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Abstract—We investigate diagnosability of stochastic is, whenever an observable event occurs, the sensor charged
discrete-event systems where the observation of certain event ith detecting an instance of that event will transmit its
is unreliable, that is, there are non-zero probabilities of the occurrence. In practice in nuclear systems, we cannot make

misdetection and misclassification of events based on faulty thi tion: the difficulty in placi d
sensor readings. Such sensor unreliability is unavoidable in IS assumption; the diiiculty In placing sensors and ana-

applications such as nuclear energy generation. We propose the lyzing sensor data makes sensors inherently unreliable. Fu
notions of uA- and uA A-diagnosability for stochastic automata thermore, the placement of additional equipment to improve
and demonstrate their relationship with the concepts ofd- and  the sensor reliability may degrade the overall performasice
AA-diagnosabilty defined in [1]. We extend the concept of the 1hq gystem. Recently, the problem of unreliable sensors has
stochastic diagnoser to the unreliable observation paradigm . A . - .
and find conditions for uA- and uAA-diagnosability. been gonS|dered in [8]; th? approach we take in th'S, papgr IS
complimentary to [8] and is based on the formal verification

. INTRODUCTION of diagnosability properties.

In this paper, we consider the property of diagnosability of N this paper, we consider two main categories of sensor
stochastic discrete-event systems (DES) in situationsrewhe_unre“ab'“ty: mlsclassmcanon where a sensor reports an
sensor readings are not always reliable. Our research is nigcorrect reading as a result of the occurrence of a pasicul
tivated by applications in nuclear power generation. Rubli€Vent, or misdetection where a sensor does not make a
confidence in the safety of nuclear energy generation c4fading as a result of an event's occurrence. We consider
be improved through the use of realtime safety assessméit observation paradigm in which both of these types of
and on-line detection of facility misuse. DES models havécorrect reading can occur and develop a methodology
been demonstrated to be an effective tool for modelinfPr performing diagnosis in the presence of this sensor
the flow of entities in nuclear systems for the purposes ¢fnreliability. Our paper builds upon tretochastic diagnoser
fault monitoring and anomaly detection [2]; furthermoreMethodology proposed in [1], which in turn builds upon the
the ability to track flows of entities within a system has0gical” diagnoser approach first proposed in [9].
many other applications, including network security, isigs ~ Our paper is organized as follows. In Section II, we
planning, and operations safety [3]. define the system model, the observation model, and the

The problem of failure diagnosis has been considered efailure model under consideration. In Section Ill, we prese
tensively in the literature for DES (see [4] and the refeesnc N€W definitions of stochastic diagnosability for systemtghwi
therein for an overview) and many techniques for both ordnreliable sensors. In Section IV, we discuss the con$ouct
line state estimation and diagnosis and off-line verifmatf of the stochastic diagnoser under unreliable observations
the property of diagnosability ([5], [6]) have been develdp Section V, we state conditions for stochastic diagnoggbili
In contrast to the “logical” automaton models and diagno§n terms of the stochastic diagnoser. A short discussiors end
ability results found in the above references, recent waik h the paper in Section VI.
investigated diagnosability properties in stochastic BE$
[7]). Il. FORMALISM

Most of the established literature on fault diagnosis makeg System Model
a seemingly innocuous assumption as to the capabilities of ) . .
sensors. The DES is observed through the events, or abrup{:OIIOWIng [1l, the ;ystem mode! “399' is a stochastic
transitions between states, that occur along its trajgctora“tomatog;‘A SéiChzi“C &Jtomaton ISSEileflngg as aqgidruple
Events are classified as either observable, in which cas = (X4, 224, p7%, ag”) where X°74, ¥°4, andzg®
sensor outputs a reading when the event occurs, or undije the f|n|te_state space, the set of events_, and_ the initial
servable, in which case no sensor outputs a reading. Failurgte: respectively. These three elements are identitabse

are often modeled as instances of unobservable events. M @ logical automatoq. )
The implicit assumption in this sensor model is that all the Where the stochastic automaton model differs from a log-

sensors reading observable events are perfectly relitie ical automaton is that instead of defining a partial traositi
" function§°4, we instead define a state transition probability
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To ensure that the system is live, we assume that |
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that is, the occurrence of a new transition is certain from
every state. The state transition probability function tan

extended to strings according to the equation .
SA SA SA @.1) (@.9)
p (2 es | x) = Z p° (2" e | 2)p° (2!, s | ).
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The probability of a given string occurring when the SA is
in statex is defined as
Pr(s|z) & Y p%( s | ). @)
2 EXSA Fig. 1. A stochastic automaton to be used as a running examipgesfate
) transition probabilities are denoted by paes q), where the labeling of an
The language generated by the statis arrow x; — x2 indicates thap(zz, 0 | x1) = ¢.

L(SA,x) & {s€X* :Pr(s|z) > 0}.
The language generated by the stochastic automaton q@de when an event occurs. Randomness in obse_rvation i;
LS4 2 £(SA,z54). We denote byr the string consisting Independent of randomness in the system behavior; that is,

of no events. By convention, we spt“(z, 7 | z) = 1 for the probability that a particular output symbol occurs when
all z € X54. Thus for allz € XS4, Pr(r | z) = 1 and &N events occurs is independent of the probability of the

7 € L(SA,z). Where the context is clear, we will suppress®ccurrence ob.

the superscripSA in the notation. In the context of non-deterministic mask functions, an
evento is unobservabldf M, (o) = {(¢,1)}. o is reliably
B. Observation Model observedif M,(c) = {(y,1)} for somey € A. If (¢,q) €

In this paper, we consider deterministic and non}p(c) for some0 < ¢ <1, thato is calledmisdetectable
deterministic mask functions generalized versions of the as there is a possibility that an occurrencecofwill not
projection function used in [1]. We define a set of outpuf€sult in an output. If{(y1,q1), (v2,92)} € M,(o) for
symbols A and define a deterministic mask functidd : Someyi,y>» € A and0 < ¢i,¢2 < 1, theno is called
> — (AU {e}). The symbole denotes the null output and Misclassifiable
corresponds to no signal being observed when an event takedVe will write that
place and is not an element &f. If M (o) = ¢, theno is ;
unobservableand we definez,, £ {0 € ¥ : M (o) = ¢}. Pr(My(o) =y) = {q I (y,0) € My(0) (3)
All other events ar@bservableand we define, = X\ X,,.

It is possible for two distinct observable events, o5 t0  C. Failure Model
have the same observed output, i.e. it may be Mat; ) =
M(O’Q).

The mask function can be extended to strings of events r.
cursively by definingM (1) = ¢ and M (so) = M (s)M (o).
ML‘l, the inverse mask function with respect to a languag
L, is defined as:

0 otherwise.

We define a set of failure events; C . The objective of

the failure diagnosis problem is to determine the probigbili
fat an event inX; has occurred given a sequence of
observationsy € A*. The objective of the diagnosability
Eroblem is to determine conditions under which we can
ensure that any occurrence of a failure will be detected. For
M;l(t) ={seL:M(s)=t} simplicity, we will only consider failures of one type; the
results of this paper can be extended to the situation where

The language consisting of all strings generated from stafgjjures events are divided into multiple types.
x whose only observable event is the final event is denoted pgnote byU(Sp) 2 {s € L:s=sffc X} Ifan

by event f € Xy is an element of a string, we write that
Lo(SA,x) 2 {s€ L(SA,x):s=uo,u€ i, 0€X,}. Xy €s.

uo?

If o € %,, than the set of all strings generated from state D- Example
whose only observable event is the final evens We llustrate the extensions of the stochastic diagnoser
. framework using the example given in Figure 1. We denote
Lo(SA,x) = {s € L(SA,x) s = uoyu € X, }. this automaton bysA = (X, %, p, z9) where
We also considenon-deterministianask functionsM,, : « X ={0,1,2,3}
¥ — 28U{ebx(01N0 | A non-deterministic mask function ran- o ¥ = {a,b, u, f}
domly selects an output symbol inU{c} as the observation « p, the state transition probability, as shown in Figure 1



e 2g=10 A-diagnosability is a weaker definition than logical diaghos

We associate wittS A the set of observable symbals =  ability because the first of the assertions in the definition
{a, B}. of logical diagnosability is weakened. Instead of it being
The set of events whose occurrence we wish to diagnosecessary that we be sure that a continuation of sufficient
is Xy = {f}. The probabilistic sensor majy,, is: length will diagnose a fault, we need only Bknost surg(in
a probabilistic sense) that we will make a diagnosis. Thus a
Mp(a) = {(a, 1)} system can bel-diagnosable, but not logically diagnosable,
My(b) = {(a, .1),(8,.8), (¢,.1)} while still allowing for the possibility of a false negative
Mp(u) ={(e,1)} however, in the long run, the probability of a false negative
My(f) = {(s,1)} must become zero.
) . ) The second definition of stochastic diagnosability we
The events is reliably observed: an occurrence ofwill proposed, AA-diagnosability, is again weaker thard-

always result in an output ofe. The eventsu and f are  gjagnosability as the second of the assertions in the definit
unobservable and any occurrences of these events wiltresg} |ogical diagnosability is also weakened.

in the null outpute. The eventb is both misclassifiable  pefinition 3.3: A live, prefix-closed languagd is AA-
and misdetectable. An observation @fis the most likely giagnosable with respect to a set of failudes, a determin-

outcome; however, there is probability .1 that an incorregktic opservation masRZ, and a state transition probability
sensor reading af will be observed, and there is probablhtyp if

.1 that no sensor reading at all will be made wheaccurs.
I1l. DEFINITIONS OF STOCHASTIC DIAGNOSABILITY (Ve > 0AVa <1)(3N € N)(Vs € ¥(Ef) An = N)
A. Prior Work on Diagnosability of DES {Pr(t: Do(st) =0[t € L/sA|lt] =n) <e} (8)

The starting point for this work on stochastic diagnosabilyhere the diagnosability condition functioB,, : ¥* —
ity is the definition of “logical” diagnosability proposeda i {0,1} is:

[9].

Definition 3.1: (Logical Diagnosability) A live, prefix- 1 if Prlw:Xf ew|we M HM(st)]) >«
closed languagd. is diagnosable with respect to a set ofPalst) = 0 otherwise
failures¥; and an observation mask if 9)

(3n e N)[Vs € U(Zp)](Vt € L/s)[||t] > n= D(st)=1] In AA-diagnosability, the diagnosability condition function
(4 D used in logical diagnosability andi-diagnosability is
where the diagnosability condition functidn: ©* — {0,1}  replaced byD,; using D.,, we no longer need to be exactly
is given by sure that a fault has occurred in order to consider it diagthos
) . - it is sufficient that the probability of failure be above
D(st) = 1 ifwe ML [M(st)] =Xy €w (5) the thresholdy. Thus anAA-diagnosable system will allow
0 otherwise false positives with a probability — «. The definition of
This definition makes two assertions. The first of these it thaj A-diagnosability states that if we take a continuation of
for any occurrence of a fault, any continuation following asufficient length, we can almost surely reduce the prokgibili
fault of sufficient length willsurely detect the occurrence of of false positives until it is eventually reaches zero.
a fault. The second of these it that, in order to detect the
occurrence of a fault, we must mmpletely surghat at B. Diagnosability Under Unreliable Observations

least one occurrence of the fault has occurred. For the case of a non-deterministic observation mask, there
Two definitions of stochastic diagnosability were pro-,re o sources of randomness affecting the probability of

posed in [1]. We restate the first of these definitiods, 5 particular output symbol being observed. The first is the

diagnosability, using a general deterministic mask f@rcti 3ngomness in the underlying system behavior; the second

M mste_gd of the er’JeCt'On Qperatlon. ) is the randomness introduced by the observation mask. We
_Deflnltlon 3'_2: A live, prefix-closed _IanguageL IS A propose two new definitions of stochastic diagnosability;

diagnosable with respect to a set of failubeg, a determin- anduA A-diagnosability, that are the analogsA4e and AA-

istic observation mask/, and a state transition probability izgnosability under non-deterministic observation rsask

pif Definition 3.4: A live, prefix-closed languagd. is uA-

(Ve > 0)(3N € N)(¥s € U(Z;) An > N) diagnosable with respect to a set of failurEs, a non-
! - deterministic observation mask/,, and a state transition
{Pr(t: D(st)=0|te L/sA|t]| =n) <e} (6)

probability p if
where the diagnosability condition functidn: ¥* — {0,1}
is: (Ve > 0)(3AN e N)(Vs € ¥(Xf) An > N)
{1 if we M~[M(st) = X; €w {Pr(t Ay : My(st) =y AD"(y) =0

D(st) =90 otherwise ™ |teL/sA|t]|=n)<e (10)



where the diagnosability condition functiob* : A* — The sensor output automaton’s deterministic observation

{0,1} is: mask, M 594 is:
pryy = {1 TP =9)>0=Spew ), M54 y) =y if ye Au{e}
Y7710 otherwise M3 yp) =y if yp e Ay U{es} (14)

Similarly, AA-diagnosability is extended to the case of noN—p s «
deterministic observation masks by the following defimitio
Definition 3.5: A live, prefix-closed languagé is uAA-
diagnosable with respect to a set of failurEs, a non-
deterministic observation mask/,, and a state transition

probability p if

normal” events inA U {} are observed directly,
and “faulty” events inA; U {,} appear identical to their
corresponding normal events. We 94 = {¢,e}. The
set of faulty events to be diagnosedi$°4 = A4 U{e,}.

We construct the state transition probabilitigg®4 ac-
cording to the following equations:

(VE>O/\VO&<1)(3NEN)(VSE\II(Z]0)/\RZN) pSOA(xl,y,xg): Z (pSA(l‘170'|.Z‘2)
{Pr(t Ay : My(st)=yADy(y) =0 cEE\T;
|te L/sA|t]|=n) <e} (12) x PrM74(0) =y]) if ye Au{e}, (15)
where the diagnosability condition functio@? : A* —
{0,1} is: p M (@1, yp,a0) = Z (P (a1, 0 | 22)
oEXy
Duy) =L TPrweliy cw[Myw)=y)>a x Pr(M54 (o) =y]) if ys € ApU{es}. (16)
e 0 otherwise ]
(13) Following the procedure to construct the sensor output

In these definitions, the dlagnosablllty condition funotio automaton associated with Figure 1 results in the stochasti
automaton is shown in Figure 2. The equivalence between

domain is the set of output symbols, not the underlying gtrin X > . X
as in A- and AA-diagnosability. As one string of events Fhe diagnosability properties of a stochastic automatah an

in the stochastic automaton may produce many differehtts correspopding sensor output automaton is demonstrated
strings of observable symbols, we define a diagnosis as beiftythe following theorem. _
made with respect to what is observed and not with respect hgorem L:A stochastic a.utomat.OISA subject to an
to the underlying system behavior. However, if the nonunreliable sensor mask, is A-diagnosable (orAA-
deterministic observation maski, is such that all events diagnosable) with respect i, and; if and only if its cor-
in ¥ are either reliably observable or unobservable, then tH§SPONding sensor output automaﬁ@;(l))‘s A-diagnosable
conditions foruA- and uA A-diagnosability are identical to (OF A-diagnosable) with respect t/ >~ and ;.
those forA- and A A-diagnosability. Proof: See Appendix A. u
B. Stochastic Diagnoser Construction
IV. DIAGNOSERS FORSYSTEMS WITH UNRELIABLE

OBSERVATIONS MASKS Because the diagnosability properties of a stochastic

automaton with a non-deterministic observation mask are
A. Sensor Output Automata equivalent to those of its sensor output automaton, we
fan test whether a stochastic automatonuis or uAA-

The stochastic diagnoser approach developed in [1] can b , S ,
diagnosable by constructing ttstochastic diagnoseof its

used for stochastic automata with deterministic obseymati
masks. In order to apply this approach to non-deterministie O~ . L
observation masks, we constructsansor output automa- _ 1 N€ Procedure for constructing a stochastic diagnoser
ton SOA that has a deterministic observation mask ang€scribed in[1] makes two assumptions that are untenable in
possesses the same diagnosability properties as theasrigifi'® Setting of sensor output automata. Firstly, it is assume
stochastic automaton with a non-deterministic mask. that there are no cycles of unobservable events in the
The sensor output automaton is a stochastic automataﬁ)ChaSt'c_""_Utomaton whose diagnoser é%gemg cosrésjructed
constructed fromSA, AS4, and M,,. It is defined by Secondly, itis assumed that for eacte X ", o € X7,
there is only one unique’ € X 94 such thap(z’, o | ) >
SOA £ (XS4, ASAUAFA U fe,ep},p%9% 257, 0.
When modeling a system such as a nuclear flow network,
where the constituent elements are explained below. it is likely that the resulting non-deterministic obseiwvat
The state space ofOA is identical to that ofSA and mask on the event set will have few reliably observable
the initial state is identical as well. The event set¥ A, events. Most events will have at least a small non-zero
¥4 = ASA U AF4 U {e,e5}, consists of two versions probability of being misdetected or misclassified; as altesu
of the set of output symbold*4 U {¢}: one corresponding the assumptions used in [1] will not hold. For example,
to “normal” events and another corresponding to “faulty’the system in Figure 1 is simple and has only one event,
events. b, that can be misclassified or misdetected. However, its



Fig. 2. Sensor output automaton for the system in Figure 1.

sensor output automata, shown in Figure 2, contains atefined as

unobservable cycle between states 0, 2, and 3. It also mntai(SSD N

a statexr = 2 and an eventv such that there are two states, (,5) = U U U

2/ = 2 andz’ = 3, such thatp(z/,a,z) > 0. In more (@,6)€q s€Ls (SOA,) aip(a’,s|2>0)

complex systems, these conditions are even more likely fgom this definition, it may not be possible to compute

be present in the SOA. In this paper, we present the technigée” as for somez € X594, there may be strings in

for constructing the stochastic diagnoser that does noimeq £ (SOA, z) of arbitrarily large length. However, any string

these assumptions. in L,(SOA,z) containing more thar X 94| events will
We first define a pair of failure label¥ and . The label contain cycles, and there will exists a string with no more

N denotes that no failure event B, had occurred; the than | XSC4| events that transitions the diagnoser to the

label F denotes that there has been at least one occurrertd"€ co_mponDer.{h:,é).

of an event in;. The change in the labels as the system 10 defines™” in the presence of unobservable cycles, we

evolves is described by tHabel propagation functiorL.p : ~ thus first define

SOAx
N, F} > % LT(SOA,z) 2 {s € Lo(SOA,z) : [u] < [|XSOA||},

(z', LP(¢,5s)).

N if (=N and>; ¢ s and use the following equivalent expression §61°:
LP(¢,s) = i sp ,
F  otherwise. %P (g,s)= | U U @, LP,s)).
(z,0)€q s€ELL (SOA,x) x’:p(z’,s|z>0)

A stochastic diagnoser  SD = The major change between the procedure used to construct
(Q3P, 55D §5D ¢5D o5D ¢SP)  associated with a the stochastic diagnoser in [1] and the procedure necessary
sensor output automatd$i0 A consists of six elements: here is in the construction ab“P.

HV SD ; § . SD SD
. Q5D C 2XX{N.F} s the set of diagnoser logical Each matrix in® is defined ash : Q°~ x X —
elements [0,1]
o 250 = ASO4 s the event set ®,i(q,0) =
. iy ij(q,0) = p(j,s|z;)  (17)
o §5D : Q%P x 5P — Q5P is the state transition ! seLU(SOA,a%;LP(&,s)—& ’
function .

e 450 = {(z0, N)} is the initial logical element where .the range./\/l[oﬁl] represents the set pf fm'|te-

« ®5D is the set of probability transition matrices dimensional matrices whose values are contained in the

« 5P = [1] is the initial probability vector interval [0,1]. The size of the matrix outputted b¥(q, o)

is |lq|l x [16°P(q,0)|. If an event transitionsSD from a

The first four element$Q°", 552, 9P, ¢57) are still ex- |ogical element withm components to a logical element
actly the “logical” diagnoser described in [9]. Each lodicawith n components, the size of the matrix associated with
elemenyy € Q" is alist ofcomponentswhere each compo- that event will bem x n. Each elementd,; (¢, o) denotes
nent is of the form(z, ¢), wherex € X594 and¢ € {N,F}.  the probability of the system transitioning from thith
A set of component§(zy, £1), (72, £2), ..., (zn, £n)} iSCEr-  component of diagnoser stateto the jth component of
tainif ¢, = ¢, =--- = £,. The components in each logical diagnoser staté“” (¢, o) along the transitior.
element need to be placed into a particular order; this order Determining®;;(q, o) involves calculating the sum of the
can be chosen arbitrarily. probabilities of strings in the languade, (SOA, x;), which

The construction 06°” is modified to take into account may contain an arbitrarily large number of strings due to the
the relaxed assumptions. The state transition function Eesence of unobservable cycles. This sum can be determined
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by finding the absorption probabilities of an appropriatelyhereP ,, ., denotes the one step transition probability from
constructed Markov chain. statez; to statez, in PS94 and7 denotes the set of transient
. . . . states in the Markov chain [10].

C. Con.structlon qf Probability Transition Matrices | The absorption probabilities of recurrent statesPiROA

In this subsection, we construct a Markov chain whosgre the values of the elements of the probability transition
absorption probabilities are equal to the valuesdigf(¢, o)  matricesP that are necessary to complete the construction of
defined in Equation 17. Lef : X°“* — {1,2,...,N,} be  the stochastic diagnoser, as shown in the following theorem
a bijective function that assigns a unique index in the set Thegrem 2:Let (24, £;) be theith component of € Q5P
{1...N,} to each state inY94, where N, = [ X94||. ang let (x,,¢;) be the jth component ofs5?(q,s). The
For eaché € AU {e}, define a matrixQ(d) according to  corresponding element of the probability transition meatri

Qij(8) £ p(F1(7), 0| £710)). Pij(e0) 1s
Similarly define for eactd € Ay U {e} Dij(q,0) = Pr(a bi,e)(P(x),45,0)). (21)
o . 4 Proof: See Appendix B. |
Qij(07) = p(f7(5), 05 [ 7 (0))- To find every possible element of every matrix@i”, we
For eachd, We combineQ;;(5) and Q;; () to yield need to find the absorption probability of any recurrentestat
h(z,¢,5) given thatP°%4 is in any transient state(z, ¢, ¢).
Q((g) _ | Q@) Q(d5) (18) We accomplish this by rewriting Equation 20 in matrix form,

- O, xn, Q(6) +Q(0y)

-1 A -1 A —1
Using the matrice€)(5), we define the one-step observa- Rlg™ (m)) = Qlg™ (m) + Qe)R{g™"(m)),  (22)
tion matrix as follows. and solving this system of linear equations. The elements of
Definition 4.1: Let g : AS?4 U {e} — {0... Ny} be any  the probability transition matrices are thép; (¢, g~ (m)) =
bijective function whergy(0) = ¢ that assigns a unique index R (g~ (m))
to each symbol im\*°4, whenN, = ||AS©4||.Theone-step
observation matrixassociated wittfO A is D. Example

psoOA & Q(e) Qg (1)) Q(g_l(Nd))J For the example in Figure 2254 U {¢} = {¢,a, 3} and
)

h(a:i,éi7e),h(zj,€j ,5) -

02N, N, x2N, Lon,n, let f(x) =z + 1 for all » € X594 = {0,1,2,3}. The six

) Q matrices associated withO A are:
Each state ilP°©4 corresponds to a componefat, ¢) and

an events. This correspondence is captured by the function 0 0 5 0 0 0 5 0

h:X x {N,F} x 504 1,2...,(Ng+1)N; 000 0 00 0 0
e -4 (ot DR Q=10 0 o 01| QWI=1o 0 0 of
h(z,£,8) = 2Nsg(8) + f(z) + Ns1p(£), 1 0 0 0 00 0 0

where 1z(¢) = 1if ¢ = F and 0 if¢ = N. PS04

contains2N, transient states an@N,N, recurrent states. 0 0 0 0

The transient states are given by, ¢, ) for all (x, ¢); for Q(a) = 0 1.0 0 ,Qas) = Oana,

any d € A, h(z,¢,9) is a recurrent state regardless of the 0 0 .9 .01

values ofz and /. 10 0 0

By construction, each recurrent state is also an absorbing

state as the Markov chain remains in any recurrent state it 000 0

enters with probability one. To find the absorption prokigbil Q(B) = 000 0 L Q(Bf) = 04

of a statezy in P°94, given that the chain is currently % 8 8 0-88

instatezr, we must solve the equation

pan(zr) = Popn + P.,.p:n(2), (20) Set g(a) =1 and g(5) = 2. The one-step.transition
o o z; e matrix PS94 is constructed according to Equations 18 and
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Fig. 3. Stochastic diagnoser under unreliable sensor agafign for the system in Figure 1. Recurrent componentsratieated by boldface.
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The absorption probabilities foP°“4 can be found be

a recurrent state of that Markov chain. These conditions
are immediately applicable to this paper because the final
result of our construction is also a stochastic diagnodee. T
theorems are stated below without proof.

Theorem 3:A languageL generated by arbOA is A-
diagnosable with respect to a set of failurEs and an

solving the systems of linear equations defined in Equatig?Pservation masR/ if, and only if, every logical element of
22, yieldingR(a) and R() shown at the top of this page. its associated stochastic diagno§ép containing a recurrent
The first four rows inR(«) are the absorption probabilities COmponent bearing the labél is certain. u
corresponding to the case when the label of the componentTheorem 4:A languageL generated by asOA is AA-
in d(q, ) is N, and the last four rows correspond to the casgiagnosable with respect to a set of failubesand an obser-

when that label isF. If the ith component ofy ¢ Q°P is
(z1,¢) and thejth component ob(q, «) is (z2, ¢), then the
corresponding value of the probability transition matsx i

(I)Z_] (Qa OZ)

Using the probabilities inR(«) and R(3), we can now
construct the set of probability transition matricésand
complete the construction of the stochastic diagnoseovoll

= Rif(a)) 4 No1p(01) . f(22)+ NaLp (£2) (@)

vation maska/ if, in every logical element in its associated
stochastic diagnose¥ D, the set of recurrent components is
certain. ]

Combining these results with Theorem 1 vyields the fol-
lowing results.

Theorem 5:A languageL generated by arbA is uA-
diagnosable with respect to a set of failurEs and an
observation masR/, if, and only if, in every logical element

ing the procedure described in Section IV-B. The complete®f 5D, the stochastic diagnoser constructed from the sensor
stochastic diagnoser under unreliable observations i&rsho Output automaton o' A, that contains a recurrent component

in Figure 3.

V. CONDITIONS FORuA- AND ©AA-DIAGNOSABILITY

Necessary and sufficient conditions fdrdiagnosability
and sufficient conditions for A-diagnosability in terms of
the stochastic diagnoser were derived in [1]. These camditi
depend on the concept of thecurrent componenA compo-
nent(x, ¢) in a logical element € QP is called recurrent

bearing the label is certain. |
Theorem 6:A languagel generated by av' A is uAA-
diagnosable with respect to a set of failurBs and an
observation mask/, if, and only if, in every logical element
of SD, the stochastic diagnoser constructed from the sensor
output automaton ob A, the set of recurrent components is
certain. ]
The stochastic diagnoser in Figure 3 has a logical element

if, in a Markov chain constructed using the set of probapilit {0F, 1N, 1F,2F,3F'} that contains a pair of recurrent com-

transition matrices®, the pair (¢, (x,¢)) corresponds to

ponents{1N, 1F'} with inconsistent labels. Thus this logical



element is not certain, and thus the stochastic automat@eneketzis and S. Lafortune, Department of EECS, Univer-
shown in Figure 1 is not A-diagnosable. Furthermore, sincesity of Michigan, for their support while part of this reselar
the pair of recurrent components is not certain, the stachaswas being completed.

automaton is also natA A-diagnosable.

VI. DISCUSSION

In this paper, we extend the notion of stochastic diag-
nosability to DES with unreliable observation masks. We[2]
demonstrate that a system with an unreliable observation
mask can be transformed into a system with equivalent

diagnosability properties that has a deterministic oletera

mask. We then extend the stochastic diagnoser approach to

find conditions for diagnosability of stochastic automattow
unreliable observations.

The conditions for stochastic diagnosability discussed i
this paper require near certainty of a correct diagnosisgoei
made in the long term. However, in certain applicationss it i

possible to tolerate a small probability of making an ineotr

diagnosis in the long term. Our future work involves weak-

ening the notions ofiA- and uA A-diagnosability proposed

in this paper so as to determine if systems have the desired
property of making correct diagnoses in the long run with a
sufficiently high degree of confidence that need not be neas]

certainty.
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