
Formal Methods and Theorem
Proving Using PVS

Concetta Pilotto and Jerome White

Caltech Infospheres Lab

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 1

PVS: Prototype Verification System

Specification Language integrated with a interactive
Theorem Prover

Used for writing formal specifications and checking
formal proofs.

Free Software
SRI International
Solaris, Linux and MAC
Implemented in LISP and interface Emacs

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 2

Outline

PVS
Specification Language
Prover Commands

Distributed System example: Local-Global Relations
Theory
PVS Specification
PVS Proofs

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 3

A PVS Example

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF)
MEASUREn

square(n):nat = n * n

sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

END sum

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 4

A PVS Example

sum: THEORY
BEGIN

Theory Definition

n: VAR nat

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF)
MEASUREn

square(n):nat = n * n

sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

END sum
Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 5

Theories

Theory: a collection of definitions, assumptions,
axioms, and theorems.

stored in a .pvs file (e.g. sum.pvs)

Parametric Theories
sum [N0:nat]: THEORY
BEGIN
<...>
END

Hierarchical Theories
IMPORTING sum[10]

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 6

Built-in and Pre-Defined Theories

Built-in Theories: Prelude
E.g. integer, Boolean, real, list, set, finite set. . .
http://www.cs.rug.nl/~grl/ar06/prelude.html

M-x view-prelude-theory

Pre-Defined Theories:
NASA Langley PVS theories

shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvsli b.html

E.g. algebra, complex numbers, graphs, logarithm
and exponential

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 7

http://www.cs.rug.nl/~grl/ar06/prelude.html
shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

A PVS Example

sum: THEORY
BEGIN

n: VAR nat Variable Declaration

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF)
MEASUREn

square(n):nat = n * n

sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

END sum

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 8

Variables and Constants

Variable Declarations
n,m,p: VAR nat

Constant Declaration and Definition
n0:nat

n0:nat = 10

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 9

A PVS Example

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF)
MEASUREn

Function Declaration & Definition
square(n):nat = n * n

sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

END sum
Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 10

Functions

Declarations
square(n):nat

Definitions
square(n):int = n * n

sum(n): RECURSIVE nat =
(IF n=0 THEN 0 ELSE n+sum(n-1) ENDIF)
MEASUREn

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 11

A PVS Example

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF)
MEASUREn

square(n):nat = n * n

sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

Formula Declaration
END sum

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 12

Formulas

Formula Declarations
sum_of_values:
LEMMA FORALL(k:nat) :
sum(k)=k * (k+1)/2

Others: CLAIM,FACT,THEOREM,PROPOSITION,. . .

Expressions
Boolean

=,/=, TRUE,FALSE,AND,OR,IMPLIES,IFF

Numeric
0, 1, . . . , +, ∗, /,−, <,>, . . .

Binding (local scope for variables)
FORALL,EXISTS

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 13

A PVS Example

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF)
MEASUREn

square(n): nat = n* n

sum_of_values:
LEMMA FORALL(k: nat): sum(k)=k * (k+1)/2

END sum

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 14

PVS Types

Type System combined with higher order logic

Base and Build-in types
bool, int, real, nat,...

User-defined types:
Keyword: TYPE

Uninterpreted Type
Type1: TYPE
Defined equality predicate.

Interpreted Function Type
Type2: TYPE = [int,int->int]
Type3: TYPE = FUNCTION[int,int->int]
Type4: TYPE = ARRAY[int,int->int]
Type2,Type3,Type4 are equivalent

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 15

Type Checking

Undecidable

Generate proofs obligations:
TCCs: Type-Correctness Conditions

Running PVS
Type check: M-x tc

Show TCCs: M-x show-tccs

Many of these proof obligations can be discharged
automatically: M-x tcp

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 16

TCCs of sum theory

%Subtype TCC generated (at line 7, column 32) for n-1

%expected type nat

%proved - complete

sum_TCC1:OBLIGATION FORALL (n:nat): NOT n=0 IMPLIES n-1>=0;

%Termination TCC generated (at line 7, column 28) for

sum(n-1)

%proved - complete

sum_TCC2:OBLIGATION FORALL (n:nat): NOT n=0 IMPLIES n-1<n;

sum(n): RECURSIVE nat =

(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF)

MEASUREn

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 17

Function Evaluation

Execute functions
M-x pvs-ground-evaluator

New Buffer with the process <GndEval> . . .

Example
<GndEval> “square(3)”

cpu time 0 msec user, 0 msec system

real time 0 msec

space: 3 cons cells, 0 other bytes, 0

static bytes
==> 9

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 18

Using PVS

Interactive Proof Checker

Combine basic deductive steps and user-defined
procedures

Proofs stored in file.prf

Proofs are stored as a sequence of rules
M-x show-proof

M-x install-proof

M-x edit-proof

Maintain a Proof Tree
M-x x-show-proof

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 19

Proofs

Consider the lemma
sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

M-x prove, M-x pr

{-1} A
[-2] B
{-3} C
|--------------
[1] P
{2} Q
Rule?

A,B,C antecedents

P,Q consequents

A AND B AND C
IMPLIES P OR Q

[n] : formula n is unaf-
fected by the last proof
step

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 20

Sum of Values Lemma

(induct "k")

(expand "sum" 1)

(assert)

(skolem!)

(flatten)

(expand "sum" 1)

(assert)

(M-x xpr)
sum_of_values :

|——-
{1} FORALL (k: nat): sum(k) = (k * (k + 1)) / 2
Rule? (induct “k”)
Inducting on k on formula 1,this yields 2 subgoals:
sum_of_values.1 :

|——-
{1} sum(0) = (0 * (0 + 1)) / 2
Rule? (expand “sum” 1)
Expanding the definition of sum, this simplifies to:
sum_of_values.1 :

|——-
{1} 0 = 0 / 2
Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
This completes the proof of sum_of_values.1.

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 21

Rule Syntax

Surrounded by Parenthesis

Can have arguments and change
only parts of the formulas

Examples
(assert),(undo),(quit)

(expand “sum” +)

(expand “sum” -)

(expand “sum” (-1,-2,2))

(induct "k")

(expand "sum" 1)

(assert)

(skolem!)

(flatten)

(expand "sum" 1)

(assert)

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 22

Distributed System Example

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 23

Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′)

Lyapunov g(s) > g(s′)

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 24

Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′) e.g. avg(s) = avg(s′)

Lyapunov g(s) > g(s′) e.g. sos(s) > sos(s′)

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 24

Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′) e.g. avg(s) = avg(s′)

Lyapunov g(s) > g(s′) e.g. sos(s) > sos(s′)

Local interactions

local interactions

agent

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 24

Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′) e.g. avg(s) = avg(s′)

Lyapunov g(s) > g(s′) e.g. sos(s) > sos(s′)

Local interactions

post interaction state

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 24

Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′) e.g. avg(s) = avg(s′)

Lyapunov g(s) > g(s′) e.g. sos(s) > sos(s′)

Local interactions

next set of local interactions

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 24

Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′) e.g. avg(s) = avg(s′)

Lyapunov g(s) > g(s′) e.g. sos(s) > sos(s′)

Local interactions

next set of local interactions

Goal : Develop theories and proofs of distributed
systems captured by local interactions

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 24

Stages of Refinement

Example

Interactions

Abstract

Interactions

Refined

Interactions

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 25

Stages of Refinement

Example

Interactions

Abstract

Interactions

Refined

Interactions

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 25

Local-Global Relations

Relates global state to local interactions

∀j /∈ K : SK DS′
K

∧

S(j) = S′(j) =⇒
(

SK ∪ {j}

)

D
(

S′
K ∪ {j}

)

D is a transitive binary relation

K is a nonempty subset of agents

6 210

9 2 7

S

S’

K

14

14

j

3

3

Average

SK= 8

S’K= 8

relation maintained

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 26

System Specification

Agents A, each with a value of type T

agent: TYPE, T: TYPE

States S, S′ ∈ S

S : A → T , thus S(k) is agent state

state: TYPE = FUNCTION[agent -> T]

Let f be a function over sets of agents

f : S ×A+ → T

where A+ is the power set of A
f: FUNCTION[state, finite_set[agent] -> T]

Notation: SK ≡ f(S, K) | K ⊆ A

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 27

Generalized Local-Global Relations

Local-global relations over the entire state

SK D S′
K ∧ ∀j /∈ K : S(j) = S′(j) =⇒ SA D S′

A

K nonempty set of agents

K

=

S

S’

K

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 28

Generalized Local-Global Relations

Local-global relations over the entire state

SK D S′
K ∧ ∀j /∈ K : S(j) = S′(j) =⇒ SA D S′

A

K nonempty set of agents

In PVS

1 >: FUNCTION[T, T -> bool]
2

3 lg_relation: LEMMA
4 f(pre, K) > f(post, K) % S_K > S’_K
5 AND (FORALL (j: A | NOT member(j, K)):
6 pre(j) = post(j)) % S(j) = S’(j)
7 IMPLIES
8 f(pre, fullset) > f(post, fullset) % S_A > S’_A

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 28

Examples

Convex Hull

Minimum

min =

3 4 6 2 8 2

3 4 2 9 4 2

Sum of Squares

174

123

6

36
7

49
8

64
4

16
3

9

6

36
7

49
3

9
5

25
2

4

Universal Quantification

T T F F T F

T F F T T F

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 29

Law of Local-Global Relations

S _ S′ denotes transition from S to S′

Restrict attention to systems where
S _ S′ =⇒ SA D S′

A

D conserved
∀t > 0 : S0

A D St
A

where St system state after t transitions
For example

Conservation where D is =
Nonincreasing where D is ≥
Strictly Decreasing where D is >

Follows from transitivity of D

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 30

Stages of Refinement

Example

Interactions

Abstract

Interactions

Refined

Interactions

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 31

Local-Global Operator Refinement

Let ◦ be a binary operator over T

◦ : T × T → T

with identity element 0̄

(a ◦ 0̄ = a) ∧ (0̄ ◦ a = a)

In PVS
1 o: VAR FUNCTION[T, T -> T]
2 zero: VAR T
3
4 identity?(o, zero): bool =
5 FORALL (x: T):
6 x o zero = x AND zero o x = x

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 32

Local-Global Operator Refinement

Define fold

fold(S,K, ◦) =

{

0̄ if K = ∅,

S(k) ◦ fold(S,K \ {k}, ◦) otherwise,

where k is some element in K.

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 32

Local-Global Operator Refinement

Define fold

fold(S,K, ◦) =

{

0̄ if K = ∅,

S(k) ◦ fold(S,K \ {k}, ◦) otherwise,

where k is some element in K.

In PVS
1 fold(S: state,
2 K: finite_set[agent]): RECURSIVE T =
3 IF empty?(K) THEN zero
4 ELSE S(choose(K)) o fold(S, rest(K))
5 ENDIF
6 MEASURE card(K)

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 32

Local-Global Proof Obligations

Would like to show that fold maintains our local global
relation

Required to prove that the definition is satisfied

∀j /∈ K :

fold(S,K, ◦) D fold(S′, K, ◦)
∧

S(j) = S′(j) =⇒

fold(S,K ∪ {j}, ◦) D fold(S′, K ∪ {j}, ◦)

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 33

Local-Global in PVS

1 local_global[

2 agent: TYPE,

3 T: TYPE,

4 f: FUNCTION[state, finite_set[agent] -> T],

5 >: FUNCTION[T, T -> bool]]: THEORY BEGIN

6 ASSUMING

7 R_transitive: ASSUMPTION transitive?(>)

8 f_local_global: ASSUMPTION

9 FORALL (pre, post: state,

10 K: finite_set[agent],

11 k: agent | NOT member(k, K)):

12 f(pre, K) > f(post, K) AND pre(k) = post(k) IMPLIES

13 f(pre, add(k, K)) > f(post, add(k, K))

14 ENDASSUMING

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 34

fold Theory in PVS

Must discharge assumption on IMPORT

1 fold[

2 agent: TYPE,

3 T: TYPE,

4 o: FUNCTION[T, T -> T],

5 zero: T,

6 >: FUNCTION[T, T -> bool]

7]: THEORY BEGIN

8 fold(S: state, K: finite_set[agent]): T

9

10 IMPORTING local_global[agent, T, fold, >]

11 END fold

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 35

TCCs of Local-Global

1 % Assuming TCC generated (at line 57, column 12) for

2 % local_global[agent, T, fold, >]

3 % generated from assumption local_global.f_local_global

4 % proved - complete

5 IMP_local_global_TCC1: OBLIGATION

6 FORALL (pre, post: state, K: finite_set[agent]):

7 FORALL (k: agent | NOT member(k, K)):

8 (fold(pre, K) > fold(post, K) AND pre(k) = post(k) IMPLIES

9 fold(pre, add(k, K)) > fold(post, add(k, K)));

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 36

Proving Local-Global

If (T , ◦) is a commutative monoid with identity element 0̄
and ◦ is monotonic, then (fold,D) is local-global

A monoid is
(a ◦ b) ◦ c = a ◦ (b ◦ c)

(a ◦ 0̄ = a) ∧ (0̄ ◦ a = a)

a, b ∈ T ∧ (a ◦ b) = c =⇒ c ∈ T

Monotonicity is
∀a, b, c ∈ T : a D b =⇒ (a ◦ c) D (b ◦ c)

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 37

PVS Assumptions on◦

1 fold[agent: TYPE, T: TYPE, o: FUNCTION[T, T -> T],

2 zero: T, >: FUNCTION[T, T -> bool]]: THEORY BEGIN

3 ASSUMING

4 zero_identity: ASSUMPTION identity?(o)(zero)

5 o_associative: ASSUMPTION associative?(o)

6 o_commutative: ASSUMPTION commutative?(o)

7 o_closed: ASSUMPTION closed?(o)

8 o_monotonic: ASSUMPTION

9 FORALL (u, v, w: T): u > v IMPLIES u o w > v o w

10 ENDASSUMING

11 fold(S: state, K: finite_set[agent]): T

12 IMPORTING local_global[agent, T, fold, >]

13 END fold

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 38

Stages of Refinement

Example

Interactions

Abstract

Interactions

Refined

Interactions

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 39

Example: Consensus

Given a distributed system with n agents

System state is an array S where S(j) is the state of
agent j

Initial system state: S0

Action: ∀k ∈ K : S(k) = f(S,K)

Desired final state: S⋆ where ∀j ∈ A : S⋆(j) = f(S0)

Example f ’s:
Minimum
Maximum
Greatest common divisor
Least common multiple
Convex hull

Consider generic f ’s: fold, ◦
Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 40

Theory Instantiation

Example: min consensus

8

6

5 8

10
K

min=5

s

8

5

5 5

10

min=5

s’

Proof obligation : operators fit our fold assumption

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 41

In PVS

Importing fold

1 min: THEORY
2 BEGIN
3 min(m, n: real): {p: real | p <= m AND p <= n} =
4 IF m > n THEN n ELSE m ENDIF
5 % Recall: fold[agent, T, o, zero, >]
6 IMPORTING fold[posnat, real, min, posinf, >=]
7 END min

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 42

In PVS

Importing fold

1 min: THEORY
2 BEGIN
3 min(m, n: real): {p: real | p <= m AND p <= n} =
4 IF m > n THEN n ELSE m ENDIF
5 % Recall: fold[agent, T, o, zero, >]
6 IMPORTING fold[posnat, real, min, posinf, >=]
7 END min

Enforces ◦ assumptions (e.g. monotonicity):

1 % Assuming TCC generated (at line 10, column 12) for
2 % fold[posnat, real, min, posinf, >=]
3 % generated from assumption fold.o_monotonic
4 IMP_fold_TCC5: OBLIGATION
5 FORALL (u, v, w: real): u >= v IMPLIES
6 min(u, w) >= min(v, w);

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 42

Conclusion

Steep learning curve

Forces a focus on structure and proof details

Modularity is rewarded
efficient for proving
efficient for implementing

Theory hierarchy maps to Java Object hierarchy

maxmin gcd lcm

Operator

FoldableOperator

MaxMin Gcd Lcm

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 43

Stages of Refinement

Example

Interactions

Abstract

Interactions

Refined

Interactions

PVS

http://www.infospheres.caltech.edu/muri2009

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 44

http://www.infospheres.caltech.edu/muri2009

Appendix

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 45

Install and Run PVS

Download from
http://pvs.csl.sri.com/download.shtml

Latest (4.2) pvs-4.2-ix86-Linux-allegro.tgz

From shell run $PVS/bin/relocate to set path

Run $PVS/pvs

Overview of the commands: M-x pvs-help (C-h p)

M-x exit-pvs (C-x C-c)

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 46

http://pvs.csl.sri.com/download.shtml

Applications

Examples
Hardware verification
Sequential and Distributed algorithms verification
Critical real-time systems verification

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 47

PVS Types

Base and Build-in types
bool, int, real, nat,...

User-defined types:
Keyword: TYPEor TYPE+(non empty)

Uninterpreted Type
Type1:TYPE

Defined equality predicate. Given two elements,
whether they are the same or not

Subtype
Type2:TYPE = {x:nat | x>0 }

Type3(n:int):TYPE = { i:nat | i>=n }

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 48

PVS Types

Enumeration Type
Type4:TYPE = {Type1, Type2}

Function Type
Type5:TYPE = [int -> int]

Type6:TYPE = FUNCTION [int -> int]

Type7:TYPE = ARRAY [int -> int]
Type5,Type6,Type7 are equivalent

Type8:TYPE = [int, int -> int]

Record Types
Type9:TYPE = [# t1:Type1, t2:Type2 #]

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 48

Declarations

Variable Declarations
n,m,p:VAR nat

Constant Declarations
k: nat

sum(i,j:nat):nat

k:nat = 10

next(n):int = n+1

Less_than_10?(m):bool = m<10

fact(n):RECURSIVE nat =
IF n=0 THEN 1 ELSE n* fact(n-1) ENDIF
MEASURE n

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 49

Declarations

Formula Declarations
transitive:
AXIOM n<m AND m<p IMPLIES n<p

Others: CLAIM, FACT, LEMMA, PROPOSITION,
THEOREM, . . .

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 49

Expressions

Boolean
=,/= TRUE,FALSE,AND,OR,IMPLIES,IFF

If-then-else
IF cond THEN exp1 ELSE exp2 ENDIF

Numeric
0, 1, . . . , +, ∗, /,−, <,>, . . .

Binding (local scope for variables)
FORALL,EXISTS

Records
l:list = (# node:=val1, nxt:=val2 #)

Accessors: l‘node, node(l), l‘nxt, nxt(l)

Update: l WITH [node:=val3,nxt:= val4]

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 50

Some Rules

Propositional Rules
flatten : disjunctive simplification
case : case splitting
prop : propositional simplification

Quantifier Rules
skolem : skolemize a universally quantified variable
inst : instantiate an existentially quantified variable

Induction rules
induct : invoke induction scheme

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 51

Some Rules

Rules for using definitions and lemmas
expand : expanding a function or type definition
lemma: introduce the statement of a lemma as an
assumption

Rules for simplification
assert , bddsimp : simplify
smash, grind : lift-it, rewrite, and repeatedly simplify

Control
quit , postpone , undo

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 51

Strategies and Automation

User-defined strategies: Saved in pvs-strategies

(DEFSTEP strategy-name (parameters)

strategy-expression

documentation-string format-string)

(try step1 step2 step3)

Applies step1 to the current goal. If step1 succeeds and generate
sub-goals, then step2 is applied; otherwise step3 is applied to the
current goal.

(repeat step1)

Examples

(ground)

(try (flatten) (propax) (split))

(try (try (flatten) (fail) (skolem 1 (“a” “b”)))

(postpone)) Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 52

	PVS: Prototype Verification System
	Outline
	A PVS Example
	A PVS Example
	Theories
	Built-in and Pre-Defined Theories
	A PVS Example
	Variables and Constants
	A PVS Example
	Functions
	A PVS Example
	Formulas
	A PVS Example
	PVS Types
	Type Checking
	TCCs of 	extpvs {sum} theory
	Function Evaluation
	Using PVS
	Proofs
	Sum of Values Lemma
	Rule Syntax
	Distributed System Example
	Correctness of Distributed Systems
	Correctness of Distributed Systems
	Correctness of Distributed Systems
	Correctness of Distributed Systems
	Correctness of Distributed Systems
	Correctness of Distributed Systems

	Stages of Refinement
	Stages of Refinement

	LGtxt Relations
	System Specification
	Generalized LGtxt Relations
	Generalized LGtxt Relations

	Examples
	Law of LGtxt Relations
	Stages of Refinement
	LGtxt Operator Refinement
	LGtxt Operator Refinement
	LGtxt Operator Refinement

	LGtxt Proof Obligations
	LGtxt in PVS
	$�old $ Theory in PVS
	TCCs of LGtxt
	Proving LGtxt
	PVS Assumptions on $�inop $
	Stages of Refinement
	Example: Consensus
	Theory Instantiation
	In PVS
	In PVS

	Conclusion
	Stages of Refinement
	Appendix
	Install and Run PVS
	Applications
	PVS Types
	PVS Types

	Declarations
	Declarations

	Expressions
	Some Rules
	Some Rules

	Strategies and Automation

