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Abstract. Biochemical processes inside the cell are often modeled at the
mesoscopic scale as continuous-time Markov processes whose probability
distributions evolve over time according to the chemical master equation.
We consider the problem of determining the a posteriori probability that
a particular rare event of interest has occurred in a chemical process given
a record of observations of that process. Expressions for this a posteriori

probability are developed for the case where the record of observations
is continuous and for the case where it is intermittent, and the dynamics
of the a posteriori probabilities are expressed as hybrid systems. The
approach is demonstrated on a stochastic model of gene expression inside
the cell.

1 Introduction

The biochemical processes that make up life at the cellular level are inherently
stochastic [1]. Deterministic methods of modeling and analyzing chemical reac-
tions, such as ordinary differential equation models, are based on the assumption
that there is a large population of every species present in the reaction chamber.
In biochemical systems such as gene regulatory networks, this assumption does
not hold; the populations of species such as proteins, RNA strands, and genes
may be very small. As a result of these small populations, biochemical processes
can be intrinsically noisy; this noisy behavior has been observed experimentally
in single-cell studies [2] and quantitatively analyzed [3], [4].

Under a standard set of physical assumptions, the behavior of a small-volume
system can be described exactly by a continuous-time Markov process. Each
state of the Markov process is an p-dimensional vector (where p is the number of
distinct species in the reaction) whose elements are the population of each species
in the reaction. Each transition in the process corresponds with the occurrence
of one of the possible reactions.

When modeling biochemical processes as Markov processes, there are many
different chemical species in the reaction chamber and the state space is thus
very high-dimensional. As a result, stochastic biochemical processes are often
studied using simulation techniques such as the Gillespie algorithm [5] and its
extensions [6]. However, in order to use simulation methods to reliably estimate
the probability distributions of aspects of a system’s behavior, it is necessary
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the behaviors of biological interest are rare events, such as the state of a genetic
switch toggling from OFF to ON [7] , where hundreds of thousands of simulations
can be needed to get reasonable relative error bounds.

The evolution of the probability distribution on the state space over time is
precisely described by the chemical master equation (CME) [8]; however, it is
computationally difficult to solve the CME precisely for systems with large state
spaces. The need to precisely describe the statistics of rare events motivated the
development of methods for finding approximate solutions to the CME, such as
the finite state projection method [7] or uniformization [9].

Methods for exactly or approximately calculating the solution to a CME
determine the a priori probability distributions of events occurring in the process
at particular instants in time. However, there is also an a posteriori problem that
we consider in this paper: Based on observed data from a chemical process and a
continuous-time Markov process model of its behavior, what is the probability of
a rare event having occurred? This problem is non-trivial because our observation
of biochemical processes is very limited. In practice; it is possible to estimate
the populations of proteins and other biochemical species in vivo by tagging
the species of interest with fluorescent markers. Even so, in order to detect
the populations of multiple species we must tag them so that they fluoresce at
different wavelengths, thus it is difficult to observe the populations of more than
four species at any one time without the emission spectra overlapping each other.

Single-cell studies allow the researcher in the laboratory to collect stochastic,
dynamic data from the behavior of a intracellular reaction network [2]. However,
the limited observation capabilities available to in the lab motivate the need for
intelligent algorithms for analyzing this data to determine the probabilities that
events of interests have occurred. In this paper, we develop an approach for using
the CME description of a chemical process in order to determine the a posteriori
probabilities that a particular event of interest has occurred. The methodology
we use is based on techniques for addressing the problem of diagnosability in
discrete event system (DES) models [10]; in particular, stochastic DES models
[11]. The techniques of DES diagnosis allow us to develop a method for calcu-
lating the probabilities of rare events based on dynamic data; thus, they are
generally applicable to systems such as toggle switches and oscillators in which
a steady-state behavior is never realized.

We organize the paper as follows. In Section 2 we define the continuous-time
Markov process model and state the diagnosis problem. In Section 3 we derive a
hybrid system representation of the a posteriori probability distribution for the
case when our observations of the system are intermittent; in section 4, we do
the same for the case of continuous observations. In Section 5, we demonstrate
how calculating this a posteriori distribution can be used to solve the diagnosis
problem. We demonstrate the performance of the algorithm on a stochastic gene
expression model in Section 6.
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Consider a reaction chamber containing a set of species S = {S1, S2, . . . Sn} that
interact along a set of reaction channels R. Each reaction in R takes the form

n1,LS1 + · · ·+ np,LSp
k
−→ n1,RS1 + · · ·+ nq,RSp,

where Si ∈ S, ni,L, ni,R ∈ Z
≥0, i = 1 . . . p. The constant k above the arrow is

the base rate of the reaction. In the paper, we make the standard assumptions
of stochastic chemical kinetics [12], namely that

– the reaction chamber is of fixed volume,
– the reaction chamber is at thermal equilibrium,
– the particles in the reaction chamber are well-mixed, i.e., the rate at which

non-reacting collisions between particles occur is much greater than the rate
at which reacting collisions occur.

Under these standard conditions, the state of the reaction network can described
at the mesoscopic scale as a p-dimensional vector x(t) = [N1(t) . . . Np(t)]

T , where
Ni(t) denotes the number of the species Si at time t. Furthermore, under these
conditions it has been rigorously derived that the evolution of the system state
can be precisely described using a continuous time Markov process (CTMP) [6].

Definition 1. A continuous time Markov process is a tuple S = (X,Q, π0),
where X is a countable set of states, Q is a transition rate matrix, and π0 is the
initial probability distribution on X.

The elements of Q specify the rates at which transitions in the CTMP occur. If
Qij is a non-diagonal element of Q, then the probability of a transition from a
state xi ∈ X to another state xj ∈ X in the interval [t, t + dt) is Qijdt; if Qii is
a diagonal element of Q, we set that Qii = −

∑

j 6=i Qij , thereby ensuring that
all of the columns in Q sum to zero.

A CTMP produces trajectories that are piecewise constant, right-continuous
functions ω : T → X, where T , [0, tmax] . We say that a state x is visited along
the trajectory ω is there exists t ≤ tmax such that ω(t) = x.

Chemical Master Equation. Enumerate the elements of the state space
X as X = {x1, x2, . . . , xn, . . . }. Denote by p(t) a vector where the ith element is
the probability that the system is in state xi at time t, i.e. pi(t) , Pr(ω(t) = xi).
the chemical master equation (CME) describes how the probability vector p(t)
evolves with time. The CME is expressed in vector form as a linear system of
equations [8]:

ṗ(t) = Qp(t). (1)

Because the initial condition of this ODE is p(0) = π0, the solution of the CME
is p(t) = eQtπ0.

Intermittent Observation Model. In practice, it is not possible to com-
pletely observe the state of the CTMP S; only some of the state variables are
available for observation as there do not exist methods to precisely measure
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servation of the state, we define a set of outputs Y and we define a state out-
put random variable h : X → Y . For each y ∈ Y , we define a vector hy by

(hy)i , Pr(h(xi) = y). It will be convenient to express the output probabilities

in a matrix form, so we also define Hy , diag(hy).

As the CTMP S evolves with time, we make n observations at the sequence of
times Tn , {τ1, τ2, . . . τn} ⊂ T . The results in this paper hold when the sample
times in Tn are either periodic or aperiodic. Denote by yk the output value ob-
served at time τk. Denote by y

k the sequence of observed values {y1, y2, . . . , yk}.

Continuous Observation Model. We also consider the case that the be-
havior of the CTMP S is observed continuously, that is, the value of h(ω(t)) is
known for all t ∈ T . In the continuous observation case, we make the assumption
that the state output is deterministic, that is, for all x ∈ X there exists an y ∈ Y
such that Pr(h(x) = y) = 1.

We denote by y[0,t] the set of observed values made on the interval [0, t].
Because trajectories of the CTMP are piecewise constant functions, the output
y[0,t] is also piecewise constant. If y[0,t] consists of n distinct pieces, we denote
by {y1, y2, . . . , yn} the values of the n distinctly observed outputs and we denote
by {τ1, τ2, . . . τn} the times at which the n jumps from one output to another
occurred.

For each output yi, we define by I = {i1, i2, . . . in} the index set of states in
X whose output is yi with probability 1. For two outputs yi and yj , we denote
by QIJ the submatrix of the transition rate matrix where the rows are selected
according to the index set I and the columns are selected according to the index
set J .

Diagnosis Problems: The problem we consider in this paper is the follow-
ing. Let XS ⊂ X denote a set of special states. In practice, the event that the
system enters a state in XS could correspond to several different occurrences
of biological interest. For example, the set XS can be defined so that the event
corresponds to the population of a particular species in S crossing a given thresh-
old, thereby activating a downstream genetic circuit or flipping the state of an
oscillator or toggle switch.

We denote by Dt the event that a trajectory of the CTMP S has reached
a special state before a given time t, and formally define Dt , {ω : ∃s ≤
t such that ω(s) ∈ XS} for all t ∈ T .

We consider two diagnosis problems. The intermittent observation diagno-
sis problem is: given a sequence of noisy observations y

n made at time Tn =
{τ1, τ2, . . . τn}, find Pr(Dt | y

n) for all t ≥ τn. Similarly, the continuous observa-
tion diagnosis problem is: for all t > 0, given the perfect observations y

[0,t] made
on the interval [0, t], find Pr(Dt | y

[0,t]) .
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expression:

∅
k1−−⇀↽−−
k−1

mR

mR
k2−→ mR + P,

where the symbol mR denotes messenger RNA and the symbol P denotes flu-
orescent protein. The rate constants are selected to be k1 = .0554 mRNA/s,
k2 = .17 protein/(mRNA.s) and k−1 = .0113 (mRNA.s)−1 [13]. For simplicity
of presentation, we assume that rate of protein decay is on a slower time scale
than the other reactions and thus omit this reaction; the reaction can be added
to the model in a straightforward manner. Interpreting this reaction network
stochastically produces a CTMP with X = Z

≥0 × Z
≥0, where a typical state is

of the form x =
[

nmR nP

]

. We are interested in investigating the behavior of
this system until t = 1440 seconds, the approximate time at which cell division
occurs [4].

The state space X we defined is infinite. For the sake of calculation, we assume
that the probabilities that the populations of mRNA and protein ever become
very large are negligible. We thus define a constant mRmax and specify that the
probability that another mRNA is created when the current mRNA population
is mRmax is zero. We also define a constant Pmax that plays the same role for
protein. The state space we define in this manner is X = {0, 1, . . . mRmax} ×
{0, 1, . . . Pmax}.

To construct the transition rate matrix Q, we define an indexing function
I : X → N. The non-zero elements of Q are specified to be

QI(nmR+1,nP ),I(nmR,nP ) = k1 if nmR < mRmax

QI(nmR−1,nP ),I(nmR,nP ) = k−1nmR if nmR > 0

QI(nmR,nP +1),I(nmR,nP ) = k2nmR if nP < Pmax.

All other elements of Q are zero.
The initial distribution π0 is defined by observing that the protein number

at t = 0 is zero. We assume the mRNA number is distributed according to a
Poisson distribution with parameter λ = 5.

We consider two output functions. The noiseless output function is given by
Pr(h

([

nmR nP

])

= nP ) = 1, i.e. the fluorescent protein number is observed

perfectly. The noisy output function is Pr(h
([

nmR nP

])

= nP − ℓ) = 1
11 for

ℓ ∈ {−5,−4, . . . , 4, 5}. That is, under noisy observations the observed protein
number is uniformly distributed around the true protein number in an interval of
±5 proteins. This noise model is used for the purposes of illustration and other
noise models, such as Gaussian or Poisson noise, can be substituted.

We define the set of special states as XS = {
[

nmR nP

]

: nmR ≥ 9}. The diag-
nosis problems are then to find the probability that at some point on the interval
[0, t], the population of mRNA was at least 9 given a sequence of observations
(yn for the intermittent observation case, y

[0,t] for the continuous observation
case.)
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Intermittent Observations

In order to solve the intermittent observation diagnosis problem, we first propose
a more general question. Given a sequence of observations y

n made at times
Tn = {τ1, . . . , τn}, what is the probability of being in a given state at time t ≥ τn?
Expressed more compactly, the problem is to find the a posteriori probability
distribution p(t | yn).

Theorem 1. For t ≥ τn, the a posteriori probability distribution p(t | yn) is

p(t | yn) =
1

K
eQ(t−τn)Hyn

eQ(τn−τn−1)Hyn−1
. . .Hy2

eQ(τ2−τ1)Hy1
eQ(τ1)π0. (2)

Proof. We find p(t | yn) by decomposing the evolution of the a posteriori prob-
ability distribution into two domains. Between observation times, we show that
p(t | yn) evolves continuously according to the equation

p(t | yn) = eQ(t−τn)p(τn | y
n). (3)

At the times Tn when observation occurs, we show that p(t | yn) evolves accord-
ing to a discrete jump

p(τ+
n | yn) =

1

Kn

Hyn
p(τ−n | yn−1). (4)

For brevity, we denote the event {ω(t) = x} by [t, x]. To describe the evolution
of the state between observations, we condition of the value of the state at τn,
the time of the most recent observation, yielding the equation

Pr([t, xj ] | y
n) =

∑

xi∈X

Pr ([t, xj ], [τn, xi] | y
n)

=
∑

xi∈X

Pr ([t, xj ] | [τn, xi], y
n) Pr ([τn, xi] | y

n) .

The right hand side of the above equation is the expression for calculating one
element in a matrix multiplication. Constructing the vector p(t | yn) from this
expression yields

p(t | yn) =







Pr ([t, x1] | [τn, x1]) . . . Pr ([t, x1] | [τn, xk])
...

. . .
...

Pr ([t, xk] | [τn, x1]) . . . Pr ([t, xk] | [τn, xk])













Pr ([τn, x1] | y
n)

...
Pr ([τn, xk] | yn)






,

(5)

= eQ(t−τn)p(τn | y
n),

where the last line follows from the solution to the CME.
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tion times, we condition of the state of the process at a time τn − dt for small
dt.

Pr([τ+
n , xj ] | y

n) =
∑

xi∈X

Pr([τ+
n , xj ], [τn − dt, xi] | y

n)

Pr([τ+
n , xj ] | y

n) =
1

Pr(yn | yn−1)

∑

xi∈X

Pr([τ+
n , xj ], [τn − dt, xi], yn | y

n−1)

Pr([τ+
n , xj ] | y

n) =
1

Kn

∑

xi∈X

Pr([τ+
n , xj ], yn | [τn − dt, xi]) Pr([τn − dt, xi] | y

n−1),

(6)

where Kn = Pr(yn | y
n−1). For small dt, the quantity Pr([τ+

n , xj ], yn | [τn −
dt, xi]) reduces to Qijdt Pr(h(xj) = yn) if i 6= j; if i = j, the term reduces to
(1−Qiidt) Pr(h(xi) = yn). As dt → 0, the first of these expressions goes to zero
while the second goes to Pr(h(xi) = yn), which is equal to (hyn

)i. Therefore

Pr([τ+
n , xj ] | y

n) =

{

1
Kn

(hyn
)i Pr([τ−n , xi] | y

n−1) if i = j

0 otherwise,

or in vector form,

p(τ+
n | yn) =

1

Kn

Hyn
p(τ−n | yn−1).

Because p(τ+
n | yn) is a probability distribution, it follows that Kn is a normal-

ization constant and thus, Kn = 1T Hyn
p(τ i

n | y
n−1).

Combining the results of the discrete and continuous cases yields

p(t | yn) =
1

Kn

eQ(t−τn)Hyn
p(τ−n | yn−1).

Similarly we can show that p(τ−k | yk−1) = 1
Kk−1

eQ(τk−τk−1)Hyk−1
p(τ−k−1 | y

k−2)

for all 2 ≤ k ≤ n− 1. For k = 1, p(τ−1 | y0) = eQτ1π0 as a result of the a priori
CME; because there are no observations before τ1, the conditional and uncon-
ditional distributions are equal. Combining all these results yields the desired
result

p(t | yn) =
1

K
eQ(t−τn)Hyn

eQ(τn−τn−1)Hyn−1
. . .Hy2)e

Q(τ2−τ1)Hy1
eQ(τ1)π0,

where K = K1K2 . . . Kn. ⊓⊔

Because the a posteriori probability distribution evolves continuous except
at the n observation times, where it jumps discretely, it is natural to describe
its evolution using a hybrid system.
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teriori probability distribution is described by the following dynamics:

ṗ = Qp (continuous dynamics) (7)

p 7→
Hyn

p

1T Hyn
p

. (discrete dynamics) (8)

The system evolves according to the continuous dynamics in the set T /Tn and
according to the discrete dynamics in the set D = Tn. The initial distribution of
p(t | yn) is π0.

The correctness of this representation can be proven by simple verification
of the solution in Equation 2.

The hybrid system representation reveals that between observations, the sys-
tem evolves according to the standard CME (Equation 1). When an observation
is made, the probability distribution on the states is reweighted so that states
that are more likely to have produced the observation value increase in proba-
bility while those that are less likely decrease in probability.

Except for the normalization factor 1T Hyp, the hybrid system (7)-(8) is
linear. We can choose to disregard the normalization factor because the unnor-
malized probability vector contains the same information about the distribution
of the states as the normalized vector and thus make the system wholly linear.
Alternatively, we can treat the system as a Weiner model, as it is linear except
for the static normalization linearity that appears just before the output.

4 The A Posteriori Probability Distribution Under

Continuous Observations

The situation is analogous when the objective is to calculate the a posteriori
probability distribution p(t | y[0,t]) under continuous observations.

Theorem 3. For t ≥ τn, the a posteriori probability distribution p(t | y
[0,t])

given a sequence of observations y1, y2, . . . yn and a sequence of jump times Tn =
{τ1, τ2, . . . τn} is

p(t | y[0,t]) =
1

K
eQInIn

(t−τn)QInIn−1
eQIn−1In−1

(τn−τn−1)QIn−1In−2
. . .

. . .QI3I2
eQI2I2

(τ2−τ1)QI2I1
eQI1I1

(τ1)π0. (9)

We omit the full proof of this theorem for reasons of space; instead, we sketch
the key differences between the proofs of Theorems and 1 and 3. We proceed by
showing that between jump times, the distribution p(t | y[0,t)) evolves continu-
ously according to the equation

p(t | y[0,t)) =
1

Knc

eQII(t−τn)p(τn | y
[0,τn]), (10)
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p(τ+
n | y[0,τn]) =

1

Knd

QJIp(τ−n | y[0,τn)). (11)

The proof in the continuous domain follows analogous steps until Equation
5 is reached. The general term in the n × n matrix in the continuous case is
Pr

(

[t, x1], y
[τn,t] ≡ yi | [τn, x1]

)

; the condition {y[τn,t] ≡ yi} is now added as we
know the output value at all times between the jumps. To find this probabilities
we do not solve the full CME ṗ = Qp; instead, we solve the reduced CME
ṗ = QIIp to give us the probability of the set of trajectories that have the
output yi at every instant along the interval [τn, t]. Because the columns of QII

can sum to less than zero, we also require the introduction of the normalization
constant Knc = Pr(y[τn,t] ≡ yi | y

[0,τn]).
The proof in the discrete domain is identical until Equation 6 is reached. The

normalization constant Knd is given by Knd = Pr(yτn
| y

[0,τn−dt)), which is of
the order of dt. The probability Pr([τ+

n , xj ], y{τn} | [τn−dt, xi]) on the right hand
side is necessarily Qjidt because we know the output is yi before the jump and
yj after the jump. We can cancel out the dt with the dt in Knd, yielding the
result.

The continuous observation a posteriori probability distribution is also ex-
pressible as a hybrid system.

Theorem 4. The a posteriori probability distribution is described by the follow-
ing dynamics:

ṗ = QIIp−
(

1T QIIp
)

p (continuous dynamics) (12)

p 7→
QJIp

1T QJIp
. (discrete dynamics) (13)

As in the intermittent observation case, the system evolves according to the
continuous dynamics in the set T /Tn and according to the discrete dynamics in
the set D = Tn. The initial distribution of p(t | yn) is π0.

Whereas in the intermittent observation case, normalization was only neces-
sary in the discrete domain Tn, in the continuous observation case normalization
is necessary is both domains. The term

(

1T QIIp
)

p corrects for the need for con-
stant normalization.

5 Solution to the Diagnosis Problem

Having developed equations for describing the evolution of the a posteriori proba-
bility distributions under both continuous and intermittent observations, we now
return our attention to the diagnosis problem. Recall that Dt denotes the event
that a state x ∈ XS was visited along the interval [0, t]; our objective is to find
the probabilities Pr(Dt | y

n) and Pr(Dt | y
[0,t]). To find these probabilities, we

construct an extended continuous time Markov process from our original pro-
cess S and calculate the a posteriori probability distributions for this extended
process.
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by N the complement of S. After partitioning X in this manner, we write Q as

Q =

[

QNN QSN

QNS QSS

]

,

where QNN defines the transition rates within the normal states, QSS defines
the transition rates within the special states, and QNS and QSN define the
transitions rates between the normal and special states.

For any CTMP S equipped with a set special states XS , we define an ex-
tended CTMP S̄ = (X ∪ XN ′ , Q̄, π̄0). We construct the state space of S̄ by
appending to the state space of S the set of extended states XN ′ . Each state in
XN ′ corresponds to a normal state that is visited by a trajectory after a special
state has been visited. This is seen in extended transition rate matrix, which is
defined to be

Q̄ ,





QNN 0 0
QNS QSS QNS

0 QSN QNN



 .

The extended initial distribution is defined as π̄0(x) = π0(x) if x ∈ X and
π̄0(x) = 0 if x ∈ XN ′ . Similarly, we define the observation model of the extended
states. For all y ∈ Y , Pr(h̄(x) = y) , Pr(h(x) = y) if x ∈ X; for an extended
state xN ′

i
, Pr(h̄(xN ′

i
) = y) , Pr(h(xNi

) = y), i.e., each extended state has the
same output distribution as its corresponding normal state.

Fig. 1. Construction of the extended state space. Transitions from the special states
(shaded) no longer reach the normal states (top) and are instead directed to the ex-
tended states (bottom, unshaded). The probability of having visited a special state
is thus the probability of currently being in either a special state or extended state.
Figure modified from [14]

.
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we solve the diagnosis problem.

Theorem 5. The a posteriori probability of Dt given a sequence of observations
at times Tn = {τ1, τ2, . . . τn}, is

Pr(Dt | y
n) = 1T pS(t | yn) + 1T pN ′(t | y

n). (14)

Proof. Clearly ω(t) ∈ XS implies Dt. By construction of S̄, if ω(t) ∈ XN ′ , then
there exists s < t where ω(s) ∈ XS because π̄0(x) = 0 for all x ∈ XN ′ and
there does not exist a path from XN to XN ′ that does not pass through XS .
Therefore ω(t) ∈ XN ′ implies Dt. However, if ω(t) ∈ XN , there cannot exist
such an s because there is no path from XS to XN . Therefore the event Dt is
equal to the event ω(t) ∈ (XS ∪ XN ′), whose probability is given by the right
hand side of Equation 14. ⊓⊔

The probabilities on the right hand side of Equation 14 can be calculated using
Equations 7-8. The analogous result holds for the case of continuous observations.

Theorem 6. The a posteriori probability of Dt given the observations y
[0,t] is

Pr(Dt | y
[0,t]) = 1T pS(t | y[0,t]) + 1T pN ′(t | y

[0,t]). (15)

Similarly, the probabilities on the right hand side of Equation 15 can be calcu-
lated using Equations 12-13.

6 Diagnosing mRNA Levels in Stochastic Gene

Expression
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Fig. 2. A simulated trajectory of the stochastic gene expression reaction network. (a)
The observed output of the reaction network is the fluorescent protein number. (b)
The unobserved state variable is the mRNA number.
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1. Using Gillespie’s stochastic simulation algorithm [5], we generate a trajectory
ω(t) along the interval T = [0, 1440]. The trajectory is shown in Figure 2.

We first consider the case of continuous observation. The protein number,
shown in Figure 2(a) is observed for all times. The mRNA number, shown in
Figure 2(b) is unobserved but is shown for comparison. By inspecting the evolu-
tion of the mRNA number, we can conclude that the set of special states is first
reached when the mRNA number is first equal to 9, which occurs at approxi-
mately t = 620 seconds.

Using the observed protein number as the input, we evaluate the diagnoser
dynamics under continuous observation using Equations 12 - 13. The evolution of
the diagnoser output over time is shown in Figure 3. When no jump is observed
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Fig. 3. The continuous observation diagnoser dynamics.

in the protein number, the probability that the system was ever in a special state
decreases because states in XS have high mRNA numbers. Thus it is less likely
that the protein level remains constant in a special state, and the a posteriori
probability of having been in XS decreases. Similarly, when a jump is observed,
the probability of having been in a special state increases, because jumps are
more likely to have occurred from special states than from normal ones. Notice
that the largest jumps in the p(Dt | y

[0,t]) correspond to the fastest increases
in the protein number. The first large increase in p(Dt | y

[0,t]) actually occurs
before the special states are first reached; by inspecting the trajectory, we can see
that the system is at the boundary of the normal states (the mRNA number is
8) when the increase occurs and that the rate at which protein is being produced
is very high.

In the case of intermittent observations, we consider three different sequences
of sampling times corresponding to fixed sampling intervals of 10, 60, and 120
seconds, respectively. The diagnoser dynamics are shown is Figure 4(a). In the
intermittent observation case, the p(Dt | y

n) always increases between observa-
tions because probability mass is flowing from the normal states to the special
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tstates but there is no path by which it can return. When observations occur, the

probability of Dt increases if the change in protein number since the last obser-
vation is large and decreases if it is small. As the sampling interval decreases, the
diagnoser dynamics approach the dynamics seen in the continuous observation
case.
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Fig. 4. The intermittent observation diagnoser dynamics for three different sampling
periods. (a) The protein number is observed without noise. (b) The protein number is
observed with noise.

The same result does not occur when the observations are noisy, as shown in
Figure 4(b). In the diagnoser dynamics for the sampling interval of 10 seconds,
the probability p(Dt | y

n) does not increase when the first mRNA number
first goes high at t = 620 seconds. The diagnoser responds when the mRNA
number goes high for a second time at 1000 seconds at the final probability
of Dt is approximately 53%. Interestingly, the dynamics with slower sampling
intervals perform much more similarly to the noiseless case. Prefiltering the raw
observations before evaluating the a posteriori probabilities is likely to improve
the performance of the diagnosis response when confronted with noisy data.

7 Discussion

In this paper, we consider the problem of finding the a posteriori probability that
a rare event of interest has occurred in a biochemical process, given a record of
observations of that process. We derive equations for determining this probability
for the case where the observations are made continuously and the case where
the observations are made intermittently.

We illustrated the approach using simulated data of a model of stochastic
gene expression. We are currently investigating the applicability of the approach
to real data collected from single-cell microscopy studies of a synthetic genetic
circuit in E. coli. We expect the experimental findings will motivate the need for
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the diagnosis performance and developing strict guarantees as to the magnitude
of the error introduced by eliminating unlikely states from the CTMP model.
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