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Abstract—In this paper we use partially ordered sets (posets)
to study decentralized control problems arising in different
settings. We show that time delayed systems with certain delay
structure enables one to endow the problem with poset structure
thereby allowing convex reparametrization of the problem. We
show how to extend these results to spatially invariant systems.
We also study the connection between posets and quadratic
invariance and show that in some settings they are equivalent.

I. I

Traditional control theory deals with the problem of syn-
thesizing centralized controllers, i.e. controllers that assume
that all output measurements are available for processing.
Many modern control problems however, are large-scale,
complex, and decentralized. For such problems, implement-
ing centralized controllers is not feasible, and the study of
decentralized decision-making becomes important. Examples
of such large-scale systems include flocks of aerial vehicles
and the power distribution grid.
It is well-known that in general decentralized control is

a hard problem [16]. Blondel and Tsitsiklis [2] have shown
that certain instances of such problems are in fact intractable.
On the other hand, Voulgaris [14], [15] presented several
cases where decentralized control is tractable. In a previous
paper [8], the authors were able to generalize these results
in an appealing framework using partially ordered sets. This
paper includes extensions of that work to other settings.
Rotkowitz and Lall [12] have presented a criterion known as
quadratic invariance that characterizes a class of problems
in decentralized control that have the property that problems
become convex in the Youla parameter. Our results are
related to this property and we show the connection to their
work in our paper. We also show how some preexisting
results on quadratic invariance of networked systems with
time delays can be interpreted as results about underlying
partially ordered sets.
In a previous paper [8], we developed a framework for

decentralized control problems using posets. We argued that
posets provide the right language and technical tools to talk
about a more general notion of causality (also referred to
as hierarchical control in the literature) among subsystems.
Associated to the notion of a poset (which is a combinatorial
object) is the notion of an incidence algebra [10], an alge-
braic object. This algebraic structure allowed us to convexify
the problem. We showed that some interesting examples of
decentralized control that had been shown to be tractable
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in the literature were in fact specific instances of this poset
paradigm. In this paper, we extend this poset framework to
other cases, for instance systems with time delays.
The main contributions of this paper are the following:
1) We study systems with time delays. It had been
shown in a previous paper [6], that subject to certain
conditions on the delays between subsytems (namely
subadditivity), the resulting problem was quadratically
invariant (and thus amenable to convex optimization).
We show that there is a natural poset associated with
systems with time delays with this subadditivity prop-
erty, and that the computational tractability is simply
an algebraic consequence of this underlying poset.

2) We mention an extension of the preceding to spatially
distributed systems. It was shown by Bamieh that spa-
tially invariant systems with a “funnel causal” impulse
response was amenable to convex optimization. Using
the same poset approach, we are able to generalize the
funnel causality condition.

3) We study the relationship between posets and quadratic
invariance. We show that quadratic invariance can be
naturally interpreted as a transitivity property, and
that under certain natural settings, poset structures
and quadratic invariance are exactly equivalent. We
introduce the notion of a quoset, which is a poset
modulo an equivalence relation. We show that un-
der similar but somewhat more general conditions,
quadratic invariance is equivalent to quosets.

Posets are very well-studied objects in combinatorics. The as-
sociated notion of incidence algebras and Galois connections
were first studied by Rota [10] in a combinatorics setting.
Since then, these ideas have been used in engineering and
computer science (see [8] and the references therein).
The rest of this paper is organized as follows. In Sec-

tion II we introduce the order-theoretic and control theoretic
preliminaries that will be used throughout the paper. We also
review some of our past results in this section. In Section III
we study systems with time delays. In Section IV we
study an extension of the results of Section III to spatially
invariant systems. In Section V, we study the connection
between quadratic invariance and posets/incidence algebras.
In Section VI we conclude our paper.

II. P
A. Order-theoretic Preliminaries

Definition 1: A partially ordered set (or poset) P =
(P,!) consists of a set P along with a binary relation !
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which has the following properties:
1) a ! a (reflexivity),
2) a ! b and b ! a implies a = b (antisymmetry),
3) a ! b and b ! c implies a ! c (transitivity).

Posets may be finite or infinite, depending upon the cardi-
nality of the underlying set P.
Example 1: An example of a poset with three elements

(i.e., P = {a, b, c}) with order relations a ! b and a ! c is
shown in Figure 1.

cb

a
Fig. 1. A poset on the set {1, 2, 3}.

Definition 2: Let P be a poset. Let Q be a ring. The
set of all functions

f : P × P→ Q

with the property that f (x, y) = 0 if x ! y is called the
incidence algebra of P over Q. It is denoted by IP(Q). If
the ring is clear from the context, we will simply denote this
by IP (we will usually work over the field of rational proper
transfer functions, or related extended spaces).
When the poset P is finite, the set of functions in the
incidence algebra may be thought of as matrices with a
specific sparsity pattern given by the order relations of the
poset.

Definition 3: Let P be a poset. The function ζ(P) ∈
IP(Q) defined by

ζ(P)(x, y) =
{

0, if x ! y
1, otherwise

is called the zeta-function of P.
Clearly, the zeta-function of the poset is an element of the
incidence algebra.
Example 2: The matrix representation of the zeta function

for the poset from Example 1 is as follows:

ζP =





















1 1 1
0 1 0
0 0 1





















The incidence algebra is the set of all matrices in Q3×3 which
have the same sparsity pattern as its zeta function.
Given two functions f , g ∈ IP(Q), their sum f + g and scalar
multiplication c f are defined as usual. The product h = f · g
is defined as follows:

h(x, y) =
∑

z∈P

f (x, z)g(z, y). (1)

As mentioned above, we will frequently think of the func-
tions in the incidence algebra of a poset as square matrices
(of appropriate dimensions) inheriting a sparsity pattern
dictated by the poset. The above definition of function
multiplication is made so that it is consistent with standard
matrix multiplication.

Theorem 1: Let P be a poset. Under the usual definition
of addition, and multiplication as defined in (1) the incidence
algebra is an associative algebra (i.e. it is closed under
addition, scalar multiplication and function multiplication).

Proof: Closure under addition and scalar multiplication
is obvious. Let f , g ∈ IP, and consider elements x, y such that
x ! y. If x ! y, there cannot exist a z such that x ! z ! y.
Hence, in the above sum, either f (x, z) = 0 or g(z, y) = 0 for
every z, and thus h(x, y) = 0.
A standard corollary of this theorem is the following.
Corollary 1: Suppose A ∈ IP is invertible. Then A−1 ∈ IP.

In some situations, we will be dealing with two different
posets whose order relations are closely related to one
another (for example if one poset is a subset of another
poset). One natural way of modeling such a situation is using
the notion of Galois connections.

Definition 4: Let P = (P,!) and Q = (Q,&) be finite
posets. A pair of maps (φ,ψ) where φ : P → Q and ψ :
Q→ P is said to form a Galois connection if it satisfies the
following property:

q & φ(p)⇔ ψ(q) ! p for all p ∈ P and q ∈ Q.

Figure 2 shows two posets P and Q related by a Galois
connection. Note that poset Q is isomorphic to the subposet
of P with the elements {1, 3}.

32

1

P
b

a

Q

Fig. 2. Posets P and Q with a pair of maps that form a Galois connection.

B. Control-theoretic Preliminaries
In this paper we are interested in decentralized structures

on linear time invariant systems. We will not particularly
emphasize the continuous or discrete time cases as our results
apply equally well to both the settings. We will consider
systems with the following description: u ∈ Rnu is the control
input, y ∈ Rny is the plant output, w ∈ Rnw is the exogenous
input, z ∈ Rnz is the system output. We will be interested in
representing our systems via transfer function matrices as

P(ω) =
[

P11(ω) P12(ω)
P21(ω) P22(ω)

]

,

where P(ω) ∈ C(nw+nu)×(nz+ny) is the overall system transfer
function. Through the rest of this paper, we abbreviate
notation and define P22 = G. Furthermore, in several cases
we will assume that system G has an equal number of inputs
and outputs (i.e. nu = ny). In these cases, we will think of
G being composed of several subsystems, each subsystem
having one input and one output. While dealing with finite
dimensional LTI systems the signal and operator spaces will
be the standard ones. In some sections we will be dealing
with systems with time-delays, in these cases the systems
are no longer finite-dimensional, and the relevant spaces will
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need to be appropriately extended (see [6], [7], [12]). Given
a controller K ∈ Rny×nup , the closed-loop system has transfer
function:

f (P,K) = P11 + P12K(I −GK)−1P21.

We are interested in optimal controller-synthesis problems of
the form:

minimize ‖ f (P,K) ‖
subject to K stabilizes P

K ∈ S ,
(2)

where S is some subspace of the space of controllers. In this
paper, ‖ · ‖ is any norm on Rnz×nwp , chosen to appropriately
capture the performance of the closed-loop system. In this
paper S will represent different constraints on the controller
K (for example sparsity, or delay bounds). It may be noted
that for general P and S there is no known technique for
solving problem (2).
Problem (2) as presented is a nonconvex problem in K. If

the subspace constraint K ∈ S were not present, then several
techniques exist for solving the problem [4]. One approach
towards a solution to the problem is to write an explicit
parameterization of all stabilizing controllers for the prob-
lem. It is desirable to have the closed-loop transfer function
be an affine function in the parameter, so that the problem
becomes convex. There are different approaches to perform
the parametrization, for example the Youla parametrization
[12] and the so-called R-parametrization [8].
Rotkowitz and Lall presented a notion called quadratic in-
variance which gives a sufficient condition for reparametriz-
ing a decentralized control problem in a way that is convex
in the Youla parameter [12]. On a related note, Shah and
Parrilo showed that problems with an underlying poset
structure were also amenable to convex reparametrization
using the R-parametrization [8], [9]. (It turns out that such
problems are in fact quadratically invariant, and thus the
Youla parametrization approach may be taken, though there
are certain disadvantages to it [8].)

Definition 5: Given a system G and a subspace of
constraints for the controller S , it is said to be quadratically
invariant with respect to G if for all K ∈ S , KGK ∈ S .

Remark Note that if one has an associative algebra of
matrices I, and if the plant G ∈ I and the controller
constraint subspace S = I then due to the algebraic structure,
KGK ∈ S trivially, hence the problem is quadratically
invariant.

In the rest of this paper, we will not emphasize this aspect
of reparametrization/convexification. The main thrust of the
paper is to show how posets, when chosen with insight,
give nice classes of problems which are amenable to convex
reparametrization.

C. Review of Earlier Work
In this section we briefly review how the authors used

posets to study a class of decentralized control problems
[8]. Decentralized systems are composed by interconnecting

several subsystems. Each subsystem is assumed to be linear
and time invariant. Consider an input-output framework
where each subsystem is given as a transfer function matrix
G. If G ∈ Rn×np , the system is composed of n subsystems.
Subsystem i consists of input i and output i (the transfer
function between which is Gii). In addition, input i can also
affect another subsystem (say subsystem j) in which case
Gi j(ω) ! 0 for almost all ω. As in [12], we would like to
consider communication constraints between the subsystems
being modeled as sparsity constraints on the matrix G(ω).
To this end we define some notation.
Suppose we have a collection of subsystems that are

interconnected in a way that is consistent with the partial
order structure of a poset P = ({1, . . . , n},!). The partial
order represents the communication structure in the plant as
follows:

Definition 6: The plant G ∈ Rn×np is said to be
communication-constrained by poset P if whenever j ! i,
subsystem i does not communicate information to subsystem
j (i.e. Gji(ω) = 0).
This definition formalizes the notion of information-richness
that we mentioned in the previous section, i.e. that j ! i
implies that j has access to more information that i since
Gji ! 0.
In [8] we first studied the case where the controller K must
mirror the communication constraints of the plant, i.e. if i ! j
then Ki j(ω) = 0 (i.e K must also lie in the incidence algebra
of P). Since G is given to be in the incidence algebra and
the task at hand is to design a K in the incidence algebra, the
algebraic structure guarantees that KGK is in the incidence
algebra, this giving quadratic invariance and the associated
convexity guarantees. Some examples are shown in Figure
3.

3 6

5

4

2 1

(a)

5

4 3 2

1

(b)

7 8

6

4 5

3

1 2
(c)

Fig. 3. Examples of other poset communication structures: (a) A multichain
(b) A lattice (c) A directed acyclic graph.

In some cases we may be interested in problems where
the number of inputs and outputs are different, and there is
no natural subsystem interpretation. In this setup we model
the decentralization constraints using Galois connections.
We impose a poset structure on the inputs and a different
poset structure on the outputs and express communication
constraints (i.e. whether input i can communicate with output
j in the plant) using the maps between the posets. It turns
out that if these maps form a Galois connection then the
problem is quadratically invariant [8].

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 48th IEEE Conference on Decision and Control.
Received March 6, 2009.



III. S  T D

In this section we consider LTI systems with time delays.
Given a decentralized plant with communication delays
between the different subsystems, we consider the task
of designing controllers for the subsystems which interact
according to a similar delay structure. It has been known
[6], [7] that such communication structures are amenable to
convex reparametrization due to their quadratic invariance.
In this section we show that posets arise naturally in this
setup, that they describe the communication constraints in
an intuitive way, and the partial order structure results in
convexity.
Consider a system with n subsystems (let N = {1, . . . , n}).
Let the system be described by the transfer function matrix
G where Gi j(ω) describes the frequency response between
input of system j and output of system i. An equivalent way
to describe the plant is to specify the impulse responses gi j(t).
Define the delay between the subsystems i and j (denoted
by Di j) as follows (see Figure 4):

Di j = sup
{

τ : gi j(t) = 0 for all t ≤ τ
}

.

Note that since all systems are assumed to be causal, the
delays Di j are nonnegative.

t

hij(t)

Dij

Fig. 4. Impulse response hi j(t) along with the associated delay Di j.

We define a relation ! on N × R as follows.
Definition 7: We say that ( j, t1) ! (i, t2) if

t2 − t1 ≥ Di j.

Since the systems we are dealing with are time invariant,
what this condition means intuitively is that ( j, t1) ! (i, t2) if
system i at time t2 is in the cone of influence of an impulse
applied at system j at time t1. We show next that if the delays
satisfy a triangle inequality then the relation ! described in
Definition 7 is a partial order relation.

Proposition 1: Suppose Dii = 0 (i.e. effect of input on
output within same subsystems is without delay), Di j > 0
(there is nonzero delay between distinct subsystems) and the
Di j are subadditive, i.e.

Di j + Djk ≥ Dik, (3)

for all i, j, k distinct. Then ! is a partial order relation.
Proof: Since Dii = 0, by definition (i, t1) ! (i, t1). If

(i, t1) ! ( j, t2) and ( j, t2) ! (i, t1)) then t1−t2 ≥ 0 and t2−t1 ≥ 0
(since delays are nonnegative), thus by definition t1 = t2.
Since Di j > 0 for i ! j it must be the case that i = j giving
anti-symmetry. If (i, t1) ! ( j, t2) and ( j, t2) ! (k, t3), we have
t1 ≤ t2 ≤ t3. Further, t2 − t1 ≥ Dji and t3 − t2 ≥ Dk j. By (3),

t3 − t1 ≥ Dji + Dk j ≥ Dki and hence (i, t1) ! (k, t3), verifying
transitivity.
Note that this triangle inequality structure on the delays is
exactly the condition that appears in [6]. What is interesting
here is that these delays actually give rise to a natural poset
structure, as we have just pointed out (the poset is determined
purely by the delays, the actual functional form of the
impulse response does not matter). Furthermore, the set of
impulse responses gi j(t) which satisfy this delay structure
actually forms an algebra of functions under convolution, as
the next proposition shows.

Definition 8: Let Ψ =
{

Di j
}

1≤i, j≤n
be a given set of

delays. Let IΨ denote the set of (matrix) impulse responses
G(t) with the property that gi j(t) = 0 if ( j, 0) ! (i, t).
Intuitively gi j(t) = 0 means that the effect of an impulse
at time t = 0 at subsystem j has not reached the output
of subsystem i at time t. Thus IΨ is precisely the set of
systems which obeys the delay structure prescribed by Ψ.
Given a set of impulse responses F =

{

fi j(t)
}

and G =
{

gi j(t)
}

define F ∗ G to be the matrix of impulse responses with
(F ∗G)i j(t) =

∑n
k=1 fik ∗ gk j(t).

Proposition 2: Given a set of delays Ψ which satisfy
the conditions of Proposition 1. If F =

{

fi j(t)
}

,G =
{

gi j(t)
}

such that F,G ∈ IΨ for 1 ≤ i, j ≤ n, then F ∗G ∈ IΨ.
Proof: Suppose ( j, 0) ! (i, t). It suffices to show that

(F ∗G)i j(t) = 0. Now,

(F ∗G)i j(t) =
n
∑

k=1

∫

R+

fik(t − τ)gk j(τ)dτ.

If (F ∗ G)i j(t) ! 0 then there must be some k, τ such that
gk j(τ) ! 0 and fik(t− τ) ! 0. This in turn means that τ ≥ Dk j
and t − τ ≥ Dik. Thus ( j, 0) ! (k, τ) and (k, τ) ! (i, t). By
transitivity, ( j, 0) ! (i, t), contrary to our assumption.
Since the impulse responses form a convolutional algebra,
the transfer function matrices F(ω) and G(ω) form a mul-
tiplicative algebra and are thus quadratically invariant. This
allows us to conclude the following proposition.

Proposition 3: Given a set of delay constraintsΨ which
satisfy the conditions of Proposition 1. Given a plant G ∈ IΨ
with the same delay constraints, the problem of finding a
controller K ∈ IΨ is quadratically invariant.
A natural question to ask is: “What happens when the plant
and controller delays are not the same? In particular, what
if G " IΨ?” It turns out that even in the case when (i) the
delays in G are longer (or equal to) than those allowed in K
and (ii) do not necessarily satisfy the triangle inequality, the
problem is quadratically invariant. In other words, a triangle
inequality structure is not required on the delays in G. As
long as the delays in G are greater than or equal to the
delays in K and the delay constraints on the controller K
obey a poset structure, the problem remains quadratically
invariant [6]. The proof is a straightforward adaptation of
the proof of Proposition 2. Let the delays in the the plant be
Ri j. Assume that Ri j ≥ Di j (notice that we do not need to
assume transitivity of the Ri j, though we continue to assume
the poset structure on the Di j). We show that if ( j, 0) ! (i, t)
then (k ∗ g ∗ k)i j(t) = 0.

(k ∗ g ∗ k)i j(t) =
∑n
l=1
∑n

m=1

∫

R+

∫

R+
kil(t − τ2)glm(τ2 − τ1)kl j(τ1)dτ1dτ2
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Suppose ( j, 0) ! (i, t) but (k ∗ g ∗ k)i j(t) ! 0. Then
kil(t − τ2) ! 0, glm(τ2 − τ1) ! 0, and km j(τ2) ! 0 for some
l,m, τ1, τ2. Then (l, τ2) ! (i, t), ( j, 0) ! (m, τ1). Also, since
glm(τ2 − τ1) ! 0, τ2 − τ1 ≥ Rlm. But Rlm ≥ Dlm. Thus
τ2 − τ1 ≥ Dlm, i.e. (m, τ1) ! (l, τ2). Using transitivity, we get
( j, 0) ! (i, t), giving a contradiction.

Example 3: Consider the example of a decentralized con-
trol system shown in Figure 6. This system has a plant
with three subsystems (G1,G2 and G3) and corresponding
controllers K1, K2 and K3. The figure shows the delays on
the arrows. For example the delay between G1 and G2 is
3 time units. Note that the arrow from G1 to G3 is one-
directional, meaning that G3 is not allowed to communicate
with G1 (i.e. D13 the delay between 3 and 1 is infinite).
Notice that the delays on the controller side satisfy the
triangle inequality and that for all i, j, the delays between
Gi and Gj are larger than those asked between Ki and Kj.
Thus the incidence algebra results apply, and the described
problem is quadratically invariant.

G1

G2 G3

K1

K2 K3

3 4

2 3

4

Fig. 5. Decentralized system (3 subsystems) with time delays in the plant
and specified delay constraints in the controller.

IV. S I S
It is possible to extend the results of the preceding

subsection to a class of infinite dimensional systems that
are spatially distributed [9]. These results were proposed
in [9] by these authors. Similar results were independently
and simultaneously developed by Rotkowitz et. al. in [3].
These results generalized in multiple directions the previous
results of Bamieh and Voulgaris [13]. We briefly review our
results in this subsection, since they nicely complement the
preceding results.
We consider systems that evolve along spatial coordinates
(x ∈ X) as well as temporal coordinates (t ∈ T ). (Though in
general we can work with systems which evolve on locally
compact abelian groups, to fix ideas, we will think of the
underlying spaces as being real valued.) Much like temporal
invariance, we say that a system is spatio-temporally invari-
ant if the effect of an impulse at spatial coordinate x1 at time
t1 at another location x2 at time t2 depends only on x2 − x1
and t2 − t1. Such systems may be specified by their spatio-
temporal impulse response h(x, t). This function describes the
response of the system at location (x, t) under the influence

of an impulse at (0, 0). Given a system h(x, t) one defines
the support function f (x) as follows:

f (x) = sup {τ|h(x, t) = 0 for all t < τ} . (4)

The support function evaluated at x tells one the delay
involved in the effect of an impulse at the origin to reach
x. For example, if the system under consideration were a
wave, then the support function would be exactly the light
cone centered at the origin.
Bamieh and Voulgaris [13] considered spatially invariant sys-
tems with impulse responses whose support functions were
concave (they called such functions “funnel causal”). They
showed that such impulse responses were convolutionally
closed i.e., if h(x, t) and g(x, t) are two systems with support
function f (x), then their convolution

(h ∗ g)(x, t) =
∫

R

∫

R+

h(x − ξ, t − τ)g(ξ, τ)dτdξ

is also supported on f (x). As a consequence of this closure
property, the set of spatially invariant controllers with the
specified support function f (x) can be reparametrized as a
convex set in the Youla domain.
Their result depends on two key assumptions:

• The spatial coordinates have to be one-dimensional,
• The support function must be concave.

Using our poset framework we are able to generalize these
results. It turns out that the key property is subadditivity
(i.e. f (x1 + x2) ≤ f (x1) + f (x2)) of the support function.
(Note that in the previous section, we assumed that the delays
satisfy the triangle inequality. Subadditivity of the support
functions is the natural generalization to this case.) If the
support functions involved satisfy sub-additivity then it is
possible to endow X×T with a natural poset structure. Define
a relation ! on X × T as follows. Let (x1, t1) ! (x2, t2) if:

t2 − t1 ≥ f (x2 − x1). (5)

Notice the similarity between inequality (5) and Definition
7. Both inequalities say that t2− t1 should be greater than the
delay between the subsystems, thus making (5) the natural
extension of the poset definition to the spatial invariance case.

Proposition 4: [9, Proposition 1] Suppose the support
function is such that f (0) = 0, f (x) > 0 for x ! 0 and
subadditive. Then ! is a partial order relation.

Under these assumptions on the support function, the impulse
responses form a convolutional algebra, the usual Youla
parametrizations are employed, and convexification follows.
Our results hold for multi dimensional spatial coordinates
(for example, norms are examples of subadditive support
functions in higher dimensions). More interestingly, subaddi-
tive support functions are a strictly larger class of functions
that contain concave functions as special cases [9]. Figure 6
shows an example of a subadditive support function that is
not concave. For further details, we encourage the reader to
read [9].
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1 + ε1-1-1-ε

1

1-ε

x

t

f(x)

Support of impulse response h(x, t)

Fig. 6. Support of impulse response.

V. C     
 

In this section we want to study the connection between
quadratic invariance and posets. We have seen that poset
structure implies that the problem is quadratically invari-
ant. We are now interested in understanding the converse,
i.e. “does quadratic invariance imply existence of poset-
like structure?” Quadratic invariance is really a transitivity
property. As argued earlier, posets provide the right language
to describe transitive relations. In what follows, we make this
connection more concrete. Connections between quadratic
invariance and partially nested structures as defined in a
team-theoretic setting by Ho and Chu [5] have been studied
and pointed out by Rotkowitz [11]. The team theoretic prob-
lem considers a scenario where there are multiple decision
makers who must each make a decision in some order. The
paper considers a scenario where the order in which decisions
are made satisfy certain precedence relations. (Though this
terminology is not used in these papers, these precedence
relations are in fact closely related to partial order rela-
tions.) The paper by Ho [5] shows that problems with this
precedence structure (called partially nested problems) are
amenable to convex optimization, and moreover, that optimal
controllers are linear. Rotkowitz shows that existence of these
precedence relations is equivalent to quadratic invariance.
Our results are similar in spirit but differ in that they are
not restricted to this team-theoretic setting. Moreover, we
provide a finer characterization of quadratic invariance in
terms of posets and quosets.
Consider the problem of designing an optimal controller
K ∈ S as described in problem 2. In this section we revisit
the model where decentralization constraints are viewed as
sparsity constraints in the controller. Let K ∈ Rny ×Rnu . De-
fine a subset if indices of K via J ⊆

{

1, . . . , ny
}

× {1, . . . , nu}.
Then the subspace constraint is defined as Ki j = 0 for all
(i, j) ∈ J . Quadratic invariance reduces to the following
transitive property in this model [12, Theorem 26]:
Theorem 2: The subspace S is quadratically invariant with

respect to a specified plant G if and only if for all K ∈ S
and all i, j, k, l,

Ki jG jkKkl(1 − Kil) = 0. (6)

Remark Let us interpret equation (6) in an intuitive way. Let
us denote the constraint Ki j ! 0 by i →K j (which denotes
that there is a path from i to j in the controller) and Gjk ! 0
by j→G k (i.e. that there is a path from j to k in the plant).

Then the equation (6) states that:

i→K j, j→G k, k →K l implies i→K l. (7)

The transitive structure becomes more apparent now. What
quadratic invariance is saying is that the overall graph of
the closed loop (which is comprised of a combination of
subgraphs of the plant and the controller) is transitively
closed. The condition means that if l is not allowed to
communicate to i in the controller then there must exist no
path from l to i around the closed loop (because such a path
would produce a way for l to communicate to i by going
once around the closed loop).
When the graph inside the plant and the controller is iden-
tical, quadratic invariance reduces to transitive closure of
this (identical) graph. We next show that in this scenario
quadratic invariance corresponds to existence of poset struc-
ture.

A. Existence of Posets

Consider a plant G and a decentralized control problem with
sparsity constraints K ∈ S such that Ki j = 0 for all (i, j) ∈ J
for some index set J . Consider the square case i.e. ny =
nu. Let N =

{

1, . . . , ny
}

. We say that a given decentralized
control problem is plant-controller symmetric if the given
plant also satisfies the sparsity constraints of the controller
(i.e. G ∈ S ).

Proposition 5: Consider a plant-controller symmetric
control problem. Suppose the following assumptions are true
of the index set:
1) (i, i) " J
2) (i, j) " J ⇔ ( j, i) ∈ J for distinct i, j.
3) The problem is quadratically invariant.

Then there exists a poset P over ny elements such that S is
the incidence algebra of P.

Proof: Since both G and K are ny × ny matrices, it is
enough to construct a poset on ny elements and show that
the sparsity pattern of S exactly corresponds to the incidence
algebra of this poset. Let us define our candidate for the
partial order ! as follows: i ! j if (i, j) " J . We need to
verify that this is indeed a partial order relation.
Since (i, i) " J , we clearly have i ! i thus verifying
reflexivity. If i ! j and j ! i then it must be the case that
(i, j) " J and ( j, i) " J . However the second assumption in
the statement of the proposition excludes the possibility of
such i, j being distinct, thus i = j and we have anti-symmetry.
Finally, suppose we have i ! j and j ! l (i.e. (i, j) " J and
( j, l) " J). Choose index k such that k = j and use quadratic
invariance to conclude from equation (7) that (i, l) " J . Thus
i ! l, verifying transitivity.
The incidence algebra of this poset is the set of elements
such that Ki j = 0 if i ! j, (i.e. (i, j) ∈ J) which is exactly
the definition of S .

B. Existence of Quosets
It is natural to ask: “to what extend does the preceding

theorem generalize?” It turns out that one can in fact relax
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the second assumption (anti-symmetry). It is possible to have
a more general notion of a partial order in the absence
of anti-symmetry. In that setting, distinct elements can be
equivalent, and the partial order is defined on the quotient
set modulo the equivalence. The resulting object is very like
a poset (called a quotient poset or quoset, sometimes it is
called a preorder in the literature). There is a corresponding
algebraic object, analogous to the incidence algebra, called
the structural matrix algebra [1].

Definition 9: A quoset Q = (Q,!) is a set Q with a
binary relation ! such that ! is reflexive and transitive.
Thus it is possible for distinct elements i, j to satisfy i ! j
and j ! i (we will call such elements equivalent and denote
this by i - j). This notion of a quoset captures the intuition
that if i and j can communicate to each other and if they
have the same level of information richness then they are
equivalent. One defines the analogue of an incidence algebra
as follows.

Definition 10: Let F be a ring. Let M be the set of
functions f : Q ×Q→ F with the property that f (i, j) = 0 if
i # j for all i, j.
We leave it as an easy exercise to the reader to verify that
M is an associative algebra. Figure 7 shows an example of
a quoset and the sparsity pattern of the associated structural
matrix algebra. The analogue of Proposition 5 to quosets is

2, 3

1

4








∗ ∗ ∗ ∗

0 ∗ ∗ 0

0 ∗ ∗ 0

0 0 0 ∗









1

2

3

4

1 2 3 4

Fig. 7. A quoset and the sparsity pattern of its associated structural matrix
algebra. Elements with a ’∗’ indicate possible nonzero elements.

the following.
Proposition 6: Consider a plant-controller symmetric

control problem. Suppose the following assumptions are true
of the index set:
1) (i, i) " J
2) The problem is quadratically invariant.

Then there exists a quoset Q over ny elements such that S
is the structural matrix algebra of Q.

Proof: Again we construct a candidate quoset and
verify the associated properties. We say that i ! j if (i, j) "
J . The verification of the properties are very similar to that
of Proposition 5, we leave this routine step to the reader.
We have thus seen that condition (2) from Proposition 5 can
be relaxed, and that in the relaxed setting quadratic invariance
is equivalent to existence of quoset structure in the problem.
What happens when condition (1) is relaxed (i.e. we allow
some elements (i, i) ∈ J)? It turns out that it is possible to
add the reflexive relation without adding or affecting any of
the transitivity relations. (This operation of adding reflexive
relations is called the reflexive closure).

Proposition 7: Suppose we have a plant-controller
symmetric control problem with a specified index set (of
sparsity constraints) J . (The sparsity constraints are thus
Ki j = 0 for (i, j) ∈ J .) The problem is quadratically invariant
if and only if the reflexive closure of Jc is a quoset over
the elements of N . The set S is the structural matrix algebra
corresponding to this quoset.

Proof: We first note that taking reflexive closure of a
transitively closed set does not affect any of the relations
between distinct elements. Define I = Jc. Define i ! j if
(i, j) ∈ I. Suppose we add the reflexive relations so that
I′ = I∪

(⋃

i∈N {(i, i)}
)

. Consider the transitive closure of I′.
The only way new relations can be added is by combining
transitive relations with the newly added reflexive relations.
Thus if i ! j and j ! k, we know that for distinct i, j, k we
already have i ! k. If j = i or j = k we get no new relations.
Hence I′ is its own transitive closure.
Suppose the reflexive closure is a quoset. We know that
in the closure operation, no new relations between distinct
elements were introduced, hence transitivity is unaffected.
By (6) the problem is quadratically invariant. Conversely, if
the problem is quadratically invariant, we know from (6) that
I is transitively closed. Thus if we take the reflexive closure,
by Proposition 6 the resulting set is a quoset.

VI. C
We presented a poset based framework to study decentral-

ized control problems. We were able to extend our previous
work on decentralized control using posets to other settings.
We showed a way to interpret some preexisting results
on systems with time delays using posets. We were able
to extend these results to the case of spatially distributed
systems, We also studied the connection between quadratic
invariance and posets and showed that they were equivalent
in certain settings. Under somewhat more general conditions,
we showed that quadratic invariance is equivalent to the
existence of quoset strucuture.
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