## Formal Methods and Theorem Proving Using PVS

Concetta Pilotto and Jerome White

Caltech Infospheres Lab

# **PVS: Prototype Verification System**

- Specification Language integrated with a interactive Theorem Prover
- Used for writing formal specifications and checking formal proofs.
- Free Software
  - SRI International
  - Solaris, Linux and MAC
  - Implemented in LISP and interface Emacs

## Outline

- PVS
  - Specification Language
  - Prover Commands
- Distributed System example: Local-Global Relations
  - Theory
  - PVS Specification
  - PVS Proofs

#### **A PVS Example**

sum: THEORY BEGIN

n:VAR nat

```
sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASURE n
```

square(n):nat = n\*n

```
sum_of_values:
LEMMA FORALL (k:nat): sum(k)=k*(k+1)/2
```

### **A PVS Example**

sum: THEORY BEGIN Theory Definition

n:VAR nat

```
sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASURE n
```

square(n):nat = n\*n

sum\_of\_values: LEMMA FORALL (k:nat): sum(k)=k\*(k+1)/2



#### **Theories**

- Theory: a collection of definitions, assumptions, axioms, and theorems.
- stored in a .pvs file (e.g. sum.pvs)
- Parametric Theories
  sum [N0:nat]: THEORY
  BEGIN
  <...>
  END
- Hierarchical Theories IMPORTING sum[10]

#### **Built-in and Pre-Defined Theories**

- Built-in Theories: Prelude
  - E.g. integer, Boolean, real, list, set, finite set...
  - > http://www.cs.rug.nl/~grl/ar06/prelude.html
  - M-x view-prelude-theory
- Pre-Defined Theories:
  - NASA Langley PVS theories
    - shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
    - E.g. algebra, complex numbers, graphs, logarithm and exponential

#### **A PVS Example**

sum: THEORY BEGIN

n:VAR nat Variable Declaration

```
sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASURE n
```

square(n):nat = n\*n

sum\_of\_values: LEMMA FORALL (k:nat): sum(k)=k\*(k+1)/2



#### **Variables and Constants**

- Variable Declarations
  - n,m,p:VAR nat
- Constant Declaration and Definition
  - ∮ n0:nat
  - n0:nat = 10

#### **A PVS Example**

sum: THEORY BEGIN

n:VAR nat

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASURE n

**Function Declaration & Definition** 

square(n):nat = n\*n

sum\_of\_values: LEMMA FORALL (k:nat): sum(k)=k\*(k+1)/2

#### **Functions**

#### Declarations

- square(n):nat
- Definitions
  - square(n):int = n\*n
  - sum(n):RECURSIVE nat =
     (IF n=0 THEN 0 ELSE n+sum(n-1) ENDIF )
     MEASURE n

#### **A PVS Example**

sum: THEORY BEGIN

n:VAR nat

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASURE n

square(n):nat = n\*n

sum\_of\_values: LEMMA FORALL (k:nat): sum(k)=k\*(k+1)/2

**Formula Declaration** 



#### Formulas

#### Formula Declarations

sum\_of\_values:
 LEMMA FORALL (k:nat) :
 sum(k)=k\*(k+1)/2

- Others: CLAIM, FACT, THEOREM, PROPOSITION,...
- Expressions
  - Boolean
    - > =, /=, TRUE, FALSE, AND, OR, IMPLIES, IFF
  - Numeric
    - $0, 1, \ldots, +, *, /, -, <, >, \ldots$
  - Binding (local scope for variables)
    - FORALL, EXISTS

#### **A PVS Example**

sum: THEORY BEGIN

n:VAR nat

```
sum(n):RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF )
MEASURE n
```

square(n):nat = n\*n

```
sum_of_values:
LEMMA FORALL (k:nat): sum(k)=k*(k+1)/2
```

# **PVS Types**

Type System combined with higher order logic

Base and Build-in types

bool, int, real, nat,...

- User-defined types:
  - Keyword: TYPE
  - Uninterpreted Type
    - **J** Type1:TYPE
    - Defined equality predicate.
  - Interpreted Function Type
    - **J** Type2:TYPE = [int,int->int]
    - **J** Type3:TYPE = FUNCTION[int, int->int]
    - **J** Type4:TYPE = ARRAY[int, int->int]
    - Type2, Type3, Type4 are equivalent

# **Type Checking**

- Undecidable
- Generate proofs obligations:
  - TCCs: Type-Correctness Conditions
- Running PVS
  - Type check: M-x tc
  - Show TCCs: M-x show-tccs
  - Many of these proof obligations can be discharged automatically: M-x tcp

#### **TCCs of sum theory**

```
%Subtype TCC generated (at line 7, column 32) for n-1
%expected type nat
%proved - complete
sum_TCC1:OBLIGATION FORALL (n:nat): NOT n=0 IMPLIES n-1>=0;
```

```
%Termination TCC generated (at line 7, column 28) for
sum(n-1)
%proved - complete
sum_TCC2:OBLIGATION FORALL (n:nat): NOT n=0 IMPLIES n-1<n;</pre>
```

| <pre>sum(n): RECURSIVE nat =</pre> |   |      |   |      |   |   |          |       |   |
|------------------------------------|---|------|---|------|---|---|----------|-------|---|
| (IF n =                            | 0 | THEN | 0 | ELSE | n | + | sum(n-1) | ENDIF | ) |
| MEASURE                            | n |      |   |      |   |   |          |       |   |

#### **Function Evaluation**

- Execute functions
  - M-x pvs-ground-evaluator
  - New Buffer with the process <GndEval>...
- Example
  - <GndEval> "square(3)"
    cpu time 0 msec user, 0 msec system
    real time 0 msec
    space: 3 cons cells, 0 other bytes, 0
    static bytes
    ==> 9

# **Using PVS**

- Interactive Proof Checker
- Combine basic deductive steps and user-defined procedures
- Proofs stored in file.prf
- Proofs are stored as a sequence of rules
  - M-x show-proof
  - M-x install-proof
  - M-x edit-proof
- Maintain a Proof Tree
  - M-x x-show-proof

#### **Proofs**

#### Consider the lemma

sum\_of\_values: LEMMA FORALL (k:nat): sum(k)=k\*(k+1)/2

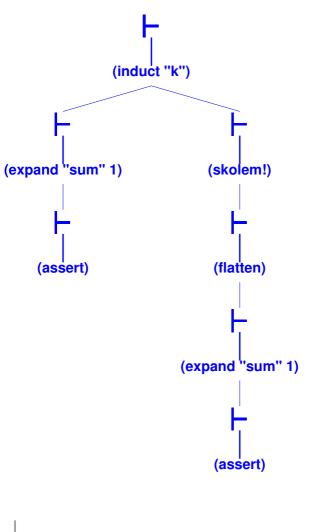
● M-x prove, M-x pr

| {-1} A |
|--------|
| [-2] B |
| {-3} C |
|        |
| [1] P  |
| {2} Q  |
| Rule?  |
|        |

- A, B, C antecedents
- P,Q consequents
- A AND B AND C IMPLIES P OR Q
- [n]: formula n is unaffected by the last proof step

#### **Sum of Values Lemma**

(M-x xpr) sum\_of\_values:



{1} FORALL (k: nat): sum(k) = (k \* (k + 1)) / 2
Rule? (induct "k")
Inducting on k on formula 1,this yields 2 subgoals:
sum\_of\_values.1 :

 $\{1\}$  sum(0) = (0 \* (0 + 1)) / 2

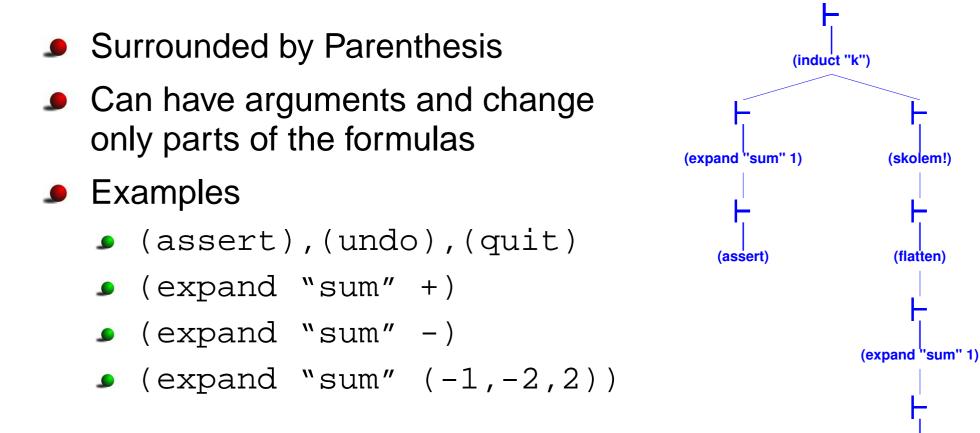
Rule? (expand "sum" 1)

Expanding the definition of sum, this simplifies to: sum\_of\_values.1 :

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures, This completes the proof of sum\_of\_values.1.

## **Rule Syntax**



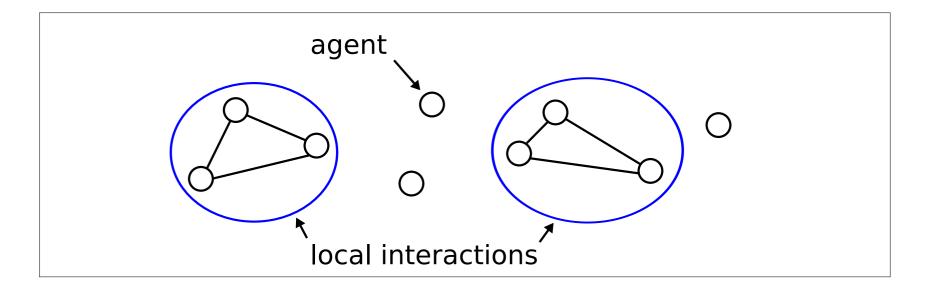
(assert)

#### **Distributed System Example**

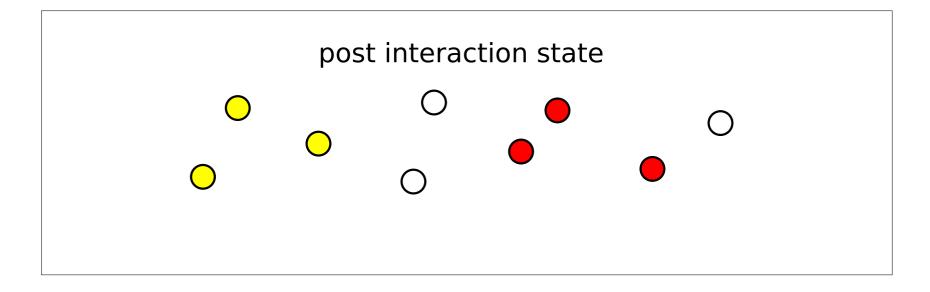
Global properties to maintain
 Invariants h(s) = h(s') Lyapunov g(s) > g(s')

Global properties to maintain
 Invariants h(s) = h(s') e.g. avg(s) = avg(s') Lyapunov g(s) > g(s') e.g. sos(s) > sos(s')

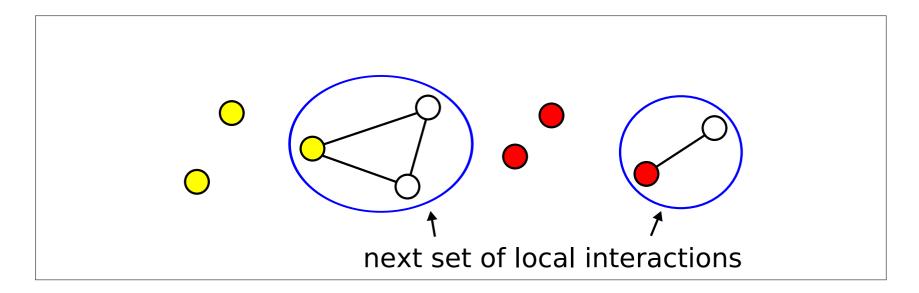
- Global properties to maintain
   Invariants h(s) = h(s') e.g. avg(s) = avg(s') Lyapunov g(s) > g(s') e.g. sos(s) > sos(s')
- Local interactions



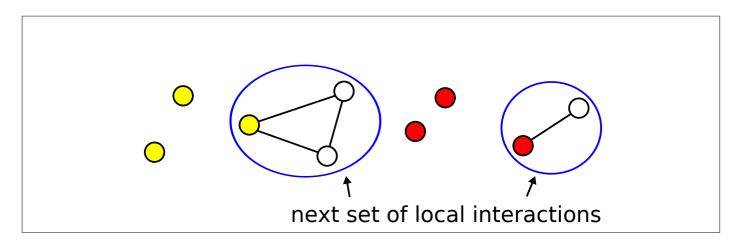
- Global properties to maintain
   Invariants h(s) = h(s') e.g. avg(s) = avg(s') Lyapunov g(s) > g(s') e.g. sos(s) > sos(s')
- Local interactions



- Global properties to maintain
   Invariants h(s) = h(s') e.g. avg(s) = avg(s') Lyapunov g(s) > g(s') e.g. sos(s) > sos(s')
- Local interactions



- Global properties to maintain
   Invariants h(s) = h(s') e.g. avg(s) = avg(s') Lyapunov g(s) > g(s') e.g. sos(s) > sos(s')
- Local interactions



Goal: Develop theories and proofs of distributed systems captured by local interactions

## **Stages of Refinement**



## **Stages of Refinement**

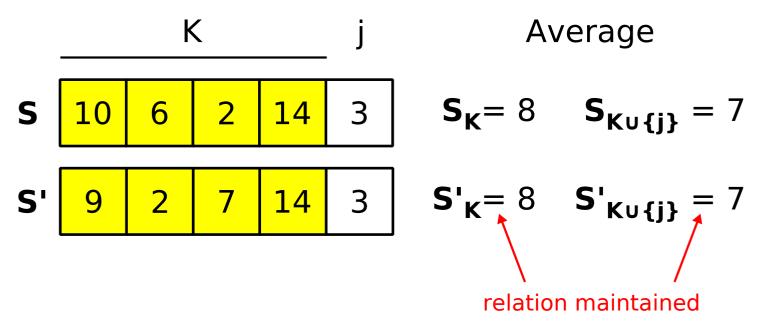


#### **Local-Global Relations**

Relates global state to local interactions

 $\forall j \notin K : S_K \succeq S'_K \bigwedge S(j) = S'(j) \implies \left(S_{K \cup \{j\}}\right) \trianglerighteq \left(S'_{K \cup \{j\}}\right)$ 

- $\blacktriangleright$  is a transitive binary relation
- $\bullet$  K is a nonempty subset of agents



## **System Specification**

- Agents A, each with a value of type T agent: TYPE, T: TYPE
- **States**  $S, S' \in \mathbb{S}$ 
  - $S: \mathcal{A} \to \mathcal{T}$ , thus S(k) is agent state

state: TYPE = FUNCTION[agent -> T]

 $\checkmark$  Let f be a function over sets of agents

 $f: S \times \mathcal{A}^+ \to \mathcal{T}$ 

where  $\mathcal{A}^+$  is the power set of  $\mathcal{A}$ 

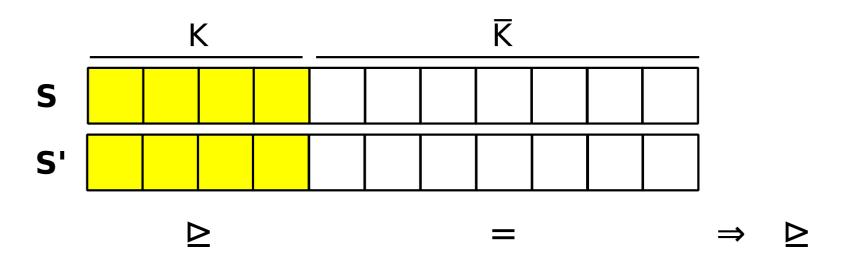
- f: FUNCTION[state, finite\_set[agent] -> T]
- Notation:  $S_K \equiv f(S, K) \mid K \subseteq \mathcal{A}$

#### **Generalized Local-Global Relations**

Local-global relations over the entire state

 $S_K \supseteq S'_K \land \forall j \notin K : S(j) = S'(j) \implies S_A \supseteq S'_A$ 

● *K* nonempty set of agents



#### **Generalized Local-Global Relations**

Local-global relations over the entire state

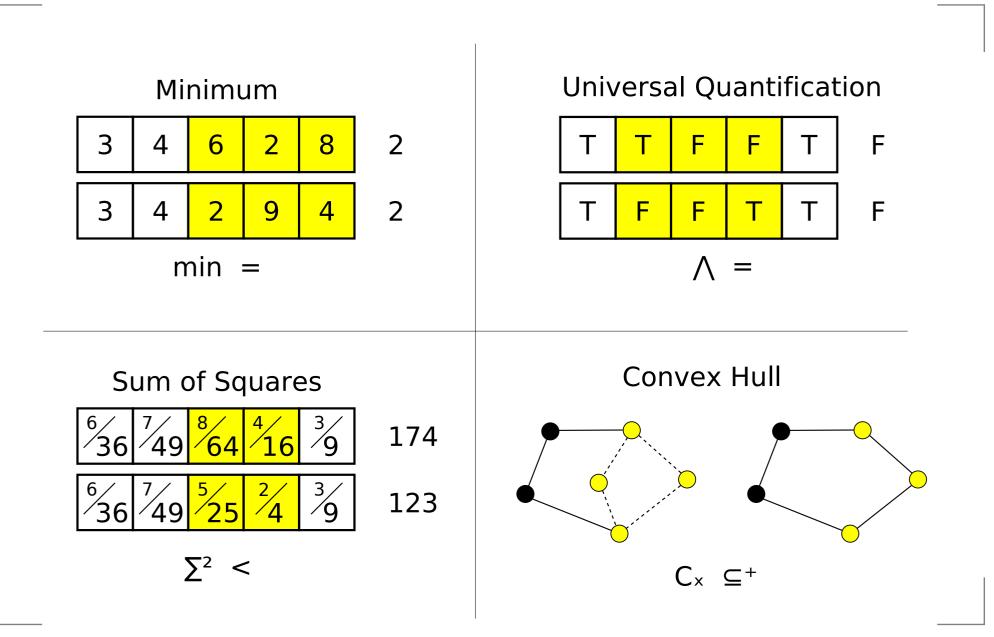
 $S_K \supseteq S'_K \land \forall j \notin K : S(j) = S'(j) \implies S_A \supseteq S'_A$ 

● K nonempty set of agents

#### In PVS

```
1 >: FUNCTION[T, T -> bool]
2
3 lg_relation: LEMMA
4 f(pre, K) > f(post, K) % S_K > S'_K
5 AND (FORALL (j: A | NOT member(j, K)):
6 pre(j) = post(j)) % S(j) = S'(j)
7 IMPLIES
8 f(pre, fullset) > f(post, fullset) % S_A > S'_A
```

## **Examples**



## Law of Local-Global Relations

- $S \rightarrow S'$  denotes transition from S to S'
- Restrict attention to systems where  $S \rightarrow S' \implies S_{\mathcal{A}} \supseteq S'_{\mathcal{A}}$
- ho ho conserved

$$\forall t > 0: \ S^0_{\mathcal{A}} \trianglerighteq S^t_{\mathcal{A}}$$

where  $S^t$  system state after t transitions

- For example
  - **•** Conservation where  $\geq$  is =
  - Nonincreasing where ≥ is ≥
  - Strictly Decreasing where ≥ is >
- Follows from transitivity of ≥

# **Stages of Refinement**



### **Local-Global Operator Refinement**

 $\textbf{ Let } \circ \textbf{ be a binary operator over } \mathcal{T} \\$ 

 $\circ:\ \mathcal{T}\times\mathcal{T}\to\mathcal{T}$ 

with identity element  $\overline{0}$ 

$$(a \circ \overline{0} = a) \land (\overline{0} \circ a = a)$$

### **Local-Global Operator Refinement**

#### **Define** fold

$$fold(S, K, \circ) = \begin{cases} \overline{0} & \text{if } K = \emptyset, \\ S(k) \circ fold(S, K \setminus \{k\}, \circ) & \text{otherwise}, \end{cases}$$

where k is some element in K.

## **Local-Global Operator Refinement**

#### **Define** fold

$$\operatorname{fold}(S, K, \circ) = \begin{cases} \overline{0} & \text{if } K = \emptyset, \\ S(k) \circ \operatorname{fold}(S, K \setminus \{k\}, \circ) & \text{otherwise}, \end{cases}$$

where k is some element in K.

In PVS

- 1 fold(S: state,
- 2 K: finite\_set[agent]): **RECURSIVE** T =
- 3 IF empty?(K) THEN zero
- 4 **ELSE** S(choose(K)) o fold(S, rest(K))
- 5 ENDIF
- 6 **MEASURE** card(K)

## **Local-Global Proof Obligations**

- Would like to show that fold maintains our local global relation
- Required to prove that the definition is satisfied

 $\forall j \notin K :$ fold(S, K, \circ) \ge fold(S', K, \circ) \langle S(j) = S'(j) \leftarrow fold(S, K \curc \{j\}, \circ) \ge fold(S', K \curc \{j\}, \circ)

#### **Local-Global in PVS**

- 1 local\_global[
- 2 agent: **TYPE**,
- 3 T: **TYPE**,
- 4 f: FUNCTION[state, finite\_set[agent] -> T],
- 5 >: FUNCTION[T, T -> bool]]: THEORY BEGIN
- 6 ASSUMING
- 7 R\_transitive: **ASSUMPTION** transitive?(>)
- 8 f\_local\_global: ASSUMPTION
- 9 **FORALL** (pre, post: state,
- 10 K: finite\_set[agent],
- 11 k: agent | **NOT** member(k, K)):
- 12 f(pre, K) > f(post, K) AND pre(k) = post(k) IMPLIES
- 13 f(pre, add(k, K)) > f(post, add(k, K))
- 14 ENDASSUMING

# fold Theory in PVS

Must discharge assumption on IMPORT

- 1 fold[
- 2 agent: **TYPE**,
- 3 T: **TYPE**,
  - $\circ:$  **FUNCTION**[T, T -> T],
- 5 zero: T,
  - >: FUNCTION[T, T -> bool]
- 7 ]: THEORY BEGIN
- 8 fold(S: state, K: finite\_set[agent]): T
- 9

4

6

- 10 **IMPORTING** local\_global[agent, T, fold, >]
- 11 END fold

#### **TCCs of Local-Global**

- 1 % Assuming TCC generated (at line 57, column 12) for
- 2 % local\_global[agent, T, fold, >]
- 3 % generated from assumption local\_global.f\_local\_global
- 4 % proved complete
- 5 IMP\_local\_global\_TCC1: OBLIGATION
- 6 **FORALL** (pre, post: state, K: finite\_set[agent]):
- 7 **FORALL** (k: agent | **NOT** member(k, K)):
- 8 (fold(pre, K) > fold(post, K) AND pre(k) = post(k) IMPLIES
- 9 fold(pre, add(k, K)) > fold(post, add(k, K)));

## **Proving Local-Global**

- If (T, ◦) is a commutative monoid with identity element  $\overline{0}$ and ◦ is monotonic, then (fold, ⊵) is local-global
- A monoid is
  - $\ \, \bullet \ \, (a\circ b)\circ c=a\circ (b\circ c)$

$$\bullet \ (a \circ \overline{0} = a) \land (\overline{0} \circ a = a)$$

$$\bullet \ a, b \in \mathcal{T} \land (a \circ b) = c \implies c \in \mathcal{T}$$

Monotonicity is

## **PVS Assumptions on o**

| 1  | fold[agent: <b>TYPE</b> , T: <b>TYPE</b> , o: <b>FUNCTION</b> [T, T -> T], |
|----|----------------------------------------------------------------------------|
| 2  | zero: T, >: FUNCTION[T, T -> bool]]: THEORY BEGIN                          |
| 3  | ASSUMING                                                                   |
| 4  | <pre>zero_identity: ASSUMPTION identity?(0)(zero)</pre>                    |
| 5  | o_associative: <b>ASSUMPTION</b> associative?(o)                           |
| 6  | o_commutative: <b>ASSUMPTION</b> commutative?(o)                           |
| 7  | o_closed: ASSUMPTION closed?(o)                                            |
| 8  | o_monotonic: ASSUMPTION                                                    |
| 9  | FORALL (u, v, w: T): u > v IMPLIES u o w > v o w                           |
| 10 | ENDASSUMING                                                                |
| 11 | fold(S: state, K: finite_set[agent]): T                                    |
| 12 | <b>IMPORTING</b> local_global[agent, T, fold, >]                           |
| 13 | END fold                                                                   |
|    |                                                                            |

# **Stages of Refinement**

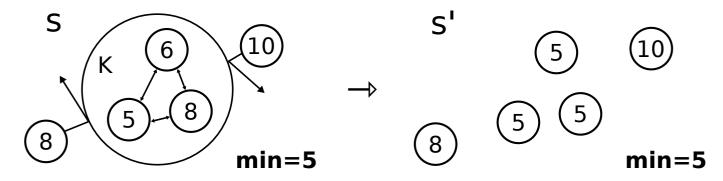


# **Example: Consensus**

- Given a distributed system with n agents
- System state is an array S where S(j) is the state of agent j
- Initial system state:  $S^0$
- Action:  $\forall k \in K : S(k) = f(S, K)$
- Desired final state:  $S^*$  where  $\forall j \in \mathcal{A} : S^*(j) = f(S^0)$ 
  - Example f's:
    - Minimum
    - Maximum
    - Greatest common divisor
    - Least common multiple
    - Convex hull
- ✓ Consider generic f's: fold, ∘

### **Theory Instantiation**

Example:  $\min \text{ consensus}$ 



**Proof obligation**: operators fit our fold assumption

#### In PVS

- Importing fold
- 1 min: THEORY
- 2 BEGIN

4

- 3 min(m, n: real): {p: real |  $p \le m$  AND  $p \le n$ } =
  - IF m > n THEN n ELSE m ENDIF
- 5 % Recall: fold[agent, T, o, zero, >]
- 6 **IMPORTING** fold[posnat, real, min, posinf, >=]
- 7 END min

#### In PVS

- Importing fold
- 1 min: THEORY
- 2 BEGIN

4

5

3 min(m, n: real): {p: real | p <= m AND p <= n} =

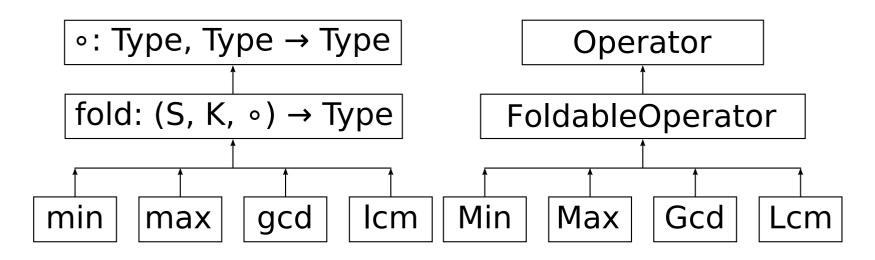
IF m > n THEN n ELSE m ENDIF

- % Recall: fold[agent, T, o, zero, >]
- 6 **IMPORTING** fold[posnat, real, min, posinf, >=]
- 7 END min
  - Enforces o assumptions (e.g. monotonicity):

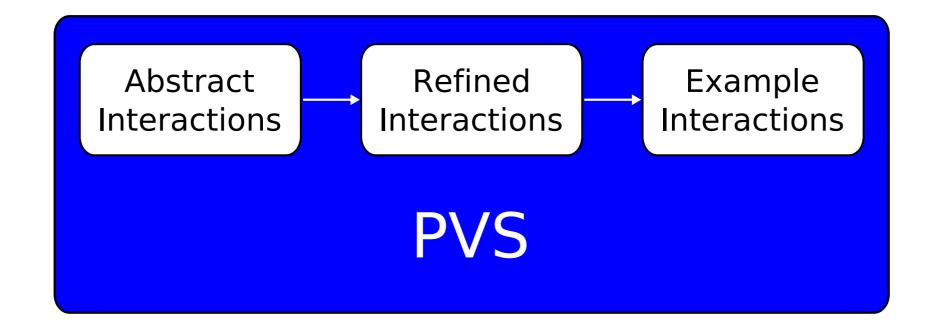
```
1 % Assuming TCC generated (at line 10, column 12) for
2 % fold[posnat, real, min, posinf, >=]
3 % generated from assumption fold.o_monotonic
4 IMP_fold_TCC5: OBLIGATION
5 FORALL (u, v, w: real): u >= v IMPLIES
6 min(u, w) >= min(v, w);
```

## Conclusion

- Steep learning curve
- Forces a focus on structure and proof details
- Modularity is rewarded
  - efficient for proving
  - efficient for implementing
- Theory hierarchy maps to Java Object hierarchy



# **Stages of Refinement**



#### http://www.infospheres.caltech.edu/muri2009

# Appendix

## **Install and Run PVS**

- Download from http://pvs.csl.sri.com/download.shtml
- Latest (4.2) pvs-4.2-ix86-Linux-allegro.tgz
- From shell run \$PVS/bin/relocate to set path
- 🗩 Run \$PVS/pvs
- Overview of the commands: M-x pvs-help (C-h p)
- M-x exit-pvs (C-x C-c)

# **Applications**

#### Examples

- Hardware verification
- Sequential and Distributed algorithms verification
- Critical real-time systems verification

# **PVS Types**

- Base and Build-in types
  - bool, int, real, nat,...
- User-defined types:
  - Keyword: TYPE or TYPE+ (non empty)
- Uninterpreted Type
  - Typel:TYPE
  - Defined equality predicate. Given two elements, whether they are the same or not
- Subtype
  - Type2:TYPE = {x:nat | x>0 }
  - **•** Type3(n:int):TYPE = { i:nat | i>=n }

# **PVS Types**

Enumeration Type

- **•** Type4:TYPE = {Type1, Type2}
- Function Type
  - **J** Type5:TYPE = [int -> int]
  - Type6:TYPE = FUNCTION [int -> int]
  - Type7:TYPE = ARRAY [int -> int]
     Type5,Type6,Type7 are equivalent
  - **•** Type8:TYPE = [int, int -> int]
- Record Types
  - Type9:TYPE = [# t1:Type1, t2:Type2 #]

#### **Declarations**

- Variable Declarations
  - n,m,p:VAR nat
- Constant Declarations
  - 🍠 k: 🛛 nat
  - sum(i,j:nat):nat
  - k:nat = 10
  - next(n):int = n+1
  - Less\_than\_10?(m):bool = m < 10
  - fact(n):RECURSIVE nat =
    IF n=0 THEN 1 ELSE n\*fact(n-1) ENDIF
    MEASURE n

#### **Declarations**

- Formula Declarations
  - transitive:

AXIOM n<m AND m<p IMPLIES n<p

• Others: CLAIM, FACT, LEMMA, PROPOSITION, THEOREM, ...

## **Expressions**

#### Boolean

- > =,/=TRUE,FALSE,AND,OR,IMPLIES,IFF
- If-then-else
  - IF cond THEN exp1 ELSE exp2 ENDIF
- Numeric
  - $0, 1, \ldots, +, *, /, -, <, >, \ldots$
- Binding (local scope for variables)
  - FORALL, EXISTS
- Records
  - l:list = (# node:=val1, nxt:=val2 #)
  - Accessors: l'node, node(l), l'nxt, nxt(l)
  - Update: 1 WITH [node:=val3,nxt:= val4]

### **Some Rules**

- Propositional Rules
  - flatten: disjunctive simplification
  - case: case splitting
  - prop: propositional simplification
- Quantifier Rules
  - skolem: skolemize a universally quantified variable
  - inst: instantiate an existentially quantified variable
- Induction rules
  - induct: invoke induction scheme

### **Some Rules**

- Rules for using definitions and lemmas
  - expand: expanding a function or type definition
  - lemma: introduce the statement of a lemma as an assumption
- Rules for simplification
  - assert, bddsimp: simplify
  - smash, grind: lift-it, rewrite, and repeatedly simplify
- Control
  - quit, postpone, undo

## **Strategies and Automation**

User-defined strategies: Saved in pvs-strategies

- (DEFSTEP strategy-name (parameters) strategy-expression documentation-string format-string )
- (try step1 step2 step3)

Applies step1 to the current goal. If step1 succeeds and generate sub-goals, then step2 is applied; otherwise step3 is applied to the current goal.

- (repeat step1)
- Examples
  - (ground)
  - (try (flatten) (propax) (split))
  - (try (try (flatten) (fail) (skolem 1 ("a" "b")))
    (postpone))

    Formal Methods and Theorem Proving Using PVS 16 September 2009 p. 52