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Motivation 
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Control Plan 

•! Reconfigurable 
•! Fault Tolerant 
•! Complex 

Aerobot, lower atmosphere 
probe of Titan, a moon of Saturn 

(Courtesy NASA/JPL-Caltech) 

Testing vs. 
Formal Methods Alice, Caltech’s entry to the DARPA Urban 

Challenge (http://team.caltech.edu) 

NASA-JSC’s Lunar Electric Rover (LER) 
and Chariot Chassis 



Outline 
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!! Introduce control architectures & symbolic 
model checking 

!!Goal networks = Hybrid systems 

!! Design for Verification software, SBT Checker 

!!Titan Aerobot goal network example 

!! State-based symbolic model checker, InVeriant 

!!Titan Aerobot goal network example 

!! Hybrid Systems 

!! Lunar Electric Rover hybrid system example 



Goal Network Control Programs 
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!! Goal networks  
!! Based on Mission Data 

System (MDS), a control 
architecture developed 
at the Jet Propulsion 
Laboratory  

!! Collections of goal trees 

!! Goals 
!! Constraint on state 

variable 

!! Controlled (associated 
with commands) or 
passive 

Time points Root goal 

Passive goals Controlled goals 
Tactic number 

Each goal is denoted by 
1.! Index 
2.! Parent goal’s index 
3.! Tactic number 

Example Goal Tree 

Tactics 



Linear Hybrid Systems 

September 16, 2009 J. Braman 5 

Hybrid systems are 
collections of discrete 
sets of continuous 
dynamics. 

Location
s 

Transition
s 

Flow 
Equation

s 

Invariant 

Reset 



Symbolic Model Checking 
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Symbolic Model 
Checking  

(PHAVer, HyTech): 
1.! Overapproximation 
2.! Significant 

complexity issues 

State Space 

Unsafe Set 

Overapproximated 
Unsafe Set 

Model Checking 
(Spin, NuSMV): 

1.! Searches over 
entire state space 

2.! No continuous 
states 

Initial Condition 



Safety vs. Liveness 
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Safety tests to see if a specified 
unsafe set is reachable w/o regards 

to specific paths 

Liveness tests whether conditions are 
reachable with regards to how and 

how often Initial condition 
Unsafe set 

Can we reach this state 

during execution? 

Are we eventually always in 

this state? 

!! s 
(stability) 

This method deals with 

safety analysis only. 



Previous Work 
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!! Conversion for Verification 

!!AgentSpeak -> Promela, JPF2 (Bordini et al., 2004)  

!!MPL -> Livingstone (Simmons et al., 2000) 

!! Hybrid Systems Verification 

!!HyTech (Henzinger et al., 1997)  

!!PHAVer (Frehse, 2005)  

!!Uppaal (Larsen et al., 1997) 

!! Design for Verification/Correct-by-Design 

!!D4V (Mehlitz & Penix, 2003) 

!!Control from LTL (Kress-Gazit et al., 2007) 



Goal Network Execution 
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!" #"

! #

!" #"

! #

!" #"

Goal Network: 

Goal 
Trees 

Passive State Variable Models: 

GOOD 

POOR 

GOOD 

POOR 

System Health 
(SH) 

Satellite 
Connection (SC) 



Groups and Transitions 

September 16, 2009 J. Braman 10 

!" #" $"

t2 = 5  

G1 G2 Group:  
Set of goals active 
between consecutive 
time points 

Completion Goal:  
Controlled goal with 
transition constraint 
(GetToPoint) 

Time Constraint:  
Bounds on the 
amount of time spent 
executing a group 

!" #"

! #

Completion Transitions Failure Transitions 



Executable Sets of Goals 
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Properties: 
1.! All goals in same 

group 

2.! All root goals in group 

3.! Relational goal tree 
restrictions 

4.! Compatible 

5.! Consistent 

!" #"

! #

Incompatible goals 

Inconsistent goals 



Conversion Bisimulation 
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Goal Networks Hybrid Systems 

Executable set Location 

Failure (upon goal re-elaboration) 
Transitions 

Completion (upon goal achievement) 

Passive goal constraints Invariants 

Controlled goal constraints 
Flow equations 

Resets 

High 
inv: SH == 
GOOD 

Low 
inv: SH == 
POOR 

SHG 
SHP 

SHG 



Titan Aerobot Mission Example 
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The Titan Aerobot must: 
Fly to a 

specified 
area 

Localize to a 
map and 
update it 
with more 

details 

Maintain 
some amount 

of power 

Watch for 
spontaneous 
observation 

opportunities 

Fly at a safe 
altitude Unsafe set specification: 

1.! Power < 10% 

2.! Position uncertainty is high, ground visibility 
is low and the altitude is less than the 
maximum terrain clearance altitude. 



Titan Aerobot Goal Trees 
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1 Ground Observation 

2 Detailed Map 

3 Minimum En Route 

4 Maximum Terrain Clearance 

5 Service Ceiling 

Altitude Levels (Low to High) 

Wind Vector (WV) 
Position Uncertainty (PU) 

Map Uncertainty (MU) 



Titan Aerobot Goal Trees 
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Titan Aerobot Goal Trees 
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Sun Intensity (SI) 
Camera Health (CH) 

LRF Health (LH) 

Ground Visibility (GV) 
Position Uncertainty (PU) 



State-Based Transitions 
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Definition:  A goal network (hybrid system) has state-
based transitions if each state in the passive state 
space satisfies the passive constraints (invariant) of some 
executable set (location). 

G 

P 

Passive State 
Space (SH): 

High 
inv: SH == 
GOOD 

Low 
inv: SH == 
POOR 

SHP SHG 

SBT Checker:  
  Design for verification      
  tool that checks for  
  unconstrained passive  
  states 



State-Based Transitions Example 
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!" #"

#! $

GOOD 

FAIR 

HIGH 

LOW 

Camera Health 
(CH) 

Position 
Uncertainty (PU) 

POOR 

LOW 1 1 

HIGH 3 2 

POOR FAIR GOOD 

SBT Checker Output:  
(CH == GOOD ! PU == HIGH) ! 
(CH == POOR ! PU == LOW) 

PU 

CH 



State-Based Transitions Example 
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!" #"

#! $

GOOD 

FAIR 

HIGH 

LOW 

Camera Health 
(CH) 

Position 
Uncertainty (PU) 

POOR 

LOW 3 1 1 

HIGH 3 2 2 

POOR FAIR GOOD 

PU 

CH 

SBT Checker Output:  
False 



SBT Checker 
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Theorem:  If 

1.! Each goal tree in a 
goal network has 
state-based 
transitions  

2.! All controlled 
constraints are 
consistent  

! The goal network has 
state-based transitions. 

SBT Checker:  
Design for verification 
software tool 

!! Leverages modularity of 
state-based transition 
requirement 

!! Checks individual goal 
trees/hybrid automata for 
state-based transitions 

!! Returns missing passive 
constraints 



SBT Checker Usage 
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Command Line: 

1.! Create XML file, including 
a)! Models of passive state 

variables used 
b)! Invariants of all executable 

sets of the goal tree 
2.! Load “SBTChecker” package into 

Mathematica using following 
command: 

 >> Needs[“SBTChecker`”]; 
3.! Store path of XML file in ‘pathfile’ 

variable 
4.! Run the SBT Checker using the 

following command: 
 >> SBTCheck[pathfile,CSType->GN] 

GUI: 

1.! Load “SBTChecker” package into 
Mathematica using following 
command: 

 >> Needs[“SBTChecker`”]; 
2.! Launch SBT Checker using the 

following command: 
  >> SBTCheckGUI 
3.! Input models of passive state 

variables and invariants of 
executable sets in goal tree 

4.! Press “Run Check” button 



Titan Aerobot Mission Verification 
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SBT Checker found 
missing tactic! 



Consistent Controlled Constraints 
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!" #"

! #

!" #"

! #

Rule: Can only 
merge goals on 

V if c1 == c2 

High 
inv: SH == 
GOOD &  
SC == POOR 

Low 
inv: SH == 
POOR &  
SC == GOOD 

SHP & 
SCG 

SHG & 
SCP 

Notice that 
two states are 

missing:  
1.! SHG & SCP  
2.! SHP & SCG 

Point: Transitions are 
not state-based!  



InVeriant 
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Method: 
1.! Find locations, 

invariants, dynamical 
constraints, and 
resets. 

2.! Compare unsafe set 
constraints with each 
location. 

3.! Find path for rate-
driven, continuous 
dependent state 
variables 
constrained. 

Theorem: 
If the hybrid system has state-

based transitions, the 
reachability of locations 
depends only on the 
reachability of the states of 
the passive state variables 
constrained. 

!

Location 
vn: inv,  
!, resets 

Unsafe 
set  ! 

Inconsistent 
Locations 

Unsafe 
Locations 

Unreachable Reachable? 



Reachability of Unsafe Locations 
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Discrete Passive 
State Variables 

Continuous, Rate-
Driven Passive 
State Variables 

GOOD 

FAIR 

HIGH 

LOW 

Camera Health 
(CH) 

Wind Vector 
(WV) 

POOR 

! 50 [30,50) 

Discrete Power States 

[10,30) < 10 

HiUse 

MedUse 

LoUse 

HiChar 

LoChar 

Neutral 

Power Model 

Transitions depend on: 
Position 
Altitude 

Wind Vector 
Sun Intensity 

Is Power < 10 reachable? 

Find path from Power = 100 
(initial condition) to Power < 10. 



InVeriant Usage 
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1.! Create XML file that includes the following information 
a)! Passive state variable models 

b)! Merging rules and constraint types for controlled state 
variables 

c)! Goals in each goal tree 

d)! Unsafe set 

2.! Load InVeriant package using the following command: 

 >> Needs[“InVeriantSMC`”]; 

3.! Store path of XML file in ‘pathfile’ variable 

4.! Model check the goal network using the following 
command: 

 >>  InVeriant[pathfile,CSType->GN] 



Titan Aerobot Mission Verification 
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InVeriant found  

!! Locations that satisfy unsafe power condition 

!! Path from initial condition (Power = 100) to 
unsafe condition (Power < 10) 



Benefits of SBT Checker/InVeriant 
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!! Titan system stats: 
!! About 600 locations 
!! Over 300,000 transitions 
!! 11 state variables, 9 

passive, 2 controlled 
!! Discrete passive state space 

(no power) is nearly 600,000 
states 

!! Conversion/PHAVer method 
!! 5 hours to convert 

(thousands of transitions) 
!! PHAVer did not complete 

!! SBT Checker/InVeriant 
!! 15 minutes to convert 
!! 2 minutes to verify 

!! InVeriant is fast and 
efficient 
!! No transitions 
!! Passive state space does 

not contribute to 
complexity 

!! SBT Checker is scalable 
because of modularity 

!! State-based transitions 
imposes structure on control 
system 
!! Good design practice 

!! Can reason about rate 
constraints 

!! Can apply to hybrid systems 
w/o group structure 



Hybrid System Theory 
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!! Classes of hybrid 
systems can be verified 
with this approach 

!! Automata must have 
either 
!! State-based transitions 

!! Completion transitions 

!! Automata must run 
concurrently 

!! Automata may be timed 
(completion transitions) 

Drive 
RC == 
DRIVE 

EVA 
RC == 
EVA 

Docking 
RC == 

DOCK 

Safe 
RC == 
SAFE 

Maintain 
Health 
BH == GOOD 

Warn 
BH == FAIR 

AR 
BH == POOR 
& AO == OFF 

AR OR 
BH == POOR 
& AO == ON 



Lunar Electric Rover 
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Chariot B 
Movie Clip 



Design Flow 
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Design system 

Check state-based 
transition 

Redesign 

Check consistency 

Model Check 

Redesign 

Redesign 



LER Example Problem 
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Drive 
RC == DRIVE 

EVA 
RC == EVA 

Docking 
RC == DOCK 

Safe 
RC == SAFE 



LER Example Problem – ECLS 
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Maintain 
Health 
BH == GOOD 

Warn 
BH == FAIR 

Auto Return 
BH == POOR 
& AO == OFF 

Auto Return 
Override 
BH == POOR 
& AO == ON 



LER Example Problem - Power 
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Comm Off 
15 <= Power 
& Power < 30 
& CO == OFF 

AR/No Comm 
Power < 15 & 
CO == OFF & 
AO == OFF 

Comm OR 
Power ! 
[15,30) &  
CO == ON 

AR OR/NC  
Power < 15 & 
CO == OFF & 
AO == ON 

Nominal 
Power >= 50 

Power Save 
30 <= Power 
& Power < 50 

AR/C OR 
Power < 15 & 
CO == ON & 
AO == OFF 

AR OR/C OR 
Power < 15 & 
CO == ON & 
AO == ON 



LER Example Problem - EVA 
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Both Closed 
(RHC & LHC) || 
Power < 30 || (RHO 
& LHO & (Power < 
50 || CMP ||CHP) 

Right Open 
RH == OPEN & 
LH == CLOSED 
& Power >= 30 

Left Open 
LH == OPEN & 
RH == CLOSED 
& Power >= 30 

Both Open 
LH == OPEN & RH == 
OPEN & Power >= 50 
& CM == GOOD & 
CH != POOR 

EVA 
RC == EVA 



LER Example Problem - Drive 
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Crab Low 
CH == GOOD & 
DH == GOOD & 
DM == CRABLOW 

Path Plan 
CH == GOOD & 
DH == GOOD & 
DM == PP 

Crab High 
Power >= 50 & CH 
== GOOD & DH == 
GOOD & DM == 
CRABHIGH 

Safe 
DH == POOR & 
DM == SAFE 

Car Low  
DH == FAIR || 
(DH == GOOD & 
DM == CARLOW) 

Car High 
Power >= 50 & 
DH == GOOD & 
DM == CARHIGH 

Drive 
RC == DRIVE 



LER Example – Drive Redesigned 
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Crab Low 
DH == GOOD & ( (CH 
== GOOD & DM == 

CRABLOW) || 
(Power < 50 & DM == 
CRABHIGH)) 

Path Plan 
CH == GOOD & 
DH == GOOD & 
DM == PP 

Crab High 
Power >= 50 & CH 
== GOOD & DH == 
GOOD & DM == 
CRABHIGH 

Safe 
DH == POOR & 
DM == SAFE 

Car Low  
DHF|| (DHG & DMCL) 
|| (CHP & (DMRL || 

DMPP)) || (P<50 & 
DHG & DMCH) 

Car High 
Power >= 50 & DH 
== GOOD & (DM == 

CARHIGH || (CH == 
POOR & DM == 
CRABHIGH)) 

Drive 
RC == DRIVE 



LER Example Problem - Docking 
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Docked 
Power >= 30 & 
LS == LATCH 

Undock 
Power >= 15 & 
HH == GOOD & 
LS != LATCH 

Safe 
Power < 15 || 
(LS != LATCH & 
(CH == POOR || 
HH == POOR)) 

Approach 
CH == GOOD & 
Power >= 30 & 
HH == GOOD & 
LS == UNLATCH 

Latch 
CH == GOOD & 
Power >= 30 & 
HH == GOOD & 
LS == CONTACT 

Docking 
RC == DOCK 



LER Example – Docking Redesigned 
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Docked 
Power >= 30 & 
LS == LATCH 

Undock 
(P>=15 & HHG & 
LS != LATCH) || 
(15 <= Power < 30 
& LSL) 

Safe 
Power < 15 || 
(LS != LATCH & 
(CH == POOR || 
HH == POOR)) 

Approach 
CH == GOOD & 
Power >= 30 & 
HH == GOOD & 
LS == UNLATCH 

Latch 
CH == GOOD & 
Power >= 30 & 
HH == GOOD & 
LS == CONTACT 

Docking 
RC == DOCK 



Inconsistent Controlled Constraints 
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InVeriant finds 
locations that have 

inconsistent 
controlled constraints 

Two culprits:  
1.! “warn” state variable – changed so 

that merge between no alarm and 
alarm would result in an alarm 

2.! “os” state variable – changed so that 
auto-return would win the merge 



Verification of LER Example 
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Unsafe set:  
No auto-return 
during an EVA 

Safe! 



Conclusions 
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!! Formal Methods useful 
for analyzing control of 
fault tolerant systems 

!! Design for verification is 
essential to reduce state 
space concerns (SBT 
Checker) 

!! InVeriant model checker 
leverages properties of 
state-based design to 
formally verify a class of 
hybrid systems 

Initial condition 
Unsafe set 

!
Location 
vn: inv,  
!, 
resets 

Unsafe 
set  ! 

Inconsistent 
Locations 

Unsafe 
Locations 

Unreachable Reachable? 

Drive 
RC == 
DRIVE 

EVA 
RC == 
EVA 

Docking 
RC == 

DOCK 

Safe 
RC == 
SAFE 



Useful Information 
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!! SBT Checker: 
http://www.cds.caltech.edu/~braman/software/SBTChecker.zip 

!! InVeriant 
http://www.cds.caltech.edu/~braman/software/InVeriantSMC.zip 

!! Documentation 

http://www.cds.caltech.edu/~braman 

!! LER Example 
http://www.cds.caltech.edu/~braman/software/LERExample.zip 


