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Abstract. Verification of partially synchronous distributed systems is
difficult because of inherent concurrency and the potentially large state
space of the channels. This paper identifies a subclass of such systems for
which convergence properties can be verified based on the proof of conver-
gence for the corresponding discrete-time shared state system. The proof
technique extends to a class of partially synchronous systems in which
an agent’s state also evolves continuously over time. The proof technique
has been formalized in the PVS interface for timed I/O automata and
applied to verify convergence of a mobile agent pattern formation algo-
rithm.

1 Introduction

In a partially synchronous distributed system a collection of processes inter-
act by exchanging messages. Sent messages are either lost or delivered within a
constant but unknown time bound. This model of communication presents an
interesting and realistic middle-ground between the two extremes of completely
synchronous (lock-step execution) and asynchronous (unbounded message delay)
models. The model is particularly appropriate for a wide class of systems includ-
ing those employing wireless communication and mobile agents. Algorithms and
impossibility results for problems such as mutual exclusion and consensus [10]
in this model have been studied extensively (see, for example, Chapters 24-25
of [16] and the bibliographic notes).

Partially synchronous systems are difficult to understand and reason about
because of their inherent concurrency and message delays. Formal models, in par-
ticular variants of Timed Automata [2,13], have been used to model and analyze
such systems, however, there have been few applications of formal verification
techniques in checking correctness. Typically these systems present difficulty for
model checking because of the huge state space which includes the (potentially
large number of) messages in transit. Nevertheless, in a recent paper [11] the time
to reach agreement of a consensus protocol has been model checked with UP-
PAAL [5] by exploiting a key compositional property of the protocol. Two other
partially synchronous distributed algorithms have been model checked in [14].
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In this paper, we study a general class of partially synchronous distributed
systems for which the state spaces of the participating processes can be con-
tinuous. Such systems arise in sensor networks, mobile robotics, and unmanned
vehicle coordination applications. Techniques based on analyzing the Eigen val-
ues of state-transition matrices [18,6] that have been used for verifying conver-
gence of completely synchronous systems, cannot be applied in a straightfor-
ward way to partially synchronous systems that are highly nondeterministic.
The main contributions of this paper are: (i) a methodology for transforming a
shared state distributed system—in which processes can read each other’s state
instantaneously—to a corresponding partially synchronous system, such that the
convergence properties of the original system are preserved in the latter, (ii) a
substantial verification case study carried out within the Tempo/PVS frame-
work [4,1] based on the above theory.

We begin in Section 2 by describing Shared State (SS) systems—a general
discrete-time model for distributed systems in which each process can change its
state by reading the states of some subset of other processes. A change of state
can be nondeterministic and each process is free to change its state at any point
in time, independent of the others. We adapt a theorem from Tsitsiklis [20],
to obtain a sufficient condition for proving convergence of such shared state
systems. Given a shared state system A, this sufficient condition requires us
to find a collection of shrinking invariant sets for A. Next, in Section 3, we
present a natural transformation of the given shared state system A to a partially
synchronous system B. The partially synchronous system is modeled as a Timed
Input/Output Automaton [13]. In Section 4, we show that if A converges, then
under some assumptions about the structure of the invariant sets of A and
message losses in B, B also converges. Our proof relies critically on properties of
the collection of shrinking invariants that are used in the theorem of [20].

In Section 5, we apply the above theory to verify convergence of a partially
synchronous pattern formation protocol for mobile agents. First, we specify the
shared state version of the protocol in PVS and verify its convergence using the
pre-existing PVS metatheory [17] . We obtain the partially synchronous version
of the pattern formation system; this is specified in PVS using the PVS/TIOA
toolset [15] and we show that it satisfies the assumptions required for conver-
gence.

2 Preliminaries

In this section we present a standard discrete-time model for shared state dis-
tributed systems and state a well-known theorem for proving convergence.

Standard notations are used for natural numbers N = {0, 1, . . . , } and the set
of reals R. For N ∈ N, the set {0, 1, 2, . . . , N} is denoted by [N ]. For a set A,
A⊥

∆= A ∪ {⊥}. The set of finite sequences of length N (and infinite sequences)
of elements in A is denoted by AN (and resp., Aω). For a ∈ AN , i ∈ [N − 1],
the ith element of a is denoted by ai. The same notation is used for infinite
sequences. For any x ∈ A, i ∈ [N ], a ∈ AN+1, [a|ai := x] denotes the (unique)
element a′ ∈ AN+1 satisfying: for all j ∈ [N ], if j = i then a′j = x else a′j = aj .



A Labeled Transition System A is a quadruple (S, S0, A,→) where (a) S is
a set of states, (b) S0 ⊆ S is a set of start states, (c) A is a set of actions, and
(d) →⊆ S × A × S is a set of transitions. For (s, a, s′) ∈→ we write s

a→ s′.
An execution α of A is an (finite or infinite) alternating sequence of states and
actions s0a1s1a2 . . ., such that s0 ∈ S0 and for all i, si

ai+1→ si+1. An LTS is said
to be action deterministic if for any s, s′, s′′ ∈ S, a ∈ A, if s

a→ s′ and s
a→ s′′

then s′ = s′′. Thus, each action a ∈ A is associated with a unique state transition
function fa : S → S, such that if s

a→ s′ then s′ = fa(s).

Convergence. In order to define convergence of an execution to a state s∗ ∈ S we
have to introduce some notion of “closeness” of states to s∗. One straightforward
way to do this, and the approach we take in presenting this paper, is to assume
that S is equipped with a metric d. An infinite execution α converges to s∗ with
respect to d, if for every ε > 0, there is a suffix of α such that for every state s in
this suffix d(s, s∗) ≤ ε. Convergence to a subset S∗ ⊆ S is defined by extending
the definition of d in the obvious way. We remark that for defining convergence
to s∗ or to a subset S∗ of S, it is not necessary for S to be a metric space, and it
suffices to have a topological structure around s∗ (or S∗). The results presented
in this paper carry over to this more general setting.

For verifying convergence, we restrict our attention to executions in which
certain classes of actions occur infinitely often. This motivates the notion of
fair executions. For a set of actions A, a fairness condition F is a finite col-
lection {Fi}n

i=1, n ∈ N, where each Fi is a nonempty subset of A. An infinite
sequence of actions a ∈ Aω to be F-fair iff ∀ F ∈ F , n ∈ N, ∃ m ∈ N, m >
n, such that am ∈ F . An infinite execution α = s0, a0, s1, a1, . . . is F-fair ex-
actly when the corresponding sequence of actions a0, a1, . . . is F-fair. Under a
given fairness condition F , an LTS A is said to converge to s∗ if every F-fair
execution converges to s∗.

Usually a convergence proof is carried out by showing the existence of a
Lyapunov-like function that is nonnegative and decreases along all executions of
the system. The following theorem from [20], translated to our setting, provides
a general sufficient condition for proving convergence in terms of a collection of
invariant sets (sublevel sets of a Lyapunov function).

Theorem 1. Consider an LTS A and a fairness condition F for A. Suppose
there exists a well ordered set (T, <) with smallest element 0 and a collection of
sets {Pk ⊆ S| k ∈ T} satisfying:

C1. (Monotonicity) ∀ k, l ∈ T, k > l ⇒ Pk ! Pl.
C2. (Granularity) ∀ ε > 0, ∃ k ∈ T , such that ∀s ∈ Pk, d(s, s∗) ≤ ε.
C3. (Initial) S0 ⊆ P0.
C4. (Invariance) ∀ s, s′ ∈ S, a ∈ A, k ∈ T if s

a→ s′ and s ∈ Pk then s′ ∈ Pk.
C5. (Progress) ∀ k ∈ T , if Pk (= {s∗} then ∃ F ∈ F , such that ∀ a ∈ F , ∀ s ∈ Pk, s′ ∈

S, s
a→ s′ ⇒ s′ ∈ Pl, for some l > k.

Then all F-fair executions of A converge to s∗ with respect to d.



It turns out that under some weak assumptions about the stability of A,
these conditions are also necessary for convergence of A. C1 requires that the
sequence of predicates is monotonically stronger. C2 states that for every ε > 0
there exists a a set Pk that is contained in the ε-ball around s∗. C4 requires that
the Pk’s are invariant under the transitions of A. Finally, C5 requires that for
any state s in Pk (other than s∗) there exists a fair set F in F , such that any
action in F takes the system to a state Pl, where l > k.

Shared State Systems. A distributed system consists of a finite collection of LTSs
executing and communicating in parallel. In a shared state (distributed) system
a process can read but not modify the states of other asynchronous processes.
Formally, a shared state distributed system with N + 1 processes is an action
deterministic LTS (S, S0, A,→) with the following additional structure:

(a) S
∆= XN+1, where X is a set of process states. For each s ∈ S, i ∈ [N ], si is

called the state of the ith process.
(b) S0 = {x0}, where x0 ∈ XN+1 is the vector of initial SS process states,
(c) The set of actions A is partitioned into disjoint sets {Ai}i∈[N ] such that for

all s, s′ ∈ S, a ∈ Ai, if s
a→ s′ then ∀ j ∈ [N ] \ {i}, sj = s′j .

An action a ∈ Ai corresponds to process i reading the current states of a subset
of other agents and updating its own state. For each action a ∈ Ai we denote the
state transition function fa restricted to the ith component (mapping XN+1 to
X) by fia. That is, if s

a→ s′ then s′ = [s|si = fia(s)]. Function fia is a function
of the states of some subset of processes and is independent of the states of other
processes; this is captured by the dependency function D : A → 2[N ] as follows:
for any pair of states s, u ∈ S, i ∈ [N ], and any action a ∈ A, if for all j ∈ D(a),
sj = uj then the fia(s) = fia(u). That is, the post-state of action a depends on
the jth state component of the pre-state only if j ∈ D(a). We say that j is a
neighbor of i exactly when there exists a ∈ Ai such that j is in D(a).

3 Partially Synchronous Systems

In this section, we present the model for partially synchronous distributed sys-
tems and describe a natural translation of shared state systems to this model. In
a partially synchronous distributed system a fixed set of processes communicate
by sending messages over a broadcast channel. A message broadcast by process
i at some time t is delivered to some (possibly empty) subset of processes; all (if
any) deliveries are within t+ b, where b is a parameter of the broadcast channel.

Timed I/O Automata. We formally model partially synchronous distributed sys-
tems as Timed Input/Output Automata (TIOA) [13]. A Timed I/O Automaton
is a non-deterministic state transition system in which the states may change
either (a) instantaneously through a transition, or (b) continuously over an inter-
val of time following a trajectory . We give the essential definitions for the TIOA
framework and refer the reader to [13] for the details. A variable structure is



used to specify the states of a TIOA. Let V be a set of variables. Each variable
v ∈ V is associated with a type which defines the set of values v can take. The
set of valuations of V is denoted by val(V ). A trajectory for a set of variables V
models continuous evolution of values of the variables. Formally, a trajectory τ
maps a left-closed interval of R≥0 with left endpoint 0 to val(V ). The domain τ
is denoted by τ.dom. A trajectory is closed if τ.dom = [0, t] for some t ∈ R≥0,
in which case we define τ.ltime

∆= t and τ.lstate
∆= τ(t).

A TIOA B = (V, S, S0, A,D, T ) consists of (a) A set V of variables. (b) A
set S ⊆ val(V ) of states. (c) A set S0 ⊆ S of start states. (d) A set A of
actions partitioned into input, output and internal actions I, O, and H, (e) A
set D ⊆ S ×A× S of discrete transitions. An action a ∈ A is said to be enabled
at s iff (s, a, s′) ∈ D. (f) A set T of trajectories for V that is closed1 under
prefix, suffix and concatenation. In addition, for every s ∈ S , A must satisfy
the following two nonblocking conditions: (i) ∀a ∈ I, a is enabled at s, and
(ii) ∃τ ∈ T , such that τ(0) = s and either τ.dom = [0,∞) or τ is closed and
∃a ∈ O ∪H enabled at τ.ltime.

An execution fragment of A is a finite or infinite alternating sequence of tra-
jectories and actions τ0a1τ1a2 . . ., such that for all i in the sequence, τi.lstate

ai+1→
τi+1(0). We define the first state of α, to be α.fstate

∆= τ0(0), and for a closed α,
its last state to be α.lstate

∆= τn.lstate, where τn is the last trajectory in α, and
α.ltime

∆=
∑

i τi.ltime. An execution fragment α is admissible if α.ltime = ∞. An
execution fragment is an execution if τ0(0) ∈ S0.

Given a shared state system A = (S, x0, A,→) for processes indexed by [N ]
we define a natural translation of A to the partially synchronous setting. The
partially synchronous system corresponding to a given shared state system A
is a TIOA B obtained by composing a set of Processi TIOAs—one for each
i ∈ [N ]—and an TIOA LBCast which models the communication channels.

Generic process. First, we specify a TIOA Processi for each participating pro-
cess i ∈ [N ]. The code in Figure 1 specifies this automaton using the TIOA
Language [12]. The specification is parameterized by (a) an uninterpreted type
X, (b) a element x0i of X representing the initial state of process i, (c) a collec-
tion of functions gia : XN+1

⊥ → X, for i ∈ [N ], a ∈ Ai representing the actions
of i, and (d) nonnegative real-valued parameters l and w dealing with timing.
In order to obtain the process corresponding to A, these parameters are instan-
tiated as follows: (i) the type X equals the process state set of A, (ii) x0i is set
to the ith component of the start state of A, (iii) for each a ∈ Ai, and for any
x : X, y : Array[[N ] → X⊥]

gia(x, y) ∆=





fia([y|yi := x]) if ∀j ∈ D(fia), y[j] ,= ⊥
x otherwise.

1 See Sections 3-4 of [13] for formal definitions of the trajectory closure properties and
the statements of the enabling conditions.



Processi has the following state variables: (a) xi is a discrete variable of
type X and is initialized to x0i (b) yi records state information about other
processes received through messages. It is an array of type X⊥ indexed by [N ]
and initialized to ⊥; yi[j] is the last message (if any) that i received from j
(c) nowi, a continuous variable of type R≥0 and initialized to 0, models real
time, and (d) earliesti, a discrete variable of type R≥0 and initialized to l, is the
earliest time for the next broadcast by process i. The initial state is defined by
the initial valuations of the variables.

The transitions for sendi and receiveij actions are specified in the precondition-
effect style in lines 14–22. (a) receiveij(m) models the delivery of message m to
Processi from Processj over the broadcast channel. When this action occurs, the
jth component of the history variable yi is updated to m, and the state variable
xi is updated according to a nondeterministically chosen function gia. (b) A
sendi(m) action models the broadcasting of message m. This action can occur
whenever xi = m and now exceeds earliesti. When this action does occurs,
earliesti is advanced to nowi + l.

Finally, the state of Processi changes over an interval of time according to
the trajectories specified in lines 10–12. Along any trajectory, xi and earliesti
remain constant and nowi increases monotonically at the same rate as real-time.
The stop when condition states that no trajectory continues beyond the time
point at which nowi equals earliest+w. This forces the trajectory to stop, which
along with condition (ii) in the definition of TIOA forces a send to occur.

1 signature
output sendi(m : X)

3 input receiveij(m : X), where j ∈ [N ]

5 variables
xi : X := x0i;

7 yi : Array[[N ] → X⊥] initially ∀j ∈ [N ], y[j] := ⊥
earliesti : R≥0 := l; nowi : R≥0 := 0

9

trajectories
11 evolve d(nowi) = 1

stop when nowi ≥ earliesti + w

14transitions
input receiveij(m)

16eff yi[j] := m;
let a := choose Ai

18xi := gia(x, y)

20output sendi(m)
pre m = xi ∧ nowi ≥ earliesti

22eff earliesti := nowi + l

Fig. 1. Processi TIOA with parameters X, x0, Ai, {gia}a∈Ai , l, w : R≥0 .

Channel. The LBCast automaton of Figure 2 specifies the local broadcast-based
communication layer of the system. For any b ∈ R≥0, LBCast(b) ensures that any
message sent by Processi at time t is received by some subset of other processes
within [t, t + b].

A timed message is a pair consisting of a message of type X and a deadline of
type R≥0. For a timed message p, the message and the deadline are denoted by
p.msg and p.dl. LBCast has two state variables: (a) buffer is a two dimensional
array of sets of timed messages; it is initialized to be empty. buffer [i, j] is the set
of messages (time stamped with a deadline) sent by i to j, that are in transit.
(b) now is a continuous variable of type R≥0 and it models real time.



The state of LBCast changes through the occurrence of send, receive, and drop
actions as follows: (a) receiveij(m) models the delivery of message m sent by
Processj to Processi. This action can occur when there exists dl ∈ R≥0 (actually
≥ now) such that the timed message 〈m, dl〉 is in buffer [j, i]. As a result of this
action some message m (with deadline dl′ ≥ now) is removed from buffer [j, i].
(b) sendi(m) models the broadcasting of message m by Processi. The effect of
this action is that the timed message 〈m, now + b〉 is added to buffer [i, j] for
every j ∈ I. (c) dropij(m) models the loss of message m in transit from i to j.
This action is enabled as long as the message m is in transit, and the effect is
that the message is removed from buffer [i, j].

Along any trajectory of LBCast (see lines 25–28), buffer remains constant
and now increases monotonically at the same rate as real-time. The stop when
condition enforces the delivery deadline of non-dropped messages by forcing the
receive actions to occur.

signature
2 input sendi(m : X), where i ∈ [N ]

output receiveij(m : X), where i, j ∈ [N ]
4 internal dropij(m : X, dl : R≥0)

6 variables
buffer : Array[i, j : [N ], Set[X × R≥0]] := {}

8 now : R≥0 := 0

10 transitions
output receiveij(m)

12 pre ∃ dl : R≥0, 〈m, dl〉 ∈ buffer [j, i]
eff dl′ := choose {dl ∈ R≥0 | 〈m, dl〉 ∈ buffer [j, i]}

14 buffer [j, i] := buffer [j, i] \ 〈m, dl′〉;

16input sendi(m)
eff for j ∈ [N ] do

18buffer [i, j] := buffer [i, j] ∪ 〈m, now + b〉
od

20

internal dropij(m, dl)

22pre 〈m, dl〉 ∈ buffer [i, j] ∧ dl ≥ now
eff buffer [i, j] := buffer [i, j] \ 〈m, dl〉

24

trajectories
26evolve d(now) = 1

stop when ∃ m : X, dl ∈ R≥0, i, j : I,
28〈m, dl〉 ∈ buffer [i, j] ∧ dl = now

Fig. 2. LBCasti,j TIOA with parameter X, b : R≥0.

Complete system. The partially synchronous system corresponding to A is the
composed TIOA B = ‖i∈[N ]Processi‖LBCast. Let the set of states of B be S.
The values of the real-time related variables such as nowi’s earliesti, diverge
along the admissible executions of B. In studying convergence of B we are really
interested in the behavior of the xi and the yi variables and the messages in
buffer without their time stamps. Hence, we define a projection function untime:
for any state s ∈ S, untime(s) is an object that is identical to s except that
the components corresponding to now, nowi, earliesti are removed, every timed
message p is replaced by p.msg, and all ⊥ values are removed from the history
variables yi’s. We denote this projected state space of B by SB and its elements
by s,u. Each s ∈ SB corresponds to a particular valuation for each non-time-
related state variable of B. These variable valuations are denoted by the usual
(.) notation. For example, the valuations of the variables xi and buffer at a state
s are denoted by s.xi and s.buffer . We define a metric on SB based on the metric
d on SA as follows:

U(s)
∆
= ΠN

i=0

˘
{s.xi} ∪j∈[N ] {s.yj [i] | s.yj [i] (= ⊥} ∪j∈[N ] s.buffer [i, j]

¯

dB(s1, s2)
∆
= max

r1∈U(s1),r2∈U(s2)
d(r1, r2)



An admissible execution α is said to converge to a untimed state s∗ ∈ SB if
untime(α(t)) → s∗ with respect to the metric dB, as t → ∞2. Automaton B
converges to s∗ if all its admissible executions converge.

4 Verification of the Partially Synchronous Systems

Throughout this section we assume that A is a shared state system and B is
the corresponding partially synchronous system obtained using the translation
scheme of the previous section. We denote the set of states of A by SA and the
individual states by s, u, etc. We assume that A converges to a state s∗ ∈ SA with
respect to the metric d and a fairness condition F . We assume that convergence of
A is proved using Theorem 1. Therefore, we know that there exists a well ordered
set (T, <) with a smallest element 0 and a collection of sets {Pk ⊆ S| k ∈ T}
satisfying the conditions C1-5.

We define the following relation R ⊆ SB × SA:

R(s, s) ∆= (∀i ∈ [N ], si = s.xi ∨ ∃j ∈ [N ], si ∈ s.buffer [i, j] ∪ s.yj [i])

For each i, the i-th component of s can be one of the following: (i) the state
of the i-th process in s, (ii) a message in transit from i to some j in s.buffer ,
(iii) the state of the history variable s.yj [i] for some other process j. If R(s, s)
then we say that s is an asynchronous view of s. Given s ∈ SB, we define
R(s) ∆= {s ∈ SA | R(s, s)}. We define s∗ ∆= {s ∈ SB | ∀s ∈ R(s) s = s∗}.

In the remainder of this section we shall prove that B converges to s∗ with
respect to the metric dB. We make the following two assumptions about the
structure of the Pk’s and message losses. For any specific problem these assump-
tions become proof obligations which must be discharged.

Assumption 1. Consider any two states s, u ∈ S, a process index i ∈ [N ], and
an action a ∈ Ai. For any k, l ∈ T , l > k, if Pk(s) and Pk(u) hold, then:

B1. Pk([s|si := fia(s)]) ⇒ Pk([u|ui := fa(s)]), and
B2. Pl([s|si := fia(s)]) ⇒ Pl([u|ui := fa(s)]).

Assumption 2. For any i, j ∈ [N ] with i a neighbor of j, along any admissible
execution α of B, for any time t, there exists ζ > l + w + b such that j receives
at least one message sent after time t from i within time t + ζ.

All processes execute send messages within w time. Hence, every every agent
i receives at least one message from every neighbor in the interval [t, t + ζ].

Next, we define a sequence Qk, k = 0, 1, 2, . . . of predicates on states of SB
based on the predicates Pk on SA. Informally, Qk holds for a state s exactly
when all asynchronous view of s satisfy Pk.

Qk(s) ∆= (∀s ∈ SA,R(s, s) ⇒ Pk(s)).

2 α(t)
∆
= α′.lstate, where α′ is the longest prefix of α with α′.ltime = t.



We now show that the conditions C1-5 are satisfied by the collection of sets Qk.
The proof for the next lemma uses C1-3 property of {Pk} and appears in the
Appendix.

Lemma 1. The collection {Qk} satisfies C1-3.

Lemma 2. ∀k ∈ T, s, s′ ∈ SB, a ∈ AB, if s a→ s′ and Qk(s) then Qk(s′).

Proof. Assuming Qk(s) holds for some k ∈ T , we show that Qk(s′) also holds.
The proof is straightforward for a = drop, a = send, and for a closed trajectory
of B. Consider the case where a = receiveij(m), i, j ∈ [N ] and m ∈ X. In order
to show that Qk(s′), we consider any u ∈ SA and assume that R(s′, u) holds.
Then, it suffices to deduce Pk(u).

Let the state of process i in the pre-state s ∈ SB be (x, y). Then its post-
state is (x′, y), where x′ = fia([y|yi := x]). We define the corresponding pre-state
s ∈ SA as [y|yi := x].From the definition of R, it is follows that R(s, s) holds.
From the definition of Q and C4 we have these two implications:

Qk(s) ∧R(s, s) ⇒ Pk(s) Pk(s) ⇒ Pk([s|si := fia(s)])

Assume that u is an asynchronous view of s′. Then u is an asynchronous view
of s with ui either unchanged, or replaced by fia(s). Hence:

R(s′, u) ⇒ R(s, u) ∨ (∃v : R(s, v) ∧ (u = [v|vi := fia(s)]))

Qk(s) ∧R(s′, u) ⇒ (Qk(s) ∧R(s, u)) ∨ (∃v : Qk(s) ∧R(s, v) ∧ (u = [v|vi := fia(s)]))

⇒ Pk(u) ∨ (∃v : Pk(v) ∧ (u = [v|vi := fia(s)])) [From Q definition]

⇒ Pk(u) [from B1, and Pk(s)]

Lemma 3. For all k ∈ T , if Pk ,= {s∗} and s ∈ Qk then there exists l > k and
a closed execution fragment α of B such that

(untime(α.fstate) = s) ∧ (untime(α.lstate) ∈ Ql) ∧ (α.ltime ≤ 2 · ζ)

Proof. Let us fix k ∈ T . By C5, there exists l ∈ T, l > k and an action fia in the
shared state system such that for all s ∈ A Pk(s) ⇒ s′ = [s | si := fia(s)] ∈ Pl.
We define a new relation R′ ∪ SB × SA as follows:

R′(s, s) ∆= ∃u, v ∈ SA : R(s, u) ∧R(s, v) ∧ s = [v|vi := fia(u)]

Thus R′(s, s) holds exactly when s is an asynchronous view v of s except that
the i-th agent’s state is fia(u) where u is itself an asynchronous view of s. We
define Q′

k as
Q′

k(s) ∆= (∀u ∈ SA : R′(s, u) ⇒ Pl(u))

If s ∈ Qk ∩ Q′
k, then for all i, s.xi satisfies Pl and any asynchronous view of s

satisfies Pk.
Claim. Qk ∩Q′

k is invariant under the transitions and trajectories of B.



Proof of Claim. The proof is straightforward for an actions drop, send and trajec-
tories of B. Consider an action a = receivej,k(m). We consider two cases i = j and
i ,= j. Consider the case when i = j. All s.x satisfies Pl. From C4, Pl is invariant
under transitions of A. Hence all s′.x satisfy Pk+1. Therefore s′ ∈ Q′

k. Consider
the case j ,= i. Applying lemma 2, Qk(s′) holds. Hence, for all s′ ∈ R(s′) we
have that Pk(s′) holds. By B2, s′ ∈ Q′

k.

We define α as the concatenation of two fragments α1 and α2. We show that

1. ∃ a closed execution fragment α1 with untime(α1.fstate) ∈ Qk and α1.ltime ≥
ζ is such that untime(α1.lstate) ∈ Qk ∩Q′

k.
2. ∀ closed execution fragments α2 with untime(α2.fstate) ∈ Q′

k ∩Qk and α2.ltime ≥
ζ, untime(α2.lstate) ∈ Ql.

Part 1. By Assumption 2, i receives at least one message from all its neighbors
by time t + ζ. Denote by s′ = untime(α1.lstate) and assume that s′ is obtained
by executing gia. By lemma 2, s′ ∈ Qk. Denote by s′ ∈ SA any state of A such
that R′(s′, s′). We will show Pl(s′). By definition of R′, there exists u, v such
that R(s′, u) ∧ R(s′, v) ∧ s′ = [v | vi := fia(u)]. Hence, since Qk(s′) holds, it
follows that u ∈ Pk and v ∈ Pk. By C5, Pk(u) ⇒ Pl([u | ui := fia(u)]). Hence,
by B2, s′ ∈ Pl with s′ = [v | vi := fia(u)]).

Part 2. Fix any closed execution fragment α2 with starting state untime(α2.fstate) ∈
Q′

k∩Qk. Assume that α2 ends at time α2.ltime ≥ ζ. Denote by s′ = untime(α2.lstate).
We will show that Qk+1(s′) holds. By Claim 1, Q′

k(s′) holds. Let s′ be any state
in R(s′). We will show that Pk+1(s′) holds. By Assumption 2 (noting that ζ ≥ b),
for all j, k s′.x, s′.yj [k], and s′.buffer [j, k] contain information sent at or after
time 0 and this information satisfies Pl. This is because starting from time 0
the x variables satisfy Pl and by time ζ the old messages and local copies are
updated with values that satisfy Pl. Hence, any asynchronous view of s′ satisfies
Pl. Hence, Pl(s′) holds.

Theorem 2. If A converges to s∗ with respect to d, then under Assumptions
B1-2 and 2, B converges to s∗.

Proof. It is straightforward to see that B is indeed a labeled transition system
with set of states S, start states defined by the start states of A, set of actions
AB ∪ TB, and transitions (s, a, s′) ∈→ if and only if (i) (s, a, s′) ∈ D or (ii)
∃ τ ∈ TB, with τ(0) = s and τ.lstate = s′. Therefore, Theorem 1’s sufficient
conditions for convergence are applicable to B with fairness conditions replaced
by time bounded progress guarantees. From Assumptions B1-2 and convergence
of A we obtain a collection {Qk} of invariant sets of B which satisfy conditions 1-
4. Assumption 2 and Lemma 3 imply that B makes progress with respect to these
invariant sets.



5 Verifying Convergence of a Pattern Formation Protocol

We verify a class of pattern formation protocols for mobile agents. Starting from
arbitrary locations in a space, the goal of such a protocol is to make the agents
converge to some predefined spatial pattern. Distributed pattern formation pro-
tocols have been studied extensively, but typically under the assumption that
the agents can communicate synchronously (see, for example [9,6,8,18]). In this
paper, we present the verification of a simple one-dimensional algorithm. Several
generalizations of this protocol have been presented in [7].

The shared state version of the protocol is modeled as a LTSA = (S, S0, A,→),
where (a) S = RN+1, (b) S0 ∈ RN+1 (c) A = ∪i∈[N ]Ai, where Ai ⊆ {(i, avgl,r) | l <

i < r}. (d) fi avgl,r
: RN+1 → R such that for s ∈ S, fi avgl,r

(s) = r−i
r−lsl + i−l

r−lsr.
Note that for every l < i and r > i, the object (i, avgl,r) may not be an action
for agent i; Ai is some subset of such actions. Action (i, avgl,r) ∈ Ai changes the
state of the ith agent according to the function fi,avgl.r

. This function depends
on the states of agents l and r, that is D((i, avgl,r)) = {l, r}. We adopt the
notations from Section 2 to A. For instance, for a state s ∈ S, we denote the
ith component as si. It is easy to check that A is a shared state system. At a
particular state s of A, we say that agent i is located at si. Throughout this
section, mid denotes the value N

2 .
We define a state s∗ ∈ S as follows: ∀i ∈ [N ], s∗i

∆= s00
N−i
N + s0N

i
N . This

specifies a particular pattern where agents are located, in order, at equidistant
points on a straight with extremes s00 and s0N . We set F = {Ai}i∈[N ]. It turns
out that F-fair executions of A converges to the state s∗ with respect to the
Euclidean metric on S. In the remainder of this section, we shall first verify this
property and show how this result carries over to the convergence of the partially
synchronous version of A.

5.1 Convergence of Shared State Protocol

First, we introduce the deviation profile of a state of A which in turn will be
used to define a sequence of predicates which satisfy C1-5. For any x ∈ R and
i ∈ [N ], we define ei(x) ∆= |x− s∗i |. Given s ∈ SA, i ∈ [N ], m ∈ N, we define the
following two symmetric predicates:

Lm,j(s)
∆
= ∀l ≤ j el(sl) ≤ C · βm

„
1− 1

2l

«

Rm,j(s)
∆
= ∀r ≥ N − j er (sr) ≤ C · βm

„
1− 1

2N−r

«

where β
∆=

(
1− 1

2N

)
, and C is chosen such that the L0, N

2
and R0, N

2
predicates are

satisfied at the start state s0. For any state s, if Lm,j(s) holds then the deviations
of the agent locations at s from those at s∗ is upper-bounded by the deviation
profile function (shown in Figure 3) increasing from 0 to j. Symmetrically, the
predicate Rm,j(s) holds if the deviations are decreasing from N − j to N .
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Fig. 3. Deviation from s∗. Left and Right deviation profiles.

For a state s ∈ SA, we define max (s) ∆= maxi∈[N ] ei(si) and Mm(s) ∆=
〈max (s) ≤ C · βm〉. We define d(s, s∗) ∆= max (s). For any j ∈ [mid], we de-
fine the following symmetric predicates:

Lm,j(s)
∆
= Mm(s) ∧ Lm,j(s) ∧ Lm−1,mid(s), Rm,j(s)

∆
= Mm(s) ∧Rm,j(s) ∧Rm−1,mid(s).

These predicates partition [N ] into three groups as: for all i ∈ [j], the deviation
for agent i is upper bounded by the profile function defined by C · βm; for
i ∈ {j + 1 . . . mid} the upper bound is C · βm−1; and for the remaining, the
deviations do not have any upper bound other than one given by the first part
of the predicate (≤ C ·βm). For i ∈ [N ], we define the left profile function lpm,j(i)
as C ·βm

(
1− 1

2i

)
if i ≤ j, equals to C ·βm−1

(
1− 1

2i

)
if j < i ≤ mid and C ·βm

otherwise. This function is concave.

Lemma 4. Let T be the set N × [mid] equipped with lexicographic ordering
(≤lex). The collections {Lm,j} and {Rm,j} indexed by T satisfy C1-4.

Proof. C1. Consider any state s ∈ Lm2,j2 and any pair [m1, j1] ≤lex [m2, j2]. If
m = m1 = m2, s ∈ Lm,j2 ⇒ s ∈ Lm,j1 since the profile holds up to j2, it is
valid up to j1 (for all j1 ≤ j2). When m1 < m2, s ∈ Lm2,j2 ⇒ s ∈ Lm1,j1 for all
j1, j2 ≤ mid; this is because for all i lpm2,j2(i) ≤ lpm1,j1(i) since βm2 < βm2−1 ≤
βm1 . For C2, for all ε we set k to be any value satisfying C · βk ≤ ε. Hence, ∀s
satisfying Lk,0 we have that max (s) ≤ C · βk < ε. C3 follows from the definition
of C. C4. Assume without loss of generality s ∈ Lm,j and a = (i, avgl,r). For all
j ,= i, s′j satisfies Lm,j , since s′j = sj . Assume i ≤ j. The value s′i satisfies Lm,j

as well, and ei(s′i) is upper bounded by

r − i
r − l

el(sl) +
i− l
r − l

er (sr) ≤
r − i
r − l

„
1− 1

2l

«
C · βm +

i− l
r − l

C · βm ≤ C · βm

„
1− 1

2i

«

An analogous argument is used to prove the case when i > j.

Condition C5 is only partially satisfied by these predicates; for any m and j <
mid, for all Lm,j (resp. Rm,j) there exists an action such that the execution of
this action take the system to Lm,j+1 (resp. Rm,j+1). The following relationships
among L and R are used for showing C5. The proofs appears in the Appendix.

Lemma 5. ∀m ∈ N, Lm,mid ∩Rm,mid = Lm+1,0 ∩Rm+1,0



Lemma 6. ∀j < mid (a) ∃a1 such that ∀s a1→ s′ and ∀m ∈ N, s ∈ Lm,j ⇒ s′ ∈
Lm,j+1. (b) ∃a2 such that ∀s a2→ s′ and ∀m ∈ N, s ∈ Rm,j ⇒ s′ ∈ Rm,j+1.

Lemma 5 implies that the left and right profile predicates satisfy C1-4, but
in order to prove C5 we require both these predicates hold simultaneously. This
motivates our next definition. For state s ∈ SA, m ∈ N, j ∈ [mid−1], b ∈ {0, 1},
we define: Pm,j,b(s)

∆= Lm,j+b(s)∧Rm,j(s). All indices from 0 to j + b and from
N − j to N belong to the profile defined by C · βm, while the indices between
(j + b) + 1 and (N − j)− 1 belong to profile defined by C · βm−1.

Lemma 7. Let T be the set N × [mid − 1] × {0, 1} equipped with lexicographic
ordering (≤lex). The collection {Pm,j,b} indexed by T satisfies C1-5.

Proof. It is straightforward to check using Lemma 4 that the sequence of predi-
cates satisfy C1-4. C5. Applying Part (a) of Lemma 6,

s ∈ Pm,j,0 ⇒ s ∈ Lm,j ∧ s ∈ Rm,j ⇒ s′ ∈ Lm,j+1 ∧ s′ ∈ Rm,j ⇔ s′ ∈ Pm,j,1.

for any m, j with j ≤ mid − 1, let a1 be any action in Aj+1. Without loss of
generality, we assume a1 = (j + 1, avgl,r). Using part (b) of Lemma 6, we obtain

s ∈ Pm,j,1 ⇒ s ∈ Lm,j+1∧s ∈ Rm,j ⇒ s′ ∈ Lm,j+1∧s′ ∈ Rm,j+1 ⇔ s′ ∈ Pm,j+1,0.

Next, for any m, j with j < mid − 1, let a2 be any action in AN−(j+1). Again,
without loss of generality, let a2 = (N − (j + 1), avgl,r). Finally from Lemma 5,
s ∈ Pm,mid−1,1 ⇒ s ∈ Pm+1,0,0. Since both Aj+1 and AN−(j+1) are in the
fairness condition F , we obtain the required result.

Lemma 7 and Theorem 1 imply that all F-fair executions of A converge to s∗.

5.2 Convergence of the Partially Synchronous Protocol

From the shared state protocol for patten formation described in Section 5.1,
we first obtain the corresponding Processi automaton based on the translation
scheme of Section 3. In particular, Processi is a TIOA specified by the code in
Figure 1 with X = R, x0 = s0i and gi avgl,r : R3 → R. The gi avgl,r functions
are obtained from the fi avgl,r functions using the transformation of Equation 1.
The communication channel for the system is modeled by LBCast of Figure 2
with X = R and some value for b. The complete partially synchronous system
specification is the TIOA obtained by composing Processi’s with LBCast. Finally,
the convergence state s∗ and dB for B are obtained from s∗, d of A using the
definitions in 3. It is easily checked that the collection of predicates {Pm,j,b}
satisfy Assumptions 1 and 2. Therefore, from Theorem 2, we conclude that B
converges to s∗. In fact, we observe that the system B converges under the
following weaker assumption about message losses:

Assumption 3. For any agent i, for any time t there exists ζ > 0, such that
i receives at least one message sent after time t from some agent l < i (r > i,
respectively) within time t + u with (i, avgl,r) ∈ Ai.



This is weaker than Assumption 2 since each process i receives at least one
message from some pair (neighbor) and not necessarily all pairs in Ai. The
progress property is still guaranteed because by the system makes progress exe-
cuting any action of Ai.

5.3 Verification in PVS Theorem Prover

We have developed a PVS [19] theory for verifying partially synchronous pat-
tern formation protocols within the exiting Timed I/O Automata/PVS frame-
work [3,15]. The theory formalizes partially synchronous systems as described
in this paper, and we have verified the convergence of the example presented
here. The PVS theory files and the related documentation are available from
http://www.infospheres.caltech.edu/papers. The the proofs presented in
this section have been mechanically checked using the PVS theorem prover.
The invariance of the P predicates are proved using the standard inductive
proof technique followed by a case analysis on the actions (and trajectories) of
the automaton in question. We also prove the convergence of the partially syn-
chronous system directly under Assumption 3. An appropriately changed version
of Lemma 5 holds in the partially synchronous settings as well. In order to do
so, we prove a set of basic lemmas about LBCast that are used repeatedly. One
example, of such a basic lemma is that if all the input messages satisfy a certain
predicate, then within bounded time the values stored in the buffer satisfy the
same predicate

6 Discussion

Designing and verifying partially synchronous distributed algorithms is com-
plicated because of their inherent concurrency and message delays. We have
presented a methodology for transforming a shared state distributed system—
in which processes can read each other’s state without delay—to a partially
synchronous system, such that the convergence of the former carry over to the
latter, under certain assumptions. Checking Assumption 1 is easy when it can be
expressed as a conjunction of predicates on individual process states. It would
be interesting to explore relaxations of this assumption. Assumption 2 is fairly
weak, however, it is possible to weaken it further for specific protocols—as it
is observed in the presented case study. We implemented the theory in PVS
and have applied this methodology to verify the convergence of a mobile-agent
pattern pattern formation protocol operating on partially synchronous commu-
nication. Several generalizations of the translation scheme and the convergence
theorem are possible; some more immediate than others. The processes par-
ticipating in the partially synchronous system could have clocks with bounded
drift. We could also define arbitrary continuous trajectories for the main state
variables xi as long as Assumption 1 is satisfied.
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A Proofs for Lemmas in Sections 4 and 5

Lemma 1. The collection {Qk} satisfies C1-3.

Proof. C1. We show that for any k, l ∈ T , if l > k then Ql ! Qk. Fix k, l ∈ T
such that l > k. Consider any s ∈ Ql. By definition of Ql, for all s ∈ R(s),
s ∈ Pl. Applying C1, we obtain that for all s ∈ R(s), s ∈ Pk. By definition of
Qk, it follows that s ∈ Qk.

C2. From C2, exists k such that ∀s ∈ Pk, d(s, s∗) < ε. Hence, the result
follows from the definition of Qk.

C3. The result follows since s0.buffer is empty and s0.y = ⊥ for all s0 ∈ Q0.

Lemma 5. ∀m ∈ N, Lm,mid ∩Rm,mid = Lm+1,0 ∩Rm+1,0

Proof. Assume s ∈ Lm,mid ∩Rm,mid. By hypothesis ∀i ∈ [N ],

ei(si) ≤ C · βm

(
1− 1

2mid

)
≤ C · βm+1.

Hence, the first condition of Lm+1,0 ∩ Rm+1,0 is satisfied by s. Noticing that
agents 0 and N never move, i.e. e0 (s0) = eN (sN ) = 0, the second condition holds.
Finally, by hypothesis the third condition holds. Hence, s ∈ Lm+1,0 ∩Rm+1,0.
The other direction follows from condition C1 of L,R since Lm+1,0 ⊆ Lm,mid

and Rm+1,0 ⊆ Rm,mid

Lemma 6. ∀j < mid

(a) ∃a1 such that ∀s a1→ s′ and ∀m ∈ N, s ∈ Lm,j ⇒ s′ ∈ Lm,j+1.
(b) ∃a2 such that ∀s a2→ s′ and ∀m ∈ N, s ∈ Rm,j ⇒ s′ ∈ Rm,j+1.

Proof. Define a1 = (j + 1, avgl,r) with (l, r) ∈ Aj+1. Noticing that in the state
s′ the deviation error of j + 1 is upper bounded by the convex combination of
the deviation errors of l, r, the following chains of inequalities hold

ej+1 (s′j+1) ≤
r − (j + 1)

r − l
el(sl) +

(j + 1)− l
r − l

er (sr)

≤ r − (j + 1)
r − l

„
1− 1

2l

«
C · βm +

(j + 1)− l
r − l

C · βm ≤ C · βm

„
1− 1

2j+1

«

where the last inequality follows from the concavity of the profile function
lpm,j+1. Hence, s′ ∈ Lm,j+1. Similarly, we can prove (b) by setting a2 = (N −
(j + 1), avgl,r) with (l, r) ∈ AN−(j+1).
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