
On Equilibria of Distributed Message-Passing
Games?

Concetta Pilotto and K. Mani Chandy

California Institute of Technology,
Computer Science Department

1200 E. California Blvd. MC 256-80 Pasadena, US
{pilotto,mani}@cs.caltech.edu
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1 Introduction

Non-cooperative game theory is a natural framework for modeling problems in
distributed systems. It has been successfully applied in many contexts, such as
congestion and power control in networks [1, 2] and distributed control [3]. These
problems may be formulated in a game theoretical framework, where players
correspond to the system components which compete for some set of resources.
The solution of the problem turns out to be a Nash equilibrium [17], i.e. a
configuration of the game from which each player has no incentive to deviate.
Research in this area has primarily focused on designing utility functions for
the players which guarantee termination of the game at a Nash equilibria ([3, 4,
11]). In many of these formulations, for example in [11], players alternate their
actions in a round-robin fashion and the game is repeated infinitely many times.
These games are referred in the literature as dynamic games with alternating
moves [18].

In some practical contexts, the agents of a system may act asynchronously
and communicate via message-passing [6]. Messages may be lost, delayed or
delivered out of order. We call these games dynamic message-passing games.
When a game is played via message-passing, the final outcome may not be a Nash
equilibrium, even if the corresponding game with alternating moves has a unique
Nash equilibrium which is reached from all states. Notions of games for modeling
distributed systems have been recently proposed [14, 16]. These models allow
for do not capture an active behavior of the message-passing communication
medium.

In this paper, we define message-passing games, where the communication
medium is modeled explicitly. The message-passing communication medium used
in this paper has been proposed in [10] and investigated further in [20]. The
medium may drop, duplicate or delay messages in transit, but cannot block for
ever the communication between any two players. We introduce the notion of
termination for message-passing games. A game terminates if eventually-always
the configuration of the game (including messages in transit) belongs to the set
of its Nash equilibria. Our goal is to relate termination of message-passing games
to termination of the corresponding games with alternating moves. This is highly
relevant, since many works, e.g. [4, 11], have related termination of games with
alternating moves to their structure. Therefore, using our results, it would be
possible to directly relate termination of message-passing games to the structure
of the game.

We focus our attention on finite best-response games, where players always
choose the set of actions which maximize their payoffs. This is a very natural
strategy for players in finite games since their objective is to terminate in a
Nash equilibrium [5, 13]. The main result of the paper shows that the two no-
tions of terminations are equivalent only for games with unique best response.
This means that for such class, the game via message-passing terminates if and
only if the corresponding game with alternating moves terminates. Differently
from the game with alternating moves, in message-passing games players choose
their actions based on out-of-date actions of their opponents, possibly executed
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at different stages. We prove that if each player always best-responds to his op-
ponents, then the game terminates, regardless the actions of the communication
medium and the number of equilibria of the game. We show that this equivalence
does not hold for more general best-response games.

Termination of asynchronous games, where players take their actions asyn-
chronously, has been widely investigated [3, 4, 19]. However, these works do not
model the communication medium as a component of the game. For example,
in [19] they do not allow for delays in the transmission and for out-of-order mes-
sages. The authors in [3, 4] study termination of games where there is a unique
Nash equilibrium and find sufficient conditions on utility functions which ensure
convergence to it. Our concept of termination is more flexible because it allows
for termination in presence of multiple equilibria of the game.

Our notion of termination relates to self-stabilization [7, 8]. Whatever the
initial configuration is, the game eventually-always self-stabilizes in the set of
Nash equilibria. Hence, the set of Nash equilibria corresponds to the set of correct
states of a self-stabilizing system. Our results prove that self-stabilization is
guaranteed only in presence of unique best response games. We refer to [9, 12]
for a complete treatment on self-stabilization.

The rest of the paper is organized as follows. Section 2 discusses basic con-
cepts of game theory and introduces finite dynamic best-response games with
alternating moves. Section 3 defines dynamic message-passing games along with
their communication model and notion of termination. Section 4 relates Nash
equilibria of best-response games with alternating moves to termination of message-
passing games for the case of unique best response. Section 5 discusses general-
izations and applications of our results. Section 6 concludes the paper.

2 Games with Alternating Moves

In this section, we define finite and dynamic games with alternating moves with
special attention on best-response games. In all these games, the actions sets of
the players are finite and the game is repeated infinitely many times.

2.1 Basic Game Theoretical Concepts

We review some basic concepts of game theory and refer the reader to [18] for a
more detailed treatment. We next define the concept of game in normal form.

Definition 1. A game in normal form G is a triple (N,A, u) consisting of
(1) N := {1, 2, . . . n} the set of players; (2) A :=

∏
i∈N Ai the set of global

actions, where Ai is the set of player i’s actions; (3) u := (u1, u2, . . . , un) the set
of players payoffs where ui : A → R is the payoff (or utility) function of player i.

Elements of A are also called action profiles. We denote by i, j, k arbitrary play-
ers. Given a ∈ A, ai denotes the action of player i in a and a−i the actions of
his opponents, i.e. (a1, a2, . . . , ai−1, ai+1, . . . , an). Under this notation, we may
write a = (ai, a−i). We denote A−i =

∏
j 6=i Aj . The power set of Ai is denoted by
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P(Ai). We abbreviate G = (N,A, u) with G throughout the paper. An example
of a normal form game is shown in Figure 1(a).

Definition 2. A game G is (a) finite, if N is finite and Ai is finite ∀i, (b) dy-
namic, if players repeat the game infinitely many times, (c) with alternating
moves if players alternates in taking their moves.

The steady-state configurations of a game G, i.e. configurations in which no
player has the incentive to improve his payoff, are called Nash equilibria.

Definition 3. a∗ ∈ A is a Nash equilibrium of G if ∀i : ui(a∗) ≥ ui(b, a∗−i)∀b ∈ Ai

We denote by A∗ the set of Nash equilibria of G and by A∗i the set of the actions
of player i which occur in a Nash equilibria, i.e. A∗i = {b ∈ Ai : ∃a∗ ∈ A∗, a∗i = b}.

2.2 Best-Response Games

Best-Response Games. Each player can take only actions which maximize his
payoff. Each player i has a function βi : A−i → P(Ai). For each a−i ∈ A−i, the
function βi returns the set of actions which maximize the utility of player i.

Definition 4. A best-response game Gβ = (N, A, u, β) is a normal form game
where β = (β1, β2, . . . , βn) and ∀i, βi : A−i → P(Ai), such that ∀a−i βi(a−i) =
{b ∈ Ai : ui(b, a−i) ≥ ui(b′, a−i) ∀b′ ∈ Ai}
The function βi is called the best response function of player i. If ∀i, ∀a−i ∈ A−i,
|βi(a−i)| = 1, the game is a best-response game with unique best response. We
refer to it as unique best-response game throughout the paper. We denote it by
GβU ; if N = 2, we denote it by GβU2. An example of best response function for
the game in Figure 1(a) is shown in Figure 1(b).

Graphical Representation. Best-response games may be pictorially represented as
directed graphs. Given Gβ , the corresponding best-response graph Grβ = (V, E)
is a directed graph where the vertices are the actions of G and the set of edges
E is constructed using the set of best response actions.

Definition 5. Grβ = (V,E) is a best-response graph of Gβ if (1) V = A and
(2) ∀i, a−i ∈ A−i, b, b

′ ∈ Ai, ((b′, a−i), (b, a−i)) ∈ E if b′ /∈ βi(a−i), b ∈ βi(a−i).

We refer to the pair (b, a−i) as a best-response vertex. Notice that a best-response
vertex for player i contains only incoming edges from non best-response vertices
associated to player i. Examples of best-response graphs are shown in Figure 2(a)
and 2(b). The graphs corresponding to GβU2, GβU are denoted by GrβU2, GrβU .

By construction, Nash equilibria of Gβ are sink vertices of Grβ . Given v ∈ V ,
we denote by vi its i-th component and by v−i all of its components except for
component i. We next define the concept of projection of an action.

Definition 6. The projection of ai ∈ Ai in Gr is Vai = {(ai, v−i) : v−i ∈ A−i}
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This is the set of vertices of V where player i plays ai while his opponents
can choose any feasible action in their action set. Similarly, we can define the
projection of a ∈ A, as Va = ∪i∈NVai

.
We next recall the definition of vertex degree in a directed graph. Given a

vertex v, we denote by d(v) the in-degree of v, i.e. the number of edges incoming
into v. We define the in-degree of a set of vertices V ′, denoted by d(V ′), as the
total number of edges directed from vertices outside V ′ to vertices inside V ′, i.e.
d(V ′) = |{(v, w) ∈ E : v ∈ V − V ′, w ∈ V ′}|.

2.3 Global states, and Terminating Executions

In this subsection, we define the notion of terminating executions (or trajectories)
of a finite dynamic game G with alternating moves. We first introduce the state
s of G as an array of length N whose i-th component, denoted by si, is the last
action of player i. Initially, si is arbitrary. We denote by s−i the array of length
N − 1 consisting of all components of s expect for i.

An execution (or trajectory) of G is an infinite sequence of states and actions
(s0, b1, s

1, b2 . . .), where (1) s0 is an arbitrary initial state, (2) ∀i, bi ∈ Aj for
some player j, (3) si

k = si−1
k for all k 6= j, si

j = bi . In case when G = Gβ then
bi ∈ βj(si

−j).
An execution terminates if it reaches (and remain) in a Nash equilibrium. A

game terminates if all its executions terminate.

Definition 7. G terminates if ¦ ¤ s ∈ A∗.

Let Gβ be a best-response game. We next give a termination condition in
term of its corresponding graph Grβ .

Lemma 1. Gβ terminates if and only if Grβ is acyclic.

Proof. The proof follows by contradiction.

3 Message-Passing Games

In this section, we introduce message-passing games where players communicate
by exchanging messages. Messages may be potentially lost, duplicated or arrive
out-of-order.

Definition 8. A message-passing game G′ = (N,A, u, C) is a normal form game
with communication medium C.
We denote by G the corresponding game with alternating moves, i.e. the game
having the same triple (N, A, u), but without the communication medium. Sim-
ilarly, given the best-response games GβU , GβU2, Gβ we denote by G′βU , G′βU2,
G′β the corresponding message-passing games having the same tuple (N, A, u, β).
Since Nash equilibria are related to the structure of the game, rather than to
the communication mechanism used in playing the game, we would have that G
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and G′ have the same Nash equilibrium action profiles and the same graphical
representation.

We next describe C and the notion of terminating executions of G′.

Communication Medium. C is a message-passing broadcast channel. It has four
primitives: send, receive, drop and duplicate. The send and receive primitives
are executed by players, while the drop and duplicate primitives are executed
by C. When player i executes a send(m), where m is a message, m is stored
in C and broadcasted to all his opponents. When i executes a receive(m), m is
removed from C. The primitive drop(m) removes m from C, while the primitive
duplicate(m) duplicates m on C. Denote by ](m) the total number of copies of
m. We make the following assumptions on the behavior of C.
Assumption 1. C has the following properties (A1.) ¦ m /∈ C; (A2.) ](m) is
bounded; (A3.) ∀i, j, i receives a message from j infinitely often.

Assumption (A1.) means that messages are eventually dropped or received; As-
sumption (A2.) means that the total number of copies of a message is finite;
Assumption (A3.) excludes the possibility that all messages between two players
are dropped, i.e. it is always the case that eventually some message from i is
delivered to j.

In the initial set-up of the game, C may be not empty, i.e. there can be an
arbitrary, but finite, number of messages in transit.

States. The state s of G′ is the composition of the state ς of its players and the
state of C. The state of C is the set of messages in transit on C. The state ςi of
player i is an action profile in A, whose i-th component equals to the current
action of i and whose k-th component, k 6= i, is equal to the last received action
for player k. Initially, ςi is arbitrary.

Communication Protocol. Players play the message-passing game G′ via C. They
cannot see each other. Player i executes the send primitive infinitely often; how-
ever, the number of messages sent within a finite time interval is finite. A message
m is a pair (i, ςi) where i is the sender of m and ςi is the state of player i. Player
i chooses a move based on the last actions received from his opponents. We
assume that i takes an action in reply to any received message. When player i
receives a message (j, ςj) from player j, he updates his state as follows. For all
k 6= i, he sets the k-th component of ςi to the k-th component of ςj . The i-th
component of ςi remains unchanged.

Terminating Executions. The set of actions associated with player i in s, denoted
by s(i), contains: (1) the action stored in the i-th component of ςj , ∀j (2) any ac-
tion b contained in a message (k, a) in transit on C having ai = b for any player k.
An execution (or trajectory) of G′ is an infinite sequence (s0, c1, s

1, c2, . . .) where
s0 is an arbitrary initial state of G′ and ci ∈ {send, receive, drop, duplicate}.
We define an execution of G′ terminating if it loops among its Nash equilibrium
points. Hence,

Definition 9. G′ terminates if ¦ ¤ ∀i s(i) ⊆ A∗i .
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The game G′ terminates if for all its executions (starting in any arbitrary ini-
tial state and satisfying Assumption 1), eventually all actions of player i (∀i)
belong to the set of Nash equilibria. This notion is equivalent to the notion of
termination of games with alternating moves. It is also equivalent to the notion
of self-stabilization.

4 Terminating Message-Passing Games

In this section, we relate termination in best-response games with alternating
moves to termination in the corresponding message-passing game. This is true
only for games with unique best response.

Theorem 1. G′βU terminates if and only if GβU terminates.

Although the theorem holds for any number of players, we report the proof only
for the case of two players in order to convey the main ideas without obscuring
them with many details. The proof for a number N > 2 players follow using the
same idea.

Theorem 2. G′βU2 terminates if and only if GβU2 terminates.

Before proving the theorem, we show a key property of GrβU2. To this purpose,
we define the following two predicates:

N (GrβU2) = 〈 ∃i, f ∈ Ai : Vf ∩A∗ = ∅ 〉
Z(GrβU2) = 〈 ∃j, b ∈ Aj : d(Vb) = 0 〉

The first predicate is true if there exists some action f whose projection Vf does
not contain Nash equilibria. The second predicate is true if there exists some
action b whose projection Vb has no incoming edges from vertices outside the
projection. By construction, Vb cannot contain Nash equilibria. The following
property holds.

Lemma 2. If GrβU2 is acyclic and N (GrβU2) holds. Then Z(GrβU2) holds.

Proof. The proof follows by contradiction. Assume that Z(GrβU2) does not hold,
i.e. ∀i,∀b ∈ Ai, d(Vb) > 0.

The key idea is to construct a sequence of projections SP = (P1, P2 . . . Pl)
such that ∀j ∈ {1, . . . l} (i.) there is a directed edge from a vertex in Pj to a
vertex in Pj−1, (ii.) Pj ∩ A∗ = ∅ (iii.) Pj 6= Pr, for all r 6= j. We will show
that Pl, i.e. the last projection of the sequence, has no incoming edges, which
contradicts the hypothesis.

Construction of SP . Set P1 = Po, where o ∈ Ai for some player i satisfying
Vo ∩A∗ = ∅. Such an action o exists since N (GrβU2) holds.
Consider an arbitrary Pj−1, and assume that Pj−1∩A∗ = ∅. Then Pj−1 = Vf for
some action f ∈ Ai, for some i. Denote by w the unique best-response vertex in
Pj−1. By assumption (of contradiction), there exists z ∈ Pj−1 with an incoming
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edge from some vertex outside Pj−1; by construction z 6= w, since Pj−1∩A∗ = ∅.
The vertex z has zi = f and zk = g, k 6= i, for some g ∈ Ak. Set Pj = Pg, where
(z, w) is the edge directed from Pj to Pj−1. Pj cannot contain Nash equilibrium
vertices. This is because z, which is the unique best-response vertex of Pj , has
an outgoing edge to w.

Claim 1. Pj ∩A∗ = ∅ for all j.
Proof. It follows from the construction of the projection sequence. It is initially
true from the hypothesis, and it is maintained by each newly constructed pro-
jection.

Claim 2. Pj 6= Pr for all r 6= j.
Proof. By contradiction, assume that ∃r with Pj = Pr. Wlog, assume that Pj

precedes Pr in SP . By construction, there exists a path from a vertex v ∈ Vr

to a vertex t ∈ Vj where each edge along the path connects two projections in
the sequence Pr−1 . . . Pj+1. If t = v, then the path is a cycle, thus contradicting
the assumption of the lemma. If instead t 6= v, then v must be the unique best-
response vertex in Pr; hence, there exists the edge (t, v) ∈ GrβU2. In that case,
there would again be a cycle from t to v in the graph GrβU2, which contradicts
the assumption of the lemma.

Claim 3. SP is finite.
Proof. It follows from Claim 2 which establishes that all projections are different
and from the fact that the graph is finite.

Claim 4. d(Pl) = 0.
Proof. From Claim 3, it follows that Pl exists. Moreover, from Claim 1, Pl∩A∗ =
∅. Therefore, all vertices in Pl (1) either intersect projections which are already
in the sequence and thus, by Claim 2, they cannot have incoming edges otherwise
a cycle would appear (2) or intersect projections which are not in the sequence.
In this case they cannot have incoming edges because otherwise Pl would not
have been the last projection of the sequence, so they only have outgoing edges.

Main proof. It follows from Claim 4 that d(Pl) = 0, which leads to a contradiction
because it violates the predicate Z.

We briefly discuss the implications of this lemma. An action b ∈ Ai having
d(Vb) = 0 cannot be played by i because it is not a best-response to any action
of his opponent. We next prove that eventually any message containing this
action disappears from the system.

Lemma 3. If d(Vb) = 0 in GrβU2, b ∈ Ai, for some i then ¦ ¤ m /∈ C, where
m = (k, a) with k ∈ N , a ∈ A and ai = b.

Proof. By assumption d(Vb) = 0, thus the action b is not a best response for
player i to any action of his opponent. Therefore, player i can never send a mes-
sage (i, a) with a ∈ A and ai = b. By assumption, in any initial state, the number
of messages in transit on C storing b in the i-th component is finite. Moreover,
the number of their copies is finite by Assumption (A2.). By Assumption (A1.)
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all these messages (and their copies) will be eventually received, or lost. Hence,
all messages storing b in the i-th component will eventually disappear.

As in Lemma 1, we can relate termination conditions of best-response message-
passing games to acyclic graphs.

Lemma 4. G′βU2 terminates if and only if GrβU2 is acyclic.

Proof. (⇒). By setting message delays appropriately, it is possible to simulate
games with alternating moves using message-passing games; hence, this direction
follows from Lemma 1.

(⇐). We can construct a sequence of games SG = (G1, G2, . . . Gr) (and a se-
quence of corresponding graphs SGr = (Gr1, Gr2, . . . Grr)) where G1 = G′βU2

and ∀k 6= r, N (Grk) holds, while N (Grr) does not hold. Each game Gk+1 is
obtained from Gk by removing an action bk ∈ Ai for some player i, such that
d(Vbk

) = 0. Such an action is guaranteed to exist by Lemma 2 if N (Grk) holds.
Using Lemma 3, the action bk eventually disappears from the game. Hence, even-
tually always, Gk and Gk+1 are equivalent. This construction continues until the
assumptions of Lemma 2 are violated (¬N (Gr)), which occurs at index r. In the
last game Gr, we have that ∀i, ∀f ∈ Ai, Vf ∩A∗ 6= ∅; or equivalently, ∀i, ∀f ∈ Ai,
∃a∗ ∈ A∗ such that a∗i = f . Hence, in Gr, s(i) ⊆ A∗i .

Proof of Theorem 2. Combining Lemma 1 and 4, the theorem follows.

5 Discussion

In this section we discuss some generalizations and applications of the results
derived earlier in the paper.

Non-Unique Best-Response Games. Theorem 1 holds only for unique best-response
games. When the best response is not unique, we can construct message-passing
games which do not terminate. This result holds for N ≥ 2. Consider the
two-player game in Figure 2(a). This game has two Nash equilibria, A∗ =
{(A, 1), (B, 3)}. Since the graph is acyclic, the game with alternating moves
terminates in A∗ by Lemma 1. As illustrated in Figure 2(d), it is not true that
¦ ¤ (s(1) ⊆ {A,B} ∧ s(2) ⊆ {1, 3}). We have that the actions C, 2 are executed
infinitely often.

Amount of information. The communication protocol defined in this paper as-
sume that players send their complete state. Consider the following protocol,
where player i sends the pair (i, b), where b ∈ Ai is the i-th component of ςi.
The action b is the player best-response to the actions of his opponents stored
in his state. When a player j receives the message (i, b), he updates only the
i-th component of his state ςj with b. Notice that for two-player best-response
games, this communication protocol is equivalent to the one assumed in this
paper. Under this new model of communication, Theorem 1 does not hold for
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any number of players. When N ≥ 3, there exist unique best-response message-
passing games which do not terminate, while their corresponding games with
alternating moves terminate.An example is provided in Figure 2(b). This is a
three-player game with unique Nash equilibrium (1, 1, 1). It terminates if played
with alternating moves since the graph is acyclic. However, Figure 2(e) shows an
execution of the corresponding message-passing game which does not terminate.
In this execution the action 2 is executed infinitely often by all players.

Better-Response Games. In better-response games, each player may take any
action which improves his current payoff. Each player i stores a better response
function Bi : A → P(Ai) such that ∀a ∈ A, Bi(a) = {b ∈ Ai : ui(b, a−i) >
ui(a)}. An example of better response function for the game in Figure 1(a) is
shown in Figure 1(c). Better-response graphs may be defined similarly. As an
example, the graph corresponding to the game in Figure 1(a)- 1(c) is shown in
Figure 2(c).

Lemma 1 holds for better-response games as well. However, termination of
better-response message-passing games cannot be related to termination of their
corresponding games with alternating moves. This result holds for N ≥ 2. Fig-
ure 2(c) shows a two-player better-response game with unique equilibrium given
by the pair (A, 3), which terminates if played with alternating moves. The game
does not terminate if played via message-passing, as it can be seen from the
trajectory in Figure 2(f) which executes actions B, 1, 2 infinitely often.

Potential Games. Best-response and better-response games are special examples
of potential games. Potential games, introduced in [15], define a global utility
of the system called potential function. The potential function is such that any
action taken by the player gives the same improvement on the global utility as it
does on the player’s utility. Formally, G is a potential game if ∃P : A → R such
that ∀i, ∀a−i ∈ A−i, ∀b, c ∈ Ai : ui(b, a−i) − ui(c, a−i) = P (b, a−i) − P (c, a−i).
The function P is called potential function. In [15, 21] the authors characterize
sufficient and necessary conditions of terminating potential games with alternat-
ing moves. Under the message-passing communication model, it is possible to
exhibit examples of potential games which do not terminate, while they reach a
Nash equilibrium (and therefore terminate) if played with alternating moves.

6 Conclusions

In this paper, we have introduced finite dynamic message-passing games. These
games relax the perfect communication assumption of finite dynamic games with
alternating moves, and allow players to (1) take turns in a non-deterministic
fashion (2) choose their actions based on out-of-date actions of their opponents,
possibly executed at different stages. Messages are sent over a non-reliable com-
munication medium, thus they may be lost, delayed, reordered or duplicated.
We have introduced a notion of termination for these games, which generalizes
the notion of termination in games with alternating moves. We have related this
notion to self-stabilization. We have shown that the two notions of terminations
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are equivalent only in the case of unique best-response games. Using the graph
structure of the game, we have proved that the graph must be acyclic to guar-
antee termination. In all other cases, we have provided examples of games which
terminate if played with alternating moves, but do not terminate via message-
passing. We have finally discussed the applicability of our results to the class of
better-response and potential games.

In the future, we would like to further investigate conditions which guarantee
termination of message passing games in more general contexts. We would also
like to consider non-finite games, where the action sets of the player may be
infinite.

Player 1

Player 2
1 2 3

A 0, 0 3, 3 7, 7
B 2, 2 0, 0 6, 6
C 3, 3 4, 4 5, 5

(a)

β1(1) = β1(2) = {C}
β1(3) = {A}
β2(A) = β2(B) = {3}
β2(C) = {3}

(b)

B1(B, 1) = B1(A, 2) = {C}
B1(B, 3) = {A}
B1(A, 3) = ∅
B1(C, 1) = B1(C, 2) = ∅
B1(A, 1) = {B, C}
B1(B, 2) = {A, C}
B1(C, 3) = {A, B}

(c)

Fig. 1. Payoff matrix of a normal form game (left), best response functions for the
game (center), better response function of Player 1 for the game (right).
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Fig. 2. The graph and an execution of a non-unique best-response game (left), unique
best-response game (center), better-response game (right).
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