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Abstract— The goal of the research described in this paper is to
help prevent scenarios such as the following: a terrorist detonates
a device that distributes radioactive material such as Cesium-
137 or Cobalt-60 in an open space used for public sports events
or demonstrations. This paper studies the efficacy of networks
of static sensors on street lamps or similar infrastructures.
This paper describes individual sensors, evaluates the benefits
of networks of stationary sensors, and briefly discusses the
potential value of integrated networks of wireless-equipped
mobile security personnel with stationary radiation sensors and
cameras. The paper presents mathematical analysis coupled with
simulation results.

I. THE PROBLEM

The goal of the research described in this paper is to help
prevent scenarios such as the following: a terrorist walks
in a crowd participating in a political demonstration in an
open space, such as a football field, and detonates a device
that disperses radioactive material. We study situations in
which searching backpacks of all participants in the event
is infeasible. We study systems with the following goals.

System Goal: A network of stationary sensors is required
to inform security personnel when there is a radioactive source
in the field. The sensors may be located on street lamps,
utility devices such as telephone poles, or temporary traffic
sign stands. The radiation source may be mobile or stationary.
The system is required to detect the presence of radioactive
sources rapidly, and identify their locations accurately.

The performance metrics of the system include the rate
of false alarms, the time to detect a source, and the area in
which the source is predicted to be located. We evaluate these
performance metrics for different design parameters such as
the number of sensors distributed over a region, the relative
benefits of directional sensors focused on narrow beams
versus omni-directional sensors, the effect of background
radiation, and the speed and complexity of computation.

Background radiation is emitted from the ground, buildings
and people. The amount of background radiation may vary
with environmental conditions such as rain, location of vehi-
cles, or presence of patients with benign medical sources, such
as Technetium-99 or Iodine-131. An advantage of stationary
sensors is that the background noise can be characterized
accurately by making measurements over time in different
conditions.

Terrorists may have access to different radioactive com-
pounds such as Cesium-137 or Cobalt-60. In this paper, we
do not investigate the problem of identifying isotopes from
radiation energy signatures. Nor do we consider important
issues such as the benefits of coupling stationary radiation-
detection networks with surveillance cameras and mobile
sensors on small unmanned aerial vehicles. The paper restricts
attention to the benefits of networking sensors.

II. MODEL OF SENSORS AND RADIOACTIVE SOURCES

Research on sensors for radiation detection has been carried
out for decades. The early research was primarily for scientific
experiments; the more recent work is also for security. At
Caltech we are working towards handheld detectors coupled
with wireless communication for problems such as those
identified in the Intelligent Personal Radiation Locator (IPRL)
program. This paper is motivated by laboratory experiments
that suggest the possibility of deploying adequate-resolution
gamma-ray detectors at room temperatures. Initial designs
and laboratory experiments indicate that crystal detectors and
associated electronics can be manufactured in large quantities
at reasonable prices. This preliminary analysis leads to the
question: Can networks of such sensors be cost effective in
locating radiation?

We have developed advanced readouts for CdZnTe detec-
tors (see figure 1). CdZnTe is a large bandgap semiconductor
material that can be operated as a good resolution gamma-ray
detector at room temperature. As such, it performs with higher
resolution than a scintillating crystal, e.g. NaI, without the
cryogenic cooling requirement of a high-purity Ge detector.
The Caltech readouts are bonded directly to the back of
20mm × 20mm × 5mm slabs of CdZnTe and pixelate the
crystal into an array of 32 × 32 smaller detectors, each of
which has less noise than a single readout of the full detector.
The detectors and associated electronics are light, weighing
less than a kilogram, and can be carried by small UAVs and
even model airplanes. Figure shows photographs of the sensor.
This paper, however, focuses on designs and analysis of sensor
networks rather than on individual sensors.

A radiation source is treated as a point source. Though
radiation material may be distributed within a backpack an
approximation to a point source is adequate for scenarios
studied in this paper. A radiation source generates photons



Fig. 1. IPRL handheld detectors developed at the California Institute of
Technology.

in a Poisson manner at some rate µ. A detector consists of
a crystal coupled with electronics. When a photon interacts
inside a crystal, the photon generates electron-hole pairs in
proportion to the energy absorbed by the crystal. An electric
field separates the charge carriers and the sensor measures the
anode signal, which is mostly from the electrons. Measure-
ments are imperfect; electron trapping and material flaws limit
the resolution of the energy measurement and physics limits
the number and quality of events in the crystal. A photon
may be absorbed or scattered by material that it strikes. We
begin by ignoring absorption and scattering; we consider these
issues briefly later. Photons arrive at all points on a sphere of
distance r from the source with equal probability. As a first
approximation, we treat the crystal as a flat plate. Therefore
photons from a point source hit a stationary plate at a distance
r from the source in a Poisson process with rate λ where:

λ = µ. cos θ/r2 (1)

where θ is the angle between the normal to the plate and the
line joining the plate and the source.

In addition to the geometrical effect above, there are several
possible techniques for understanding the direction of the
incoming photon. These include, collimation or shielding,
Compton imaging and coded aperture imaging.

III. DESIGN ISSUES

The problem of detecting and interdicting a pedestrian
carrying radioactive material has different aspects depending
upon whether the person is walking along a sidewalk in a city,
or within a building or within an open area such as a park.
This paper considers only the open area scenario. Next, we
outline the design issues studied in this paper.

Number of sensors: We study the benefits of increasing
the number of sensors. In situations where there are few utility
poles on which to place sensors, we study the effects of
placing multiple directional sensors facing different regions
of the field.

A priori estimates of target location and source inten-
sity: We use Bayesian statistics to estimate the a posteriori
location and intensity of a target given an a priori distribution

and readings from each sensor over a time period. We study
the effect of Bayesian updates without prior distributions on
source intensity, and the benefits of accurate prior estimates.

Estimating area within which the target is located: The
stationary sensor network can alert security personnel about
a potential target identified to be within a large area (say
100 meter square) with fewer measurements and less time
than predicting target location with pinpoint accuracy (say 1
meter square). We explore the relationship between estimated
probability and the area within which a source is estimated
to be located.

Effect of noise: The ground and buildings emit some
radiation. The impact of this noise on stationary sensors can
be factored out to a large extent but not eliminated. We study
the relationship between noise and accuracy.

Most of this paper is concerned with interdicting a single
source of radiation. We also briefly consider the problem of
detecting multiple sources.

IV. ANALYSIS

A. Sensor Network and Known Source

In this section we assume the existence of a single source
that generates photons with intensity µ at a point with
coordinates [x, y]. We assume in this section, and this section
only, that we know the source intensity µ and location [x, y].
Our problem is, of course, to estimate the source location and
intensity.

Consider a region with D sensors indexed j where 1 ≤
j ≤ D. Photons from the source strike each of the sensors in
an independent Poisson manner. Let λj be the rate at which
photons strike sensor j. To begin with assume that at all noise
has been factored out. Also assume there is no absorption or
scattering. The relationship between source intensity and the
rate at which photons strike a sensor was given earlier in
eqn.( 1).

Let f(λ, n, T ) be the probability of n events (photons) in
an interval of duration T in a Poisson process with rate λ.

f(λ, n, T ) =
(λ.T )n.e−λ.T

n!

Let #n = [n1, . . . , nD] and let p(#n, T ) be the probability
that nj photons strike sensor j, for all j, in a time interval of
duration T . Since the processes by which photons strike each
of the sensors are mutually independent and are Poisson

p(#n, T ) =
D∏

j=1

f(λj , nj , T ) (2)

Let N be the total number of photons to hit all the D
sensors in an interval when nj photons hit sensor j:

N =
D∑

j=1

nj



Let Λ be the total intensity of photons on all the D sensors:

Λ =
D∑

j=1

λj

Let pj be the probability that a photon that hits any one of
the D sensors hits sensor j.

pj =
λj

Λ
(3)

Let g(#n,N) be the conditional probability that nj photons
hit sensor j, all j, given that a total of N photons hit all the
D sensors. Since each photon is independent of others, the
conditional probability is a multionomial:

g(#n,N) = N !.
D∏

j=1

(pnj

j /nj !) (4)

Manipulating eqn.( 2) we get p(#n, T ) to be the product
of (i) the probability of a total of N photons hitting all the
sensors and (ii) the conditional probability that nj photons hit
sensor j given that a total of N photons hit all D sensors.

p(#n, T ) = f(Λ, N, T ).g(#n,N) (5)

B. Sensor Network and Unknown Single Source

Consider the case where there exists exactly one source.
The intensity and location of the source are unknown. As-
sume, to begin with, that sensors are spheres; hence, they
have no directional preference and so the intensity with which
photons from a source hits the sensor depends only on the
distance from the sensor and not on the orientation of the
sensor.

Let dj [x, y] be the distance from a point [x, y] to sensor j.
Let pj [x, y] be the conditional probability that a photon from
a source at location [x, y] hits sensor j given that a photon
from a source at this location his one of the D sensors. Then
from the earlier analysis – see eqn.( 1) and eqn.( 3)

pj [x, y] ∝ 1/dj [x, y]2 (6)

where the proportionality constant makes the sum of prob-
abilities equal to unity. Hereafter, we wont mention the
proportionality constant where it is obvious.

We study two algorithms for estimating the location and
intensity of the source. (a) We analyze an algorithm that op-
erates in two steps: the first step uses eqn.( 6) (which depends
only on the location of the source and is independent of the
intensity) to estimate the location of the source using Bayes
law given an a priori distribution of location. The second step
estimates the intensity given the probable location estimated
in the first step. (b) We analyze an algorithm that estimates
both location and intensity together given independent a priori
distributions on both location and intensity.

We generate a grid over the region of interest with all
elements of the grid being squares of equal size. We assume
that sources, if any, are located at the center of a grid element.
Let q[x, y] be the a priori probability that a single source
is at grid position [x, y]. The measured data is a vector of
numbers of photons at each sensor #n in a time interval of
some duration T . Let r[x, y] be the a posteriori probability
given these measurements. Then,

r[x, y] ∝ q[x, y].g(#n,N) (7)

where pj [x, y] replaces pj in g. This expression for r[x, y] is
equivalent to:

r[x, y] ∝ q[x, y].
∏

j

pj [x, y]nj (8)

We compute a posteriori distribution after a single photon hits
a sensor, say sensor j, to get:

r[x, y] ∝ q[x, y].pj [x, y] (9)

The values pj [x, y] are precomputed, and hence computation
of the posteriori distribution with G elements of the grid
requires only 2G multiplications and G additions, resulting in
small computation times. Computation times can be reduced
further by ignoring regions where q[x, y] and pj [x, y] are
small; our experiments show that most of the grid can be
ignored after just a few steps.

After the location is estimated, the intensity is estimated
using a maximum likelihood estimator. From eqn.( 1) we see
that the intensity λj with which photons strike sensor j is
directly proportional to the intensity µ of the source. Hence
the total intensity Λ with which photons strike all the sensors
is also proportional to µ. Let

µ = Λ.A

where A is a constant of proportionality which is computed
assuming that the source is located at the position estimated
by the algorithm in the first step. Let µ̂ be our estimate of µ.
Then

µ̂ = (N/T ).A

Similar calculations can be carried out for the case where
an a priori distribution over the source intensity µ is given to
obtain:

r[x, y, µ] = q[x, y, µ].λj [x, y, µ]nj .e−λj .T (10)

where now r and q include the source intensity µ in the
a priori and posteriori distributions, and λj [x, y, µ]nj is the
intensity with which photons strike sensor j given a source
with intensity µ at location [x, y]. Here too, most of the
parameters can be precalculated; for example λj [x, y, µ] can
be calculated for discrete values of µ and a range of nj . Thus
the posteriori distribution is computed rapidly.



C. Effect of Noise

The background noise-photons generated by radioactivity
in the ground and surroundings - can be estimated accurately
for stationary sensors provided measurements can be made at
each sensor in environmental conditions (such as rain or snow)
that hold in the actual situation. We can estimate the location
and intensity of a source by incorporating background noise
into the a priori probability distribution. An approximation is
to carry out calculations ignoring the noise; this approach can
work because the effects of noise should cancel out provided
there are enough sensors. An alternate approach is to assume
a background rate γj of photons hitting sensor j. Experiments
are given in the next section.

D. Multiple Sources and Motion Dynamics

Multiple sources of radiation may represent innocent people
who, for example, have ingested radioactive isotopes for med-
ical purposes. Multiple sources may also represent multiple
terrorists. The a priori probability distribution with R sources
has to consider the location and intensity of each source,
resulting in a distribution with (G.M)R values where G
is the number of elements in the location grid and M is
the number of possible values of the source intensity. With
G = 106 and M = 10, we see that the number of variables
in the distributions is 1014 with even two sources, and the
direct Bayesian approach is intractable with three or more
sources. A feasible approach uses an approximation based on
the following analysis.

A source generates photons that strike sensors nearby and
are unlikely to strike sensors far away because of the 1/r2

effect. Our analysis and experiments show that we can safely
assume that no source is further away than a distance d of any
sensor that has detected photons at rates equal to or lower than
background noise rates, where the parameter d depends on the
intensity of the source. This allows us to reduce computations
to grids of tractable size; an estimation step may calculate
the location and intensity of possible sources in multiple
(possibly overlapping) regions. The results reported here for
single sources suggest how multiple sources can be estimated
efficiently.

A terrorist may want to move towards a political leader
or a stage or some other destination. Given a distribution
of location and intensity at a time t, we first compute the
distribution at a time t + τ , for a time step τ by assuming
some dynamics of motion of the source; the simplest case
is that a source moves a distance of at most v.τ where v is
the maximum velocity of a pedestrian. These calculations are
similar to calculations that have been studied extensively in
target tracking. The difference is the in the equations used for
filtering.

Fig. 2. Network configuration. Detectors are the blue circles. The source is
the green circle.

V. NUMERICAL RESULTS

A. Methodology

The first set of numerical results are calculated for a
500m × 500m area, shown in figure 2 with sixteen sensors
(shown as blue circles in the figure) arranged in a uniform
grid with a distance of 100m between sensors. A single
source, shown in the figure as a green circle, is located at the
coordinates (225, 225)m. We consider spherical sensors of a
fixed size; the spherical structure allows us to study systems
without considering directionality. The intensity of the source
is such that a sensor a meter away receives photons at a rate
of 180 per second. This experiment represents IPRL detectors
and a Cs137 0.6 milliCurie source. The first set of experiments
assumes no background radiation.

Computations are carried out periodically with a period
of 2 seconds using the equations given earlier. The area is
partitioned into a grid of 100 × 100 square grid elements.
We assume that if a source is in a grid element then it is
located at the center of a grid element. We show contour
plots of the estimate of the probability distribution of the
source position; lighter colors are associated with unlikely
source positions (< 0.0001), while darker colors represent
more likely source positions (> 0.1). The plots are shown
for the average of 100 runs. The estimates vary from one
simulation to the next because the number of photons that hit
each sensor vary randomly.

B. Predictions with and without Assumptions About Source
Intensity

We present the simulation results for two different set of
experiments.

a) Predictions without Assumptions About Source In-
tensity: For the first set of experiments, we update the
estimated position of the source using the algorithm (a) of
section IV which makes no assumptions about the emission



Fig. 3. The snapshot of the probability distribution for the non-parametric
update algorithm after two seconds of computation.

rate of the source. Figures 3 and 4 show contour plots
of a posteriori densities of the position of a source after 2
seconds and 10 seconds (respectively) of data. The sensor
network correctly estimates that there is a radiation source
in a 100m × 100m square region centered around the sensor
at coordinate (200m, 200m). The network estimates that a
source falls within the region with probability 0.5491 after 2
seconds and probability 0.8732 after 10 seconds.

b) Predictions without Assumptions About Source In-
tensity: In the second set of experiments we assume the
following a-priori probability distribution on the emission rate
µ of the source: µ takes on the following multiples of the rate
assumed in the earlier experiment 0.25, 0.5, 1, 2, 4 with equal
probability. This a-priori distribution is not accurate since it
ranges uniformly over an interval whose maximum value is
16 times its minimum value. The quality of the estimates
after 2 seconds depends critically upon the quality of the a
priori distribution; a bad a priori distribution is worse than no
distribution at all. Nevertheless, the a posteriori distributions
are accurate within 10 seconds. This set of experiments uses
algorithm (b), which we call “intensity update algorithm”.
Figures 5 and 6 show contour plots of a posteriori densities
of the position of a source after 2 seconds and 10 seconds
(respectively) of data. The network estimates that the source
lies in a 100m × 100m square region centered around the
sensor at coordinate (200m, 200m) with probability 0.3536
after 2 seconds and probability 0.9034 after 10 seconds.

C. Background Noise

The ground and buildings emit photons. Sophisticated sen-
sors can differentiate between photons generated by materials
that may be used to build dirty bombs from photons emitted
by the ground. We consider the case where the background
generates photons that are indistinguishable from photons
from dangerous sources. We assume that each square in the
grid emits photons in a Poisson manner at a rate of 0.3 photons

Fig. 4. The snapshot of the probability distribution for the non-parametric
update algorithm after 10 seconds of computation.

Fig. 5. The snapshot of the probability distribution for the bayesian update
algorithm after two seconds of computation.

Fig. 6. The snapshot of the probability distribution for the bayesian update
algorithm after 10 seconds of computation.



Fig. 7. The snapshot of the probability distribution for the non-parametric
update algorithm after 2 seconds of computation in presence of noise.

per second.

Figures 7 and 9 show the posteriori distributions after 2 and
10 seconds, respectively, using the non-parametric Bayesian
update strategy that does not use a priori distributions on
source intensity. Figures 8 and 10 show the same two distri-
butions using a Bayesian strategy that uses a prior distribution
on source intensity — the same distribution as in the previous
experiments. After 2 seconds the non-parametric strategy is
slightly better since the a priori distribution we used is quite
poor. After 10 seconds using priors on source intensity gives
slightly better estimates, though both give adequate results.

Consider a region A of 100× 100 squared meters centered
around the agent positioned at coordinate (200, 200). The
probability that the source is in A is estimated to be 0.36 and
0.58 after 2 and 10 seconds (respectively) for the algorithm
that doesn’t use priors on source intensity. The corresponding
results for the algorithm that uses priors on intensity are 0.5
and 0.59 respectively.

Using a prior on source intensity where the prior assigns
low probability to source rates near the background rates
helps in distinguishing the background from a source. Also,
when a prior on source intensity is not used the posteriori
distributions assign some (low) probability to regions far from
the true source because of the background radiation received
by sensors far from the source.

D. Exploiting Directionality

In some situations, light poles or telegraph poles, are far
apart in a field and it is not possible to place temporary traffic
signs on which sensors can be located. A solution is to place
multiple sensors on a pole. The sensors are crystals that can
be analyzed as thin sheets that allow only photons from one
direction because the reverse direction is shielded by metal.
We first study a system in which 8 sensors are placed on
each pole in an octagon. The results are shown in figures 11
and 12. The algorithm without priors on source intensity

Fig. 8. The snapshot of the probability distribution for the bayesian update
algorithm after 2 seconds of computation in presence of noise.

Fig. 9. The snapshot of the probability distribution for the non-parametric
update after 10 seconds of computation in presence of noise.

Fig. 10. The snapshot of the probability distribution for bayesian update
algorithm after 10 seconds of computation in presence of noise.



Fig. 11. The snapshot of the probability distribution for the non-parametric
update after 2 seconds of computation when directionality is exploited and
sensors are placed on each pole in an octagon.

Fig. 12. The snapshot of the probability distribution for the bayesian update
after 2 seconds of computation when directionality is exploited and sensors
are placed on each pole in an octagon.

gives better results than the algorithm with priors because
the prior distribution is poor. Let A be a circle centered at
(200, 200) with radius 25m. This circle contains the source.
The algorithm without priors assigns a probability of 0.87 that
the source is in A, whereas the algorithm with priors assigns
only 0.41 probability. After 10 seconds, both algorithms are
very accurate assigning a probability of 0.98 of that the source
is (correctly) located with a small circle (radius 5m). Then,
we study the case when 4 sensors are placed on each pole in
a square. Figures 13 and 14 show the posteriori distributions
after 2 seconds of computation. The algorithm without priors
assigns a probability of 0.61 that the source is in A, whereas
the algorithm with priors assigns only 0.28 probability.

Fig. 13. The snapshot of the probability distribution for the non-parametric
update after 2 seconds of computation when directionality is exploited and
sensors are placed on each pole in an square.

Fig. 14. The snapshot of the probability distribution for the bayesian update
after 2 seconds of computation when directionality is exploited and sensors
are placed on each pole in an square.

VI. CONCLUSION AND FURTHER WORK

This study shows that networks of static sensors can help
direct security personnel towards radiation sources rapidly.
Typically, security personnel will also carry sensors and they
can verify that the target is a true source of radiation by
moving close to a target. Further by using sensors that detect
isotope signatures they can reduce rates of false positives by
differentiating medical radiation and other innocuous sources
from criminals.

What should security personnel look out for? The time to
detect and locate a source is inversely proportional to the rate
at which the source generates photons. Therefore, a criminal
may attempt to reduce this rate by shielding the source with
lead or other metal. Reducing the source rate by a factor
of 100 increases the time for the sensor network to detect



and locate the source by a factor of 100; thus instead of
merely 10 seconds the network will require 16 minutes. In
this case a moving source can evade detection. The amount
of lead required to reduce radiation from a high energy
source, such as Cesium-137, by a factor of 100 cannot be
carried conveniently. Therefore, the sensor network will have
the most difficulty detecting criminals with metal-shielded
sources carried in wheeled luggage or some type of vehicle.

The results show that directional sensors detect and locate
sources rapidly provided there are enough sensors. This paper
only reports on the benefits of plating sensors with metal on
one surface so that the sensor only detects photons hitting the
other surface. Better directionality through the use of sufficient
numbers of collimators will provide even greater accuracy.
Further research needs to be carried out on the tradeoffs
between (a) greater numbers of more directional collimators
on fewer utility poles and (b) less directional sensors on more
utility poles that are closer together.

Our results show that algorithms that do not assume a prior
on source intensities are more accurate after measurements
over small durations than algorithms that assume poor priors;
however, algorithms that do use priors are better over longer
time spans. This suggests further research in which both
algorithms are run concurrently.

The results in this paper suggest that networks of mobile
sensors that can move towards targets will be more effective.
The payload of a sensor coupled with wireless communication
is small enough that it can be carried by very small UAVs,
such as model airplanes, that fly quite close to the ground. The
optimal search strategy for such mobile sensors is a subject
of research.

VII. RELATED WORK

Sensor networks consisting of large number of devices,
each capable of some limited computation, communication
and sensing [10], have been used in a wide variety of contexts,
from battlefield surveillance to environmental monitoring [3],
[8]. Energy efficient protocols for these networks have been
extensively studied. More recently, Arora [1] uses geometric
ideas to design an energy-efficient protocol which return the
location of a particular object in response to an in-network
subscriber issuing a find query regarding that object.

We employ a maximum likelihood estimator for estimating
the position of the radiation source using the assumption
that the source emits photons at a Poisson rate. Maximum
likelihood estimation procedures have been used in different
contexts, for example in target tracking to estimate the posi-
tion of an unknown object using binary detection information
sent by proximity sensors [9], or the kinematical coordinates
of multiple targets in dynamic scenarios consisting of actual
targets and false alarms [2].

Search strategies have been studied intensively at least since
World War II ([5], [6] and [7]). Many of the problems studied
in the literature deal with mobile searchers and evaders where
searchers can “see” evaders when they are within a specified

distance D. Our paper deals only with how networking static
sensors can help with detection. The probabilistic nature and
the physics of radiation offers new challenges.
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