hysteresis

Figure 1.19: Input/output characteristics of on-off controllers. Each plot shows the input on
the horizontal axis and the corresponding output on the vertical axis. Ideal on-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (c). Note that for on-off
control with hysteresis, the output depends on the value of past inputs.

succeeds in keeping the process variable close to the reference, suchas the use of
a simple thermostat to maintain the temperature of a room. It typically results in
a system where the controlled variables oscillate, which is often acceptable ifthe
oscillation is sufficiently small.

Notice that in equation (1.2) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figure1.19band1.19c).

PID Control. The reason why on-off control often gives rise to oscillations is that
the system overreacts since a small change in the error makes the actuated variable
change over the full range. This effect is avoided inproportional control, where the
characteristic of the controller is proportional to the control error for small errors.
This can be achieved with the control law

u=






umax if e≥ emax

kpe if emin < e< emax

umin if e≤ emin,

(1.3)

wherekp is the controller gain,emin = umin/kp andemax = umax/kp. The interval
(emin,emax) is called theproportional bandbecause the behavior of the controller
is linear when the error is in this interval:

u= kp(r −y) = kpe if emin ≤ e≤ emax. (1.4)

While a vast improvement over on-off control, proportional control has the
drawback that the process variable often deviates from its reference value. In partic-
ular, if some level of control signal is required for the system to maintain a desired
value, then we must havee, 0 in order to generate the requisite input.

This can be avoided by making the control action proportional to the integralof
the error:

u(t) = ki

∫ t

0
e(τ)dτ. (1.5)
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Figure 1.20: Action of a PID controller. At timet, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedback is based on the integral
of the error up to timet (shaded portion). The derivative term provides an estimateof the
growth or decay of the error over time by looking at the rate ofchange of the error.Td

represents the approximate amount of time in which the erroris projected forward (see
text).

This control form is calledintegral control, andki is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error. The catch is that there may not always be a steady state because
the system may be oscillating.

An additional refinement is to provide the controller with an anticipative abil-
ity by using a prediction of the error. A simple prediction is given by the linear
extrapolation

e(t+Td) ≈ e(t)+Td
de(t)
dt

,

which predicts the errorTd time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be expressed mathematically as

u(t) = kpe(t)+ki

∫ t

0
e(τ)dτ+kd

de(t)
dt

. (1.6)

The control action is thus a sum of three terms: the past as represented bythe
integral of the error, the present as represented by the proportionalterm and the
future as represented by a linear extrapolation of the error (the derivative term).
This form of feedback is called aproportional-integral-derivative (PID) controller
and its action is illustrated in Figure1.20.

A PID controller is very useful and is capable of solving a wide range of con-
trol problems. More than 95% of all industrial control problems are solvedby PID
control, although many of these controllers are actuallyproportional-integral(PI)
controllersbecause derivative action is often not included [21]. There are also more
advanced controllers, which differ from PID controllers by using more sophisti-
cated methods for prediction.
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Figure 1.21: Milestones in the history of synthetic biology.

1.4 From Systems to Synthetic Biology

The rapidly growing field of synthetic biology seeks to use biological principles
and processes to build useful engineering devices and systems. Applications of
synthetic biology range from materials production (drugs, biofuels) to biological
sensing and diagnostics (chemical detection, medical diagnostics) to biological ma-
chines (bioremediation, nanoscale robotics). Like many other fields at the timeof
their infancy (electronics, software, networks), it is not yet clear where synthetic
biology will have its greatest impact. However, recent advances such asthe abil-
ity to “boot up” a chemically synthesized genome [27] demonstrate the ability to
synthesize systems that offer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to design systems
of this complexity are much more primitive, andde novosynthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms.

Several scientific and technological developments over the past four decades
have set the stage for the design and fabrication of early synthetic biomolecular
circuits (see Figure1.21). An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. In
their 1961 paper, Jacob and Monod introduced for the first time the idea ofgene
expression regulation through transcriptional feedback [42]. Only a few years later
(1969),restriction enzymesthat cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workers [4]. These enzymes were a major
enabler of recombinant DNA technology, in which genes from one organism are
extracted and spliced into the chromosome of another. One of the most celebrated
products of this technology was the large scale production of insulin by employing
E. coli bacteria as a cell factory [72].
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Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification of small
amounts of DNA and can be used to obtain sufficient quantities for use in a variety
of molecular biology laboratory protocols where higher concentrations ofDNA are
required. Using PCR, it is possible to “copy” genes and other DNA sequences out
of their host organisms.

The developments of recombinant DNA technology, PCR and artificial synthe-
sis of DNA provided the ability to “cut and paste” natural or synthetic promoters
and genes in almost any fashion. This cut and paste procedure is calledcloningand
consists of four primary steps:fragmentation, ligation, transfectionandscreening.
The DNA of interest is first isolated using restriction enzymes and/or PCR amplifi-
cation. Then, a ligation procedure is employed in which the amplified fragment is
inserted into a vector. The vector is often a piece of circular DNA, called a plasmid,
that has been linearized by means of restriction enzymes that cleave it at appropri-
ate restriction sites. The vector is then incubated with the fragment of interestwith
an enzyme calledDNA ligase, producing a single piece of DNA with the target
DNA inserted. The next step is to transfect (or transform) the DNA into living
cells, where the natural replication mechanisms of the cell will duplicate the DNA
when the cell divides. This process does not transfect all cells, and so a selection
procedure if required to isolate those cells that have the desired DNA inserted in
them. This is typically done by using a plasmid that gives the cell resistance to a
specific antibiotic; cells grown in the presence of that antibiotic will only live if
they contain the plasmid. Further selection can be done to insure that the inserted
DNA is also present.

Once a circuit has been constructed, its performance must be verified and, if
necessary, debugged. This is often done with the help offluorescent reporters. The
most famous of these is GFP, which was isolated from the jellyfishAequorea vic-
toria in 1978 by Shimomura [?]. Further work by Chalfie, Tsujii and others in the
1990s enabled the use of GFP inE. coli as a fluorescent reporter by inserting it into
an appropriate point in an artificial circuit. By using spectrofluorometry, fluorescent
microscopy or flow cytometry, it is possible to measure the amount of fluorescence
in individual cells or collections of cells and characterize the performanceof a
circuit in the presence of inducers or other factors.

Two early examples of the application of these technologies were therepressi-
lator [23] and a synthetic genetic switch [].

The repressilator is a synthetic circuit in which three proteins each repress an-
other in a cycle. This is shown schematically in Figure1.22a, where the three pro-
teins are TetR,λ cI and LacI. The basic idea of the repressilator is that if TetR is
present, then it represses the production ofλ cI. If λ cI is absent, then LacI is pro-
duced (at the unregulated transcription rate), which in turn represses TetR. Once
TetR is repressed, thenλ cI is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrations willoscillate,
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Figure 1.22: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, show-
ing the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

as shown in Figure1.22b.
The genetic switch consists of two repressors connected together in a cycle, as

shown in Figure1.23a. The intuition behind this circuit is that if the gene A is being
expressed, it will repress production of B and maintain its expression level (since
the protein corresponding to B will not be present to repress A). Similarly,if B
is being expressed, it will repress the production of A and maintain its expression
level. This circuit thus implements a type ofbistability that can be used as a simple
form of memory. Figure1.23bshows the time traces for a system, illustrating the
bistable nature of the circuit. When the initial condition starts with a concentration
of protein B greater than that of A, the solution converges to the equilibrium point
where B is on and A is off. If A is greater than B, then the opposite situation results.

These seemingly simple circuits took years to get to work, but showed that it
was possible to synthesize a biological circuit that performed a desired function
that was not originally present in a natural system. Today, commercial synthesis
of DNA sequences and genes has become cheaper and faster, with a price often
below $0.30 per base pair.1 The combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for imaging and
measurement has vastly simplified the process of producing a sequence ofDNA
that encodes a given set of genes, operator sites, promoters and other functions,
and these techniques are a routine part of undergraduate courses in molecular and
synthetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make use oftran-

1As of this writing; divide by a factor of two for every two years after the publication date.
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Figure 1.23: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputsu1 andu2 interfere with this
repression, allowing the circuit dynamics to be modified. The simulation in (b) shows the
time response of the system starting from two different initial conditions. The initial portion
of the curve corresponds to protein B having higher concentration than A, and converges to
an equilibrium where A is off and B is on. At timet = 10, the concentrations are perturbed,
moving the concentrations into a region of the state space where solutions converge to the
equilibrium point with the A on and B off.

scriptional or post-transcriptional processing, resulting in very slow timescales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is needed,such as
rapid detection of a chemical signal or fast response to changes in the internal envi-
ronment of the cell. In addition, existing methods for biological circuit designhave
limited modularity (reuse of circuit elements requires substantial redesign or tun-
ing) and typically operate in very narrow operating regimes (e.g., a single species
grown in a single type of media under carefully controlled conditions).

As an illustration of the dynamics of typical synthetic devices in use today, Fig-
ure1.24shows a typical response of a genetic element to an inducer molecule [14].
In this circuit, an external signal of homoserine lactone (HSL) is applied attime
zero and the system reaches 10% of the steady state value in approximately 15 min-
utes. This response is limited in part by the time required to synthesize the output
protein (GFP), including delays due to transcription, translation and folding. Since
this is the response time for the underlying “actuator”, circuits that are composed of
feedback interconnections of such genetic elements will typically operate at5–10
times slower speeds. While these speeds are appropriate in many applications(e.g.,
regulation of steady state enzyme levels for materials production), in the context
of biochemical sensors or systems that must maintain a steady operating pointin
more rapidly changing thermal or chemical environments, this response time is too
slow to be used as an effective engineering approach.
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Figure 1.24: Expression of a protein using an inducible promoter [14]. (a) The circuit
diagram indicates the DNA sequences that are used to construct the part (chosen from the
BioBrick library). (b) The measured response of the system to a step change in the inducer
level (HSL).

By comparison, the frequency response for the signaling component inE. coli
chemotaxis is shown in Figure1.25 [?]. Here the response of the kinase CheA
is plotted in response to an exponential ramp in the ligand concentration. The re-
sponse is extremely rapid, with the timescale measured in seconds. This rapid re-
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes.

The field of synthetic biology has the opportunity to provide new approaches
to solving engineering and scientific problems. Sample engineering applications
include the development of synthetic circuits for producing biofuels, ultrasensitive
chemical sensors, or production of materials with specific properties that are tuned
to commercial needs. In addition to the potential impact on new biologically engi-
neered devices, there is also the potential for impact in improved understanding of
biological processes. For example, many diseases such as cancer andParkinson’s
disease are closely tied to kinase dysfunction. Our analysis of robust systems of
kinases and the ability to synthesize systems that support or invalidate biological
hypotheses may lead to a better systems understanding of failure modes that lead
to such diseases.

1.5 Further Reading

There are numerous survey articles and textbooks that provide more detailed intro-
ductions to the topics introduced in this chapter. In the are of systems biology,the
textbook by Alon [3] provides a broad view of some of the key elements of mod-
ern systems biology. A more comprehensive set of topics is covered in the recent
textbook by Klipp [?], while a more engineering-oriented treatment of modeling
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Figure 1.25: Responses of E. coli signaling network to exponential ramps in ligand con-
centration. (a) A simplified circuit diagram for chemotaxis, showing the biomolecular pro-
cesses involved in regulating flagellar motion. (b) Time responses of the “sensing” subsys-
tem (from Shimizu, Tu and Berg; Molecular Systems Biology, 2010), showing the response
to exponential inputs.

of biological circuits can be found in the text by Myers [?]. Two other books that
are particularly noteworthy are Ptashne’s book on the phageλ [58] and Madhani’s
book on yeast [48], both of which use well-studied model systems to describe a
general set of mechanisms and principles that are present in many different types
of organisms.

The topics in dynamical systems and control theory that are briefly introduced
here are covered in more detail in AM08 [1], to which this text is a supplement.
Other books that introduce tools for modeling and analysis of dynamical systems
with applications in biology include the two-volume text by J. D. Murray [52] and
the recent text by and Ellner and Guckenheimer [22].

Synthetic biology is a rapidly evolving field that includes many different sub-
areas of research, but few textbooks are currently available. In the specific area of
biological circuit design that we focus on here, there are a number of good survey
and review articles. The article by Bakeret al [9] provides a high level description
of the basic approach and opportunities. Recent survey and review papers include
Voigt [?] and Khalil and Collins [?].
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Part I

Modeling and Analysis





Chapter 2
Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way that
can be represented by simple dynamic models. We begin the chapter a discussion
of the basic modeling formalisms that we will utilize to model biomolecular feed-
back systems. We then proceed to study a number of core processes withinthe cell,
providing different model-based descriptions of the dynamics that will be used in
later chapters to analyze and design biomolecular systems. The focus in this chap-
ter and the next is on deterministic models using ordinary differential equations;
Chapter4 describes how to model the stochastic nature of biomolecular systems.

Prerequisites.Readers should have a basic understanding of ordinary differential
equations, at the level of Chapter 2 of AM08, and some basic familiarity with cell
biology, at the level of the description in AppendixA.

2.1 Modeling Techniques

In order to develop models for some of the core processes of the cell, we will need
to build up a basic description of the biochemical reactions that take place, includ-
ing production and degradation of proteins, regulation of transcription and trans-
lation, intracellular sensing, action and computation, and intercellular signaling.
As in other disciplines, biomolecular systems can be modeled in a variety of dif-
ferent ways, at many different levels of resolution, as illustrated in Figure2.1. The
choice of which model to use depends on the questions that we want to answer, and
good modeling takes practice, experience and iteration. We must properly capture
the aspects of the system that are important, reason about the appropriatetempo-
ral and spatial scales to be included, and take into account the types of simulation
and analysis tools be be applied. Models that are to be used for analyzing existing
systems should make testable predictions and provide insight into the underlying
dynamics. Design models must additionally capture enough of the important be-
havior to allow decisions to be made regarding how to interconnect subsystems,
choose parameters and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions of the
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. In this chapter
our emphasis will be on dynamics with time scales measured in seconds to hours
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Figure 2.1: Different methods of modeling biomolecular systems.

and mean behavior averaged across a large number of molecules. We touch only
briefly on modeling in the case where stochastic behavior dominates and defer a
more detailed treatment until Chapter4.

Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in Figure2.1, we can attempt to
model themolecular dynamicsof the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecular-scaleforces
and motions. At this scale, the individual interactions between protein domains,
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.

For our purposes in this text, we will not require the use of such a detailed scale.
Instead, we will start with the abstraction of molecules that interact with each other
through stochastic events that are guided by the laws of thermodynamics. We begin
with an equilibrium point of view, commonly referred to asstatistical mechanics,
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefly here,
primarily as a stepping stone to more deterministic models, and present a more
detailed description in Chapter4.

The underlying representation for both statistical mechanics and chemical ki-
netics is to identify the appropriatemicrostatesof the system. A microstate cor-
responds to a given configuration of the components (species) in the system rela-
tive to each other and we must enumerate all possible configurations between the
molecules that are being modeled. As an example, consider the distribution of RNA
polymerase in the cell. It is known that most RNA polymerases are bound to the
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Figure 2.2: Microstates for RNA polymerase. Each microstate of the system corresponds
to the RNA polymerase being located at some position in the cell. If we discretize the
possible locations on the DNA and in the cell, the microstates corresponds to all possi-
ble non-overlapping locations of the RNA polymerases. Figure from Phillips, Kondev and
Theriot [56]; used with permission of Garland Science.

DNA in a cell, either as they produce RNA or as they diffuse along the DNA in
search of a promoter site. Hence we can model the microstates of the RNA poly-
merase system as all possible locations of the RNA polymerase in the cell, with the
vast majority of these corresponding to the RNA polymerase at some location on
the DNA. This is illustrated in Figure2.2.

In statistical mechanics, we model the configuration of the cell by the proba-
bility that system is in a given microstate. This probability can be calculated based
on the energy levels of the different microstates. The laws of statistical mechanics
state if we have a set of microstatesQ, then the steady state probability that the
system is in a particular microstateq is given by

P(q) =
1
Z

e−Eq/(kBT), (2.1)

whereEq is the energy associated with the microstateq ∈ Q, kB is the Boltzmann
constant,T is the temperature in degrees Kelvin, andZ is a normalizing factor,
known as thepartition function,

Z =
∑

q∈Q
e−Eq/(kBT).

(These formulas are described in more detail in Chapter4.)
By keeping track of those microstates that correspond to a given system state

(also called amacrostate), we can compute the overall probability that a given
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macrostate is reached. This can be used, for example, to compute the probability
that some RNA polymerase is bound to a given promoter, averaged over many
independent samples, and from this we can reason about the rate of expression of
the corresponding gene.

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider thechemical kineticsof the system and model the probability that
we transition from one microstate to another in a given period of time. Letq rep-
resent the microstate of the system, which we shall take as a vector of integers that
represents the number of molecules of a specific types in given configurations or
locations. We describe the kinetics of the system by making use of thepropensity
function a(ξ;q, t), which captures the instantaneous probability that at timet a sys-
tem will transition between stateq and stateq+ ξ, whereξ is the change in the
vector of integers representing the microstate.

More specifically, the propensity function is defined such that

a(ξ;q, t)dt = Probability that the microstate will transition from
stateq to stateq+ ξ between timet and timet+dt.

We will give more detail in Chapter4 regarding the validity of this functional form,
but for now we simply assume that such a function can be defined for our system.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the current
state. Specifically, givenP(q, t), the probability of being in stateq at timet, we can
compute the time derivativėP(q, t) as

d
dt

P(q, t) =
∑

ξ

a(ξ;q− ξ, t)P(q− ξ, t)−
∑

ξ

a(ξ;q, t)P(q, t). (2.2)

This equation (and its many variants) is called thechemical master equation(CME).
The first sum on the right hand side represents the transitions into the stateq from
some other stateq−ξ and the second sum represents that transitions out of the state
q into some other stateq+ξ. The variableξ in the sum ranges over all possible tran-
sitions between microstates.

Clearly the dynamics of the distributionP(q, t) depends on the form of the
propensity functiona(ξ). Consider a simple reaction of the form

A +B −−−⇀↽−−− AB ≡
Rf : A +B −−→ AB

Rr : AB −−→ A +B.
(2.3)

We assume that the reaction takes place in a well-stirred volume and let the con-
figurationsq be represented by the number of each species that is present. The
forward reactionRf is a bimolecular reaction and we will see in Chapter4 that it
has a propensity function

a(ξ f ;q) = cf
ξnAnB,
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whereξf represents the forward reaction,nA andnB are the number of molecules
of each species andcξf is a constant coefficient that depends on the properties of
the specific molecules involved. The reverse reactionRr is a unimolecular reaction
and we will see that it has a propensity function

a(ξ r,q) = cr
ξnAB ,

whereξ r represents the reverse reaction,cr
ξ

is a constant coefficient andnAB is the
number of molecules of AB that are present.

The primary difference between the statistical mechanics description given by equa-
tion (2.1) and the chemical kinetics description in equation (2.2) is that the master
equation formulation describes how the probability of being in a given microstate
evolves over time. Of course, if the propensity functions and energy levels are mod-
eled properly, the steady state, average probabilities of being in a given microstate
should be the same for both formulations.

Mass action kinetics

Although very general in form, the chemical master equation suffers from being a
very high dimensional representation of the dynamics of the system. We shallsee
in Chapter4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particular,
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reacting system
by keeping track of theconcentrationof each species as a real number. This is
of course an approximation, but if the number of molecules is sufficiently large,
then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynamics,
we begin by making a number of assumptions. First, we assume that we can rep-
resent the state of a given species by its concentrationcA = nA/Ω, wherenA is the
number of molecules of A in a given volumeΩ. We also treat this concentration
as a real number, ignoring the fact that the real concentration is quantized. Finally,
we assume that our reactions take place in a well-stirred volume, so that the rate of
interactions between two species is solely determined by the concentrations ofthe
species.

Before proceeding, we should recall that in many (and perhaps most) situations
inside of cells, these assumptions arenot particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but well mixed.
Hence, we should not expect that models based on these assumptions should per-
form well at all. However, experience indicates that in many cases the basic form
of the equations provides a good model for the underlying dynamics and hence we
often find it convenient to proceed in this manner.
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Putting aside our potential concerns, we can now proceed to write the dynam-
ics of a system consisting of a set of species Si , i = 1, . . . ,N undergoing a set of
reactionsRj , j = 1, . . . ,M. We write xi = [Si ] for the concentration of speciesi
(viewed as a real number). Because we are interested in the case wherethe number
of molecules is large, we no longer attempt to keep track of every possible con-
figuration, but rather simply assume that the state of the system at any giventime
is given by the concentrationsxi . Hence the state space for our system is given by
x ∈ RN and we seek to write our dynamics in the form of a differential equation

ẋ= f (x, θ)

where f :RN→RN describes the rate of change of the concentrations as a function
of the instantaneous concentrations andθ represents the parameters that govern the
dynamic behavior.

To illustrate the general form of the dynamics, we consider again the case of a
basic bimolecular reaction

A +B −−−⇀↽−−− AB.

Each time the forward reaction occurs, we decrease the number of molecules of
A and B by 1 and increase the number of molecules of AB (a separate species)
by 1. Similarly, each time the reverse reaction occurs, we decrease the number of
molecules of AB by one and increase the number of molecules of A and B.

Using the discussion from the chemical master equation, we know that the
likelihood that the reaction occurs in a given intervaldt is given bya(ξ f ; x, t)dt =
cf
ξ
nAnBdt wherecf

ξ
is a constant. Another way of viewing this equation is that the

rate at which reactions occur is given bya(ξ; x, t). Looking first at the species AB,
we can thus write

d
dt

[AB] =
(

cf
ξnAnB−cr

ξnAB

)

/Ω

= (cf
ξΩ)[A][B] − (cr

ξ)[AB] =: kf
ξ[A][B] −kr

ξ[AB] ,

where we have used the fact that [A]= nA/Ω and similarly for B and AB. The
constantskf

ξ
andkr

ξ
are therate constantsfor the reaction and can be computed

from the coefficients of the propensity functions:

kf
ξ = cf

ξΩ, bimolecular reaction,

kr
ξ = cr

ξ, unimolecular reaction.
(2.4)

In a similar fashion we can write equations to describe the dynamics of A and B
and the entire system of equations is given by

d
dt

[A] = kr
ξ[AB] −kf

ξ[A][B]

d
dt

[B] = kr
ξ[AB] −kf

ξ[A][B]

d
dt

[AB] = kf
ξ[A][B] −kr

ξ[AB]

or

Ȧ= kr
ξC−kf

ξA·B
Ḃ= kr

ξC−kf
ξA·B

Ċ = kf
ξA·B−kr

ξC,
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whereC = [AB]. These equations are known as themass action kineticsor the
reaction rate equationsfor the system.

Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
adopt the standard notation for chemical reactions with specified rates andwrite
the individual reactions as

A +B
kf
ξ−→ AB, AB

kr
ξ−→ A +B,

wherekf
ξ

andkr
ξ

are the reaction rates. For bidirectional reactions we can also write

A +B
kf
ξ−−⇀↽−−

kr
ξ

AB.

It is easy to generalize these dynamics to more general reactions. For example,
if we have a reversible reaction of the form

A +2B
k1−−⇀↽−−
k2

2C+D,

where A, B, C and D are appropriate species and complexes, then the dynamics for
the species concentrations can be written as

d
dt

A= k2C
2 ·D−k1A·B2,

d
dt

C = 2k1A·B2−2k2C
2 ·D,

d
dt

B= 2k2C
2 ·D−2k1A·B2,

d
dt

D = k1A·B2−k2C
2 ·D.

(2.5)

Rearranging this equation, we can write the dynamics as

d
dt




A
B
C
D




=




−1 1
−2 2
2 −2
1 −1







k1A·B2

k2C2 ·D



. (2.6)

We see that in this decomposition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term isa
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of speciesSi ,
i = 1, . . . ,n and a set of reactionsRj , j = 1, . . . ,M, we can write the mass action
kinetics in the form

dx
dt
= Nv(x),

whereN ∈ Rn×m is thestoichiometry matrixfor the system andv(x) ∈ RM is the
reaction flux vector. Each row ofv(x) corresponds to the rate at which a given
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CA
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AB A B
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A +2 B−−−⇀↽−−− C+DA −−−→ BA +B −−−⇀↽−−− AB

Figure 2.3: Diagrams for chemical reactions.

reaction occurs and the corresponding column of the stoichiometry matrix corre-
sponds to the changes in concentration of the relevant species. As we shall see in
the next chapter, the structured form of this equation will allow us to exploresome
of the properties of the dynamics of chemically reacting systems.

We will often find it convenient to represent collections of chemical reactions
using simple diagrams, so that we can see the basic interconnection between vari-
ous chemical species and properties. A set of diagrams for standard chemical reac-
tions is shown in Figure2.3.

Reduced order mechanisms

In this section, we look at dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates or reactions
and concentrations of species, it is possible to derive reduced order expressions for
the dynamics of the system. We focus here on an informal derivation of the relevant
results, but return to these examples in the next chapter to illustrate that the same
results can derived using a more formal and rigorous approach.

Simple binding reaction.Consider again the reaction

A +B
kf

−−⇀↽−−
kr

C, (2.7)

where C is the complex AB. We now assume that the total amount of A is conserved

S+E−−−⇀↽−−− ES−−−→ E+P

E

S P

(a) Enzymatic reaction

X e+P−−−⇀↽−−− X e:P−−−→ X i +P

X iX e

P

(b) Permease-modulated transport

Figure 2.4: Diagrams for enzymatic reactions.
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and we denote its total concentration byAtot, so thatA+C = [A] + [AB] = Atot. The
corresponding rate equation for C is given by

dC
dt
= kf B· (Atot−C)−krC.

We are interested in determining the steady state values of the concentrationsC
and A, i.e., A as a function of the concentrationB. By settingĊ = 0 and letting
Kd := kr/kf , we obtain the expressions

C =
BAtot

B+Kd
, A=

AtotKd

B+Kd
.

The constantKd is the inverse of the affinity of A to B. The steady state value ofC
increases withB while the steady state value ofA decreases withB as more of A is
found in the complex C.

Cooperative binding reaction.Assume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have that reac-
tions (2.7) become

B+B
k1−−⇀↽−−
k2

Bd, Bd+A
kf

−−⇀↽−−
kr

C, A+C = Atot,

in which Bd denotes the dimer of B. The corresponding ODE model is given by

dBd

dt
= k1B2−k2Bd,

dC
dt
= kf Bd · (Atot−C)−krC.

By settingḂd = 0, Ċ = 0, and by definingKm := k1/k2, we we obtain that

Bd = KmB2, C =
BdAtot

Bd+Kd
, A=

AtotKd

Bd+Kd
,

so that

C =
KmAtotB2

KmB2+Kd
, A=

AtotKd

KmB2+Kd
.

As an exercise, the reader can verify that if B binds to A only as a complex of n
copies of B, that is,

B+B+ ...+B
k1−−⇀↽−−
k2

Bn, Bn+A
kf

−−⇀↽−−
kr

C, A+C = Atot,

then we have that

C =
KmAtotBn

KmBn+Kd
, A=

AtotKd

KmBn+Kd
.
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Figure 2.5: Steady state concentrations of the complex C andof A as functions of the
concentration of B.

In this case, one says that the binding of B to A iscooperativewith cooperativityn.
Figure2.5shows the above functions, which are often referred to asHill functions.

Competitive binding reaction.Finally, consider the case in which two species Ba

and Br both bind to A competitively, that is, they cannot be bound to A at the same
time. Let C be the complex formed between Ba and A and letC̄ be the complex
formed between Br and A. Then, we have the following reactions

Ba+A
kf

−−⇀↽−−
kr

C, Br+A
k̄f

−−⇀↽−−̄
kr

C̄, A+C+ C̄ = Atot,

for which we can write the ODE system as

dC
dt
= kf Ba · (Atot−C− C̄)−krC,

dC̄
dt
= k̄f Br · (Atot−C− C̄)−krC̄.

By setting the derivatives to zero, we obtain that

C(kf Ba+kr) = kf Ba(Atot− C̄), C̄(k̄f Br + k̄r) = k̄f Br (Atot−C),

and definingK̄d := k̄r/k̄f leads to

C̄ =
Br (Atot−C)

Br + K̄d
, C

(

Ba+Kd−
BaBr

Br + K̄d

)

= Ba

(

K̄d

Br + K̄d

)

Atot,

from which we finally obtain that

C =
BaAtotK̄d

K̄dBa+KdBr +KdK̄d
, C̄ =

Br AtotKd

KdBr + K̄dBa+KdK̄d
.

Note that in this derivation, we have assumed that both Ba and Br bind A as
monomers. If they were binding as dimers, the reader should verify that they would
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appear in the final expressions with a power of two. Note also that in this deriva-
tion we have assumed that Ba and Br cannot simultaneously bind to A. If they were
binding simultaneously to A, we would have included another complex comprising
Ba and Br and A. Denoting this new complex byC′, we would have added also the
two additional reactions

C+Br
k
′ f
−−⇀↽−−
k′ r

C
′
, C̄+Ba

k̄
′ f
−−⇀↽−−
k̄′ r

C
′

and we would have modified the conservation law for A toAtot = A+C+ C̄+C′.
The reader can verify that in this case a mixed termBr Ba would appear in the
equilibrium expressions.

Enzymatic reaction.A general enzymatic reaction can be written as

E+S
kf

−−⇀↽−−
kr

C
kcat−−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The ratekf is referred to as association
constant,kr as dissociation constant, andkcat as the catalytic rate. Enzymatic re-
actions are very common and we will see specific instances of them in the sequel,
e.g., phosphorylation and dephosphorylation reactions. The corresponding ODE
system is given by

dE
dt
= −kfE ·S+krC+kcatC,

dC
dt
= kfE ·S− (kr+kcat)C,

dS
dt
= −kfE ·S+krC,

dP
dt
= kcatC.

The total enzyme concentration is usually constant and denoted byEtot, so that
E+C = Etot. Substituting in the above equationsE = Etot−C, we obtain

dE
dt
= −kf(Etot−C) ·S+krC+kcatC,

dC
dt
= kf(Etot−C) ·S− (kr+kcat)C,

dS
dt
= −kf(Etot−C) ·S+krC,

dP
dt
= kcatC.

This system cannot be solved analytically, therefore assumptions have been used
in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C andvice versais much faster than the decomposition of
C into E and P. This approximation is called thequasi-equilibriumapproximation
between the enzyme and the complex. This assumption can be translated into the
condition

kf ,kr≫ kcat
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on the rate constants. Under this assumption and assuming thatS≫ E (at least at
time 0),C immediately reaches its steady state value (whileP is still changing).
The steady state value ofC is given by solvingkf(Etot−C)S− (kr +kcat)C = 0 for
C, which gives

C =
EtotS

S+Km
, with Km=

kr+kcat

kf
,

in which the constantKm is called theMichaelis constant. LettingVmax= kcatEtot,
the resulting kinetics

dP
dt
=

VmaxS
S+Km

is calledMichaelis-Menten kinetics. The constantVmax is called the maximal ve-
locity (or maximal flux) and it represents the maximal rate that can be obtained
when the enzyme is completely saturated by the substrate.

Chemical reaction networks

2.2 Transcription and Translation

In this section we consider the processes of transcription and translation inmore
detail, using the modeling techniques described in the previous section to capture
the fundamental dynamic behavior. Models of transcription and translation can
be done at a variety of levels of detail and which model to use depends on the
questions that one wants to consider. We present several levels of modeling here,
starting with a fairly detailed set of reactions and ending with highly simplified
models that can be used when we are only interested in average productionrate of
proteins at relatively long time scales.

The basic reactions that underly transcription include the diffusion of RNA
polymerase from one part of the cell to the promoter region, binding of an RNA
polymerase to the promoter, isomerization from the closed complex to the open
complex and finally the production of mRNA, one base pair at a time. To capture
this set of reactions, we keep track of the various forms of RNA polymerase accord-
ing to its location and state: RNAPc represents RNA polymerase in the cytoplasm
and RNAPd is non-specific binding of RNA polymerase to the DNA. We must sim-
ilarly keep track of the state of the DNA, to insure that multiple RNA polymerases
do not bind to the same section of DNA. Thus we can write DNAp for the promoter
region, DNAg,i for the ith section of a geneg (whose length can depend on the de-
sired resolution) and DNAt for the termination sequence. We write RNAP:DNA to
represent RNA polymerase bound to DNA (assumed closed) and RNAP:DNA o to
indicate the open complex. Finally, we must keep track of the mRNA that is pro-
duced by transcription: we write mRNAi to represent an mRNA strand of lengthi
and assume that the length of the gene of interest isN.
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Using these various states of the RNA polymerase and locations on the DNA,
we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAPc −−−⇀↽−−− RNAPd

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

Binding to promoter : RNAPp+DNA p −−−⇀↽−−− RNAP:DNAp

Isomerization: RNAP:DNAp −−−⇀↽−−− RNAP:DNAo

Start of transcription: RNAP:DNAo −−→ RNAP:DNAg,1+DNA p

mRNA creation (indexk): : RNAP:DNAg,1 −−→ RNAP:DNAg,2+mRNA1
k

Elongation,i = 1, . . . ,N : RNAP:DNAg,i+1+mRNAi
k −−→ RNAP:DNAg,i+2+mRNAi+1

k

Binding to terminator : RNAP:DNAg,N+mRNAN−1
k −−→ RNAP:DNAt+mRNAN

k

Termination: RNAP:DNAt −−→ RNAPc

Degradation: mRNANk −−→ ∅
(2.8)

This reaction has been written for prokaryotes, but a similar set of reactions could
be written for eukaryotes: the main differences would be that the RNA polymerase
remains in the nucleus and the mRNA must be spliced and transported to the cy-
tosol. Note that at the start of transcription we “release” the promoter region of the
DNA, thus allowing a second RNA polymerase to bind to the promoter while the
first RNA polymerase is still transcribing the gene.

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain and folding of the polypeptide
chain into a functional protein. Let Ribo:mRNARBS indicate the ribosome bound
to the ribosome binding site, Ribo:mRNAi the ribosome bound to theith codon,
Ribo:mRNAs for the stop codon, and PPCi for a polypeptide chain consisting ofi
amino acids. The reactions describing translation can then be written as

Binding to RBS: Ribo+mRNARBS
k
−−−⇀↽−−− Ribo:mRNARBS

k

Start of translation: Ribo:mRNARBS
k −−→ Ribo:mRNAstart

k +mRNARBS
k

Polypeptide chain creation: Ribo:mRNAstart
k −−→ Ribo:mRNAAA2

k +PPC1

Elongation,i = 1, . . . ,M : Ribo:mRNAAA(i+1)
k +PPCi −−→ Ribo:mRNAAA(i+2)

k +PPCi+1

Stop codon: Ribo:mRNAMk +PPCM−1 −−→ Ribo:mRNAstop
k +ppcM

Release of mRNA: Ribo:mRNAstop
k −−→ Ribo

Folding: PPCM −−→ protein

Degradation: protein−−→ ∅

As in the case of transcription, we see that these reactions allow multiple ribosomes
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to translate the same piece of mRNA by freeing up the ribosome binding site (RBS)
when translation begins.

As complex as these equations are, they are still missing many important effects.
For example, we have not accounted for the existence and effects of the 5’ UTR or
3’ UTR of a gene and we have also left out various error correction mechanisms in
which ribosomes can step back and release an incorrect amino acid that has been
incorporated into the polypeptide chain. We have also left out the many chemical
species that must be present in order for many of the reactions to happen(NTPs
for mRNA production, amino acids for protein production, etc). Incorporation of
these effects requires additional reactions that track the many possible states of the
molecular machinery that underlies transcription and translation.

Given a set of reactions, the various stochastic processes that underly detailed
models of transcription and translation can be specified using the stochastic model-
ing framework described briefly in the previous section. In particular, using either
models of binding energy or measured rates, we can construct propensity functions
for each of the many reactions that lead to production of proteins, includingthe
motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are coveredin some
detail in Chapter4.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using differential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions using equation(2.4) or
measured experimentally. In moving to this formalism, we approximate the con-
centrations of various species as real numbers, which may not be accurate since
some species (such as DNA) exist as a single molecule in the cell. Despite all of
these approximations, in many situations the reaction rate equations are perfectly
sufficient, particularly if we are interested in the average behavior of a large number
of cells.

In some situations, a even simpler model of the transcription, translation and
folding processes can be utilized. If we assume that RNA polymerase binds to
DNA at some average rate (which includes both the binding and isomerization
reactions) and that transcription takes some fixed time (depending on the length
of the gene), then the process of transcription can be described using the delay
differential equation

dmp

dt
= αp,0−µmp−γpmp, m∗p(t) = e−µτ

m
p mp(t−τm

p ), (2.9)

wheremp is the concentration of mRNA for protein P,m∗p is the concentration of
“active” mRNA, αp,0 is the rate of production of the mRNA for protein P,µ is the
growth rate of the cell (which results in dilution of the concentration) andγp is the
rate of degradation of the mRNA. Since the dilution and degradation terms are of
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the same form, we will often combine these terms in the mRNA dynamics and use
a single coefficient γ̄p.

The active mRNA is the mRNA that is available for translation by the ribo-
some. We model its concentration through a simple time delay of lengthτm

p that
accounts for the transcription of the ribosome binding site in prokaryotes orsplic-
ing and transport from the nucleus in eukaryotes. The exponential factor accounts
for dilution due to the change in volume of the cell, whereµ is the cell growth rate.
The constantsαp,0 andγ̄p capture the average rates of production and degradation,
which in turn depend on the more detailed biochemical reactions that underlie tran-
scription.

Once the active mRNA is produced, the process of translation can be described
via a similar ordinary differential equation the describes the production of a func-
tional protein:

dP
dt
= βp,0m∗p− δ̄pP, Pf (t) = e−µτ

f
pP(t−τ f

p). (2.10)

HereP represents the concentration of the polypeptide chain for the protein,Pf

represents the concentration of functional protein (after folding). Theparameters
that govern the dynamics areβp,0, the rate of translation of mRNA;̄δp the rate
of degradation and dilution of P; andτ f

p, the time delay associated with folding
and other processes required to make the protein functional. The exponential term
again accounts for dilution due to cell growth. The degradation and dilution term,
parameterized bȳδp, captures both rate at which the polypeptide chain is degraded
and the rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla-
tion in terms of the functional mRNA and functional protein. Differentiating the
expression form∗p, we see that

dm∗p(t)

dt
= e−µτ

m
p ṁp(t−τm

p )

= e−µτ
m
p
(

αp,0− γ̄pmp(t−τm
p )

)

= ᾱp,0− γ̄pm∗p(t),
(2.11)

whereᾱp,0 = e−µτ
m
pαp,0. A similar expansion for the active protein dynamics yields

dPf (t)
dt

= β̄p,0m∗p(t−τ f
p)− δ̄Pf (t), (2.12)

whereβ̄p,0 = e−µτ
f
pβp,0. We shall typically use equations (2.11) and (2.12) as our

(reduced) description of protein folding, dropping the superscriptf and overbars
when there is no risk of confusion.

In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
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Figure 2.6: Simplified diagrams for protein production. Thediagram on the left shows a
section of DNA with RNA polymerase as an input, protein concentration as an output and
degradation of mRNA and protein. The figure on the right is a simplified view in which
only the protein output is indicated.

changes (depending on the values of the other parameters in the system). In such
cases, we can simplify our model of the dynamics of protein production and write

dmp

dt
= αp,0− γ̄pmp,

dP
dt

= βp,0mp− δ̄pP. (2.13)

Note that we here have dropped the superscript∗ and f since we are assuming that
all mRNA is active and proteins are functional and dropped the overbar on α andβ
since we are assuming the time delays are negligible. We retain the overbars onγ

andδ since dilution due to cell growth is still a potentially important factor.
Finally, the simplest model for protein production is one in which we only keep

track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the first differential equation in equation (2.13) with its
equilibrium value. Thus we obtain

dP
dt
= βp,0me

p−δpP= βp,0
αp,0

γp
−δpP=: βp−δpP.

This model represents a simple first order, linear differential equation for the rate of
production of a protein. In many cases this will be a sufficiently good approximate
model, although we will see that in many cases it is too simple to capture the
observed behavior of a biological circuit.

We will often find it convenient to represent protein production using a simple
diagram that hides the details of the particular model that we decide to use. Fig-
ure2.6shows the symbol that we will use through the text. The diagram is intended
to resemble a section of double stranded DNA, with a promoter and terminator at
the ends, and then a list of the gene and protein in the middle. The boxes labeled by
the gene and protein schematically represent the mRNA and protein concentration,
with the line at the left of the DNA represent the input of RNA polymerase and
the line on the top representing the the (folded) protein. The symbols at the bottom
represent the degradation and dilution of mRNA and protein.
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Figure 2.7: Regulation of proteins. Figure from Phillips, Kondev and Theriot [56]; used
with permission of Garland Science.

2.3 Transcriptional Regulation

The operation of a cell is governed by the selective expression of genes in the DNA
of the organism, which control the various functions the cell is able to perform at
any given time. Regulation of protein activity is a major component of the molecu-
lar activities in a cell. By turning genes on and off, and modulating their activity in
more fine-grained ways, the cell controls the many metabolic pathways in the cell,
responds to external stimuli, differentiates into different cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplished through
a variety of molecular mechanisms, as illustrated in Figure2.7. We see that at each
stage of the processing from a gene to a protein, there are potential mechanisms
for regulating the production processes. The remainder of this section willfocus
on transcriptional control, the next section on control between transcription and
translation, and the third section on post-translational control mechanisms. We be-
gin with a description of regulation mechanisms in prokaryotes (bacterial) andthen
describe the additional mechanisms that are specific to eukaryotes.
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Prokaryotic mechanisms

Transcriptional regulation refers to the selective expression of genesby activating
or repressing the transcription of DNA into mRNA. The simplest such regulation
occurs in prokaryotes, where proteins can bind to “operator regions” inthe vicinity
of the promoter region of a gene and affect the binding of RNA polymerase and
the subsequent initiation of transcription. A protein is called arepressorif it blocks
the transcription of a given gene, most commonly by binding to the DNA and
blocking the access of RNA polymerase to the promoter. Anactivatoroperates in
the opposite fashion: it recruits RNA polymerase to the promoter region and hence
transcription only occurs when the activator (protein) is present.

We can capture this set of molecular interactions by modifying the RNA poly-
merase binding reactions in equation (2.8). For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promoter:

Repressor binding: DNAp+Rep−−−⇀↽−−− DNA:Rep

This reaction acts to “sequester” the DNA promoter site so that it is no longer
available for binding by RNA polymerase (which requires DNAp). The strength
of the repressor is reflected in the reaction rate constants for the repressor binding
reaction and the equilibrium concentrations of DNAp versus DNA:Rep model the
“leakiness” of the repressor.

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activator before RNA
polymerase can bind. One possible mechanism is

Activator binding: DNAp+Act −−−⇀↽−−− DNA:Act

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

Binding to promoter w/ activator : RNAPp+DNA:Act −−−⇀↽−−− RNAP:DNAo+DNA:Act

Binding to promoter w/out activator : RNAPp+DNA p −−−⇀↽−−− RNAP:DNAp

Here we model both the enhanced binding of the RNA polymerase to the promoter
in the presence of the activator, as well as the possibility of binding without an
activator. The relative reaction rates determine how strong the activator isand the
“leakiness” of transcription in the absence of the activator.

As indicated earlier, many activators and repressors operate in the presence of
inducers. To incorporate these dynamics in our description, we simply haveto add
the reactions that correspond to the interaction of the inducer with the relevant
protein. For a negative inducer, we can simply add a reaction in which the inducer
binds the regulator protein and effectively sequesters it so that it cannot interact
with the DNA. For example, a negative inducer operating on a repressor could be
modeled by adding the reaction

Rep+ Ind−−−⇀↽−−− Rep:Ind.
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Positive inducers can be handled similarly, except now we have to modify thebind-
ing reactions to only work in the presence of a regulatory protein bound to an in-
ducer. For example, a positive inducer on an activator would have the modified
reactions

Inducer binding: Act+ Ind−−−⇀↽−−− Act:Ind

Activator binding: DNAp+Act:Ind−−−⇀↽−−− DNA:Act:Ind

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

Binding to promoter w/ activator : RNAPp+DNA:Act:Ind −−−⇀↽−−− RNAP:DNAo+DNA:Act:Ind

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are in steady state config-
urations. In this case, we can make use of the steady state statistical mechanics
techniques described in Section2.1 and relate the expression of the gene to the
probability that the activator or repressor is bound to the DNA (Pbound). This can
be done at the level of the reaction rate equation by replacing the differential equa-
tions for activator or repressor binding with their steady state values. Here instead
we demonstrate how to account for this rapid binding in the simplified differential
equation models presented at the end of Section2.2.

Recall that given the relative energies of the different microstates of the system,
we can compute the probability of a given configuration using equation (2.1):

P(q) =
1
Z

e−Eq/(kBT).

Consider the regulation of a genea with a protein concentration given bypa and
a corresponding mRNA concentrationma. Let b be a second gene with protein
concentrationpb that represses the production of protein A through transcriptional
regulation. If we letqboundrepresent the microstate corresponding to the appropri-
ate activator or repressor bound to the DNA, then we can computeP(qbound) as a
function of the concentrationpb, which we write asPbound(pb). For a repressor, the
resulting mRNA dynamics can be written as

dma

dt
=

(

1−Pbound(pb)
)

αa0−γama. (2.14)

We see that the effect of the repression is modeled by a modification of the rate of
transcription depending on the probability that the repressor is bound to theDNA.

In the case of an activator, we proceed similarly. The modified mRNA dynamics
are given by

dma

dt
= Pbound(pb)αa0−γama, (2.15)

where now we see that B must be bound to the DNA in order for transcriptionto
occur.
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Figure 2.8: The repressilator genetic regulatory network.(a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, show-
ing the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

As we shall see in Chapter4 (see also Exercise2.1, the functional form of
Pboundcan be nicely approximated by a monotonic rational function, called aHill
function[17, 52]. For a repressor, the Hill function is given by

f r
a(pb) = 1−Pbound(pb) =

αab

kab+ pnab
b

+αa,

where the subscripts correspond to a protein B repressing production of a protein
A, and the parametersαab, kab andnab describe how B represses A. The maximum
transcription rate occurs whenpb = 0 and is given byαab/kab+ αa0. The mini-
mum rate of transcription occurs whenpb→∞, giving αa0, which describes the
“leakiness” of the promoter. The parameternab is called theHill coefficient and
determines how close the Hill function is to a step function. The Hill coefficient
is often called thedegree of cooperativityof the reaction, as it often arises from
molecular reactions that involve multiple (“cooperating”) copies of the proteinX.

Example 2.1(Repressilator). As an example of how these models can be used, we
consider the model of a “repressilator,” originally due to Elowitz and Leibler[23].
The repressilator is a synthetic circuit in which three proteins each repress another
in a cycle. This is shown schematically in Figure2.8a, where the three proteins are
TetR,λ cI and LacI.

The basic idea of the repressilator is that if TetR is present, then it represses the
production ofλ cI. If λ cI is absent, then LacI is produced (at the unregulated tran-
scription rate), which in turn represses TetR. Once TetR is repressed, thenλ cI is
no longer repressed, and so on. If the dynamics of the circuit are designed properly,
the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (2.14), with A and
B replaced by the appropriate combination of TetR, cI and LacI. The state of the
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Figure 2.9: Hill function for an activator (left) and for a repressor (right).

system is then given byx = (mTetR, pTetR,mcI, pcI,mLacI, pLacI). Figure2.8bshows
the traces of the three protein concentrations for parametersn = 2, α = 0.5, k =
6.25×10−4, α0 = 5×10−4, γ = 5.8×10−3, β = 0.12 andδ = 1.2×10−3 with initial
conditionsx(0)= (1,0,0,200,0,0) (following [23]). ∇

For an activator the Hill function is given by

f a
a (pb) = Pbound(pb) =

αabkabpnab
b

kab+ pnab
b

+αa0,

where the variables are the same as described previously. Note that in the case of
the activator, ifpb is zero, then the production rate isαa0 (versusαab+αa0 for the
repressor). Aspb gets large, the first term in the Hill function approachesαab and
the transcription rate becomesαab+αa0 (versusαa0 for the repressor). Thus we see
that the activator and repressor act in opposite fashion from each other. Figure2.9
shows the standard Hill functions for activation and repression.

In the case where there are inducers present, we can modify our model by
adding the appropriate additional reactions. For example, if we have a repressor
with a negative inducer (such as LacI and IPTG), we can add a reaction

B+ I
kf

−−⇀↽−−
kr

B:I.

If we assume that this reaction is fast relative to the other dynamics in the sys-
tem, we can solve for the equilibrium concentration of the inducer bound to the
repressor,

[B:I] =
kf

kr [B][I] ,

wherekf andkr are the forward and reverse reaction rates. We can now attempt to
solve forPbound(I ) by computing the amount of repressor that is still free to bind to
the DNA.
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Figure 2.10: Circuit diagrams for transcriptional regulation of a gene. The first two figures
represent repression and activation. If desired, additional mechanisms can also be indi-
cated, as shown in the diagram on the right.

A simplified case occurs when we assume that most of the repressor is either
bound to the inducer or free, so that the amount of B bound to the DNA is small.
In this case we can solve forpb in terms ofI and then combine the expression for
Pboundwith the modified value ofpb. If we let BT represent the total amount ofB
present and assume this is constant, we can write

BT = [B:I] + [B]

(ignoring any contributions from B:DNA) and solve forpb as

pb = [B] =
AT

1+ (kf/kr)I
.

The resulting expression forPbound(I ) is complicated, but easily computed.
We will often find it convenient to represent the process of regulation in agraph-

ical fashion that hides the specific details of the model that we choose to use. Fig-
ure2.10shows the notation that we will use in this text to represent the process of
transcription, translation and regulation.

We have described how the Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulated by multiple
transcription factors, some of which may be activators and some may be repres-
sors. The input function can thus take several forms depending on the roles (activa-
tors versus repressors) of the various transcription factors [3]. In general, the input
function of a transcriptional module that takes as input transcription factors pi for
i ∈ {1, ...,N} will be denotedf (p1, ..., pn).

Consider a transcriptional module with input functionf (p1, ..., pn). The inter-
nal dynamics of the transcriptional module usually models mRNA and protein dy-
namics through the processes of transcription and translation. Protein production
is balanced by decay, which can occur throughdegradationor dilution. Thus, the
dynamics of a transcriptional module is often well captured by the ordinary differ-
ential equations

dmy

dt
= f (p1, ..., pn)−γymy,

dpy

dt
= βymy−δy py, (2.16)
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wheremy denotes the concentration of mRNA translated by geney, the constants
γy andδy incorporate the dilution and degradation processes, andβy is a constant
that establishes the rate at which the mRNA is translated.

Several other methods of transcriptional regulation can exist in cells.

Antitermination.Antitermination can also be used as a transcriptional regulatory
mechanism. To model its effects, assume that we have a coding region labeledh
that occurs after an antitermination site. We modify the termination reactions from
equation (2.8):

Termination (unchanged) : RNAP:DNAt −−→ RNAPc

Binding to utilization site : DNANut+N −−−⇀↽−−− DNA Nut:N

Antitermination: RNAP:DNAt+DNA Nut

Termination (unchanged) : RNAP:DNAt −−→ RNAP:DNAh,1

Regulation in eukaryotes

Transcriptional regulation in eukaryotes is more complex than in prokaryotes. In
many situations the transcription of a given gene is affected by many different tran-
scription factors, with multiple molecules being required to initiate and/or suppress
transcription.

2.4 Post-Transcriptional Regulation

In addition to regulation of expression through modifications of the processof tran-
scription, cells can also regulate the production and activity of proteins via acol-
lection of other post-transcriptional modifications. These include methods ofmod-
ulating the translation of proteins, as well as affecting the activity of a protein via
changes in its conformation, as shown in Figure2.7.

RNA-based regulation

Allosteric modifications to proteins

Covalent modifications to proteins

Covalent modification is a post-translational protein modification that affects the
activity of the protein. It plays an important role both in the control of metabolism
and in signal transduction. Here, we focus onreversiblecycles of modification, in
which a protein is interconverted between two forms that differ in activity either
because of effects on the kinetics relative to substrates or for altered sensitivity to
effectors.
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Figure 2.11: Diagram representing a covalent modification cycle.

At high level, any covalent modification cycle involves a target protein, sayX,
an enzyme for modifying it, say Z, and one for reversing the modification, say
Y (see Figure2.11). We call X* the activated protein. There are often allosteric
effectors or further covalent modification systems that regulate the activity of the
modifying enzymes, but we do not consider here this added level of complexity.
There are several types of covalent modification, depending on the typeof acti-
vation of the protein.Phosphorylationis a covalent modification that takes place
mainly in eukaryotes and involves activation of the inactive protein X by addition
of a phosphate group. In this case, the enzyme Z is called akinasewhile the enzyme
Y is calledphosphatase. Another type of covalent modification that is very com-
mon in both procaryotes and eukaryotes ismethylation. Here, the inactive protein
is activated by the addition of a methyl group.

The reactions describing this system are given by the following two enzymatic
reactions, also called atwo step reaction model,

Z+X
kf−−⇀↽−−
kr

C
kcat−−→ X ∗+Z, Y +X ∗

k′f−−⇀↽−−
k′r

C
′ k′cat−−→ X +Y.

The corresponding ODE model is given by

dZ
dt
= −kf Z ·X+ (kcat+kr )C,

dY
dt
= −k′f Y ·X

∗+ (k′r +k′cat)C
′,

dX
dt
= −kf Z ·X+krC+k′catC

′,
dX∗

dt
= kcatC−k′f Y ·X

∗+k′rC
′,

dC
dt
= kf Z ·X− (kr +kcat)C,

dC′

dt
= k′f Y ·X

∗− (k′r +k′cat)C
′.

Furthermore, we have that the total amounts of enzymes Z and Y are conserved.
Denote the total concentrations of Z and Y byZtot, Ytot, respectively. Then, we
also have the conservation lawsZ+C = Ztot andY+C′ = Ytot. We can thus reduce
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the above system of ODEs to the following one, in which we have substituted
Z = Ztot−C andY= Ytot−C′:

dC
dt
= kf (Ztot−C) ·X− (kr +kcat)C

dX∗

dt
= kcatC−k′f (Ytot−C′) ·X∗+k′rC

′

dC′

dt
= k′f (Ytot−C′) ·X∗− (k′r +k′cat)C

′.

As for the case of the enzymatic reaction, this system cannot be analytically in-
tegrated. To simplify it, we can perform a similar approximation as done for the
enzymatic reaction. In particular, the complexes C and C’ are often assumedto
reach their steady state values very quickly becausekf ,kr ,k′f ,k

′
r ≫ kcat,k′cat. There-

fore, we can approximate the above system by substituting forC andC′ their steady
state values given by the solutions to

kf (Ztot−C) ·X− (kr +kcat)C = 0

and
k′f (Ytot−C′) ·X∗− (k′r +k′cat)C

′ = 0.

By solving these equations, we obtain that

C′ =
YtotX∗

X∗+K′m
, with K′m=

k′r +k′cat

k′f

and that

C =
ZtotX

X+Km
, with Km=

kr +kcat

kf
.

As a consequence, the ODE model of the phosphorylation system can be well
approximated by

dX∗

dt
= kcat

ZtotX
X+Km

−k′f
YtotK′m
X∗+K′m

·X∗+k′r
YtotX∗

X∗+K′m
,

which, considering thatk′f K
′
m−k′r = k′cat, leads finally to

dX∗

dt
= kcat

ZtotX
X+Km

−k′cat
YtotX∗

X∗+K′m
. (2.17)

We will come back to the modeling of this system after we have introduced singu-
lar perturbation theory, through which we will be able to perform a formal analysis
of this system and mathematically characterize the assumptions needed for approx-
imating the original system by the first order ODE model (2.17).

The full process for phosphorylation and dephosphorylation is actuallya bit
more complicated than we have shown here and is illustrated in circuit diagram
form in Figure2.12.
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ADPATP
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X X *

E

F
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Figure 2.12: Circuit diagram for phosphorylation and dephoshorylation of a proteinX via
a kinaseE and phosphotaseF. The diagram on the left shows the full set of reactions. A
simplified diagram is shown on the right.

Phosphotransfer systems

2.5 Cellular subsystems

Intercellular Signalling

Adaptation

Logical operations

Exercises

2.1(Hill function for a cooperative repressor) Consider a repressor that binds to an
operator site as a dimer:

R1: R+R−−−⇀↽−−− R2

R2: R2+DNA p −−−⇀↽−−− R2:DNA

R3: RNAP+DNA p −−−⇀↽−−− RNAP:DNAp

Assume that the reactions are at equilibrium and that the RNA polymerase con-
centration is large (so that [RNAP] is roughly constant). Show that the ratioof the
concentration of RNA:DNAp to the total amount of DNA,DT , can be written as a
Hill function

f (R) =
[RNAP:DNA]

DT
=

α

K +R2

and give expressions forα andK.
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2.2 (Switch-like behavior in cooperative binding) For a cooperative bindingreac-
tion

B+B
k1−−⇀↽−−
k2

Bd, Bd+A
kf−−⇀↽−−
kr

C, and A+C = Atot,

the steady state values ofC andA are

C =
kMAtotB2

kMB2+KD
, and A=

AtotKD

kMB2+KD
.

Derive the expressions ofC andA at the steady state when you modify these reac-
tions to

B+B+ ...+B
k1−−⇀↽−−
k2

Bn, Bn+A
kf−−⇀↽−−
kr

C, and A+C = Atot.

Make MATLAB plots of the expressions that you obtain and verify that asn in-
creases the functions become more switch-like.

2.3 Consider the following modification of the competitive binding reactions:

Ba+A
kf−−⇀↽−−
kr

C, Br+A
k̄f−−⇀↽−−
k̄r

C̄,

and

C+Br

k′f−−⇀↽−−
k′r

C
′
, andC̄+Ba

k̄′f−−⇀↽−−
k̄′r

C
′

with Atot = A+C+ C̄+C′. What are the steady state expressions forA andC?
What information do you deduce from these expressions if A is a promoter,Ba
is an activator protein, and C is the activator/DNA complex that makes the gene
transcriptionally active?

2.4 Assume that we have an activator Ba and a repressor protein Br. We want to
obtain an input function such that when a lot of Ba is present, the gene is tran-
scriptionally active only if there is no Br, when low amounts of Ba are present, the
gene is transcriptionally inactive (with or without Br). Write down the reactions
among Ba, Br, and complexes with the DNA (A) that lead to such an input func-
tion. Demonstrate that indeed the set of reactions you picked leads to the desired
input function.

2.5 Consider the phosphorylation reactions described in Section2.4, but suppose
that the kinase concentrationZ is not constant, but is produced and decays accord-

ing to the reaction Z
δ−−−⇀↽−−−

k(t)
∅. How should the system in equation (2.17) be modified?

Use a MATLAB simulation to apply a periodic input stimulusk(t) using parame-
ter values:kcat = k′cat = 10, kf = k′f = kr = k′r = 1, δ = 0.01. Is the cycle capable of
“tracking” the input stimulus? If yes, to what extent? What are the tracking prop-
erties depending on?
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2.6 Another model for the phosphorylation reactions, referred to as one step re-
action model, is given by Z+X −−−⇀↽−−− X ∗+Z and Y+X ∗ −−−⇀↽−−− X +Y, in which the
complex formations are neglected. Write down the ODE model and comparing the
differential equation ofX∗ to that of equation (2.17), list the assumptions under
which the one step reaction model is a good approximation of the two step reaction
model.

2.7 (Transcriptional regulation with delay) Consider a repressor or activator B∗

modeled by a Hill functionF(B). Show that in the presence of transcriptional delay
τm, the dynamics of the active mRNA can be written as

dm∗(t)
dt

= e−τ
m
F(B(t−τm))− γ̄m∗.



Chapter 3
Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems and feed-
back control theory that will be used in the rest of the text to analyze and design
biological circuits, building on tools already described in AM08. We focus here on
deterministic models and the associated analyses; stochastic methods are givenin
Chapter4.

Prerequisites.Readers should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary differential equations, at the level of Chapter 4 of
AM08. We will also make use of linearized input/output models in state space,
based on the techniques described in Chapter 5 of AM08, and sensitivity function
methods, described in Chapters 11 and 12 of AM08 and building on the frequency
domain techniques described in Chapters 8–10.

3.1 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great deal ofinsight
into the behavior of a biological system can be obtained by analyzing the dynamics
of the system subject to small perturbations around a known solution. We begin by
considering the dynamics of the system near an equilibrium point, which is oneof
the simplest cases and provides a rich set of methods and tools.

Parametric uncertainty

Consider a general nonlinear system of the from

ẋ= f (x, θ,w),

wherex ∈ Rn is the system state,θ ∈ Rp are the system parameters andw ∈ Rq

is a set of external inputs. Letxe(θ0,w0) represent an equilibrium point for fixed
parametersθ0 and external inputw0, so that f (xe, θ0,w0) = 0. The stability of the
system around the equilibrium point can be analyzed using the tools described in
AM08. Here we focus instead on understanding how the location of the equilibrium
point and the dynamics near the equilibrium point vary as a function of changes in
the parametersθ and external inputsw.

We start by assuming thatw = 0 and investigating howxe depends onθ. The
simplest approach is to analytically solve the equationf (xe, θ0)= 0 for xe. However,
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A

RNAP

(a) Open loop

RNAP

A

(b) Negative feedback

Figure 3.1: Parameter sensitivity in a genetic circuit. Theopen loop system (a) consists
of a constitutive promoter, while the closed loop circuit (b) is self-regulated with negative
feedback (repressor).

this is often difficult to do in closed form and so as an alternative we instead look
at the linearized response given bySxeθ = dxe/dθ, the (infinitesimal) change in the
equilibrium state due to a change in the parameter. To determineSxeθ we begin by
differentiating the relationshipf (xe(θ), θ) = 0 with respect toθ:

d f
dθ
=
∂ f
∂x

∂xe

∂θ
+
∂ f
∂θ
= 0 =⇒ ∂xe

∂θ
= −

(

∂ f
∂x

)−1
∂ f
∂θ

∣
∣
∣
∣
∣
(xe,θ0)

. (3.1)

These quantities can be computed numerically and hence we can evaluate the effect
of small (but constant) changes in the parametersθ on the equilibrium statexe.

A similar analysis can be performed to determine the effects of small (but con-
stant) changes in the external inputw. Suppose thatxe depends on bothθ andw,
with f (xe, θ0,w0) = 0 andθ0 andw0 representing the nominal values. Then

∂xe

∂θ
= −

(

∂ f
∂x

)−1
∂ f
∂θ

∣
∣
∣
∣
∣
(xe,θ0,w0)

,
∂xe

∂w
= −

(

∂ f
∂x

)−1
∂ f
∂w

∣
∣
∣
∣
∣
(xe,θ0,w0)

.

We see that the vector∂ f /∂w describes how the specific inputs vary and (∂ f /∂x)−1

indicates how the perturbations are reflected in the equilibrium states. If the system
is close to instability then some eigenvalues of∂ f /∂x will be near zero and hence
the inverse could be large, resulting in significant changes in the equilibriumpoint
due to variations in the disturbances (or parameters).

Example 3.1 (Transcriptional regulation). Consider a genetic circuit consisting
of a single gene. We wish to study the response of the protein concentrationto
fluctuations in its parameters in two cases: aconstitutive promoter(no regulation)
and self-repression (negative feedback), illustrated in Figure3.1. The dynamics of
the system are given by

dm
dt
= F(P)−γm,

dP
dt
= βm−δP,

wherem is the mRNA concentration andP is the protein concentration.
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For the case of no feedback we haveF(p) = α0, and the system has an equi-
librium point atme = α0/γ, Pe = βα0/(δγ). The parameter vector can be taken as
θ = (α0,γ,β,δ). Since we have a simple expression for the equilibrium concentra-
tions, we can compute the sensitivity to the parameters directly:

∂xe

∂θ
=




1
γ
−α0
γ2 0 0

β

δγ
−βα0

δγ2
α0
δγ
−βα0

γδ2



,

where the parameters are evaluated at their nominal values, but we leave off the
subscript 0 on the individual parameters for simplicity. If we choose the parame-
ters asθ0 = (0.00138,0.00578,0.115,0.00116), then the resulting sensitivity matrix
evaluates to

Sopen
xe,θ
≈




170 −41 0 0
17000 −4100 210 −21000



. (3.2)

If we look instead at the scaled sensitivity matrix, then the open loop nature ofthe
system yields a particularly simple form:

S̄open
xe,θ
=




1 −1 0 0
1 −1 1 −1



. (3.3)

In other words, a 10% change in any of the parameters will lead to a comparable
positive or negative change in the equilibrium values.

For the case of negative regulation, we have

F(P) =
α

K +Pn +α0,

and the equilibrium points satisfy

me=
δ

β
Pe,

α

K +Pn
e
+α0 = γme=

γδ

β
Pe.

Rather than attempt to solve for the equilibrium point in closed form, we instead
investigate the sensitivity using the computations in equation (3.1). The state, dy-
namics and parameters are given by

x=

m P


 , f (x, θ) =




F(P)−γm
βm−δP



, θ =


α0 γ β δ α n K


 .

Note that the parameters are ordered such that the first four parametersmatch the
open loop system. The linearizations are given by

∂ f
∂x
=




−γ F′(Pe)
β −δ



,

∂ f
∂θ
=




1 −m 0 0 1
K+Pn

αPn log(P)
(K+Pn)2

α
(K+Pn)2

0 0 m −P 0 0 0



,
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where again the parameters are taken to be their nominal values. From this wecan
compute the sensitivity matrix as

Sx,θ =




−
δ ∂α
∂α0

δγ−βF′
δm

δγ−βF′ −
mF′

δγ−βF′
PF′

δγ−βF′ −
δ ∂α
∂α1

δγ−βF′ −
δ ∂α
∂n

δγ−βF′ −
δ ∂α
∂K

δγ−βF′

−
β ∂α
∂α0

δγ−βF′
βm

δγ−βF′ −
γm

δγ−βF′
γP

δγ−βF′ −
β ∂α
∂α1

δγ−βF′ −
β ∂α
∂n

δγ−βF′ −
β ∂α
∂K

δγ−βF′




,

whereF′ = ∂F/∂P and all other derivatives ofF are evaluated at the nominal pa-
rameter values.

We can now evaluate the sensitivity at the same protein concentration as we use
in the open loop case. The equilibrium point is given by

xe=




me

Pe



=




α0
γ
α0β

δγ



=




0.239
23.9




and the sensitivity matrix is

S̄closed
xe,θ

≈



76.1 −18.2 −1.16 116. 0.134 −0.212 −0.000117
7610. −1820. 90.8 −9080. 13.4 −21.2 −0.0117



.

The scaled sensitivity matrix becomes

S̄closed
xe,θ

≈



0.16 −0.44 −0.56 0.56 0.28 −1.78 −3.08×10-7

0.16 −0.44 0.44 −0.44 0.28 −1.78 −3.08×10-7



. (3.4)

Comparing this equation with equation (3.3), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become less sensitive
to those parameters that are not part of the feedback (columns 2–4), but there is
higher sensitivity with respect to some of the parameters that are part of thefeed-
back mechanisms (particularlyn). ∇

More generally, we may wish to evaluate the sensitivity of a (non-constant) so-
lution to parameter changes. This can be done by computing the functiondx(t)/dθ,
which describes how the state changes at each instant in time as a function of
(small) changes in the parametersθ. We assumew= 0 for simplicity of exposition.

Let x(t; x0, θ0) be a solution of the dynamics with initial conditionx0 and pa-
rametersθ0. To computedx/dθ, we write down a differential equation for how it
evolves in time:

d
dt

(

dx
dθ

)

=
d
dθ

(

dx
dt

)

=
d
dθ

( f (x, θ,w))

=
∂ f
∂x

dx
dθ
+
∂ f
∂θ
.

This is a differential equation withn×mstatesSi j = dxi/dθ j and with initial condi-
tion Si j (0)= 0 (since changes to the parameters to not affect the initial conditions).
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To solve these equations, we must simultaneously solve for the statex and the
sensitivityS (whose dynamics depend onx). Thus, we must solve the set ofn +
nmcoupled differential equations

dx
dt
= f (x, θ,w),

dSxθ

dt
=
∂ f
∂x

(x, θ,w)Sxθ +
∂ f
∂θ

(x, θ,w). (3.5)

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that in thespecial
case that we are at an equilibrium point and the dynamics forSx,θ are stable, the
steady state solution of equation (3.5) is identical to that obtained in equation (3.1).
However, equation (3.5) is much more general, allowing us to determine the change
in the state of the system at a fixed timeT, for example. This equation also does
not require that our solution stay near an equilibrium point, it only requiresthat our
perturbations in the parameters are sufficiently small.

Example 3.2(Repressilator). Consider the example of the repressilator, which was
described in Example2.1. The dynamics of this system can be written as

dm1

dt
= Frep(P3)−γm1

dP1

dt
= βm1−δP1

dm2

dt
= Frep(P1)−γm2

dP2

dt
= βm2−δP2

dm3

dt
= Frep(P2)−γm2

dP3

dt
= βm3−δP2,

where the repressor is modeled using a Hill function

Frep(p) =
α

K + pn +α0.

The dynamics of this system lead to a limit cycle in the protein concentrations, as
shown in Figure3.2a.

We can analyze the sensitivity of the protein concentrations to changes in the
parameters using the sensitivity differential equation. Since our solution is periodic,
the sensitivity dynamics will satisfy an equation of the form

dSx,θ

dt
= A(t)Sx,θ +B(t),

whereA(t) andB(t) are both periodic in time. Lettingx = (m1,P1,m2,P2,m3,P3)
andθ = (α0,γ,β,δ,α,K), we can computeSx,θ along the limit cycle. If the dynamics
for Sx,θ are stable then the resulting solutions will be periodic, showing how the
dynamics around the limit cycle depend on the parameter values. The results are
shown in Figure3.2b, where we plot the steady state sensitivity ofP1 as a function
of time. We see, for example, that the limit cycle depends strongly on the protein
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Figure 3.2: Repressilator sensitivity plots

degradation and dilution rateγ, indicating that changes in this value can lead to
(relatively) large variations in the magnitude of the limit cycle.

∇

Several simulation tools include the ability to do sensitivity analysis of this sort,
includingCOPASI.

Frequency domain analysis

Another way to look at the sensitivity of the solutions near equilibria to changes
in parameters and inputs is to use frequency domain techniques. Recall thatthe
frequency responseof a linear system

ẋ= Ax+Bu

y=Cx+Du

is the response of the system to a sinusoidal inputu= asinωt with input amplitude
a and frequencyω. The transfer function for a linear system is given by

Gyu(s) =C(sI−A)−1B+D

and represents the response of a system to an exponential signal of theform u(t) =
est wheres ∈ C. In particular, the response to a sinusoidu = asinωt is given by
y= Masin(ωt+ θ) where the gainM and phase shiftθ can be determined from the
transfer function evaluated ats= iω:

Gyu(iω) = Meiθ.

For finite dimensional linear (or linearized) systems, the transfer function be be
written as a ratio of polynomials ins:

G(s) =
b(s)
a(s)

.
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The values ofsat which the numerator vanishes are called the zeros of the transfer
function and the values ofsat which the denominator vanishes are called the poles.

The transfer function representation of an input/output linear system is essen-
tially equivalent to the state space description, but we reason about the dynamics
by looking at the transfer function instead of the state space matrices. For example,
it can be shown that the poles of a transfer function correspond to the eigenvalues
of the matrixA, and hence the poles determine the stability of the system.

Interconnections between subsystems often have simple representations interms
of transfer functions. Two systemsG1 andG2 in series (with the output of the first
connected to the input of the second) have a combined transfer functionGseries(s) =
G1(s)G2(s) and two systems in parallel (a single input goes to both systems and the
outputs are summed) has the transfer functionGparallel(s) =G1(s)+G2(s). A com-
mon interconnection is two put two systems in feedback form for which the transfer
function is given by

Gyr(s) =
G1(s)

G1(s)+G2(s)
=

n1(s)d2(s)
n1(s)d2(s)+d1(s)n2(s)

,

whereni(s) anddi(s) are the numerator and denominator of the individual transfer
function. The ease in which the input/output response for interconnected systems
can be computed with transfer functions is one of the main motivations for their
widespread use in engineering.

Transfer functions are useful representations of linear systems because the prop-
erties of the transfer function can be related to the properties of the dynamics. In
particular, the shape of the frequency response describes how the system response
to inputs and disturbances, as well as allows us to reason about the stability of inter-
connected systems. The Bode plot of a transfer function gives the magnitude and
phase of the frequency response as a function of frequency and theNyquist plot
can be used to reason about stability of a closed loop system from the openloop
frequency response. The transfer function for a system can be determined from
experiments by measuring the frequency response and fitting a transfer function
to the data. Formally, the transfer function corresponds to the ratio of the Laplace
transforms of the output to the input.

Returning to our analysis of biomolecular systems, suppose we have a systems
whose dynamics can be written as

ẋ= f (x, θ,w)

and we wish to understand how the solutions of the system depend on the pa-
rametersθ and disturbancesw. We focus on the case of an equilibrium solution
x(t; x0, θ0) = xe. Let z= x− xe, w̃ = w−w0 and θ̃ = θ− θ0 represent the deviation
of the state, input and parameters from their nominal values. We can write thedy-
namics of the perturbed system using its linearization:

dz
dt
=

(

∂ f
∂x

)

(xe,θ0,w0)
·z +

(

∂ f
∂θ

)

(xe,θ0,w0)
· θ̃ +

(

∂ f
∂w

)

(xe,θ0,w0)
· w̃.
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This linear system describes small deviations fromxe(θ0,w0) but allowsθ̃ andw̃ to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Lety=Cx be a set of values of interest. The transfer functions
betweeñθ, w̃ andy are given by

Hyθ̃(s) =C(sI−A)−1Bθ, Hyw̃(s) =C(sI−A)−1Bw,

where

A=
∂ f
∂x

∣
∣
∣
∣
∣
(xe,θ0,w0)

, Bθ =
∂ f
∂θ

∣
∣
∣
∣
∣
(xe,θ0,w0)

, Bw =
∂ f
∂w

∣
∣
∣
∣
∣
(xe,θ0,w0)

.

Note that if we lets= 0, we get the response to small, constant changes in
parameters. For example, the change in the outputsy as a function of constant
changes in the parameters is given by

Hyθ̃(0)=CA−1Bθ =CSx,θ,

which matches our previous parametric analysis.

Example 3.3 (Transcriptional regulation). Consider again the case of transcrip-
tional regulation described in Example3.1. Suppose that the mRNA degradation
rateγ can change as a function of time and that we wish to understand the sensitiv-
ity with respect to this (time-varying) parameter. Linearizing the dynamics around
an equilibrium point

A=




−γ F′(pe)
β −δ



, Bγ =




−me

0



.

For the case of no feedback we haveF(P) = α0, and the system has an equilibrium
point atme= α0/γ, Pe= βα0/(δγ). The transfer function fromγ to p is given by

Gol
Pγ(s) =

−βme

(s+γ)(s+δ)
.

For the case of negative regulation, we have

F(P) =
α

K +Pn +α0,

and the resulting transfer function is given by

Gcl
Pγ(s) =

βme

(s+γ)(s+δ)+βσ
, σ = F′(Pe) =

nαPn−1
e

(K +Pn
e)2

.

Figure3.3 shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). ∇
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Figure 3.3: Noise attenuation in a genetic circuit.

Robustness analysis
�

A slightly more general analysis of sensitivity can be accomplished using the con-
trol theoretic notions of sensitivity described in AM08, Chapter 12. Ratherthan just
considering static changes to parameter values, we can instead consider the case of
unmodeled dynamics, in which we allow bounded input/output uncertainties to en-
ter the system dynamics. This can be used to model parameters whose valuesare
unknown and also time-varying, as well as capturing uncertain dynamics that are
being ignored or approximated.

To illustrate the basic approach, consider the problem of determining the sensi-
tivity of a set of reactions to a set of additional unmodeled reactions, whose detailed
effects are unknown but assumed to be bounded. We set this problem up using the
general framework shown in Figure3.4.

3.2 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for general dynamical sys-
tems with small perturbations. In this section, we specialize to the case where the

Figure 3.4: Analysis of dynamic uncertainty in a reaction system.
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dynamics have the form of a reaction rate equation:

ṡ= Nv(s, p), (3.6)

wheres is the vector of species concentrations,p is the vector of reaction parame-
ters,N is the stoichiometry matrix,v(s, p) is the reaction rate (or flux) vector.

Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that there are conserved
quantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the total mass
of that species will be constant. This type of constraint will then give a conserved
quantity of the formci = Hi s whereHi represents that combinations of species in
which the given element appears. Sinceci is constant, it follows that ˙ci = 0 and,
aggregating the set of all conserved species, we have

0= ċ= Hẋ= HNv(s, p) for all s.

If we assume that the vector of fluxes spansRm (the range ofv : Rn×Rp→ Rm),
then this implies that the conserved quantities correspond to the left null space of
the stoichiometry matrixN.

It is often useful to remove the conserved quantities from the description of the
dynamics and write the dynamics for a set of independent species. To do this, we
transform the state of the system into two sets of variables:




si

sd



=




P
H




s. (3.7)

The vectorsi = Ps is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the rowsP consists of all
zeros and a single 1 in the column corresponding to the selected species). The
matrix H should span the left null space ofN, so thatsd represents the set of
dependent concentrations. These dependent species do not necessarily correspond
to individual species, but instead are often combinations of species (forexample,
the total concentration of a given element that appears in a number of molecules
that participate in the reaction).

Given the decomposition (3.7), we can rewrite the dynamics of the system in
terms of the independent variablessi . We start by noting that givensi andsd, we
can reconstruct the full set of speciess:

s=




P
H




−1


si

sd



= Lsi +c0, L =




P
H




−1


I
0



, c0 =




P
H




−1


0
c



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wherec0 represents the conserved quantities. We now write the dynamics forsi as

ṡi = Pṡ= PNv(Lsi +c0, p) = Nrvr (si ,c0, p), (3.8)

whereNr is the reduced stoichiometry matrixand vr is the rate vector with the
conserved quantities separated out as constant parameters.

The reduced order dynamics in equation (3.8) represent the evolution of the
independent species in the reaction. Givensi , we can “lift” the dynamics from the
independent species to the full set of species by writings= Lsi +c0. The vectorc0

represents the values of the conserved quantities, which must be specified in order
to compute the values of the full set of species. In addition, sinces= Lsi + c0, we
have that

ṡ= Lṡi = LNrvr (si ,c0, p) = LNrv(s, p),

which implies that
N = LNr .

Thus,L also “lifts” the reduced stoichiometry matrix from the reduced space to the
full space.

Example 3.4(Enzyme kinetics). Consider an enzymatic reaction

S+E
kon−−−⇀↽−−−
koff

ES
kcat−−→ E+P,

whose full dynamics can be written as

d
dt




S
E

ES
P




=




−1 1 0
−1 1 0
1 −1 −1
0 0 1







konE ·S
koffES
kcatES




.

The conserved quantities are given by

H =




0 1 1 0
1 −1 0 1



.

The first of these is the total enzyme concentrationET = E+ES, while the second
asserts that the concentration of productP is equal to the free enzyme concentration
E minus the substrate concentrationS. If we assume that we start with substrate
concentrationS0, enzyme concentrationET and no product or bound enzyme, then
the conserved quantities are given by

c=




E+ES
S−E+P



=




ET

S0−ET



.
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There are many possible choices for the set of independent speciessi = Ps, but
since we are interested in the substrate and the product, we chooseP as

P=




1 0 0 0
0 0 0 1



.

OnceP is chosen then we can compute

L =




P
H




−1


I
0



=




1 0
1 1
−1 −1
0 1




, c0 =




P
H




−1


0
c



=




0
ET −S0

S0

0




,

The resulting reduced order dynamics can be computed to be

d
dt




S
P



=




−1 1 0
0 0 1







kon(P+S+ET −S0)S
koff(−P−S+S0)
kcat(−P−S+S0)




=




−kon(P+S+ET −S0)S−koff(P+S−S0)
kcat(S0−S−P)



.

A simulation of the dynamics is shown in Figure3.5. We see that the dynamics are
very well approximated as being a constant rate of production until we exhaust the
substrate (consistent with the Michaelis-Menten approximation).

∇

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivity ofsteady
state concentrations and fluxes to changes in various system parameters.The basic
concepts are equivalent to the sensitivity analysis tools described in Section 3.1,
specialized to the case of reaction rate equations. In this section we providea brief
introduction to the key ideas, emphasizing the mapping between the general con-
cepts and MCA terminology (as originally done by Ingalls [40]).

Consider the reduced set of chemical reactions

ṡi = Nrvr (si , p) = Nrv(Lsi +c0, p).

We wish to compute the sensitivity of the equilibrium concentrationsse and equi-
librium fluxesve to the parametersp. We start by linearizing the dynamics around
an equilibrium pointse. Definingx= s− se, u= p− p0 and f (x,u)=Nrv(se+ x, p0+

u), we can write the linearized dynamics as

ẋ= Ax+Bu, A=

(

Nr
∂v
∂s

L

)

, B=

(

Nr
∂v
∂p

)

, (3.9)
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Figure 3.5: Enzyme dynamics. The simulations were carried out kon = koff = 10, kcat= 1,
S0= 500 andET = 5,1020. The top plot shows the concentration of substrateS and product
P, with the fastest case corresponding toET = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initial time and the figures on the lower
right at one of the transition times.

which has the form of a linear differential equation with statex and inputu.
In metabolic control analysis, the following terms are defined:

ǭp =
dv
dp

∣
∣
∣
∣
∣
se,po

R̄s
p =

∂se

∂p
= C̄sǭp

R̄v
p =

∂ve

∂p
= C̄vǭp

ǭp = flux control coefficients

R̄s
p =

C̄s = concentration control coefficients

R̄v
p =

C̄v = rate control coefficients

These relationships describe how the equilibrium concentration and equilibrium
rates change as a function of the perturbations in the parameters. The two control
matrices provide a mapping between the variation in the flux vector evaluated at
equilibrium,

(

∂v
∂p

)

se,p0

,

and the corresponding differential changes in the equilibrium point,∂se/∂p and
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∂ve/∂p. Note that
∂ve

∂p
,

(

∂v
∂p

)

se,p0

.

The left side is the relative change in the equilibrium rates, while the right sideis
the change in the rate functionv(s, p) evaluated at an equilibrium point.

To derive the coefficient matricesC̄s andC̄v, we simply take the linear equa-
tion (3.9) and choose outputs corresponding tosandv:

ys= Ix, yv =
∂v
∂s

Lx+
∂v
∂p

u.

Using these relationships, we can compute the transfer functions

Hs(s) = (sI−A)−1B=
[(

sI−Nr
∂v
∂s

L
)−1Nr

] ∂v
∂p
,

Hv(s) =
∂v
∂s

L(sI−A)−1B+
∂v
∂p
=

[∂v
∂s

L
(

sI−Nr
∂v
∂s

L
)−1Nr + I

] ∂v
∂p
.

Classical metabolic control analysis considers only the equilibrium concentrations,
and so these transfer functions would be evaluated ats= 0 to obtain the equilibrium
equations.

These equations are often normalized by the equilibrium concentrations and
parameter values, so that all quantities are expressed as fractional quantities. If we
define

Ds= diag{se}, Dv = diag{v(se, p0)}, Dp = diag{p0},

the the normalized coefficient matrices (without the overbar) are given by

Cs= (Ds)−1C̄sDv, Cv = (Dv)−1C̄vDv,

Rs
p = (Ds)−1R̄s

pDp, Rv
p = (Dv)−1R̄v

pDp.

Example 3.5(Enzyme kinetics). TBA ∇

Flux balance analysis

Flux balance analysis is a technique for studying the relative rate of different reac-
tions in a complex reaction system. We are most interested in the case where there
may be multiple pathways in a system, so that the number of reactionsm is greater
than the number of speciesn. The dynamics

ṡ= Nv(s, p)

thus have the property that the matrixN has more columns that rows and hence
there are multiple reactions that can produce a given set of species. Fluxbalance is
often applied to pathway analysis in metabolic systems to understand the limiting
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Figure 3.6: Flux balance analysis.

pathways for a given species and the the effects of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separating the reactionsof the
pathway into internal fluxesvi versus exchanges fluxve, as illustrated in Figure3.6.
The dynamics of the resulting system now be written as

ṡ= Nv(s, p) = N




vi

ve



= Nvi(s, p)−be,

wherebe= −Nve represents the effects of external fluxes on the species dynamics.
Since the matrixN has more columns that rows, it has aright null space and hence
there are many different internal fluxes that can produce a given change in species.

In particular, we are interested studying the steady state properties of the sys-
tem. In this case, we have that ˙s= 0 and we are left with an algebraic system

Nvi = be.

Power law formalism

Chemical reaction rate equations are nonlinear differential equations whenever two
or more species interact. However, the nonlinearities are very structured: they can
be decomposed into a stoichiometry matrix and flux rates, and the flux rates typ-
ically consist of either polynomial terms or simple ratios of polynomials (e.g.,
Michaelis-Menten kinetics or Hill functions). In this section we consider power law
representations that exploit these properties and attempt to provide simpler tech-
niques for understand the relationships between species concentrations, parameter
values and flux rates. This formalism was developed by Savageau [67] and is also
called biochemical systems theory (BST).
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The general power law formalism describes a set of reaction dynamics using a
set of differential equations of the form

dxi

dt
=

∑

r

Er

n+m∏

j=1

x
ǫr

j

j −
∑

s

Es

n+m∏

j=1

x
ǫs

j

j , i = 1, . . .n. (3.10)

Here, xi is the concentration for speciesi, with i = 1, . . . ,n representing internal
species andi = n+ 1, . . . ,m representing external species, and the dynamics are
broken into two summations. The first sum is over the set of reactions that produce
the speciesxi and the second is over the reactions that utilizexi (and so decrease
its concentration). The linear coefficientsEr andEs are the activity levels and cor-
respond to the rate constants (for metabolic networks the rate constants areoften
proportional to a fixed enzyme level, hence the use of the symbolE). The expo-
nentsǫr

j andǫs
i are thekinetic ordersof the production and utilization reactions.

In this general form, the power law formalism is able to exactly capture mass
action kinetics, but it does not provide any additional structure. If we consider a
general rate equation of the formvi(x1, . . . , xn+m), we can approximate this function
in a number of ways. The first is through its linearization,

vi(x1, . . . , xn+m≈ vi(x1,e, . . . , xn+m,e)+
∑ ∂v

∂x j

(

x j − x j,e
)

+higher order terms.

We have used exactly this approximation in previous sections.
A different approximation can be obtained by taking a Taylor series expansion

for logvi :

logvi(x1, . . . , xn+m≈ logvi(x1,e, . . . , xn+m,e)+
∑ ∂ logvi

∂ logx j

(

logxi− logxi,e
)

+higher order terms.

If we define

gi, j =
∂ logvi

∂ logx j
=

x j

vi
· ∂vi

∂x j

and collect terms, we have

logvi(x) ≈ logαi +gi,1 logx1+ · · ·+gi,n+m logxn+m.

Converting this back from log coordinates, we can thus right

vi(x) ≈ αi

n+m∏

j=1

x
gi, j

j .

Using this approximation on the sums in equation (3.10), we can approximate
the resulting dynamics as

dxi

dt
= αi

∏

xgi , j
j −βi

∏

xhi , j
j ,
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whereαi andgi, j are the rate constant and kinetic orders for the production terms
andβi andhi, j are the rate constant and kineeetic orders for reactions that utilize
xi . While this is only an approximation, its form is convenientt for performing
equilibrium analyses. In particular, if ˙xi = 0 then we can equate the production rate
to the utilization rate adn take the log of this expression to obtain

logαi +
∑

gi, j logx j = logβi +
∑

hi, j logx j .

This is now a linear equation for the logs of the concentrations in terms of the
various parameters that enter the system.

3.3 Limit Cycle Behavior

Before studying periodic behavior of systems inRn, we study the behavior of sys-
tems inR2 as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady state approxi-
mations. For systems inR2, we will see that there are only two types of solutions:
those converging (diverging) from steady states and periodic solutions. That is,
chaos can be ruled out in two-dimensional systems.

Consider the system ˙x= f (x), in which f (x) is often referred to as vector field,
and let x(t, x0) denote its solution starting atx0 at time t = 0, that is, ˙x(t, x0) =
f (x(t, x0)) and x(0, x0) = x0. We say thatx(t, x0) is a periodic solutionif there is
T > 0 such thatx(t, x0) = x(t +T, x0) for all t ∈ R. Here, we seek to answer two
questions: (a) when does a system ˙x= f (x) admit periodic solutions? (b) When are
these periodic solutions stable or asymptotically stable?

We first tackle these questions for the casex ∈ R2. The first result that we next
give provides a simple check to rule out periodic solutions for system inR

2. Specif-
ically, let (x,y) ∈ R2 and consider

ẋ = f (x,y)

ẏ = g(x,y), (3.11)

in which the functionsg, f are smooth. Then, we have the following result:

Theorem 3.1(Bendixson’s Criterion). If on a simply connected region D⊂R2 (i.e.,
there are no holes in it) the expression

∂ f
∂x
+
∂g
∂y

is not identically zero and does not change sign, then system (3.11) has no closed
orbits that lie entirely in D.
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Example 3.6. Consider the system

ẋ = −y3+δx3

ẏ = x3,

with δ ≥ 0. We can compute∂ f
∂x +

∂g
∂y = 3δx2, which is positive in allR2 if δ , 0. If

δ , 0, we can thus conclude from Bendixson’s criterion that there are no periodic
solutions. Investigate as an exercise what happens whenδ = 0. ∇

In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a pointp, denotedω(p). Basi-
cally, the omega-limit setω(p) denotes the set of all points to which the trajectory
of the system starting fromp tends as time approaches infinity. This is formally
defined in the following definition

Definition 3.1. A point x̄ ∈ Rn is called anomega-limit pointof p∈ Rn if there is a
sequence of times{ti} with ti →∞ for i →∞ such thatx(ti , p)→ x̄ asi →∞. The
omega limit setof p, denotedω(p), is the set of all omega-limit points ofp.

The omega-limit set of a system has several relevant properties, among which
the fact that it cannot be empty and that it must be a connected set.

The following theorem, completely characterizes the omega limit set of any
point for a system inR2.

Theorem 3.2(Poincar̀e-Bendixson). Let M be a positively invariant region for the
systemẋ= f (x) with x∈ R2 (i.e., any trajectory that starts in M stays in M for all
t ≥ 0). Let p∈ M, then one of the following possibilities holds forω(p):

(i) ω(p) is a steady state;

(ii) ω(p) is a closed orbit;

(iii) ω(p) consists of a finite number of steady states and orbits, each starting (for
t = 0) and ending (for t→∞) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have steady states inM, sinceω(p) is not empty, it
must be a periodic solution;

2. If there is only one steady state inM and it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), then
ω(p) is a periodic solution.

Example 3.7. Consider the following system inR2:

ẋ = x−y− (x2+y2)x

ẏ = x+y− (x2+y2)y.
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Verify as an exercise that this system admits one equilibrium point only (the ori-
gin), which is unstable. Also, show that its trajectories are globally bounded(for
example, take a setx2+ y2 = c for c large enough and demonstrate that the vec-
tor field of the system always points inside the circlex2+ y2 = c). Therefore, by
Poincar̀e-Bendixson Theorem, we can conclude that the omega-limit set of any
point inR2 different from the origin is a non-zero periodic orbit. ∇

This result holds only for systems in two dimensions. However, there have been
recent extensions of this theorem to systems with special structure inR

n. In partic-
ular, we have the following result due to Hastings et al. (1977).

Theorem 3.3(Hastings et al. 1977). Consider a systeṁx = f (x), which is of the
form

ẋ1 = f1(xn, x1)

ẋ j = f j(x j−1, x j), 2≤ j ≤ n

on the set M defined by xi ≥ 0 for all i with the following inequalities holding in
M:

(i) ∂ fi
∂xi

< 0 and ∂ fi
∂xi−1

> 0, for 2≤ i ≤ n, and ∂ f1
∂xn

< 0;

(ii) f i(0,0)≥ 0 and f1(xn,0)> 0 for all xn ≥ 0;

(iii) The system has a unique steady state x∗ = (x∗1, ..., x
∗
n) in M such that f1(xn, x1)<

0 if xn > x∗n and x1 > x∗1, while f1(xn, x1) > 0 if xn < x∗n and x1 < x∗1;

(iv) ∂ f1
∂x1

is bounded above in M.

Then, if the Jacobian of f at x∗ has no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solutionin M.

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some technical
assumption) is equivalent to the existence of a periodic solution. This‘theorem,
however, does not provide information about whether the orbit is attractive or not,
that is, of whether it is an omega-limit set of any point inM. This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), for which
we provide a simplified statement as follows.

Theorem 3.4(Mallet-Paret and Smith, 1990). Consider the systeṁx = f (x) with
the following cyclic feedback structure

ẋ1 = f1(xn, x1)

ẋ j = f j(x j−1, x j), 2≤ j ≤ n

on a set M defined by xi ≥ 0 for all i with all trajectories starting in M bounded
for t ≥ 0. Then, the omega-limit setω(p) of any point p∈ M can be one of the
following:
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(a) A steady state;

(b) A non-constant periodic orbit;

(c) A set of steady states connected by homoclinic or heteroclinic orbits.

A heteroclinic orbit is an orbit that starts (fort= 0) at a steady state and ends (for
t→∞) into a different steady state. A homoclinic orbit is an orbit that starts and
ends at the same steady state. It is thus clear that a steady state whose linearization
has eigenvalues with all positive or all negative real parts cannot havea homoclinic
orbit. As a consequence of the theorem, then we have that for a system withcyclic
feedback structure that admits one steady state only and at which the linearization
has all eigenvalues with positive real part, the omega limit set must be a periodic
orbit.

Let for someδi ∈ {1,−1} be δi
∂ fi (x,xi−1)
∂xi−1

> 0 for all 0≤ i ≤ n and define∆ :=
δ1 · ... ·δn . One can show that the sign of∆ is related to whether the system has one
or multiple steady states.

Therefore, a system with a cyclic feedback structure and a unique equilibrium
point at which the linearization has all eigenvalues with positive real part admits a
stable periodic orbit.

3.4 Analysis Using Describing Functions

Unlike the case of linear systems, where it is possible to full characterize thesolu-
tions of a model and there are a wide variety of analysis techniques available,the
behavior of nonlinear systems is harder to analyze, especially away fromequilib-
rium points (where the linearization gives a good approximation). One of themore
useful techniques for studying the behavior of nonlinear systems is the method of
harmonic balance, of which a special case is the method of describing functions.
This section explores the use of harmonic balance and describing functions for an-
alyzing nonlinear systems, including the detection and analysis of limit cycles and
the propagation of noise through nonlinear systems.

Describing functions (AM08)

For special nonlinear systems like the one shown in Figure3.7a, which consists
of a feedback connection between a linear system and a static nonlinearity,it is
possible to obtain a generalization of Nyquist’s stability criterion based on the idea
of describing functions. Following the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that corresponds to the first harmonic.
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Figure 3.7: Describing function analysis. A feedback connection between a static nonlin-
earity and a linear system is shown in (a). The linear system is characterized by its transfer
functionL(s), which depends on frequency, and the nonlinearity by its describing function
N(a), which depends on the amplitudea of its input. The Nyquist plot ofL(iω) and the plot
of the−1/N(a) are shown in (b). The intersection of the curves representsa possible limit
cycle.

To carry out this analysis, we have to analyze how a sinusoidal signal propa-
gates through a static nonlinear system. In particular we investigate how the first
harmonic of the output of the nonlinearity is related to its (sinusoidal) input. Letting
F represent the nonlinear function, we expandF(eiωt) in terms of its harmonics:

F(aeiωt) =
∞∑

n=0

Mn(a)ei(nωt+φn(a)),

whereMn(a) andφn(a) represent the gain and phase of thenth harmonic, which
depend on the input amplitude since the functionF is nonlinear. We define the
describing function to be the complex gain of the first harmonic:

N(a) = M1(a)eiφn(a). (3.12)

The function can also be computed by assuming that the input is a sinusoid and
using the first term in the Fourier series of the resulting output.

Arguing as we did when deriving Nyquist’s stability criterion, we find that an
oscillation can be maintained if

L(iω)N(a) = −1. (3.13)

This equation means that if we inject a sinusoid at A in Figure3.7, the same signal
will appear at B and an oscillation can be maintained by connecting the points.
Equation (3.13) gives two conditions for finding the frequencyω of the oscillation
and its amplitudea: the phase must be 180◦, and the magnitude must be unity. A
convenient way to solve the equation is to plotL(iω) and−1/N(a) on the same
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(a) (b)

Figure 3.8: Heuristic stability of limit cycles using describing functions. (a) To check if a
perturbation from amplitudea0 to amplitudea0+ δa is stabilizing, we check to see if the
Nyquist criterion is satisfied for the original frequency response and the perturbed critical
point P1 = 1/N(a0+ δa). (b) An example of a nonlinear system with multiple limit cycles.
Stable limit cycles are labeled ’s’ and unstable limit cycles are labeled ’u’.

diagram as shown in Figure3.7b. The diagram is similar to the Nyquist plot where
the critical point−1 is replaced by the curve−1/N(a) anda ranges from 0 to∞.

It is possible to define describing functions for types of inputs other than si-
nusoids. Describing function analysis is a simple method, but it is approximate
because it assumes that higher harmonics can be neglected. Excellent treatments
of describing function techniques can be found in the texts by Atherton [6] and
Graham and McRuer [31].

Example 3.8(Repressilator). ∇

Stability of limit cycles using describing functions

In order to check the stability of a limit cycle, we must reason about how solutions
that have initial conditions near the limit cycle evolve in time and whether they
move closer to the limit cycle (asymptotic stability) or diverge from the limit cycle
(instability).

We begin by arguing heuristically, using the Nyquist plot in Figure3.7b. Sup-
pose that we were to consider a perturbed limit cycle with amplitudea0+δa, where
a0 is the amplitude of the limit cycle predicted by the describing function method.
If we did so, then the point of intersection of the describing function and thefre-
quency response would move fromP0=−1/N(a0) to P1=−1/N(a0+δa), as shown
in Figure3.8a. Now evaluate the Nyquist criterion for the frequency response with
critical point P1. If the criterion indicates that the perturbed system is stable (i.e.,
no net encirclements ofP1 for a stable process), then intuitively the amplitude of
the perturbed solution would decrease and we would return to our originalampli-
tude limit cycle. Conversely, if the Nyquist criterion with critical pointP1 indicates
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instability, then the oscillation would grow and hence we can infer that the limit cy-
cle is unstable. Figure3.8bshows a situation with multiple limit cycles with some
stable and some unstable.

While this heuristic method is intuitively appealing, it does not always give the
correct answer. Indeed, even the prediction of the existence of a limit cycle using
describing functions can be incorrect unless the system satisfies some additional
conditions. We present here one such set of conditions, due to Mees [?].

Suppose that (ω0,a0) satisfies the describing function balance equationP(iω0)=
−1/N(a0) and that the the frequency response curve and the describing function lo-
cus are transverse (not tangent) at their intersection. Define

ρ(ω)2 =
∑

k=3,5,9,...

|P(ikω0)|2, “gain of harmonics”

p(a)2 = ‖n(asint)‖22− |aN(a)|2, “first harmonic error”

q(a, ǫ) = ‖m(asint, ǫ)‖2, “slope bound”

m(x, ǫ) =max{|N(x+ ǫ)−N(x)|, |N(x− ǫ)−N(x)|}.

Now find anǫ such that for all (ω,a) near (ω,a0),

ρ(ω)(p(a)+q(a, ǫ)) ≤ ǫ

and letΩ ∈ R2
+ be the set of (ω,a) such that

|N(a)+1/G(iω)| ≤ q(a, ǫ)/a.

Theorem 3.5. SupposeΩ is bounded and there exists a unique(ω,a0) ∈ Ω sat-
isfying the balance equation. Then there exists a periodic solution of the form
y(t) = asin(ωt)+y∗(t) with remnant‖y∗‖∞ ≤ ǫ.

Sketch of proof.Reduced to the contraction mapping theorem, which generatesρ,
p andq.

The basic idea behind this theorem is that if the harmonics around the loop die
off sufficiently fast, then we can insure that there is truly a periodic solution and
bound the error of the higher harmonics. There is also a graphical version of the
stability theorem that checks for “complete intersections” between the describing
function locus and the Nyquist curve [?].

Mathematically, the stability of a limit cycle can be analyzed by taking the lin-�
earization of the system around the (non-equilibrium) solution. To see how this is
done, consider a nonlinear system of the form

ẋ= f (x)
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(a)

Figure 3.9: Random input describing function analysis.

that has a solutionxd(t) that is periodic with periodT. To compute the linearization
of the dynamics around the equilibrium point, we compute the dynamics of the
errore= x− xd:

ė= f (x)− f (xd) = F(e, xd(t)) ≈ A(t)e

whereA(t) is the time-varying linearization given by

A(t) =
∂F
∂e

(e, xd)
∣
∣
∣
∣
∣
e=0,xd(t)

.

The dynamics matrixA(t) is periodic and so the dynamics of the linearization are
a given by a periodic, linear ordinary differential equation.

The dynamics of periodic linear systems can be studied usingFloquettheory,
which we briefly review here. LetΦ(t,0) be the (T-periodic) fundamental matrix
for ė= A(t)e, so that the solution is given byx(t) = Φ(t,0)x(0). It can be show
thatΦ(t,0) has the formφ(t,0)= P(t)eFt whereP(t) = P(t+T) ∈ Rn×n is a periodic
matrix andF ∈Rn×n is a constant matrix. We can now check stability by examining
the eigenvalues of the matrixeFT , which corresponds to the “first return” map for
the system.

Random input describing functions

In addition to allowing prediction and analysis of limit cycles, describing functions
can also be used to analyze the propagation of noise through nonlinear feedback
systems. This approach is known as therandom input describing functionmethod.

As in the single input describing function method, we begin with a system in
the form of a a linear system with a nonlinear feedback, as shown in Figure3.9a.
To analyze this system, we construct an input that contains both a sinusoid and a
random inputr(t):

y= b+asin(ωt+φ)+ r(t),

whereb is the bias term,a is the amplitude of the sinusoidal term,φ is a uniform
random variable andr(t) is a stationary Gaussian random process with variance
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σ2 and correlationρ(τ).1 We approximate the response of the system through the
nonlinearity by

N(y(t)) ≈ Nbb+Naasin(ωt+φ)+Nr r(t),

whereNb is called thebias gain, Na is the sinusoidal gain andNr is the stochastic
gain. These functions are given by

Nb(b,a,σ) =
1
b

E{ f (y)} = 1

(2π)3/2σb

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t))e−

r2

2σ2 drdθ

Na(b,a,σ) =
2
a

E{ f (y)sinθ} = 2

(2π)3/2σa

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t))sinθe−

r2

2σ2 drdθ

Nr (b,a,σ) =
1
σ2

E{ f (y)r} = 1

(2π)3/2σ3

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t))re−

r2

2σ2 drdθ

(3.14)
The random input describing function method has a number of special cases.

If we takeσ = 0, then it can be shown that we recover the standard describing
function method. If we instead takea = 0, we can study how noise propagates
through the system. Recall that in the linear case, where the feedback termis given
by a constant gainN, the spectral density of the outputy is given by

Sy(ω) = Hyd(−iω)Sd(ω)Hyd(iω), σy =
1
2π

∫ ∞

−∞
Sy(ω)dω.

In the nonlinear case, we replace the feedback gainN with Nr (σy) so that

H̃yd(s) =
P(s)

1+P(s)Nr (σy)
, σy =

1
2π

∫ ∞

−∞
H̃yd(−iω)Sd(ω)H̃yd(iω). (3.15)

Note that this equation gives an algebraic relationship forσy that can be solved and
then used to computeNr (σ) andSy(ω).

Consider next the case of both a limit cycle and random noise,

y(t) = asin(ωt+φ)+ r(t).

We now look for solutions of the coupled equations

H̃yd(s) =
P(s)

1+P(s)Nr (σy)
, σy =

1
2π

∫ ∞

−∞
H̃yd(−iω)Sd(ω)H̃yd(iω),

Na(a,σy)P(iω0) = −1.
(3.16)

If we can finda,σy andω0 that satisfy all of the equations, then we get a description
of y(t).

It is interesting to note that it can sometimes happen thatSd(ω) can cause an un-
stable (noiseless) system to be stable. Similarly, we can get a system withNr (0,σy)
that destabilizes and otherwise stable system.

1These are described in more detail in Chapter4.
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Figure 3.10: Hopf Bifurcation.

3.5 Bifurcations

Hopf bifurcation is a technique that is often used to understand whether a system
admits a periodic orbit when some parameter is varied. Usually, such an orbitis a
small amplitude periodic orbit that is present in the close vicinity of an unstable
steady state.

Consider the system dependent on a parameterα:

ẋ= g(x,α), x ∈ Rn, α ∈ R,

and assume that at the steady state ¯x corresponding toα = ᾱ (i.e., g(x̄, ᾱ) = 0),
the linearization∂g

∂x(x̄, ᾱ) has a pair of (non zero) imaginary eigenvalues with the
remaining eigenvalues having negative real parts. Define the new parameter µ :=
α− ᾱ and re-define the system as

ẋ= f (x,µ) := g(x,µ+ ᾱ),

so that the linearization∂ f
∂x(x̄,0) has a pair of (non zero) imaginary eigenvalues with

the remaining eigenvalues having negative real parts. Denote byλ(µ)= β(µ)+ iω(µ)
the eigenvalue such thatβ(0)= 0. Then, if ∂β

∂µ
(µ = 0), 0 the system admits a small

amplitude almost sinusoidal periodic orbit forµ small enough and the system is
said to go through a Hopf bifurcation atµ = 0. If the small amplitude periodic orbit
is stable, the Hopf bifurcation is saidsupercritical, while if it is unstable it is said
subcritical. Figure3.10shows diagrams corresponding to these bifurcations.

In order to determine whether a Hopf bifurcation is supercrictical or subcriti-
cal, it is necessary to calculate a “curvature” coefficient, for which there are for-
mulas (Marsden and McCrocken, 1976) and available bifurcation sofwtare, such as
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AUTO. In practice, it is often enough to calculate the value ¯α of the parameter at
which Hopf bifurcation occurs and simulate the system for values of the parameter
α close toᾱ. If a small amplitude limit cycle appears, then the bifurcation must be
supercritical.

The Hopf bifurcation result is based on the center manifold theory for nonlinear
dynamical systems. For a rigorous treatment of Hopf bifurcation is thus necessary
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to Wiggins book on dynamical systems and chaos.

3.6 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied to a wide
variety of dynamical systems. However, many of the methods require significant
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section we review methods for do-
ing such a reduction in the complexity of the models. Most of the techniques are
based on the common idea that if we are interested in the slower time scale dynam-
ics of a system, the fast time scale dynamics can be approximated by their equi-
librium solutions. This idea was introduced in Chapter2 in the context of reduced
order mechanisms; we present a more mathematical analysis of such systems here.

Singular perturbation

Let (x,y) ∈ D := Dx×Dy ⊂ Rn×Rm and consider the vector field

ẋ= f (x,y), ǫẏ= g(x,y), (x(0),y(0))= (x0,y0)

in which 0< ǫ ≪ 1 is a small parameter. Sinceǫ ≪ 1, the absolute value of the
time derivative ofy can be much larger than the time derivative ofx, resulting iny
dynamics that are much faster than thex dynamics. That is, this system has a slow
time scale evolution (inx) and a fast time-scale evolution (iny). If we are interested
only in the slower time scale, then the above system can be approximated (under
suitable conditions) by thereduced system

˙̄x= f (x̄, ȳ), 0= g(x̄, ȳ), x̄(0)= x0.

Lettingy= γ(x) (called theslow manifold) be the locally unique solution ofg(x,y)=
0, we can approximate the dynamics inx as

˙̄x= f (x̄,γ(x̄)), x(0)= x0.

We seek to determine under what conditions the solutionx(t) is “close” to the
solution x̄(t) of the reduced system. This problem can be addressed by analyzing
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the fast dynamics. Lettingτ = t/ǫ be the fast time scale, we have that

dx
dτ
= ǫ f (x,y),

dy
dτ
= g(x,y), (x(0),y(0))= (x0,y0),

so that whenǫ≪ 1, x(τ) does not appreciably change. Therefore, the above system
in theτ time scale can be approximated by

dy
dτ
= g(x0,y), y(0)= y0,

in which x is “frozen” at the initial condition. This system is usually referred to as
theboundary layersystem. If for allx0, we have thaty(τ) converges toγ(x0), then
for t > 0 we will have that the solutionx(t) is well approximated by the solution
x̄(t) to the reduced system. This qualitative explanation is more precisely captured
by the following theorem (originally due to Tikonov).

Theorem 3.6. Assume that

∂

∂y
g(x,y)

∣
∣
∣
∣
∣
y=γ(x)

< 0

uniformly for x∈ Dx. Let the solution of the reduced system be uniquely defined for
t ∈ [0, t f ]. Then, for all tb ∈ (0, t f ] there is a constantǫ∗ > 0 and setΩ ⊆ D such that

x(t)− x̄(t) =O(ǫ) uniformly for t∈ [0, t f ],

y(t)−γ(x̄(t)) =O(ǫ) uniformly for t∈ [tb, t f ],

providedǫ < ǫ∗ and(x0,y0) ∈Ω.

Example 3.9(Linear system). Consider the following linear system

ẋ1 = −x1

ẋ2 = −1
ǫ

x2+
1
ǫ

x1, ǫ > 0, (3.17)

in which ǫ is very small. This system has two eigenvalues equal to−1 and−1/ǫ
with corresponding eigenvectors (1− ǫ,1) and (0,1), respectively. The slow man-
ifold, obtained by multiplying both sides of the second equation in system (3.17)
by ǫ and settingǫ = 0, is given byx2 = x1 and the boundary layer system is expo-
nentially stable. The reduced system is just given by

˙̄x1 = −x̄1, andx̄2(t) = x̄1(t).

The trajectories of the system along with the slow manifold are represented in Fig-
ure3.11. The initial conditions that are not on the slow manifold quickly converge
to the slow manifold and then they converge to the origin. ∇
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Figure 3.11: Simulation results for the system in equations(3.17). Trajectories in thex1, x2

plane.

Example 3.10(Enzymatic reaction). Let’s go back to the enzymatic reaction

E+S
kf−−⇀↽−−
kr

C
kcat−−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrateS
due to the binding with the enzyme E. The ratekf is referred to as association con-
stant,kr as dissociation constant, andkcat as the catalytic rate. The corresponding
ODE system is given by

dE
dt

= −kf E ·S+krC+kcatC

dS
dt

= −kf E ·S+krC

dC
dt

= kf E ·S− (kr +kcat)C

dP
dt

= kcatC.

By assuming thatkr ,kf ≫ kcat, we obtained that approximativelydC
dt = 0 and thus

thatC = EtotS
S+Km

, with Km =
kr+kcat

kf
and dP

dt =
VmaxS
S+Km

with Vmax= kcatEtot. From this, it
also follows that

dE
dt
≈ 0 and

dS
dt
≈ −dP

dt
. (3.18)

How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, definea := kf /kr and
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take the system to standard singular perturbation form by defining the small pa-
rameter asǫ := kcat

kr
, so thatkf =

kcat
ǫ

a, kr =
kcat
ǫ

, and the system becomes

ǫ
dE
dt

= −akcatE ·S+kcatC+ ǫkcatC

ǫ
dS
dt

= −akcatE ·S+kcatC

ǫ
dC
dt

= akcatE ·S−kcatC− ǫkcatC

dP
dt

= kcatC.

One cannot directly apply singular perturbation theory on this system because one
can verify from the linearization of the first three equations that the boundary layer
dynamics are not locally exponentially stable as there are two zero eigenvalues.
This is because the three variablesE,S,C are not independent. Specifically,E =
Etot−C andS+C+P= S(0)= Stot, assuming that initially we have S in amount
S(0) and no amount of P and C in the system. Given these conservation laws,the
system can be re-written as

ǫ
dC
dt

= akcat(Etot−C) · (Stot−C−P)−kcatC− ǫkcatC

dP
dt

= kcatC.

Under the assumption made in the analysis of the enzymatic reaction thatStot≫
Etot, we have thatC≪ Stot so that the equations finally become

ǫ
dC
dt

= akcat(Etot−C) · (Stot−P)−kcatC− ǫkcatC

dP
dt

= kcatC.

One can verify (show as an exercise) that in this system, the boundary layer dynam-
ics is locally exponentially stable, so that settingǫ = 0 one obtains̄C= Etot(Stot−P̄)

(Stot−P̄)+Km
=:

g(P̄) and thus that the slow dynamics of the system are given by

dP̄
dt
= Vmax

(Stot− P̄)

(Stot− P̄)+Km
.

From the conservation law̄S+ C̄+ P̄= S(0)= Stot, we obtain thatdS̄
dt = −

dP̄
dt −

dC̄
dt ,

in which now dC̄
dt =

∂g
∂P(P̄) · dP

dt . Therefore

dS̄
dt
= −dP̄

dt
(1+

∂g
∂P

(P̄)), S̄(0)= Stot−g(P̄(0))− P̄(0) (3.19)
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Figure 3.12: Simulation results for the enzymatic reactioncomparing the approximations
from singular perturbation and from the quasi-steady stateapproximation. Here, we have
Stot = 100,Etot = 1, kr = kf = 10, andkcat = 0.1.

and
dĒ
dt
= −dC̄

dt
= − ∂g

∂P
(P̄)

dP̄
dt
, E(0)= Etot−g(P̄(0)), (3.20)

which are different from expressions (3.18). Specifically, these expressions are
close to those in (3.18) only when ∂g

∂P(P̄) is small enough. In the plots of Fig-
ure 3.12, we show the time trajectories of the original system, of the Michaelis-
Menten quasi-steady state approximation, and of the singular perturbation approx-
imation. The trajectories ofE(t) and ofS(t) for the quasi-steady state approxima-
tion have been obtained from the conservation laws onceP(t) andC(t) are deter-
mined. The trajectories of these variables for the singular perturbation approxima-
tion have been obtained directly integrating equations (3.19) and (3.20). Notice that
the quasi-steady state approximationsdC

dt ≈ 0 anddE
dt ≈ 0 are well representing the
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Figure 3.13: The slow manifold of the systemC = g(P) is shown in red. In black, we show
the trajectories of the the full system. These trajectoriescollapse into anǫ-neighbor of the
slow manifold. Here, we haveStot = 100,Etot = 1, kr = kf = 10, andkcat = 0.1.

dynamics of theC andE variables only whileS(t) is large enough. By contrast,
equations (3.19-3.20) well represent the system even when the substrate goes to
zero. In Figure3.13, we show the curveC= g(P) (in red) and the trajectories of the
full system in black. All of the trajectories of the system immediately collapse into
anǫ-neighbor of the curveC = g(P). ∇

Balanced truncation

Principle component analysis (PCA)

Exercises

3.1 (Frequency response of a phosphorylation cycle) Consider the modelof a co-
valent modification cycle as illustrated in Chapter2 in which the kinase Z is not

constant, but it is produced and decays according to the reaction Z
δ−−−⇀↽−−−

u(t)
. Let u(t)

be the input stimulus of the cycle and letX∗ be the output. Determine the fre-
quency response ofX∗ to u, determine its bandwidth, and make plots of it. What
parameters can be used to tune the bandwidth?

3.2 (Two gene oscillator) Consider the feedback system composed of two genes
expressing proteins A (activator) and R (repressor), in which we denote byA, R,
mA, andmR, the concentrations of the activator protein, the repressor protein, the
mRNA for the activator protein, and the mRNA for the repressor protein, respec-
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tively. The ODE model corresponding to this system is given by

dmA

dt
=

α0

K1+Rn −γmA

dA
dt
= βmA−δA

dmR

dt
=

αAm

K2+Am −γmR

dR
dt
= βmR−δR.

Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your finding through simulation.

3.3 (Goodwin oscillator) Consider the simple set of reactions

X1
k−→ X2

k−→ X3....
k−→ Xn.

Assume further that Xn is a transcription factor that represses the production of pro-
tein X1 through transcriptional regulation (assume simple binding of X1 to DNA).
Neglecting the mRNA dynamics of X1, write down the ODE model of this sys-
tem and determine conditions on the length n of the cascade for which the system
admits a stable limit cycle. Validate your finding through simulation.

3.4 (Activator-repressor clock) A well known oscillating motif is given by the
activator-repressor clock by Atkinson et al. [?] in which an activator protein A
activates its own production and the one of a repressor protein R, which inturn
acts as a repressor for A. The ODE model corresponding to this clock is given by

dmA

dt
=

αAm+α0

K1+Rn+Am −γmA

dA
dt
= µ(βmA−δA)

dmR

dt
=

αAm

K2+Am −γmR

dR
dt
= βmR−δR,

in whichµ > 0 models the difference of speeds between the dynamics of the activa-
tor and that of the repressor. Indeed a key requirement for this systemto oscillate
is that the dynamics of the activator are sufficiently faster than that of the repressor.
Demonstrate that this system goes through a Hopf Bifurcation with bifurcationpa-
rameterµ. Validate your findings with simulation by showing the small amplitude
periodic orbit.

3.5 (Model reduction via singular perturbation) Consider again the model of aco-
valent modification cycle as illustrated in Chapter2 in which the kinase Z is not

constant, but it is produced and decays according to the reaction Z
δ−−−⇀↽−−−

u(t)
∅. Consider

thatkf ,kr ≫ kcat, δ,u(t) and employ singular perturbation with small parameter, for
example,ǫ = δ/kr to obtain the approximated dynamics ofZ(t) andX∗(t). How is
this different from the result obtained in Exercise2.6? Explain.
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Chapter 4
Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, building
on our preliminary discussion of stochastic modeling in Section2.1. We begin by
reviewing the various methods for modeling stochastic processes, includingthe
chemical master equation (CME), the chemical Langevin equation (CLE) andthe
Fokker-Planck equation (FPE). Given a stochastic description, we canthen ana-
lyze the behavior of the system using a variety of stochastic simulation and analy-
sis tools. In many cases, we must simplify the dynamics of the system in order to
obtain a tractable model, and we describe several methods for doing so, including
finite state projection, linearization and Markov chain representations. We also in-
vestigate how to use data to identify some the structure and parameters of stochastic
models.

Prerequisites.This chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good working knowledge of
basic probability and some exposure to simple stochastic processes (e.g., Brownian
motion), at the level of the material presented in AppendixC (drawn from [53]).

4.1 Stochastic Modeling of Biochemical Systems

Chemical reactions in the cell can be modeled as a collection of stochastic events
corresponding to chemical reactions between species, including binding and un-
binding of molecules (such as RNA polymerase and DNA), conversion of one set
of species into another, and enzymatically controlled covalent modifications such
as phosphorylation. In this section we will briefly survey some of the different
representations that can be used for stochastic models of biochemical systems, fol-
lowing the material in the textbooks by Phillipset al. [56], Gillespie [28] and Van
Kampen [43].

Statistical physics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.
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As described briefly already in Chapter2, the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configurationof the
components (species) in the system relative to each other and we must enumerate
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the proba-
bility that system is in a given microstate. This probability can be calculated based
on the energy levels of the different microstates. Consider a setting in which our
system is contained within a reservoir. The total (conserved) energy is given by
Etot and we letEr represent the energy in the reservoir. LetE(1)

s andE(2)
s represent

two different energy levels for the system of interest and letWr (Er ) be the num-
ber of possible microstates of the reservoir with energyEr . The laws of statistical
mechanics state that the ratio of probabilities of being at the energy levelsE(1)

s and
E(2)

s is given by the ratio of number of possible states of the reservoir:

P(E(1)
s )

P(E(2)
s )
=

Wr (Etot−E(1)
s )

Wr (Etot−E(2)
s )

. (4.1)

Defining the entropy of the system asS = kB lnW, we can rewrite equation (4.1) as

Wr (Etot−E(1)
s )

Wr (Etot−E(2)
s )
=

eSr (Etot−E(1)
s )/kB

eSr (Etot−E(2)
s )/kB

.

We now approximateSr (Etot−Es) in a Taylor series expansion aroundEtot, under
the assumption thatEr ≫ Es:

Sr (Etot−Es) ≈ Sr (Etot)−
∂Sr

∂E
Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

∂S
∂E

∣
∣
∣
∣
∣
V,N
=

1
T

and we obtain
P(E(1)

s )

P(E(2)
s )
=

e−E(1)
s /kBT

e−E(2)
s /kBT

.

This implies that

P(E(q)
s ) ∝ e−E(q)

s /(kBT)

and hence the probability of being in a microstateq is given by

P(q) =
1
Z

e−Eq/(kBT), (4.2)
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where we have writtenEq for the energy of the microstate andZ is a normalizing
factor, known as thepartition function, defined by

Z =
∑

q∈Q
e−Eq/(kBT).

By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached.

In order to determine the energy levels associated with different microstates,
we will often make use of thefree energyof the system. Consider an elementary
reaction A+B −−−⇀↽−−− AB. Let E be the energy of the system, taken to be operating
at pressureP in a volumeV. Theenthalpyof the system is defined asH = E+PV
and theGibbs free energyis defined asG = H−TS whereT is the temperature of
the system andS is its entropy (defined above). The change in bond energy due to
the reaction is given by

∆H = ∆G+T∆S,

where the∆ represents the change in the respective quantity.−∆H represents the
amount of heat that is absorbed from the reservoir, which then affects the entropy
of the reservoir.

The resulting formula for the probability of being in a microstateq is given by

P(q) =
1
Z

e−∆G/kBT .

Example 4.1(Ligand-receptor binding). To illustrate how these ideas can be ap-
plied in a cellular setting, consider the problem of determining the probability that
a ligand binds to a receptor protein, as illustrated in Figure4.1. We model the sys-
tem by breaking up the cell intoΩ different locations, each of the size of a ligand
molecule, and keeping track of the locations of theL ligand molecules. The mi-
crostates of the system consist of all possible locations of the ligand molecules,
including those in which one of the ligand molecules is bound to the receptor
molecule.

To compute the probability that the ligand is bound to the receptor, we must
compute the energy associated with each possible microstate and then compute the
weighted sum of the microstates corresponding to the ligand being bound, normal-
ized by the partition function. We letEsol represent the free energy associated with
a ligand in free solution andEbound represent the free energy associated with the
ligand being bound to the receptor. Thus, the energy associated with microstates in
which the ligand is not bound to the receptor is given by

∆Gsol= LEsol

and the energy associated with microstates in which one ligand is bound to the
receptor is given by

∆Gbound= (L−1)Esol+Ebound.
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Figure 4.1: Statistical physics description of ligand-receptor binding. The cell is modeled
as a compartment withΩ sites, one of which contains a receptor protein. Ligand molecules
can occupy any of the sites (first column) and we can compute the Gibbs free energy
associated with each configuration (second column). The first row represents all possible
microstates in which the receptor protein is not bound, while the second represents all
configurations in which one of the ligands binds to the receptor. By accounting for the
multiplicity of each microstate (third column), we can compute the weight of the given
collection of microstates (fourth column). Figure from Phillips, Kondev and Theriot [56].

Next, we compute the number of possible ways in which each of these two
situations can occur. For the unbound ligand, we haveL molecules that can be in
any one ofΩ locations, and hence the total number of combinations is given by

Nsol=

(

Ω

L

)

=
Ω!

L!(Ω−L)!
≈ Ω

L

L!
,

where the final approximation is valid in the case whenL≪Ω. Similarly, the num-
ber of microstates in which the ligand is bound to the receptor is

Nsol=

(

Ω

L−1

)

=
Ω!

(L−1)!(Ω−L+1)!
≈ Ω

L−1

(L−1)!
.

Using these two counts, the partition function for the system is given by

Z ≈ Ω
L

L!
e−

LEsol
kBT +

ΩL−1

(L−1)!
e−

(L−1)Esol+Ebound
kBT .

Finally, we can compute the steady state probability that the ligand is bound by
computing the ratio of the weights for the desired states divided by the partition
function

Pbound=
1
Z
· Ω

L−1

(L−1)!
e−

(L−1)Esol+Ebound
kBT .

∇
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While the previous example was carried out for the special case of a ligand
molecule binding to a receptor protein, in fact this same type of computation can
be used to compute the probability that a transcription factor is attached to a piece
of DNA or that two freely moving molecules bind to each other. Each of these cases
simply comes down to enumerating all possible microstates, computing the energy
associated with each, and then computing the ratio of the sum of the weights for
the desired states to the complete partition function.

Chemical Master Equation (CME)

The statistical physics model we have just considered gives a descriptionof the
steady stateproperties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about the behavior of
the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or the dynamics of a
system that does not have an equilibrium configuration. In these instances, we must
extend our formulation to keep track of how quickly the system transitions from
one microstate to another, known as thechemical kineticsof the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. LetP(q, t) represent the probability that the system is in
microstateq at a given timet. Hereq can be any of the very large number of pos-
sible microstates for the system. We wish to write an explicit expression for how
P(q, t) varies as a function of time, from which we can study the stochastic dynam-
ics of the system.

We begin by assuming we have a set ofM reactions Rj , j = 1, . . . ,M, with
ξ j representing the change in state associated with reaction Rj . The propensity
functiondefines the probability that a given reaction occurs in a sufficiently small
time stepdt:

a j(q, t)dt = Probability that reaction Rj will occur between timet
and timet+dt given thatX(t) = q.

The linear dependence ondt relies on the fact thatdt is chosen sufficiently small.
We will typically assume thata j does not depend on the timet and writea j(q)dt
for the probability that reactionj occurs in statex.

Using the propensity function, we can compute the distribution of states at time
t+dt given the distribution at timet:

P(q, t+dt | q0, t0) = P(q, t | q0, t0)
(

1−
M∑

j=1

a j(q)dt
)

+

M∑

j=1

P(q− ξ j | q0, t0)a j(q− ξ j)dt

= P(q, t | q0, t0)+
M∑

j=1

(

a j(q− ξ j)P(q− ξ j , t | q0, t0)−a j(q)P(q, t | q0, t0)
)

dt.

(4.3)
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Sincedt is small, we can take the limit asdt→ 0 and we obtain thechemical master
equation(CME):

∂P
∂t

(q, t | q0, t0) =
M∑

j=1

(

a j(q− ξ j)P(q− ξ j , t | q0, t0)−a j(q)P(q, t | q0, t0)
)

(4.4)

This equation is also referred to as theforward Kolmogorov equationfor a discrete
state, continuous time random process.

We will sometimes find it convenient to use a slightly different notation in which
we letξ represent any transition in the system state (without enumerating the reac-
tions). In this case, we write the propensity function asa(ξ;q, t), which represents
the incremental probability that we will transition from stateq to stateq+ξ at time
t. When the propensities are not explicitly dependent on time, we simply write
a(ξ;q). In this notation, the chemical master equation becomes

∂P
∂t

(q, t | q0, t0) =
∑

ξ

(

a(ξ;q− ξ j)P(q− ξ j , t | q0, t0)−a(ξ;q)P(q, t | q0, t0)
)

, (4.5)

where the sum is understood to be over all allowable transitions.
Under some additional assumptions, we can rewrite the master equation in dif-

ferential form as

d
dt

P(q, t) =
∑

ξ

a(ξ;q− ξ)P(q− ξ, t)−
∑

ξ

a(ξ;q)P(q, t), (4.6)

where we have dropped the dependence on the initial condition for notational con-
venience. We see that the master equation is alinear differential equation with state
P(q, t). However, it is important to note that the size of the state vector can be very
large: we must keep track of the probability of every possible microstate of the
system. For example, in the case of the ligand-receptor problem discussedearlier,
this has a factorial number of states based on the number of possible sites in the
model. Hence, even for very simple systems, the master equation cannot typically
be solved either analytically or in a numerically efficient fashion.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as our basicrepre-
sentation of the underlying dynamics. As we shall see, starting from this equation
we can then derive a variety of alternative approximations that allow us to answer
specific equations of interest.

The key element of the master equation is the propensity functiona(ξ;q, t),
which governs the rate of transition between microstates. Although the detailed
value of the propensity function can be quite complex, its functional form is often
relatively simple. In particular, for a unimolecular reactionξ of the form A→ B,
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the propensity function is proportional to the number of molecules of A that are
present:

a(ξ;q, t) = cξnA. (4.7)

This follows from the fact that each reaction is independent and hence the likeli-
hood of a reaction happening depends directly on the number of copies ofA that
are present.

Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules of each type
that are present (since this is the number of independent reactions that can occur).
Hence, for a reactionξ of the form A+B −−→ C we have

a(ξ;q, t) = cξnAnB. (4.8)

The rigorous verification of this functional form is beyond the scope of this text, but
roughly we keep track of the likelihood of a single reaction occurring between A
and B and then multiply by the total number of combinations of the two molecules
that can react (nA ·nB).

A special case of a bimolecular reaction occurs when A=B, so that our reaction
is given by 2A→ B. In this case we must take into account that a molecule cannot
react with itself, and so the propensity function is of the form

a(ξ;q, t) = cξnA(nA−1). (4.9)

Although it is tempting to extend this formula to the case of more than two
species being involved in a reaction, usually such reactions actually involvecom-
binations of bimolecular reactions, e.g.:

A +B+C−−→ D =⇒ A +B −−→ AB AB +C−−→ D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.

The propensity functions for these cases and some others are given in Table4.1.

Example 4.2(Transcription of mRNA). Consider the production of mRNA from
a single copy of DNA. We have two basic reactions that can occur: mRNA can
be produced by RNA polymerase transcribing the DNA and producing an mRNA
strand, or mRNA can be degraded. We represent the microstateq of the system in
terms of the number of mRNA’s that are present, which we write asn for ease of
notation. The reactions can now be represented asξ = +1, corresponding to tran-
scription andξ = −1, corresponding to degradation. We choose as our propensity
functions

a(+1;n, t) = α, a(−1;n, t) = γn,
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Table 4.1: Examples of propensity functions for some commoncases [29]. Here we takera

andrb to be the effective radii of the molecules,m∗ =mamb/(ma+mb) is the reduced mass
of the two molecules,Ω is the volume over which the reaction occurs,T is temperature,kB

is Boltzmann’s constant andna, nb are the numbers of molecules ofA andB present.

Reaction type Propensity function coefficient,cξ

Reaction occurs if molecules “touch” Ω−1
(

8kBT
πm∗

)1/2
π(ra+ rb)2

Reaction occurs if molecules collide with energyǫ Ω−1
(

8kBT
πm∗

)1/2
π(ra+ rb)2 ·e−ǫ/kBT

Steady state transcription factor PboundkocnRNAP

by which we mean that the probability of that a gene is transcribed in timedt isαdt
and the probability that a transcript in timedt is γndt (proportional to the number
of mRNA’s).

We can now write down the master equation as described above. Equation (4.3)
becomes

P(n, t+dt) = P(n, t)
(

1−
∑

ξ=+1,−1

a(ξ;n, t)dt
)

+
∑

ξ=+1,−1

P(n− ξ, t)a(ξ;q− ξ)dt

= P(n, t)−a(+1;n, t)P(n, t)−a(−1;n, t)P(n, t)

+a(+1,n−1, t)P(n−1, t)+a(−1;n+1, t)P(n+1)

= P(n, t)+αP(n−1, t)dt− (α−γn)P(n, t)dt+γ(n+1)P(n+1, t)dt.

This formula holds forn> 0, with then= 0 case satisfying

P(0, t+dt) = P(0, t)−αP(0, t)dt+γP(1, t)dt.

Notice that we have an infinite number of equations, sincen can be any positive
integer.

We can write the differential equation version of the master equation by sub-
tracting the first term on the right hand side and dividing bydt:

d
dt

P(n, t) = αP(n−1, t)− (α+γn)P(n, t)+γ(n+1)P(n+1, t), n> 0

d
dt

P(0, t) = −αP(0, t)dt+γP(1, t).

Again, this is an infinite number of differential equations, although we could take
some limitN and simply declare thatP(N, t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we seṫP(n, t) = 0 and look for a constant solutionP(n, t) = pe(n). This yields
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an algebraic set of relations

0= −αpe(0)+γpe(1) =⇒ αpe(0)= γpe(1)

0= αpe(0)− (α+γ)pe(1)+2γpe(2) αpe(1)= 2γpe(2)

0= αpe(1)− (α+2γ)pe(2)+3γpe(3) αpe(1)= 3γpe(3)
...

...

αp(n−1)= nγp(n).

It follows that the distribution of steady state probabilities is given by the Poisson
distribution

p(n) = eα/γ
(α/γ)n

n!
,

and the mean, variance and coefficient of variation are thus

µ =
α

γ
, σ2 =

α

γ
, CV=

µ

σ
=

1
√
µ
=

√

γ

α
.

∇

Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolution of the
distribution of a system, but it can often be quite cumbersome to work with directly.
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shall consider is
known as thechemical Langevin equation(CLE).

To derive the chemical Langevin equation, we start by assuming that the number
of species in the system is large and that we can therefore represent thesystem
using a vector of real numbersX, with Xi representing the (real-valued) number
of molecules in Si . (OftenXi will be divided by the volume to give a real-valued
concentration of species Si .) In addition, we assume that we are interested in the
dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.

Let X(t) be the state vector for the system, where we assume now that the ele-
ments ofX are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a number of reactions over
a timeτ to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

Xi(t+τ) = X(t)+
M∑

j=1

ξi j a j(X(t))τ+
M∑

j=1

ξi j a
1/2
j (X(t))N j(0,

√
τ),
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wherea j are the propensity functions for the individual reactions,ξi j are the corre-
sponding changes in the system statesXi andN j are a set of independent Gaussian
random variables with zero mean and varianceτ.

If we assume thatτ is small enough that we can use the derivative to approxi-
mate the previous equation (but still large enough that we can average over multiple
reactions), then we can write

dXi(t)
dt
=

M∑

j=1

ξ ji a j(X(t))+
M∑

j=1

ξ ji a
1/2
j (X(t))Γ j(t) =: Ai(X(t))+

M∑

j=1

Bi j (X(t))Γ j(t),

(4.10)
whereΓ j are white noise processes. This equation is called thechemical Langevin
equation(CLE).

Example 4.3(Protein production). Consider a simplified model of protein produc-
tion in which mRNAs are produced by transcription and proteins by translation.
We also include degradation of both mRNAs and proteins, but we do not model the
detailed processes of elongation of the mRNA and polypeptide chains.

We can capture the state of the system by keeping track of the number of copies
of mRNA and proteins. We further approximate this by assuming that the number
of each of these is sufficiently large that we can keep track of its concentration,
and henceX = (nm,np) wherenm ∈ R is the amount of mRNA andnp ∈ R is the
concentration of protein. LettingΩ represent the volume, the reactions that govern
the dynamics of the system are given by:

R1 : φ
α−→mRNA ξ1 = (1,0) a1(X) = α/Ω

R2 : mRNA
γ
−→ φ ξ2 = (−1,0) a2(X) = γ/Ω nm

R3 : mRNA
β
−→mRNA+protein ξ3 = (0,1) a3(X) = β/Ω nm

R4 : protein
δ−→ φ ξ4 = (0,−1) a4(X) = δ/Ω np.

Substituting these expressions into equation (4.10), we obtain a stochastic differ-
ential equation of the form

d
dt




nm

np



=




−γ/Ω 0
β/Ω −δ/Ω







nm

np



+




α/Ω

0



+




(√
α/Ω+

√

γnm/Ω
)

Γm
( √

βnm/Ω+
√

δnp/Ω
)

Γp



,

whereΓm andΓp are independent white noise processes with unit variance. (Note
that in deriving this equation we have used the fact that the sum of two independent
Gaussian processes is a Gaussian process.) ∇

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordinary differential equa-
tion that describes the evolution of the system state. A slightly different (but com-
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pletely equivalent) representation of the dynamics is to model how the probabil-
ity distribution P(q, t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density functionp(x, t). This formula is known
as theFokker-Planck equations(FPE) and is essentially an approximation on the
chemical master equation.

Consider first the case of a random process in one dimension. We assumethat
the random process is in the same form as the previous section:

dX(t)
dt
= A(X(t))+B(X(t))Γ(t). (4.11)

The functionA(X) is called thedrift term andB(X) is thediffusion term. It can be
shown that the probability density function forX, p(x, t | x0, t0), satisfies the partial
differential equation

∂p
∂t

(x, t | x0, t0) = − ∂
∂x

(

A(x, t)p(x, t | x0, t0)
)

+
1
2
∂2

∂x2

(

B2(x, t)p(x, t | x0, t0)
)

(4.12)

Note that here we have shifted to the probability density function since we are
consideringX to be a continuous state random process.

In the multivariate case, a bit more care is required. Using the chemical Langevin
equation (4.10), we define

Di(x, t) =
M∑

j=1

B2
i j (x, t), Ci j (x, t) =

M∑

k=1

Bik(x, t)Bjk(x, t), i < j = 1, . . . ,M.

The Fokker-Planck equation now becomes

∂p
∂t

(x, t | x0, t0) =−
M∑

i=1

∂

∂xi

(

Ai(x, t)p(x, t | x0, t0)
)

+
1
2

M∑

i=1

∂

∂xi

∂2

∂x2

(

Di(x, t)p(x, t | x0, t0)
)

+

M∑

i, j = 1
i < j

∂2

∂xi∂x j

(

Ci j (x, t)p(x, t | x0, t0)
)

.

(4.13)

Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation provideapprox-
imations to the chemical master equation. A slightly different approximation can
be obtained by expanding the density function in terms of a size parameterΩ. This
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approximation is know as thelinear noise approximation(LNA) or theΩ expan-
sion[43].

We begin with a master equation for a continuous random variableX, which we
take to be of the form

∂p
∂t

(x, t) =
∫

(

aΩ(ξ; x− ξ)p(x− ξ, t)−aΩ(ξ; x)p(x, t)
)

dξ,

where we have dropped the dependence on the initial condition for notational sim-
plicity. As before, the propensity functionaΩ(ξ; x) represents the transition prob-
ability between a statex and a statex+ ξ and we assume that it is a function of
a parameterΩ that represents the size of the system (typically the volume). Since
we are working with continuous variables, we now have an integral in placeof our
previous sum.

We assume that the mean ofX can be written asΩφ(t) whereφ(t) is a continuous
function of time that represents the evolution of the mean ofX/Ω. To understand
the fluctuations of the system about this mean, we write

X = Ωφ+Ω
1
2 Z,

whereZ is a new variable representing the perturbations of the system about its
mean. We can write the distribution forZ as

pZ(z, t) = pX(Ωφ(t)+Ω
1
2 z, t)

and it follows that the derivatives ofpZ can be written as

∂νpZ

zν
= Ω

1
2ν
∂νpX

xν

∂pZ

∂t
=
∂pX

∂t
+Ω

dφ
dt
∂pX

∂x
=
∂pX

∂t
+Ω

1
2
dφ
dt
∂pZ

∂z
.

We further assume that theΩ dependence of the propensity function is such that

aΩ(ξ,Ωφ) = f (Ω)ã(ξ;φ),

whereã is not dependent onΩ. From these relations, we can now derive the master
equation forpZ in terms of powers ofΩ (derivation omitted).

TheΩ1/2 term in the expansion turns out to yield

dφ
dt
=

∫

ξa(ξ,Ωφ)dξ, φ(0)=
X(0)
Ω

,

which is precisely the equation for the mean of the concentration. It can further be
shown that the terms inΩ0 are given by

∂pZ(z, τ)
∂τ

= −α′1(φ)
∂

∂z
(zpZ(z, t))+

1
2
α2(φ)

∂2pZ(z, t)
∂z2

, (4.14)
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where

αv(x) =
∫

ξvã(ξ; x)dξ, τ = Ω−1 f (Ω)t.

Notice that in the case thatφ(t) = φ0, this equation becomes the Fokker-Planck
equation derived previously.

Higher order approximations to this equation can also be carried out by keeping
track of the expansion terms in higher order powers ofΩ. In the case whereΩ
represents the volume of the system, the next term in the expansion isΩ−1 and this
represents fluctuations that are on the order of a single molecule, which can usually
be ignored.

Rate reaction equations (RRE)

As we already saw in Chapter2, the reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large numberof
molecules whose state can be approximated using just the concentrations of the
molecules. We re-derive the results from Section2.1 here, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equations (4.10), from which we can write
the dynamics for the average quantity of the each species at each point in time:

d〈Xi(t)〉
dt

=

M∑

j=1

ξ ji 〈a j(X(t))〉,

where the second order term drops out under the assumption that theΓ j ’s are in-
dependent processes. We see that the reaction rate equations follow bydefining
xi = 〈Xi〉/Ω andassumingthat〈a j(X(t))〉= a j(〈X(t)〉). This relationship is true when
a j is linear (e.g., in the case of a unimolecular reaction), but is an approximation
otherwise.
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4.2 Simulation of Stochastic sections

4.3 Analysis of Stochastic Systems

4.4 Linearized Modeling and Analysis

4.5 Markov chain modeling and analysis

4.6 System identification techniques

4.7 Model Reduction

Exercises

4.1 Consider gene expression:φ
k−→m, m

β
−→m+P, m

γ
−→ φ, and P

δ−→ φ. Answer the
following questions:

(a) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare with the determin-
istic ODE solution. Explore how the realizations become close to or apart fromthe
ODE solution when the volume is changed. Determine the stationary probability
distribution for the protein (you can do this numerically, but note that this process is
linear, so you can compute the probability distribution analytically in closed form).

(b) Now consider the additional binding reaction of protein P with downstream

DNA binding sites D: P+D
kon−−−⇀↽−−−
ko f f

C. Note that the system no longer linear due to

the presence of a bi-molecular reaction. Use the SSA algorithm to obtain sample
realizations and numerically compute the probability distribution of the protein and
compare it to what you obtained in part (a). Explore how this probability distribu-
tion and the one of C change as the rateskon andko f f become larger and larger
with respect toδ,k,β,γ. Do you think we can use a QSS approximation similar to
what we have done for ODE models?

(c) Determine the Langevin equation for the system in part (b) and obtain sample
realizations. Explore numerically how good this approximation is when the volume
decreases/increases.
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Figure 5.1: Schematic diagram for thelac system.

5.1 The lac Operon

Modeling

The lac operon is one of the most studied regulatory networks in molecular bi-
ology. Its function is to determine when the cell should produce the proteins and
enzymes necessary to import and metabolize lactose from its external environment.
Since glucose is a more efficient source of carbon, the lactose machinery is not pro-
duced unless lactose is present and glucose is not present. Thelac control system
implements this computation.

In constructing a model for thelac system, we need to decide what questions we
wish to answer. Here we will attempt to develop a model that allows us to under-
stand what levels of lactose are required for thelac system to become active in the
absence of glucose. We will focus on the so-called “bi-stability” of thelac operon:
there are two steady operating conditions—at low lactose levels the machinery
is off and at high lactose levels the machinery is on. The system has hysteresis,
so once the operon is actived, it remains active even if the lactose concentration
descreases. We will construct a differential equation model of the system, with
various simplifying assumptions along the way.

A schematic diagram of thelac control system is shown in Figure5.1. Starting
at the bottom of the figure, lactose permease is an integral membrane protein that
helps transport lactose into the cell. Once in the cell, lactose is converted to allolac-
tose, and allolactose is then broken down into glucose and galactose, both with the
assistance of the enzymeβ-galactosidase (β-gal for short). From here, the glucose
is processed using the usual glucose metabolic pathway and the galactose.

The control circuitry is implemented via the reactions and transcriptional reg-
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ulation shown in the top portion of the diagram. Thelac operon, consisting of the
geneslacZ (coding forβ-gal), lacY(coding for lactose permease) andlacA (coding
for a transacetylase), has a combinatorial promoter. Normally, lac repressor (lacI)
is present and the operon is off. The activator for the operon is CAP, which has
a positive inducer cAMP. The concentration of cAMP is controlled by glucose:
when glucose is present, there is very little cAMP available in the cell (and hence
CAP is not active).

The bistable switching behavior in thelac control system is implemented with a
feedback circuit involving thelac repressor. Allolactose bindslac repressor and so
when lactose is being metabolized, then the repressor is sequestered by allolactose
and thelac operon is no longer repressed.

To model this circuit, we need to write down the dynamics of all of the reac-
tions and protein production for the circuitry shown in Figure5.1. We will denote
the concentration of theβ-gal mRNA and protein asmb and B. We assume that
the internal concentration of lactose is given byL, ignoring the dynamics of lac-
tose permease and transport of lactose into the cell. Similarly, we assume that the
concentration of repressor protein, denotedR, is constant.

We start by keeping track of the concentration of free allolactoseA. The relevant
reactions are given by the transport of lactose into the cell, the conversion of lactose
into allolactose and then into glucose and lactose and finally the sequestration of
repressorR by allolactose:

L e+P−−−⇀↽−−− L e:P−−−⇀↽−−− L +P Transport

L +B −−−⇀↽−−− L:B −−→ A +B Conversion

A +B −−−⇀↽−−− A:B −−→Glu+Gal+B Conversion

A +R−−−⇀↽−−− A:R Sequestration.

We see that the dynamics involve a number of enzymatic reactions and hence we
can use Michaelis-Menten kinetics to model the response at a slightly reducedlevel
of detail. The differential equation for the internal lactose concentrationL becomes

dL
dt
= αLL eP

Le

KL e+Le −αPLB
L

KPL+L
−αAL B

L
KAL +L

−δLL, (5.1)

where the first two terms arise from the transport of lactose into and out ofthe cell,
the third term is the conversion of lactose to allolactose and the final term is due to
degradation and dilution. Similarly, the dynamics for the allolactose concentration
can be modeled as

dA
dt
= αAL B

L
KAL +L

−αAB B
A

KA+A
+kr

AR[A:R] −kf
AR[A][R] −δAA.

The dynamics of the production ofβ-gal and lactose permease are given by
the transcription and translational dynamics of protein production. These genes
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are both part of the same operon (along withlacA) and hence the use a single
mRNA strand for translation. To determine the production rate of mRNA, we need
to determine the amount of repression that is present as a function of the amount of
repressor, which in turn depends on the amount of allolactose that is present. We
make the simplifying assumption that the sequestration reaction is fast, so that it is
in equilibrium and hence

[A:R] = kAR[A][R] , kAR = kf
AR/k

r
AR.

We also assume that the total repressor concentration is constant (production matches
degradation and dilution). LettingRT = [R] + [A:R] represent the total repressor
concentration, we can write

[R] = RT −kAR[A][R] =⇒ [R] =
RT

1+kAR[A]
. (5.2)

The simplification that the sequestration reaction is in equilibrium also simplifies
the reaction dynamics for allolactose, which becomes

dA
dt
= αAL B

L
KAL +L

−αAB
A

KA+A
−δAA. (5.3)

We next need to compute the effect of the repressor on the production ofβ-gal
and lactose permease. It will be useful to express the promoter state in termsof
the allolactose concentrationA rather thanR, using equation (5.2). We model this
using a Hill function of the form

FBA(A) =
αR

KR+Rn =
αR(1+KARA)n

KR(1+KARA)n+RT

Letting M represent the concentration of the (common) mRNA, the resulting form
of the protein production dynamics becomes

dM
dt
= e−µτM FBA(A(t−τm))− γ̄M M,

dB
dt
= βBe−µτBM(t−τB)− δ̄BB,

dP
dt
= βPe−µ(τM+τP)M(t−τM −τP)− δ̄PP.

(5.4)

This model includes the degradation and dilution of mRNA (¯γM), the transcrip-
tional delaysβ-gal mRNA (τM), the degradation and dilution of the proteins (δ̄B,
δ̄P) and the delays in the translation and folding of the final proteins (τB, τP).
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Table 5.1: Parameter values forlac dynamics (from [?]).

Parameter Value Description
µ̄ 3.03×10−2 min-1 dilution rate
αM 997 nMmin-1 production rate ofβ-gal mRNA
βB 1.66×10−2 min-1 production rate ofβ-galactosidase
βP ??? min-1 production rate of lactose permease
αA 1.76×104 min-1 production rate of allolactose
γ̄M 0.411 min-1 degradation and dilution ofβ-gal mRNA
δ̄B 8.33×10−4 min-1 degradation and dilution ofβ-gal
δ̄P ?? min-1 degradation and dilution of lactose permease
δ̄A 1.35×10−2 min-1 degradation and dilution of allolactose
n 2 Hill coefficient for repressor
K 7200
K1 2.52×10−2 (µM)−2

KL 0.97µM
KA 1.95µM
βA 2.15×104 min-1

τM 0.10 min
τM 2.00 min

Bifurcation analysis

Sensitivity analysis

Consider the model of thelac operon introduced in Section??. For the genelacZ
(which encodes the proteinβ-galactosidase), we letB represent the protein con-
centration andM represent the mRNA concentration. We also consider the con-
centration of the lactoseL inside the cell, which we will treat as an external input,
and the concentration of allolactose,A. Assuming that the time delays considered
previously can be ignored, the dynamics in terms of these variables are

dM
dt
= FBA(A, θ)−γbM, FBA(A, θ) = αAB

1+k1An

K +k1An ,

dB
dt
= βBM−δBB, FAL(L, θ) = αA

L
kL+L

,

dA
ddt
= BFAL(L, θ)−BFAA(A, θ)−γAA, FAA(A, θ) = βA

A
kA+A

.

(5.5)

Here the state isx= (M,B,A) ∈ R3, the input isw= L ∈ R and the parameters are
θ= (αB,βB,αA,γB, δB,γA,n,k,k1,kL,kA,βA) ∈R12. The values for the parameters are
listed in Table??.

We investigate the dynamics around one of the equilibrium points, correspond-
ing to an intermediate input ofL = 40µM. There are three equilibrium points at
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this value of the input:

x1,e= (0.000393,0.000210,3.17), x2,e= (0.00328,0.00174,19.4), x3,e= (0.0142,0.00758,42.1).

We choose the third equilibrium point, corresponding to the lactose metabolic ma-
chinery being activitated and study the sensitivity of the steady state concentrations
of allolactose (A) andβ-galactosidase (B) to changes in the parameter values.

The dynamics of the system can be represented in the form ˙x= f (x, θ,L) with

f (x, θ,L) =




FBA(A)−γBM−µM
βBM−δBB−µB

FAL (L)B−FAA (A)B−δAA−µA




.

To compute the sensitivity with respect to the parameters, we compute the deriva-
tives of f with respect to the statex,

∂ f
∂x
=




−γB−µ 0 ∂FBA
∂A

βB −δB−µ 0
0 FAL−FAA −B∂FAA

∂A




and the parametersθ,

∂ f
∂θ
=


FBA 0 0 −M 0 0 ∂FBA

∂n
∂FBA
∂k

∂FBA
∂k1

0 0 0

 .

Carrying out the relevant computations and evaluating the resulting expression nu-
merically, we obtain

∂

∂θ




Be

Ae


 =




−1.21 0.0243 −3.35×10-6 0.935 1.46 . . . 0.00115
−2720. 47.7 −0.00656 1830. 2860. . . . 3.27


 .

We can also normalize the sensitivity computation:

S̄xeθ =
∂xe/xe

∂θ/θ0
= D−1(xe)SxeθD

−1(θ0)

which yields

S̄yeθ =




−4.85 3.2 −3.18 3.11 3.2 6.3 −6.05 −4.1 4.02 6.05
−1.96 1.13 −1.12 1.1 1.13 3.24 −3.11 −2.11 2.07 3.11




where
θ =


µ αM K K1 βB αA KL βA KA L


 .

We see from this computation that increasing the growth rate decreases the equilib-
rium concentation ofB andA, while increasing the lactose concentration by 2-fold
increases the equilibriumβ-gal concentration 12-fold (6X) and the allolactose con-
centration by 6-fold (3X).
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5.2 Heat Shock Response in Bacteria
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5.3 Bacteriophage λ

Bacteriophageλ (also calledλ phage or phageλ) is a virus that infectsE. coli and
propogates itself by integrating its DNA into the genome of the infected cell. The
virus includes a decision “switch” that determines whether the virus should pro-
pogate itself by DNA integration (thelysogenicphase) or whether it should destroy
the host cell and spread to other nearby bacteria (thelytic phase). In this section we
describe what is known about the modeling of the lysis/lysogeny decision-making
circuitry and explore some of the properties of its dynamics.

The material in this section is based on the work of Ptashne [58], Arkin et
al. [5] and St. Pierre et al. [70]. The models used to create the plots in this section
are available on the companion web site for the text.

Phage λ lifecycle

A detailed model for λ

Reduced order models for λ

Dynamic analysis

Open issues



5.3-2 CHAPTER 5. FEEDBACK EXAMPLES

./fbkexamps/figures/lambda-growth.eps

Figure 5.2: Growth cycle of phageλ. From Ptashne.
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./fbkexamps/figures/lambda-detail.eps

Figure 5.3: A detailed circuit diagram for theλ decision-making circuit. From Arkin, Ross
and McAdams (1998).

(a) (b)

Figure 5.4: Simulation results using the detailed model.
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Figure 5.5: Examples of chemotaxis. Figure from Phillips, Kondev and Theriot [56]; used
with permission of Garland Science.

5.4 Bacterial Chemotaxis

Chemotaxisrefers to the process by which micro-organisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is calledpositive chemotaxisif the motion is in the direction of the stimulus
andnegative chemotaxisif the motion is away from the stimulant, as shown in Fig-
ure5.5. Many chemotaxis mechanisms are stochastic in nature, with biased random
motions causing the average behavior to be either positive, negative or neutral (in
the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, whichE. coli use
to move in the direction of increasing nutrients. The material in this section is based
primarily on the work of Barkai and Leibler [10] and Rao, Kirby and Arkin [59].

Control system overview

The chemotaxis system inE. coli consists of a sensing system that detects the
presence of nutrients, and actuation system that propels the organism in itsenvi-
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system. The approximate location
of these elements are shown in Figure??.

The actuation system in theE. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown
in Figure5.6a. When the flagella all spin in the counter clockwise direction, the
individual flagella form a bundle and cause the organism to move roughly ina
straight line. This behavior is called a “run” motion. Alternatively, if the flagella
spin in the clockwise direction, the individual flagella do not form a bundle and the
organism “tumbles”, causing it to rotate (Figure5.6b). The selection of the motor
direction is controlled by the protein CheY: if phosphorylated CheY binds to the
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(a) (b) (c)

Figure 5.6: Bacterial chemotaxis. Figures from Phillips, Kondev and Theriot [56]; used
with permission of Garland Science.

motor complex, the motor spins clockwise (tumble), otherwise it spins counter-
clockwise (run).

Because of the size of the organism, it is not possible for a bacterium to sense
gradients across its length. Hence, a more sophisticated strategy is used, inwhich
the organism undergoes a combination of run and tumble motions. The basic idea
is illustrated in Figure5.6c: when high concentration of ligand (nutrient) is present,
the CheY protein is left unphosphorylated and does not bind to the actuationcom-
plex, resulting in a counter-clockwise rotation of the flagellar motor (run). Con-
versely, if the ligand is present then the molecular machinery of the cell causes
CheY to be phosphorylated and this modifies the flagellar motor dynamics so thata
clockwise rotation occurs (tumble). The net effect of this combination of behaviors
is that when the organism is traveling through regions of higher nutrient concen-
tration, it continues to move in a straight line for a longer period before tumbling,
causing it to move in directions of increasing nutrient concentration.

A simple model for the molecular control system that regulates chemotaxis is
shown in Figure5.7. We start with the basic sensing and and actuation mechanisms.
A membrane bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transducing element
from the cell exterior to the cytoplasm. Two other proteins, CheW and CheA,form
a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phosphotransferase
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./fbkexamps/figures/chemotaxis-ctrlsys.eps

Figure 5.7: Control system for chemotaxis. Figure from Raoet al. [59] (Figure 1A).

for two additional proteins, CheB and CheY. The phosphorylated form of CheY
then binds to the motor complex, causing clockwise rotation of the motor.

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or absence of
up to 4 methyl groups on the MCP protein. The specific dependence on each of
these factors is somewhat complicated. Roughly speaking, when the ligandL is
bound to the receptor then the complex is less likely to be active. Furthermore,as
more methyl groups are present, the ligand binding probability increases, allowing
the gain of the sensor to be adjusted through methylation. Finally, even in the ab-
sence of ligand the receptor complex can be active, with the probability increasing
with increased methylation. Figure5.8 summarizes the possible states, their free
energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. The most
important of these are implemented by the proteins CheR and CheB, both of which
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the four different methylation sites. Con-
versely, the phosphorylated form of CheB demethylates the receptor complex. As
described above, the methylation patterns of the receptor complex affect its activ-
ity, which affects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is active,then CheA
phosphorylates CheB, which in turn demethylates the receptor complex, making it
less active. As we shall see when we investigate the detailed dynamics below,this
feedback loop corresponds to a type of integral feedback law. This integral action
allows the cell to adjust to different levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute nutrient levels.
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./fbkexamps/figures/receptor-activity.eps

Figure 5.8: Receptor complex states. The probability of a given state being in an active
configuration is given byp. Figure obtained from [51].

Modeling

The detailed reactions that implement chemotaxis are illustrated in Figure5.9.
Letting T represent the receptor complex and TA represent an active form, the
basic reactions can be written as

TA +A −−−⇀↽−−− TA :A −−→ A p+TA

A p+B −−−⇀↽−−− A p:B −−→ A +Bp Bp+P−−−⇀↽−−− Bp:P−−→ B+P

A p+Y −−−⇀↽−−− A p:Y −−→ A +Y p Y p+Z −−−⇀↽−−− Y p:Z −−→ Y +Z

(5.6)

where CheA, CheB, CheY and CheZ are written simply as A, B, Y and Z for
simplicity andP is a non-specific phosphotase. We see that these are basically
three linked sets of phosphorylation and dephosphorylation reactions, with CheA
serving as a phosphotransferase and P and CheZ serving as phosphotases.

The description of the methylation of the receptor complex is a bit more com-
plicated. Each receptor complex can have multiple methyl groups attached andthe
activity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site. Furthermore, the binding proba-
bilities for the receptor also depend on the methylation pattern. To capture this,we
use the set of reactions that are illustrated in Figures5.7 and5.9. In this diagram,
T s

i represents a receptor that hasi methylation sites filled and ligand state s (which
can be either u if unoccupied or o if occupied). We letM represent the maximum
number of methylation sites (M = 4 for E. coli).

Using this notation, the transitions between the states correspond to the reac-
tions shown in Figure5.10:

Tx
i +Bp −−−⇀↽−−− Tx

i :Bp −−→ Tx
i−1+Bp i > 0

Tx
i +R−−−⇀↽−−− Tx

i :R−−→ Tx
i+1+R i < M

Tu
i +L −−−⇀↽−−− To

i
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Figure 5.9: Circuit diagram for chemotaxis.

We now must write reactions for each of the receptor complexes with CheA. Each
form of the receptor complex has a different activity level and so the most complete
description is to write a separate reaction for each To

i and Tu
i species:

Tx
i +A

k f ,o
i−−−⇀↽−−−

kr,o
i

Tx
i :A

kc,o
i−−→ A p+Tx

i ,

where x∈ {o,u} and i= 0, . . . ,M. This set of reactions replaces the placeholder
reaction TA +A −−−⇀↽−−− T A :A −−→ A p+T A used earlier.

Approximate model

The detailed model described above is sufficiently complicated that it can be dif-
ficult to analyze. In this section we develop a slightly simpler model that can be
used to explore the adaptation properties of the circuit, which happen on a slower
time-scale.

./fbkexamps/figures/chemotaxis-methylation.eps

Figure 5.10: Methylation model for chemotaxis. Figure fromBarkai and Leibler [10] (Box
1). Note: the figure uses the notation Es

i for the receptor complex instead of Ts
i .
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Figure 5.11: Probability of activity.

We begin by simplifying the representation of the receptor complex and its
methylation pattern. LetL(t) represent the ligand concentration andTi represent
the concentration of the receptor complex withi sides methylated. If we assume
that the binding reaction of the ligand L to the complex is fast, we can write the
probability that a receptor complex withi sites methylated is in its active state as a
static functionαi(L), which we take to be of the form

αi(L) =
αo

i L

KL+L
+
αiKL

KL+L
.

The coefficientsαo
i andαi capture the effect of presence or absence of the ligand on

the activity level of the complex. Note thatαi has the form of a Michaelis-Menten
function, reflecting our assumption that ligand binding is fast compared to therest
of the dynamics in the model. Following [59], we take the coefficients to be

a0 = 0, a1 = 0.1, a2 = 0.5, a3 = 0.75, a4 = 1,

ao
0 = 0, ao

1 = 0, ao
2 = 0.1, ao

3 = 0.5, ao
4 = 1.

and chooseKL = 10µM. Figure5.11shows how eachαi varies withL.
The total concentration of active receptors can now be written in terms of the

receptor complex concentrationsTi and the activity probabilitiesαi(L). We write
the concentration of activated complex TA and inactivated complex TI as

TA =

4∑

i=0

αi(L)Ti , T I =

4∑

i=0

(1−αi(L))Ti .

These formulas can now be used in our dynamics as an effective concentration of
active or inactive receptors, justifying the notation that we used in equation(5.6).

We next model the transition between the methylation patterns on the receptor.
We assume that the rate of methylation depends on the activity of the receptor
complex, with active receptors less likely to be demethylated and inactive receptors
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less likely to be methylated [59, 51]. Let

rB = kB
Bp

KB+TA
, rR= kR

R

KR+T I
,

represent rates of the methylation and demethylation reactions. We choose the co-
efficients as

kB = 0.5, KB = 5.5, kR= 0.255, KR= 0.251,

We can now write the methylation dynamics as

d
dt

Ti = rR
(

1−αi+1(L)
)

Ti−1 + rBαi+1(L)Ti+1 − rR
(

1−αi(L)
)

Ti − rBαi(L)Ti ,

where the first and second terms represent transitions into this state via methylation
or demethylation of neighboring states (see Figure5.10) and the last two terms
represent transitions out of the current state by methylation and demethylation,
respectively. Note that the equations forT0 andT4 are slightly different since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the dynamics of the phosphorylation and dephosphorylation
reactions, and the binding of CheYp to the motor complex. Under the assumption
that the concentrations of the phosphorylated proteins are small relative tothe total
protein concentrations, we can approximate the reaction dynamics as

d
dt

Ap = 50TAA−100ApY−30ApB,

d
dt

Yp = 100ApY−0.1Yp−5[M]Yp+19[M:Y p] −30Yp,

d
dt

Bp = 30ApB−Bp,

d
dt

[M:Y p] = 5[M]Yp−19[M:Y p].

The total concentrations of the species are given by

A+Ap = 5 nM, B+Bp = 2 nM, Y+Yp+ [M:Y p] = 17.9 nM,

[M] + [M:Y p] = 5.8 nM, R= 0.2 nM,
∑4

i=0Ti = 5 nM.

The reaction coefficients and concentrations are taken from Raoet al. [59].
Figure5.12ashows a the concentration of the phosphorylated proteins based on

a simulation of the model. Initially, all species are started in their unphosphorylated
and demethylated states. At timeT = 500 s the ligand concentration is increased to
L= 10µM and at timeT = 1000 it is returned to zero. We see that immediately after
the ligand is added, the CheYp concentration drops, allowing longer runs between
tumble motions. After a short period, however, the CheYp concentration adapts to
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Figure 5.12: Simulation and analysis of reduced-order chemotaxis model.

the higher concentration and the nominal run versus tumble behavior is restored.
Similarly, after the ligand concentration is decreased the concentration of CheYp

increases, causing a larger fraction of tumbles (and subsequent changes in direc-
tion). Again, adaptation over a longer time scale returns that CheY concentration
to its nominal value.

Figure 5.12bhelps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligand concen-
tration is high, which decreases the activity of CheA (and hence decreases the
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry has thesame
function as the use of integral action in control system design: by includinga feed-
back on the integral of the error, it is possible to provide exact cancellation to
constant disturbances. In this section we demonstrate that a simplified versionof
the dynamics can indeed be regarded as integral action of an appropriatesignal.
This interpretation was first pointed out by Yiet al [73].

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral action. Let X repre-
sent the receptor complex and assume that it is either methylated or not. We let Xm
represent the methylated state and we further assume that this methylated state can
be activated, which we write as X*m. This simplified description replaces the multi-
ple statesTi and probabilitiesαi(L). We also ignore the additional phosphorylation
dynamics of CheY and simply take the activated receptor concentrationX∗m as our
measure of overall activity.

Figure5.13shows the transitions between the various formsX. As before, CheR
methylates the receptor and CheBp demethylates it. We simplify the picture by only
allowing CheBp to act on the active state X*m and CheR to act on the inactive state.
We take the ligand into account by assuming that the transition between the active
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./fbkexamps/figures/chemotaxis-reduced.eps

Figure 5.13: Reduced order model of receptor activity. Obtained from [3], Figure 7.9.

form X *
m and the inactive form Xm depends on the ligand concentration: higher

ligand concentration will increase the rate of transition to the inactive state.
This model is a considerable simplification from the ligand binding model that

is illustrated in Figures5.8 and5.10. In the previous models, there is some prob-
ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylated/inactive and methylated/active. We also modify the way that that lig-
and binding is captured and instead of keeping track of all of the possibilitiesin
Figure5.8, we assume that the ligand transitions us from an active state X*

m to an
inactive Xm. These states and transitions are roughly consistent with the different
energy levels and probabilities in Figure5.8, but it is clearly a much coarser model.

Accepting these approximations, the model illustrated in Figure5.13results in
a set of chemical reactions of the form

X +R−−−⇀↽−−− X:R −−→ Xm+R methylation

X ∗m+Bp −−−⇀↽−−− X ∗m:Bp −−→ X +Bp demethylation

X ∗m
k f (L)
−−−−⇀↽−−−−

kr
Xm activation/deactivation

For simplicity we take both R and Bp to have constant concentration.
Approximating the first two reactions by their Michaelis-Menten forms and

assuming thatX≫ 1, we can write the resulting dynamics for the system as

d
dt

Xm= kRR+k f (L)X∗m−kr Xm

d
dt

X∗m= −kBBp X∗m
KX∗m+X∗m

−k f (L)X∗m+kr Xm.

We wish to use this model to understand how the steady state activity levelX∗m
depends on the ligand concentrationL (which enters through the deactivation rate
k f (L)). Starting with the first equation, we see that at equilibrium we have

Xm,e= (KR/k
r )R.
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To find X∗m,e, we note that at equilibrium

0=
d
dt

(Xm,e+X∗m,e) = −kBBp X∗m,e
KX∗m+X∗m,e

+kRR.

From this equation we can solve forX∗m,e as a function of the CheR concentration:

X∗m,e=
KX∗mkRR

kBBp−kRR

Note that this solution does not depend onk f (L) or kr and hence we see that the
steady state solution is independent of the ligand concentration.

To see the integral action more directly, we write the dynamics in terms of a
new variablez= X∗m−X∗m,e.

Further reading
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5.5 Yeast mating response
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Part II

Design and Synthesis





Chapter 6

Biological Circuit Components

6.1 Biological Circuit Design

One of the fundamental building blocks employed in synthetic biology is the pro-
cess of transcriptional regulation, which is found in natural transcriptional net-
works. A transcriptional network is composed of a number of genes that express
proteins that then act as transcription factors for other genes. The rateat which a
gene is transcribed is controlled by thepromoter, a regulatory region of DNA that
precedes the gene. RNA polymerase binds a defined site (a specific DNA sequence)
on the promoter. The quality of this site specifies the transcription rate of the gene
(the sequence of the site determines the chemical affinity of RNA polymerase to the
site). RNA polymerase acts on all of the genes. However, each transcription fac-
tor modulates the transcription rate of a set of target genes. Transcriptionfactors
affect the transcription rate by binding specific sites on the promoter region of the
regulated genes. When bound, they change the probability per unit time thatRNA
polymerase binds the promoter region. Transcription factors thus affect the rate at
which RNA polymerase initiates transcription. A transcription factor can act as a
repressorwhen it prevents RNA polymerase from binding to the promoter site. A
transcription factor acts as anactivator if it facilitates the binding of RNA poly-
merase to the promoter. Such interactions can be generally represented asnodes
connected by directed edges.

Synthetic bio-molecular circuits are typically fabricated in bacteria or yeast, by
cutting and pasting together according to a desired sequence genes and promoter
sites (natural and engineered). Since the expression of a gene is under the control
of its upstream promoter region, we can create a desired circuit of activation and
repression interactions among genes by appropriate construction of DNAregions.
Early examples of such circuits include an activator-repressor system that can dis-
play toggle switch or clock behavior [7], a loop oscillator called the repressilator
obtained by connecting three inverters in a ring topology [23], a toggle switch ob-
tained connecting two inverters in a ring fashion [26], and an autorepressed circuit
[12] (Figure 6.1). In this chapter, we analyze the behavior of the early modules
fabricated so far by employing several of the techniques that we have studied in the
previous chapters.
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c) Activator-repressor clock

A
A B

A B

B

A C

a) Self repression b) Toggle switch

d) Repressilator

Figure 6.1: Early transcriptional circuits that have been fabricated in bacteriaE. coli: the
self-repression circuit [12], the toggle switch [26], the activator-repressor clock [7], and
the repressilator [23]. Each node represents a gene and each arrow from node Z to node
X indicates that the transcription factor encoded in z, denoted Z, regulates gene x [3]. If
z represses the expression of x, the interaction is represented by Z⊣X. If z activates the
expression of x, the interaction is represented by Z→X [3].

6.2 Self-repressed gene

In this section, we analyze the self repressed gene of Figure6.1and focus on ana-
lyzing how the presence of the negative feedback affects the dynamics of the sys-
tem [60] and how the negative feedback affects the noise properties of the system
[12, 8].

Let X denote the concentration of protein X and let X be a transcriptional re-
pressor for its own production. Assuming that the mRNA dynamics are at the quasi
steady state, the ODE model describing the self repressed system is givenby

Ẋ =
β

1+X/K
−δX,

in which we have assumed that the Hill coefficient is equal to 1. We seek to compare
the behavior of this autoregulated system to the behavior of the unregulatedone:

Ẋ = β0−δX,

in whichβ0 is the unrepressed production rate.

Dynamic effects of negative feedback

We show here that the rise time of the system decreases due to the presenceof the
negative feedback, that is, the dynamics become faster. For the unrepressed system,
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we obtain (by direct integration) the behavior ofX(t) as

X(t) =
β0

δ
(1−e−δt),

in which we have assumed zero initial condition. For the self repressed system,
assuming thatX(t) is sufficiently small, we can use Taylor expansion aboutX= 0 to
approximate the dynamics aboutX= 0 by Ẋ= β− δ̄X+O(X2), in which δ̄ =−δ− β

K .
As a consequence, we have that

X(t) =
β

δ̄
(1−e−δ̄t).

The rise time is the timeX(t) takes to go from 10% of its final value to 90% of its
final value. In this case, we thus have that for the unrepressed systemthe rise time
is 2/δ, while for the self-repressed system is given by 2/δ̄. Sinceδ̄ > δ, we have
that the rise time for the self-repressed system is smaller and hence its dynamics
are faster. This was experimentally confirmed by [60].

Noise filtering

In this section, we investigate the effect of the negative feedback on the noise spec-
trum of the system. Specifically, we employ the Langevin modeling framework to
show that the presence of a negative feedback decreases the amplitudeof the noise
at low frequency, while it increases it at higher frequency. In orderto show this fact,
we perform here a simplified analysis, in which we model the unrepressed system
by the reactions

φ
β0−−→ X, X

δ−→ φ

and the self repressed system, following the approximations of the previoussection,
by the reactions

φ
β
−→ X, X

δ̄−→ φ

in which δ̄ = −δ− β

K . The reader can as an exercise model the self-repressed system
by considering all the involved reactions including the binding of the repressor to
DNA and verify that a result similar to the one we are about to show here follows.

As we have seen previously, the concentrationX(t) in a stochastic model is a
random variable. In the Langevin approximation, it is given byX(t)= φ(t)+ 1√

Ω
Z(t),

in which φ(t) is the solution to the deterministic system whileZ(t) is a zero-mean
random variable whose dynamics is determined by the Langevin equation:

Ż(t) = AZ(t)+BΓ(t),

in which A = ∂S f(X)
∂X |X=φ(t) with S the stoichiometry matrix andf (X) is the vector

of reactions, whileB= S
√

diag(f (φ(t)). The vectorΓ(t) has entries given by real-
izations of white noise, in which each entryi models the noise on theith reaction.
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Figure 6.2: Bode plots of the transfer functionTΓ2→Z(s) for both unrepressed (solid) and
self repressed (dashed) systems.

In the case in consideration, we are interested in the spectrum of the noise on the
steady state value of the system, so thatφ(t) = X0 with X0 the steady state value.
Here, we assume for simplicity that the steady state value of the same for both the
self repressed and the unrepressed system. For the unrepressed system, we have
that

f (X)= [β0 δX]′, S= [1 −1], A=−δ, B= [1 −1]

[ √
β0 0
0

√
δX0

]

= [
√

β0 −
√

δX0],

while for the self repressed system we have that

f (X)= [β δ̄X]′, S= [1 −1], A=−δ̄, B= [1 −1]

[ √
β 0

0
√

δ̄X0

]

= [
√

β −
√

δ̄X0].

It follows that the Langevin equations are given by

Ż(t) = −δZ(t)+
√

β0Γ1−
√

δX0Γ2

for the unrepressed system and by

Ż(t) = −δ̄Z(t)+
√

βΓ1−
√

δ̄X0Γ2

for the self repressed system.
We can calculate the noise spectrum by simply calculating the transfer func-

tion fromΓi to Z, that is,TΓi→Z(s) and by computing their amplitudesAΓi→Z(ω) =
√

TΓi→Z( jω). This gives the expressions

AΓ1→Z(ω) =

√
β0√

ω2+δ2
, AΓ2→Z(ω) =

√
δX0√

ω2+δ2
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Figure 6.3: Nullclines for the toggle switch. By analyzing the direction of the vector field
in the proximity of the equilibria, one can deduce their stability.

for the unrepressed system and

AΓ1→Z(ω) =

√
β

√
ω2+ δ̄2

, AΓ2→Z(ω) =

√

δ̄X0√
ω2+ δ̄2

for the self repressed system. Figure6.2shows the amplitudeAΓi→Z(ω)=
√

TΓ2→Z( jω).
Sinceδ̄ > δ, we have that the amplitude of the noise onX at low frequency is lower
for the self repressed circuit, while at higher frequency it is higher for the self re-
pressed circuit. This illustrates the spectral shift of the intrinsic noise toward the
high frequency as also experimentally demonstrated by [8].

6.3 The Toggle Switch

The toggle switch is composed of two genes that mutually repress each other as
shown in the diagram of Figure6.3 [26]. By assuming that the mRNA dynamics
are at the quasi steady state, we obtain two dimensional ODE model given by

Ȧ =
β

1+ (B/K)n −δA

Ḃ =
β

1+ (A/K)n −δB,
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in which we have assumed for simplifying the analysis that the parameters of the
repression functions are the same for A and B. The number and stability of equi-
libria can be analyzed by performing nullcline analysis since the system is two-
dimensional. Specifically, by settinġA = 0 and Ḃ = 0, we obtain the nullclines
shown in Figure6.3. In the case in which the parameters are the same for both A
and B, the nullcline always intersect in three points, which determine the steady
states of this system. The nullclines partition the plane into six regions. By deter-
mining the sign ofȦ andḂ in each of these six regions, one determines the direction
in which the vector field is pointing in each of these regions (see Figure6.3). From
these directions, one immediately deduces that the steady state for whichA= B is
instable while the other two are stable. This is thus a bistable system. When the
system converges to one steady steady or the other depending on whether the ini-
tial condition is in the region of attraction of one steady state or the other. Once
the system has converged to one of the two steady states, it cannot switch tothe
other unless an external stimulation is applied that moves the initial condition to
the region of attraction of the other steady state [26]. Note that a bistable system,
when subject to noise, can give rise to noise-induced oscillations.

6.4 The repressilator

Elowitz and Leibler [23] constructed the first operational oscillatory genetic circuit
consisting of three repressors arranged in ring fashion, and coined itthe “repres-
silator” (See diagram d) of Figure6.1). The repressilator exhibits sinusoidal, limit
cycle oscillations in periods of hours. The dynamical model of the repressilator
can be obtained by composing three transcriptional modules in a loop fashion. The
dynamics can be written as

ṙA = −δrA+ f1(C)

Ȧ = rA−δA
ṙB = −δrB+ f2(A)

Ḃ = rB−δB
ṙC = −δrC+ f3(B)

Ċ = rC−δC, (6.1)

in which in the original design[23], we had that

f1(p) = f2(p) = f3(p) =
α2

1+ pn .

This structure belongs to the class of cyclic feedback systems that we havestudied
in earlier chapters. In particular, Mallet-Paret and Smith Theorem [49] and Hast-
ings Theorem [36] (see Chapter3 for the details) can be applied to infer that if the



6.4. THE REPRESSILATOR 6-7

system has a unique equilibrium point and this is unstable, then it admits a peri-
odic solution. Therefore, we first determine the number of equilibria and then their
stability. The equilibria of the system can be found by setting the time derivatives
to zero. We thus obtain that

A=
f1(C)
δ2

, B=
f2(A)
δ2

, C =
f3(B)
δ2

,

which combined together yield to

A=
1
δ2

f1

(

1
δ2

f3

(

1
δ2

f2(A)

))

=: g(A).

The solution to this equation determines the set of steady states of the system. The
system will have one steady state ifg′(A) = dg(A)

dA < 0, otherwise, it could have
multiple steady states. Since we have that

sign(g′(A)) = Π3
i=1sign(f ′i (P)),

then if Π3
i=1sign(f ′i (P)) < 0 the system has a unique steady state. We name the

productΠ3
i=1sign(f ′i (P)) loop gain. Thus, any cyclic feedback system with negative

loop gain will have a unique steady state. It can be shown that a cyclic feedback
system with positive loop gain belongs to the class of monotone system and hence
cannot have periodic orbits [49]. In the present case, system6.1is such thatf ′i < 0,
so that the loop gain is negative and there is a unique steady state. We next study
the stability of this steady state by studying the Jacobian of the system.

Denoting byP the steady state value of the protein concentrations for A, B, and
C, the Jacobian of the system is given by

J =





−δ 0 0 0 0 f ′1(P)
1 −δ 0 0 0 0
0 f ′2(P) −δ 0 0 0
0 0 1 −δ 0 0
0 0 0 f ′3(P) −δ 0
0 0 0 0 1 −δ





,

whose characteristic polynomial is given byp(λ)=det(λI−J)= (λ+δ)6−Π3
i=1 f ′i (P).

In the case in whichfi(P) = α2

1+pn for i ∈ {1,2,3}, this characteristic polynomial has
a root with positive real part if the ratioα/δ satisfies the relation

α2/δ2 >
n

√

4/3
n−4/3

(1+
4/3

n−4/3
).

For the proof of this statement, the reader is referred to [19]. This relationship is
plotted in the left plot of Figure6.4. Whenn increases, the existence of an unsta-



6-8 CHAPTER 6. BIOLOGICAL CIRCUIT COMPONENTS

1.4 1.5 1.6 1.7 1.8 1.9 2
0

10

20

30

40

50

60

70

80

90

100

Repressilator (symmetric case)

n

α 
2  / 

 δ
 2

REGION THAT GIVES RISE TO OSCILLATIONS 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

pe
rio

d

δ 

larger δ gives less sensitivity 

Repressilator  (symmetric case)

α=100 

α =10 

Figure 6.4: (Left) Space of parameters that give rise to oscillations for the repressilator in
equations (6.1). (Right) Period as a function ofδ andα.

ble equilibrium point is guaranteed for larger ranges of the other parameter values.
Equivalently, for fixed values ofα andδ, asn increases the robustness of the circuit
oscillatory behavior to parametric variations in the values ofα andδ increases. Of
course, this “behavioral” robustness does not guarantee that other important fea-
tures of the oscillator, such as the period value, are slightly changed whenparam-
eters vary. Numerical studies indicated that the periodT approximatively follows
T ∝ 1

δ
, and varies only little withα (right plot of Figure6.4). From the figure, we

can note that as the value ofδ increases, the sensitivity of the period to the varia-
tion of δ itself decreases. However, increasingδ would necessitate the increase of
the cooperativityn, therefore indicating a possible trade off that should be taken
into account in the design process in order to balance the system complexity and
robustness of the oscillations.

A similar result for the existence of a periodic solution can be obtained for
the non-symmetric case in which the input functions of the three transcriptional
modules are modified to

f1(p) =
α2

3

1+ pn

f2(p) =
α2pn

1+ pn

f3(p) =
α2pn

1+ pn ,

that is, two interactions are activations and one only is a repression. Since the loop
gain is still negative, there is one equilibrium point only. We can thus obtain the
condition for oscillations again by establishing conditions on the parameters that
guarantee that at least one root of the characteristic polynomial?? has positive
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Figure 6.5: Space of parameters that give rise to oscillations for the repressilator (non-
symmetric case).

real part. These conditions are reported in Figure6.5 (see [19] for the detailed
derivations). One can conclude that it is possible to “over design” the circuit to be
in the region of parameter space that gives rise to oscillations. It is also possible
to show that increasing the number of elements in the oscillatory loop, the value
of n sufficient for oscillatory behavior decreases. The design criteria for obtaining
oscillatory behavior are thus summarized in Figures6.4and6.5.

6.5 Activator-repressor clock

Consider the activator-repressor clock diagram shown in Figure6.1 c). The tran-
scriptional module for A has an input function that takes two inputs: an activator
A and a repressor B. The transcriptional module B has an input function that takes
only an activator A as its input. LetrA andrB represent the concentration of m-RNA
of the activator and of the repressor, respectively. LetA andB denote the protein
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Figure 6.6: Shape of the curves in theA,B plane corresponding to ˙rB = 0, Ḃ = 0
and to ˙rA = 0, Ȧ = 0 as function of the parameters. Letting,̄K1 = K1(k1/(δ1δA)),
K̄A0 = KA0(k1/(δ1δA)), K̄2 = K2(k2/(δ2δB)), K̄B0 = KB0(k2/(δ2δB)), we have Am =

K̄1
6γ1

(

1− (cos(φ/3)−
√

3sin(φ/3))
)

, AM =
K̄1
6γ1
+

K̄1
3γ1

cos(φ/3), φ = atan





√

27K̄A0
4γ2

1
(

K̄3
1
γ2
1
−27K̄A0)

K̄3
1

4γ3
1
−27

K̄A0
2γ1





,

m=
√

K̄1A2
m+K̄A0−Am(1+γ1A2

m)
γ2Am

, M =

√

K̄1A2
M+K̄A0−AM(1+γ1A2

M)
γ2AM

.

concentration of the activator and of the repressor, respectively. Then, we consider
the following four-dimensional model describing the rate of change of the species
concentrations:

ṙA = −δ1rA+F1(A,B)

Ȧ = −δAA+k1rA

ṙB = −δ2rB+F2(A)

Ḃ = −δBB+k2rB, (6.2)

in which the functionsF1 andF2 are the input functions and are given by

F1(A,B) =
K1An+KA0

1+γ1An+γ2Bn

F2(A) =
K2An+KB0

1+γ3An .

Two-dimensional analysis.We first assume the mRNA dynamics to be at the
QSS and perform a two dimensional analysis to invoke Poincarè-Bendixson The-
orem. Then, we analyze the four dimensional system and perform a bifurcation
study. We thus denotef1(A,B) := k1

δ1
F1(A,B) and f2(A) := k2

δ2
F2(A) andK̄1 := K1

k1
δ1

,
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K̄A0 :=KA0
k1
δ1

, K̄2 :=K2
k2
δ2

, andK̄B0 :=KB0
k2
δ2

. For simplicity, we also denotef (A,B) :=
−δA+ f1(A,B) andg(A,B) := −δBB+ f2(A) so that the two-dimensional system is
given by

Ȧ = f (A,B)

Ḃ = g(A,B).

For simplicity, we assumem= 1 andγi = 1 for all i. We then study whether the
system admits a periodic solution forn = 1. We analyze the nullclines to deter-
mine the number and location of steady states. Specifically,g(A,B) = 0 leads to
B= K̄2A+K̄B0

(1+A)δA
, which is an increasing function ofA. Setting f (A,B) = 0, we obtain

that B= K̄1A+K̄A0−δAA(1+A)
δAA , which is a monotonically increasing function of A. As

a consequence, we have one equilibrium only. The Jacobian of the system at this
equilibrium is given by

J =





∂ f
∂A

∂ f
∂B

∂g
∂A

∂g
∂B



 .

In order for the equilibrium to be unstable and not a saddle, it is necessary and
sufficient that

Trace(J) > 0 and det(J) > 0,

in which Trace(J) = ∂ f
∂A +

∂g
∂B. Since at the equilibrium point we have that

dB
dA
| f (A,B)=0 < 0

and by the implicit function theoremdB
dA| f (A,B)=0 = −∂ f /∂A

∂ f /∂B, we have that∂ f
∂A < 0

because∂g
∂B < 0. As a consequence, we have that Trace(J) < 0 and hence the equi-

librium point it either stable or a saddle. Furthermore, the nullclines are suchthat

dB
dA
|g(A,B)=0 >

dB
dA
| f (A,B)=0,

and since by the implicit function theorem we also have thatdB
dA|g(A,B)=0 = −∂g/∂A

∂g/∂B,
it follows that det(J) > 0. Hence, the steady state is always stable and therefore, the
omega-limit set of any point on the plane cannot be a periodic orbit.

We now assume thatn = 2. In this case, the nullclinef (A,B) = 0 leads to the
set depicted in Figure6.6for suitable relationships among the values of theK̄’s. In
order for the equilibrium to be unstable and not a saddle, we require that Trace(J)>
0, which leads to

δB

∂ f1/∂A−δA
< 1.

Further, one can verify that the crossing of the nullclines given in Figure6.6 leads
to det(J) > 0 just as in the casen= 1.



6-12 CHAPTER 6. BIOLOGICAL CIRCUIT COMPONENTS

Four-dimensional analysis.Then, we consider the following four-dimensional
model describing the rate of change of the species concentrations:

ṙA = −δ1/ǫ rA+F1(A,B)

Ȧ = ν(−δAA+k1/ǫ rA)

ṙB = −δ2/ǫ rB+F2(A)

Ḃ = −δBB+k2/ǫ rB, (6.3)

in which the parameterν regulates the difference of time-scales between the re-
pressor and the activator dynamics,ǫ is a parameter that regulates the difference of
time-scales between the m-RNA and the protein dynamics. The parameterǫ deter-
mines how close model (6.3) is to a two-dimensional model in which the m-RNA
dynamics are considered at the equilibrium. Thus,ǫ is a singular perturbation pa-
rameter (equations (6.3) can be taken to standard singular perturbation form by
considering the change of variablesrA = rA/ǫ andrB = rB/ǫ). The details on singu-
lar perturbation can be found in Chapter3. The values ofǫ and ofν do not affect the
number of equilibria of the system, while the values of the other parameters arethe
ones that control the number of equilibria. The set of values ofKi ,ki , δi ,γi , δA, δB

that allow the existence of a unique equilibrium can be determined by employing
graphical techniques. In particular, we can plot the curves corresponding to the
sets ofA,B values for which ˙rB = 0 andḂ= 0 and the set ofA,B values for which
ṙA = 0 andȦ = 0 as in Figure6.6. The intersection of these two curves provides
the equilibria of the system and conditions on the parameters can be determined
that guarantee the existence of one equilibrium only. In particular, we require that
the basal activator transcription rate whenB is not present, which is proportional
to K̄A0, is sufficiently smaller than the maximal transcription rate of the activator,
which is proportional toK̄1. Also, K̄A0 must be non-zero. Also, in casēK1 >> K̄A0,
one can verify thatAM ≈ K̄1/2γ1 and thusM ≈ K̄1/2

√
γ1γ2. As a consequence,

if K̄1/γ1 increases then so must dōK2/γ3. Finally, Am ≈ 0, andm≈
√

K̄A0/γ2Am.
As a consequence, the smallerK̄A0 becomes, the smaller̄KB0 must be (see [18] for
more details). Assume that the values ofKi ,ki , δi ,γi , δA, δB have been chosen so that
there is a unique equilibrium and we numerically study the occurrence of periodic
solutions as the difference in time-scales between protein and m-RNA,ǫ, and the
difference in time-scales between activator and repressor,ν, are changed. In partic-
ular, we perform bifurcation analysis withǫ andν the two bifurcation parameters.
These bifurcation results are summarized by Figure6.7. The reader is referred to
[18] for the details of the numerical analysis. In terms of theǫ andν parameters, it
is thus possible to “over design” the system: if the activator dynamics is sufficiently
sped up with respect to the repressor dynamics, the system parameters move across
a Hopf bifurcation (Hopf bifurcation was introduced in Chapter3) and stable oscil-
lations will arise. From a fabrication point of view, the activator dynamics can be
sped up by adding suitable degradation tags to the activator protein. The region of
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Figure 6.7: Design chart for the relaxation oscillator. Oneobtains sustained oscillations
passed the Hopf bifurcation, for values ofν sufficiently large independently of the differ-
ence of time scales between the protein and the mRNA dynamics. We also notice that there
are values ofν for which a stable equilibrium point and a stable orbit coexist and values of
ν for which two stable orbits coexist. The interval ofν values for which two stable orbits
coexist is too small to be able to numerically setν in such an interval. Thus, this interval is
not practically relevant. The values ofν for which a stable equilibrium and a stable periodic
orbit coexist is instead relevant. This situation corresponds to thehard excitationcondition
[47] and occurs for realistic values of the separation of time-scales between protein and
m-RNA dynamics. Therefore, this simple oscillator motif described by a four-dimensional
model can capture the features that lead to the long term suppression of the rhythm by
external inputs.Birhythmicity [30] is also possible even if practically not relevant due to
the numerical difficulty of moving the system to one of the two periodic orbits. For more
details, the reader is referred to [18, 15].

the parameter space in which the system exhibits almost sinusoidal damped oscil-
lations is on the left-hand side of the curve corresponding to the Hopf bifurcation.
Since the data of [7] exhibits almost sinusoidal damped oscillations, it is possible
that the clock is operating in a region of parameter space on the “left” of the curve
corresponding to the Hopf bifurcation. If this were the case, increasingthe separa-
tion of time-scales between the activator and the repressor,ν, may lead to a stable
limit cycle.
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Another key enabling technology has been the development ofin vivomeasure-
ment techniques that allow to measure the amount of protein produced by a target
gene x. For instance, green fluorescent protein (GFP) is a protein with the property
that it fluoresces in green when exposed to UV light. It is produced by thejellyfish
Aequoria victoria, and its gene has been isolated so that it can be used as a reporter
gene. The GFP gene is inserted (cloned) into the chromosome, adjacent to or very
close to the location of gene x, so both are controlled by the same promoter region.
Thus, gene x and GFP are transcribed simultaneously and then translated,so by
measuring the intensity of the GFP light emitted one can estimate how much of x
is being expressed. Other fluorescent proteins, such as yellow fluorescent protein
(YFP) and red fluorescent protein (RFP) are genetic variations of the GFP.

Just as fluorescent proteins can be used as a read out of a circuit, inducers
function as external inputs that can be used to probe the system. Inducers function
by disabling repressor proteins. Repressor proteins bind to the DNA strand and
prevent RNA polymerase from being able to attach to the DNA and synthesize
mRNA. Inducers bind to repressor proteins, causing them to change shape and
making them unable to bind to DNA. Therefore, they allow transcription to take
place.

Inset (Electronic circuits). One of the current directions of the field is to create
circuitry with more complex functionalities by assembling simpler circuits, such
as those in Figure6.1. This tendency is consistent with what has been observed in
the history of electronics: after the bipolar junction transistor (BJT) was invented
in 1947 by William Shockley and co-workers, the transistor era started. A major
breakthrough in the transistor era occurred in 1964 with the invention of thefirst
operational amplifier (op amp), which led the way to standardized modular andin-
tegrated circuit design. By comparison, synthetic biology may be directing toward
a similar development, in which modular and integrated circuit design becomes
a reality. This is witnessed by several recent efforts toward formally characteriz-
ing interconnection mechanisms between modules, impedance-like effects, and op
amp-like devices to counteract impedance problems [35, 63, 62, 20, 61, 66, 65]. ♦

Exercises

6.1 Consider the oscillator design of Stricker et al. [?]. Build a four dimensional
model including mRNA concentration and protein concentration. Then reduce this
fourth order model to a second order model using the QSS approximation for the
mRNA dynamics. Then, investigate the following points:

(a) Use the Poincaré-Bendixson theorem to determine under what conditions the
system in 2D admits a periodic orbit.

(b) Simulate the four dimensional system and the two dimensional system for pa-
rameter values that give oscillations and study how close the trajectories of the 2D
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approximation are to those of the 4D system.

(c) Determine whether the four dimensional system has a Hopf bifurcation (either
analytically or numerically).
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Chapter 7
Interconnecting Components

7.1 Input/Output Modeling and the Modularity Assumption

Each node y of a transcriptional circuitry is usually modeled as an input/output
module taking as input the concentrations of transcription factors that regulate gene
y and giving as output the concentration of protein expressed by gene y, denoted Y.
This is not the only possible choice for delimiting a module: one could in fact let
the messenger RNA (mRNA) or the RNA polymerase flow along the DNA (as sug-
gested by [24]) play the role of input and output signals. The transcription factor
enters as input of the transcriptional module through the binding and unbinding dy-
namics of the transcription factors with the DNA promoter sites upstream of gene
y. The internal dynamics of the transcriptional component is determined by the
transcription and translation dynamics. The processes of transcription and trans-
lation are much slower than the binding dynamics of the transcription factor to
the promoter sites on the DNA [3]. Thus, the binding of the transcription factor to
the DNA promoter site reaches the equilibrium in seconds, while transcription and
translation of the target gene takes minutes to hours. This time scale separation,
a key feature of transcriptional circuits, leads to the following central modeling
simplification.

Modularity assumption. The dynamics of transcription factor/DNA
binding are considered at the equilibrium and each transcription factor
concentration enters the input/output transcriptional module through
static input functions that drive the transcription/translation dynamics
(Figure7.1).

Transcriptional I/O module

Transcription
X

f (X)

YInput Function Translation

Figure 7.1: A transcriptional module is modeled as an input/output component with input
function given by the transcription regulation functionf (X) and with internal dynamics
established by the transcription and translation processes.
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Figure 7.2: The clock behavior can be destroyed by a load. As the number of downstream
binding sites for A,pTOT, is increased in the load, the activator and repressor dynamics
loose their synchronization and ultimately the oscillations disappear.

For engineering a system with prescribed behavior, one has to be able to change
the physical features so as to change the values of the parameters of the model.
This is often possible. For example, the binding affinity (1/K in the Hill function
model) of a transcription factor to its site on the promoter can be affected by single
or multiple base pairs substitutions. The protein decay rate (constantα2 in equation
(2.16)) can be increased by adding degradation tags at the end of the gene express-
ing proteinY (http://parts.mit.edu/registry/index.php/Help:Tag). (Degradation) Tags
are genetic additions to the end of a sequence which modify expressed proteins in
different ways such as marking the protein for faster degradation. Promoters that
can accept multiple input transcription factors (called combinatorial promoters) to
implement regulation functions that take multiple inputs can be realized by com-
bining the operator sites of several simple promoters [?]. For example, the operators
OR1−OR2 from theλ promoter of theλ bacteriophage can be used as binding sites
for theλ transcription factor [58]. Then, the pairOR2−OR1 from the 434 promoter
from the 434 bacteriophage [13] can be placed at the end of theOR1−OR2 sequence
from theλ promoter. Depending on the relative positions of these sites and on their
distance from the RNA polymerase binding site, the 434 transcription factor may
act as a repressor as when this protein is bound to itsOR2−OR1 sites it prevents the
polymerase to bind, while theλ transcription factor may act as an activator.
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7.2 Beyond the Modularity Assumption: Retroactivity

In the previous sections, we have outlined a circuit design process, often used
in synthetic biology, that relies on the interconnection of well characterizedin-
put/output transcriptional modules through suitable static input functions. Exam-
ples of designs performed through this process can be found in Chapter9. It deeply
relies on the modularity assumption, by virtue of which the behavior of the obtained
circuit topology can be directly predicted by the properties of the composingunits.
For example, the monotonicity of the input functions of the transcriptional modules
composing the repressilator have been a key feature to formally show the existence
of periodic solutions. The form of the input functions in the activator-repressor
clock design have been key enablers to easily predict the location and number
of equilibria as the parameters are changed. The modularity assumption implies
that when two modules are connected together, their behavior does not change be-
cause of the interconnection. However, a fundamental systems-engineering issue
that arises when interconnecting subsystems is how the process of transmitting a
signal to a “downstream” component affects the dynamic state of the sending com-
ponent. Indeed, after designing, testing, and characterizing the input/output behav-
ior of an individual component in isolation, it is certainly desirable if its charac-
teristics do not change substantially when another component is connectedto its
output channel. This issue, the effect of “loads” on the output of a system, is well-
understood in many fields of engineering, for example in electrical circuit design.
It has often been pointed out that similar issues arise for biological systems. Alon
states that “modules in engineering, and presumably also in biology, have special
features that make them easily embedded in almost any system. For example, out-
put nodes should have ‘low impedance,’ so that adding on additional downstream
clients should not drain the output to existing clients (up to some limit).” An ex-
tensive review on problems of loads and modularity in signaling networks canbe
found in [64, 65, 66], where the authors propose concrete analogies with similar
problems arising in electrical circuits.

These questions are even more delicate insyntheticbiology. For example, sup-
pose that we have built a timing device, a clock made up of a network of activation
and/or repression interactions among certain genes and proteins, such as theone of
diagram c) of Figure6.1. Next, we want to employ this clock (upstream system) in
order to drive one or more components (downstream systems), by using as itsout-
putsignal the oscillating concentrationA(t) of the activator. From a systems/signals
point of view,A(t) becomes aninput to the second system (Figure7.2). The terms
“upstream” and “downstream” reflect the direction in which we think of signals
as traveling,from the clockto the systems being synchronized. However, this is
only an idealization, because the binding and unbinding of A to promoter sites ina
downstream system competes with the biochemical interactions that constitute the
upstream block (retroactivity) and may therefore disrupt the operation of the clock
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p1

h

h1

f0

p

Figure 7.3: On the left, we represent a tank system that takesas input the constant flowf0
and gives as output the pressurep at the output pipe. On the right, we show a downstream
tank.

itself (Figure7.2). One possible approach to avoid disrupting the behavior of the
clock, motivated by the approach used with reporters such as GFP, is to introduce a
gene coding for a new protein X, placed under the control of the same promoter as
the gene for A, and using the concentration of X, which presumably mirrorsthat of
A, to drive the downstream system. This approach, however, has still theproblem
that the behavior of the X concentration in time may be altered and even disrupted
by the addition of downstream systems that drain X. The net result is still thatthe
downstream systems are not properly timed.

Modeling retroactivity

We broadly call retroactivity the phenomenon by which the behavior of an up-
stream system is changed upon interconnection to a downstream system. Asa sim-
ple example, which may be more familiar to an engineering audience, consider the
one-tank system shown on the left of Figure7.3. We consider a constant input flow
f0 as input to the tank system and the pressurep at the output pipe is considered
the output of the tank system. The corresponding output flow is given byk

√
p,

in which k is a positive constant depending on the geometry of the system. The
pressurep is given by (neglecting the atmospheric pressure for simplicity)p= ρh,
in which h is the height of the water level in the tank andρ is water density. Let
A be the cross section of the tank, then the tank system can be represented by the
equation

A
dp
dt
= ρ f0−ρk

√
p. (7.1)

Let us now connect the output pipe of the same tank to the input pipe of a down-
stream tank shown on the right of Figure7.3. Let p1= ρh1 be the pressure generated
by the downstream tank at its input and output pipes. Then, the flow at the output
of the upstream tank will change and will now be given byg(p, p1) = k

√

|p− p1| if
p> p1 and byg(p, p1) = −k

√

|p− p1| if p≤ p1. As a consequence, the time behav-
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Figure 7.4: A systemS input and output signals. The red signals denote signals originating
by retroactivity upon interconnection.

ior of the pressurep generated at the output pipe of the upstream tank will change
to

A
dp
dt
= ρ f0−ρg(p, p1)

A1
dp1

dt
= ρg(p, p1)−ρk1

√
p1, (7.2)

in which A1 is the cross section of the downstream tank andk1 is a positive param-
eter depending on the geometry of the downstream tank. Thus, the input/output
response of the tank measured in isolation (equation (7.1)) does not stay the same
when the tank is connected through its output pipe to another tank (equation (7.2)).
We will model this phenomenon by a signal that travels from downstream to up-
stream, which we callretroactivity. The amount of such a retroactivity will change
depending on the features of the interconnection and of the downstream system.
For example, if the aperture of the pipe connecting the two tanks is very small
compared to the aperture of an output pipe of the downstream tank, the pressure
p at the output of the upstream tank will not change much when the downstream
tank is connected.

We thus model a system by adding an additional input, calleds, to the system
to model any change in its dynamics that may occur upon interconnection with
a downstream system. Similarly, we add to a system a signalr as another output
to model the fact that when such a system is connected downstream of another
system, it will send upstream a signal that will alter the dynamics of the upstream
system. More generally, we define a systemS to have internal statex, two types
of inputs (I), and two types of outputs (O): an input “u” (I), an output “y” (O), a
retroactivity to the input“ r” (O), and aretroactivity to the output“ s” (I) (Figure
7.4). We will thus represent a systemS by the equations

ẋ= f (x,u, s), y= Y(x,u, s), r = R(x,u, s), (7.3)

in which f ,Y,R are arbitrary functions and the signalsx,u, s, r,y may be scalars
or vectors. In such a formalism, we define the input/output model of the isolated
system as the one in equations (7.3) without r in which we have also sets= 0. Let
Si be a system with inputsui andsi and with outputsyi andr i . Let S1 andS2 be
two systems with disjoint sets of internal states. We define the interconnection of



7-6 CHAPTER 7. INTERCONNECTING COMPONENTS

Downstream transcriptional componentX

x

Z

Transcriptional component

pp0

Figure 7.5: The transcriptional component takes as inputu protein concentrationZ and
gives as outputy protein concentrationX. The transcription factor Z binds to operator sites
on the promoter. The red part belongs to a downstream transcriptional block that takes
protein concentrationX as its input.

an upstream systemS1 with a downstream systemS2 by simply settingy1 = u2 and
s1 = r2. For interconnecting two systems, we require that the two systems do not
have internal states in common.

Retroactivity in gene transcriptional circuits

In the previous section, we have defined retroactivity as a general concept modeling
the fact that when an upstream system is input/output connected to a downstream
one, its dynamic behavior can change. In this section, we focus on transcriptional
circuits and show what form the retroactivity takes.

We denote by X the protein, byX (italics) the average protein concentration,
and by x (lower case) the gene expressing protein X. A transcriptional component
that takes as input protein Z and gives as output protein X is shown in Figure 7.5
in the dashed box. The activity of the promoter controlling gene x depends on the
amount of Z bound to the promoter. IfZ = Z(t), such an activity changes with time.
We denote it byk(t). By neglecting the mRNA dynamics, which are not relevant
for the current discussion, we can write the dynamics ofX as

dX
dt
= k(t)−δX, (7.4)

in whichδ is the decay rate of the protein. We refer to equation (7.4) as the isolated
system dynamics. For the current study, the mRNA dynamics can be neglected
because we focus on how the dynamics ofX changes when we add downstream
systems to which X binds. As a consequence, also the specific form ofk(t) is not
relevant. Now, assume that X drives a downstream transcriptional moduleby bind-
ing to a promoter p with concentrationp (the red part of Figure7.5). The reversible
binding reaction of X with p is given by

X+p ⇋kon
koff

C,

in which C is the complex protein-promoter andkon andkoff are the binding and
dissociation rates of the protein X to the promoter site p. Since the promoter is
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not subject to decay, its total concentrationpTOT is conserved so that we can write
p+C = pTOT. Therefore, the new dynamics ofX is governed by the equations

dX
dt

= k(t)−δX+ koffC−kon(pTOT−C)X , s= koffC−kon(pTOT−C)X

dC
dt

= −koffC+kon(pTOT−C)X, (7.5)

in which the terms in the box represent the signals, that is, the retroactivity to
the output, while the second of equations (7.5) describes the dynamics of the input
stage of the downstream system driven byX. Then, we can interprets as being a
mass flow between the upstream and the downstream system. Whens= 0, the first
of equations (7.5) reduces to the dynamics of the isolated system given in equation
(7.4). Here, we have assumed that X binds directly to the promoter p. The case
in which a signal molecule is needed to transform X to the active form that then
binds to p, can be treated in a similar way by considering the additional reversible
reaction of X binding to the signal molecule. The end result of adding this reaction
is the one of having similar terms in the box of equation (7.5) involving also the
signaling molecule concentration.

How large is the effect of the retroactivity s on the dynamics of X and what are
the biological parameters that affect it? We focus on the retroactivity to the out-
put s. We can analyze the effect of the retroactivity to the inputr on the upstream
system by simply analyzing the dynamics ofZ in the presence of its binding sites
p0 in Figure 7.5 in a way similar to how we analyze the dynamics ofX in the
presence of the downstream binding sites p. The effect of the retroactivitys on the
behavior ofX can be very large (Figure7.6). This is undesirable in a number of
situations in which we would like an upstream system to “drive” a downstreamone
as is the case, for example, when a biological oscillator has to time a number of
downstream processes. If, due to the retroactivity, the output signal of the upstream
process becomes too low and/or out of phase with the output signal of the isolated
system (as in Figure7.6), the coordination between the oscillator and the down-
stream processes will be lost. We next propose a procedure to obtain anoperative
quantification of the effect of the retroactivity on the dynamics of the upstream
system.

Quantification of the retroactivity to the output

In this section, we propose a general approach for providing an operative quantifi-
cation of the retroactivity to the output on the dynamics of the upstream system.

This approach can be generally applied whenever there is a separation of time-
scales between the dynamics of the output of the upstream module and the dynam-
ics of the input stage of the downstream module. This separation of time-scales is
always encountered in transcriptional circuits. In fact, the dynamics of the input
stage of a downstream system is governed by the reversible binding reaction of the
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Figure 7.6: The dramatic effect of interconnection. Simulation results for the system in
equations (7.5). The green plot (solid line) representsX(t) originating by equations (7.4),
while the blue plot (dashed line) representsX(t) obtained by equation (7.5). Both transient
and permanent behaviors are different. Here,k(t) = 0.01(1+ sin(ωt)) with ω = 0.005 in the
left side plots andω = 0 in the right side plots,kon = 10, koff = 10, δ = 0.01, pTOT = 100,
X(0) = 5. The choice of protein decay rate (inmin−1) corresponds to a half life of about
one hour. The frequency of oscillations is chosen to have a period of about 12 times the
protein half life in accordance to what is experimentally observed in the synthetic clock of
[7].

transcription factor with the operator sites. These reactions are often on the time
scales of a second and thus are fast compared to the time scales of transcription
and translation (often of several minutes) [3]. These determine, in turn, the dynam-
ics of the output of a transcriptional module. Such a separation of time-scales is
encountered even when we extend a transcriptional network to include asintercon-
nection mechanisms between transcriptional modules protein-protein interactions
(often with a subsecond timescale [69]), as encountered in signal transduction net-
works.

We quantify the difference between the dynamics ofX in the isolated system
(equation (7.4)) and the dynamics ofX in the connected system (equations (7.5))
by establishing conditions on the biological parameters that make the two dynam-
ics close to each other. This is achieved by exploiting the difference of time scales
between the protein production and decay processes and its binding and unbinding
process to the promoter p. By virtue of this separation of time scales, we can ap-
proximate system (7.5) by a one dimensional system describing the evolution ofX
on the slow manifold [46]. This reduced system takes the form:

dX̄
dt
= k(t)−δX̄+ s̄,

whereX̄ is an approximation ofX and s̄ is an approximation ofs, which can be
written ass̄= −R(X̄)(k(t)− δX̄). If R(X̄) is zero, then also ¯s= 0 and the dynamics
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of X̄ becomes the same as the one of the isolated system (7.4). SinceX̄ approxi-
matesX, the dynamics ofX in the full system (7.5) is also close to the dynamics
of the isolated system (7.4) wheneverR(X̄) = 0. The factorR(X̄) provides then a
measure of the retroactivity on the dynamics ofX. It is also computable as a func-
tion of measurable biochemical parameters and of the signalX traveling across the
interconnection, as we next illustrate.

Consider again the full system in equations (7.5), in which the binding and
unbinding dynamics is much faster than protein production and decay, that is, koff≫
k(t), koff ≫ δ [3], and kon = koff/kd with kd = O(1). Even if the second equation
goes to equilibrium very fast compared to the first one, the above system isnot in
“standard singular perturbation form” [46]. To explicitly model the difference in
time scales between the two equations of system (7.5), we introduce a parameterǫ,
which we define asǫ = δ/koff. Sincekoff≫ δ, we also have thatǫ ≪ 1. Substituting
koff = δ/ǫ, kon= δ/(ǫkd), and lettingy= X+C (the total protein concentration), we
obtain the system in singular perturbation form

dy
dt
= k(t)−δ(y−C)

ǫ
dC
dt

= −δC+ δ

kd
(pTOT−C)(y−C). (7.6)

This means, as some authors proposed [?], that y (total concentration of protein)
is the slow variable of the system (7.5) as opposed toX (concentration of free
protein). We can then obtain an approximation of the dynamics ofX in the limit
in which ǫ is very small, by settingǫ = 0. This leads to (see [20] for details) the
approximatedX dynamics

dX̄
dt
= k(t)−δX̄− (k(t)−δX̄)

dγ(ȳ)
dȳ

. (7.7)

The smallerǫ, the better is the approximation. SincēX well approximatesX for ǫ
small, conditions for which the dynamics of equation (7.7) is close to the dynamics
of the isolated system (7.4) also guarantee that the dynamics ofX given in system
(7.5) is close to the dynamics of the isolated system.

The difference between the dynamics in equation (7.7) (the connected system
after a fast transient) and the dynamics in equation (7.4) (the isolated system) is
zero when the termdγ(ȳ)

dȳ in equation (7.7) is also zero. We thus consider the factor
dγ(ȳ)

dȳ as a quantification of the retroactivitysafter a fast transient in the approxima-

tion in whichǫ ≈ 0. We can also interpret the factordγ(ȳ)
dȳ as a percentage variation

of the dynamics of the connected system with respect to the dynamics of the iso-
lated system at the quasi steady state. We next determine the physical meaning of
such a factor by calculating a more useful expression that is a function ofkey bio-
chemical parameters. By using the implicit function theorem, one can compute the
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following expression fordγ(ȳ)
dȳ :

dγ(ȳ)
dȳ
=

1

1+ (1+X̄/kd)2

pTOT/kd

=: R(X̄), (7.8)

in which one can verify thatR(X̄) < 1 (see [20] for details). The expressionR(X̄)
quantifies the retroactivity to the output on the dynamics ofX after a fast transient,
when we approximateX with X̄ in the limit in whichǫ ≈ 0. The retroactivity mea-
sure is thus low if the affinity of the binding sites p is small (kd large) or if the
signalX(t) is large enough compared topTOT. Thus, the expression ofR(X̄) pro-
vides an operative quantification of the retroactivity: such an expression can in fact
be evaluated once the association and dissociation constants of X to p are known,
the concentration of the binding sitespTOT is known, and the range of operation of
the signalX̄(t) that travels across the interconnection is also known.

Therefore, the modularity assumption introduced in Section7.1 holds if the
value ofR(X̄) is low enough. As a consequence, the design of a simple circuit
motif such as the ones of Figure6.1can assume modularity if the interconnections
among the composing modules can be designed so that the value ofR(X̄) as given
in expression (7.8) is low.

7.3 Insulation Devices to Enforce Modularity

Of course, it is not always possible to design an interconnection such that the
retroactivity is low. This is, for example, the case of an oscillator that has to time
a downstream load: the load cannot be in general designed and the oscillator must
perform well in the face of unknown and possibly variable load properties (Figure
7.2). Therefore, in analogy to what is performed in electrical circuits, one can de-
sign a device to be placed between the oscillator and the load so that the device
output is not changed by the load and the device does not affect the behavior of the
upstream oscillator. Specifically, consider a systemS as the one shown in Figure
7.4 that takesu as input and givesy as output. We would like to design it in such
a way that (a) the retroactivityr to the input is very small; (b) the effect of the
retroactivity s to the output on the internal dynamics of the system is very small
independently ofs itself; (c) its input/output relationship is about linear. Such a
system is said to enjoy theinsulation property and will be called an insulation
component or insulation device. Indeed, such a system will not affect an upstream
system becauser ≈ 0 and it will keep the same output signaly independentlyof
any connected downstream system. In electronics, amplifiers enjoy the insulation
property by virtue of the features of the operational amplifier (op amp) thatthey
employ [68] (Figure7.7).

The concept of amplifier in the context of a biochemical network has been
considered before in relation to its robustness and insulation property from ex-
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Figure 7.7: In diagram (a), we show the basic non-inverting amplifier circuit that is com-
posed of the op amp plus a feedback circuit. The op amp is the triangular shape that takes
as input the differential voltageV+ −V− and gives as (open) outputVout = A(V+ −V−), in
which the gainA is infinity in the ideal op amp. The blue circuit components represent
the feedback circuit, while the red component is the load. Letting K = R1/(R1+R2), direct
computation leads toVout→ V+/K asA→∞. That is, the output voltage does not depend
on the load: the retroactivity to the output is almost completely attenuated. In diagram (b),
we zoom inside the op amp to show the abstraction of its internal structure. In an ideal
op amp,Ri =∞ so that it absorbs almost zero current and any upstream voltage generator
will not experience a voltage drop at its output terminals upon interconnection with the
amplifier. That is, the retroactivity to the input of the amplifier is almost zero.

ternal disturbances ([66] and [65]). Here, we revisit the amplifier mechanism in the
context of gene transcriptional networks with the objective of mathematically and
computationally proving how suitable biochemical realizations of such a mecha-
nism can attain properties (a), (b), and (c).

Retroactivity to the input

In electronic amplifiers,r is very small because the input stage of an op amp ab-
sorbs almost zero current (Figure7.7). This way, there is no voltage drop across
the output impedance of an upstream voltage source. Equation (7.8) quantifies the
effect of retroactivity on the dynamics ofX as a function of biochemical param-
eters that characterize the interconnection mechanism with a downstream system.
These parameters are the affinity of the binding site 1/kd, the total concentration
of such binding sitepTOT, and the level of the signalX(t). Therefore, to reduce
the retroactivity, we can choose parameters such that (7.8) is small. A sufficient
condition is to choosekd large (low affinity) and pTOT small, for example. Hav-
ing small value ofpTOT and/or low affinity implies that there is a small “flow” of
protein X toward its target sites. Thus, we can say that a low retroactivity to the
input is obtained when the “input flow” to the system is small. This interpretation
establishes a nice analogy to the electrical case, in which low retroactivity to the
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Figure 7.8: Diagram (a) shows the basic feedback/amplification mechanism by which am-
plifiers attenuate the effect of the retroactivity to the outputs. Diagram (b) shows an alter-
native representation of the same mechanism of diagram (a),which will be employed to
design biological insulation devices.

input is obtained, as explained above, by a low input current. Such an interpretation
can be further carried to the hydraulic example. In such an example, if the input
flow to the downstream tank is small compared, for example, to the output flow of
the downstream tank, the output pressure of the upstream tank will not beaffected
by the connection. Therefore, the retroactivity to the input of the downstream tank
will be small.

Retroactivity to the output

In electronic amplifiers, the effect of the retroactivity to the outputs on the ampli-
fier behavior is reduced to almost zero by virtue of a large (theoretically infinite)
amplification gain of the op amp and an equally large negative feedback mechanism
that regulates the output voltage (Figure7.7). Genetic realization of amplifiers have
been previously proposed (see [61], for example). However, such realizations fo-
cus mainly on trying to reproduce the layout of the device instead of implementing
the fundamental mechanism that allows it to properly work as an insulator. Such
a mechanism can be illustrated in its simplest form by diagram (a) of Figure7.8,
which is very well known to control engineers. For simplicity, we have assumed in
such a diagram that the retroactivitys is just an additive disturbance. The reason
why for large gainsG the effect of the retroactivitys to the output is negligible can
be verified through the following simple computation. The outputy is given by

y=G(u−Ky)+ s,

which leads to

y= u
G

1+KG
+

s
1+KG

.

As G grows,y tends tou/K, which is independent of the retroactivitys.
Therefore, a central enabler to attenuate the retroactivity effect at the output of

a component is to (1) amplify through a large gain the input of the component and
(2) to apply a large negative output feedback. We next illustrate this general idea in
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Figure 7.9: We amplify the input flowf0 through a large gainG and we apply a large
negative feedback by employing a large output pipe with output flow G′

√
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the context of a simple hydraulic system.

Hydraulic example.Consider the academic hydraulic example consisting of two
connected tanks shown in Figure7.9. The objective is to attenuate the effect of the
pressure applied from the downstream tank to the upstream tank, so that the output
pressure of the upstream system does not change when the downstream tank is
connected. We let the input flowf0 be amplified by a large factorG. Also, we
consider a large pipe in the upstream tank with output flowG′

√
p, with G′ ≫ k

andG′ ≫ k1. Let p be the pressure at the output pipe of the upstream tank andp1

the pressure at the bottom of the downstream tank. One can verify that theonly
equilibrium value for the pressurep at the output pipe of the upstream tank is
obtained forp> p1 and it is given by

peq=





G f0

G′+ (kk1)/
√

k2
1+k2





2

.

If we let G′ be sufficiently larger thank1 andk and we letG′ = KG for some pos-
itive K =O(1), then forG sufficiently largepeq≈ ( f0/K)2, which does not depend
on the presence of the downstream system. In fact, it is the same as the equilibrium
value of the isolated upstream systemAdp

dt = ρG f0− ρG′
√

p− ρk
√

p for G suffi-
ciently large and forG′ = KG with K =O(1).

Coming back to the transcriptional example, consider the approximated dynam-
ics of equation (7.7) for X. Let us thus assume that we can apply a gainG to the
input k(t) and a negative feedback gainG′ to X with G′ = KG. This leads to the
new differential equation for the connected system (7.7) given by

dX
dt
=

(

Gk(t)− (G′+δ)X
)

(1−d(t)), (7.9)

in which we have definedd(t) := dγ(y)
dy , wherey(t) is given by the reduced system

dy
dt =Gk(t)− (G′ + δ)(y−γ(y)). It can be shown (see [71] for details) that asG and
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thus asG′ grow, the signalX(t) generated by the connected system (7.9) becomes
close to the solutionX(t) of the isolated system

dX
dt
=Gk(t)− (G′+δ)X, (7.10)

that is, the presence of the disturbance termd(t) will not significantly affect the time
behavior ofX(t). Sinced(t) is a measure of the retroactivity effect on the dynamics
of X, such an effect is thus attenuated by employing large gainsG andG′. How
can we obtain a large amplification gain G and a large negative feedback G′ in
a biological insulation component?This question is addressed in the following
chapter, in which we show two possible realizations of insulation devices.

7.4 Design of genetic circuits under the modularity assumption

Based on the modeling assumptions introduced in Chapter2 and on the tools for
studying the dynamics of a nonlinear system introduced in Chapter3, a number
of synthetic genetic circuits have been designed and fabricated by composing tran-
scriptional modules through input/output connection (Figure6.1). Through such
a design procedure one seeks to predict the behavior of a circuit by thebehavior
of the composing units, once these have been well characterized in isolation. This
approach is standard also in the design and fabrication of electronic circuitry.

7.5 Biological realizations of an insulation component

In the previous section, we have proposed a general mechanism in order to create
an insulation component. In particular, we have specified how one can alterthe bio-
logical features of the interconnection mechanism in order to have low retroactivity
to the inputr and we have shown a general method to attenuate the retroactivity
to the outputs. Such a method consists of a large amplification of the input and a
large negative output feedback. The insulation component will be inserted in place
of the transcriptional component of Figure7.5. This will guarantee that the sys-
tem generating Z, an oscillator, for example, will maintain the same behavior as
in isolation and also that the downstream system that acceptsX as its input will
not alter the behavior ofX. The net result of this is that the oscillator generating
signalZ will be able to time downstream systems with the desired phase and ampli-
tude independently of the number and the features of downstream systems.In this
section, we determine two possible biological mechanisms that can be exploited
to obtain a large amplification gain to the inputZ of the insulation component
and a large negative feedback on the outputX of the insulation component. Both
mechanisms realize the negative feedback through enhanced degradation. The first
design realizes amplification through transcriptional activation, while the second
design through phosphorylation of a protein that is in abundance in the system.
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Figure 7.10: We highlight in blue the parts that Design 1 affects. In particular, a negative
feedback occurring through post-translational regulation and a promoter that produces a
large signal amplification are the central parts of this design. The red part indicates the
downstream component that takes as input the concentrationof protein X.

Design 1: Amplification through transcriptional activatio n

In this design, we obtain a large amplification of the input signalZ(t) by having
promoter p0 (to which Z binds) be a strong, non leaky, promoter. The negative
feedback mechanism onX relies on enhanced degradation of X. Since this must
be large, one possible way to obtain an enhanced degradation for X is to have a
protease, called Y, be expressed by a strong constitutive promoter. Theprotease Y
will cause a degradation rate for X, which is larger if Y is more abundant in the
system. This design is schematically shown in Figure7.10.

In order to investigate whether such a design realizes a large amplification and
a large negative feedback onX as needed, we analyze the full input/output model
for the block in the dashed box of Figure7.10. In particular, the expression of
gene x is assumed to be a two-step process, which incorporates also the mRNA
dynamics. Incorporating these dynamics in the model is relevant for the current
study because they may contribute to an undesired delay between theZ and X
signals. The reaction of the protease Y with protein X is modeled as the two-step
reaction

X +Y⇋η1
η2 W→β Y,

which can be found in standard references (see [?], for example). The input/output
system model of the insulation component that takesZ as an input and givesX as
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an output is given by the following equations

dZ
dt

= k(t)−δZ+ k−Zp−k+Z(p0,TOT−Zp) (7.11)

dZp

dt
= k+Z(p0,TOT−Zp)−k−Zp (7.12)

dmX

dt
= GZp−δ1mX (7.13)

dX
dt

= νmX−η1YX+η2W−δ2X+ koffC−konX(pTOT−C) (7.14)

dW
dt

= η1XY−η2W−βW (7.15)

dY
dt

= −η1YX+βW+αG−γY+η2W (7.16)

dC
dt

= −koffC+konX(pTOT−C), (7.17)

in which we have assumed that the expression of gene z is controlled by a promoter
with activity k(t). These equations will be studied numerically and analyzed math-
ematically in a simplified form. The variableZp is the concentration of protein Z
bound to the promoter controlling gene x,p0,TOT is the total concentration of the
promoter p0 controlling gene x,mX is the concentration of messenger RNA of X,C
is the concentration of X bound to the downstream binding sites with total concen-
trationpTOT, γ is the decay rate of the protease Y. The value ofG is the production
rate of X mRNA per unit concentration of Z bound to the promoter controlling x;
the promoter controlling gene y has strengthαG, for some constantα, and it has
the same order of magnitude strength as the promoter controlling x. The terms in
the box in equation (7.11) represent the retroactivityr to the input of the insulation
component in Figure7.10. The terms in the box in equation (7.14) represent the
retroactivity s to the output of the insulation component of Figure7.10. The dy-
namics of equations (7.11)–(7.17) without s (the elements in the box in equation
(7.14)) describe the dynamics ofX with no downstream system.

We mathematically explain why system (7.11)–(7.17) allows to attenuate the
effect of s on theX dynamics. Equations (7.11) and (7.12) simply determine the
signalZp(t) that is the input to equations (7.13)–(7.17). For the discussion regarding
the attenuation of the effect of s, it is not relevant what the specific form of signal
Zp(t) is. Let thenZp(t) be any bounded signalv(t). Since equation (7.13) takesv(t)
as an input, we will have thatmX =Gv̄(t), for a suitable signal ¯v(t). Let us assume
for the sake of simplifying the analysis that the protease reaction is a one step
reaction, that is, X+Y→β Y. Therefore, equation (7.16) simplifies todY

dt = αG−γY
and equation (7.14) simplifies todX

dt = νmX−βYX− δ2X+koffC−konX(pTOT−C).
If we consider the protease to be at its equilibrium, we have thatY(t) = αG/γ. As a
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consequence, theX dynamics becomes

dX
dt
= νGv̄(t)− (βαG/γ+δ2)X+ koffC−konX(pTOT−C) ,

with C determined by equation (7.17). By using the same singular perturbation
argument employed in the previous section, we obtain that the dynamics ofX will
be after a fast transient approximatively given by

dX
dt
= (νGv̄(t)− (βαG/γ+δ2)X)(1−d(t)), (7.18)

in which 0< d(t) < 1 is the effect of the retroactivitys. Then, asG increases,X(t)
becomes closer to the solution of the isolated system

dX
dt
= νGv̄(t)− (βαG/γ+δ2)X,

as explained in Section7.31.
We now turn to the question of minimizing the retroactivity to the inputr be-

cause its effect can alter the input signalZ(t). In order to decreaser, we guarantee
that the retroactivity measure given in equation (??) is small. This is seen to be true
if ( k̄d +Z)2/(p0,TOTk̄d) is very large, in which 1/k̄d = k+/k− is the affinity of the
binding site p0 to Z. Since after a short transient,Zp = (p0,TOTZ)/(k̄d+Z), for Zp

not to be a distorted version ofZ, it is enough to ask that̄kd≫ Z. This, combined
with the requirement that (̄kd+Z)2/(p0,TOTk̄d) is very large, leads to the require-
mentp0,TOT/k̄d≪ 1. Summarizing, for not having distortion effects betweenZ and
Zp and small retroactivityr, we need that

k̄d≫ Z andp0,TOT/k̄d≪ 1. (7.19)

Simulation results. Simulation results are presented for the insulation system of
equations (7.11)–(7.17) as the mathematical analysis of such a system is only
valid under the approximation that the protease reaction is a one step reaction.
In all simulations, we consider protein decay rates to be 0.01min−1 to obtain a
protein half life of about one hour. We consider always a periodic forcing k(t) =
0.01(1+ sin(ωt)), in which we assume that such a periodic signal has been gener-
ated by a synthetic biological oscillator. Therefore, the oscillating signals are cho-
sen to have a period that is about 12 times the protein half life in accordance towhat
is experimentally observed in the synthetic clock of [7]. All simulation results were
obtained by using MATLAB (Simulink), with variable step ODE solver ODE23s.
For large gains (G= 1000,G= 100), the performance considerably improves com-
pared to the case in whichX was generated by a plain transcriptional component
acceptingZ as an input (Figure7.6). For lower gains (G = 10,G = 1), the perfor-
mance starts to degrade forG = 10 and becomes not acceptable forG = 1 (Figure

1See the supplementary material for the mathematical details.
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Figure 7.11: Design 1: results for different gainsG. In all plots, red (dotted line) is the
inputZ to the insulation device, green (solid line) is the outputX of the insulation device in
isolation (without the downstream binding sites p), blue (dashed line) is the outputX of the
insulation device when downstream sites p are present. In all plots,k(t) = 0.01(1+ sin(ωt)),
pTOT = 100,koff = kon = 10,δ = 0.01, andω = 0.005. The parameter values areδ1 = 0.01,
p0,TOT = 1, η1 = η2 = β = γ = 0.01, k− = 200, k+ = 10, α = 0.1, δ2 = 0.1, ν = 0.1, and
G = 1000,100,10,1. The retroactivity to the output is not well attenuated forvalues of the
gainG = 1 and the attenuation capability begins to worsen forG = 10.

7.11). Since we can viewG as the number of transcripts produced per unit time
(one minute) per complex of protein Z bound to promoter p0, valuesG= 100,1000
may be difficult to realizein vivo, while the valuesG = 10,1 could be more easily
realized. The values of the parameters chosen in Figure7.11are such that̄kd≫ Z
and p0,TOT≪ k̄d. This is enough to guarantee that there is small retroactivityr to
the input of the insulation device independently of the value of the gainG, accord-
ing to relations (7.19). The poorer performance of the device forG= 1 is therefore
entirely due to poor attenuation of the retroactivitys to the output.

Design 2: Amplification through phosphorylation

In this design, the amplification ofZ is obtained by havingZ activate the phos-
phorylation of a protein X, which is available in the system in abundance. That is,
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p

Insulation component

Z

X

Y

Xp

Figure 7.12: The dashed box contains the insulation device.The blue parts highlight the
mechanism that provides negative feedback and amplification. Negative feedback occurs
through a phosphatase Y that converts the active formXp back to its inactive formX.
Amplification occurs through Z activating the phosphorylation of X.

Z is a kinase for a protein X. The phosphorylated form of X, called Xp, binds to
the downstream sites, while X does not. A negative feedback onXp is obtained by
having a phosphatase Y activate the dephosphorylation of protein Xp. Protein Y is
also available in abundance in the system. This mechanism is depicted in Figure
7.12. A similar design has been proposed by [66, 65], in which a MAPK cascade
plus a negative feedback loop that spans the length of the MAPK cascadeis con-
sidered as a feedback amplifier. Our design is much simpler as it involves only
one phosphorylation cycle and does not require the additional feedback loop. In
fact, we realize a strong negative feedback by the action of the phosphatase that
converts the active protein form Xp to its inactive form X. This negative feedback,
whose strength can be tuned by varying the amount of phosphatase in the system,
is enough to mathematically and computationally show that the desired insulation
properties are satisfied.

We consider two different models for the phosphorylation and dephosphoryla-
tion processes. A one step reaction model is initially considered to illustrate what
biochemical parameters realize the input gainG and the negative feedbackG′.
Then, we turn to a more realistic two step model to perform a parametric analysis
and numerical simulation. The one step model that we consider is the one of [37]:

Z+X→k1Z+Xp,

and
Y +Xp→k2Y +X.

We assume that there is plenty of protein X and of phosphatase Y in the systemand
that these quantities are conserved. The conservation of X givesX+Xp+C= XTOT,
in which X is the inactive protein, Xp is the phosphorylated protein that binds to
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the downstream sites p, and C is the complex of the phosphorylated protein Xp

bound to the promoter p. TheXp dynamics can be described by the first equation
in the following model

dXp

dt
= k1XTOTZ(t)

(

1−
Xp

XTOT
− C

XTOT

)

−k2YXp+ koffC−konXp(pTOT−C)

(7.20)

dC
dt
= −koffC+konXp(pTOT−C). (7.21)

The boxed terms represent the retroactivitys to the output of the insulation system
of Figure7.12. For a weakly activated pathway ([37]), Xp ≪ XTOT. Also, if we
assume that the concentration of total X is large compared to the concentrationof
the downstream binding sites, that is,XTOT≫ pTOT, equation (7.20) is approxima-
tively equal to

dXp

dt
= k1XTOTZ(t)−k2YXp+koffC−konXp(pTOT−C).

DenoteG = k1XTOT andG′ = k2Y. Exploiting again the difference of time scales
between theXp dynamics and theC dynamics, after a fast initial transient, the
dynamics ofXp can be well approximated by

dXp

dt
= (GZ(t)−G′Xp)(1−d(t)), (7.22)

in which 0< d(t) < 1 is the effect of the retroactivitys to the output after a short
transient. Therefore, forG andG′ large enough,Xp(t) tends to the solutionXp(t)

of the isolated system
dXp

dt =GZ(t)−G′Xp, as explained in Section7.32. As a con-
sequence, the effect of the retroactivity to the outputs is attenuated by increasing
k1XTOT and k2Y enough. That is, to obtain large input and feedback gains, one
should have large phosphorylation/dephosphorylation rates and/or a large amount
of protein X and phosphatase Y in the system. This reveals that the values ofthe
phosphorylation/dephosphorylation rates cover an important role toward the real-
ization of the insulation property of the module of Figure7.12.

We next consider a more complex model for the phosphorylation and dephos-
phorylation reactions and perform a parametric analysis to highlight the rolesof
the various parameters for attaining the insulation properties. In particular,we con-
sider a two-step reaction model such as those in [38]. According to this model,
we have the following two reactions for phosphorylation and dephosphorylation,
respectively:

X +Z⇋β1
β2

C1→k1 Xp+Z, (7.23)

2See the supplementary material for the mathematical details.
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and
Y +Xp⇋

α1
α2

C2→k2 X +Y, (7.24)

in which C1 is the [protein X/kinase Z] complex and C2 is the [phosphatase Y/protein
Xp] complex. Additionally, we have the conservation equationsYTOT=Y+C2, XTOT=

X+Xp+C1+C2+C, because proteins X and Y are not degraded. Therefore, the
differential equations modeling the insulation system of Figure7.12become

dZ
dt
= k(t)−δZ −β1ZXTOT(1− Xp

XTOT
− C1

XTOT
− C2

XTOT
− C

XTOT
)+ (β2+k1)C1

(7.25)

dC1

dt
= −(β2+k1)C1+β1ZXTOT(1−

Xp

XTOT
− C1

XTOT
− C2

XTOT
− C

XTOT
) (7.26)

dC2

dt
= −(k2+α2)C2+α1YTOTXp(1− C2

YTOT
) (7.27)

dXp

dt
= k1C1+α2C2−α1YTOTXp(1− C2

YTOT
)+ koffC−konXp(pTOT−C) (7.28)

dC
dt
= −koffC+konXp(pTOT−C), (7.29)

in which the expression of gene z is controlled by a promoter with activityk(t).
The terms in the large box in equation (7.25) represent the retroactivityr to the
input, while the terms in the small box in equation (7.25) and in the boxes of
equations (7.26) and (7.28) represent the retroactivitys to the output. We assume
that XTOT≫ pTOT so that in equations (7.25) and (7.26) we can neglect the term
C/XTOT becauseC < pTOT. Also, phosphorylation and dephosphorylation reac-
tions in equations (7.23) and (7.24) can occur at a much faster rate (on the time
scale of a second [45]) than protein production and decay processes (on the time
scale of minutes [3]). ChoosingXTOT andYTOT sufficiently large, the separation
of time-scales between equation (7.25) and equations (7.26–7.29) can be explic-
itly modeled by lettingǫ = δ/koff, kon = koff/kd, and by defining the new rate con-
stantsb1 = β1XTOTǫ/δ, a1 = α1YTOTǫ/δ, b2 = β2ǫ/δ, a2 = α2ǫ/δ, ci = ǫki/δ. Letting
z= Z+C1 (the total amount of kinase) be the slow variable, we obtain the system
in the standard singular perturbation form

dz
dt
= k(t)−δ(z−C1)

ǫ
dC1

dt
= −δ(b2+c1)C1+δb1(z−C1)(1−

Xp

XTOT
− C1

XTOT
− C2

XTOT
)

ǫ
dC2

dt
= −δ(c2+a2)C2+δa1Xp(1− C2

YTOT
)

ǫ
dXp

dt
= δc1C1+δa2C2−δa1Xp(1− C2

YTOT
)+ δC−δ/kd(pTOT−C)Xp

ǫ
dC
dt

= −δC+δ/kd(pTOT−C)Xp, (7.30)
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in which the boxed terms represent the retroactivity to the outputs. We then com-
pute the dynamics on the slow manifold by lettingǫ = 0. When we setǫ = 0, the
terms due to the retroactivitys vanish. This means that if the internal dynamics of
the insulation device evolve on a time scale that is much faster than the dynamics
of the input signalZ, then (provided we also haveXTOT≫ pTOT) the retroactivitys
to the output has no effect on the dynamics ofXp at the quasi steady state. This is a
crucial feature of this design. Lettingγ = (β2+k1)/β1 andγ̄ = (α2+k2)/α1, setting
ǫ = 0 in the third and fourth equations of (7.30) the following relationships can be
obtained:

C1 = F1(Xp) =

XpYTOTk2

γ̄k1

1+Xp/γ̄
, C2 = F2(Xp) =

XpYTOT

γ̄

1+Xp/γ̄
. (7.31)

Using expressions (7.31) in the second of equations (7.30) with ǫ = 0 leads to

F1(Xp)(b2+c1+
b1Z

XTOT
) = b1Z(1−

Xp

XTOT
−

F2(Xp)

XTOT
). (7.32)

Assuming for simplicity thatXp ≪ γ̄, we obtain thatF1(Xp) ≈ XpYTOTk2

γ̄k1
and that

F2(Xp) ≈ Xp

γ̄
YTOT. As a consequence of these simplifications, equation (7.32) leads

to

Xp =
b1Z

b1Z
XTOT

(1+YTOT/γ̄+ (YTOTk2)/(γ̄k1))+ YTOTk2
γ̄k1

(b2+c1)
:=m(Z).

In order not to have distortion fromZ to Xp, we require that

Z≪
YTOT

k2
k1

γ

γ̄

1+ YTOT
γ̄
+

YTOT
γ̄

k2
k1

, (7.33)

so thatm(Z)≈ Z XTOTγ̄k1
YTOTγk2

and therefore we have a linear relationship betweenXp and

Z with gain fromZ to Xp given by XTOTγ̄k1
YTOTγk2

. In order not to have attenuation fromZ
to Xp we require that the gain is greater than or equal to one, that is,

input/output gain≈ XTOTγ̄k1

YTOTγk2
≥ 1. (7.34)

Requirements (7.33), (7.34), andXp≪ γ̄ are enough to guarantee that we do not
have nonlinear distortion betweenZ and Xp and thatXp is not attenuated with
respect toZ. In order to guarantee that the retroactivityr to the input is sufficiently
small, we need to quantify the retroactivity effect on theZ dynamics due to the
binding of Z with X. To achieve this, we proceed as in Section7.2 by computing
the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics ofZ if ǫ ≈ 0. Such a dynamics is given by

dZ
dt
= (k(t)−δZ)

(

1− dF1

dXp

dXp

dz

)

,
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in which dF1
dXp

dXp

dz measures the effect of the retroactivityr to the input on theZ

dynamics. Direct computation ofdF1
dXp

and of
dXp

dz along withXp≪ γ̄ and with (7.33)

leads todF1
dXp

dXp

dz ≈ XTOT/γ, so that in order to have small retroactivity to the input,
we require that

XTOT

γ
≪ 1. (7.35)

Concluding, for having attenuation of the effect of the retroactivity to the output
s, we require that the time scale of the phosphorylation/dephosphorylation reac-
tions is much faster than the production and decay processes of Z (the input to
the insulation device) and thatXTOT≫ pTOT, that is, the total amount of protein
X is in abundance compared to the downstream binding sites p. To obtain also a
small effect of the retroactivity to the input, we require thatγ ≫ XTOT as estab-
lished by relation (7.35). This is satisfied if, for example, kinase Z has low affinity
to binding with X. To keep the input/output gain betweenZ andXp close to one
(from equation (7.34)), one can chooseXTOT =YTOT, and equal coefficients for the
phosphorylation and dephosphorylation reactions, that is,γ = γ̄ andk1 = k2.

Simulation results. System in equations (7.25–7.29) was simulated with and
without the downstream binding sites p, that is, with and without, respectively, the
terms in the small box of equation (7.25) and in the boxes in equations (7.28) and
(7.26). This is performed to highlight the effect of the retroactivity to the outputs
on the dynamics ofXp. The simulations validate our theoretical study that indicates
that whenXTOT≫ pTOT and the time scales of phosphorylation/dephosphorylation
are much faster than the time scale of decay and production of the protein Z, the
retroactivity to the outputs is very well attenuated (Figure7.13, plot A). Similarly,
the time behavior ofZ was simulated with and without the terms in the large box
in equation (7.25), that is, with and without X to which Z binds, to verify whether
the insulation component exhibits retroactivity to the inputr. In particular, the ac-
cordance of the behaviors ofZ(t) with and without its downstream binding sites
on X (Figure7.13, plot B), indicates that there is no substantial retroactivity to the
input r generated by the insulation device. This is obtained becauseXTOT≪ γ as
indicated in equation (7.35), in which 1/γ can be interpreted as the affinity of the
binding of X to Z. Our simulation study also indicates that a faster time scale of
the phosphorylation/dephosphorylation reactions is necessary, even for high values
of XTOT andYTOT, to maintain perfect attenuation of the retroactivity to the output
s and small retroactivity to the outputr. In fact, slowing down the time scale of
phosphorylation and dephosphorylation, the system looses its insulation property
(Figure7.14). In particular, the attenuation of the effect of the retroactivity to the
outputs is lost because there is not enough separation of time scales between the
Z dynamics and the internal device dynamics. The device also displays a non neg-
ligible amount of retroactivity to the input because the conditionγ≪ XTOT is not
satisfied anymore.
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Phosphorylation and dephosphorylation with fast time scale
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Figure 7.13: Simulation results for system in equations (7.25–7.29). In all plots, pTOT =

100,koff = kon = 10, δ = 0.01, k(t) = 0.01(1+ sin(ωt)), andω = 0.005. In subplots A and
B, k1 = k2 = 50,α1 = β1 = 0.01,β2 = α2 = 10, andYTOT = XTOT = 1500. In subplot A, the
signalXp(t) without the downstream binding sites p is in green (solid line), while the same
signal with the downstream binding sites p is in blue (dashedline). The small error shows
that the effect of the retroactivity to the outputs is attenuated very well. In subplot B, the
signalZ(t) without X to which Z binds is in red (solid), while the same signal Z(t) with
X present in the system (XTOT = 1500) is in black (dashed line). The small error confirms
a small retroactivity to the input. The values of the complexes concentrationsC1 andC2

oscillate about 0.4, so they are comparable to the values ofXp.
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Phosphorylation and dephosphorylation with slow time scale
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Figure 7.14: In all plots,pTOT = 100 andkoff = kon= 10,δ = 0.01,k(t) = 0.01(1+ sin(ωt)),
andω = 0.005. Phosphorylation and dephosphorylation rates are slower than the ones in
Figure7.13, that is,k1 = k2 = 0.01, while the other parameters are left the same, that is,
α2 = β2 = 10, α1 = β1 = 0.01, andYTOT = XTOT = 1500. In subplot A, the signalXp(t)
without the downstream binding sites p is in green (solid line), while the same signal with
the downstream binding sites p is in blue (dashed line). The effect of the retroactivity to the
outputs is dramatic. In subplot B, the signalZ(t) without X in the system is in red (solid
line), while the same signalZ(t) with X in the system is in black (dashed line). The device
thus also displays a large retroactivity to the inputr.
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Part III

Appendices

These appendices provide some background information that may be useful to var-
ious readers of the book, depending on prior background. Most of the material
here is extracted from other documents, as referenced in the introductionto each
appendix.





Appendix A
Cell Biology Primer

Note: The text and figures in this chapter are based onA Science Primerby the
National Center for Biotechnology Information (NCBI) of the National Library
of Medicine (NLM) at the National Institutes of Health (NIH) [54]. The text in
this chapter is not subject to copyright and may be used freely for any purpose, as
described by the NLM:

Information that is created by or for the US government on this site is
within the public domain. Public domain information on the National
Library of Medicine (NLM) Web pages may be freely distributed and
copied. However, it is requested that in any subsequent use of this
work, NLM be given appropriate acknowledgment.

Some minor modifications have been made, including insertion of additional fig-
ures (from the NHGRI Talking Glossary [55]), deletion of some of the text not
needed here, and minor editorial changes to maintain consistency with the main
text.

The original material included here can be retrieved from the following web
sites:

• http://www.ncbi.nlm.nih.gov/About/primer/genetics.html

• http://www.genome.gov/glossary

We gratefully acknowledge the National Library of Medicine for this material.

http://www.ncbi.nlm.nih.gov/About/primer/genetics.html
http://www.genome.gov/glossary
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(a) Cell types (b) Timeline

Figure A.1: Eukaryotes and prokaryotes. (a) This figure illustrates a typical human cell
(eukaryote) and a typical bacterium (prokaryote). The drawing on the left highlights the
internal structures of eukaryotic cells, including the nucleus (light blue), the nucleolus
(intermediate blue), mitochondria (orange), and ribosomes (dark blue). The drawing on the
right demonstrates how bacterial DNA is housed in a structure called the nucleoid (very
light blue), as well as other structures normally found in a prokaryotic cell, including the
cell membrane (black), the cell wall (intermediate blue), the capsule (orange), ribosomes
(dark blue), and a flagellum (also black). (b) History of lifeon earth. Figures courtesy the
National Library of Medicine.

A.1 What is a Cell

Cells are the structural and functional units of all living organisms. Some or-
ganisms, such as bacteria, are unicellular, consisting of a single cell. Otheror-
ganisms, such as humans, are multicellular, or have many cells—an estimated
100,000,000,000,000 cells! Each cell is an amazing world unto itself: it can take in
nutrients, convert these nutrients into energy, carry out specialized functions, and
reproduce as necessary. Even more amazing is that each cell stores its own set of
instructions for carrying out each of these activities.

Cell Organization

Before we can discuss the various components of a cell, it is important to know
what organism the cell comes from. There are two general categories ofcells:
prokaryotesandeukaryotes(see FigureA.1a).

Prokaryotic Organisms

It appears that life arose on earth about 4 billion years ago (see FigureA.1b. The
simplest of cells, and the first types of cells to evolve, were prokaryotic cells—
organisms that lack a nuclear membrane, the membrane that surrounds the nucleus
of a cell. Bacteria are the best known and most studied form of prokaryotic or-
ganisms, although the recent discovery of a second group of prokaryotes, called
archaea, has provided evidence of a third cellular domain of life and new insights
into the origin of life itself.
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Prokaryotes are unicellular organisms that do not develop or differentiate into
multicellular forms. Some bacteria grow in filaments, or masses of cells, but each
cell in the colony is identical and capable of independent existence. The cells
may be adjacent to one another because they did not separate after cell division
or because they remained enclosed in a common sheath or slime secreted by the
cells. Typically though, there is no continuity or communication between the cells.
Prokaryotes are capable of inhabiting almost every place on the earth, from the
deep ocean, to the edges of hot springs, to just about every surfaceof our bodies.

Prokaryotes are distinguished from eukaryotes on the basis of nuclearorgani-
zation, specifically their lack of a nuclear membrane. Prokaryotes also lackany of
the intracellular organelles and structures that are characteristic of eukaryotic cells.
Most of the functions of organelles, such as mitochondria, chloroplasts,and the
Golgi apparatus, are taken over by the prokaryotic plasma membrane. Prokaryotic
cells have three architectural regions: appendages calledflagellaandpili—proteins
attached to the cell surface; acell envelopeconsisting of a capsule, acell wall, and
aplasma membrane; and acytoplasmic regionthat contains thecell genome(DNA)
and ribosomes and various sorts of inclusions.

Eukaryotic Organisms

Eukaryotesinclude fungi, animals, and plants as well as some unicellular organ-
isms. Eukaryotic cells are about 10 times the size of a prokaryote and can be
as much as 1000 times greater in volume. The major and extremely significant
difference between prokaryotes and eukaryotes is that eukaryotic cells contain
membrane-bound compartments in which specific metabolic activities take place.
Most important among these is the presence of a nucleus, a membrane-delineated
compartment that houses the eukaryotic cell’s DNA. It is this nucleus that gives the
eukaryote—literally, true nucleus—its name.

Eukaryotic organisms also have other specialized structures, calledorganelles,
which are small structures within cells that perform dedicated functions. Asthe
name implies, you can think of organelles as small organs. There are a dozen dif-
ferent types of organelles commonly found in eukaryotic cells. In this primer, we
will focus our attention on only a handful of organelles and will examine these
organelles with an eye to their role at a molecular level in the cell.

The origin of the eukaryotic cell was a milestone in the evolution of life. Al-
though eukaryotes use the same genetic code and metabolic processes as prokary-
otes, their higher level of organizational complexity has permitted the develop-
ment of truly multicellular organisms. Without eukaryotes, the world would lack
mammals, birds, fish, invertebrates, mushrooms, plants, and complex single-celled
organisms.
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Figure A.2: An organelle is a subcellular structure that hasone or more specific jobs to
perform in the cell, much like an organ does in the body. Amongthe more important cell
organelles are the nuclei, which store genetic information; mitochondria, which produce
chemical energy; and ribosomes, which assemble proteins.

Cell Structures: The Basics

The Plasma Membrane—A Cell’s Protective Coat

The outer lining of a eukaryotic cell is called theplasma membrane. This mem-
brane serves to separate and protect a cell from its surrounding environment and
is made mostly from a double layer of proteins and lipids, fat-like molecules. Em-
bedded within this membrane are a variety of other molecules that act as channels
and pumps, moving different molecules into and out of the cell. A form of plasma
membrane is also found in prokaryotes, but in this organism it is usually referred
to as thecell membrane.

The Cytoskeleton—A Cell’s Scaffold

Thecytoskeletonis an important, complex, and dynamic cell component. It acts to
organize and maintain the cell’s shape; anchors organelles in place; helpsduring
endocytosis, the uptake of external materials by a cell; and moves parts of the cell
in processes of growth and motility. There are a great number of proteins associated
with the cytoskeleton, each controlling a cell’s structure by directing, bundling, and
aligning filaments.
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Figure A.3: The cell membrane, also called the plasma membrane, is found in all cells
and separates the interior of the cell from the outside environment. The cell membrane
consists of a lipid bilayer that is semipermeable. The cell membrane regulates the transport
of materials entering and exiting the cell.

The Cytoplasm—A Cell’s Inner Space

Inside the cell there is a large fluid-filled space called thecytoplasm, sometimes
called thecytosol. In prokaryotes, this space is relatively free of compartments. In
eukaryotes, thecytosolis the “soup” within which all of the cell’s organelles reside.
It is also the home of the cytoskeleton. The cytosol contains dissolved nutrients,
helps break down waste products, and moves material around the cell through a
process calledcytoplasmic streaming. The nucleus often flows with the cytoplasm
changing its shape as it moves. The cytoplasm also contains many salts and is an
excellent conductor of electricity, creating the perfect environment for the mechan-
ics of the cell. The function of the cytoplasm, and the organelles which residein it,
are critical for a cell’s survival.

Genetic Material

Two different kinds of genetic material exist:deoxyribonucleic acid (DNA)andri-
bonucleic acid (RNA). Most organisms are made of DNA, but a few viruses have
RNA as their genetic material. The biological information contained in an organism
is encoded in its DNA or RNA sequence. Prokaryotic genetic material is organized
in a simple circular structure that rests in the cytoplasm. Eukaryotic genetic mate-
rial is more complex and is divided into discrete units calledgenes. Human genetic
material is made up of two distinct components: thenuclear genomeand themito-
chondrial genome. The nuclear genome is divided into 24 linear DNA molecules,
each contained in a differentchromosome. Themitochondrial genomeis a circu-
lar DNA molecule separate from the nuclear DNA. Although the mitochondrial
genome is very small, it codes for some very important proteins.
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Figure A.4: A nuclear membrane is a double membrane that encloses the cell nucleus.
It serves to separate the chromosomes from the rest of the cell. The nuclear membrane
includes an array of small holes or pores that permit the passage of certain materials, such
as nucleic acids and proteins, between the nucleus and cytoplasm.

Organelles

The human body contains many different organs, such as the heart, lung, and kid-
ney, with each organ performing a different function. Cells also have a set of “little
organs”, calledorganelles, that are adapted and/or specialized for carrying out one
or more vital functions. Organelles are found only in eukaryotes and arealways
surrounded by a protective membrane. It is important to know some basic facts
about the following organelles.

The Nucleus—A Cell’s Center.The nucleusis the most conspicuous organelle
found in a eukaryotic cell. It houses the cell’s chromosomes and is the placewhere
almost all DNA replication and RNA synthesis occur. The nucleus is spheroid
in shape and separated from the cytoplasm by a membrane called thenuclear
envelope. The nuclear envelope isolates and protects a cell’s DNA from various
molecules that could accidentally damage its structure or interfere with its process-
ing. During processing, DNA istranscribed, or synthesized, into a special RNA,
called mRNA. This mRNA is then transported out of the nucleus, where it is trans-
lated into a specific protein molecule. In prokaryotes, DNA processing takes place
in the cytoplasm.

The Ribosome—The Protein Production Machine. Ribosomesare found in both
prokaryotes and eukaryotes. The ribosome is a large complex composed of many
molecules, including RNAs and proteins, and is responsible for processing the ge-
netic instructions carried by an mRNA. The process of converting an mRNA’s
genetic code into the exact sequence of amino acids that make up a protein is
calledtranslation. Protein synthesis is extremely important to all cells, and there-
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Figure A.5: Mitochondria are membrane-bound cell organelles (mitochondrion, singular)
that generate most of the chemical energy needed to power thecell’s biochemical reactions.
Chemical energy produced by the mitochondria is stored in a small molecule called adeno-
sine triphosphate (ATP). Mitochondria contain their own small chromosomes. Generally,
mitochondria, and therefore mitochondrial DNA, are inherited only from the mother.

fore a large number of ribosomes—sometimes hundreds or even thousands—can
be found throughout a cell.

Ribosomes float freely in the cytoplasm or sometimes bind to another organelle
called the endoplasmic reticulum. Ribosomes are composed of one large and one
small subunit, each having a different function during protein synthesis.

Mitochondria and Chloroplasts—The Power Generators. Mitochondriaare self-
replicating organelles that occur in various numbers, shapes, and sizesin the cyto-
plasm of all eukaryotic cells. As mentioned earlier, mitochondria contain their own
genome that is separate and distinct from the nuclear genome of a cell. Mitochon-
dria have two functionally distinct membrane systems separated by a space: the
outer membrane, which surrounds the whole organelle; and theinner membrane,
which is thrown into folds or shelves that project inward. These inward folds are
called cristae. The number and shape of cristae in mitochondria differ, depend-
ing on the tissue and organism in which they are found, and serve to increase the
surface area of the membrane.

Mitochondria play a critical role in generating energy in the eukaryotic cell,
and this process involves a number of complex pathways. Let’s break down each
of these steps so that you can better understand how food and nutrients are turned
into energy packets and water. Some of the best energy-supplying foods that we
eat contain complex sugars. These complex sugars can be broken downinto a
less chemically complex sugar molecule calledglucose. Glucose can then enter
the cell through special molecules found in the membrane, calledglucose trans-
porters. Once inside the cell, glucose is broken down to makeadenosine triphos-
phate (ATP), a form of energy, via two different pathways.

The first pathway,glycolysis, requires no oxygen and is referred to asanaerobic
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Figure A.6: Cell energy production. Reproduced from Alberts et al. [2]; permission pend-
ing.

metabolism. Glycolysis occurs in the cytoplasm outside the mitochondria. During
glycolysis, glucose is broken down into a molecule calledpyruvate. Each reaction
is designed to produce some hydrogen ions that can then be used to make energy
packets (ATP). However, only four ATP molecules can be made from one molecule
of glucose in this pathway. In prokaryotes, glycolysis is the only method used for
converting energy.

The second pathway, called theKreb’s cycle, or thecitric acid cycle, occurs
inside the mitochondria and is capable of generating enough ATP to run all thecell
functions. Once again, the cycle begins with a glucose molecule, which during the
process of glycolysis is stripped of some of its hydrogen atoms, transforming the
glucose into two molecules ofpyruvic acid. Next, pyruvic acid is altered by the
removal of a carbon and two oxygens, which go on to form carbon dioxide. When
thecarbon dioxideis removed, energy is given off, and a molecule called NAD+
is converted into the higher energy form, NADH. Another molecule,coenzyme A
(CoA), then attaches to the remaining acetyl unit, formingacetyl CoA.

Acetyl CoAenters the Kreb’s cycle by joining to a four-carbon molecule called
oxaloacetate. Once the two molecules are joined, they make a six-carbon molecule
called citric acid. Citric acid is then broken down and modified in a stepwise fash-
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ion. As this happens, hydrogen ions and carbon molecules are released. The carbon
molecules are used to make more carbon dioxide. The hydrogen ions are picked up
by NAD and another molecule calledflavin-adenine dinucleotide (FAD). Eventu-
ally, the process produces the four-carbon oxaloacetate again, ending up where it
started off. All in all, the Kreb’s cycle is capable of generating from 24 to 28 ATP
molecules from one molecule of glucose converted to pyruvate. Therefore, it is
easy to see how much more energy we can get from a molecule of glucose if our
mitochondria are working properly and if we have oxygen.

Chloroplastsare similar to mitochondria but are found only in plants. Both
organelles are surrounded by a double membrane with an intermembrane space;
both have their own DNA and are involved in energy metabolism; and both have
reticulations, or many foldings, filling their inner spaces. Chloroplasts convert light
energy from the sun into ATP through a process calledphotosynthesis.

The Endoplasmic Reticulum and the Golgi Apparatus—Macromolecule Managers.
Theendoplasmic reticulum (ER)is the transport network for molecules targeted for
certain modifications and specific destinations, as compared to molecules that will
float freely in the cytoplasm. The ER has two forms: therough ERand thesmooth
ER. The rough ER is labeled as such because it has ribosomes adhering to its outer
surface, whereas the smooth ER does not. Translation of the mRNA for those pro-
teins that will either stay in the ER or beexported(moved out of the cell) occurs at
the ribosomes attached to the rough ER. The smooth ER serves as the recipient for
those proteins synthesized in the rough ER. Proteins to be exported are passed to
theGolgi apparatus, sometimes called a Golgi body or Golgi complex, for further
processing, packaging, and transport to a variety of other cellular locations.

Lysosomes and Peroxisomes—The Cellular Digestive System. Lysosomes andper-
oxisomesare often referred to as the garbage disposal system of a cell. Both or-
ganelles are somewhat spherical, bound by a single membrane, and rich in diges-
tive enzymes, naturally occurring proteins that speed up biochemical processes.
For example, lysosomes can contain more than three dozen enzymes for degrading
proteins, nucleic acids, and certain sugars called polysaccharides. Allof these en-
zymes work best at a low pH, reducing the risk that these enzymes will digest their
own cell should they somehow escape from the lysosome. Here we can seethe
importance behind compartmentalization of the eukaryotic cell. The cell could not
house such destructive enzymes if they were not contained in a membrane-bound
system.

One function of a lysosome is to digest foreign bacteria that invade a cell. Other
functions include helping to recycle receptor proteins and other membrane compo-
nents and degrading worn out organelles such as mitochondria. Lysosomes can
even help repair damage to the plasma membrane by serving as a membrane patch,
sealing the wound.

Peroxisomes function to rid the body of toxic substances, such as hydrogen
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Figure A.7: Endoplasmic reticulum is a network of membranesinside a cell through which
proteins and other molecules move. Proteins are assembled at organelles called ribosomes.
(a) When proteins are destined to be part of the cell membrane or exported from the cell,
the ribosomes assembling them attach to the endoplasmic reticulum, giving it a rough
appearance. (b) Smooth endoplasmic reticulum lacks ribosomes and helps synthesize and
concentrate various substances needed by the cell.

peroxide, or other metabolites and contain enzymes concerned with oxygenutiliza-
tion. High numbers of peroxisomes can be found in the liver, where toxic byprod-
ucts are known to accumulate. All of the enzymes found in a peroxisome are im-
ported from the cytosol. Each enzyme transferred to a peroxisime has a special
sequence at one end of the protein, called aPTSor peroxisomal targeting signal,
that allows the protein to be taken into that organelle, where they then functionto
rid the cell of toxic substances.

Peroxisomes often resemble a lysosome. However, peroxisomes are self repli-
cating, whereas lysosomes are formed in the Golgi complex. Peroxisomes also
have membrane proteins that are critical for various functions, such as for import-
ing proteins into their interiors and to proliferate and segregate into daughtercells.

Where Do Viruses Fit?

Viruses are not classified as cells and therefore are neither unicellular nor multi-
cellular organisms. Most people do not even classify viruses as “living”because
they lack a metabolic system and are dependent on the host cells that they infect to
reproduce. Viruses have genomes that consist of either DNA or RNA, and there are
examples of viruses that are either double-stranded or single-stranded. Importantly,
their genomes code not only for the proteins needed to package its genetic material
but for those proteins needed by the virus to reproduce during its infective cycle.
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Figure A.8: A Golgi body, also known as a Golgi apparatus, is acell organelle that helps
process and package proteins and lipid molecules, especially proteins destined to be ex-
ported from the cell. Named after its discoverer, Camillo Golgi, the Golgi body appears as
a series of stacked membranes.

Making New Cells and Cell Types

For most unicellular organisms, reproduction is a simple matter ofcell duplication,
also known asreplication. But for multicellular organisms, cell replication and
reproduction are two separate processes. Multicellular organisms replace damaged
or worn out cells through a replication process calledmitosis, the division of a
eukaryotic cell nucleus to produce two identicaldaughter nuclei. To reproduce,
eukaryotes must first create special cells calledgametes—eggs and sperm—that
then fuse to form the beginning of a new organism. Gametes are but one of the
many unique cell types that multicellular organisms need to function as a complete
organism.

Making New Cells

Most unicellular organisms create their next generation by replicating all oftheir
parts and then splitting into two cells, a type ofasexual reproductioncalledbinary
fission. This process spawns not just two new cells, but also two new organisms.
Multicellullar organisms replicate new cells in much the same way. For example,
we produce new skin cells and liver cells by replicating the DNA found in thatcell
through mitosis. Yet, producing a whole new organism requiressexual reproduc-
tion, at least for most multicellular organisms. In the first step, specialized cells
calledgametes—eggs and sperm—are created through a process called meiosis.
Meiosisserves to reduce the chromosome number for that particular organism by
half. In the second step, the sperm and egg join to make a single cell, which restores
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Figure A.9: Mitosis is a cellular process that replicates chromosomes and produces two
identical nuclei in preparation for cell division. Generally, mitosis is immediately followed
by the equal division of the cell nuclei and other cell contents into two daughter cells.

the chromosome number. This joined cell then divides and differentiates into dif-
ferent cell types that eventually form an entire functioning organism.

Mitosis. Every time a cell divides, it must ensure that its DNA is shared between
the two daughter cells. Mitosis is the process of “divvying up” the genome between
the daughter cells. To easier describe this process, let’s imagine a cell with only
one chromosome. Before a cell enters mitosis, we say the cell is ininterphase, the
state of a eukaryotic cell when not undergoing division. Every time a cell divides, it
must first replicate all of its DNA. Because chromosomes are simply DNA wrapped
around protein, the cell replicates its chromosomes also. These two chromosomes,
positioned side by side, are calledsister chromatidsand are identical copies of one
another. Before this cell can divide, it must separate these sister chromatids from
one another. To do this, the chromosomes have to condense. This stage ofmitosis
is calledprophase. Next, the nuclear envelope breaks down, and a large protein
network, called thespindle, attaches to each sister chromatid. The chromosomes
are now aligned perpendicular to the spindle in a process calledmetaphase. Next,
“molecular motors” pull the chromosomes away from the metaphase plate to the
spindle poles of the cell. This is calledanaphase. Once this process is completed,
the cells divide, the nuclear envelope reforms, and the chromosomes relaxand
decondense duringtelophase. The cell can now replicate its DNA again during
interphase and go through mitosis once more.

Meiosis. Meiosisis a specialized type of cell division that occurs during the forma-
tion of gametes. Although meiosis may seem much more complicated than mitosis,
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Figure A.10: Meiosis is the formation of egg and sperm cells.In sexually reproducing
organisms, body cells are diploid, meaning they contain twosets of chromosomes (one set
from each parent). To maintain this state, the egg and sperm that unite during fertilization
must be haploid, meaning they each contain a single set of chromosomes. During meiosis,
diploid cells undergo DNA replication, followed by two rounds of cell division, producing
four haploid sex cells.

it is really just two cell divisions in sequence. Each of these sequences maintains
strong similarities to mitosis.

Meiosis Irefers to the first of the two divisions and is often called thereduction
division. This is because it is here that the chromosome complement is reduced
from diploid (two copies) tohaploid(one copy). Interphase in meiosis is identical
to interphase in mitosis. At this stage, there is no way to determine what type of
division the cell will undergo when it divides. Meiotic division will only occur in
cells associated with male or female sex organs.Prophase Iis virtually identical
to prophase in mitosis, involving the appearance of thechromosomes, the devel-
opment of the spindle apparatus, and the breakdown of the nuclear membrane.
Metaphase I is where the critical difference occurs between meiosis and mitosis.
In mitosis, all of the chromosomes line up on the metaphase plate in no particu-
lar order. In Metaphase I, the chromosome pairs are aligned on either sideof the
metaphase plate. It is during this alignment that the chromatid arms may overlap
and temporarily fuse, resulting in what is calledcrossovers. During Anaphase I,
the spindle fibers contract, pulling the homologous pairs away from each other and
toward each pole of the cell. InTelophase I, a cleavage furrow typically forms,
followed by cytokinesis, the changes that occur in the cytoplasm of a cell during
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nuclear division; but the nuclear membrane is usually not reformed, and the chro-
mosomes do not disappear. At the end of Telophase I, each daughter cell has a
single set of chromosomes, half the total number in the original cell, that is, while
the original cell was diploid; the daughter cells are now haploid.

Meiosis II is quite simply a mitotic division of each of the haploid cells pro-
duced in Meiosis I. There is no Interphase between Meiosis I and Meiosis II,
and the latter begins withProphase II. At this stage, a new set of spindle fibers
forms and the chromosomes begin to move toward the equator of the cell. During
Metaphase II, all of the chromosomes in the two cells align with the metaphase
plate. InAnaphase II, the centromeres split, and the spindle fibers shorten, drawing
the chromosomes toward each pole of the cell. InTelophase II, a cleavage furrow
develops, followed by cytokinesis and the formation of the nuclear membrane. The
chromosomes begin to fade and are replaced by thegranular chromatin, a char-
acteristic of interphase. When Meiosis II is complete, there will be a total of four
daughter cells, each with half the total number of chromosomes as the original
cell. In the case ofmale structures, all four cells will eventually develop intosperm
cells. In the case of thefemale life cyclesin higher organisms, three of the cells
will typically abort, leaving a single cell to develop into an egg cell, which is much
larger than a sperm cell.

Recombination—The Physical Exchange of DNA.All organisms suffer a certain
number of smallmutations, or random changes in a DNA sequence, during the
process of DNA replication. These are calledspontaneous mutationsand occur
at a rate characteristic for that organism.Genetic recombinationrefers more to a
large-scale rearrangement of a DNA molecule. This process involves pairing be-
tween complementary strands of two parental duplex, or double-strandedDNAs,
and results from a physical exchange of chromosome material.

The position at which a gene is located on a chromosome is called alocus. In a
given individual, one might find two different versions of this gene at a particular
locus. These alternate gene forms are calledalleles. During Meiosis I, when the
chromosomes line up along the metaphase plate, the two strands of a chromosome
pair may physically cross over one another. This may cause the strands to break
apart at the crossover point and reconnect to the other chromosome, resulting in
the exchange of part of the chromosome.

Recombination results in a new arrangement of maternal and paternal alleles
on the same chromosome. Although the same genes appear in the same order, the
alleles are different. This process explains why offspring from the same parents can
look so different. In this way, it is theoretically possible to have any combination
of parental alleles in an offspring, and the fact that two alleles appear together in
one offspring does not have any influence on the statistical probability that another
offspring will have the same combination. This theory of “independent assortment”
of alleles is fundamental to genetic inheritance. However, having said that, there is
an exception that requires further discussion.
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The frequency of recombination is actually not the same for all gene combi-
nations. This is because recombination is greatly influenced by the proximity of
one gene to another. If two genes are located close together on a chromosome, the
likelihood that a recombination event will separate these two genes is less thanif
they were farther apart.Linkagedescribes the tendency of genes to be inherited
together as a result of their location on the same chromosome.Linkage disequilib-
rium describes a situation in which some combinations of genes or genetic markers
occur more or less frequently in a population than would be expected from their
distances apart. Scientists apply this concept when searching for a genethat may
cause a particular disease. They do this by comparing the occurrence ofa specific
DNA sequence with the appearance of a disease. When they find a high correlation
between the two, they know they are getting closer to finding the appropriate gene
sequence.

Binary Fission—How Bacteria Reproduce.Bacteria reproduce through a fairly
simple process calledbinary fission, or the reproduction of a living cell by division
into two equal, or near equal, parts. As just noted, this type of asexual reproduction
theoretically results in two identical cells. However, bacterial DNA has a relatively
high mutation rate. This rapid rate of genetic change is what makes bacteria capa-
ble of developing resistance to antibiotics and helps them exploit invasion into a
wide range of environments.

Similar to more complex organisms, bacteria also have mechanisms for ex-
changing genetic material. Although not equivalent to sexual reproduction, the
end result is that a bacterium contains a combination of traits from two different
parentalcells. Three different modes of exchange have thus far been identified in
bacteria.

Conjunctioninvolves the direct joining of two bacteria, which allows their cir-
cular DNAs to undergo recombination. Bacteria can also undergotransformation
by absorbing remnants of DNA from dead bacteria and integrating these fragments
into their own DNA. Lastly, bacteria can exchange genetic material through apro-
cess calledtransduction, in which genes are transported into and out of the cell
by bacterial viruses, calledbacteriophages, or by plasmids, an autonomous self-
replicating extrachromosomal circular DNA.

Viral Reproduction.Because viruses are acellular and do not use ATP, they must
utilize the machinery and metabolism of a host cell to reproduce. For this reason,
viruses are calledobligate intracellular parasites. Before a virus has entered a host
cell, it is called a virion—a package of viral genetic material.Virions—infectious
viral particles—can be passed from host to host either through direct contact or
through a vector, or carrier. Inside the organism, the virus can enter a cell in var-
ious ways. Bacteriophages—bacterial viruses—attach to the cell wall surface in
specific places. Once attached, enzymes make a small hole in the cell wall, and
the virus injects its DNA into the cell. Other viruses (such as HIV) enter the host
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Figure A.11: Types of viruses. This illustration depicts three types of viruses: a bacterial
virus, otherwise called a bacteriophage (left center); an animal virus (top right); and a
retrovirus (bottom right). Viruses depend on the host cell that they infect to reproduce.
When found outside of a host cell, viruses, in their simplest forms, consist only of genomic
nucleic acid, either DNA or RNA (depicted as blue), surrounded by a protein coat, or
capsid.

via endocytosis, the process whereby cells take in material from the external envi-
ronment. After entering the cell, the virus’s genetic material begins the destructive
process of taking over the cell and forcing it to produce new viruses.

There are three different ways genetic information contained in a viral genome
can be reproduced. The form of genetic material contained in theviral capsid, the
protein coat that surrounds the nucleic acid, determines the exact replication pro-
cess. Some viruses have DNA, which once inside the host cell is replicatedby the
host along with its own DNA. Then, there are two different replication processes
for viruses containing RNA. In the first process, the viral RNA is directlycopied
using an enzyme calledRNA replicase. This enzyme then uses that RNA copy as
a template to make hundreds of duplicates of the original RNA. A second group
of RNA-containing viruses, called theretroviruses, uses the enzyme reverse tran-
scriptase to synthesize a complementary strand of DNA so that the virus’s genetic
information is contained in a molecule of DNA rather than RNA. The viral DNA
can then be further replicated using the host cell machinery.

Steps Associated with Viral Reproduction.

1. Attachment, sometimes calledabsorption: The virus attaches to receptors on
the host cell wall.

2. Penetration: The nucleic acid of the virus moves through the plasma mem-
brane and into the cytoplasm of the host cell. The capsid of a phage, a bacte-
rial virus, remains on the outside. In contrast, many viruses that infect animal
cells enter the host cell intact.

3. Replication: The viral genome contains all the information necessary to pro-
duce new viruses. Once inside the host cell, the virus induces the host cell to
synthesize the necessary components for its replication.
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4. Assembly: The newly synthesized viral components are assembled into new
viruses.

5. Release: Assembled viruses are released from the cell and can now infect
other cells, and the process begins again.

When the virus has taken over the cell, it immediately directs the host to begin
manufacturing the proteins necessary for virus reproduction. The host produces
three kinds of proteins:early proteins, enzymes used in nucleic acid replication;
late proteins, proteins used to construct the virus coat; andlytic proteins, enzymes
used to break open the cell for viral exit. The final viral product is assembled spon-
taneously, that is, the parts are made separately by the host and are joinedtogether
by chance. This self-assembly is often aided by molecularchaperones, or proteins
made by the host that help the capsid parts come together.

The new viruses then leave the cell either by exocytosis or by lysis. Envelope-
bound animal viruses instruct the host’s endoplasmic reticulum to make certain
proteins, calledglycoproteins, which then collect in clumps along the cell mem-
brane. The virus is then discharged from the cell at these exit sites, referred to as
exocytosis. On the other hand, bacteriophages must break open, orlyse, the cell to
exit. To do this, the phages have a gene that codes for an enzyme calledlysozyme.
This enzyme breaks down the cell wall, causing the cell to swell and burst. The
new viruses are released into the environment, killing the host cell in the process.

One family of animal viruses, called the retroviruses, contains RNA genomes
in their virus particles but synthesize a DNA copy of their genome in infected
cells. Retroviruses provide an excellent example of how viruses can playan impor-
tant role as models for biological research. Studies of these viruses arewhat first
demonstrated the synthesis of DNA from RNA templates, a fundamental mode for
transferring genetic material that occurs in both eukaryotes and prokaryotes.

Why Study Viruses?. Virusesare important to the study ofmolecular and cellu-
lar biology because they provide simple systems that can be used to manipulate
and investigate the functions of many cell types. We have just discussed how viral
replication depends on the metabolism of the infected cell. Therefore, the study
of viruses can provide fundamental information about aspects of cell biology and
metabolism. The rapid growth and small genome size of bacteria make them excel-
lent tools for experiments in biology. Bacterial viruses have also further simplified
the study of bacterial genetics and have deepened our understanding of the basic
mechanisms of molecular genetics. Because of the complexity of an animal cell
genome, viruses have been even more important in studies of animal cells than
in studies of bacteria. Numerous studies have demonstrated the utility of animal
viruses as probes for investigating different activities of eukaryotic cells. Other
examples in which animal viruses have provided important models for biological
research of their host cells include studies ofDNA replication, transcription, RNA
processing, andprotein transport.
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Deriving New Cell Types

Look closely at the human body, and it is clear that not all cells are alike. For
example, cells that make up our skin are certainly different from cells that make
up our inner organs. Yet, all of the different cell types in our body are allderived,
or arise, from a single, fertilized egg cell through differentiation.Differentiation
is the process by which an unspecialized cell becomes specialized into one of the
many cells that make up the body, such as a heart, liver, or muscle cell. During
differentiation, certain genes are turned on, or becomeactivated, while other genes
are switched off, or inactivated. This process is intricately regulated. As a result, a
differentiated cell will develop specific structures and perform certain functions.

Mammalian Cell Types.Three basic categories of cells make up the mammalian
body: germ cells, somatic cells, andstem cells. Each of the approximately 100
trillion cells in an adult human has its own copy, or copies, of the genome, with the
only exception being certain cell types that lack nuclei in their fully differentiated
state, such as red blood cells. The majority of these cells arediploid, or have two
copies of each chromosome. These cells are calledsomatic cells. This category of
cells includes most of the cells that make up our body, such as skin and muscle
cells. Germ line cellsare any line of cells that give rise togametes—eggs and
sperm—and are continuous through the generations.Stem cells, on the other hand,
have the ability to divide for indefinite periods and to give rise to specialized cells.
They are best described in the context of normal human development.

Human developmentbegins when a sperm fertilizes an egg and creates a sin-
gle cell that has the potential to form an entire organism. In the first hours after
fertilization, this cell divides into identical cells. Approximately 4 days after fer-
tilization and after several cycles of cell division, these cells begin to specialize,
forming a hollow sphere of cells, called ablastocyst. The blastocyst has an outer
layer of cells, and inside this hollow sphere, there is a cluster of cells called the
inner cell mass. The cells of the inner cell mass will go on to form virtually all
of the tissues of the human body. Although the cells of the inner cell mass can
form virtually every type of cell found in the human body, they cannot form an
organism. Therefore, these cells are referred to aspluripotent, that is, they can give
rise to many types of cells but not a whole organism. Pluripotent stem cells un-
dergo further specialization into stem cells that are committed to give rise to cells
that have a particular function. Examples include blood stem cells that give rise
to red blood cells, white blood cells, and platelets, and skin stem cells that give
rise to the various types of skin cells. These more specialized stem cells are called
multipotent—capable of giving rise to several kinds of cells, tissues, or structures.
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Figure A.12: Differentiation of human tissues. Human development begins when a sperm
fertilizes an egg and creates a single cell that has the potential to form an entire organism,
called the zygote (top panel, mauve). In the first hours afterfertilization, this cell divides
into identical cells. These cells then begin to specialize,forming a hollow sphere of cells,
called a blastocyst (second panel, purple). The blastocysthas an outer layer of cells (yel-
low), and inside this hollow sphere, there is a cluster of cells called the inner cell mass
(light blue). The inner cell mass can give rise to the germ cells—eggs and sperm—as well
as cells derived from all three germ layers (ectoderm, lightblue; mesoderm, light green;
and endoderm, light yellow), depicted in the bottom panel, including nerve cells, muscle
cells, skin cells, blood cells, bone cells, and cartilage. Reproduced with permission from
the Office of Science Policy, the National Institutes of Health.

The Working Cell: DNA, RNA, and Protein Synthesis

DNA Replication

DNA replication, or the process of duplicating a cell’s genome, is required every
time a cell divides. Replication, like all cellular activities, requires specializedpro-
teins for carrying out the job. In the first step of replication, a special protein, called
a helicase, unwinds a portion of the parental DNA double helix. Next, a molecule
of DNA polymerase—a common name for two categories of enzymes that influ-
ence the synthesis of DNA— binds to one strand of the DNA. DNA polymerase
begins to move along the DNA strand in the 3’ to 5’ direction, using the single-
stranded DNA as a template. This newly synthesized strand is called theleading
strandand is necessary for forming new nucleotides and reforming a double helix.
Because DNA synthesis can only occur in the 5’ to 3’ direction, a second DNA
polymerase molecule is used to bind to the other template strand as the double he-
lix opens. This molecule synthesizes discontinuous segments of polynucleotides,
calledOkazaki fragments. Another enzyme, calledDNA ligase, is responsible for
stitching these fragments together into what is called thelagging strand.
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Figure A.13: An overview of DNA replication. Before a cell can divide, it must first du-
plicate its DNA. This figure provides an overview of the DNA replication process. In the
first step, a portion of the double helix (blue) is unwound by ahelicase. Next, a molecule
of DNA polymerase (green) binds to one strand of the DNA. It moves along the strand,
using it as a template for assembling a leading strand (red) of nucleotides and reforming a
double helix. Because DNA synthesis can only occur 5’ to 3’, asecond DNA polymerase
molecule (also green) is used to bind to the other template strand as the double helix opens.
This molecule must synthesize discontinuous segments of polynucleotides (called Okazaki
Fragments). Another enzyme, DNA Ligase (yellow), then stitches these together into the
lagging strand.

The average human chromosome contains an enormous number of nucleotide
pairs that are copied at about 50 base pairs per second. Yet, the entirereplication
process takes only about an hour. This is because there are manyreplication ori-
gin siteson a eukaryotic chromosome. Therefore, replication can begin at some
origins earlier than at others. As replication nears completion, “bubbles” of newly
replicated DNA meet and fuse, forming two new molecules.

With multiple replication origin sites, one might ask, how does the cell know
which DNA has already been replicated and which still awaits replication? To date,
two replication control mechanismshave been identified: one positive and one neg-
ative. For DNA to be replicated, each replication origin site must be bound bya
set of proteins called theOrigin Recognition Complex. These remain attached to
the DNA throughout the replication process. Specific accessory proteins, calledli-
censing factors, must also be present for initiation of replication. Destruction of
these proteins after initiation of replication prevents further replication cycles from
occurring. This is because licensing factors are only produced when the nuclear
membrane of a cell breaks down during mitosis.

DNA Transcription—Making mRNA

DNA transcriptionrefers to the synthesis of RNA from a DNA template. This pro-
cess is very similar to DNA replication. Of course, there are different proteins that
direct transcription. The most important enzyme isRNA polymerase, an enzyme
that influences the synthesis of RNA from a DNA template. For transcription to
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Figure A.14: Transcription is the process of making an RNA copy of a gene sequence. This
copy, called a messenger RNA (mRNA) molecule, leaves the cell nucleus and enters the
cytoplasm, where it directs the synthesis of the protein, which it encodes.

be initiated, RNA polymerase must be able to recognize the beginning sequence
of a gene so that it knows where to start synthesizing an mRNA. It is directed to
this initiation site by the ability of one of its subunits to recognize a specific DNA
sequence found at the beginning of a gene, called thepromoter sequence. The pro-
moter sequence is a unidirectional sequence found on one strand of the DNA that
instructs the RNA polymerase in both where to start synthesis and in which di-
rection synthesis should continue. The RNA polymerase then unwinds the double
helix at that point and begins synthesis of a RNA strand complementary to oneof
the strands of DNA. This strand is called theantisenseor template strand, whereas
the other strand is referred to as thesenseor coding strand. Synthesis can then
proceed in a unidirectional manner.

Although much is known about transcript processing, the signals and events that
instruct RNA polymerase to stop transcribing and drop off the DNA template re-
main unclear. Experiments over the years have indicated that processed eukaryotic
messages contain apoly(A) addition signal(AAUAAA) at their 3’ end, followed by
a string of adenines. This poly(A) addition, also called thepoly(A) site, contributes
not only to the addition of the poly(A) tail but also to transcription termination and
the release of RNA polymerase from the DNA template. Yet, transcription does
not stop here. Rather, it continues for another 200 to 2000 bases beyond this site
before it is aborted. It is either before or during this termination process that the
nascent transcript iscleaved, or cut, at the poly(A) site, leading to the creation of
two RNA molecules. The upstream portion of the newly formed, ornascent, RNA
then undergoes further modifications, calledpost-transcriptional modification, and
becomes mRNA. The downstream RNA becomes unstable and is rapidly degraded.

Although the importance of the poly(A) addition signal has been established,
the contribution of sequences further downstream remains uncertain. A recent study
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Figure A.15: Translation is the process of translating the sequence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic
code describes the relationship between the sequence of base pairs in a gene and the cor-
responding amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemble the protein.

suggests that a defined region, called thetermination region, is required for proper
transcription termination. This study also illustrated that transcription termination
takes place in two distinct steps. In the first step, the nascent RNA is cleaved at
specific subsections of the termination region, possibly leading to its release from
RNA polymerase. In a subsequent step, RNA polymerase disengages from the
DNA. Hence, RNA polymerase continues to transcribe the DNA, at least for a
short distance.

Protein Translation—How Do Messenger RNAs Direct Protein Synthesis?

The cellular machinery responsible for synthesizing proteins is theribosome. The
ribosome consists of structural RNA and about 80 different proteins. In its inactive
state, it exists as two subunits: alarge subunitand asmall subunit. When the small
subunit encounters an mRNA, the process oftranslatingan mRNA to a protein
begins. In the large subunit, there are two sites for amino acids to bind and thus
be close enough to each other to form a bond. The “A site” accepts a newtransfer
RNA, or tRNA—the adaptor molecule that acts as a translator between mRNA and
protein—bearing an amino acid. The “P site”P sitebinds the tRNA that becomes
attached to the growing chain.

As we just discussed, the adaptor molecule that acts as a translator between
mRNA and protein is a specific RNA molecule, the tRNA. Each tRNA has a spe-
cific acceptor sitethat binds a particular triplet of nucleotides, called acodon,
and ananti-codon sitethat binds a sequence of three unpaired nucleotides, the
anti-codon, which can then bind to the the codon. Each tRNA also has a specific
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Figure A.16: Transfer RNA (tRNA) is a small RNA molecule thatparticipates in protein
synthesis. Each tRNA molecule has two important areas: a trinucleotide region called the
anticodon and a region for attaching a specific amino acid. During translation, each time
an amino acid is added to the growing chain, a tRNA molecule forms base pairs with
its complementary sequence on the messenger RNA (mRNA) molecule, ensuring that the
appropriate amino acid is inserted into the protein.

charger protein, called anaminoacyl tRNA synthetase. This protein can only bind
to that particular tRNA and attach the correct amino acid to the acceptor site.

Thestart signalfor translation is the codon ATG, which codes for methionine.
Not every protein necessarily starts with methionine, however. Oftentimes thisfirst
amino acid will be removed in later processing of the protein. A tRNA charged
with methionine binds to the translation start signal. The large subunit binds to
the mRNA and the small subunit, and so beginselongation, the formation of the
polypeptide chain. After the first charged tRNA appears in the A site, the ribosome
shifts so that the tRNA is now in the P site. New charged tRNAs, corresponding
the codons of the mRNA, enter the A site, and a bond is formed between the two
amino acids. The first tRNA is now released, and the ribosome shifts again sothat
a tRNA carrying two amino acids is now in the P site. A new charged tRNA then
binds to the A site. This process of elongation continues until the ribosome reaches
what is called astop codon, a triplet of nucleotides that signals the termination of
translation. When the ribosome reaches a stop codon, no aminoacyl tRNA binds
to the empty A site. This is the ribosome signal to break apart into its large and
small subunits, releasing the new protein and the mRNA. Yet, this isn’t alwaysthe
end of the story. A protein will often undergo further modification, calledpost-
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Figure A.17: A stop codon is a trinucleotide sequence withina messenger RNA (mRNA)
molecule that signals a halt to protein synthesis. The genetic code describes the relationship
between the sequence of DNA bases (A, C, G, and T) in a gene and the corresponding
protein sequence that it encodes. The cell reads the sequence of the gene in groups of three
bases. Of the 64 possible combinations of three bases, 61 specify an amino acid, while the
remaining three combinations are stop codons.

translational modification. For example, it might be cleaved by a protein-cutting
enzyme, called a protease, at a specific place or have a few of its amino acids
altered.

DNA Repair Mechanisms

Maintenance of the accuracy of the DNA genetic code is critical for both thelong-
and short-term survival of cells and species. Sometimes, normal cellular activities,
such as duplicating DNA and making new gametes, introduce changes ormuta-
tions in our DNA. Other changes are caused by exposure of DNA to chemicals,
radiation, or other adverse environmental conditions. No matter the source, genetic
mutations have the potential for both positive and negative effects on an individ-
ual as well as its species. A positive change results in a slightly different version
of a gene that might eventually prove beneficial in the face of a new disease or
changing environmental conditions. Such beneficial changes are the cornerstone
of evolution. Other mutations are considereddeleterious, or result in damage to a
cell or an individual. For example, errors within a particular DNA sequence may
end up either preventing a vital protein from being made or encoding a defective
protein. It is often these types of errors that lead to various disease states.

The potential for DNA damage is counteracted by a vigorous surveillance and
repair system. Within this system, there are a number of enzymes capable of re-
pairing damage to DNA. Some of these enzymes are specific for a particular type
of damage, whereas others can handle a range of mutation types. These systems
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Figure A.18: A peptide is one or more amino acids linked by chemical bonds. The term also
refers to the type of chemical bond that joins the amino acidstogether. A series of linked
amino acids is a polypeptide. The cell’s proteins are made from one or more polypeptides.

Figure A.19: Proteins are an important class of molecules found in all living cells. A protein
is composed of one or more long chains of amino acids, the sequence of which corresponds
to the DNA sequence of the gene that encodes it. Proteins playa variety of roles in the cell,
including structural (cytoskeleton), mechanical (muscle), biochemical (enzymes), and cell
signaling (hormones). Proteins are also an essential part of diet.
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also differ in the degree to which they are able to restore the normal, orwild-type,
sequence.

Categories of DNA Repair Systems.

• Photoreactivationis the process whereby genetic damage caused by ultra-
violet radiation is reversed by subsequent illumination with visible or near-
ultraviolet light.

• Nucleotide excision repairis used to fix DNA lesions, such as single-stranded
breaks or damaged bases, and occurs in stages. The first stage involves recog-
nition of the damaged region. In the second stage, two enzymatic reactions
serve to remove, or excise, the damaged sequence. The third stage involves
synthesis by DNA polymerase of the excised nucleotides using the second
intact strand of DNA as a template. Lastly, DNA ligase joins the newly syn-
thesized segment to the existing ends of the originally damaged DNA strand.

• Recombination repair, or post-replication repair, fixes DNA damage by a
strand exchange from the other daughter chromosome. Because it involves
homologous recombination, it is largely error free.

• Base excision repairallows for the identification and removal of wrong
bases, typically attributable todeamination—the removal of an amino group
(NH2)—of normal bases as well as from chemical modification.

• Mismatch repairis a multi-enzyme system that recognizes inappropriately
matched bases in DNA and replaces one of the two bases with one that
“matches” the other. The major problem here is recognizing which of the
mismatched bases is incorrect and therefore should be removed and replaced.

• Adaptive/inducible repairdescribes several protein activities that recognize
very specific modified bases. They then transfer this modifying group from
the DNA to themselves, and, in doing so, destroy their own function. These
proteins are referred to as inducible because they tend to regulate their own
synthesis. For example, exposure to modifying agents induces, or turns on,
more synthesis and therefore adaptation.

• SOS repairor inducible error-prone repairis a repair process that occurs
in bacteria and is induced, or switched on, in the presence of potentially
lethal stresses, such as UV irradiation or the inactivation of genes essential
for replication. Some responses to this type of stress includemutagenesis—
the production of mutations—or cell elongation without cell division. In this
type of repair process, replication of the DNA template is extremely inac-
curate. Obviously, such a repair system must be a desperate recoursefor the
cell, allowing replication past a region where the wild-type sequence has
been lost.
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From Cells to Genomes

Understanding what makes up a cell and how that cell works is fundamental to
all of the biological sciences. Appreciating the similarities and differences between
cell types is particularly important to the fields of cell and molecular biology. These
fundamental similarities and differences provide a unifying theme, allowing the
principles learned from studying one cell type to be extrapolated and generalized
to other cell types.

Perhaps the most fundamental property of all living things is their ability to re-
produce. All cells arise from pre-existing cells, that is, their genetic material must
be replicated and passed from parent cell to progeny. Likewise, all multicellular
organisms inherit their genetic information specifying structure and functionfrom
their parents. The next section of the genetics primer, What is a Genome, details
how genetic information is replicated and transmitted from cell to cell and organ-
ism to organism.
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Figure A.20: The four DNA bases. Each DNA base is made up of thesugar 2’-deoxyribose
linked to a phosphate group and one of the four bases depictedabove: adenine (top left),
cytosine (top right), guanine (bottom left), and thymine (bottom right).

A.2 What is a Genome

Life is specified bygenomes. Every organism, including humans, has a genome
that contains all of the biological information needed to build and maintain a liv-
ing example of that organism. The biological information contained in a genome
is encoded in itsdeoxyribonucleic acid (DNA)and is divided into discrete units
calledgenes. Genes code for proteins that attach to the genome at the appropriate
positions and switch on a series of reactions called gene expression.

The Physical Structure of the Human Genome

Nuclear DNA

Inside each of our cells lies anucleus, a membrane-bounded region that provides
a sanctuary for genetic information. The nucleus contains long strands ofDNA
that encode this genetic information. ADNA chain is made up of four chemical
bases:adenine(A) andguanine(G), which are calledpurines, andcytosine(C) and
thymine(T), referred to aspyrimidines. Each base has a slightly different composi-
tion, or combination of oxygen, carbon, nitrogen, and hydrogen. In a DNA chain,
every base is attached to a sugar molecule (deoxyribose) and a phosphate molecule,
resulting in a nucleic acid ornucleotide. Individual nucleotides are linked through
the phosphate group, and it is the precise order, or sequence, of nucleotides that
determines the product made from that gene.

A DNA chain, also called a strand, has a sense of direction, in which one end
is chemically different than the other. The so-called 5’ end terminates in a 5’ phos-
phate group (-PO4); the 3’ end terminates in a 3’ hydroxyl group (-OH). This is
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Figure A.21: A nucleotide is the basic building block of nucleic acids. RNA and DNA are
polymers made of long chains of nucleotides. A nucleotide consists of a sugar molecule (ei-
ther ribose in RNA or deoxyribose in DNA) attached to a phosphate group and a nitrogen-
containing base. The bases used in DNA are adenine (A), cytosine (C), guanine (G), and
thymine (T). In RNA, the base uracil (U) takes the place of thymine.

important because DNA strands are always synthesized in the 5’ to 3’ direction.
The DNA that constitutes a gene is a double-stranded molecule consisting of

two chains running in opposite directions. The chemical nature of the basesin
double-stranded DNA creates a slight twisting force that gives DNA its character-
istic gently coiled structure, known as the double helix. The two strands are con-
nected to each other by chemical pairing of each base on one strand to a specific
partner on the other strand. Adenine (A) pairs with thymine (T), and guanine (G)
pairs with cytosine (C). Thus,A-T andG-C base pairsare said to becomplemen-
tary. This complementary base pairing is what makes DNA a suitable molecule
for carrying our genetic information—one strand of DNA can act as atemplateto
direct the synthesis of a complementary strand. In this way, the information in a
DNA sequence is readily copied and passed on to the next generation of cells.

Organelle DNA

Not all genetic information is found in nuclear DNA. Both plants and animals have
an organelle—a “little organ” within the cell— called themitochondrion. Each
mitochondrion has its own set of genes. Plants also have a second organelle, the
chloroplast, which also has its own DNA. Cells often have multiple mitochon-
dria, particularly cells requiring lots of energy, such as active muscle cells. This is
because mitochondria are responsible for converting the energy storedin macro-
molecules into a form usable by the cell, namely, theadenosine triphosphate (ATP)
molecule. Thus, they are often referred to as the power generators of the cell.

Unlike nuclear DNA(the DNA found within the nucleus of a cell), half of which
comes from our mother and half from our father, mitochondrial DNA is only inher-
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Figure A.22: A base pair is two chemical bases bonded to one another forming a ”rung of
the DNA ladder.” The DNA molecule consists of two strands that wind around each other
like a twisted ladder. Each strand has a backbone made of alternating sugar (deoxyribose)
and phosphate groups. Attached to each sugar is one of four bases–adenine (A), cytosine
(C), guanine (G), or thymine (T). The two strands are held together by hydrogen bonds
between the bases, with adenine forming a base pair with thymine, and cytosine forming a
base pair with guanine.

ited from our mother. This is because mitochondria are only found in the female
gametes or “eggs” of sexually reproducing animals, not in the male gamete, or
sperm. Mitochondrial DNA also does not recombine; there is no shuffling of genes
from one generation to the other, as there is with nuclear genes.

Large numbers of mitochondria are found in the tail of sperm, providing them
with an engine that generates the energy needed for swimming toward the egg.
However, when the sperm enters the egg during fertilization, the tail falls off, taking
away the father’s mitochondria.

Why Is There a Separate Mitochondrial Genome?

The energy-conversion process that takes place in the mitochondria takes placeaer-
obically, in the presence of oxygen. Other energy conversion processes in the cell
take placeanaerobically, or without oxygen. The independent aerobic function of
these organelles is thought to have evolved from bacteria that lived insideof other
simple organisms in a mutually beneficial, orsymbiotic, relationship, providing
them with aerobic capacity. Through the process of evolution, these tiny organisms
became incorporated into the cell, and their genetic systems and cellular functions
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Figure A.23: Mitochondrial DNA is the small circular chromosome found inside mitochon-
dria. The mitochondria are organelles found in cells that are the sites of energy production.
The mitochondria, and thus mitochondrial DNA, are passed from mother to offspring.

became integrated to form a single functioning cellular unit. Because mitochondria
have their own DNA, RNA, and ribosomes, this scenario is quite possible. This the-
ory is also supported by the existence of a eukaryotic organism, called the amoeba,
which lacks mitochondria. Therefore, amoeba must always have a symbioticrela-
tionship with an aerobic bacterium.

Why Study Mitochondria?

There are many diseases caused by mutations inmitochondrial DNA (mtDNA).
Because the mitochondria produce energy in cells, symptoms of mitochondrial
diseases often involve degeneration or functional failure of tissue. For example,
mtDNA mutations have been identified in some forms of diabetes, deafness, and
certain inherited heart diseases. In addition, mutations in mtDNA are able to ac-
cumulate throughout an individual’s lifetime. This is different from mutations in
nuclear DNA, which has sophisticated repair mechanisms to limit the accumula-
tion of mutations. Mitochondrial DNA mutations can also concentrate in the mi-
tochondria of specific tissues. A variety of deadly diseases are attributable to a
large number of accumulated mutations in mitochondria. There is even a theory,
the Mitochondrial Theory of Aging, that suggests that accumulation of mutations
in mitochondria contributes to, or drives, the aging process. These defects are asso-
ciated with Parkinson’s and Alzheimer’s disease, although it is not known whether
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the defects actually cause or are a direct result of the diseases. However, evidence
suggests that the mutations contribute to the progression of both diseases.

In addition to the critical cellular energy-related functions, mitochondrial genes
are useful to evolutionary biologists because of their maternal inheritanceand high
rate of mutation. By studying patterns of mutations, scientists are able to recon-
struct patterns of migration and evolution within and between species. For example,
mtDNA analysis has been used to trace the migration of people from Asia across
the Bering Strait to North and South America. It has also been used to identifyan
ancient maternal lineage from which modern man evolved.

Ribonucleic Acids

Just like DNA,ribonucleic acid (RNA)is a chain, or polymer, of nucleotides with
the same 5’ to 3’ direction of its strands. However, the ribose sugar component
of RNA is slightly different chemically than that of DNA. RNA has a 2’ oxygen
atom that is not present in DNA. Other fundamental structural differences exist.
For example, uracil takes the place of the thymine nucleotide found in DNA, and
RNA is, for the most part, a single-stranded molecule. DNA directs the synthesis
of a variety of RNA molecules, each with a unique role in cellular function. For
example, all genes that code for proteins are first made into an RNA strandin
the nucleus called amessenger RNA (mRNA). The mRNA carries the information
encoded in DNA out of the nucleus to the protein assembly machinery, called the
ribosome, in the cytoplasm. The ribosome complex uses mRNA as a template to
synthesize the exact protein coded for by the gene.

In addition to mRNA, DNA codes for other forms of RNA, including riboso-
mal RNAs (rRNAs), transfer RNAs (tRNAs), and small nuclear RNAs (snRNAs).
rRNAs and tRNAs participate in protein assembly whereas snRNAs aid in a pro-
cess called splicing —the process of editing of mRNA before it can be used as a
template for protein synthesis.

Proteins

Although DNA is the carrier of genetic information in a cell, proteins do the bulk
of the work. Proteins are long chains containing as many as 20 different kinds
of amino acids. Each cell contains thousands of different proteins:enzymesthat
make new molecules and catalyze nearly all chemical processes in cells;struc-
tural componentsthat give cells their shape and help them move; hormones that
transmit signals throughout the body;antibodiesthat recognize foreign molecules;
and transport moleculesthat carry oxygen. The genetic code carried by DNA is
what specifies the order and number of amino acids and, therefore, the shape and
function of the protein.

The “Central Dogma”—a fundamental principle of molecular biology—states
that genetic information flows from DNA to RNA to protein. Ultimately, however,
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Figure A.24: Messenger RNA (mRNA) is a single-stranded RNA molecule that is comple-
mentary to one of the DNA strands of a gene. The mRNA is an RNA version of the gene
that leaves the cell nucleus and moves to the cytoplasm whereproteins are made. During
protein synthesis, an organelle called a ribosome moves along the mRNA, reads its base
sequence, and uses the genetic code to translate each three-base triplet, or codon, into its
corresponding amino acid.

Figure A.25: Amino acids are a set of 20 different molecules used to build proteins. Proteins
consist of one or more chains of amino acids called polypeptides. The sequence of the
amino acid chain causes the polypeptide to fold into a shape that is biologically active. The
amino acid sequences of proteins are encoded in the genes.
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Figure A.26: A codon is a trinucleotide sequence of DNA or RNAthat corresponds to
a specific amino acid. The genetic code describes the relationship between the sequence
of DNA bases (A, C, G, and T) in a gene and the corresponding protein sequence that
it encodes. The cell reads the sequence of the gene in groups of three bases. There are 64
different codons: 61 specify amino acids while the remaining three are used as stop signals.

the genetic code resides in DNA because only DNA is passed from generation to
generation. Yet, in the process of making a protein, the encoded informationmust
be faithfully transmitted first to RNA then to protein. Transferring the code from
DNA to RNA is a fairly straightforward process calledtranscription. Deciphering
the code in the resulting mRNA is a little more complex. It first requires that the
mRNA leave the nucleus and associate with a large complex of specialized RNAs
and proteins that, collectively, are called theribosome. Here the mRNA is trans-
lated into protein by decoding the mRNA sequence in blocks of three RNA bases,
calledcodons, where each codon specifies a particular amino acid. In this way, the
ribosomal complexbuilds a protein one amino acid at a time, with the order of
amino acids determined precisely by the order of the codons in the mRNA.

A given amino acid can have more than one codon. These redundant codons
usually differ at the third position. For example, the amino acid serine is encoded
by UCU, UCC, UCA, and/or UCG. This redundancy is key to accommodating
mutations that occur naturally as DNA is replicated and new cells are produced.
By allowing some of the random changes in DNA to have no effect on the ultimate
protein sequence, a sort of genetic safety net is created. Some codonsdo not code
for an amino acid at all but instruct the ribosome when to stop adding new amino
acids.

The Core Gene Sequence: Introns and Exons

Genes make up about 1 percent of the total DNA in our genome. In the human
genome, the coding portions of a gene, calledexons, are interrupted by intervening
sequences, calledintrons. In addition, a eukaryotic gene does not code for a protein
in one continuous stretch of DNA. Both exons and introns are “transcribed” into
mRNA, but before it is transported to the ribosome, the primary mRNA transcript is
edited. This editing process removes the introns, joins the exons together, and adds
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Table A.1: RNA triplet codons and their corresponding aminoacids.
U C A G

U UUU Phenylalanine UCU Serine UAU Tyrosine UGU Cysteine
UUC Phenylalanine UCC Serine UAC Tyrosine UGC Cysteine
UUA Leucine UCA Serine UAA Stop UGA Stop
UUG Leucine UCG Serine UAG Stop UGG Tryptophan

C CUU Leucine CCU Proline CAU Histidine CGU Arginine
CUC Leucine CCC Proline CAC Histidine CGC Arginine
CUA Leucine CCA Proline CAA Glutamine CGA Arginine
CUG Leucine CCG Proline CAG Glutamine CGG Arginine

A AUU Isoleucine ACU Threonine AAU Asparagine AGU Serine
AUC Isoleucine ACC Threonine AAC Asparagine AGC Serine
AUA Isoleucine ACA Threonine AAA Lysine AGA Arginine
AUG Methionine ACG Threonine AAG Lysine AGG Arginine

G GUU Valine GCU Alanine GAU Aspartate GGU Glycine
GUC Valine GCC Alanine GAC Aspartate GGC Glycine
GUA Valine GCA Alanine GAA Glutamate GGA Glycine
GUG Valine GCG Alanine GAG Glutamate GGG Glycine

Figure A.27: An exon is the portion of a gene that codes for amino acids. In the cells of
plants and animals, most gene sequences are broken up by one or more DNA sequences
called introns. The parts of the gene sequence that are expressed in the protein are called ex-
ons, because they are expressed, while the parts of the gene sequence that are not expressed
in the protein are called introns, because they come in between–or interfere with–the ex-
ons. In the cells of plants and animals, most gene sequences are broken up by one or more
introns.
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Figure A.28: Recombination. Recombination involves pairing between complementary
strands of two parental duplex DNAs (top and middle panel). This process creates a stretch
of hybrid DNA (bottom panel) in which the single strand of oneduplex is paired with its
complement from the other duplex.

unique features to each end of the transcript to make a “mature” mRNA. One might
then ask what the purpose of an intron is if it is spliced out after it is transcribed?
It is still unclear what all the functions of introns are, but scientists believethat
some serve as the site forrecombination, the process by which progeny derive a
combination of genes different from that of either parent, resulting in novel genes
with new combinations of exons, the key to evolution.

Gene Prediction Using Computers

When the complete mRNA sequence for a gene is known, computer programs are
used to align the mRNA sequence with the appropriate region of the genomic DNA
sequence. This provides a reliable indication of the beginning and end of the coding
region for that gene. In the absence of a complete mRNA sequence, the boundaries
can be estimated by ever-improving, but still inexact, gene prediction software. The
problem is the lack of a single sequence pattern that indicates the beginning or end
of a eukaryotic gene. Fortunately, the middle of a gene, referred to as thecore gene
sequence–has enough consistent features to allow more reliable predictions.
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Figure A.29: An overview of transcription and translation.This drawing provides a graphic
overview of the many steps involved in transcription and translation. Within the nucleus of
the cell (light blue), genes (DNA, dark blue) are transcribed into RNA. This RNA molecule
is then subject to post-transcriptional modification and control, resulting in a mature mRNA
molecule (red) that is then transported out of the nucleus and into the cytoplasm (peach),
where it undergoes translation into a protein. mRNA molecules are translated by ribosomes
(purple) that match the three-base codons of the mRNA molecule to the three-base anti-
codons of the appropriate tRNA molecules. These newly synthesized proteins (black) are
often further modified, such as by binding to an effector molecule (orange), to become
fully active.

From Genes to Proteins: Start to Finish

We just discussed that the journey from DNA to mRNA to protein requires that
a cell identify where a gene begins and ends. This must be done both during the
transcription and the translation process.

Transcription

Transcription, the synthesis of an RNA copy from a sequence of DNA, is carried
out by an enzyme calledRNA polymerase. This molecule has the job of recogniz-
ing the DNA sequence where transcription is initiated, called thepromoter site. In
general, there are two “promoter” sequences upstream from the beginning of every
gene. The location and base sequence of each promoter site vary forprokaryotes
(bacteria) andeukaryotes(higher organisms), but they are both recognized by RNA
polymerase, which can then grab hold of the sequence and drive the production of
an mRNA.

Eukaryotic cells have three different RNA polymerases, each recognizing three
classes of genes.RNA polymerase IIis responsible for synthesis of mRNAs from
protein-coding genes. This polymerase requires a sequence resemblingTATAA,
commonly referred to as theTATA box, which is found 25-30 nucleotides upstream
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of the beginning of the gene, referred to as theinitiator sequence.
Transcription terminates when the polymerase stumbles upon a termination,

or stop signal. In eukaryotes, this process is not fully understood. Prokaryotes,
however, tend to have a short region composed of G’s and C’s that is able to fold
in on itself and form complementary base pairs, creating a stem in the new mRNA.
This stem then causes the polymerase to trip and release thenascent, or newly
formed, mRNA.

Translation

The beginning oftranslation, the process in which the genetic code carried by
mRNA directs the synthesis of proteins from amino acids, differs slightly for prokary-
otes and eukaryotes, although both processes always initiate at a codonfor me-
thionine. For prokaryotes, the ribosome recognizes and attaches at the sequence
AGGAGGU on the mRNA, called theShine-Delgarno sequence, that appears just
upstream from the methionine (AUG) codon. Curiously, eukaryotes lack this recog-
nition sequence and simply initiate translation at the amino acid methionine, usu-
ally coded for by the bases AUG, but sometimes GUG. Translation is terminated
for both prokaryotes and eukaryotes when the ribosome reaches one of the three
stop codons.

Structural Genes, Junk DNA, and Regulatory Sequences

Over 98 percent of the genome is of unknown function. Although often referred to
as “junk” DNA, scientists are beginning to uncover the function of many of these
intergenic sequences—the DNA found between genes.

Structural Genes.Sequences that code for proteins are calledstructural genes. Al-
though it is true that proteins are the major components of structural elements ina
cell, proteins are also the real workhorses of the cell. They perform such functions
as transporting nutrients into the cell; synthesizing new DNA, RNA, and protein
molecules; and transmitting chemical signals from outside to inside the cell, as
well as throughout the cell—both critical to the process of making proteins.

Regulatory Sequences.A class of sequences calledregulatory sequencesmakes up
a numerically insignificant fraction of the genome but provides critical functions.
For example, certain sequences indicate the beginning and end of genes,sites for
initiating replication and recombination, or provide landing sites for proteins that
turn genes on and off. Like structural genes, regulatory sequences are inherited;
however, they are not commonly referred to as genes.

Other DNA Regions.Forty to forty-five percent of our genome is made up of short
sequences that are repeated, sometimes hundreds of times. There are numerous
forms of this “repetitive DNA”, and a few have known functions, such as stabiliz-
ing the chromosome structure or inactivating one of the two X chromosomes in
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Figure A.30: A chromosome. A chromosome is composed of a verylong molecule of DNA
and associated proteins that carry hereditary information. The centromere, shown at the
center of this chromosome, is a specialized structure that appears during cell division and
ensures the correct distribution of duplicated chromosomes to daughter cells. Telomeres
are the structures that seal the end of a chromosome. Telomeres play a critical role in chro-
mosome replication and maintenance by counteracting the tendency of the chromosome to
otherwise shorten with each round of replication.

developing females, a process calledX-inactivation. The most highly repeated se-
quences found so far in mammals are called “satellite DNA” because their unusual
composition allows them to be easily separated from other DNA. These sequences
are associated with chromosome structure and are found at thecentromeres(or
centers) andtelomeres(ends) of chromosomes. Although they do not play a role
in the coding of proteins, they do play a significant role in chromosome structure,
duplication, and cell division. The highly variable nature of these sequences makes
them an excellent “marker” by which individuals can be identified based on their
unique pattern of their satellite DNA.

Another class of non-coding DNA is the “pseudogene”, so named because it is
believed to be a remnant of a real gene that has suffered mutations and is no longer
functional. Pseudogenes may have arisen through the duplication of a functional
gene, followed by inactivation of one of the copies. Comparing the presence or
absence of pseudogenes is one method used by evolutionary geneticists togroup
species and to determine relatedness. Thus, these sequences are thought to carry a
record of our evolutionary history.

How Many Genes Do Humans Have?

In February 2001, two largely independent draft versions of the human genome
were published. Both studies estimated that there are 30,000 to 40,000 genesin the
human genome, roughly one-third the number of previous estimates. More recently
scientists estimated that there are less than 30,000 human genes. However, we still
have to make guesses at the actual number of genes, because not all ofthe human
genome sequence is annotated and not all of the known sequence has been assigned
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a particular position in the genome.
So, how do scientists estimate the number of genes in a genome? For the most

part, they look for tell-tale signs of genes in a DNA sequence. These include:open
reading frames, stretches of DNA, usually greater than 100 bases, that are not in-
terrupted by a stop codon such as TAA, TAG or TGA;start codonssuch as ATG;
specific sequences found atsplice junctions, a location in the DNA sequence where
RNA removes the non-coding areas to form a continuous gene transcriptfor trans-
lation into a protein; andgene regulatory sequences. This process is dependent on
computer programs that search for these patterns in various sequence databases and
then make predictions about the existence of a gene.

From One Gene—One Protein to a More Global Perspective

Only a small percentage of the 3 billion bases in the human genome becomes an
expressed gene product. However, of the approximately 1 percent of our genome
that is expressed, 40 percent is alternatively spliced to produce multiple proteins
from a single gene.Alternative splicingrefers to the cutting and pasting of the
primary mRNA transcript into various combinations of mature mRNA. Therefore
the one gene—one protein theory, originally framed as “one gene—one enzyme”,
does not precisely hold.

With so much DNA in the genome, why restrict transcription to a tiny portion,
and why make that tiny portion work overtime to produce many alternate tran-
scripts? This process may have evolved as a way to limit the deleterious effects of
mutations. Genetic mutations occur randomly, and the effect of a small number of
mutations on a single gene may be minimal. However, an individual having many
genes each with small changes could weaken the individual, and thus the species.
On the other hand, if a single mutation affects several alternate transcripts at once,
it is more likely that the effect will be devastating—the individual may not survive
to contribute to the next generation. Thus, alternate transcripts from a single gene
could reduce the chances that a mutated gene is transmitted.

Gene Switching: Turning Genes On and Off

The estimated number of genes for humans, less than 30,000, is not so different
from the 25,300 known genes of Arabidopsis thaliana, commonly called mustard
grass. Yet, we appear, at least at first glance, to be a far more complexorganism.
A person may wonder how this increased complexity is achieved. One answer lies
in the regulatory system that turns genes on and off. This system also precisely
controls the amount of a gene product that is produced and can furthermodify
the product after it is made. This exquisite control requires multiple regulatory in-
put points. One very efficient point occurs at transcription, such that an mRNA is
produced only when a gene product is needed. Cells also regulate geneexpres-
sion bypost-transcriptional modification; by allowing only a subset of the mRNAs
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to go on to translation; or by restricting translation of specific mRNAs to only
when the product is needed. At other levels, cells regulate gene expression through
DNA folding, chemical modification of the nucleotide bases, and intricate “feed-
back mechanisms” in which some of the gene’s own protein product directs the cell
to cease further protein production.

Controlling Transcription

Promoters and Regulatory Sequences.Transcription is the process whereby RNA
is made from DNA. It is initiated when an enzyme,RNA polymerase, binds to
a site on the DNA called apromoter sequence. In most cases, the polymerase is
aided by a group of proteins called “transcription factors” that perform specialized
functions, such as DNA sequence recognition and regulation of the polymerase’s
enzyme activity. Other regulatory sequences includeactivators, repressors, and
enhancers. These sequences can becis-acting(affecting genes that are adjacent to
the sequence) ortrans-acting(affecting expression of the gene from a distant site),
even on another chromosome.

The Globin Genes: An Example of Transcriptional Regulation.An example of
transcriptional control occurs in the family of genes responsible for the produc-
tion of globin. Globin is the protein that complexes with the iron-containing heme
molecule to make hemoglobin.Hemoglobintransports oxygen to our tissues via
red blood cells. In the adult, red blood cells do not contain DNA for making new
globin; they are ready-made with all of the hemoglobin they will need.

During the first few weeks of life, embryonic globin is expressed in the yolk
sac of the egg. By week five of gestation, globin is expressed in early liver cells.
By birth, red blood cells are being produced, and globin is expressed in the bone
marrow. Yet, the globin found in the yolk is not produced from the same geneas
is the globin found in the liver or bone marrow stem cells. In fact, at each stage
of development, different globin genes are turned on and off through a process of
transcriptional regulation called “switching”.

To further complicate matters, globin is made from two different protein chains:
an alpha-like chain coded for on chromosome 16; and a beta-like chain coded for
on chromosome 11. Each chromosome has the embryonic, fetal, and adult form
lined up on the chromosome in a sequential order for developmental expression.
The developmentally regulated transcription of globin is controlled by a numberof
cis-acting DNA sequences, and although there remains a lot to be learned about the
interaction of these sequences, one known control sequence is an enhancer called
theLocus Control Region (LCR). The LCR sits far upstream on the sequence and
controls the alpha genes on chromosome 16. It may also interact with other factors
to determine which alpha gene is turned on.

Thalassemiasare a group of diseases characterized by the absence or decreased
production of normal globin, and thus hemoglobin, leading to decreased oxygen in
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the system. There are alpha and beta thalassemias, defined by the defective gene,
and there are variations of each of these, depending on whether the embryonic, fe-
tal, or adult forms are affected and/or expressed. Although there is no known cure
for the thalassemias, there are medical treatments that have been developedbased
on our current understanding of both gene regulation and cell differentiation. Treat-
ments include blood transfusions, iron chelators, and bone marrow transplants.
With continuing research in the areas of gene regulation and cell differentiation,
new and more effective treatments may soon be on the horizon, such as the advent
of gene transfer therapies.

The Influence of DNA Structure and Binding Domains.Sequences that are im-
portant in regulating transcription do not necessarily code for transcription fac-
tors or other proteins. Transcription can also be regulated by subtle variations in
DNA structure and by chemical changes in the bases to which transcription factors
bind. As stated previously, the chemical properties of the four DNA basesdiffer
slightly, providing each base with unique opportunities to chemically react with
other molecules. One chemical modification of DNA, calledmethylation, involves
the addition of amethyl group (-CH3). Methylation frequently occurs at cytosine
residues that are preceded by guanine bases, oftentimes in the vicinity of promoter
sequences. The methylation status of DNA often correlates with its functionalac-
tivity, where inactive genes tend to be more heavily methylated. This is because the
methyl group serves to inhibit transcription by attracting a protein that binds specif-
ically to methylated DNA, thereby interfering with polymerase binding. Methyla-
tion also plays an important role ingenomic imprinting, which occurs when both
maternal and paternal alleles are present but only one allele is expressed while the
other remains inactive. Another way to think of genomic imprinting is as “parent
of origin differences” in the expression of inherited traits. Considerable intrigue
surrounds the effects of DNA methylation, and many researchers are working to
unlock the mystery behind this concept.

Controlling Translation

Translationis the process whereby the genetic code carried by an mRNA directs
the synthesis of proteins.Translational regulationoccurs through the binding of
specific molecules, calledrepressor proteins, to a sequence found on an RNA
molecule. Repressor proteins prevent a gene from being expressed.As we have
just discussed, the default state for a gene is that of being expressed via the recog-
nition of its promoter by RNA polymerase. Close to the promoter region is another
cis-acting site called theoperator, the target for the repressor protein. When the re-
pressor protein binds to the operator, RNA polymerase is prevented frominitiating
transcription, and gene expression is turned off.

Translational control plays a significant role in the process of embryonicdevel-
opment and cell differentiation. Upon fertilization, an egg cell begins to multiply



A.2. WHAT IS A GENOME A-43

to produce a ball of cells that are all the same. At some point, however, these cells
begin todifferentiate, or change into specific cell types. Some will become blood
cells or kidney cells, whereas others may become nerve or brain cells. When all
of the cells formed are alike, the same genes are turned on. However, once differ-
entiation begins, various genes in different cells must become active to meet the
needs of that cell type. In some organisms, the egg houses store immature mRNAs
that become translationally active only after fertilization. Fertilization then serves
to trigger mechanisms that initiate the efficient translation of mRNA into proteins.
Similar mechanisms serve to activate mRNAs at other stages of development and
differentiation, such as when specific protein products are needed.

Molecular Genetics: The Study of Heredity, Genes, and DNA

As we have just learned, DNA provides a blueprint that directs all cellularactivi-
ties and specifies the developmental plan of multicellular organisms. Therefore, an
understanding of DNA, gene structure, and function is fundamental foran appre-
ciation of the molecular biology of the cell. Yet, it is important to recognize that
progress in any scientific field depends on the availability of experimental tools
that allow researchers to make new scientific observations and conduct novel ex-
periments. The last section of the genetic primer concludes with a discussion of
some of the laboratory tools and technologies that allow researchers to study cells
and their DNA.
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A.3 Molecular Genetics: Piecing It Together

Molecular genetics is the study of the agents that pass information from genera-
tion to generation. These molecules, ourgenes, are long polymers ofdeoxyribonu-
cleic acid, or DNA. Just four chemical building blocks—guanine (G), adenine (A),
thymine (T), and cytosine (C)—are placed in a unique order to code for allof the
genes in all living organisms.

Genes determinehereditary traits, such as the color of our hair or our eyes.
They do this by providing instructions for how every activity in every cell of our
body should be carried out. For example, a gene may tell a liver cell to remove
excess cholesterol from our bloodstream. How does a gene do this? It will instruct
the cell to make a particular protein. It is this protein that then carries out the
actual work. In the case of excess blood cholesterol, it is the receptor proteins on
the outside of a liver cell that bind to and remove cholesterol from the blood. The
cholesterol molecules can then be transported into the cell, where they are further
processed by other proteins.

Many diseases are caused bymutations, or changes in the DNA sequence of
a gene. When the information coded for by a gene changes, the resulting protein
may not function properly or may not even be made at all. In either case, thecells
containing that genetic change may no longer perform as expected. We now know
that mutations in genes code for thecholesterol receptor proteinassociated with a
disease calledfamilial hypercholesterolemia. The cells of an individual with this
disease end up having reduced receptor function and cannot remove asufficient
amount of low density lipoprotein (LDL), or bad cholesterol, from their blood-
stream. A person may then develop dangerously high levels of cholesterol,putting
them at increased risk for both heart attack and stroke.

How do scientists study and find these genetic mutations? They have available
to them a variety of tools and technologies to compare a DNA sequence isolated
from a healthy person to the same DNA sequence extracted from an afflicted per-
son. Advanced computer technologies, combined with the explosion of genetic
data generated from the various whole genome sequencing projects, enable scien-
tists to use these molecular genetic tools to diagnose disease and to design new
drugs and therapies. Below is a review of some common laboratory methods that
geneticists— scientists who study the inheritance pattern of specific traits—canuse
to obtain and work with DNA, followed by a discussion of some applications.

Laboratory Tools and Techniques

The methods used by molecular geneticists to obtain and study DNA have been
developed through keen observation and adaptation of the chemical reactions and
biological processes that occur naturally in all cells. Many of the enzymesthat
copy DNA, make RNA from DNA, and synthesize proteins from an RNA tem-
plate were first characterized in bacteria. These basic research results have become
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Figure A.31: Polymerase chain reaction (PCR) is a laboratory technique used to amplify
DNA sequences. The method involves using short DNA sequences called primers to select
the portion of the genome to be amplified. The temperature of the sample is repeatedly
raised and lowered to help a DNA replication enzyme copy the target DNA sequence. The
technique can produce a billion copies of the target sequence in just a few hours.

fundamental to our understanding of the function of human cells and have led to
immense practical applications for studying a gene and its corresponding protein.
For example, large-scale protein production now provides an inexpensive way to
generate abundant quantities of certain therapeutic agents, such as insulin for the
treatment of diabetes. As science advances, so do the number of tools available that
are applicable to the study of molecular genetics.

Obtaining DNA for Laboratory Analysis

Isolating DNA from just a single cell provides a complete set of all a person’s
genes, that is, two copies of each gene. However, many laboratory techniques re-
quire that a researcher have access to hundreds of thousands of copies of a par-
ticular gene. One way to obtain this many copies is to isolate DNA from millions
of cells grown artificially in the laboratory. Another method, calledcloning, uses
DNA manipulation procedures to produce multiple copies of a single gene or seg-
ment of DNA. Thepolymerase chain reaction(PCR) is a third method whereby
a specific sequence within a double-stranded DNA is copied, oramplified. PCR
amplification has become an indispensable tool in a great variety of applications.

Methods for Amplifying DNA

Cloning DNA in Bacteria.The word “cloning” can be used in many ways. In this
document, it refers to making multiple, exact copies of a particular sequenceof
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DNA. To make a clone, a target DNA sequence is inserted into what is called
a cloning vector. A cloning vector is a DNA molecule originating from a virus,
plasmid, or the cell of a higher organism into which another DNA fragment ofap-
propriate size can be integrated without interfering with the vector’s capacity for
self-replication. The target and vector DNA fragments are thenligated, or joined
together, to create what is called arecombinant DNA molecule. Recombinant DNA
molecules are usually introduced into Escherichia coli, or E. coli—a common lab-
oratory strain of a bacterium— bytransformation, the natural DNA uptake mech-
anism possessed by bacteria. Within the bacterium, the vector directs the multipli-
cation of the recombinant DNA molecule, producing a number of identical copies.
The vector replication process is such that only one recombinant DNA molecule
can propagate within a single bacterium; therefore, each resulting clone contains
multiple copies of just one DNA insert. The DNA can then be isolated using the
techniques described earlier.

A restriction enzymeis a protein that binds to a DNA molecule at a specific
sequence and makes a double-stranded cut at, or near, that sequence. Restriction
enzymes have specialized applications in various scientific techniques, such as ma-
nipulating DNA molecules during cloning. These enzymes can cut DNA in two
different ways. Many make a simple double-stranded cut, giving a sequencewhat
are calledblunt or flush ends. Others cut the two DNA strands at different posi-
tions, usually just a few nucleotides apart, such that the resulting DNA fragments
have short single-stranded overhangs, calledstickyor cohesive ends. By carefully
choosing the appropriate restriction enzymes, a researcher can cut out a target DNA
sequence, open up a cloning vector, and join the two DNA fragments to forma re-
combinant DNA molecule.

More on Cloning Vectors.In general, a bacterial genome consists of a single, cir-
cular chromosome. They can also contain much smaller extrachromosomal genetic
elements, calledplasmids, that are distinct from the normal bacterial genome and
are nonessential for cell survival under normal conditions. Plasmids are capable of
copying themselves independently of the chromosome and can easily move from
one bacterium to another. In addition, some plasmids are capable of integrating
into a host genome. This makes them an excellent vehicle, orvector, for shuttling
target DNA into a bacterial host. By cutting both the target and plasmid DNA with
the same restriction enzyme, complementary base pairs are formed on each DNA
fragment. These fragments may then be joined together, creating a new circular
plasmid that contains the target DNA. Thisrecombinant plasmidis then coaxed
into a bacterial host where it is copied, orreplicated, as though it were a normal
plasmid.

Bacterial plasmidswere the first vectors used to transfer genetic information
and are still used extensively. However, their use is sometimes limited by the
amount of target DNA they can accept, approximately 15,000 bases, or 15Kb. With
DNA sequences beyond this size, the efficiency of the vector decreases because it
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now has trouble entering the cell and replicating itself. However, other vectors have
been discovered or created that can accept larger target DNA including: bacterio-
phages, bacterial viruses that accept inserts up to 20 Kb;cosmids, recombinant
plasmids with bacteriophage components that accept inserts up to 45 Kb;bacterial
artificial chromosomes(BACs) that accept inserts up to 150 Kb; andyeast arti-
ficial chromosomes(YACs) that accept inserts up to 1000 kb. Many viruses have
also been modified for use as cloning vectors.

Polymerase Chain Reaction (PCR).The polymerase chain reaction (PCR)is an
amazingly simple technique that results in the exponentialamplificationof almost
any region of a selected DNA molecule. It works in a way that is similar to DNA
replication in nature. The primary materials, or reagents, used in PCR are:

• DNA nucleotides, the building blocks for the new DNA

• Template DNA, the DNA sequence that you want to amplify

• Primers, single-stranded DNAs between 20 and 50 nucleotides long that are
complementary to a short region on either side of the template DNA

• Taq polymerase, a heat stable enzyme that drives, or catalyzes, the synthesis
of new DNA

Taq polymerase was first isolated from a bacterium that lives in the hot springs in
Yellowstone National Park. The Taq polymerase enzyme has evolved to withstand
the extreme temperatures in which the bacteria live and can therefore remain intact
during the high temperatures used in PCR.

The PCR reaction is carried out by mixing together in a small test tube the
template DNA, DNA nucleotides, primers, and Taq polymerase. The primers must
anneal, or pair to, the template DNA on either side of the region that is to be am-
plified, or copied. This means that the DNA sequences of these borders must be
known so that the appropriate primers can be made. These oligonucleotidesserve
to initiate the synthesis of the new complementary strand of DNA. Because Taq
polymerase, a form of DNA polymerase that catalyzes the synthesis of newDNA,
is incredibly heat stable (thermostable), the reaction mixture can be heated to ap-
proximately 90 degrees centigrade without destroying the molecules’ enzymatic
activity. At this temperature, the newly created DNA strands detach from thetem-
plate DNA.

The reaction mixture is then cooled again, allowing more primers to anneal to
the template DNA and also to the newly created DNA. The Taq polymerase can
now carry out a second cycle of DNA synthesis. This cycle of heating, cooling,
and heating is repeated over and over. Because each cycle doubles theamount of
template DNA in the previous cycle, one template DNA molecule rapidly becomes
hundreds of thousands of molecules in just a couple of hours.
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PCR has many applications in biology. It is used in DNA mapping, DNA se-
quencing, and molecular phylogenetics. A modified version of PCR can alsobe
used to amplify DNA copies of specific RNA molecules. Because PCR requires
very little starting material, or template DNA, it is frequently used in forensic sci-
ence and clinical diagnosis.

Preparing DNA for Experimental Analysis

Gel Electrophoresis: Separating DNA Molecules of Different Lengths. Gelsare
usually made fromagarose—a chain of sugar molecules extracted from seaweed—
or some other synthetic molecule. Purified agarose is generally purchasedin a
powdered form and is dissolved in boiling water. While the solution is still hot,
it is poured into a special gel casting apparatus that contains three basic parts: a
tray, a support, and a comb. The tray serves as the mold that will provide theshape
and size for the gel. The support prevents the liquid agarose from leaking out of
the mold during the solidification process. As the liquid agarose starts to cool, it
undergoes what is known aspolymerization. Rather than staying dissolved in the
water, the sugar polymers crosslink with each other, causing the solution togel into
a semi-solid matrix much like Jello, only more firm. The support also allows the
polymerized gel to be removed from the mold without breaking. The job of the
comb is to generate smallwells into which a DNA sample will be loaded.

Once a gel has polymerized, it is lifted from the casting tray, placed into a
running tank, and submerged in a special aqueous buffer, called arunning buffer.
The gel apparatus is then connected to a power supply via two plugs, orelectrodes.
Each plug leads to a thin wire at opposite ends of the tank. Because one electrode
is positive and the other is negative, a strong electric current will flow through the
tank when the power supply is turned on.

Next, DNA samples of interest are dissolved in a tiny volume of liquid contain-
ing a small amount of glycerol. Because glycerol has a density greater than water,
it serves to weight down the sample and stops it from floating away once the sam-
ple has been loaded into a well. Also, because it is helpful to be able to monitor a
DNA sample as it migrates across a gel, charged molecules, calleddyes, are also
added to the sample buffer. These dyes are usually of two different colors and two
differentmolecular weights, or sizes. One of the dyes is usually smaller than most,
if not all, of the sample DNA fragments and will migrate faster than the smallest
DNA sample. The other dye is usually large and will migrate with the larger DNA
samples. It is assumed that most of the DNA fragments of interest will migrate
somewhere in between these two dyes. Therefore, when the small dye reaches the
end of the gel, electrophoresis is usually stopped.

Once the gel has been prepared and loaded, the power supply is turnedon.
The electric current flowing through the gel causes the DNA fragments to migrate
toward the bottom, orpositively chargedend, of the gel. This is because DNA has
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an overall negative charge because of the combination of molecules in its structure.
Smaller fragments of DNA are less impeded by the crosslinks formed within the
polymerized gel than are larger molecules. This means that smaller DNA fragments
tend to move faster and farther in a given amount of time. The result is a streak, or
gradient, of larger to smaller DNA pieces. In those instances where multiple copies
of DNA all have the same length, a concentration of DNA occurs at that position
in the gel, called a band. Bands can result from a restriction enzyme digestof a
sample containing thousands of copies of plasmid DNA, or PCR amplification of
a DNA sequence. The banded DNA is then detected by soaking the gel briefly in a
solution containing a dye calledethidium bromide(EtBr). EtBr is anintercalating
agent, which means that it is capable of wedging itself into the grooves of DNA,
where it remains. The more base pairs present within a DNA fragment, the greater
the number of grooves available for EtBr to insert itself. EtBr also fluoresces under
ultraviolet (UV) light. Therefore, if a gel soaked in a solution containing EtBr is
placed under a UV source, a researcher can actually detect DNA by visualizing
where the EtBr fluoresces. Because a scientist always loads and runsa “control”
sample that contains multiple fragments of DNA with known sizes, the sizes of
the sample DNA fragments can be estimated by comparing the control and sample
bands.

DNA Blotting.The porous and thin nature of a gel is ideal for separating DNA
fragments using electrophoresis, but as we mentioned earlier, these gels are del-
icate and rarely usable for other techniques. For this reason, DNA that has been
separated by electrophoresis is transferred from a gel to an easy-to-handle inert
membrane, a process calledblotting. The term “blotting” describes the overlaying
of the membrane on the gel and the application of a pad to ensure even contact,
without disturbing the positions of the DNA fragments. In the first step, the DNA
trapped in the gel isdenatured—the double-stranded DNA is broken into single
strands by soaking the gel in an alkaline solution. This readies the DNA for hy-
bridization with aprobe, a piece of DNA that is complementary to the sequence
under investigation. A membrane, usually made of a compound callednitrocellu-
lose, is then placed on top of the gel and compressed with a heavy weight. The
DNA is transferred from the gel to the membrane by simple capillary action. This
procedure reproduces the exact pattern of DNA captured in the gel onthe mem-
brane. The membrane can then be probed with a DNA marker to verify the presence
of a target sequence.

Southern blottingis the name of the procedure for transferring denatured DNA
from an agarose gel to a solid support membrane. This procedure takesadvantage
of a special property of nitrocellulose, its ability to bind very strongly to single-
stranded DNA but not double-stranded DNA. On the other hand,Northern blotting
refers to any blotting procedure in which electrophoresis is performed using RNA.
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Figure A.32: Chain termination DNA sequencing. Chain termination sequencing involves
the synthesis of new strands of DNA complementary to a single-stranded template (step I).
The template DNA is supplied with a mixture of all four deoxynucleotides, four dideoxynu-
cleotides (each labeled with a different colored fluorescent tag), and DNA polymerase (step
II). Because all four deoxynucleotides are present, chain elongation proceeds until, by
chance, DNA polymerase inserts a dideoxynucleotide. The result is a new set of DNA
chains, all of different lengths (step III). The fragments are then separated by size using gel
electrophoresis (step IV). As each labeled DNA fragment passes a detector at the bottom
of the gel, the color is recorded. The DNA sequence is then reconstructed from the pattern
of colors representing each nucleotide sequence (step V).

Methods for Analyzing DNA

Once DNA has been isolated and purified, it can be further analyzed in a variety of
ways, such as to identify the presence or absence of specific sequences or to locate
nucleotide changes, called mutations, within a specific sequence.

DNA Sequencing.The process of determining the order of the nucleotide bases
along a DNA strand is calledsequencing. In 1977, 24 years after the discovery
of the structure of DNA, two separate methods for sequencing DNA were devel-
oped: thechain termination methodand thechemical degradation method. Both
methods were equally popular to begin with, but, for many reasons, the chain ter-
mination method is the method more commonly used today. This method is based
on the principle that single-stranded DNA molecules that differ in length by just
a single nucleotide can be separated from one another using polyacrylamide gel
electrophoresis, described earlier.

The DNA to be sequenced, called thetemplate DNA, is first prepared as a single-
stranded DNA. Next, a short oligonucleotide isannealed, or joined, to the same
position on each template strand. The oligonucleotide acts as a primer for the syn-
thesis of a new DNA strand that will be complementary to the template DNA. This
technique requires that four nucleotide-specific reactions—one each for G, A, C,
and T—be performed on four identical samples of DNA. The four sequencing re-
actions require the addition of all the components necessary to synthesize and label
new DNA, including:
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Figure A.33: DNA sequencing is a laboratory technique used to determine the exact se-
quence of bases (A, C, G, and T) in a DNA molecule. The DNA base sequence carries the
information a cell needs to assemble protein and RNA molecules. DNA sequence informa-
tion is important to scientists investigating the functions of genes. The technology of DNA
sequencing was made faster and less expensive as a part of theHuman Genome Project.

• A DNA template

• A primertagged with a mildly radioactive molecule or a light-emitting chem-
ical

• DNA polymerase, an enzyme that drives the synthesis of DNA

• Fourdeoxynucleotides(G, A, C, and T)

• Onedideoxynucleotide, either ddG, ddA, ddC, or ddT

After the first deoxynucleotide is added to the growing complementary sequence,
DNA polymerase moves along the template and continues to add base after base.
The strand synthesis reaction continues until a dideoxynucleotide is added, block-
ing further elongation. This is because dideoxynucleotides are missing a special
group of molecules, called a 3’-hydroxyl group, needed to form a connection with
the next nucleotide. Only a small amount of a dideoxynucleotide is added to each
reaction, allowing different reactions to proceed for various lengths of time until
by chance, DNA polymerase inserts a dideoxynucleotide, terminating the reaction.
Therefore, the result is a set of new chains, all of different lengths.

To read the newly generated sequence, the four reactions are run side-by-side
on a polyacrylamide sequencing gel. The family of molecules generated in the
presence of ddATP is loaded into one lane of the gel, and the other three families,
generated with ddCTP, ddGTP, and ddTTP, are loaded into three adjacent lanes.
After electrophoresis, the DNA sequence can be read directly from the positions of
the bands in the gel.

Variations of this method have been developed for automated sequencing ma-
chines. In one method, calledcycle sequencing, the dideoxynucleotides, not the
primers, are tagged with different colored fluorescent dyes; thus, all four reac-
tions occur in the same tube and are separated in the same lane on the gel. As
each labeled DNA fragment passes a detector at the bottom of the gel, the color is
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recorded, and the sequence is reconstructed from the pattern of colors representing
each nucleotide in the sequence.

Impact of Molecular Genetics

Most sequencing and analysis technologies were developed from studies of non-
human genomes, notably those of the bacterium Escherichia coli, the yeast Saccha-
romyces cerevisiae, the fruit fly Drosophila melanogaster, the roundworm Caenorhab-
ditis elegans, and the laboratory mouse Mus musculus. These simpler systems pro-
vide excellent models for developing and testing the procedures needed for study-
ing the much more complex human genome.

A large amount of genetic information has already been derived from these
organisms, providing valuable data for the analysis of normal human gene regula-
tion, genetic diseases, and evolutionary processes. For example, researchers have
already identified single genes associated with a number of diseases, suchas cystic
fibrosis. As research progresses, investigators will also uncover themechanisms for
diseases caused by several genes or by single genes interacting with environmental
factors. Genetic susceptibilities have been implicated in many major disabling and
fatal diseases including heart disease, stroke, diabetes, and several kinds of cancer.
The identification of these genes and their proteins will pave the way to more ef-
fective therapies and preventive measures. Investigators determining theunderlying
biology of genome organization and gene regulation will also begin to understand
how humans develop, why this process sometimes goes awry, and what changes
take place as people age.



Appendix B
A Primer on Control Theory

This appendix provides a brief primer on some of the key topics in control theory
that are used in the text. The material here is drawn fromFeedback Systemsby
Åström and Murray.

B.1 System Modeling

A model is a precise representation of a system’s dynamics used to answer ques-
tions via analysis and simulation. The model we choose depends on the questions
we wish to answer, and so there may be multiple models for a single physical sys-
tem, with different levels of fidelity depending on the phenomena of interest. In
this chapter we provide an introduction to the concept of modeling, and provide
some basic material on two specific methods that are commonly used in feedback
and control systems: differential equations and difference equations.

1. A model is a mathematical representation of a system that can be used to
answer question about that system. The choice of the model depends on
the questions one wants to ask. Models for control systems are typically
input/output models and combine techniques from mechanics and electrical
engineering.

2. Thestateof a system is a collection of variables that summarize the past
history of the system for the purpose of predicting the future. Astate space
modelis one that describe how the state of a system evolves over time.

3. We can model the evolution of the state using aordinary differential equa-
tionsof the form

ẋ= f (x,u)

y= h(x,u)

ẋ= Ax+Bu

y=Cx+Du
(B.1)

wherex represents the state of the system, ˙x is the time derivative of the state,
u are the external inputs andy are the measured outputs. For the linear form,
A, B, C andD are matrices of the appropriate dimension and the model is
linear time invariant(LTI).
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4. Another class of models for feedback and control systems is adifference
equationof the form

xk+1 = f (x+k,uk)

yk = h(xk,uk)

xk+1 = Axk+Buk

yk =Cxk+Duk
(B.2)

wherexk represents the state of the system at thekth time instant.

5. Three common questions that can be answered using state space models are
(1) how the system state evolves from a given initial condition, (2) the stabil-
ity of an equilibrium point from nearby initial conditions and (3) the steady
state response of the system to sinusoidal forcing at different frequencies.

6. Models can be constructed from experiments by measuring the response of
a system and determining the parameters in the model that correspond to
features in the response. Examples include measuring the period of oscilla-
tion, the rate of damping and the steady state amplitude of the response of a
system to a step input.

7. Schematic and block diagrams are common tools for modeling large, com-
plex systems. The following symbols are some of the ones commonly used
for modeling control systems:

Image:Modeling bdsym.png

Computer packages such as LabView, MATLAB/SIMULINK and Modelica
can be used to construct models for complex, multi-component systems.

B.2 Dynamic Behavior

In this chapter we give a broad discussion of the behavior of dynamical systems,
focused on systems modeled by nonlinear differential equations. This allows us to
discuss equilibrium points, stability, limit cycles and other key concepts of dynam-
ical systems. We also introduce some methods for analyzing global behaviorof
solutions.

1. We say thatx(t) is a solution of a differential equation on the time intervalt0
to t f with initial valuex0 if it satisfies

x(t0) = x0 and ẋ(t) = F(x(t)) for all t0 ≤ t ≤ t f . (B.3)

We will usually assumet0 = 0. For most differential equations we will en-
counter, there is a unique solution for a given initial condition. Numerical
tools such as MATLAB and Mathematica can be used to obtain numerical
solutions forx(t) given the functionF(x).
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Image:doscpp.png—180px

(a) An asymptotically sta-
ble equilibrium point atx=
(0,0).

Image:oscpp.png

(b) A limit cy-
cle of radius
one, with an
unstable equi-
librium point at
x= (0,0).

Image:stablepp.png

(c) A stable equli-
birum point atx =
(0,0) (nearby ini-
tial conditions stay
nearby).

Figure B.1: Basic features of dynamical systems

2. An equilibrium pointfor a dynamical system represents a pointxe such that
if x(0) = xe then x(t) = xe for all t. Equilibrium points represent stationary
conditions for the dynamics of a system. Alimit cyclefor a dynamical system
is a solutionx(t) which is periodic with some periodT, so thatx(t+T) = x(t)
for all t.

3. An equilibrium point is (locally)stable if initial conditions that start near
an equilibrium point stay near that equilibrium point. A equilibrium point is
(locally) asymptotically stableif it is stable and, in addition, the state of the
system converges to the equilibrium point as time increases. An equilibrium
point isunstableif it is not stable. Similar definitions can be used to define
the stability of a limit cycle.

4. Phase portraits provide a convenient way to understand the behaviorof 2-
dimensional dynamical systems. A phase portrait is a graphical representa-
tion of the dynamics obtained by plotting the statex(t) = (x1(t), x2(t)) in the
plane. This portrait is often augmented by plotting an arrow in the plane cor-
responding toF(x), which shows the rate of change of the state. FigureB.1
illustrates some of the basic features of a dynamical systems.

5. A linear system
dx
dt
= Ax (B.4)

is asymptotically stable if and only if all eigenvalues ofA all have strictly
negative real part and is unstable if any eigenvalue ofA has strictly positive
real part. A nonlinear system can be approximated by a linear system around
an equilibrium point by using the relationship

ẋ= F(xe)+
∂F
∂x

∣
∣
∣
∣
∣
xe

(x− xe)+higher order terms in (x− xe). (B.5)

SinceF(xe) = 0, we can approximate the system by choosing a new state
variablez= x− xe and writing the dynamics as ˙z= Az. The stability of the
nonlinear system can be determined in a local neighborhood of the equilib-
rium point through its linearization.
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6. A Lyapunov functionis an energy-like functionV : Rn→ R that can be used
to reason about the stability of an equilibrium point. We define the derivative
of V along the trajectory of the system as

V̇(x) =
∂V
∂x

ẋ=
∂V
∂x

F(x) (B.6)

Assumingxe= 0 andV(0)= 0, the following conditions hold:

Condition onV Condition onV̇ Stability
V(x) > 0, x, 0 V̇(x) ≤ 0 for all x xe stable
V(x) > 0, x, 0 V̇(x) < 0, x, 0 xe asymptotically stable

Stability of limit cycles can also be studied using Lyapunov functions.

7. Theglobal behaviorof a nonlinear system refers to dynamics of the system
far away from equilibrium points. Theregion of attractionof an asymptot-
ically stable equilirium point refers to the set of all initial conditions that
converge to that equilibrium point. An equilibrium point is said to beglob-
ally asymptotically stableif all initial conditions converge to that equilibrium
point. Global stability can be checked by finding a Lyapunov function that is
globally positive definition with time derivative globally negative definite.

B.3 Linear Systems

Previous chapters have focused on the dynamics of a system with relatively little at-
tention to the inputs and outputs. This chapter gives an introduction to input/output
behavior for linear systems and shows how a nonlinear system can be approximated
near an equilibrium point by a linear model.

1. A linear systemis one in which the output is jointly linear in the intitial
condition for the system and the input to the system. In particular, a linear
system has the property that if we apply an inputu(t) = αu1(t)+βu2(t) with
zero initial condition, the corresponding output will bey(t) = αy1(t)+βy2(t),
whereyi is the output associated with the inputui . This propery is called
linearsuperposition.

2. A differential equation of the form

ẋ= Ax+Bu x∈ Rn,u ∈ R

y=Cx+Du y∈ R
(B.7)

is asingle-input, single-output(SISO)linear differential equation. Its solu-
tion can be written in terms of thematrix exponential

eAt = I +At+
1
2

A2t2+
1
3!

A3t3+ · · · =
∞∑

k=0

1
k!

Aktk. (B.8)
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The solution to the differential equation is given by theconvolution equation

y(t) =CeAtx(0)+
∫ t

0
CeA(t−τ)Bu(τ)dτ+Du(t). (B.9)

3. A linear system
ẋ= Ax (B.10)

is asymptotically stableif and only if all eigenvalues ofA all have strictly
negative real part and is unstable if any eigenvalue ofA has strictly posi-
tive real part. For systems with eigenvalues having zero real-part, stabilityis
determined by using the Jordan normal form associated with the matrix. A
system with eigenvalues that have no strictly positive real part is stable if and
only if the Jordan block corresponding to each eigenvalue with zero partis a
scalar (1x1) block.

4. The input/output response of a (stable) linear system contains a transient
region portion, which eventually decays to zero, and a steady state portion,
which persists over time. Two special responses are thestep response, which
is the output corresponding to an step input applied att = 0 and thefrequency
response, which is the response of the system to a sinusoidal input at a given
frequency.

5. The step response is characterized by the following parameters:

• The steady state value, yss, of a step response is the final level of the
output, assuming it converges.

• The rise time, Tr , is the amount of time required for the signal to go
from 10value.

• The overshoot, Mp, is the percentage of the infal value by which the
signal initially rises above the final value.

• The settling time, Ts, is the amount of time required for the signal to
stay within 5times.

6. The frequency response is given by

y(t) =CeAt
(

x(0)− (sI−A)−1B
)

︸                         ︷︷                         ︸

transient

+
(

D+C(sI−A)−1B
)

est

︸                      ︷︷                      ︸

steady state

, (B.11)

where cosωt = 1
2

(

ejωt +e− jωt
)

and s= jω. The gain and phase of the fre-
quency response are given by

gain(ω) =
Ay

Au
= M phase(ω) = φ−ψ = θ. (B.12)
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7. A nonlinear system of the form

ẋ= f (x,u) x ∈ Rn,u ∈ R

y= h(x,u) y ∈ R
(B.13)

is a single-input, single-output (SISO) nonlinear system. It can be linearized
about an equibrium pointx= xe, u= ue, y= ye by defining new variables

z= x− xe v= u−ue w= y−h(xe,ue). (B.14)

The dynamics of the system near the equilibrium point can then be approxi-
mated by the linear system

ẋ= Ax+Bu

y=Cx+Du
(B.15)

where

A=
∂ f (x,u)
∂x

∣
∣
∣
∣
∣
xe,ue

B=
∂ f (x,u)
∂u

∣
∣
∣
∣
∣
xe,ue

C =
∂h(x,u)
∂x

∣
∣
∣
∣
∣
xe,ue

D =
∂y(x,u)
∂u

∣
∣
∣
∣
∣
xe,ue

(B.16)

The equilibrium point for a nonlinear system is locally asymptotically stable
if the real part of the eigenvalues of the linearization about that equilibrium
point have strictly negative real part.

B.4 Reachability and observability

This chapter describes how feedback can be used shape the local behavior of a
system. The concept of reachability is introduced and used to investigate how to
”design” the dynamics of a system through placement of its eigenvalues. Inpar-
ticular, it will be shown that under certain conditions it is possible to assign the
system eigenvalues to arbitrary values by appropriate feedback of the system state.

1. A linear system with dynamics

ẋ= Ax+Bu x∈ Rn,u ∈ R

y=Cx+Du y∈ R
(B.17)

is said to bereachableif we can find an inputu(t) defined on the interval
[0,T] that can steer the system from a given final pointx(0)= x0 to a desired
final pointx(T) = xf .
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2. Thereachability matrixfor a linear system is given by

Wr =
[

B AB · · · An−1B
]

. (B.18)

A linear system is reachable if and only if the reachability matrixWr is in-
vertible (assuming a single intput/single output system). Systems that are
not reachable have states that are constrained to have a fixed relationship
with each other.

3. A state feedback law has the form

u= −Kx+kr r (B.19)

wherer is the reference value for the output. The closed loop dynamics for
the system are given by

ẋ= (A−BK)x+Bkr r. (B.20)

The stability of the system is determined by the stability of the matrixA−
BK. The equilibrium point and steady state output (assuming the systems is
stable) are given by

xe= −(A−BK)−1Bkr r ye=Cxe. (B.21)

Choosingkr as
kr = −1/

(

C(A−BK)−1B
)

. (B.22)

givesye= r.

4. Integral feedbackcan be used to provide zero steady state error instead of
careful calibration of the gainKr . An integral feedback controller has the
form

u= −kp(x− xe)−kiz+kr r. (B.23)

where
ż= y− r (B.24)

is the integral error. The gainskp, ki andkr can be found by designing a sta-
bilizing state feedback for the system dynamics augmented by the integrator
dynamics.

In the last chapter we considered the use of state feedback to modify the dy-
namics of a system through feedback. In many applications, it is not practical to
measure all of the states directly and we can measure only a small number of out-
puts (corresponding to the sensors that are available). In this chapter we show how
to use output feedback to modify the dynamics of the system, through the use of
state estimators (also called ”observers”). We introduce the concept of observabil-
ity and show that if a system is observable, itis possible to recover the state from
measurements of the inputs andoutputs to the system.
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1. A linear system with dynamics

ẋ= Ax+Bu x∈ Rn,u ∈ R

y=Cx+Du y∈ R
(B.25)

is said to beobservableif we can determine the state of the system through
measurements of the inputu(t) and the outputy(t) over a time interval [0,T].

2. Theobservability matrixfor a linear system is given by

Wo =




C
CA
...

CAn−1




. (B.26)

A linear system is observable if and only if the observability matrixWo is
full rank. Systems that are not reachable have ”hidden” states that cannot be
determined by looking at the inputs and outputs.

3. An observeris a dynamical system that estimates the state of another system
through measurement of inputs and outputs. For a linear system, the observer
given by

dx̂
dt
= Ax̂+Bu+L(y−Cx̂) (B.27)

generates an estimate of the state that converges to the actual state ifA−LC
is has eigenvalues with negative real part. If a system is observable, then
there exists a anobserver gain Lsuch that the observer error is governed
by a linear differential equation with an arbitrary characteristic polynomial.
Hence the eigenvalues of the error dynamics for an observable linear system
can be placed arbitrarily through the use of an appropriate observer gain.

4. A discrete time, linear process with noise is given by

x(k+1)= Ax(k)+Bu(k)+v(k) x ∈ Rn,u ∈ R

y(k) =Cx(k)+Du(k)+w(k) y ∈ R
(B.28)

wherev is a vector, white, Gaussian random process with mean 0, autoco-
varianceRw, w is a white, Guassian random process with mean 0, variance
Rv. We take the initial condition to be random with mean 0 and covariance
P0. The optimal estimator is given by

x̂(k+1)= Ax̂(k)+Bu(k)+L(y(k)−Cx̂(k)) (B.29)

where the observer gain satisfies

P(k+1)= ATP(k)AT +Rv−AP(k)CT(Rw+CPCT)−1CPT(k)AT

P(0)= P0

L = ATP(k)CT(Rw+CPCT)−1

(B.30)
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This estimator is an example of aKalman filter.

B.5 Transfer Functions

This chapter introduces the concept of the transfer function, which is a compact
description of the input-output relation for a linear system. Combining transfer
functions with block diagrams gives a powerful method of dealing with complex
systems. The relationship between transfer functions and other system descriptions
of dynamics is also discussed.

1. Thefrequency responseof a linear system

ẋ= Ax+Bu

y=Cx+Du
(B.31)

is the response of the system to a sinusoidal input at a given frequency. Due
to linearity, the response of a system to a more complicated input can be
constructed by decomposing the input into the sum of sines and cosines

u(t) =
∞∑

k=1

ak sin(kωt)+bk cos(kωt). (B.32)

2. More, generally anexponential signalis given by

e(σ+ jω)t = eσtejωt = eσt(cosωt+ j sinωt), (B.33)

whereσ < 0 gives the decay rate of the signal andω is the oscillation fre-
quency of the signal. The response to an exponential signal is given by

y(t) =CeAt
(

x(0)− (sI−A)−1B
)

+
(

C(sI−A)−1B+D
)

est, (B.34)

3. Thetransfer functionfor a linear system is given by

Gyu(s) =C(sI−A)−1B+D. (B.35)

The transfer function represents the steady state response of the system to
an exponential input. The transfer function is independent of the choiceof
coordinates for the state space.

4. Thezero frequency gainof a system is given by the magnitude of the trans-
fer function at s = 0. It represents the ratio of the steady state value of
the output with respect to a step input. For a transfer function of the form
G(s) = b(s)/a(s), the roots of the polynomiala(s) are called thepolesof the
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G1 G2
u y

(a)Gyu=G2G1

G2

Σ
u y

G1

(b) Gyu=G1+G2

−G2

Σ
eu y

G1

(c) Gyu=
G1

1+G1G2

Figure B.2: Interconnections of linear systems. Series (a), parallel (b) and feedback (c)
connections are shown. The transfer functions for the composite systems can be derived by
algebraic manipulations assuming exponential functions for all signals.

system and the roots of the polynomialb(s) are called thezerosof the sys-
tem. A polep is also called amodeof the system. The poles correspond to
the eigenvalues of the dynamics matrixA and determine the stability of the
system. The zeros of a transfer function correspond to exponential signals
whose transmission is blocked by the system.

5. Block diagrams that consist of transfer functions can be manipulated us-
ing block diagram algebra. FigureB.2 gives the transfer functions for some
common interconnections of linear systems.

6. A Bode plotis a plot of the magnitude and phase of the frequency response:

Image:xferfcns-bode.png

The top plot is the gain curve; the frequency and magnitude are both plotted
using a logarithmic scale. The bottom plot is the phase curve and uses a log-
linear scale. The dashed lines show straight line approximations of the gain
curve and the corresponding phase curve.

7. The transfer function for a system can be determined from experimentsby
measuring the frequency response and fitting a transfer function to the data.
Formally, the transfer function corresponds to the ratio of the Laplace trans-
forms of the output to the input.

B.6 Frequency Domain Analysis

In this chapter we study how how stability and robustness of closed loop systems
can be determined by investigating how signals propagate around the feedback
loop. The Nyquist stability theorem is a key result that provides a way to analyze
stability and introduce measures of degrees of stability.
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1. Theloop transfer functionof a feedback system represents the transfer func-
tion obtained by breaking the feedback loop and computing the resulting
transfer function of the open loop system. For a simple feedback system

Image:loopanal-fbksys.png

the loop transfer function is given byL = PC

2. TheNyquist criterionprovides a way to check the stability of a closed loop
system by looking at the properties of the loop transfer function. For a stable
open loop system, the Nyquist criterion states that the system is stable if the
contour of the loop transfer function plotted froms= − j∞ to s= j∞ has
no net encirclements of the points= −1 when it is plotted on the complex
plane.

3. The general Nyquist criterion uses the image of the loop transfer function
applied to theNyquist countour

Image:loopanal-nyqcontour.png

The number of unstable poles of the closed loop system is given by the num-
ber of open loop unstable poles plus the number of clockwise encirclements
of the points= −1.

4. Stability margins describe the robustness of a system to perturbations in the
dynamics. We define thephase crossover frequency, ω180 as the smallest
frequency where the phase of the loop transfer function is−180◦ and the
gain crossover frequency,ωgc as the small frequency where the loop transfer
function has unit magnitude. Thegain marginandphase marginare given
by

gm=
1

|L( jω180)|
ϕm= π+argL( jωgc) (B.36)

These margins describe the the maximum variation in gain and phase in the
loop transfer function under which the system remains stable. Two other
margins are thestability margin, which is the shortest distance frmo the
Nyquist curve to the critical points= −1, and thedelay margin, which is
the smallest time delay required to make the system unstable.

5. Bode’s relationsrelate the gain and phase of a transfer function with no poles
or zeros in the right half plane. They show that

argG( jω0) ≈ π
2

d log|G( jω)|
d logω

. (B.37)

A non-minimum phasesytem is one for which there is more phase lag than
the amount given by Bode’s relations. Systems with right have plane poles
or zeros are non-minimum phase.
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6. Thegainof an input/output system is defined as

γ = sup
u∈U

‖y‖
‖u‖ , (B.38)

where sup is the supremum. Thesmall gain theoremstates that if two sys-
tems with gainsγ1 andγ2 are connected in a feedback loop, then the closed
loop system is stable ifγ1γ2.

B.7 PID Control

This chapter describes the use of proportional integral derivative (PID) feedback
for control systems design. We discuss the basic concepts behind PID control and
the methods for choosing the PID gains.

1. The basic PID controller as the form

u(t) = kpe(t)+ki

∫ t

0
e(τ)dτ+kd

de
dt
, (B.39)

whereu is the control signal ande is the control error. The control signal
is thus a sum of three terms: a proportional term that is proportional to the
error, an integral term that is proportional to the integral of the error, and a
derivative term that is proportional to the derivative of the error.

Image:pid.png—320px

2. Integral actionguarantees that the process output agrees with the reference
in steady state and provides an alternative to including a feedforward term
for tracking a constant reference input. Integral action can be implemented
usingautomatic reset, where the output of a proportional controller is fed
back to its input through a low pass filter:

u= kpe+
1

1+ sTi
u, (B.40)

3. Derivative actionprovides a method for predictive action. The input-output
relation of a controller with proportional and derivative action is

u= kpe+kd
de
dt
= k

(

e+Td
de
dt

)

, (B.41)

whereTd = kd/kp is the derivative time constant. The action of a controller
with proportional and derivative action can be interpreted as if the control
is made proportional to the predicted process output, where the prediction
is made by extrapolating the errorTd time units into the future using the
tangent to the error curve.
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B.8 Limits of Performance

In this chapter we continue to explore the use of frequency domain techniques for
design of feedback systems. We begin with a more thorough description of the
performance specifications for controls systems, and then introduce the concept of
”loop shaping” as a mechanism for designing controllers in the frequencydomain.
We also introduce some fundamental limitations to performance for systems with
right half plane poles and zeros.

1. The primary transfer functions that define the input/output characteristics of
the system are called theGang of Six:

T F =
PCF

1+PC
, T =

PC
1+PC

, PS=
P

1+PC
,

CFS=
CF

1+PC
, CS=

C
1+PC

, S =
1

1+PC
.

(B.42)

The transfer functions in the first column give the response of the process
output and control signal to the reference signal. The second column gives
the response of the control variable to the load disturbance and the noise,
and the final column gives the response of the process output to those two
inputs. WhenF(s) = 1, the system is said to have pure error feedback and the
relevant input/output transfer functions are given by theGang of Four, given
by the transfer functions in the right two columns.

2. The performance of a system can be given in terms of the characteristics
of the frequency response between an input and output. Aresonant peakis
a maximum of the gain, and the peak frequency is the corresponding fre-
quency.

3. Thesensitivity function S= 1/(1+PC) describes how disturbances are at-
tenuated by closing the feedback loop. Disturbances with frequencies such
that |S(iω)| < 1 are attenuated, but disturbances with frequencies such that
|S(iω)| > 1 are amplified by feedback. The maximum sensitivityMs, which
occurs at the frequencyωms, is a measure of the largest amplification of
the disturbances. Thecomplementary sensitivity function T= PC/(1+PC)
describes how well the controller tracks a references signal. Themaximum
complementary sensitivity, Mt, which occurs at the frequencyωmt, is the
peak value of the magnitude of the complementary sensitivity function. It
provides the maximum amplification from the reference signal to the output
signal.

4. Feedback control systems have a number of fundamental limits, usually ex-
acerbated by the presence of right half plane poles and zeros. For systems
with right half plane poles or zeros, we can decompose the process dynamics
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into a minimum phase transfer function (no right half plane poles or zeros)
and an all pass transfer function (gain= 1):

P(s) = Pmp(s)Pap(s), (B.43)

Thegain crossover inequality

−argPap(iωgc) ≤ π−ϕm+ngc
π

2
=: ϕl . (B.44)

provides a relationship between the phase marginϕm, the slope of the gain
curvengc. For processes with near pole/zero cancellations in the right half
plane, the gain crossover inequality limits the maximum amount of achiev-
able phase margin.

5. Another fundamental limit is given byBode’s integral formula, which states
that for systems with a loop transfer function that goes to zero faster than 1/s
ass→∞, the sensitivity function must satisfy

∫ ∞

0
log|S(iω)|dω =

∫ ∞

0
log

1
|1+L(iω)| dω = π

∑

pk, (B.45)

wherepk are the poles in the right half-plane. This conservation law shows
that to get lower sensitivity in one frequency range, we must get higher sen-
sitivity in some other region. An analogous formula exists for the comple-
mentary sensitivity function in the presence of right half plane zeros.

B.9 Robust Performance

This chapter focuses on the analysis of robustness of feedback systems. We con-
sider the stability and performance of systems who process dynamics are uncertain
and derive fundamental limits for robust stability and performance. We alsodiscuss
how to design controllers to achieve robust performance.

1. Uncertainty can enter a model in many forms.Parametric uncertaintyoccurs
when the values of the parameters in the model are not precisely known or
may vary.Unmodeled dynamicsare a more general class of uncertainty in
which some portions of the systems behavior are not included in the model,
either due to lack of knowledge or simplicity. Unmodeled dynamics can be
taken into consideration by incorporating an uncertainty block with bounded
input/output response. Common types of unmodeled dynamics includead-
ditive uncertainty, multiplicative uncertaintyandfeedback uncertainty.

2. TheVinnicombe metric(or ν-gap metric) provides a measure of the distance
between two transfer functions. It is defined as

δν(P1,P2) =






d(P1,P2), if (P1,P2) ∈ C
1, otherwise,

(B.46)
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whered(P1,P2) is a distance measure between the two transfer function

d(P1,P2) = sup
ω

|P1(iω)−P2(iω)|
√

(1+ |P1(iω)|2)(1+ |P2(iω)|2)
, (B.47)

andC is the set of all pairs (P1,P2) such that the functionsf1=1+P1(s)P1(−s)
and f2 = 1+P2(s)P1(−s) have the same number of zeros in the right half-
plane

3. Robust stability can be determined through the use of the Nyquist plot. The
stability margin sm, defined as the shortest distanced from -1 to the Nyquist
curve, provides a measure of robustness. For an additive perturbation ∆(s),
the system is robustly stable if

|∆| <
∣
∣
∣
∣

1+PC
C

∣
∣
∣
∣ or |δ| =

∣
∣
∣
∣

∆

P

∣
∣
∣
∣ <

1
|T | . (B.48)

This condition can be derived using thesmall gain theoremand allows us to
reason about uncertainty without exact knowledge of the process perturba-
tions.

4. In addition to stability, uncertainty can also affect the performance of a sys-
tem. For additive uncertainty, the load response satisfies

dGyd

Gyd
= S

dP
P
. (B.49)

The response to load disturbances is thus insensitive to process variations for
frequencies where the magnitude of the sensitivity function|S(iω)| is small.
Similarly, the response of the controller to noise in the presence of additive
uncertainty satisfies

dGun

Gun
= T

dP
P
, (B.50)

indicating that the controller is insensitive to noise when the complementary
sensitivity is small. Control design in the presence of uncertainty can be done
by using the Gang of Four to insure that the appropriate sensitivity functions
are all well behaved.





Appendix C
Random Procesess

This appendix provides a summary of random processes in continuous time with
continuous and discrete states. Some of the material in this section is drawn from
the AM08 supplement on Optimization-Based Control [53].

C.1 Random Variables

Random variables and processes are defined in terms of an underlyingprobability
spacethat captures the nature of the stochastic system we wish to study. A proba-
bility space has three elements:

• asample spaceΩ that represents the set of all possible outcomes;

• a set ofeventsF the captures combinations of elementary outcomes that are
of interest; and

• aprobability measureP that describes the likelihood of a given event occur-
ring.

Ω can be any set, either with a finite, countable or infinite number of elements. The
event spaceF consists of subsets ofΩ. There are some mathematical limits on the
properties of the sets inF , but these are not critical for our purposes here. The
probability measureP is a mapping fromP : F → [0,1] that assigns a probability
to each event. It must satisfy the property that given any two disjoint setsA,B⊂ F ,
P(A∪ B) = P(A)+P(B). The termprobability distribution is also to describe a
probability measure.

With these definitions, we can model many different stochastic phenomena.
Given a probability space, we can choose samplesω ∈Ω and identify each sample
with a collection of events chosen fromF . These events should correspond to
phenomena of interest and the probability measureP should capture the likelihood
of that event occurring in the system that we are modeling. This definition ofa
probability space is very general and allows us to consider a number of situations
as special cases.

Need more details onω, F ?
A random variable Xis a functionX : Ω→ S that gives a value inS, called

the state space, for any sampleω ∈ Ω. Given a subsetA ⊂ S, we can write the
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probability thatX ∈ A as

P(X ∈ A) = P(ω ∈Ω : X(ω) ∈ A).

We will often find it convenient to omitω when working random variables and
hence we writeX ∈ S rather than the more correctX(ω) ∈ S.

A discrete random variable Xis a variable that can take on any value from
a discrete setS with some probability for each element of the set. We model a
discrete random variable by itsprobability mass function pX(s), which gives the
probability that the random variableX takes on the specific values∈ S:

pX(s) = probability thatX takes on the values∈ S.

The sum of the probabilities over the entire set of states must be unity, and sowe
have that ∑

s∈S
pX(s) = 1.

If A is a subset ofS, then we can writeP(X ∈ A) for the probability thatX will take
on some value in the setA. It follows from our definition that

P(X ∈ A) =
∑

s∈A
p(s).

Definition C.1 (Bernoulli distribution). The Bernoulli distribution is used to model
a random variable that takes the value 1 with probabilityp and 0 with probability
1− p:

P(X = 1)= p, P(X = 0)= 1− p.

Alternatively, it can be written in terms of its probability mass function

p(s) =






p s= 1

1− p s= 0

0 otherwise.

Bernoulli distributions are used to model independent experiments with binary out-
comes, such as flipping a coin.

Definition C.2 (Binomial distribution). Thebinomial distributionmodels the prob-
ability of successful trials innexperiments, given that a single experiment has prob-
ability of successp. If we let Kn be a random variable that indicates the number of
success inn trials, then the binomial distribution is given by

pKn(k) = P(Kn = k) =

(

n
k

)

pk(1− p)n−k

for k= 1, . . . ,n. The probability mass function is shown in FigureC.1a.
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(a) Binomial distribution (b) Poisson distribution

Figure C.1: Probability mass functions for common discretedistributions.

Definition C.3 (Poisson distribution). ThePoisson distributionis used to describe
the probability that a given number of events will occur in a fixed interval oftime
t. The Poisson distribution is defined as

pNt (k) = P(Nt = k) =
e−λt(λt)k

k!
, (C.1)

whereNt is the number of events that occur in a periodt andλ is a real number
parameterizing the distribution. This distribution can be considered as a modelfor a
counting process, where we assume that the average rate of occurrences in a period
t is given byλt andλ represents the rate of the counting process. FigureC.1bshows
the form of the distribution for different values ofk andλt.

A continuous (real-valued) random variable Xis a variable that can take on any
value in the set of real numbersR. We can model the random variableX according
to itsprobability distribution P:

P(xl ≤ X ≤ xu) = probability thatx takes on a value in the rangexl , xu.

More generally, we writeP(A) as the probability that an eventA will occur (e.g.,
A= {xl ≤ X ≤ xu}). It follows from the definition that ifX is a random variable in
the range [L,U] then P(L ≤ X ≤ U) = 1. Similarly, if Y ∈ [L,U] then P(L ≤ X ≤
Y) = 1−P(Y≤ X ≤ U).

We characterize a random variable in terms of theprobability density function
(pdf) p(x). The density function is defined so that its integral over an interval gives
the probability that the random variable takes its value in that interval:

P(xl ≤ X ≤ xu) =
∫ xu

xl

p(x)dx. (C.2)

It is also possible to computep(x) given the distributionPas long as the distribution
is suitably smooth:

p(x) =
∂P(xl ≤ x≤ xu)

∂xu

∣
∣
∣
∣
∣xl fixed,
xu = x,

x> xl .
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p(x)

L U

(a) Uniform distribution

µ

p(x)

σ

(b) Gaussian distribution (c) Exponentialdistribution

Figure C.2: Probability density function (pdf) for uniform, Gaussian and exponential dis-
tributions.

We will sometimes writepX(x) when we wish to make explicit that the pdf is
associated with the random variableX. Note that we use capital letters to refer to a
random variable and lower case letters to refer to a specific value.

Definition C.4 (Uniform distribution). The uniform distributionon an interval
[L,U] assigns equal probability to any number in the interval. Its pdf is given by

p(x) =
1

U −L
. (C.3)

The uniform distribution is illustrated in FigureC.2a.

Definition C.5 (Gaussian distribution). The Gaussian distribution(also called a
normal distribution) has a pdf of the form

p(x) =
1

√
2πσ2

e
−1

2

( x−µ
σ

)2

. (C.4)

The parameterµ is called themeanof the distribution andσ is called thestan-
dard deviationof the distribution. FigureC.2bshows a graphical representation a
Gaussian pdf.

Definition C.6 (Exponential distribution). The exponential distribution is defined
for positive numbers and has a pdf of the form

p(x) = λe−λx, x> 0

whereλ is a parameter defining the distribution. A plot of the pdf for an exponential
distribution is shown in FigureC.2c. The exponential distribution can be shown to
describe the amount of time between two events in a Poisson process.

We now define a number of properties of collections of random variables.We
focus on the continuous random variable case, but unless noted otherwise these
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concepts can all be defined similarly for discrete random variables (usingthe prob-
ability mass function in place of the probability density function).

If two random variables are related, we can talk about theirjoint probability dis-
tribution: PX,Y(A,B) is the probability that both eventA occurs forX andB occurs
for Y. This is sometimes written asP(A∩B), where we abuse notation by implic-
itly assuming thatA is associated withX and B with Y. For continuous random
variables, the joint probability distribution can be characterized in terms of ajoint
probability density function

P(xl ≤ X ≤ xu, yl ≤ Y≤ yu) =
∫ yu

yl

∫ xu

xl

p(x,y)dxdy. (C.5)

The joint pdf thus describes the relationship betweenX andY, and for sufficiently
smooth distributions we have

p(x,y) =
∂2P(xl ≤ X ≤ xu, yl ≤ Y≤ yu)

∂xu∂yu

∣
∣
∣
∣
∣
∣xl ,yl fixed,
xu = x, yu = y,

x> xl ,

y> yl .

We say thatX and Y are independentif p(x,y) = p(x)p(y), which implies that
PX,Y(A,B) = PX(A)PY(B) for eventsA associated withX and B associated with
Y. Equivalently,P(A∩B) = P(A)P(B) if A andB are independent.

Theconditional probabilityfor an eventA given that an eventB has occurred,
written asP(A | B), is given by

P(A | B) =
P(A∩B)

P(B)
. (C.6)

If the eventsA andB are independent, thenP(A | B) = P(A). Note that the individ-
ual, joint and conditional probability distributions are all different, so we should
really writePX,Y(A∩B), PX|Y(A | B) andPY(B).

If X is dependent onY thenY is also dependent onX. Bayes’ theoremrelates
the conditional and individual probabilities:

P(A | B) =
P(B | A)P(A)

P(B)
, P(B) , 0. (C.7)

Bayes’ theorem gives the conditional probability of eventA on eventB given the
inverse relationship (B given A). It can be used in situations in which we wish to
evaluate a hypothesisH given dataD when we have some model for how likely the
data is given the hypothesis, along with the unconditioned probabilities for both
the hypothesis and the data.

The analog of the probability density function for conditional probability is the
conditional probability density function p(x | y)

p(x | y) =






p(x,y)
p(y)

0< p(y) <∞

0 otherwise.
(C.8)
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It follows that

p(x,y) = p(x | y)p(y) (C.9)

and
P(xl ≤ X ≤ xu | y) := P(xl ≤ X ≤ xu | Y= y)

=

∫ xu

xl

p(x | y)dx=

∫ xu

xl
p(x,y)dx

p(y)
.

(C.10)

If X andY are independent thanp(x | y) = p(x) andp(y | x) = p(y). Note thatp(x,y)
and p(x | y) are different density functions, though they are related through equa-
tion (C.9). If X andY are related with joint probability density functionp(x,y) and
conditional probability density functionp(x | y) then

p(x) =
∫ ∞

−∞
p(x,y)dy=

∫ ∞

−∞
p(x | y)p(y)dy.

Example C.1(Conditional probability for sum). Consider three random variables
X, Y andZ related by the expression

Z = X+Y.

In other words, the value of the random variableZ is given by choosing values
from two random variablesX andY and adding them. We assume thatX andY
are independent Gaussian random variables with meanµ1 and µ2 and standard
deviationσ = 1 (the same for both variables).

Clearly the random variableZ is not independent ofX (or Y) since if we know
the values ofX then it provides information about the likely value ofZ. To see this,
we compute the joint probability betweenZ andX. Let

A= {xl ≤ x≤ xu}, B= {zl ≤ z≤ zu}.

The joint probability of both eventsA andB occurring is given by

PX,Z(A∩B) = P(xl ≤ x≤ xu, zl ≤ x+y≤ zu)

= P(xl ≤ x≤ xu, zl − x≤ y≤ zu− x).

We can compute this probability by using the probability density functions forX
andY:

P(A∩B) =
∫ xu

xl

(
∫ zu−x

zl−x
pY(y)dy

)

pX(x)dx

=

∫ xu

xl

∫ zu

zl

pY(z− x)pX(x)dzdx=:
∫ zu

zl

∫ xu

xl

pZ,X(z, x)dxdz.
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Using Gaussians forX andY we have

pZ,X(z, x) =
1
√

2π
e−

1
2(z− x−µY)2

· 1
√

2π
e−

1
2(x−µX)2

=
1
2π

e−
1
2

(

(z− x−µY)2+ (x−µX)2)

.

A similar expression holds forpZ,Y. ∇

Given a random variableX, we can define various standard measures of the
distribution. Theexpectationor meanof a random variable is defined as

E{X} = 〈X〉 =
∫ ∞

−∞
x p(x)dx,

and themean squareof a random variable is

E{X2} = 〈X2〉 =
∫ ∞

−∞
x2 p(x)dx.

If we let µ represent the expectation (or mean) ofX then we define thevarianceof
X as

E{(X−µ)2} = 〈(X−〈X〉)2〉 =
∫ ∞

−∞
(x−µ)2 p(x)dx.

We will often write the variance asσ2. As the notation indicates, if we have a
Gaussian random variable with meanµ and (stationary) standard deviationσ, then
the expectation and variance as computed above returnµ andσ2.

Example C.2 (Exponential distribution). The exponential distribution has mean
and variance given by

µ =
1
λ
, σ2 =

1
λ2
.

The exponential distribution can be shown to describe the amount of time between
two events in a Poisson process. ∇

Several useful properties follow from the definitions.

Proposition C.1 (Properties of random variables).

1. If X is a random variable with meanµ and varianceσ2, thenαX is random
variable with meanαX and varianceα2σ2.

2. If X and Y are two random variables, thenE{αX+βY} = αE{X}+βE{Y}.
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3. If X and Y are Gaussian random variables with meansµX, µY and variances
σ2

X, σ2
Y,

p(x) =
1

√

2πσ2
X

e
− 1

2

(
x−µX
σX

)2

, p(y) =
1

√

2πσ2
Y

e
− 1

2

(
y−µY
σY

)2

,

then X+Y is a Gaussian random variable with meanµZ = µX+µY and vari-
anceσ2

Z = σ
2
X+σ

2
Y,

p(x+y) =
1

√

2πσ2
Z

e
− 1

2

(
x+y−µZ
σZ

)2

.

Proof. The first property follows from the definition of mean and variance:

E{αX} =
∫ ∞

−∞
αx p(x)dx= α

∫ ∞

−∞
αx p(x)dx= αE{X}

E{(αX)2} =
∫ ∞

−∞
(αx)2 p(x)dx= α2

∫ ∞

−∞
x2 p(x)dx= α2

E{X2}.

The second property follows similarly, remembering that we must take the expec-
tation using the joint distribution (since we are evaluating a function of two random
variables):

E{αX+βY} =
∫ ∞

−∞

∫ ∞

−∞
(αx+βy) pX,Y(x,y)dxdy

= α

∫ ∞

−∞

∫ ∞

−∞
x pX,Y(x,y)dxdy+β

∫ ∞

−∞

∫ ∞

−∞
y pX,Y(x,y)dxdy

= α

∫ ∞

−∞
x pX(x)dx+β

∫ ∞

−∞
y pY(y)dy= αE{X}+βE{Y}.

The third item is left as an exercise.

C.2 Continuous-State Random Processes

A random processis a collection of time-indexed random variables. Formally, we
consider a random processX to be a joint mapping of sample and a time to a state:
X : Ω×T → S, whereT is an appropriate time set. We view this mapping as a
generalized random variable: a sample corresponds to choosing an entire function
of time. Of course, we can always fix the time and interpretX(ω, t) as a regular
random variable, withX(ω, t′) representing a different random variable ift , t′.
Our description of random processes will consist of describing how therandom
variable at a timet relates to the value of the random variable at an earlier times.
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To build up some intuition about random processes, we will begin with the discrete
time case, where the calculations are a bit more straightforward, and then proceed
to the continuous time case.

A discrete-time random processis a stochastic system characterized by theevo-
lutionof a sequence of random variablesX[k], wherek is an integer. As an example,
consider a discrete-time linear system with dynamics

X[k+1] = AX[k] +BU[k] +FW[k], Y[k] =CX[k] +V[k]. (C.11)

As in AM08, X ∈ Rn represents the state of the system,U ∈ Rp is the vector of
inputs andY ∈ Rq is the vector of outputs. The (possibly vector-valued) signal
W represents disturbances to the process dynamics andV represents noise in the
measurements. To try to fix the basic ideas, we will takeu= 0, n= 1 (single state)
andF = 1 for now.

We wish to describe the evolution of the dynamics when the disturbances and
noise are not given as deterministic signals, but rather are chosen fromsome proba-
bility distribution. Thus we will letW[k] be a collection of random variables where
the values at each instantk are chosen from a probability distribution with pdf
pW,k. As the notation indicates, the distributions might depend on the time instant
k, although the most common case is to have astationarydistribution in which the
distributions are independent ofk (defined more formally below).

In addition to stationarity, we will often also assume that distribution of values
of W at timek is independent of the values ofW at timel if k , l. In other words,
W[k] and W[l] are two separate random variables that are independent of each
other. We say that the corresponding random process isuncorrelated(also defined
more formally below). As a consequence of our independence assumption, we have
that

E{W[k]W[l]} = E{W2[k]}δ(k− l) =






E{W2[k]} k= l

0 k, l.

In the case thatW[k] is a Gaussian with mean zero and (stationary) standard devi-
ationσ, thenE{W[k]W[l]} = σ2δ(k− l).

We next wish to describe the evolution of the statex in equation (C.11) in the
case whenW is a random variable. In order to do this, we describe the statex as a
sequence of random variablesX[k], k= 1, · · · ,N. Looking back at equation (C.11),
we see that even ifW[k] is an uncorrelated sequence of random variables, then the
statesX[k] are not uncorrelated since

X[k+1] = AX[k] +FW[k],

and hence the probability distribution forX at time k+ 1 depends on the value
of X at time k (as well as the value ofW at time k), similar to the situation in
ExampleC.1.
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Since eachX[k] is a random variable, we can define the mean and variance as
µ[k] andσ2[k] using the previous definitions at each timek:

µ[k] := E{X[k]} =
∫ ∞

−∞
x p(x,k)dx,

σ2[k] := E{(X[k] −µ[k])2} =
∫ ∞

−∞
(x−µ[k])2 p(x,k)dx.

To capture the relationship between the current state and the future state, we define
thecorrelation functionfor a random process as

ρ(k1,k2) := E{X[k1]X[k2]} =
∫ ∞

−∞
x1x2 p(x1, x2;k1,k2)dx1dx2

The functionp(xi , x j ;k1,k2) is thejoint probability density function, which depends
on the timesk1 and k2. A process isstationary if p(x,k+ d) = p(x,d) for all k,
p(xi , x j ;k1+ d,k2+ d) = p(xi , x j ;k1,k2), etc. In this case we can writep(xi , x j ;d)
for the joint probability distribution. We will almost always restrict to this case.
Similarly, we will write p(k1,k2) asp(d) = p(k,k+d).

We can compute the correlation function by explicitly computing the joint pdf
(see ExampleC.1) or by directly computing the expectation. Suppose that we take
a random process of the form (C.11) with x[0] = 0 andW having zero mean and
standard deviationσ. The correlation function is given by

E{X[k1]X[k2]} = E
{(

k1−1∑

i=0

Ak1−i BW[i]
)(

k2−1∑

j=0

Ak2− j BW[ j]
)}

= E
{
k1−1∑

i=0

k2−1∑

j=0

Ak1−i BW[i]W[ j]BAk2− j
}

.

We can now use the linearity of the expectation operator to pull this inside the
summations:

E{X[k1]X[k2]} =
k1−1∑

i=0

k2−1∑

j=0

Ak1−i BE{W[i]W[ j]}BAk2− j

=

k1−1∑

i=0

k2−1∑

j=0

Ak1−i Bσ2δ(i − j)BAk2− j

=

k1−1∑

i=0

Ak1−i Bσ2BAk2−i .

Note that the correlation function depends onk1 andk2.
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We can see the dependence of the correlation function on the time more clearly
by lettingd = k2−k1 and writing

ρ(k,k+d) = E{X[k]X[k+d]} =
k1−1∑

i=0

Ak−i Bσ2BAd+k−i

=

k∑

j=1

A j Bσ2BAj+d =
(

k∑

j=1

A j Bσ2BAj
)

Ad.

In particular, if the discrete time system is stable then|A| < 1 and the correlation
function decays as we take points that are further departed in time (d large). Fur-
thermore, if we letk→∞ (i.e., look at the steady state solution) then the correlation
function only depends ond (assuming the sum converges) and hence the steady
state random process is stationary.

In our derivation so far, we have assumed thatX[k+ 1] only depends on the
value of the state at timek (this was implicit in our use of equation (C.11) and the
assumption thatW[k] is independent ofX). This particular assumption is known as
the Markov propertyfor a random process: a Markovian process is one in which
the distribution of possible values of the state at timek depends only on the values
of the state at the prior time and not earlier. Written more formally, we say that a
discrete random process is Markovian if

pX,k(x | X[k−1],X[k−2], . . . ,X[0]) = pX,k(x | X[k−1]).

Markov processes are roughly equivalent to state space dynamical systems, where
the future evolution of the system can be completely characterized in terms of the
current value of the state (and not it history of values prior to that).

We now consider the case where our time index is no longer discrete, but instead
varies continuously. A fully rigorous derivation requires careful useof measure
theory and is beyond the scope of this text, so we focus here on the concepts that
will be useful for modeling and analysis of important physical properties.

A continuous-time random processis a stochastic system characterized by the
evolution of a random variableX(t), t ∈ [0,T]. We are interested in understanding
how the (random) state of the system is related at separate times. The process is
defined in terms of the “correlation” ofX(t1) with X(t2). We assume, as above, that
the process is described by continuous random variables, but the discrete state case
(with time still modeled as a real variable) can be handled in a similar fashion.

We callX(t) ∈ Rn thestateof the random process at timet. For the casen> 1,
we have a vector of random processes:

X(t) =




X1(t)
...

Xn(t)



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We can characterize the state in terms of a (vector-valued) time-varying pdf,

P(xl ≤ Xi(t) ≤ xu) =
∫ xu

xl

pXi (x; t)dx.

Note that the state of a random process is not enough to determine the next state
(otherwise it would be a deterministic process). We typically omit indexing of the
individual states unless the meaning is not clear from context.

We can characterize the dynamics of a random process by its statistical charac-
teristics, written in terms of joint probability density functions:

P(x1l ≤ Xi(t1) ≤ x1u, x2l ≤ X j(t2) ≤ x2u)

=

∫ x2u

x2l

∫ x1u

x1l

pXi ,Yi (x1, x2; t1, t2)dx1dx2

The functionp(xi , x j ; t1, t2) is called ajoint probability density functionand depends
both on the individual states that are being compared and the time instants over
which they are compared. Note that ifi = j, thenpXi ,Xi describes howXi at timet1
is related toXi at timet2.

In general, the distributions used to describe a random process dependon the
specific time or times that we evaluate the random variables. However, in some
cases the relationship only depends on the difference in time and not the abso-
lute times (similar to the notion of time invariance in deterministic systems, as de-
scribed in AM08). A process isstationaryif p(x, t+τ)= p(x, t) for all τ, p(xi , x j ; t1+
τ, t2+τ) = p(xi , x j ; t1, t2), etc. In this case we can writep(xi , x j ;τ) for the joint prob-
ability distribution. Stationary distributions roughly correspond to the steady state
properties of a random process and we will often restrict our attention to this case.

In looking at biomolecular systems, we are going to be interested in random
processes in which the changes in the state occur when a random event occurs
(such as a molecular reaction or binding event). In this case, it is natural todescribe
the state of the system in terms of a set of timest0 < t1 < t2 < · · · < tn andX(ti) is
the random variable that corresponds to the possible states of the system at time ti .
Note that time time instants do not have to be uniformly spaced and most often (for
biomolecular systems) they will not be. All of the definitions above carry through,
and the process can now be described by a probability distribution of the form

P
(

X(ti) ∈ [xi , xi +dxi ], i = 1, . . . ,n
)

=
∫

. . .

∫

p(xn, xn−1, . . . , x0; tn, tn−1, . . . , t0)dxndxn−1dx1,

wheredxi are taken as infinitesimal quantities.
An important class of stochastic systems is those for which the next state of the

system depends only on the current state of the system and not the historyof the
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process. Suppose that

P
(

X(tn) ∈ [xn, xn+dxn] | X(ti) ∈ [xi , xi +dxi ], i = 1, . . . ,n−1
)

= P
(

X(tn) ∈ [xn, xn+dxn] | X(tn−1) ∈ [xn−1, xn−1+dxn−1]
)

. (C.12)

That is, the probability of being in a given state at timetn dependsonlyon the state
that we were in at the previous time instanttn−1 and not the entire history of states
prior to tn−1. A stochastic process that satisfies this property is called aMarkov
process.

In practice we do not usually specify random processes via the joint probabil-
ity distribution p(xi , x j ; t1, t2) but instead describe them in terms of apropogater
function. Let X(t) be a Markov process and define the Markov propogater as

Ξ(dt; x, t) = X(t+dt)−X(t), givenX(t) = x.

The propogater function describes how the random variable at timet is related
to the random variable at timet + dt. Since bothX(t + dt) and X(t) are random
variables,Ξ(dt; x, t) is also a random variable and hence it can be described by its
density function, which we denote asΠ(ξ, x;dt, t):

P
(

x≤ X(t+dt) ≤ x+ ξ
)

=

∫ x+ξ

x
Π(dx, x;dt, t)dx.

The previous definitions for mean, variance and correlation can be extended to
the continuous time, vector-valued case by indexing the individual states:

E{X(t)} =




E{X1(t)}
...

E{Xn(t)}




=: µ(t)

E{(X(t)−µ(t))(X(t)−µ(t))T} =




E{X1(t)X1(t)} . . . E{X1(t)Xn(t)}
. . .

...

E{Xn(t)Xn(t)}




=: Σ(t)

E{X(t)XT(s)} =




E{X1(t)X1(s)} . . . E{X1(t)Xn(s)}
. . .

...

E{Xn(t)Xn(s)}




=: R(t, s)

Note that the random variables and their statistical properties are all indexed by the
time t (ands). The matrixR(t, s) is called thecorrelation matrixfor X(t) ∈ Rn. If
t = s thenR(t, t) describes how the elements ofx are correlated at timet (with each
other) and in the case that the processes have zero mean,R(t, t)=Σ(t). The elements
on the diagonal ofΣ(t) are the variances of the corresponding scalar variables. A
random process is uncorrelated ifR(t, s) = 0 for all t , s. This implies thatX(t) and
X(s) are independent random events and is equivalent topX,Y(x,y) = pX(x)pY(y).
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ρ(t1− t2)

τ = t1− t2

Figure C.3: Correlation function for a first-order Markov process.

If a random process is stationary, then it can be shown thatR(t+τ, s+τ)=R(t, s)
and it follows that the correlation matrix depends only ont− s. In this case we will
often writeR(t, s) = R(s− t) or simpleR(τ) whereτ is the correlation time. The
correlation matrix in this case is simplyR(0).

In the case whereX is also scalar random process, the correlation matrix is
also a scalar and we will writeρ(τ), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar random processes, the correla-
tion function depends only on the absolute value of the correlation function,so
ρ(τ) = ρ(−τ) = ρ(|τ|). This property also holds for the diagonal entries of the corre-
lation matrix sinceRii (s, t) = Rii (t, s) from the definition.

Definition C.7 (Ornstein-Uhlenbeck process). Consider a scalar random process
defined by a Gaussian pdf withµ = 0,

p(x, t) =
1

√
2πσ2

e−
1
2

x2

σ2 ,

and a correlation function given by

ρ(t1, t2) =
Q

2ω0
e−ω0|t2−t1|.

The correlation function is illustrated in FigureC.3. This process is known as an
Ornstein-Uhlenbeck processand it is a stationary process.

Note on terminology.The terminology and notation for covariance and correlation
varies between disciplines. The term covariance is often used to refer to both the re-
lationship between different variablesX andY and the relationship between a single
variable at different times,X(t) andX(s). The term “cross-covariance” is used to re-
fer to the covariance between two random vectorsX andY, to distinguish this from
the covariance of the elements ofX with each other. The term “cross-correlation”
is sometimes also used. Finally, the term “correlation coefficient” refers to the nor-
malized correlation ¯ρ(t, s) = E{X(t)X(s)}/E{X(t)X(t)}..
MATLAB has a number of functions to implement covariance and correlation,

which mostly match the terminology here:
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• cov(X) - this returns the variance of the vectorX that represents samples of a
given random variable or the covariance of the columns of a matrixX where
the rows represent observations.

• cov(X, Y) - equivalent tocov([X(:), Y(:)]). Computes the covariance
between the columns ofX andY, where the rows are observations.

• xcorr(X, Y) - the “cross-correlation” between two random sequences. If
these sequences came from a random process, this is correlation function
ρ(t).

• xcov(X, Y) - this returns the “cross-covariance”, whichMATLAB defines as
the “mean-removed cross-correlation”.

TheMATLAB help pages give the exact formulas used for each, so the main point
here is to be careful to make sure you know what you really want.

We will also make use of a special type of random process referred to as“white
noise”. A white noise process X(t) satisfiesE{X(t)} = 0 andR(t, s) = Wδ(s− t),
whereδ(τ) is the impulse function andW is called thenoise intensity. White noise
is an idealized process, similar to the impulse function or Heaviside (step) function
in deterministic systems. In particular, we note thatρ(0) = E{X2(t)} = ∞, so the
covariance is infinite and we never see this signal in practice. However, like the
step function, it is very useful for characterizing the responds of a linear system,
as described in the following proposition. It can be shown that the integralof a
white noise process is a Wiener process, and so often white noise is described as
the derivative of a Wiener process.

C.3 Discrete-State Random Processes

There are a number of specialized discrete random processes that arerelevant for
biochemical systems. In this section we give a brief introduction to these processes.

A birth-deathprocess is one in which the states of the process represent integer-
value counts of different species populations and the transitions between states are
restricted to either incrementing (birth) or decrementing (death) a given species.
This type of model is often used to represent chemical reactions such as the pro-
duction and degradation of proteins.

Example C.3(Protein production). ∇

A more general type of discrete random process is aMarkov chain. In a Markov
chain, evolution of the discrete states occurs by execution of allowable transitions
between two states. Each transition has a specified probability, which is usedto
determine whether a system will transition from its current state into a different
state (corresponding to an allowable transition). An important property, called the
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Markov property, is that the transition probability only depends on the value of the
current state, not the previous values of the state.

We define a Markov chain by giving the set of transition probabilities

qi j (t, τ) = P(X(t+τ) = sj |X(t) = si),

wheresi , sj ∈ S, t is the current time andτ is the time interval over which we are
interested. Ifqi j (t, τ) , 0 for someτ , 0 then we say that the transition is allowable
at timet. If qi j is independent oft then we say that the process isstationaryand we
omit the argumentt. In the special case that we are only interested in a fixedτ (i.e.,
we are using a discrete-time model) then we omit this argument as well.

It is generally difficult to describe the probability of being in a particular state in
a Markov process at a given time. Instead, we often resort to describing the steady
state distributions, assuming that they exist. For a stationary Markov chain, we can
look at the equilibrium distributions, which are those distributionsπ that satisfy

πi = qi j (τ)π j , for all i, j.

Example C.4(Protein expression). ∇

C.4 Input/Output Linear Stochastic Systems

We now consider the problem of how to compute the response of a linear system
to a random process. We assume we have a linear system described in statespace
as

Ẋ = AX+FW, Y =CX (C.13)

Given an “input” W, which is itself a random process with meanµ(t), variance
σ2(t) and correlationρ(t, t+τ), what is the description of the random processY?

Let W be a white noise process, with zero mean and noise intensityQ:

ρ(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y(t) =
∫ t

0
h(t−τ)W(τ)dτ,

whereh(t−τ) is the impulse response for the system

h(t−τ) =CeA(t−τ)B+Dδ(t−τ).

We now compute the statistics of the output, starting with the mean:

E{Y(t)} = E{
∫ t

0
h(t−η)W(η)dη}

=

∫ t

0
h(t−η)E{W(η)}dη = 0.
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Note here that we have relied on the linearity of the convolution integral to pullthe
expectation inside the integral.

We can compute the covariance of the output by computing the correlationρ(τ)
and settingσ2 = ρ(0). The correlation function fory is

ρY(t, s) = E{Y(t)Y(s)} = E{
∫ t

0
h(t−η)W(η)dη ·

∫ s

0
h(s− ξ)W(ξ)dξ}

= E{
∫ t

0

∫ s

0
h(t−η)W(η)W(ξ)h(s− ξ)dηdξ}

Once again linearity allows us to exchange expectation and integration

ρY(t, s) =
∫ t

0

∫ s

0
h(t−η)E{W(η)W(ξ)}h(s− ξ)dηdξ

=

∫ t

0

∫ s

0
h(t−η)Qδ(η− ξ)h(s− ξ)dηdξ

=

∫ t

0
h(t−η)Qh(s−η)dη

Now letτ = s− t and write

ρY(τ) = ρY(t, t+τ) =
∫ t

0
h(t−η)Qh(t+τ−η)dη

=

∫ t

0
h(ξ)Qh(ξ+τ)dξ (settingξ = t−η)

Finally, we lett→∞ (steady state)

lim
t→∞

ρY(t, t+τ) = ρ̄Y(τ) =
∫ ∞

0
h(ξ)Qh(ξ+τ)dξ (C.14)

If this integral exists, then we can compute the second order statistics for theoutput
Y.

We can provide a more explicit formula for the correlation functionρ in terms
of the matricesA, F andC by expanding equation (C.14). We will consider the
general case whereW∈Rp andY∈Rq and use the correlation matrixR(t, s) instead
of the correlation functionρ(t, s). Define thestate transition matrixΦ(t, t0)= eA(t−t0)

so that the solution of system (C.13) is given by

x(t) = Φ(t, t0)x(t0)+
∫ t

t0
Φ(t,λ)Fw(λ)dλ

Proposition C.2 (Stochastic response to white noise). Let E{X(t0)XT(t0)} = P(t0)
and W be white noise with E{W(λ)WT(ξ)} = RWδ(λ− ξ). Then the correlation ma-
trix for X is given by

RX(t, s) = P(t)ΦT(s, t)
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where P(t) satisfies the linear matrix differential equation

Ṗ(t) = AP+PAT +FRWF, P(0) = P0.

Proof. Using the definition of the correlation matrix, we have

E{X(t)XT(s)} = E
{

Φ(t,0)X(0)XT(0)ΦT(t,0)+cross terms

+

∫ t

0
Φ(t, ξ)FW(ξ)dξ

∫ s

0
Wt(λ)FTΦ(s,λ)dλ

}

= Φ(t,0)E{X(0)XT(0)}Φ(s,0)

+

∫ t

0

∫ s

0
Φ(t, ξ)FE{W(ξ)WT(λ)}FTΦ(s,λ)dξdλ

= Φ(t,0)P(0)φT(s,0)+
∫ t

0
Φ(t,λ)FRW(λ)FTΦ(s,λ)dλ.

Now use the fact thatΦ(s,0)= Φ(s, t)Φ(t,0) (and similar relations) to obtain

RX(t, s) = P(t)ΦT(s, t)

where

P(t) = Φ(t,0)P(0)ΦT(t,0)+
∫ T

0
Φ(t,λ)FRWFT(λ)ΦT(t,λ)dλ

Finally, differentiate to obtain

Ṗ(t) = AP+PAT +FRWF, P(0) = P0

(see Friedland for details).

The correlation matrix for the outputY can be computed using the fact that
Y = CX and henceRY = CTRXC. We will often be interested in the steady state
properties of the output, which are given by the following proposition.

Proposition C.3(Steady state response to white noise). For a time-invariant linear
system driven by white noise, the correlation matrices for the state and output
converge in steady state to

RX(τ) = RX(t, t+τ) = PeATτ, RY(τ) =CRX(τ)CT

where P satisfies the algebraic equation

AP+PAT +FRWFT = 0 P> 0. (C.15)

Equation (C.15) is called theLyapunov equationand can be solved in MATLAB
using the functionlyap.
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Example C.5(First-order system). Consider a scalar linear process

Ẋ = −aX+W, Y= cX,

whereW is a white, Gaussian random process with noise intensityσ2. Using the
results of PropositionC.2, the correlation function forX is given by

RX(t, t+τ) = p(t)e−aτ

wherep(t) > 0 satisfies
p(t) = −2ap+σ2.

We can solve explicitly forp(t) since it is a (non-homogeneous) linear differential
equation:

p(t) = e−2atp(0)+ (1−e−2at)
σ2

2a
.

Finally, making use of the fact thatY= cX we have

ρ(t, t+τ) = c2(e−2atp(0)+ (1−e−2at)
σ2

2a
)e−aτ.

In steady state, the correlation function for the output becomes

ρ(τ) =
c2σ2

2a
e−aτ.

Note correlation function has the same form as the Ornstein-Uhlenbeck process in
ExampleC.7(with Q= c2σ2). ∇

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain ap-
proach provides a very rich set of tools for modeling and analysis of interconnected
systems, relying on the frequency response and transfer functions to represent the
flow of signals around the system.

Given a random processX(t), we can look at the frequency content of the prop-
erties of the response. In particular, if we letρ(τ) be the correlation function for a
(scalar) random process, then we define thepower spectral density functionas the
Fourier transform ofρ:

S(ω) =
∫ ∞

−∞
ρ(τ)e− jωτdτ, ρ(τ) =

1
2π

∫ ∞

−∞
S(ω)ejωτdτ.

The power spectral density provides an indication of how quickly the values of
a random process can change through the frequency content: if thereis high fre-
quency content in the power spectral density, the values of the random variable can
change quickly in time.
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logω

logS(ω)

ω0

Figure C.4: Spectral power density for a first-order Markov process.
.

Example C.6(First-order Markov process). To illustrate the use of these measures,
consider a first-order Markov process as defined in ExampleC.7. The correlation
function is

ρ(τ) =
Q

2ω0
e−ω0(τ).

The power spectral density becomes

S(ω) =
∫ ∞

−∞

Q
2ω0

e−ω|τ|e− jωτdτ

=

∫ 0

−∞

Q
2ω0

e(ω− jω)τdτ+
∫ ∞

0

Q
2ω0

e(−ω− jω)τdτ =
Q

ω2+ω2
0

.

We see that the power spectral density is similar to a transfer function and we
can plotS(ω) as a function ofω in a manner similar to a Bode plot, as shown in
FigureC.4. Note that althoughS(ω) has a form similar to a transfer function, it is
a real-valued function and is not defined for complexs. ∇

Using the power spectral density, we can more formally define “white noise”:
a white noise processis a zero-mean, random process with power spectral density
S(ω) = W = constant for allω. If X(t) ∈ Rn (a random vector), thenW ∈ Rn×n.
We see that a random process is white if all frequencies are equally represented in
its power spectral density; this spectral property is the reason for the terminology
“white”. The following proposition verifies that this formal definition agrees with
our previous (time domain) definition.

Proposition C.4. For a white noise process,

ρ(τ) =
1
2π

∫ ∞

−∞
S(ω)ejωτdτ =Wδ(τ),

whereδ(τ) is the unit impulse function.

Proof. If τ , 0 then

ρ(τ) =
1
2π

∫ ∞

−∞
W(cos(ωτ)+ j sin(ωτ)dτ = 0
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If τ = 0 thenρ(τ) =∞. Can show that

ρ(0)= lim
ǫ→0

∫ ǫ

−ǫ

∫ ∞

−∞
(· · · )dωdτ =Wδ(0)

Given a linear system

Ẋ = AX+FW, Y=CX,

with W given by white noise, we can compute the spectral density function cor-
responding to the outputY. We start by computing the Fourier transform of the
steady state correlation function (C.14):

SY(ω) =
∫ ∞

−∞

[∫ ∞

0
h(ξ)Qh(ξ+τ)dξ

]

e− jωτdτ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

−∞
h(ξ+τ)e− jωτdτ

]

dξ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

0
h(λ)e− jω(λ−ξ) dλ

]

dξ

=

∫ ∞

0
h(ξ)ejωξ dξ ·QH( jω) = H(− jω)QuH( jω)

This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in the fre-

quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer functionH1(s) followed by transfer functionH2(s),
the resulting power spectral density of the output is given by

SY(ω) = H1(− jω)H2(− jω)QuH2( jω)H1( jω).

As stated earlier, white noise is an idealized signal that is not seen in practice.
One of the ways to produced more realistic models of noise and disturbancesit
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covarianceW and filterH(s) such that we match
the statisticsS(ω) of a measured noise or disturbance signal. In other words, given
S(ω), find W > 0 andH(s) such thatS(ω) = H(− jω)WH( jω). This problem is
know as thespectral factorization problem.

Figure C.5 summarizes the relationship between the time and frequency do-
mains.
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p(v) =
1

√
2πRV

e
− v2

2RV

SV(ω) = RV

V −→ H −→ Y
p(y) =

1
√

2πRY
e
− y2

2RY

SY(ω) = H(− jω)RVH( jω)

ρV(τ) = RVδ(τ)
Ẋ = AX+FV

Y=CX

ρY(τ) = RY(τ) =CPe−A|τ|CT

AP+PAT +FRVFT = 0

Figure C.5: Summary of steady state stochastic response.
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cyclic feedback systems.J. of Dynamics and Differential Equations., 2:367–421,
1990.

[50] M. W. McFarland, editor.The Papers of Wilbur and Orville Wright. McGraw-Hill,
New York, 1953.



B-4 BIBLIOGRAPHY

[51] C. J. Morton-Firth, T. S. Shimizu, and D. Bray. A free-energy-based stochastic sim-
ulation of the tar receptor complex.Journal of Molecular Biology, 286(4):1059–74,
1999.

[52] J. D. Murray.Mathematical Biology,Vols. I and II. Springer-Verlag, New York, 3rd
edition, 2004.

[53] R. M. Murray. Optimization-Based Control.
http://www.cds.caltech.edu/∼murray/amwiki/OBC, Retrieved 20 December 2009.

[54] National Center for Biotechnology Information. A science primer. Retrieved 20
December 2009, 2004.http://www.ncbi.nlm.nih.gov/About/primer/genetics.html.

[55] National Human Genome Research Institute. Talking glossary of genetic terms. Re-
trieved 20 December 2009.http://www.genome.gov/glossary.

[56] R. Phillips, J. Kondev, and J. Theriot.Physical Biology of the Cell. Garland Science,
2008.

[57] J.W. Polderman and J.C. Willems.Introduction to Mathematical Systems Theory: A
Behavioral Approach. Springer Verlag, 1998.

[58] M. Ptashne.A genetic switch. Blackwell Science, Inc., 1992.

[59] C. V. Rao, J. R. Kirby, and A. P. Arkin. Design and diversity in bacterial chemo-
taxis: A comparative study in escherichia coli and bacillussubtilis. PLoS Biology,
2(2):239–252, 2004.

[60] N. Rosenfeld, M. B. Elowitz, and U. Alon. Negative autoregulation speeds the re-
sponse times of transcription networks.J. Molecular Biology, 323(5):785–793, 2002.

[61] G. De Rubertis and S. W. Davies. A genetic circuit amplifier: Design and simulation.
IEEE Trans. on Nanobioscience, 2(4):239–246, 2003.

[62] J. Saez-Rodriguez, A. Kremling, H. Conzelmann, K. Bettenbrock, and E. D. Gilles.
Modular analysis of signal transduction networks.IEEE Control Systems Magazine,
pages 35–52, 2004.

[63] J. Saez-Rodriguez, A. Kremling, and E.D. Gilles. Dissecting the puzzle of life: mod-
ularization of signal transduction networks.Computers and Chemical Engineering,
29:619–629, 2005.

[64] H. M. Sauro. The computational versatility of proteomic signaling networks.Current
Proteomics, 1(1):67–81, 2004.

[65] H. M. Sauro and B. Ingalls. MAPK cascades as feedback amplifiers. Technical
report, http://arxiv.org/abs/0710.5195, Oct 2007.

[66] H. M. Sauro and B. N. Kholodenko. Quantitative analysisof signaling networks.
Progress in Biophysics& Molecular Biology, 86:5–43, 2004.

[67] M. A. Savageau. Biochemical systems analysis. i. some mathematical properties of
the rate law for the component enzymatic reactions.J. Theoretical Biology, 25:365–
369, 1969.

[68] D. L. Schilling and C. Belove.Electronic Circuits: Discrete and Integrated. McGraw
Hill, 1968.

http://www.cds.caltech.edu/~murray/amwiki/OBC
http://www.ncbi.nlm.nih.gov/About/primer/genetics.html
http://www.genome.gov/glossary


BIBLIOGRAPHY B-5

[69] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcrip-
tional regulation network ofEscherichia coli. Nat. Genet., 31(1):64–68, 2002.

[70] François St-Pierre and Drew Endy. Determination of cell fate selection during phage
lambda infection. Proc. of the National Academy of Sciences, 105(52):20705–10,
2008.

[71] D. Del Vecchio, A. J. Ninfa, and E. D. Sontag. A systems theory with retroactivity:
Application to transcriptional modules. InProc. American Control Conference, 2008.

[72] L. Villa-Komaroff, A. Efstratiadis, S. Broome, P. Lomedico, R. Tizard, S. P. Naber,
W. L. Chick, and W. Gilbert. A bacterial clone synthesizing proinsulin. Proc. Natl.
Acad. Sci. U.S.A., 75(8):372731, 1978.

[73] T.-M. Yi, Y. Huang, M. I. Simon, and J. Doyle. Robust perfect adaptation in bacterial
chemotaxis through integral feedback control.Proc. of the National Academy of
Sciences, 97(9):4649–53, 2000.



let I-1

Index

Ω expansion,4-12

A site,A-22
absorption,A-16
acceptor site,A-22
acetyl CoA,A-8
acetylation,1-21
activated genes,A-18
activator,1-15, 2-21
activators,A-41
actuators,1-23
adaptive/inducible repair,A-26
adenine,A-28
adenosine triphosphate (ATP),A-7, A-29
aerobically,A-30
aerospace systems,1-26
agarose,A-48
alleles,A-14
alternative splicing,A-40
aminoacyl tRNA synthetase,A-23
amplification,see alsopolymerase chain re-

action
amplification, of DNA,A-45, A-47
amplified,A-45
anaerobic metabolism,A-7
anaerobically,A-30
analog-to-digital converters,1-24
anaphase,A-12
Anaphase I,A-13
Anaphase II,A-14
annealed,A-50
anti-codon,A-22
anti-codon site,A-22
antibodies,A-32
anticipation, in controllers,1-31
antisense strand,A-21
antitermination,1-18
archaea,A-2
asexual reproduction,A-11
assembly, of a virus,A-17
ATP, A-8

attachment,A-16
automotive control systems,1-28
autopilot,1-27

bacteria,A-15
bacterial artificial chromosomes (BACs),A-47
bacterial plasmids,A-46
bacteriaphases,A-15
bacteriophages,A-15, A-47
base excision repair,A-26
base pairs,A-29
Bell Labs,1-26
binary fission,A-11, A-15
binomial distribution,C-2
biological circuits

repressilator,1-33–1-34, 2-20–2-21
birth-death,C-15
bistability,1-34
Black, H. S.,1-26, 1-27
blastocyst,A-18
block diagrams

control system,1-24
blotting,A-49
blunt ends,A-46

cAMP receptor protein (CRP),1-16
capsid,A-16, seevral capsidA-16
carbon dioxide,A-8
catabolite activator protein (CAP),1-16
cell

organization,A-2–A-3
cell duplication,A-11
cell envelope,A-3
cell genome,A-3
cell mass,A-18
cell membrane,A-4
cell types,A-11, A-18
cell wall, A-3
Central Dogma,A-32
centromeres,A-14, A-39
chain termination method,A-50
chaperones,A-17

I-1



I-2 INDEX

charger protein,A-23
chemical degradation method,A-50
chemical kinetics,2-4–2-5
chemical Langevin equation,4-9, 4-10
chloroplast,A-29
chloroplasts,A-9
cholesterol receptor protein,A-44
chromatid arms,A-13
chromosome,A-5, A-12, A-13
chromosomes,A-12–A-14
cis-acting,A-41, A-42
citric acid cycle,A-8
cleaved,A-21
cloning,A-45
cloning vector,A-46
closed complex,1-11
closed loop,1-22

versus open loop,1-22
seecoenzyme A,A-8
coding strand,A-21
codon,A-22
codons,A-34
coenzyme A,A-8
cohesive ends,A-46
combinatorial promoters,1-17
complementary,A-29
complexity, of control systems,1-28
conjunction,A-15
control

early examples,1-26, 1-28
modeling for,1-24

cooperative,2-10
core gene sequence,A-36
cosmids,A-47
cristae,A-7
critical point,3-22
crossovers,A-13
cruise control,1-25–1-26

robustness,1-26
Curtiss seaplane,1-27
cycle sequencing,A-51
cytokinesis,A-13, A-14
cytoplasm,A-5
cytoplasmic region,A-3
cytoplasmic streaming,A-5
cytosine,A-28
cytoskeleton,A-4, A-5
cytosol,A-5

daughter nuclei,A-11
dead zone,1-30
deamination,A-26
degree of cooperativity,2-20
deleterious mutation,A-24
denatured,A-49
deoxynucleotides,A-51
deoxyribonucleic acid,A-44
deoxyribonucleic acid (DNA),A-5, A-28
derivative action,1-31
derived cells,A-18
describing functions,3-20
design of dynamics,1-26–1-28
dideoxynucleotide,A-51
differentiation,A-18, A-42, A-43
diffusion term,4-11
digital-to-analog converters,1-24
diploid, A-13, A-14, A-18
disturbance attenuation

in biological systems,3-8
DNA, A-28
DNA ligase,A-19, A-26
DNA looping,1-15
DNA nucleotides,A-47
DNA polymerase,A-19, A-26, A-51
DNA repair systems,A-26
DNA replication,A-17, A-19
DNA template,A-51
drift term,4-11
dyes,A-48
dynamical systems,1-21

early proteins,A-17
economic systems,1-29
egg,A-18
egg cell,A-14
electrodes,A-48
elongation,A-23
Elowitz, M. B., 2-20
endocytosis,A-4, A-16
endoplasmic reticulum,A-7
endoplasmic reticulum (ER),A-9
energy production, in a cell,A-7–A-9
enhancers,A-41
enthalpy,4-3
environmental science,1-23
enzymes,A-32
ethidium bromide,A-49



INDEX I-3

eukaryotes,A-2–A-3, A-37
events,C-1
exocytosis,A-17
exons,A-34
expectation,C-7
exported proteins,A-9

familial hypercholesterolemia,A-44
feedback

as technology enabler,1-23, 1-27
drawbacks of,1-22, 1-28
in financial systems,1-23
properties,1-29
robustness through,1-25
versus feedforward,1-28

feedback connection,3-20
feedback mechanisms,A-41
feedforward,1-28
female life cycles,A-14
filters

for measurement signals,1-28
flagella,A-3
flavin-adenine dinucleotide (FAD),A-9
flight control,1-26
fluorescent reporters,1-33
flush ends,A-46
Fokker-Planck equations,4-11
forward Kolmogorov equation,4-6
fragmentation,1-33
free energy,4-3
frequency response,3-6

gain,3-21
gametes,A-11, A-18
Gaussian distribution,C-4
gel,A-48
gels,A-48
gene prediction,A-36
gene regulation,A-40–A-43
gene regulatory sequences,A-40
genes,A-5, A-28, A-44
genetic marker,A-39
genetic material,A-5
genetic recombination,A-14
genetic switch,1-35
genomes,A-28
genomic imprinting,A-42
germ cells,A-18

germ line cells,A-18
Gibbs free energy,4-3
glucose,A-7–A-9
glucose transporters,A-7
glycolysis,A-7
glycoproteins,A-17
Golgi apparatus,A-9
gradient,A-49
granular chromatin,A-14
guanine,A-28

haploid,A-13, A-14
heat shock,1-16
helicase,A-19
hemoglobin,A-41
hereditary traits,A-44
Hill coefficient,2-20
Hill function, 2-20
Hill functions,2-10
homeostasis,1-23
homologous recombination,A-26
human development,A-18
human genome,A-39
hysteresis,1-30

inactivated genes,A-18
independent assortment,A-14
inducer,1-16
inducible error-prone repair,A-26
initiator sequence,A-38
inner mebrane, of mitochondria,A-7
integral action,1-31
intercalating agent,A-49
interphase,A-12, A-13
introns,A-34
isomerization,1-11

junk DNA, A-38

kinase,1-20, 2-24
Kozak sequence,1-13
Kreb’s cycle,A-8, A-9

lagging strand,A-19
large subunit,A-22
late proteins,A-17
leading strand,A-19
licensing factors,A-20
ligation,1-33, A-46



I-4 INDEX

limit cycle, 3-21
linear noise approximation,4-12
linkage,A-15
linkage disequilibrium,A-15
locus,A-14
Locus Control Region (LCR),A-41
lysis,A-17
lysosomes,A-9
lysozyme,A-17
lytic proteins,A-17

macrostate,2-3
male structures,A-14
Markov chain,C-15
Markov property,C-16
mature mRNA,A-36
mature RNA,1-13
mean,C-4, C-7
measurement noise,1-24
meiosis,A-11–A-14
Meiosis I,A-13, A-14
Meiosis II,A-14
messenger RNA (mRNA),A-32
Metaphase,A-13
metaphase,A-12
Metaphase II,A-14
metaphase plate,A-13
methionine,A-23
methyl group (-CH3),A-42
methylation,1-21, A-42
Michaelis-Menten kinetics,2-12
mismatch repair,A-26
mitochondria,A-7–A-9
mitochondrial DNA (mtDNA),A-31
mitochondrial genome,A-5
Mitochondrial Theory of Aging,A-31
mitochondrion,A-29
mitosis,A-11–A-12
modeling

model reduction,1-24
molecular and cellular biology,A-17
molecular dynamics,2-2
molecular genetics,A-44
molecular weights,A-48
multipotent,A-18
mutagenesis,A-26
mutations,A-14, A-24, A-44

NAD+, A-8
NADH, A-8
nascent RNA,A-21, A-38
negative inducer,1-16
nitrocellulose,A-49
noise intensity,C-15
normal distribution,C-4
northern blotting,A-49
nuclear DNA,A-29
nuclear envelope,A-6, A-12
nuclear genome,A-5
nuclear membrane,A-13, A-14
nucleic acid,A-28
nucleotide,A-28
Nucleotide excision repair,A-26
nucleus,A-6, A-28
Nyquist criterion,3-20

obligate intracellular parasites,A-15
Okazaki fragments,A-19
omega limit set,3-18
omega-limit point,3-18
on-off control,1-29, 1-30
open complex,1-11
open loop,1-22
open reading frames,A-40
operator,A-42
operator region,1-15
operon,1-15
organelles,A-3, A-6
Origin Recognition Complex,A-20
Ornstein-Uhlenbeck process,C-14
outer membrane, of mitochondria,A-7
oxaloacetate,A-8

P site,A-22
parent of origin differences,A-42
parental,A-15
partition function,2-3, 4-3
penetration, of a virus,A-16
peroxisomal targeting signal (PTS),A-10
peroxisomes,A-9
phase,3-21
phosphatase,2-24
phosphotransferase,1-20
photoreactivation,A-26
photosynthesis,A-9
PI control,1-25, 1-31



INDEX I-5

PID control,1-30–1-31
pili, A-3
plasma membrane,A-3, A-4
plasmids,A-15, A-46
platelets,A-18
pluripotent,A-18
Poisson distribution,C-3
poly(A) tail, A-21
polymerase chain reaction,A-45
polymerase chain reaction (PCR),A-47
polymerization,A-48
polypeptide chain,A-23
positive feedback,1-29
positive inducer,1-16
positively charged,A-48
post-replication repair,A-26
post-transcriptional modification,A-21, A-40
post-translational modification,A-23
pre-mRNA,1-12
prediction, in controllers,1-31
primer,A-51
primers,A-47
probability mass function,C-2
probability measure,C-1
probability space,C-1
probe,A-49
prokaryotes,A-2–A-3, A-37
promoter sequence,A-21, A-41
promoter site,A-37
propensity function,4-5
prophase,A-12
Prophase I,A-13
Prophase II,A-14
protease,A-24
protein transport,A-17
proteins,A-32–A-34
pseudogene,A-39
purines,A-28
pyrimidines,A-28
pyruvate,A-8, A-9
pyruvic acid,A-8

random process,C-8
random variable,C-1
recombinant DNA molecule,A-46
recombinant plasmid,A-46
recombination,A-14–A-15, A-36
recombination repair,A-26

red blood cells,A-18
reduced stoichiometry matrix,3-11
reduction division,A-13
reference signal,1-29
regulatory sequences,A-38
release, of a virus,A-17
repetitive DNA,A-38
replication,A-11, A-19, A-46
replication control mechanisms,A-20
replication origin sites,A-20
replication, of a virus,A-16
repressilator,1-33–1-34, 2-20–2-21
repressor,1-34, 2-21, 3-2
repressor proteins,A-42
repressors,A-41
restriction enzyme,A-46
restriction enzymes,1-32
retroviruses,A-16
reverse transcriptase,A-16
ribonucleic acid (RNA),A-5, A-32
ribosomal complex,A-34
ribosome,A-22, A-32, A-34

large and small subunits,A-7
ribosome binding site (RBS),1-12
ribosomes,A-6
RNA polymerase,A-20, A-22, A-37, A-41
RNA polymerase II,A-37
RNA processing,A-17
RNA replicase,A-16
robustness,1-25–1-26
rough ER,A-9
running buffer,A-48

sample space,C-1
satellite DNA,A-39
screening,1-33
self-repression,3-2
sense strand,A-21
sensors,1-23
sequencing,A-50
sexual reproduction,A-11
Shine-Delgarno,1-12
Shine-Delgarno sequence,A-38
sigma factors,1-16
sister chromatids,A-12
slow manifold,3-27
small subunit,A-22
smooth ER,A-9



I-6 INDEX

somatic cells,A-18
SOS repair,A-26
Southern blotting,A-49
sperm,A-18
sperm cells,A-14
spindle,A-12–A-14
splice junctions,A-40
spontaneous mutations,A-14
stability,1-26
standard deviation,C-4
start codon,1-13, A-23, A-40
stationary,C-16
statistical mechanics,2-2–2-4
steam engines,1-25
stem cells,A-18
sticky ends,A-46
stop codon,1-13, A-23
structural components,A-32
structural genes,A-38
switching (transcriptional regulation,A-41
switching behavior,1-29
symbiotic,A-30

Taq polymerase,A-47
TATA box, A-37
telomeres,A-39
telophase,A-12
Telophase I,A-13
Telophase II,A-14
template DNA,A-47, A-50
template strand,A-21, A-29
termination region,1-11, A-22
terminator,1-11
thalassemias,A-41
thymine,A-28
trans-acting,A-41
transcription,A-6, A-17, A-20, A-34, A-37,

A-41–A-42
transcription factors,A-41
transcriptional regulation,1-14
transduction,A-15
transfection,1-33
transfer RNA (tRNA),A-22
transformation,A-15, A-46
translation,A-6, A-22, A-38, A-42–A-43
translational regulation,A-42
transport molecules,A-32
two step reaction model,2-24

ubiquitination,1-21
uncertainty,1-24–1-26

component or parameter variation,1-24
disturbances and noise,1-24
unmodeled dynamics,1-24

uniform distribution,C-4

vector,A-46
viral capsid,A-16
virion, A-15
virions,A-15
viruses,A-10, A-15, A-17

reproduction,A-15–A-17

Watt steam engine,1-25
wells,A-48
white blood cells,A-18
wild-type,A-26
Wright, W.,1-26

X-inactivation,A-39

yeast artificial chromosomes (YACs),A-47


	Contents
	Preface
	Notation
	1 Introductory Concepts
	1.1 Systems Biology: Modeling, Analysis and the Role of Feedback
	1.2 Dynamics and Control in the Cell
	1.3 Control and Dynamical Systems Tools [AM08]
	1.4 From Systems to Synthetic Biology
	1.5 Further Reading

	I Modeling and Analysis
	2 Dynamic Modeling of Core Processes
	2.1 Modeling Techniques
	2.2 Transcription and Translation
	2.3 Transcriptional Regulation
	2.4 Post-Transcriptional Regulation
	2.5 Cellular subsystems
	 Exercises

	3 Dynamic Behavior
	3.1 Analysis Near Equilibria
	3.2 Analysis of Reaction Rate Equations
	3.3 Limit Cycle Behavior
	3.4 Analysis Using Describing Functions
	3.5 Bifurcations
	3.6 Model Reduction Techniques
	 Exercises

	4 Stochastic Modeling and Analysis
	4.1 Stochastic Modeling of Biochemical Systems
	4.2 Simulation of Stochastic sections
	4.3 Analysis of Stochastic Systems
	4.4 Linearized Modeling and Analysis
	4.5 Markov chain modeling and analysis
	4.6 System identification techniques
	4.7 Model Reduction
	 Exercises

	5 Feedback Examples
	5.1 The lac Operon
	5.2 Heat Shock Response in Bacteria
	5.3 Bacteriophage 
	5.4 Bacterial Chemotaxis
	5.5 Yeast mating response


	II Design and Synthesis
	6 Biological Circuit Components
	6.1 Biological Circuit Design
	6.2 Self-repressed gene
	6.3 The Toggle Switch
	6.4 The repressilator
	6.5 Activator-repressor clock
	 Exercises

	7 Interconnecting Components
	7.1 Input/Output Modeling and the Modularity Assumption
	7.2 Beyond the Modularity Assumption: Retroactivity
	7.3 Insulation Devices to Enforce Modularity
	7.4 Design of genetic circuits under the modularity assumption
	7.5 Biological realizations of an insulation component

	8 Design Tradeoffs
	9 Design Examples

	III Appendices
	A Cell Biology Primer
	A.1 What is a Cell
	A.2 What is a Genome
	A.3 Molecular Genetics: Piecing It Together

	B A Primer on Control Theory
	B.1 System Modeling
	B.2 Dynamic Behavior
	B.3 Linear Systems
	B.4 Reachability and observability
	B.5 Transfer Functions
	B.6 Frequency Domain Analysis
	B.7 PID Control
	B.8 Limits of Performance
	B.9 Robust Performance

	C Random Procesess
	C.1 Random Variables
	C.2 Continuous-State Random Processes
	C.3 Discrete-State Random Processes
	C.4 Input/Output Linear Stochastic Systems

	Bibliography
	Index


