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PVS: Prototype Verification System

Specification Language integrated with a interactive
Theorem Prover

Used for writing formal specifications and checking
formal proofs.

Free Software
SRI International
Solaris, Linux and MAC
Implemented in LISP and interface Emacs
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Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 3



A PVS Example

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
( IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASUREn

square(n):nat = n * n

sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

END sum
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A PVS Example

sum: THEORY
BEGIN

Theory Definition

n: VAR nat

sum(n): RECURSIVE nat =
( IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASUREn

square(n):nat = n * n

sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

END sum
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Theories

Theory: a collection of definitions, assumptions,
axioms, and theorems.

stored in a .pvs file (e.g. sum.pvs )

Parametric Theories
sum [N0:nat]: THEORY
BEGIN
<...>
END

Hierarchical Theories
IMPORTING sum[10]
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Built-in and Pre-Defined Theories

Built-in Theories: Prelude
E.g. integer, Boolean, real, list, set, finite set. . .
http://www.cs.rug.nl/~grl/ar06/prelude.html

M-x view-prelude-theory

Pre-Defined Theories:
NASA Langley PVS theories

shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvsli b.html

E.g. algebra, complex numbers, graphs, logarithm
and exponential
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A PVS Example

sum: THEORY
BEGIN

n: VAR nat Variable Declaration

sum(n): RECURSIVE nat =
( IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASUREn

square(n):nat = n * n

sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

END sum
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Variables and Constants

Variable Declarations
n,m,p: VAR nat

Constant Declaration and Definition
n0:nat

n0:nat = 10
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A PVS Example

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
( IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASUREn

Function Declaration & Definition
square(n):nat = n * n

sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

END sum
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Functions

Declarations
square(n):nat

Definitions
square(n):int = n * n

sum(n): RECURSIVE nat =
( IF n=0 THEN 0 ELSE n+sum(n-1) ENDIF )
MEASUREn
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A PVS Example

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
( IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASUREn

square(n):nat = n * n

sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

Formula Declaration
END sum
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Formulas

Formula Declarations
sum_of_values:
LEMMA FORALL(k:nat) :
sum(k)=k * (k+1)/2

Others: CLAIM,FACT,THEOREM,PROPOSITION,. . .

Expressions
Boolean

=,/=, TRUE,FALSE,AND,OR,IMPLIES,IFF

Numeric
0, 1, . . . , +, ∗, /,−, <,>, . . .

Binding (local scope for variables)
FORALL,EXISTS
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A PVS Example

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
( IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASUREn

square(n): nat = n* n

sum_of_values:
LEMMA FORALL(k: nat ): sum(k)=k * (k+1)/2

END sum
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PVS Types

Type System combined with higher order logic

Base and Build-in types
bool, int, real, nat,...

User-defined types:
Keyword: TYPE

Uninterpreted Type
Type1: TYPE
Defined equality predicate.

Interpreted Function Type
Type2: TYPE = [int,int->int]
Type3: TYPE = FUNCTION[int,int->int]
Type4: TYPE = ARRAY[int,int->int]
Type2,Type3,Type4 are equivalent
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Type Checking

Undecidable

Generate proofs obligations:
TCCs: Type-Correctness Conditions

Running PVS
Type check: M-x tc

Show TCCs: M-x show-tccs

Many of these proof obligations can be discharged
automatically: M-x tcp
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TCCs of sum theory

%Subtype TCC generated (at line 7, column 32) for n-1

%expected type nat

%proved - complete

sum_TCC1:OBLIGATION FORALL (n:nat): NOT n=0 IMPLIES n-1>=0;

%Termination TCC generated (at line 7, column 28) for

sum(n-1)

%proved - complete

sum_TCC2:OBLIGATION FORALL (n:nat): NOT n=0 IMPLIES n-1<n;

sum(n): RECURSIVE nat =

( IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )

MEASUREn
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Function Evaluation

Execute functions
M-x pvs-ground-evaluator

New Buffer with the process <GndEval> . . .

Example
<GndEval> “square(3)”

cpu time 0 msec user, 0 msec system

real time 0 msec

space: 3 cons cells, 0 other bytes, 0

static bytes
==> 9
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Using PVS

Interactive Proof Checker

Combine basic deductive steps and user-defined
procedures

Proofs stored in file.prf

Proofs are stored as a sequence of rules
M-x show-proof

M-x install-proof

M-x edit-proof

Maintain a Proof Tree
M-x x-show-proof
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Proofs

Consider the lemma
sum_of_values:
LEMMA FORALL(k:nat): sum(k)=k * (k+1)/2

M-x prove, M-x pr

{-1} A
[-2] B
{-3} C
|--------------
[1] P
{2} Q
Rule?

A,B,C antecedents

P,Q consequents

A AND B AND C
IMPLIES P OR Q

[n] : formula n is unaf-
fected by the last proof
step
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Sum of Values Lemma

(induct "k")

(expand "sum" 1)

(assert)

(skolem!)

(flatten)

(expand "sum" 1)

(assert)

(M-x xpr)
sum_of_values :

|——-
{1} FORALL (k: nat): sum(k) = (k * (k + 1)) / 2
Rule? (induct “k”)
Inducting on k on formula 1,this yields 2 subgoals:
sum_of_values.1 :

|——-
{1} sum(0) = (0 * (0 + 1)) / 2
Rule? (expand “sum” 1)
Expanding the definition of sum, this simplifies to:
sum_of_values.1 :

|——-
{1} 0 = 0 / 2
Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
This completes the proof of sum_of_values.1.
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Rule Syntax

Surrounded by Parenthesis

Can have arguments and change
only parts of the formulas

Examples
(assert),(undo),(quit)

(expand “sum” +)

(expand “sum” -)

(expand “sum” (-1,-2,2))

(induct "k")

(expand "sum" 1)

(assert)

(skolem!)

(flatten)

(expand "sum" 1)

(assert)
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Distributed System Example
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Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′)

Lyapunov g(s) > g(s′)
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Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′) e.g. avg(s) = avg(s′)

Lyapunov g(s) > g(s′) e.g. sos(s) > sos(s′)
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Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′) e.g. avg(s) = avg(s′)

Lyapunov g(s) > g(s′) e.g. sos(s) > sos(s′)

Local interactions

local interactions

agent
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Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′) e.g. avg(s) = avg(s′)

Lyapunov g(s) > g(s′) e.g. sos(s) > sos(s′)

Local interactions

post interaction state
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Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′) e.g. avg(s) = avg(s′)

Lyapunov g(s) > g(s′) e.g. sos(s) > sos(s′)

Local interactions

next set of local interactions
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Correctness of Distributed Systems

Global properties to maintain
Invariants h(s) = h(s′) e.g. avg(s) = avg(s′)

Lyapunov g(s) > g(s′) e.g. sos(s) > sos(s′)

Local interactions

next set of local interactions

Goal : Develop theories and proofs of distributed
systems captured by local interactions
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Stages of Refinement

Example

Interactions

Abstract

Interactions

Refined

Interactions
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Stages of Refinement

Example

Interactions

Abstract

Interactions

Refined

Interactions
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Local-Global Relations

Relates global state to local interactions

∀j /∈ K : SK DS′
K

∧

S(j) = S′(j) =⇒
(

SK ∪ {j}

)

D
(

S′
K ∪ {j}

)

D is a transitive binary relation

K is a nonempty subset of agents

6 210

9 2 7

S

S’

K

14

14

j

3

3

Average

SK= 8

S’K= 8

relation maintained
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System Specification

Agents A, each with a value of type T

agent: TYPE, T: TYPE

States S, S′ ∈ S

S : A → T , thus S(k) is agent state

state: TYPE = FUNCTION[agent -> T]

Let f be a function over sets of agents

f : S ×A+ → T

where A+ is the power set of A
f: FUNCTION[state, finite_set[agent] -> T]

Notation: SK ≡ f(S, K) | K ⊆ A
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Generalized Local-Global Relations

Local-global relations over the entire state

SK D S′
K ∧ ∀j /∈ K : S(j) = S′(j) =⇒ SA D S′

A

K nonempty set of agents

K

=

S

S’

K
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Generalized Local-Global Relations

Local-global relations over the entire state

SK D S′
K ∧ ∀j /∈ K : S(j) = S′(j) =⇒ SA D S′

A

K nonempty set of agents

In PVS

1 >: FUNCTION[T, T -> bool]
2

3 lg_relation: LEMMA
4 f(pre, K) > f(post, K) % S_K > S’_K
5 AND ( FORALL (j: A | NOT member(j, K)):
6 pre(j) = post(j)) % S(j) = S’(j)
7 IMPLIES
8 f(pre, fullset) > f(post, fullset) % S_A > S’_A
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Examples

Convex Hull

Minimum

min  =

3 4 6 2 8 2

3 4 2 9 4 2

Sum of Squares

174

123

6

36
7

49
8

64
4

16
3

9

6

36
7

49
3

9
5

25
2

4

Universal Quantification

T T F F T F

T F F T T F
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Law of Local-Global Relations

S _ S′ denotes transition from S to S′

Restrict attention to systems where
S _ S′ =⇒ SA D S′

A

D conserved
∀t > 0 : S0

A D St
A

where St system state after t transitions
For example

Conservation where D is =
Nonincreasing where D is ≥
Strictly Decreasing where D is >

Follows from transitivity of D
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Stages of Refinement

Example

Interactions

Abstract

Interactions

Refined

Interactions
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Local-Global Operator Refinement

Let ◦ be a binary operator over T

◦ : T × T → T

with identity element 0̄

(a ◦ 0̄ = a) ∧ (0̄ ◦ a = a)

In PVS
1 o: VAR FUNCTION[T, T -> T]
2 zero: VAR T
3
4 identity?(o, zero): bool =
5 FORALL (x: T):
6 x o zero = x AND zero o x = x
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Local-Global Operator Refinement

Define fold

fold(S,K, ◦) =

{

0̄ if K = ∅,

S(k) ◦ fold(S,K \ {k}, ◦) otherwise,

where k is some element in K.
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Local-Global Operator Refinement

Define fold

fold(S,K, ◦) =

{

0̄ if K = ∅,

S(k) ◦ fold(S,K \ {k}, ◦) otherwise,

where k is some element in K.

In PVS
1 fold(S: state,
2 K: finite_set[agent]): RECURSIVE T =
3 IF empty?(K) THEN zero
4 ELSE S(choose(K)) o fold(S, rest(K))
5 ENDIF
6 MEASURE card(K)
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Local-Global Proof Obligations

Would like to show that fold maintains our local global
relation

Required to prove that the definition is satisfied

∀j /∈ K :

fold(S,K, ◦) D fold(S′, K, ◦)
∧

S(j) = S′(j) =⇒

fold(S,K ∪ {j}, ◦) D fold(S′, K ∪ {j}, ◦)

Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 33



Local-Global in PVS

1 local_global[

2 agent: TYPE,

3 T: TYPE,

4 f: FUNCTION[state, finite_set[agent] -> T],

5 >: FUNCTION[T, T -> bool]]: THEORY BEGIN

6 ASSUMING

7 R_transitive: ASSUMPTION transitive?(>)

8 f_local_global: ASSUMPTION

9 FORALL (pre, post: state,

10 K: finite_set[agent],

11 k: agent | NOT member(k, K)):

12 f(pre, K) > f(post, K) AND pre(k) = post(k) IMPLIES

13 f(pre, add(k, K)) > f(post, add(k, K))

14 ENDASSUMING
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fold Theory in PVS

Must discharge assumption on IMPORT

1 fold[

2 agent: TYPE,

3 T: TYPE,

4 o: FUNCTION[T, T -> T],

5 zero: T,

6 >: FUNCTION[T, T -> bool]

7 ]: THEORY BEGIN

8 fold(S: state, K: finite_set[agent]): T

9

10 IMPORTING local_global[agent, T, fold, >]

11 END fold
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TCCs of Local-Global

1 % Assuming TCC generated (at line 57, column 12) for

2 % local_global[agent, T, fold, >]

3 % generated from assumption local_global.f_local_global

4 % proved - complete

5 IMP_local_global_TCC1: OBLIGATION

6 FORALL (pre, post: state, K: finite_set[agent]):

7 FORALL (k: agent | NOT member(k, K)):

8 (fold(pre, K) > fold(post, K) AND pre(k) = post(k) IMPLIES

9 fold(pre, add(k, K)) > fold(post, add(k, K)));
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Proving Local-Global

If (T , ◦) is a commutative monoid with identity element 0̄
and ◦ is monotonic, then (fold,D) is local-global

A monoid is
(a ◦ b) ◦ c = a ◦ (b ◦ c)

(a ◦ 0̄ = a) ∧ (0̄ ◦ a = a)

a, b ∈ T ∧ (a ◦ b) = c =⇒ c ∈ T

Monotonicity is
∀a, b, c ∈ T : a D b =⇒ (a ◦ c) D (b ◦ c)
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PVS Assumptions on◦

1 fold[agent: TYPE, T: TYPE, o: FUNCTION[T, T -> T],

2 zero: T, >: FUNCTION[T, T -> bool]]: THEORY BEGIN

3 ASSUMING

4 zero_identity: ASSUMPTION identity?(o)(zero)

5 o_associative: ASSUMPTION associative?(o)

6 o_commutative: ASSUMPTION commutative?(o)

7 o_closed: ASSUMPTION closed?(o)

8 o_monotonic: ASSUMPTION

9 FORALL (u, v, w: T): u > v IMPLIES u o w > v o w

10 ENDASSUMING

11 fold(S: state, K: finite_set[agent]): T

12 IMPORTING local_global[agent, T, fold, >]

13 END fold
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Stages of Refinement

Example

Interactions

Abstract

Interactions

Refined

Interactions
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Example: Consensus

Given a distributed system with n agents

System state is an array S where S(j) is the state of
agent j

Initial system state: S0

Action: ∀k ∈ K : S(k) = f(S,K)

Desired final state: S⋆ where ∀j ∈ A : S⋆(j) = f(S0)

Example f ’s:
Minimum
Maximum
Greatest common divisor
Least common multiple
Convex hull

Consider generic f ’s: fold, ◦
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Theory Instantiation

Example: min consensus

8

6

5 8

10
K

min=5

s

8

5

5 5

10

min=5

s’

Proof obligation : operators fit our fold assumption
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In PVS

Importing fold

1 min: THEORY
2 BEGIN
3 min(m, n: real): {p: real | p <= m AND p <= n} =
4 IF m > n THEN n ELSE m ENDIF
5 % Recall: fold[agent, T, o, zero, >]
6 IMPORTING fold[posnat, real, min, posinf, >=]
7 END min
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In PVS

Importing fold

1 min: THEORY
2 BEGIN
3 min(m, n: real): {p: real | p <= m AND p <= n} =
4 IF m > n THEN n ELSE m ENDIF
5 % Recall: fold[agent, T, o, zero, >]
6 IMPORTING fold[posnat, real, min, posinf, >=]
7 END min

Enforces ◦ assumptions (e.g. monotonicity):

1 % Assuming TCC generated (at line 10, column 12) for
2 % fold[posnat, real, min, posinf, >=]
3 % generated from assumption fold.o_monotonic
4 IMP_fold_TCC5: OBLIGATION
5 FORALL (u, v, w: real): u >= v IMPLIES
6 min(u, w) >= min(v, w);
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Conclusion

Steep learning curve

Forces a focus on structure and proof details

Modularity is rewarded
efficient for proving
efficient for implementing

Theory hierarchy maps to Java Object hierarchy

maxmin gcd lcm

Operator

FoldableOperator

MaxMin Gcd Lcm
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Stages of Refinement

Example

Interactions

Abstract

Interactions

Refined

Interactions

PVS

http://www.infospheres.caltech.edu/muri2009
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Appendix
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Install and Run PVS

Download from
http://pvs.csl.sri.com/download.shtml

Latest (4.2) pvs-4.2-ix86-Linux-allegro.tgz

From shell run $PVS/bin/relocate to set path

Run $PVS/pvs

Overview of the commands: M-x pvs-help (C-h p)

M-x exit-pvs (C-x C-c)
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Applications

Examples
Hardware verification
Sequential and Distributed algorithms verification
Critical real-time systems verification
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PVS Types

Base and Build-in types
bool, int, real, nat,...

User-defined types:
Keyword: TYPEor TYPE+(non empty)

Uninterpreted Type
Type1:TYPE

Defined equality predicate. Given two elements,
whether they are the same or not

Subtype
Type2:TYPE = {x:nat | x>0 }

Type3(n:int):TYPE = { i:nat | i>=n }
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PVS Types

Enumeration Type
Type4:TYPE = {Type1, Type2}

Function Type
Type5:TYPE = [int -> int]

Type6:TYPE = FUNCTION [int -> int]

Type7:TYPE = ARRAY [int -> int]
Type5,Type6,Type7 are equivalent

Type8:TYPE = [int, int -> int]

Record Types
Type9:TYPE = [# t1:Type1, t2:Type2 #]
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Declarations

Variable Declarations
n,m,p:VAR nat

Constant Declarations
k: nat

sum(i,j:nat):nat

k:nat = 10

next(n):int = n+1

Less_than_10?(m):bool = m<10

fact(n):RECURSIVE nat =
IF n=0 THEN 1 ELSE n* fact(n-1) ENDIF
MEASURE n
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Declarations

Formula Declarations
transitive:
AXIOM n<m AND m<p IMPLIES n<p

Others: CLAIM, FACT, LEMMA, PROPOSITION,
THEOREM, . . .
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Expressions

Boolean
=,/= TRUE,FALSE,AND,OR,IMPLIES,IFF

If-then-else
IF cond THEN exp1 ELSE exp2 ENDIF

Numeric
0, 1, . . . , +, ∗, /,−, <,>, . . .

Binding (local scope for variables)
FORALL,EXISTS

Records
l:list = (# node:=val1, nxt:=val2 #)

Accessors: l‘node, node(l), l‘nxt, nxt(l)

Update: l WITH [node:=val3,nxt:= val4]
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Some Rules

Propositional Rules
flatten : disjunctive simplification
case : case splitting
prop : propositional simplification

Quantifier Rules
skolem : skolemize a universally quantified variable
inst : instantiate an existentially quantified variable

Induction rules
induct : invoke induction scheme
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Some Rules

Rules for using definitions and lemmas
expand : expanding a function or type definition
lemma: introduce the statement of a lemma as an
assumption

Rules for simplification
assert , bddsimp : simplify
smash, grind : lift-it, rewrite, and repeatedly simplify

Control
quit , postpone , undo
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Strategies and Automation

User-defined strategies: Saved in pvs-strategies

(DEFSTEP strategy-name (parameters)

strategy-expression

documentation-string format-string )

(try step1 step2 step3)

Applies step1 to the current goal. If step1 succeeds and generate
sub-goals, then step2 is applied; otherwise step3 is applied to the
current goal.

(repeat step1)

Examples

(ground)

(try (flatten) (propax) (split))

(try (try (flatten) (fail) (skolem 1 (“a” “b”)))

(postpone)) Formal Methods and Theorem Proving Using PVS – 16 September 2009 – p. 52
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