
Chapter 11

Loop Shaping

Quotation

Authors, citation.

In this chapter we continue to explore the use of frequency domain tech-
niques for design of feedback systems. We begin with a more thorough
description of the performance specifications for control systems, and then
introduce the concept of “loop shaping” as a mechanism for designing con-
trollers in the frequency domain. We also introduce some fundamental lim-
itations to performance for systems with right half plane poles and zeros.

11.1 A Basic Feedback Loop

In the previous chapter, we considered the use of PID feedback as a mecha-
nism for designing a feedback controller for a given process. In this chapter
we will expand our approach to include a richer repertoire of tools for shap-
ing the frequency response of the closed loop system.

One of the key ideas in this chapter is that we can design the behavior
of the closed loop system by studying the open loop transfer function. This
same approach was used in studying stability using the Nyquist criterion:
we plotted the Nyquist plot for the open loop transfer function to determine
the stability of the closed loop system. From a design perspective, the use
of loop analysis tools is very powerful: since the loop transfer function is
L = PC, if we can specify the desired performance in terms of properties
of L, we can directly see the impact of changes in the controller C. This is
much easier, for example, than trying to reason directly about the response
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Figure 11.1: Block diagram of a basic feedback loop.

of the closed loop system, whose transfer function is given by

Gyr =
PC

1 + PC

(assuming F = 1).

We will start by investigating some key properties of the feedback loop.
A block diagram of a basic feedback loop is shown in Figure 11.1. The system
loop is composed of two components, the process and the controller, and the
controller has two blocks: the feedback block C and the feedforward block
F . There are two disturbances acting on the process, the load disturbance, d,
and the measurement noise, n. The load disturbance represents disturbances
that drive the process away from its desired behavior, while the measurement
noise represents the uncertainty in sensing the output of the system. In the
figure, the load disturbance is assumed to act on the process input. This is
a simplification, since disturbances often enter the process in many different
ways, but allows us to streamline the presentation without significant loss
of generality.

The process output η is the real physical variable that we want to con-
trol. Control is based on the measured signal y, where the measurements are
corrupted by measurement noise n. The process is influenced by the con-
troller via the control variable u. The process is thus a system with three
inputs—the control variable u, the load disturbance d and the measurement
noise n—and one output—the measured signal. The controller is a system
with two inputs and one output. The inputs are the measured signal y and
the reference signal r and the output is the control signal u. Note that the
control signal u is an input to the process and the output of the controller,
and that the measured signal is the output of the process and an input to
the controller.
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The feedback loop in Figure 11.1 is influenced by three external signals,
the reference r, the load disturbance d and the measurement noise n. There
are at least three signals, η, y and u that are of great interest for control,
giving nine relations between the input and the output signals. Since the
system is linear, these relations can be expressed in terms of the transfer
functions. The following relations are obtained from the block diagram in
Figure 11.1:
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To simplify notations we have dropped the arguments of all transfer func-
tions.

There are several interesting conclusions we can draw from these equa-
tions. First we can observe that several transfer functions are the same and
that all relations are given by the following set of six transfer functions,
which we call the Gang of Six :

PCF

1 + PC

PC

1 + PC

P

1 + PC

CF

1 + PC

C

1 + PC

1

1 + PC
.

(11.2)

The transfer functions in the first column give the response of the process
output and control signal to the setpoint. The second column gives the
same signals in the case of pure error feedback when F = 1. The transfer
function P/(1 + PC), in the third column, tells how the process variable
reacts to load disturbances and the transfer function C/(1 + PC), in the
second column, gives the response of the control signal to measurement
noise. Notice that only four transfer functions are required to describe how
the system reacts to load disturbances and the measurement noise, and that
two additional transfer functions are required to describe how the system
responds to setpoint changes.

The linear behavior of the system is determined by six transfer functions
in equation (11.2) and specifications can be expressed in terms of these trans-
fer functions. The special case when F = 1 is called a system with (pure)
error feedback. In this case all control actions are based on feedback from
the error only and the system is completely characterized by four transfer
functions, namely the four rightmost transfer functions in equation (11.2),
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which have specific names:

S =
1

1 + PC
sensitivity function

T =
PC

1 + PC
complementary sensitivity function

PS =
P

1 + PC
load sensitivity function

CS =
C

1 + PC
noise sensitivity function

(11.3)

These transfer functions and their equivalent systems are called the Gang of

Four. The load disturbance sensitivity function is sometimes called the input
sensitivity function and the noise sensitivity function is sometimes called the
output sensitivity function. These transfer functions have many interesting
properties that will be discussed in detail in the rest of the chapter and good
insight into these properties is essential for understanding feedback systems.

The procedure for designing a controller for the system in Figure 11.1
can be divided into two independent steps:

1. Design the feedback controller C that reduces the effects of load dis-
turbances and the sensitivity to process variations without introducing
too much measurement noise into the system.

2. Design the feedforward F to give the desired response to the reference
signal (or setpoint).

The properties of the system can be expressed in terms of properties of the
transfer functions (11.3), as illustrated in the following example.

Example 11.1. Consider the process

P (s) =
1

(s + 1)4

with a PI feedback controller

C(s) = 0.775 +
1

2.05s

and a feedforward controller

F (s) =
1

(0.5s + 1)4
.
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Figure 11.2: Step responses of the Gang of Six for PI control k = 0.775, Ti = 2.05
of the process P (s) = (s + 1)−4. The feedforward is designed to give the transfer
function (0.5s + 1)−4 from reference r to output y.

Figures 11.2 and 11.3 show the step and frequency responses for the Gang
of Six and give useful insight into the properties of the closed loop system.

The time responses in Figure 11.2 show that the feedforward gives a
substantial improvement of the response speed as seen by the differences
between the first and second columns. The settling time is substantially
shorter with feedforward, 4 s versus 25 s, and there is no overshoot. This is
also reflected in the frequency responses in Figure 11.3, which show that the
transfer function with feedforward has higher bandwidth and that it has no
resonance peak.

The transfer functions CF/(1 + PC) and −C/(1 + PC) represent the
signal transmission from reference to control and from measurement noise
to control. The time responses in Figure 11.2 show that the reduction in
response time by feedforward requires a substantial control effort. The initial
value of the control signal is out of scale in Figure 11.2 but the frequency
response in Figure 11.3 shows that the high frequency gain of PCF/(1+PC)
is 16, which can be compared with the value 0.78 for the transfer function
C/(1 + PC). The fast response thus requires significantly larger control
signals.

There are many other interesting conclusions that can be drawn from
Figures 11.2 and 11.3. Consider for example the response of the output
to load disturbances expressed by the transfer function P/(1 + PC). The
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Figure 11.3: Gain curves of frequency responses of the Gang of Six for PI control
k = 0.775, Ti = 2.05 of the process P (s) = (s + 1)−4 where the feedforward has
been designed to give the transfer function (0.5s + 1)−4 from reference to output.

frequency response has a pronounced peak 1.22 at ωmax = 0.5 and the corre-
sponding time function has its maximum 0.59 at tmax = 5.2. Notice that the
peaks are of the same magnitude and that the product of ωmaxtmax = 2.6.
Similar relations hold for the other responses. ∇

11.2 Performance Specifications

A key element of the control design process is how we specify the desired
performance of the system. Inevitably the design process requires a tradeoff
between different features of the closed loop system and specifications are
the mechanism by which we describe the desired outcome of those tradeoffs.

Frequency Domain Specifications

One of the main methods of specifying the performance of a system is
through the frequency response of various input/output pairs. Since spec-
ifications were originally focused on setpoint response, it was natural to
consider the transfer function from reference input to process output. For a
system with error feedback, the transfer function from reference to output is
equal to the complementary transfer function, T = PC/(1+PC). A typical
gain curve for this response is shown in Figure 11.4. Good performance
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Figure 11.4: Gain curve for transfer function from setpoint to output.

requires that the zero frequency gain is one (so that the output tracks the
reference). Typical specification measures include:� The resonance peak, Mr, is the largest value of the frequency response.� The peak frequency, ωp, is the frequency where the maximum occurs.� The bandwidth, ωb, is the frequency where the gain has decreased to

1/
√

2.

Specifications can also be related to the loop transfer function, L = PC.
Useful features that have been discussed previously are:� The gain crossover frequency, ωgc, is the lowest frequency where the

loop transfer function L has unit magnitude. This is roughly equal to
the frequency where the closed loop gain drops to below 1/

√
2.� The gain margin, gm, is the amount that the loop gain can be increased

before reaching the stability limit. A high gain margin insures that
errors in modeling the gain of the system do not lead to instability.� The phase margin, ϕm, is the amount of phase lag required to reach
the stability limit. A phase margin of 30◦ to 60◦ is typically required
for robustness to modeling errors and non-oscillatory response.

These concepts were given in more detail in Section 9.3.
In addition to specifications on the loop transfer function, there are

also a number of useful specifications on the sensitivity function and the
complementary sensitivity function:� The maximum sensitivity, Ms, is the peak value of the magnitude of

sensitivity function and indicates the maximum amplification from the
reference to the error signal.
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sensitivity function has its maximum.� The sensitivity crossover frequency, ωsc, is the frequency where the
sensitivity function becomes greater than 1 for the first time. Dis-
turbances are attenuated below this frequency and can be amplified
above this frequency.� The maximum complementary sensitivity, Mt, is the peak value of the
magnitude of the complementary sensitivity function. It provides the
maximum amplification from the reference signal to the output signal.� The maximum complementary sensitivity frequency, ωmt, is the fre-
quency where the complementary sensitivity function has its maxi-
mum.

As we will see in the rest of the chapter, these various measures can be used
to gain insights into the performance of the closed loop system and are often
used to specify the desired performance for a control design.

Although we have defined different specifications for the loop transfer
function L, the sensitivity function S and the complementary sensitivity
function T , these transfer functions are all related through a set of algebraic
relationships:

S =
1

1 + L
T =

L

1 + L
S + T = 1.

These relationships can limit the ability to independently satisfy specifica-
tions for the quantities listed above and may require tradeoffs, as we shall
see.

Relations between Time and Frequency Domain Features

In Section 5.3 we described some of the typical parameters that described
the step response of a system. These included the rise time, steady state
error, and overshoot. For many applications, it is natural to provide these
time domain specifications and we can relate these to the eigenvalues of the
closed loop system, which are equivalent to the poles of the transfer function
T = PC/(1 + PC).

There are approximate relations between specifications in the time and
frequency domain. Let G(s) be the transfer function from reference to out-
put. In the time domain the response speed can be characterized by the rise
time Tr and the settling time Ts. In the frequency domain the response time
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can be characterized by the closed loop bandwidth ωb, the gain crossover
frequency ωgc, the sensitivity frequency ωms. The product of bandwidth and
rise time is approximately constant Trωb ≈ 2, so decreasing the rise time
corresponds to increasing the closed loop bandwidth.

The overshoot of the step response Mp is related to the resonant peak Mr

of the frequency response in the sense that a larger peak normally implies
a larger overshoot. Unfortunately there is no simple relation because the
overshoot also depends on how quickly the frequency response decays. For
Mr < 1.2 the overshoot Mp in the step response is often close to Mr − 1.
For larger values of Mr the overshoot is typically less than Mr − 1. These
relations do not hold for all systems: there are systems with Mr = 1 that
have a positive overshoot. These systems have transfer functions that decay
rapidly around the bandwidth. To avoid overshoot in systems with error
feedback it is advisable to require that the maximum of the complementary
sensitivity function is small, say Mt = 1.1 − 1.2.

Response to Load Disturbances

The sensitivity function in equation (11.3) shows how feedback influences
disturbances. Disturbances with frequencies that are lower than the sen-
sitivity crossover frequency ωsc are attenuated by feedback and those with
ω > ωsc are amplified by feedback. The largest amplification is the maxi-
mum sensitivity Ms.

Consider the system in Figure 11.1. The transfer function from load
disturbance d to process output w is

Gwd =
P

1 + PC
= PS =

T

C
. (11.4)

Since load disturbances typically have low frequencies, it is natural that the
criterion emphasizes the behavior of the transfer function at low frequen-
cies. Filtering of the measurement signal has only marginal effect on the
attenuation of load disturbances because the filter typically only attenuates
high frequencies. For a system with P (0) 6= 0 and a controller with integral
action, the controller gain goes to infinity for small frequencies and we have
the following approximation for small s:

Gwd =
T

C
≈ 1

C
≈ s

ki

. (11.5)

Figure 11.5 gives the gain curve for a typical case and shows that the ap-
proximation is very good for low frequencies.
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Figure 11.5: Gains of the transfer functions Gwd and Gun for PID control (k =
2.235, Ti = 3.02, Ti = 0.756 and Tf = Td/5) of the process P = (s + 1)−4. The
gain of the transfer functions P , C, 1/C are shown with dashed lines and s/ki with
dash-dotted lines.

Measurement noise, which typically has high frequencies, generates rapid
variations in the control variable that are detrimental because they cause
wear in many actuators and they can even saturate the actuator. It is thus
important to keep the variations in the control signal at reasonable levels—
a typical requirement is that the variations are only a fraction of the span
of the control signal. The variations can be influenced by filtering and by
proper design of the high frequency properties of the controller.

The effects of measurement noise are captured by the transfer function
from measurement noise to the control signal,

Gun =
C

1 + PC
= CS =

T

P
. (11.6)

Figure 11.5 shows the gain curve of Gun for a typical system. For low
frequencies the transfer function the sensitivity function equals 1 and equa-
tion (11.6) can be approximated by 1/P . For high frequencies is is approxi-
mated as Gun ≈ C. A simple measure of the effect of measurement noise is
the high frequency gain of the transfer function Gun,

Mun := ‖Gun‖∞ = sup
ω

|Gun(jω)|. (11.7)
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Figure 11.6: Nyquist curve of loop transfer function showing graphical interpre-
tation of maximum sensitivity. The sensitivity crossover frequency ωsc and the
frequency ωms where the sensitivity has its largest value are indicated in the figure.
All points inside the dashed circle have sensitivities greater than 1.

The sensitivity function can be written as

S =
1

1 + PC
=

1

1 + L
. (11.8)

Since it only depends on the loop transfer function it can also be visualized
graphically using the Nyquist plot of the loop transfer function. This is
illustrated in Figure 11.6. The complex number 1+L(jω) can be represented
as the vector from the point −1 to the point L(jω) on the Nyquist curve.
The sensitivity is thus less than one for all points outside a circle with radius
1 and center at −1. Disturbances of these frequencies are attenuated by the
feedback. If a control system has been designed based on a given model, it
is straightforward to estimate the potential disturbance reduction simply by
recording a typical output and filtering it through the sensitivity function.

Example 11.2. Consider the same system as the previous example

P (s) =
1

(s + 1)4
,

with a PI controller. Figure 11.7 shows the gain curve of the sensitivity
function for k = 0.8 and ki = 0.4. The figure shows that the sensitivity
crossover frequency is 0.32 and that the maximum sensitivity 2.1 occurs at
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Figure 11.7: Gain curve of the sensitivity function for PI control (k = 0.8, ki = 0.4)
of process with the transfer function P (s) = (s + 1)−4. The sensitivity crossover
frequency is indicated by + and the maximum sensitivity by o.

ωms = 0.56. Feedback will thus reduce disturbances with frequencies less
than 0.32 rad/s, but it will amplify disturbances with higher frequencies.
The largest amplification is 2.1. ∇

11.3 Feedback Design via Loop Shaping

One advantage the the Nyquist stability theorem is that it is based on the
loop transfer function, which is related to the controller transfer function
through L = PC. It is thus easy to see how the controller influences the
loop transfer function. To make an unstable system stable we simply have
to bend the Nyquist curve away from the critical point.

This simple idea is the basis of several different design methods, collec-
tively called loop shaping. The methods are based on the idea of choosing a
compensator that gives a loop transfer function with a desired shape. One
possibility is to start with the loop transfer function of the process and mod-
ify it by changing the gain and adding poles and zeros to the controller until
the desired shape is obtained.

Design Considerations

We will first discuss suitable forms of a loop transfer function that give
good performance and good stability margins. Good robustness requires
good gain and phase margins. This imposes requirements on the loop trans-
fer function around the crossover frequencies ωpc and ωgc. The gain of L
at low frequencies must be large in order to have good tracking of com-
mand signals and good rejection of low frequency disturbances. This can be
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Figure 11.8: Gain curve of the Bode plot for a typical loop transfer function. The
gain crossover frequency ωgc and the slope ngc of the gain curve at crossover are
important parameters.

achieved by having a large crossover frequency and a steep slope of the gain
curve for the loop transfer function at low frequencies. To avoid injecting
too much measurement noise into the system it is desirable that the loop
transfer function have a low gain at frequencies higher than the crossover
frequencies. The loop transfer function should thus have the shape indicated
in Figure 11.8.

Bode’s relations (see Section 9.4) impose restrictions on the shape of the
loop transfer function. Equation (9.5) implies that the slope of the gain
curve at gain crossover cannot be too steep. If the gain curve is constant,
we have the following relation between slope ngc and phase margin ϕm:

ngc = −2 +
2ϕm

π
. (11.9)

This formula holds approximately when the gain curve does not deviate too
much from a straight line. It follows from equation (11.9) that the phase
margins 30◦, 45◦ and 60◦ corresponds to the slopes -5/3, -3/2 and -4/3.

There are many specific design methods that are based on loop shaping.
We will illustrate the basic approach by the design of a PI controller.

Example 11.3 (Design of a PI controller). Consider a system with the
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transfer function

P (s) =
1

(s + 1)4
. (11.10)

A PI controller has the transfer function

C(s) = k +
ki

s
= k

1 + sTi

sTi

.

The controller has high gain at low frequencies and its phase lag is negative
for all parameter choices. To have good performance it is desirable to have
high gain and a high gain crossover frequency. Since a PI controller has
negative phase, the gain crossover frequency must be such that the process
has phase lag smaller than 180−ϕm, where ϕm is the desired phase margin.
For the process (11.10) we have

∠P (jω) = −4 arctanω

If a phase margin of π/3 or 60◦ is required, we find that the highest gain
crossover frequency that can be obtained with a proportional controller is
ωgc = tanπ/6 = 0.577. The gain crossover frequency must be lower with a
PI controller.

A simple way to design a PI controller is to specify the gain crossover
frequency to be ωgc. This gives

L(jω) = P (jω)C(jω) =
kP (jω)

√

1 + ω2
gcT

2
i

ωgcTi

= 1,

which implies

kp =

√

1 + ω2
gcT

2
i

ωgcTiP (jωgc)
.

We have one equation for the unknowns k and Ti. An additional condition
can be obtained by requiring that the PI controller have a phase lag of 45◦

at the gain crossover, hence ωTi = 0.5. Figure 11.9 shows the Bode plot of
the loop transfer function for ωgc = 0.1, 0.2, 0.3, 0.4 and 0.5. The phase
margins corresponding to these crossover frequencies are 94◦, 71◦, 49◦, 29◦

and 11◦. The gain crossover frequency must be less than 0.26 to have the
desired phase margin 60◦. Figure 11.9 shows that the controller increases
the low frequency gain significantly at low frequencies and that the the phase
lag decreases. The figure also illustrates the tradeoff between performance
and robustness. A large value of ωgc gives a higher low frequency gain and
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a lower phase margin. Figure 11.10 shows the Nyquist plots of the loop
transfer functions and the step responses of the closed loop system. The
responses to command signals show that the designs with large ωgc are too
oscillatory. A reasonable compromise between robustness and performance
is to choose ωgc in the range 0.2 to 0.3. For ωgc = 0.25, the controller
parameters are k = 0.50 and Ti = 2.0. Notice that the Nyquist plot of the
loop transfer function is bent towards the left for low frequencies. This is
an indication that integral action is too weak. Notice in Figure 11.10 that
the corresponding step responses are also very sluggish. ∇

Lead Compensation

A common problem in design of feedback systems is that the phase lag of
the system at the desired crossover frequency is not high enough to allow
either proportional or integral feedback to be used effectively. Instead, one
may have a situation where you need to add phase lead to the system, so
that the crossover frequency can be increased.

A standard way to accomplish this is to use a lead compensator, which
has the form

C(s) = k
s + a

s + b
a < b. (11.11)

The transfer function corresponding to this controller is shown in Figure 11.11.
A key feature of the lead compensator is that it adds phase lead in the fre-
quency range between the pole/zero pair (and extending approximately 10X
in frequency in each direction). By appropriately choosing the location of
this phase lead, we can provide additional phase margin at the gain crossover
frequency.

Because the phase of a transfer function is related to the slope of the
magnitude, increasing the phase requires increasing the gain of the loop
transfer function over the frequency range in which the lead compensation
is applied. Hence we can also think of the lead compensator as changing the
slope of the transfer function and thus shaping the loop transfer function in
the crossover region (although it can be applied elsewhere as well).

Example 11.4 (Pitch control for a ducted fan). Consider the control of the
pitch (angle) of a vertically oriented ducted fan, as shown in Figure 11.12.
We model the system with a second order transfer function of the form

P =
r

Js2 + ds + mgl
,

with the parameters given in Table 11.1. We take as our performance
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Figure 11.11: Frequency response for a lead compensator, C(s) = k(s + a)/(s + b).

specification that we would like less than 1% error in steady state and less
than 10% tracking error up to 10 rad/sec.

The open loop transfer function is shown in Figure 11.13a. To achieve
our performance specification, we would like to have a gain of at least 10 at
a frequency of 10 rad/sec, requiring the gain crossover frequency to be at a
higher frequency. We see from the loop shape that in order to achieve the

adjustable flaps

net thrust

(x, y)

θ

f2

f1

Figure 11.12: Caltech ducted fan with support stand.
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Symbol Description Value

m inertial mass of fan, x axis 4.0 kg
J fan moment of inertia, ϕ3 axis 0.0475 kg m2

r nominal distance of flaps from fan pivot 26.0 cm
d angular damping factor 0.001 kg m/s
g gravitational constant 9.8 m/sec2

Table 11.1: Parameter values for the planar ducted fan model which approximate
the dynamics of the Caltech ducted fan.

desired performance we cannot simply increase the gain, since this would
give a very low phase margin. Instead, we must increase the phase at the
desired crossover frequency.

To accomplish this, we use a lead compensator (11.11) with a = 2 and
b = 50. We then set the gain of the system to provide a large loop gain
up to the desired bandwidth, as shown in Figure 11.13b. We see that this
system has a gain of greater than 10 at all frequencies up to 10 rad/sec and
that it has over 40◦ degrees of phase margin. ∇

The action of a lead compensator is essentially the same as that of the
derivative portion of a PID controller. As described in Section 10.5, we
often use a filter for the derivative action of a PID controller to limit the
high frequency gain. This same effect is present in a lead compensator
through the pole at s = b.

Equation (11.11) is a first order lead compensator and can provide up
to 90◦ of phase lead. Higher levels of phase lead can be provided by using a
second order lead compensator:

C = k
(s + a)2

(s + b)2
a < b.

11.4 Fundamental Limitations�

Although loop shaping gives us a great deal of flexibility in designing the
closed loop response of a system, there are certain fundamental limits on
what can be achieved. We consider here some of the primary performance
limitations that can occur; additional limitations having to do with robust-
ness are considered in the next chapter.

One of the key limitations of loop shaping occurs when we have the
possibility of cancellation of right half plane poles and zeros. The canceled
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Figure 11.13: Control design using a lead compensator: (a) Bode plot for P and
(b) Bode plot for L = PC using a lead compensator.

poles and zeros do not appear in the loop transfer function but they can
appear in the transfer functions from disturbances to outputs or control
signals. Cancellations can be disastrous if the canceled factors are unstable,
as was shown in Section 7.5. This implies that there is a major difference
between minimum phase and non-minimum phase systems.

To explore the limitations caused by poles and zeros in the right half
plane we factor the process transfer function as

P (s) = Pmp(s)Pnmp(s), (11.12)

where Pmp is the minimum phase part and Pnmp is the non-minimum phase
part. The factorization is normalized so that |Pnmp(jω)| = 1 and the sign is
chosen so that Pnmp has negative phase. Requiring that the phase margin
is ϕm we get

arg L(jωgc) = arg Pnmp(jωgc) + arg Pmp(jωgc) + arg C(jωgc) ≥ −π + ϕm,
(11.13)

where C is the controller transfer function. Let ngc be the slope of the gain
curve at the crossover frequency; since |Pnmp(jω)| = 1 it follows that

ngc =
d log |L(jω)|

d log ω

∣

∣

∣

∣

∣

ω=ωgc

=
d log |Pmp(jω)C(jω)|

d log ω

∣

∣

∣

∣

∣

ω=ωgc

.

The slope ngc is negative and larger than −2 if the system is stable. It
follows from Bode’s relations, equation (9.5), that

arg Pmp(jω) + arg C(jω) ≈ ngc
π

2



342 CHAPTER 11. LOOP SHAPING

Combining this with equation (11.13) gives the following inequality for the
allowable phase lag

ϕℓ = − arg Pnmp(jωgc) ≤ π − ϕm + ngc
π

2
. (11.14)

This condition, which we call the crossover frequency inequality, shows that
the gain crossover frequency must be chosen so that the phase lag of the non-
minimum phase component is not too large. To find numerical values we will
consider some reasonable design choices. A phase margin of 45◦ (ϕm = π/4),
and a slope ngc = −1/2 gives an admissible phase lag of ϕℓ = π/2 = 1.57
rad and a phase margin of 45◦ and ngc = −1 gives and admissible phase lag
ϕℓ = π/4 = 0.78 rad. It is thus reasonable to require that the phase lag of
the non-minimum phase part is in the range of 0.5 to 1.6 radians, or roughly
30◦ to 90◦.

The crossover frequency inequality shows that non-minimum phase com-
ponents impose severe restrictions on possible crossover frequencies. It also
means that there are systems that cannot be controlled with sufficient sta-
bility margins. The conditions are more stringent if the process has an
uncertainty ∆P (jωgc). As we shall see in the next chapter, the admissible
phase lag is then reduced by arg ∆P (jωgc).

A straightforward way to use the crossover frequency inequality is to
plot the phase of the transfer function of the process and the phase of the
corresponding minimum phase system. Such a plot, shown in Figure 11.14,
will immediately show the permissible gain crossover frequencies.

As an illustration we will give some analytical examples.

Example 11.5 (Zero in the right half plane). The non-minimum phase part
of the plant transfer function for a system with a right half plane zero is

Pnmp(s) =
z − s

z + s
. (11.15)

where z > 0. The phase lag of the non-minimum phase part is

ϕℓ = − arg Pnmp(jω) = 2 arctan
ω

z
.

Since the phase of Pnmp decreases with frequency, the inequality (11.14)
gives the following bound on the crossover frequency:

ωgc

z
≤ tan

ϕℓ

2
. (11.16)

With reasonable values of ϕℓ we find that the gain crossover frequency must
be smaller than the right half plane zero. It also follows that systems with
slow zeros are more difficult to control than system with fast zeros. ∇
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Figure 11.14: Bode plot of process transfer function (full lines) and corresponding
minimum phase transfer function (dashed). The permissible gain crossover fre-
quencies are those for which the difference in phase between the two curves satisfies
equation (11.14).

Example 11.6 (Time delay). The transfer function of a time delay is

P (s) = e−sT . (11.17)

This is also the non-minimum phase part Pnmp and the corresponding phase
lag is

ϕℓ = − arg Pnmp(jω) = ωT =⇒ wgc ≤
ϕl

T
.

If the transfer function for the time delay is approximated by

e−sT ≈ 1 − sT/2

1 + sT/2
,

we find that a time delay T corresponds to a right half plane zero z = 2/T .
A slow zero thus corresponds to a long time delay. ∇

Example 11.7 (Pole in the right half plane). The non-minimum phase part
of the transfer function for a system with a pole in the right half plane is

Pnmp(s) =
s + p

s − p
, (11.18)

where p > 0. The phase lag of the non-minimum phase part is

ϕℓ = − arg Pnmp(jω) = 2 arctan
p

ω
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Table 11.2: Achievable phase margin for for ϕm = π/4 and ngc = −1/2 and different
pole-zero ratios p/z.

p/z 0.45 0.24 0.20 0.17 0.12 0.10 0.05

z/p 2.24 4.11 5.00 5.83 8.68 10 20

ϕm 0 30 38.6 45 60 64.8 84.6

and the crossover frequency inequality becomes

ωgc >
p

tan(ϕℓ/2)
.

With reasonable values of ϕℓ we find that the gain crossover frequency should
be larger than the unstable pole. ∇

Example 11.8 (Pole and a zero in the right half plane). The non-minimum
phase part of the transfer function for a system with both poles and zeros
in the right half plane is

Pnmp(s) =
(z − s)(s + p)

(z + s)(s − p)
. (11.19)

The phase lag of this transfer function is

ϕℓ = − arg Pnmp(jω) = 2 arctan
ω

z
+ 2 arctan

p

ω
= 2 arctan

ωgc/z + p/ωgc

1 − p/z
.

The mininum value of the right hand side is given by

min
ωgc

(

2 arctan
ωgc/z + p/ωgc

1 − p/z

)

= 2 arctan
2
√

p/z

1 − p/z
= 4 arctan

√

p

z
,

which is achieved at ω =
√

pz. The crossover frequency inequality (11.14)
becomes

ϕℓ = − arg Pnmp(jω) ≤ 4 arctan

√

p

z
,

or
p

z
≤ tan

ϕℓ

4
.

The design choices ϕm = π/4 and ngc = −1/2 gives p < 0.17z. Table 11.2
shows the admissible pole-zero ratios for different phase margins. The
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phase-margin that can be achieved for a given ratio p/z is

ϕm < π + ngc
π

2
− 4 arctan

√

p

z
. (11.20)

A pair of poles and zeros in the right half plane thus imposes severe con-
straints on the gain crossover frequency. The best gain crossover frequency
is the geometric mean of the unstable pole and zero. A robust controller
does not exist unless the pole/zero ratio is sufficiently small. ∇

Avoiding Difficulties with RHP Poles and Zeros

As the examples above show, right half plane poles and zeros significantly
limit the achievable performance of a system, hence one would like to avoid
these whenever possible. The poles of a system depend on the intrinsic
dynamics of the system and are given by the eigenvalues of the dynamics
matrix A of a linear system. Sensors and actuators have no effect on the
poles. The only way to change poles is to redesign the system. Notice
that this does not imply that unstable systems should be avoided. Unstable
system may actually have advantages; one example is high performance
supersonic aircraft.

The zeros of a system depend on the how sensors and actuators are
coupled to the states. The zeros depend on all the matrices A, B, C and D
in a linear system. The zeros can thus be influenced by moving sensors and
actuators or by adding sensors and actuators. Notice that a fully actuated
system B = I does not have any zeros.

11.5 Design Example

In this section we carry out a detailed design example that illustrates the
main techniques in this chapter.

11.6 Further Reading

A more complete description of the material in this chapter is available in
the text by Doyle, Frances and Tannenbaum [DFT92] (out of print, but
available online).
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11.7 Exercises

1. Regenerate the controller for the system in Example 11.4 and use the
frequency responses for the Gang of Four to show that the performance
specification is met.


