
Julia M. B. Braman

NASA-Johnson Space Center

September 16, 2009

State-Based Hybrid Control and Symbolic
Model Checking

Motivation

September 16, 2009 J. Braman 2

Control Plan

•! Reconfigurable
•! Fault Tolerant
•! Complex

Aerobot, lower atmosphere
probe of Titan, a moon of Saturn

(Courtesy NASA/JPL-Caltech)

Testing vs.
Formal Methods Alice, Caltech’s entry to the DARPA Urban

Challenge (http://team.caltech.edu)

NASA-JSC’s Lunar Electric Rover (LER)
and Chariot Chassis

Outline

September 16, 2009 J. Braman 3

!! Introduce control architectures & symbolic
model checking

!!Goal networks = Hybrid systems

!! Design for Verification software, SBT Checker

!!Titan Aerobot goal network example

!! State-based symbolic model checker, InVeriant

!!Titan Aerobot goal network example

!! Hybrid Systems

!! Lunar Electric Rover hybrid system example

Goal Network Control Programs

September 16, 2009 J. Braman 4

!! Goal networks
!! Based on Mission Data

System (MDS), a control
architecture developed
at the Jet Propulsion
Laboratory

!! Collections of goal trees

!! Goals
!! Constraint on state

variable

!! Controlled (associated
with commands) or
passive

Time points Root goal

Passive goals Controlled goals
Tactic number

Each goal is denoted by
1.! Index
2.! Parent goal’s index
3.! Tactic number

Example Goal Tree

Tactics

Linear Hybrid Systems

September 16, 2009 J. Braman 5

Hybrid systems are
collections of discrete
sets of continuous
dynamics.

Location
s

Transition
s

Flow
Equation

s

Invariant

Reset

Symbolic Model Checking

September 16, 2009 J. Braman 6

Symbolic Model
Checking

(PHAVer, HyTech):
1.! Overapproximation
2.! Significant

complexity issues

State Space

Unsafe Set

Overapproximated
Unsafe Set

Model Checking
(Spin, NuSMV):

1.! Searches over
entire state space

2.! No continuous
states

Initial Condition

Safety vs. Liveness

September 16, 2009 J. Braman 7

Safety tests to see if a specified
unsafe set is reachable w/o regards

to specific paths

Liveness tests whether conditions are
reachable with regards to how and

how often Initial condition
Unsafe set

Can we reach this state

during execution?

Are we eventually always in

this state?

!! s
(stability)

This method deals with

safety analysis only.

Previous Work

September 16, 2009 J. Braman 8

!! Conversion for Verification

!!AgentSpeak -> Promela, JPF2 (Bordini et al., 2004)

!!MPL -> Livingstone (Simmons et al., 2000)

!! Hybrid Systems Verification

!!HyTech (Henzinger et al., 1997)

!!PHAVer (Frehse, 2005)

!!Uppaal (Larsen et al., 1997)

!! Design for Verification/Correct-by-Design

!!D4V (Mehlitz & Penix, 2003)

!!Control from LTL (Kress-Gazit et al., 2007)

Goal Network Execution

September 16, 2009 J. Braman 9

!" #"

! #

!" #"

! #

!" #"

Goal Network:

Goal
Trees

Passive State Variable Models:

GOOD

POOR

GOOD

POOR

System Health
(SH)

Satellite
Connection (SC)

Groups and Transitions

September 16, 2009 J. Braman 10

!" #" $"

t2 = 5

G1 G2 Group:
Set of goals active
between consecutive
time points

Completion Goal:
Controlled goal with
transition constraint
(GetToPoint)

Time Constraint:
Bounds on the
amount of time spent
executing a group

!" #"

! #

Completion Transitions Failure Transitions

Executable Sets of Goals

September 16, 2009 J. Braman 11

Properties:
1.! All goals in same

group

2.! All root goals in group

3.! Relational goal tree
restrictions

4.! Compatible

5.! Consistent

!" #"

! #

Incompatible goals

Inconsistent goals

Conversion Bisimulation

September 16, 2009 J. Braman 12

Goal Networks Hybrid Systems

Executable set Location

Failure (upon goal re-elaboration)
Transitions

Completion (upon goal achievement)

Passive goal constraints Invariants

Controlled goal constraints
Flow equations

Resets

High
inv: SH ==
GOOD

Low
inv: SH ==
POOR

SHG
SHP

SHG

Titan Aerobot Mission Example

September 16, 2009 J. Braman 13

The Titan Aerobot must:
Fly to a

specified
area

Localize to a
map and
update it
with more

details

Maintain
some amount

of power

Watch for
spontaneous
observation

opportunities

Fly at a safe
altitude Unsafe set specification:

1.! Power < 10%

2.! Position uncertainty is high, ground visibility
is low and the altitude is less than the
maximum terrain clearance altitude.

Titan Aerobot Goal Trees

September 16, 2009 J. Braman 14

1 Ground Observation

2 Detailed Map

3 Minimum En Route

4 Maximum Terrain Clearance

5 Service Ceiling

Altitude Levels (Low to High)

Wind Vector (WV)
Position Uncertainty (PU)

Map Uncertainty (MU)

Titan Aerobot Goal Trees

September 16, 2009 J. Braman 15

Titan Aerobot Goal Trees

September 16, 2009 J. Braman 16

Sun Intensity (SI)
Camera Health (CH)

LRF Health (LH)

Ground Visibility (GV)
Position Uncertainty (PU)

State-Based Transitions

September 16, 2009 J. Braman 17

Definition: A goal network (hybrid system) has state-
based transitions if each state in the passive state
space satisfies the passive constraints (invariant) of some
executable set (location).

G

P

Passive State
Space (SH):

High
inv: SH ==
GOOD

Low
inv: SH ==
POOR

SHP SHG

SBT Checker:
 Design for verification
 tool that checks for
 unconstrained passive
 states

State-Based Transitions Example

September 16, 2009 J. Braman 18

!" #"

#! $

GOOD

FAIR

HIGH

LOW

Camera Health
(CH)

Position
Uncertainty (PU)

POOR

LOW 1 1

HIGH 3 2

POOR FAIR GOOD

SBT Checker Output:
(CH == GOOD ! PU == HIGH) !
(CH == POOR ! PU == LOW)

PU

CH

State-Based Transitions Example

September 16, 2009 J. Braman 19

!" #"

#! $

GOOD

FAIR

HIGH

LOW

Camera Health
(CH)

Position
Uncertainty (PU)

POOR

LOW 3 1 1

HIGH 3 2 2

POOR FAIR GOOD

PU

CH

SBT Checker Output:
False

SBT Checker

September 16, 2009 J. Braman 20

Theorem: If

1.! Each goal tree in a
goal network has
state-based
transitions

2.! All controlled
constraints are
consistent

! The goal network has
state-based transitions.

SBT Checker:
Design for verification
software tool

!! Leverages modularity of
state-based transition
requirement

!! Checks individual goal
trees/hybrid automata for
state-based transitions

!! Returns missing passive
constraints

SBT Checker Usage

September 16, 2009 J. Braman 21

Command Line:

1.! Create XML file, including
a)! Models of passive state

variables used
b)! Invariants of all executable

sets of the goal tree
2.! Load “SBTChecker” package into

Mathematica using following
command:

 >> Needs[“SBTChecker`”];
3.! Store path of XML file in ‘pathfile’

variable
4.! Run the SBT Checker using the

following command:
 >> SBTCheck[pathfile,CSType->GN]

GUI:

1.! Load “SBTChecker” package into
Mathematica using following
command:

 >> Needs[“SBTChecker`”];
2.! Launch SBT Checker using the

following command:
 >> SBTCheckGUI
3.! Input models of passive state

variables and invariants of
executable sets in goal tree

4.! Press “Run Check” button

Titan Aerobot Mission Verification

September 16, 2009 J. Braman 22

SBT Checker found
missing tactic!

Consistent Controlled Constraints

September 16, 2009 J. Braman 23

!" #"

! #

!" #"

! #

Rule: Can only
merge goals on

V if c1 == c2

High
inv: SH ==
GOOD &
SC == POOR

Low
inv: SH ==
POOR &
SC == GOOD

SHP &
SCG

SHG &
SCP

Notice that
two states are

missing:
1.! SHG & SCP
2.! SHP & SCG

Point: Transitions are
not state-based!

InVeriant

September 16, 2009 J. Braman 24

Method:
1.! Find locations,

invariants, dynamical
constraints, and
resets.

2.! Compare unsafe set
constraints with each
location.

3.! Find path for rate-
driven, continuous
dependent state
variables
constrained.

Theorem:
If the hybrid system has state-

based transitions, the
reachability of locations
depends only on the
reachability of the states of
the passive state variables
constrained.

!

Location
vn: inv,
!, resets

Unsafe
set !

Inconsistent
Locations

Unsafe
Locations

Unreachable Reachable?

Reachability of Unsafe Locations

September 16, 2009 J. Braman 25

Discrete Passive
State Variables

Continuous, Rate-
Driven Passive
State Variables

GOOD

FAIR

HIGH

LOW

Camera Health
(CH)

Wind Vector
(WV)

POOR

! 50 [30,50)

Discrete Power States

[10,30) < 10

HiUse

MedUse

LoUse

HiChar

LoChar

Neutral

Power Model

Transitions depend on:
Position
Altitude

Wind Vector
Sun Intensity

Is Power < 10 reachable?

Find path from Power = 100
(initial condition) to Power < 10.

InVeriant Usage

September 16, 2009 J. Braman 26

1.! Create XML file that includes the following information
a)! Passive state variable models

b)! Merging rules and constraint types for controlled state
variables

c)! Goals in each goal tree

d)! Unsafe set

2.! Load InVeriant package using the following command:

 >> Needs[“InVeriantSMC`”];

3.! Store path of XML file in ‘pathfile’ variable

4.! Model check the goal network using the following
command:

 >> InVeriant[pathfile,CSType->GN]

Titan Aerobot Mission Verification

September 16, 2009 J. Braman 27

InVeriant found

!! Locations that satisfy unsafe power condition

!! Path from initial condition (Power = 100) to
unsafe condition (Power < 10)

Benefits of SBT Checker/InVeriant

September 16, 2009 J. Braman 28

!! Titan system stats:
!! About 600 locations
!! Over 300,000 transitions
!! 11 state variables, 9

passive, 2 controlled
!! Discrete passive state space

(no power) is nearly 600,000
states

!! Conversion/PHAVer method
!! 5 hours to convert

(thousands of transitions)
!! PHAVer did not complete

!! SBT Checker/InVeriant
!! 15 minutes to convert
!! 2 minutes to verify

!! InVeriant is fast and
efficient
!! No transitions
!! Passive state space does

not contribute to
complexity

!! SBT Checker is scalable
because of modularity

!! State-based transitions
imposes structure on control
system
!! Good design practice

!! Can reason about rate
constraints

!! Can apply to hybrid systems
w/o group structure

Hybrid System Theory

September 16, 2009 J. Braman 29

!! Classes of hybrid
systems can be verified
with this approach

!! Automata must have
either
!! State-based transitions

!! Completion transitions

!! Automata must run
concurrently

!! Automata may be timed
(completion transitions)

Drive
RC ==
DRIVE

EVA
RC ==
EVA

Docking
RC ==

DOCK

Safe
RC ==
SAFE

Maintain
Health
BH == GOOD

Warn
BH == FAIR

AR
BH == POOR
& AO == OFF

AR OR
BH == POOR
& AO == ON

Lunar Electric Rover

September 16, 2009 J. Braman 30

Chariot B
Movie Clip

Design Flow

September 16, 2009 J. Braman 31

Design system

Check state-based
transition

Redesign

Check consistency

Model Check

Redesign

Redesign

LER Example Problem

September 16, 2009 J. Braman 32

Drive
RC == DRIVE

EVA
RC == EVA

Docking
RC == DOCK

Safe
RC == SAFE

LER Example Problem – ECLS

September 16, 2009 J. Braman 33

Maintain
Health
BH == GOOD

Warn
BH == FAIR

Auto Return
BH == POOR
& AO == OFF

Auto Return
Override
BH == POOR
& AO == ON

LER Example Problem - Power

September 16, 2009 J. Braman 34

Comm Off
15 <= Power
& Power < 30
& CO == OFF

AR/No Comm
Power < 15 &
CO == OFF &
AO == OFF

Comm OR
Power !
[15,30) &
CO == ON

AR OR/NC
Power < 15 &
CO == OFF &
AO == ON

Nominal
Power >= 50

Power Save
30 <= Power
& Power < 50

AR/C OR
Power < 15 &
CO == ON &
AO == OFF

AR OR/C OR
Power < 15 &
CO == ON &
AO == ON

LER Example Problem - EVA

September 16, 2009 J. Braman 35

Both Closed
(RHC & LHC) ||
Power < 30 || (RHO
& LHO & (Power <
50 || CMP ||CHP)

Right Open
RH == OPEN &
LH == CLOSED
& Power >= 30

Left Open
LH == OPEN &
RH == CLOSED
& Power >= 30

Both Open
LH == OPEN & RH ==
OPEN & Power >= 50
& CM == GOOD &
CH != POOR

EVA
RC == EVA

LER Example Problem - Drive

September 16, 2009 J. Braman 36

Crab Low
CH == GOOD &
DH == GOOD &
DM == CRABLOW

Path Plan
CH == GOOD &
DH == GOOD &
DM == PP

Crab High
Power >= 50 & CH
== GOOD & DH ==
GOOD & DM ==
CRABHIGH

Safe
DH == POOR &
DM == SAFE

Car Low
DH == FAIR ||
(DH == GOOD &
DM == CARLOW)

Car High
Power >= 50 &
DH == GOOD &
DM == CARHIGH

Drive
RC == DRIVE

LER Example – Drive Redesigned

September 16, 2009 J. Braman 37

Crab Low
DH == GOOD & ((CH
== GOOD & DM ==

CRABLOW) ||
(Power < 50 & DM ==
CRABHIGH))

Path Plan
CH == GOOD &
DH == GOOD &
DM == PP

Crab High
Power >= 50 & CH
== GOOD & DH ==
GOOD & DM ==
CRABHIGH

Safe
DH == POOR &
DM == SAFE

Car Low
DHF|| (DHG & DMCL)
|| (CHP & (DMRL ||

DMPP)) || (P<50 &
DHG & DMCH)

Car High
Power >= 50 & DH
== GOOD & (DM ==

CARHIGH || (CH ==
POOR & DM ==
CRABHIGH))

Drive
RC == DRIVE

LER Example Problem - Docking

September 16, 2009 J. Braman 38

Docked
Power >= 30 &
LS == LATCH

Undock
Power >= 15 &
HH == GOOD &
LS != LATCH

Safe
Power < 15 ||
(LS != LATCH &
(CH == POOR ||
HH == POOR))

Approach
CH == GOOD &
Power >= 30 &
HH == GOOD &
LS == UNLATCH

Latch
CH == GOOD &
Power >= 30 &
HH == GOOD &
LS == CONTACT

Docking
RC == DOCK

LER Example – Docking Redesigned

September 16, 2009 J. Braman 39

Docked
Power >= 30 &
LS == LATCH

Undock
(P>=15 & HHG &
LS != LATCH) ||
(15 <= Power < 30
& LSL)

Safe
Power < 15 ||
(LS != LATCH &
(CH == POOR ||
HH == POOR))

Approach
CH == GOOD &
Power >= 30 &
HH == GOOD &
LS == UNLATCH

Latch
CH == GOOD &
Power >= 30 &
HH == GOOD &
LS == CONTACT

Docking
RC == DOCK

Inconsistent Controlled Constraints

September 16, 2009 J. Braman 40

InVeriant finds
locations that have

inconsistent
controlled constraints

Two culprits:
1.! “warn” state variable – changed so

that merge between no alarm and
alarm would result in an alarm

2.! “os” state variable – changed so that
auto-return would win the merge

Verification of LER Example

September 16, 2009 J. Braman 41

Unsafe set:
No auto-return
during an EVA

Safe!

Conclusions

September 16, 2009 J. Braman 42

!! Formal Methods useful
for analyzing control of
fault tolerant systems

!! Design for verification is
essential to reduce state
space concerns (SBT
Checker)

!! InVeriant model checker
leverages properties of
state-based design to
formally verify a class of
hybrid systems

Initial condition
Unsafe set

!
Location
vn: inv,
!,
resets

Unsafe
set !

Inconsistent
Locations

Unsafe
Locations

Unreachable Reachable?

Drive
RC ==
DRIVE

EVA
RC ==
EVA

Docking
RC ==

DOCK

Safe
RC ==
SAFE

Useful Information

September 16, 2009 J. Braman 43

!! SBT Checker:
http://www.cds.caltech.edu/~braman/software/SBTChecker.zip

!! InVeriant
http://www.cds.caltech.edu/~braman/software/InVeriantSMC.zip

!! Documentation

http://www.cds.caltech.edu/~braman

!! LER Example
http://www.cds.caltech.edu/~braman/software/LERExample.zip

