
Topics 
Today (Topcu, Buzi) 
•  “Breaking” SOStools-based method 
•  Robustness and verification 

Not today: 
•  Hybrid foundations (Lamperski) 

–  Bisimulation 
–  Zeno phenomena (+Ames)  

•  Architecture and verification (many) 
•  Unified fundamental limits (many) 



Can we “break” SOS tools? 

Sharpening our view of what is hard. 
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Reaction 

•  Ultimate cyberphysical network 
•  >3B years of evolution 
•  >1030 systems deployed 
•  Heavily studied, modeled 
•  Interesting dynamics, bifurcations 
•  Tunable “complexity” 
•  Start of “layering” for the cell 
•  Motivates unified limits 

Glycolysis 



2D Model 

•  build intuition and illustrate concepts easily 
explainable in 2D (using pictures and simple plots),  

•  develop ideas and analysis techniques that are 
generalizable to higher dimensional models. 

nD model 



Fixed points, stability, and bifurcations 
Number of fixed points determined by the solutions to f(y)=gy(y). 
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 Pathway is consuming ATP faster than it can produce. The 
origin is globally asymptotically stable. Pathway crashes 
(all concentrations go to zero) 

1 nonzero fixed point. It’s either globally asymptotically 
stable or there exists a limit cycle that is globally 
asymptotically stable    

2 nonzero fixed points, a saddle point and a node. Stable 
manifold of the saddle separates the RoA of the two 
nodes. 

Most systems topologicaly equivalent to one of the three instances 



Global Behavior 

Using the level sets of the function 

We can show that the trajectories of 
the system are bounded 



Region of Attraction (RoA) Estimation 

is rational, we can estimate RoA of the origin using Lyapunov functions and 
Sum of Squares (SOS) programming.  

The sublevel set Ωϕ,α,  

is an invariant subset of the RoA of the origin 

If the vector field 

Given a positive definite function ϕ  with compact level sets, we search for a  
polynomial Lyapunov function U and α such that  



RoA Estimation 

Estimate RoA of the origin by sublevel sets 
of Lyapunov functions  

For rational vector fields, use Sum of 
Squares (SOS) programming to search for 
polynomial Lyapunov function in a 
neighborhood N0 of the fixed point. 

Sublevel sets which are entirely contained 
in N0  are invariant subsets of the RoA. 

Next we examine how estimating the RoA 
is connected to the concepts of complexity 
and robustness 



Saddle 
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2D 



S1 

General Decomposition 

S1 
w z

S2 

S1  is a well behaved “simple” SISO (single-input single-output)  system in Rk  
S2 is SISO system  in Rl+1, l+k=n, that captures most of the nonlinearity. 

We will call this an (k,l+1)-decomposition 



Dissipation Inequalities 
Similarly, we look to for positive definite storage 
functions U1(xl+1,…,xl+k)>0 and U2(y,x1,…,xl)>0, 
such that  

where B(0) is a neighborhood of the origin.  

S1 
w z

S2 

Then U= U1+ U2  is a Lyapunov function for the full system S. 
The estimate of the RoA is the largest sublevel set of U(x,y) contained in   

  Problem reduces to solving 2 SOS programs in 

1.  Many variables but low degree of polynomials 

2.  Few variables but high degree of polynomials 



Example 

How much benefit do we get from the general 
decomposition? 

Here is an example of a 7D pathway 
using (7-n2,n2)-decomposition  

S1 
w z

S2 

•   As the size n2 of the system S2 
increases, we are able to construct 
Lyapunov functions for systems 
with higher gains 

•   As n2 increases, so does the 
computational complexity. 



Complexity and Performance 

S1 
w z

S2 

If a storage function U1 exists for S1, then a 
diagonal storage function for S1 also exists 

Size of  S2  determines the complexity of the 
full system. 

So, fragile systems (high gains)  require large S2   to construct Lyapunov 
functions (i.e., computationally complex). 



Complexity and Pathway Size 

As the pathway size increases, decompositions with large size S2 are 
required to construct Lyapunov function for smaller gains. 



Old punchline revisited 

1.  Robust instances are easily verified to be so 
2.  Robust instances can be computed exactly 

•  (Fragile problems cannot)  

•  2 is more subtle point 
•  If it holds in general then robust designs need 

not be conservatively so to be verifiable 
•  If “robust?” is easy, then “fragile?” is too 

approximately  



Old punchline revisited 

1.  Robust instances are easily verified to be so 
2.  Robust instances can be computed exactly 

•  (Fragile problems cannot)  

•  2 is more subtle point 
•  If it holds in general then robust designs need 

not be conservatively so to be verifiable 
•  If “robust?” is easy, then “fragile?” is too 

approximately  



Punchline revisited 

Approximate 
All 

Exact 
Robust 

Exact solution 
All instances 

Approximate 
Robust 

≠ (≈?) 

easier 



NPP 
(Number 
partitioning 
problem) 

A “classic” NP complete problem 

The “simplest” hard problem 

But there are subtle issues with reals, quasi-polynomial 



Old punchline revisited 

1.  Robust instances are easily verified to be so 
2.  Robust instances can be computed exactly 

•  Proof of robust instance works for nearby 
(robust) instances? 



Is there a crash? 
•  Given: a line in the plane 

 a0 + a1x + a2y = 0 
•  Question: does it hit a 

corner of the square? 
 x2=1, y2=1 



Is there a crash? 
•  Given: a line in the plane 

 a0x + a1y = 0 
•  Question: does it hit a 

corner of the square? 
 x2=1, y2=1 



Is there a crash? 
•  Given: a line in the plane 

 a0 + a1x + a2y = 0 
•  Question: does it hit a 

corner of the square? 
 x2=1, y2=1 

•  Crash = hits a corner 



Fragile = near miss 
•  Given: a line in the plane 

 a0 + a1x + a2y = 0 
•  Question: does it hit a 

corner of the square? 
 x2=1, y2=1 

•  Crash = hits a corner 
•  Fragile = near miss 



Fragile = near miss 
•  Given: a line in the plane 

 a0 + a1x + a2y = 0 
•  Question: does it hit a 

corner of the square? 
 x2=1, y2=1 

•  Crash = hits a corner 
•  Fragile = near miss 

|a0 + a1x + a2y|  

(-a0 - a1x)/ a2=y  

y=-a0/ a2  

x=-a0/ a1  



•  Given: a line in the plane 
 a0 + a1x + a2y = 0 

•  Question: does it hit a 
corner of the square? 
 x2=1, y2=1 

•  Crash = hits a corner 
•  Fragile = near miss 

|a0 + a1x + a2y|  

(-a0 - a1x)/ a2=y  

y=-a0/ a2  

x=-a0/ a1  

(1/2,1/4,1/4) 



•  Given: a line in the plane 
 a0 + a1x + a2y = 0 

•  Question: does it hit a 
corner of the square? 
 x2=1, y2=1 

•  Crash = hits a corner 
•  Fragile = near miss 

y=-a0/ a2  

x=-a0/ a1  (2/3,1/6,1/6) 



•  Given: a line in the plane 
 a0 + a1x + a2y = 0 

•  Question: does it hit a 
corner of the square? 
 x2=1, y2=1 

•  Crash = hits a corner 
•  Fragile = near miss 

y=-a0/ a2  

x=-a0/ a1  (1/3,1/3,1/3) 



•  Given: a line in the plane 
 a0 + a1x + a2y = 0 

•  Question: does it hit a 
corner of the square? 
 x2=1, y2=1 

•  Crash = hits a corner 
•  Fragile = near miss 

y=-a0/ a2  

(1/2,1/2,0) (2/3,1/3,0) 



NPP 
(Number 
partitioning 
problem) 

A “classic” NP complete problem 

The “simplest” hard problem 
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Scalable algorithms? 



Karmakar – Karp heuristics: 

If 

then the optimal solution is 

Can also be derived using SOS/SDP. 
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Why so hard? 

Still exponentially bad. 
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“worst” problem? 

Answer is obvious, KK proof length is exponentially bad. 



Why start here 

•  Easily visualized and explained 
•  Theorems have short proofs 
•  Complexity and fragility notions are both 

clear and easy to understand 
•  Worst case problems are exponentially 

bad 



Potential confusion 

•  Mix of reals and booleans is confusing (but 
typical in hybrid systems models) 

•  Complexity theory details are murky 
•  Problem is clearly “hard”  in worst case so 

these nuances are less important 



Various levels of paranoia 

Explicitly modeled uncertainty 

Uncertainty in 
parameters / model 



This is the “punchline” 
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NPP 

Let’s compare 



Random 
NPP instances 
(e.g. physics) 

Robust NPP 
instances are 
easy! 

Why is NPP “harder”? 

Also holds in the worst case (e.g. CS). 



Random & worst case 

Ill-conditioning is 
less “fundamental”? 

Rethinking “complexity” 

Maybe not. 



“worst” problem? 

Answer is obvious, KK proof 
length is exponentially bad. 

Bound is exponentially bad. 



Proof Idea 
Robust problems have a few big numbers  
dominating the rest. 

.......... 

BB tree terminates 
quickly. 



.......... 

BB tree grows. 

Less robust…. 

Robustness of the problem bounds the size of 
the tree. 

And so on…. 



Random problems are 
highly complex and 
extremely fragile. 

Robust problems 
are rare and highly 
structured 
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been 
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then 
insert it again.

n L 

Robust 
and simple 

Fragile  
and  
simple 

Fragile  
and hard 

{1,0,0,0,…,0} 

{1/3,1/3,1/3,0,…,0} 

{0.51,  0.2, 0.14, …, 0.01 } 

Sum = 0.49 

{0.16, 0.14, 0.08, …, 0.01} 



Punchline revisited 

1.  Robust problems are easily verified to be so 
2.  Robust problems can be computed exactly 

•  (Fragile problems cannot)  

•  2 is more subtle point 
•  If it holds in general then robust designs need 

not be conservatively so to be verifiable 
•  If “robust?” is easy, then “fragile?” is too 

approximately  



Punchline revisited 

Approximate 
All 

Exact 
Robust 
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≠ (≈?) 



•  Simple question 
•  Undecidable 

•  Chaos 
•  Fractals 

Mandelbrot 



It’s easy to prove 
that this disk is in M.  

Other points in M are fragile 
to the definition of the map. 

Merely stating the obvious. 

Main idea 



Main idea 

e.g. the boundary moves. 



Main idea 

Points near the 
boundary are “fragile.” 

Merely stating the obvious in this case. 

But illustrates general 
principle that can be 
exploited by the right 

algorithms. 
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But simulation 
cannot show that 
points are in M. 



But simulation is fundamentally limited 
•  Gridding is not scalable 
•  Finite simulation inconclusive 



It’s easy to prove 
that this disk is in M.  

Other points in M are fragile 
to the definition of the map. 

Merely stating the obvious. 

Main idea 



Sufficient condition 

Short proof 



Proof method (general) 
1.  Reduce (undecidable) 

problem in hybrid 
dynamical systems to  

2.  (NP-hard) problem in real 
semi-algebraic sets 

3.  Prove emptiness of 
algebraic problem using 

•  Systematic (P) relaxations 
•  Positivstellinsatz (Psatz) 
•  Sum of Squares (SOS) 

CDS-SOSTOOLS 





Trivial to prove that these 
points are in Mandelbrot set. 



Main idea 

The longer the proof, 
the more fragile the 
remaining regions. 

The proof of this 
region is a bit longer 
(using SOSTOOLS) 



Main idea 

And so on… 

Proof even longer. 





Easy to prove these points are in Mset. 



Easy to prove these 
points are not in Mset. 



Proofs get harder. 
(But all still “easy.”) 

What’s left gets 
more fragile. 



What’s left gets 
more fragile. 



This is robustly and provably not in M. 

Using SOSTOOLS 



This is robustly and provably in M. 

Also using SOSTOOLS 



What’s left is fragile. 
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2D 



Next 

•  Architecture/protocols/layering 
•  SAT? Coloring?  (pure discrete) 
•  More hybrid foundations 
•  Unified theories of complexity/limits 
•  Security and adversaries 



Details 



A Simple Decomposition 

S1 
w z

S2 

gi are continuous monotone 
increasing functions with gi(0)=0 

S1  is a well behaved “simple” SISO (single-input single-output)  system in Rn  
S2 is 1-d SISO system that captures most of the nonlinearity. 

The feedback interconnection between S1 and S2 is equivalent to the full system S  



A Simple Decomposition 

Given the decomposition, we look to for positive 
definite storage functions U1(x)>0 and U2(y)>0, 
such that  

where B(0) is a neighborhood of the origin.  

S1 
w z

S2 

Then U(x,y)= U1(x)+ U2(y)  is a Lyapunov function for the full system S. 

The estimate of the RoA is the largest sublevel set of U(x,y) contained in   



Local Small-Gain Type Condition 

S1 
w z

S2 

For , using this decomposition we can show that  

is a Lyapunov function for the full system.  



Local Small-Gain Example 

Let 

Then 

is a Lyapunov function 



Local Dissipation Inequalities 

S1 
w z

S2 

For , using this decomposition we can show that  

for some constants di>0,  is a Lyapunov function for the full 
system.  



Block Diagonal Lyapunov Functions 

S1 
w z

S2 

This decomposition provides a convenient way of 
searching for block diagonal Lyapunov functions 

U(x,y)= U1(x)+ U2(y) 

Proposition 3 

If there exists a block diagonal quadratic Lyapunov function for the 
linearization of the full system S, then there exist storage functions U1 and U2 
satisfying (localy) the dissipation inequality and therefore U(x,y)= U1(x)+ U2(y) 
is a Lyapunov function for the system S. 

Proposition states that the dissipation inequalities are sufficient for 
constructing block diagonal Lyapunov functions for the system 



Limitations of the Decomposition 

S1 
w z

S2 

Let us assume that the intermediate reactions 
rates have the same slope at the fixed point 
and let  

Proposition 4 

There exists no block diagonal quadratic Lyapunov 
function for the linearization of the full system S 

Proposition implies that this decomposition is 
not useful for high gains 



S1 

General Decomposition 

S1 
w z

S2 

S1  is a well behaved “simple” SISO (single-input single-output)  system in Rk  
S2 is SISO system  in Rl+1, l+k=n, that captures most of the nonlinearity. 

We will call this an (k,l+1)-decomposition 



Dissipation Inequalities 
Similarly, we look to for positive definite storage 
functions U1(xl+1,…,xl+k)>0 and U2(y,x1,…,xl)>0, 
such that  

where B(0) is a neighborhood of the origin.  

S1 
w z

S2 

Then U= U1+ U2  is a Lyapunov function for the full system S. 
The estimate of the RoA is the largest sublevel set of U(x,y) contained in   

  Problem reduces to solving 2 SOS programs in 

1.  Many variables but low degree of polynomials 

2.  Few variables but high degree of polynomials 



Example 

How much benefit do we get from the general 
decomposition? 

Here is an example of a 7D pathway 
using (7-n2,n2)-decomposition  

S1 
w z

S2 

•   As the size n2 of the system S2 
increases, we are able to construct 
Lyapunov functions for systems 
with higher gains 

•   As n2 increases, so does the 
computational complexity. 



Complexity and Performance 

S1 
w z

S2 

If a storage function U1 exists for S1, then a 
diagonal storage function for S1 also exists 

Size of  S2  determines the complexity of the 
full system. 

So, fragile systems (high gains)  require large S2   to construct Lyapunov 
functions (i.e., computationally complex). 



Complexity and Pathway Size 

As the pathway size increases, decompositions with large size S2 are 
required to construct Lyapunov function for smaller gains. 



S1 

Decomposition for General Pathways 

S1 
w z

S2 

•   Similar decomposition to the precious case 

•   Presence of reversible reactions means that the two 
subsystems are not SISO anymore 


