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Tools for quantitative nonlinear robustness analysis

Quantify with certificate (and through an automated procedure)

ẋ = f(x, δ)
y! ẋ = f(x, w, δ)

y = h(x, δ)
!w

Region-of-attraction
(ROA)

Reachable set
Local input-output gain

Repeat the above in the presence of parametric uncertainties
δ ∈ ∆ (+ unmodeled dynamics)

f and h are vectors of polynomials in x and w.
! If not polynomial, much harder.

! Approximate and account for (extra) uncertainty
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General procedure to construct “certificates”

! System properties → Algebraic conditions
! Lyapunov, dissipation inequalities.

! Algebraic conditions → Numerical optimization problems
! Restrict the attention to polynomial vector fields, polynomial

certificates,...
! S-procedure like conditions (for set containment constraints)
! Sum-of-squares (SOS) relaxations for polynomial nonnegativity
! Pass to semidefinite programming (SDP) that are equivalent of

SOS conditions

! Solve the resulting (linear or “bilinear”) SDPs

! Construct polynomial certificates
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Preliminaries
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Linear and Bilinear Matrix Inequalities

! Given matrices {Fi}N
i=0 ⊂ Sn×n, Linear Matrix Inequality

(LMI) is a constraint on λ ∈ RN of the form:

F0 +
N∑

k=1

λkFk $ 0

! Given matrices {Fi}N
i=0, {Gj}M

j=1, and {Hk,j}N
k=1

M
j=1

⊂ Sn×n, a Bilinear Matrix Inequality (BMI) is a constraint on

λ ∈ RN and γ ∈ RM of the form:

F0 +
N∑

k=1

λkFk +
M∑

j=1

γkGj +
N∑

k=1

M∑

j=1

λkγjHk,j $ 0

! Semidefinite program (?)
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Properties of SDPs

SDPs with LMI constraints

! “Easy” to solve.

! Public domain, efficient solvers: SeDuMi, SDPT3,...

! Link to SeDuMi through

http://www.cds.caltech.edu/~utopcu/NLShortCourse.html

SDPs with BMI constraints

! Non-convex in general (our problems are specifically
non-convex by counterexample).

! No general purpose solvers

! Global optimization methods, e.g. branch-and-bound.

! Local solvers, e.g. PENBMI.

8/100



Optimizations with BMIs

min
λ∈RN ,γ∈RM

cT λ + dT γ

subject to:

F0 +
N∑

k=1

λkFk +
M∑

j=1

γkGj +
N∑

k=1

M∑

j=1

λkγjHk,j $ 0

! One useful property is that the constraint is an LMI if either λ
or γ is held fixed.

! Coordinate-wise Iterations:
1. Initialize a value of λ.
2. Hold λ fixed and solve for optimal γ. This is an SDP.
3. Hold γ fixed and solve for optimal λ. This is an SDP.
4. Go back to step 2 and repeat until values converge.

! This is local search scheme. Not even guaranteed to converge
to local optimal points but works well for our problems.
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Multipoly Toolbox (available through workshop web page)

! Multipoly is a Matlab toolbox for the creation and
manipulation of polynomials of one or more variables.

! Example:

pvar x1 x2
p = 2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4
q = x1^2
p*q =

2*x1^6 + 2*x1^5*x2 - x1^4*x2^2 + 5*x1^2*x2^4
jacobian(p, [x1;x2]) =

[ 8*x1^3 + 6*x1^2*x2 - 2*x1*x2^2 ,
2*x1^3 - 2*x1^2*x2 + 20*x2^3 ]

! Algebraic manipulation, visualization (sublevel sets, etc.),...
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Positive Semidefinite Polynomials

! p ∈ R [x] is positive semi-definite (PSD) if p(x) ≥ 0 ∀x. The
set of PSD polynomials in n variables {x1, . . . , xn} will be
denoted P [x1, . . . , xn] or P [x].

! Testing if p ∈ P [x] is NP-hard when the polynomial degree is
at least four.

! For a general class of functions, verifying global non-negativity
is recursively undecidable.

Reference: Parrilo, P., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and

Optimization, Ph.D. thesis, California Institute of Technology, 2000. (Chapter 4 of this thesis and the reference

contained therein summarize the computational issues associated with verifying global non-negativity of functions.)
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Sum of Squares Polynomials

! p is a sum of squares (SOS) if there exist polynomials {fi}N
i=1

such that p =
∑N

i=1 f2
i .

! The set of SOS polynomials in n variables {x1, . . . , xn} will
be denoted Σ [x1, . . . , xn] or Σ [x].

! If p is a SOS then p is PSD.
! The Motzkin polynomial, p = x2y4 + x4y2 + 1− 3x2y2, is

PSD but not SOS.
! Hilbert (1888) showed that P [x] = Σ [x] only for a) n = 1, b)

d = 2, and c) d = 4, n = 2.

! p is a SOS iff there exists Q $ 0 such that p = zT Qz.

Reference: Choi, M., Lam, T., and Reznick, B., Sums of Squares of Real Polynomials, Proceedings of Symposia in

Pure Mathematics, Vol. 58, No. 2, 1995, pp. 103 − 126.
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SOS Example

All possible Gram matrix representations of

p = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2

are given by zT (Q + λN) z where:

z =
[

x2
1

x1x2

x2
2

]
, Q =

[
2 1 −0.5
1 0 0

−0.5 0 5

]
, N =

[
0 0 −0.5
0 1 0

−0.5 0 0

]

p is SOS iff

Q + λN $ 0

for some λ ∈ R.
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SOS Test with issos
The issos function tests if p ∈ Σ [x] by converting to an LMI
feasibility problem:

[feas,z,Q,f] = issos(p)

feas=1 if p ∈ Σ [x] and feas=0 otherwise. If feasible, then

! z and Q provide a Gram matrix decomposition:

p = z’*Q*z,

where z is a vector of monomials and Q is a positive
semidefinite matrix.

! z may not include the complete list of
(

n+d
d

)
monomials since

issos uses some simple heuristics to prune out un-needed
monomials.

! f is a vector of polynomials providing the SOS decomposition:

p = f’*f,
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SOS Example using issos
>> pvar x1 x2;
>> p = 2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4;
>> [feas,z,Q,f]=issos(p);

% Verify feasibility of p \in SOS
>> feas
feas =

1

% Verify z and Q are a Gram matrix decomposition
>> p - z’*Q*z
ans =

-1.3185e-012*x1^4 + 6.5814e-013*x1^3*x2 - 2.3075e-012*x1^2*x2^2 +
5.6835e-016*x1*x2^3 - 3.304e-013*x2^4

% Verify Q is positive semi-definite
>> min(eig(Q))
ans =

0.7271

% Verify SOS decomposition of p
>> p - f’*f
ans =

-1.3221e-012*x1^4 + 6.5148e-013*x1^3*x2 - 2.3106e-012*x1^2*x2^2 +
1.3323e-015*x1*x2^3 - 3.3396e-013*x2^4
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SOS Programming

SOS Programming: Given c ∈ Rm and polynomials {fk}m
k=0, solve:

min
α∈Rm

cT α

subject to:

f0 +
m∑

k=1

αkfk ∈ Σ [x]

This SOS programming problem is an SDP.

! The cost is a linear function of α.

! The SOS constraint can be replaced with either the primal or
dual form LMI constraint.

A more general SOS program can have many SOS constraints.
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General SOS Programming

SOS Programming: Given c ∈ Rm and polynomials {fj,k}Ns
j=1

m
k=0,

solve:

min
α∈Rm

cT α

subject to:

f1,0(x) + f1,1(x)α1 + · · ·+ f1,m(x)αm ∈ Σ [x]
...

fNs,0(x) + fNs,1(x)α1 + · · ·+ fNs,m(x)αm ∈ Σ [x]

There is freely available software (e.g. SOSTOOLS, YALMIP,
SOSOPT) that:

1. Converts the SOS program to an SDP

2. Solves the SDP with available SDP codes (e.g. Sedumi)

3. Converts the SDP results back into polynomial solutions
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SOS Synthesis Example (1)

Problem: Minimize α subject to f0 + αf1 ∈ Σ [x] where

f0(x) := −x4
1 + 2x3

1x2 + 9x2
1x

2
2 − 2x4

2

f1(x) := x4
1 + x4

2

For every α,λ ∈ R, the Gram Matrix Decomposition equality holds:

f0 + αf1 = zT (Q0 + αQ1 + λN1) z

where

z :=
[

x2
1

x1x2

x2
2

]
, Q0 =

[−1 1 4.5
1 0 0

4.5 0 −2

]
, Q1 =

[
1 0 0
0 0 0
0 0 1

]
, N1 =

[
0 0 −0.5
0 1 0

−0.5 0 0

]

If α = 2 and λ = 0 then Q0 + 2Q1 + 9N1 =
[

1 1 0
1 9 0
0 0 0

]
$ 0.
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SOS Synthesis Example (2)

Use sosopt to minimize α subject to f0 + αf1 ∈ Σ [x]

% Problem set-up with polynomial toolbox and sosopt
>> pvar x1 x2 alpha;
>> f0 = -x1^4 + 2*x1^3*x2 + 9*x1^2*x2^2 - 2*x2^4;
>> f1 = x1^4 + x2^4;
>> x = [x1;x2];
>> obj = alpha;
>> [info,dopt,sossol]=sosopt(f0+alpha*f1,x,obj);

% s is f0+alpha*f1 evaluated at the minimal alpha
>> s = sossol{1};

% z and Q are the Gram matrix decomposition of s
>> z=sossol{2}; Q=sossol{3};
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SOS Synthesis Example (3)
% Feasibility of sosopt result
>> info.feas
ans =

1

% Minimal value of alpha
>> dopt
dopt =

’alpha’ [2.0000]

% Verify s is f0+alpha*f1 evaluated at alpha = 2.00
>> s-subs( f0+alpha*f1, dopt)
ans =

0

% Verify z and Q are the Gram matrix decomposition of s
>> s-z’*Q*z
ans =

-2.4095e-010*x1^4 + 4.3804e-011*x1^3*x2 - 2.1894e-011*x1^2*x2^2
+ 9.2187e-016*x1*x2^3 - 2.6285e-010*x2^4

% Verify Q is positive semi-definite
>> min(eig(Q))
ans =

1.3718e-010
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Set Containment Conditions

! Many nonlinear analysis problems can be formulated with set
containment constraints.

! Need conditions for proving set containments:

Given polynomials g1 and g2, define sets S1 and S2:

S1 := {x ∈ Rn : g1(x) ≤ 0}
S2 := {x ∈ Rn : g2(x) ≤ 0}

Is S2 ⊆ S1?

! In control theory, the S-procedure is a common condition used
to prove set containments involving quadratic functions. This
can be generalize to higher degree polynomials.
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Polynomial S-Procedure

! Theorem: Let g1 and g2 be given polynomials. If there exists
a positive semidefinite polynomial λ ∈ P [x] such that
−g1(x) + λ(x)g2(x) ∈ P [x] is positive semidefinite, then
S2 ⊆ S1.

! The PSD constraints are numerically difficult to handle. The
theorem still holds if relaxed to SOS constraints:

! If there exists a polynomial λ ∈ Σ [x] such that
−g1(x) + λ(x)g2(x) ∈ Σ [x] then S2 ⊆ S1.
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Set Containment Maximization

! Given polynomials g1 and g2, the set containment
maximization problem is:

γ∗ = max
γ∈R

γ

s.t.: {x ∈ Rn : g2(x) ≤ γ} ⊆{ x ∈ Rn : g1(x) ≤ 0}

! The polynomial S-procedure can be used to relax the set
containment constraint:

γlb = max
γ∈R,s∈Σ[x]

γ

s.t.: − g1 + (g2 − γ)s ∈ Σ [x]

! The solution of this optimization satisfies γlb ≤ γ∗.

23/100



pcontain Example
% Maximize size of a disk inside
% the contour of a 6th degree poly
pvar x1 x2;
x = [x1;x2];

% S1 := { x : g1(x)<= 0}
g1 = 0.3*x1^6 + 0.05*x2^6 - 0.5*x1^5 - 1.4*x1^3*x2

+ 2.3*x1^2*x2^2 - 0.9*x1^3 + 2.6*x1^2*x2 - 1;

% S2 := { x : g2(x)<= gamma}
g2 = x’*x;

% Define monomials for s
z = monomials(x,0:2);

% Use pcontain to maximize gamma s.t. S2 \in S1
% gbnds gives lower/upper bounds on optimal gamma
% sopt is the optimal multiplier
[gbnds,sopt]=pcontain(g1,g2,z)
gamma = gbnds(1);
gbnds =

0.5560 0.5569

sopt =
1.4483*x1^4 + 0.055137*x1^3*x2 + 0.44703*x1^2*x2^2 - 0.043336*x1*x2^3
+ 1.2961*x2^4 - 0.21988*x1^3 - 0.26998*x1^2*x2 - 0.050453*x1*x2^2
+ 0.13586*x2^3 + 1.6744*x1^2 - 0.41955*x1*x2 + 1.4875*x2^2
- 0.49756*x1 + 0.50148*x2 + 1.2679

% Plot contours of unit disk and maximal ellipse
plotdomain = [-2 3 -2 2];
pcontour(g1,0,plotdomain,’b’) hold on;
pcontour(g2,gamma,plotdomain,’r’)
axis equal; axis(plotdomain)

x1
x
2

Gamma = 0.556

 

 

!2 !1 0 1 2 3
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2
g1==0

g2==0.556
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ROA analysis using SOS
optimization and solution

strategies
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Region of Attraction

Consider the autonomous nonlinear dynamical system

ẋ(t) = f(x(t))

where x ∈ Rn is the state vector and f : Rn → Rn.
Assume:

! f ∈ R [x]

! f(0) = 0, i.e. x = 0 is an equilibrium point.

! x = 0 is asymptotically stable.

Define the region of attraction (ROA) as:

R0 := {ξ ∈ Rn : lim
t→∞

φ(ξ, t) = 0}

where φ(ξ, t) denotes the solution at time t starting from the
initial condition φ(ξ, 0) = ξ.

Objective: Compute or estimate the ROA.
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Global Stability Theorem

Theorem: Let l1, l2 ∈ R [x] satisfy li(0) = 0 and li(x) > 0 ∀x *= 0
for i = 1, 2. If there exists V ∈ R [x] such that:

! V (0) = 0
! V − l1 ∈ Σ [x]
! −∇V · f − l2 ∈ Σ [x]

Then R0 = Rn.

Reference: Vidyasagar, M., Nonlinear Systems Analysis, SIAM, 2002.

(Refer to Section 5.3 for theorems on Lyapunov’s direct method.)
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Global Stability Example with sosopt
% Code from Parrilo1_GlobalStabilityWithVec.m

% Create vector field for dynamics
pvar x1 x2;
x = [x1;x2];
x1dot = -x1 - 2*x2^2;
x2dot = -x2 - x1*x2 - 2*x2^3;
xdot = [x1dot; x2dot];

% Use sosopt to find a Lyapunov function
% that proves x = 0 is GAS

% Define decision variable for quadratic
% Lyapunov function
zV = monomials(x,2);
V = polydecvar(’c’,zV,’vec’);

% Constraint 1 : V(x) - L1 \in SOS
L1 = 1e-6 * ( x1^2 + x2^2 );
sosconstr{1} = V - L1;

% Constraint 2: -Vdot - L2 \in SOS
L2 = 1e-6 * ( x1^2 + x2^2 );
Vdot = jacobian(V,x)*xdot;
sosconstr{2} = -Vdot - L2;

% Solve with feasibility problem
[info,dopt,sossol] = sosopt(sosconstr,x);
Vsol = subs(V,dopt)
Vsol =

0.30089*x1^2 + 1.8228e-017*x1*x2 + 0.6018*x2^2

!4 !2 0 2 4
!4

!3

!2

!1

0

1

2

3

4

0
.1

0.5

0.5

1

1

1

2
2

2

2

2

5
5

5

5

5
5

5

x1

x
2
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Local Stability Theorem

Theorem: Let l1 ∈ R [x] satisfy l1(0) = 0 and l1(x) > 0 ∀x.
If there exists V ∈ R [x] such that:

! V (0) = 0
! V − l1 ∈ Σ [x]
! ΩV,γ := {x ∈ Rn : V (x) ≤ γ} ⊆{ x ∈ Rn : ∇V · f < 0} ∪{ 0}

Then ΩV,γ ⊆ R0.

Proof: The conditions imply that ΩV,γ is bounded and hence the
result follows from Lemma 40 in Vidyasagar.

0

∂V
∂x f < 0

V ≤ γ
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Local Stability via SOS Optimization

Idea: Let ẋ = Ax be the linearization of ẋ = f(x). If A is Hurwitz
then a quadratic Lyapunov function shows that x = 0 is locally
asymptotically stable. Use the polynomial S-procedure to verify a
quantitative estimate.

1. Select Q ∈ Sn×n, Q > 0 and compute P > 0 that satisfies
the Lyapunov Equation: AT P + PA = −Q

! Vlin(x) = xT Px is a quadratic Lyapunov function proving
x = 0 is locally asymptotically stable.

! This step can be done with: [Vlin,A,P]=linstab(f,x)

2. Define l2 ∈ R [x] such that l2(0) = 0 and l2(x) > 0 ∀x. Solve
the set containment maximization problem using pcontain:

max
γ∈R

γ subject to ΩV,γ ⊂ {x ∈ Rn : ∇Vlin · f − l2 ≤ 0}
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Example: ROA Estimate for the Van der Pol Oscillator (1)

% Code from VDP_LinearizedLyap.m

% Vector field for VDP Oscillator
pvar x1 x2;
x = [x1;x2];
x1dot = -x2;
x2dot = x1+(x1^2-1)*x2;
f = [x1dot; x2dot];

% Lyap fnc from linearization
Q = eye(2);
Vlin = linstab(f,x,Q);

% maximize gamma
% subject to:
% {Vlin<=gamma} in {Vdot<0} U {x=0}
z = monomials(x, 1:2 );
L2 = 1e-6*(x’*x);
Vdot = jacobian(Vlin,x)*f;
[gbnds,s] = pcontain(Vdot+L2,Vlin,z);
Gamma = gbnds(1)

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

x1

y
1

gamma = 2.3041

Q=eye(2)
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Example: ROA Estimate for the Van der Pol Oscillator (2)

Choosing Q = [ 1 0
0 2 ] slightly increases ΩV,γ along one direction but

decreases it along another.

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

x1

x
2

gamma = 3.1303

Q=eye(2)Q=diag([1 2])
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Example: ROA Estimate for the Van der Pol Oscillator (3)

Choosing Q = [ 5 0
0 2 ] has the opposite effect on ΩV,γ .

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

x1

x
2

gamma = 6.987

Q=eye(2)Q=diag([1 2])

Q=diag([5 2])
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Increasing the ROA Estimate
For this problem, pcontain solves:

max
γ∈R,s∈Σ[x]

γ

s.t.: − (∇Vlin · f + l2 + s(γ − Vlin)) ∈ Σ [x]

Objective: Increase the “size” of ΩV,γ subject to the same
constraints by searching over quadratic or higher degree Lyapunov
functions.

Question: How should we measure the “size” of the ROA estimate?

Approach:
Introduce a shape factor p which:

! is a positive definite polynomial

! captures the intent of the analyst

! (preferably) has simple sublevel sets

0

V ≤ γ

dV
dx f < 0

p ≤ β
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Increasing the ROA Estimate

We increase the ROA estimate by increasing the shape function
contained with a Lyapunov level set.

β∗ = max
V ∈R[x], β∈R

β

subject to:

Ωp,β ⊆ ΩV,1

ΩV,1 ⊆ {∇V · f(x) < 0} ∪{ 0}
V − l1 ∈ Σ [x] , V (0) = 0

0

V ≤ 1

∂V
∂x f < 0

p ≤ β

How are the set contaiments verified?
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Increasing the ROA Estimate

Applying the polynomial S-procedure to both set containment
conditions gives:

max
s1,s2∈Σ[x], V ∈R[x], β∈R

β

subject to:

− ((V − 1) + s1(β − p)) ∈ Σ [x]

− ((∇V · f + l2) + s2(1− V )) ∈ Σ [x]

V − l1 ∈ Σ [x] , V (0) = 0

0

V ≤ 1

∂V
∂x f < 0

p ≤ β

This is not an SOS programming problem since the first constraint
is bilinear in variables s1 and β and the second constraint is
bilinear in variables s2 and V .
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Solving the Bilinear ROA Problem
A coordinate-wise V -s iteration is a simple algorithm to find a
sub-optimal solution to this optimization.

! For fixed V , the constraints decouple into two subproblems

γ∗ = max
γ∈R,s2∈Σ[x]

γ s.t. − ((∇V · f + l2) + s2(1− V )) ∈ Σ [x]

≤ max
γ∈R

γ s.t. ΩV,γ ⊆ {∇V · f(x) < 0} ∪ {0}

β∗ = max
β∈R,s1∈Σ[x]

β s.t. − ((V − γ∗) + s1(β − p)) ∈ Σ [x]

≤ max
β∈R

β s.t. Ωp,β ⊆ ΩV,γ∗

pcontain can be used to compute γ∗ and β∗ as well as
multipliers s1 and s2.

! For fixed s1 and s2, we could maximize β with V subject to
the local ROA constraints. We obtain better results by re-
centering V to the analytic center of the LMI associated with:

−
`
(V − 1) + s1(β∗ − p)

´
∈ Σ [x]

−
`
(∇V · f + l2) + s2(γ∗ − V )

´
∈ Σ [x]

V − l1 ∈ Σ [x] , V (0) = 0
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Example: V-s Iteration for the Van der Pol Oscillator
% Code from VDP_IterationWithVlin.m
pvar x1 x2;
x = [x1;x2];
x1dot = -x2;
x2dot = x1 + (x1^2-1)*x2;
f = [x1dot; x2dot];

% Create shape function and monomials vectors
p = x’*x;
zV = monomials( x, 2:6 ); % V has Deg = 6
z1 = monomials( x, 0:2 );
z2 = monomials( x, 1:2 );
L2 = 1e-6*(x’*x);

% Initialize Lyapunov Function
V = linstab(f,x);

% Run V-s iteration
opts.L2 = L2;
for i1=1:30;

% gamma step
Vdot = jacobian(V,x)*f;
[gbnds,s2] = pcontain(Vdot+L2,V,z2,opts);
gamma = gbnds(2);

% beta step
[bbnds,s1] = pcontain(V-gamma,p,z1,opts);
beta = bbnds(1)

% V step (then scale to roughly normalize)
if i1~=30

V = roavstep(f,p,x,zV,beta,gamma,s1,s2,opts);
V = V/gamma;

end
end

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

x1

x
2

Iteration = 30 beta = 2.3236

 

 

Limit Cycle

V==!

p=="
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Use of Simulation Data

! The performance of the V -s iteration depends on the initial
choice for V .

! Up to this point we have only started the iteration using the
Lyapunov function obtained from linear analysis.

! It is also possible to used simulation data to construct initial
Lyapunov function candidates for the iteration.

! The following slides explore this use of simulation data.
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Use of Simulation Data

! Given a set G, is G ⊂ ROA ?

! Run simulations starting in G.

! If any diverge, no.

! If all converge, “maybe yes.”

G

Fact: A Lyapunov certificate would remove the “maybe”.

G ∈ ΩV,γ=1 ⊆ {x ∈ Rn : ∇V (x) · f(x) < 0}

Question: Can we use the simulation data to construct candidate
Lyapunov functions for assessing the ROA?
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How can the simulation data be used?
If there exists V to certify that G is in the ROA through Lyapunov
arguments, it is necessary that

! V > 0
! V ≤ 1 on converging trajectories starting in G
! V̇ < 0 on converging trajectories starting in G
! V > 1 on non-converging trajectories starting in the

complement of G

V ≤ 1

∂V
∂x f < 0

c

d

G

The V we are looking for (which may not even exist) must satisfy
these constraints.
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Simulation-based constraints on V

! Assume V is linearly parameterized in some basis functions
V (x) = αT φ(x), e.g. φ(x) can be a vector of monomials.

! Let Fα denote the set of coefficients α of Lyapunov functions
which satisfy the constraints on some domain in the state
space.

! Enforcing the constraints on the previous slide on the
simulation trajectory points leads to LP constraints on α.

! The collection of the LP constraints forms a polytope outer
bound on the set Fα of coefficients.

Fα
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Set of Candidate V ’s

! We can sample the polytope outer bound of Fα by solving an
LP feasibility problem.

! If the LP is infeasible then Fα is empty.
! If the LP is feasible then we can test if V = αT φ is a

Lyapunov function using SOS optimization methods.

! We can incorporate additional convex constraints on α
! V − l1 ∈ Σ [x] ⇒ LMI constraints on α
! The linear part of f and quadratic part of V must satisfy the

Lyapunov inequality ⇒ LMI constraints on α.

! Let Y denote the set of α which satisfy the LP constraints
from simulation data and the LMI constraints described above.
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Hit-and-run (H&R) algorithm

• As the number of constraints in-
creases, the outer convex set Y
becomes a tighter relaxation.

⇒ Samples from Y become
more likely to be in Fα.

α(0)

α(1)
α(5)

α(4)
α(2)

α(3)

ΦT
3 α = b3

ΦT
2 α = b2

ΦT
4 α = b4

ΦT
1 α
= b1

• Strategy: generate points in Y, i.e., Lyapunov function
candidates, and evaluate β they certify.

• Generation of each point Y (after the initial feasible point)
involves solving 4 small LMIs and trivial manipulations.

t(k) := min
{

maxj

{
0,

bj−ΦT
j α(k)

ΦT
j ζ(k)

}
, t(k)

SOS , t(k)
lin

}
,

t(k) := max
{

minj

{
0,

bj−ΦT
j α(k)

ΦT
j ζ(k)

}
, t(k)

SOS , t(k)
lin

}
,
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Assessing the candidate: checking containments

For a given V ,

βV := max
β,γ

β subject to:

0

V ≤ γ

dV
dx f < 0

p ≤ β

This can be solved in two steps solving smaller “affine” SDPs
sequentially:

γ∗ := max γ
−

[
(γ − V )s2 + s3

dV
dx f + l2

]
∈ Σ[x]

βV := max β
− [(β − p)s1 + (V − γ∗)] ∈ Σ[x]

0

∂V
∂x f < 0

V ≤ γ∗

p ≤ β∗

These are the same γ and β steps from the V -s iteration.
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Overview of the method

Is G ⊂ ROA? "

V ≤ 1

∂V
∂x f < 0

G

x-space

" Large bilinear
SOS problem

" Prior info
simulation, etc.

"

Fα

α-space

" Smaller affine
SOS problem

!

#
Further optimization

#
Relatively efficient results
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Properties of simulation-aided analysis

• Integration of simulation data yields higher reliability and better
scalability

! Balance between expressive power, computational complexity,
and conservatism.

! Not blind search, not hit-or-miss – Start collecting proofs from
initial steps on and then refine.

Most of the computation is trivially parallelizable.

• We have automated this procedure (and more add-ons).

!"##$%&&

'()*&+,"-.+/),%& %(012/-#3%&

+#3+21%(4,&

+#0!1)/-#3/225&+*/22,36(36&

(3+#3+21%(4,&

%+/2/72,&
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Example: controlled aircraft [Short period pitch axis model]

• States: pitch rate (q), AoA (α), and pitch angle (θ).
• Control: elevator deflection (u)(2-state LTI).
• Cubic polynomial approximation (from Honeywell).
• p(x) = xT x, [x: plant and controller states].

η̇ = Acη + Bcy
u = Ccη + Dcy

"u
q̇ = fq(q, α, u)
α̇ = fα(q, α, u)

θ̇ = q, y = [q θ]T
y"

Just sample-and-assess:
β = 8.9 (quartic)

β = 6.2 (quadratic)

Simulation-aided analysis + coordinate-wise affine iterations:
! deg(V )= 2 ⇒ β = 8.6 in 2 minutes

! deg(V )= 4: 14.6 < 15.3 ≤ βopt ≤ 16.1
↑ ↑ ↑

30 min 45 min div. traj.

sim-aided off-the-shelf solver
5 states 30 minutes 38 hours

5 states + 1st order Pade (in u) 50 minutes out-of-memory
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Falling leaf mode in F/A-18 Hornet

Falling leaf motion: out-of-control

! oscillations in roll and yaw

! fluctuations in AoA and sideslip
→ loss of lift

!"#$%&'()&*+(,-./001112#3455"#6+4#,"7'52#*+(

!!"#$%"

"!"#$%"

!"#$%&#'%

%(#)*&#'%

Revised flight control law:

Extensive flight tests → suppression of the falling leaf mode.

Linear analysis has not detected any performance issues for the
baseline controller. What does nonlinear analysis say?
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Modeling Summary

! The reduced order, nonlinear 3rd polynomial model captures
the characteristics of the falling leaf motion.

! For analysis purpose, roll-coupled maneuvers that drive the
aircraft to the falling leaf motion are considered.

! The velocity is assumed to be fixed at 250 ft/s.

ẋ = f(x, u) , y = h(x)

x=

2

666664

angle-of-attack(α)
sideslip angle(β)

roll rate(p)
yaw rate(r)
pitch rate(q)
bank angle(φ)

3

777775
, y =

2

66666664

angle-of-attack(α)
roll rate(p)
yaw rate(r)
pitch rate(q)

lateral acceleration(ay)
sideslip rate(β̇)
sideslip angle(β)

3

77777775

u =

2

4
aileron deflection(δail)
rudder deflection(δrud)

stabilator deflection(δstab)

3

5
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Nonlinear Region-of-Attraction Analysis

Results on Estimating ROA: α vs. β
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Nonlinear Region-of-Attraction Analysis

Results on Estimating ROA: p vs. r
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Nonlinear Region-of-Attraction Analysis (cont’d)

Computational Aspects

! Computational time for estimating both lower and upper
bound are as follows:

Analysis Iteration Steps Baseline Revised
V-s Iteration(1) 40 6.8 Hrs 4.7 Hrs

Monte Carlo Upper Bound(2) 5 million 96 Hrs 96 Hrs

(1) V-s iteration analysis performed on Intel(R) Core(TM) i7 CPU 2.67GHz 8.00GB RAM

(2) Monte Carlo analysis performed on Intel(R) Core(TM)2 Duo CPU E65550 2.33GHz 3.00GB RAM
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Robust ROA analysis with
parametric uncertainty
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Systems with parametric uncertainty

System with parametric uncertainty governed by

ẋ(t) = f(x(t), δ)

The parameter δ is

! constant

! unknown

! known to take values on the bounded set ∆

Assumption:

! For each δ ∈ ∆, the origin is an equilibrium point, i.e.,

f(0, δ) = 0 for all δ ∈ ∆.
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ROA analysis for systems with parametric uncertainty

System with constant parametric uncertainty governed by

ẋ(t) = f(x(t), δ)

Question: Given a set G,

! is G in the ROA for each δ ∈ ∆?
! is G a subset of the robust ROA, defines as⋂

δ∈∆

{ζ ∈ Rn : lim
t→∞

ϕ(ζ, t; δ) = 0}?

[ ϕ(ζ, t; δ) is the solution at time t with initial condition ζ for δ.]

G
δ1

δ2

δ3
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ROA analysis for ẋ = f(x, δ)

Theorem: If there exists a continuously differentiable function V
such that

! V (0) = 0, and V (x) > 0 for all x *= 0
! ΩV,1 = {x : V (x) ≤ 1} is bounded

! For each δ ∈ ∆, the set containment

{x : V (x) ≤ 1}\{0} ⊂ {x : ∇V (x)f(x, δ) < 0}

holds, then {x ∈ Rn : V (x) ≤ 1} is an invariant subset of the
robust ROA.
Proof: Apply Lyapunov theory to each system ...

A few issues:

! “For each δ ∈ ∆...” there are infinite number of set containment
conditions.

! V does not depend on δ, though f does, will this be restrictive?
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ROA analysis: f(x, δ) affine in δ

Affine uncertainty dependence & bounded, polytopic ∆ (with
vertices E)

ẋ(t) = f0(x(t)) +
m∑

i=1

fi(x(t))δi = f0(x(t)) + F (x(t))δ

Theorem: If ∆ is a polytope, and for all δ ∈ E

ΩV \ {0} ⊆{ x ∈ Rn : ∇V (x)(f0(x) + F (x)δ) < 0} ,

then the set containment holds for all δ ∈ ∆.

Proof:
For each δ̃ ∈ ∆, ∇V (x)F (x)δ̃
is a convex combination of
{∇V (x)F (x)δ : δ ∈ ∆}.

δ1

f [3] = f0 + F δ[3]

f [2] = f0 + F δ[2]f [1] = f0 + F δ[1]

δ2

f [5]

f [4]
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ROA analysis with parameter-independent V (2)

ẋ(t) = f0(x(t)) + F (x(t))δ

Impose at the vertices of ∆, then they hold everywhere on ∆.

ΩV \ {0} ⊆{ x ∈ Rn : ∇V (x)(f0(x) + F (x)δ) < 0}

0

V ≤ 1

∂V
∂x f [1] < 0

∂V
∂x f [2] < 0

∂V
∂x f [3] < 0

δ1

f [3] = f0 + F δ[3]

f [2] = f0 + F δ[2]f [1] = f0 + F δ[1]

δ2

f [5]

f [4]

For every i = 1, . . . , Nvertex (index to elements of E),

−
[
(1− V )s2 + s3∇V · (f0 + F δ[i]) + l2

]
is SOS in x (only)
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SOS problem for robust ROA computation

max
0<γ,0<β,V ∈V,s1∈S1,s2δ∈S2,s3δ∈S3

β subject to

s2δ ∈ Σ[x], and s3δ ∈ Σ[x]

−[(γ − V )s2δ +∇V (f0 + F (x)δ)s3δ + l2] ∈ Σ[x] ∀δ ∈ E ,

−[(β − p)s1 + V − 1] ∈ Σ[x]

! Bilinear optimization problem
! SOS conditions:

! only in x
! δ does not appear, but...
! there are a lot of SOS constraints (δ ∈ E)
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Example

Consider the system with a single uncertain parameter δ

ẋ1 = x2

ẋ2 = −x2 − (δ + 2)(x1 − x3
1)

with δ ∈ [−1, 1].

Codepad Demo: attached to the end of the slides.
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Dealing with conservatism: partition ∆
$

"δ1

δ2

For all δ ∈ ∆:

{x : V0(x) ≤ 1}\{0}
⊂

{
x : ∂V0

∂x f(x, δ) < 0
}

$

"δ1

δ2

For all δ ∈ upper half of ∆:

{x : V1(x) ≤ 1}\{0}
⊂

{
x : ∂V1

∂x f(x, δ) < 0
}

For all δ ∈ lower half of ∆:
{x : V2(x) ≤ 1}\{0}
⊂

{
x : ∂V2

∂x f(x, δ) < 0
}

V1 := V0 and V2 := V0 are feasible for the right-hand side.
Improve the results by searching for different V1 and V2.
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Dealing with conservatism: branch-and-bound in ∆

Systematically refine the partition of ∆:

! Run an informal branch-and-bound (B&B) refinement
procedure

Sub-division strategy: Divide the worst cell into 2 subcells.

$

"δ1

δ2
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Properties of the branch-and-bound refinement
! Yields piecewise-polynomial,

δ-dependent V .

! Local problems are decoupled
→ parallel computing

$

"δ1

δ2

! Organizes extra info regarding system behavior: returns a data
structure with useful info about the system

! Lyapunov functions, SOS certificates,
! certified β,
! worst case parameters,
! initial conditions for divergent trajectories,
! values of β not achievable, etc.
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Non-affine dependence on δ

Let g : R → R.

ẋ(t) = f0(x(t)) + δf1(x(t)) + g(δ)f2(x(t))
= f0(x(t)) + δf1(x(t)) + ζf2(x(t))

Treat (δ, g(δ)) as 2 parameters, whose values lie on a
1-dimensional curve. Then

∗ Cover 1-d curve with 2-polytope
∗ Compute ROA
∗ Refine polytope into a union of
smaller polytopes
∗ Solve robust ROA on each poly-
tope
∗ Intersect ROAs → robust ROA

0! 0.1! 0.2! 0.3! 0.4! 0.5! 0.6! 0.7! 0.8! 0.9! 1!
0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

!!

!
!2!

65/100



Non-affine dependence on δ

Let g : R → R.

ẋ(t) = f0(x(t)) + δf1(x(t)) + g(δ)f2(x(t))
= f0(x(t)) + δf1(x(t)) + ζf2(x(t))

Treat (δ, g(δ)) as 2 parameters, whose values lie on a
1-dimensional curve. Then

∗ Cover 1-d curve with 2-polytope
∗ Compute ROA
∗ Refine polytope into a union of
smaller polytopes
∗ Solve robust ROA on each poly-
tope
∗ Intersect ROAs → robust ROA

0! 0.1! 0.2! 0.3! 0.4! 0.5! 0.6! 0.7! 0.8! 0.9! 1!
0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!
3 subdivisions!
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Generalization of covering manifold
Given:

! polynomial g(δ) in many real variables, δ ∈ Rq

! domain H ⊆ Rq, typically a polytope

Find a polytope that covers {(δ, g(δ)) : δ ∈ H} ⊆ Rq+1.

! Tradeoff between number of vertices, and

! excess “volume” in polytope

One approach: Find “tightest” affine upper and lower bounds to g
over H.

g(!) 

H 

min
c0,c

∫

H
(c0 + cT δ)dδ subject to c0 + cT δ ≥ g(δ) ∀δ ∈ H

This optimization can be solved as a SOS program.
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Non-affine dependence on δ (2)

Covering {(δ, g(δ) : δ ∈ H} introduces extra conservatism.

H
1 

H
2 

H 

partition H 

B&B refinement reduces the conservatism due to covering by
reducing the extra covered space.
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Multiple non-affine parametric uncertainty

For multivariable g,

ẋ = f0(x) + δ1f1(x) + · · ·+ δqfq(x)+
g1(δ)fq+1(x) + · · ·+ gm(δ)fq+m(x)

On H, bound each gi with affine functions ci and di

ci(δ) ≤ gi(δ) ≤ di(δ) ∀δ ∈ H

Then (Amato, Garofalo, Gliemo) a poly-
tope covering {(δ, g(δ)) : δ ∈ H} is
{
(δ, v) ∈ Rq×m : δ ∈ H,C(δ) ≤ v ≤ D(δ)

}

with 2q+m easily computed vertices.

δ

ζ1

ζ2
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Example: Interesting 2-state uncertain dynamics [Chesi, 2004]

ẋ =
[

−x1

3x1 − 2x2

]
−

[
6x2 − x2

2 − x3
1

10x1 − 6x2 − x1x2

]
δ+

[
4x2 − x2

2

12x1 − 4x2

]
δ2,

• δ ∈ [0, 1].
• No common quadratic V for uncertain linearized dyn.
• p(x) = xT x.
• 50 branch-and-bound refinements

x
1

x
2

!1 0 1

!1 

!0.5 

0

0.5

1

1.5

Blue dotted curve: Result from Chesi,
2004.

Red curves: Intersection of ΩV,1 for
V ’s obtained through the B&B refine-
ment (inner for deg(V ) = 2 and outer
for deg(V ) = 4)

Black dotted curves: Certified Ωp,β

for deg(V ) = 2 (inner) and for deg(V )
= 4 (outer)
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Example: Interesting 2-state uncertain dynamics
B&B iterations: Divide the cell with the smallest β into 2.

deg(V ) = 2

10 20 30
0

0.5

1

number of iterations

!

deg(V ) = 4

10 20 30
0

0.5

1

number of iterations

!

! Upper bounds from divergent trajectories
! Upper bound does not depend on the complexity/degree of V

! Upper bounds from infeasibility of the affine relaxation
! This bound shows how the basis choice for V impacts what is

certifiable.
! Certified values (using ideas from last previous 100+ slides)
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Dealing with large number of constraints

The SOS problem for the robust ROA includes the constraint:

−[(γ − V )s2δ +∇V (f0 + F (x)δ)s3δ + l2] ∈ Σ[x] ∀δ ∈ E

The number of vertices grows fast with the dimension of the
uncertainty space.

$

"δ1

δ2

•

• •

•

Suboptimal procedure:
! Sample ∆ with fewer points (fewer than in E)
! Optimize V for this restricted sampling
! Certify a value of β, using this V , at all vertices of ∆

The last step involves solving decoupled smaller problems.
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Dealing with large number of constraints: 2-step procedure

! Call the Lyapunov function computed for a sample of ∆ as Ṽ .

! For each δ ∈ E , compute

γδ := max
0<γ,s2δ∈S2,s3δ∈S3

γ subject to

s2δ ∈ Σ[x], and s3δ ∈ Σ[x]
−[(γ − Ṽ )s2δ +∇Ṽ (f0 + F δ)s3δ + l2] ∈ Σ[x],

and define
γsubopt := min {γδ : δ ∈ E} .

ΩṼ ,γsubopt is an invariant subset of the robust ROA.

! Determine the largest sublevel set of p contained in ΩṼ ,γsubopt

max
s1∈S1,β

β subject to

s1 ∈ Σ[x]
−[(β − p)s1 + Ṽ − γsubopt] ∈ Σ[x].
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Revisit Chesi, 2004 with suboptimal ∆ sampling
B&B iterations: Divide the cell with the smallest β into 2.

deg(V ) = 2

10 20 30 40 50
0

0.5

1

number of iterations

!

deg(V ) = 4

20 40 60
0

0.5

1

number of iterations

!

! Upper bounds from divergent trajectories

! Upper bounds from infeasibility of the affine relaxation

! Lower bounds directly computing the robust ROA

! Lower bounds computing the robust ROA in two steps (sample
∆ at cell center → optimize V → verify at the vertices)
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Controlled aircraft [Short period pitch axis model]

Uncertain closed loop dynamics with
! x = (xp, x4), p(x) = xT x
! Cubic poly approx from Honeywell

ẋ = f0(x) + f1(x)δ1 + f2(x)δ2 + f3(x)δ2
1

! δ1 ∈ [0.99, 2.05] (uncertainty in the center of gravity)

! δ2 ∈ [−0.1, 0.1] (uncertainty in mass)

Implemented on a 9-processor cluster

! Problems for 9 cells are solved at a time

! Trivial speed up as expected.

ẋ4 = Acx4 + Bcy
v = Ccx4

controller

"u ẋp = fp(xp, δ1, δ2) + B(xp)u
y = [x1 x3]T

plant
(pitch rate, AoA, pitch angle)

y"
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Results - controlled aircraft dynamics

! " # $ % & '
!

&

"!

"&

()*+,-./0.121.34,53

!
!
(6

78)93:!)55,-7.9(;.</=,-.+/)(;3.0/-.">?@.A.#

78)93:!)55,-7.9(;.</=,-.+/)(;3.0/-.">?@.A.%

Strategy:

! Optimize at the center

! Verify at the vertices

Quasi upper bound: β cer-
tified (by the SOS problem)
for the “center system” in
the first step.

0.8 1 1.2 1.4 1.6 1.8 2 2.2

!0.1

!0.05

0

0.05

0.1

δ
1

δ
2

ẋ = f0(x) + f1(x)δ1

+ f2(x)δ2 + f3(x)δ2
1
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Controlled aircraft + 1st order unmodeled dynamics

ẋ4 = Acx4 + Bcy
v = Ccx4

δ3 ∈ [−1, 1], δ4 ∈ [10−2, 102]

"v

" 0.75δ3
s−δ4
s+δ4

1.25 #•
+

" "u

δp = (δ1, δ2)

ẋp = fp(xp, δp) + B(xp, δp)u
y = [x1 x3]T

y"

ẋ = f0(x) +
4∑

i=1

fi(x)δi + f5(x)δ2
1 + f6(x)δ1δ3 + f7(x)δ2δ3

! First order LTI
unmodeled dyn
(state x5)

! p(x) = xT x,

x =
[
xT

p x4 x5

]T
.

Certified

%%%%%%%%%%%%%%dyn uncer
param uncer

with without

with 2.8 4.9
without 5.4 8.0

How about other uncertainty descriptions (e.g. unmodeled
dynamics)?

Coming up later
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Local input-output analysis
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What if there is external input/disturbance?

So far, only internal properties, no external inputs!

What if there are external inputs/disturbances?

z! ẋ = f(x, w)
z = h(x)

! w

f(0, 0) = 0, h(0) = 0

If w has bounded energy/amplitude and system starts from rest

! (reachability) how far can x be driven from the origin?

! (input-output gain) what are bounds on the output
energy/amplitude in terms of input energy?
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Notation

! For u : [0,∞) → Rn, define the (truncated) L2 norm as

‖u‖2,T :=

√∫ T

0
u(t)T u(t)dt.

! For simplicity, denote ‖u‖2,∞ by ‖u‖2.
! L2 is the set of all functions u : [0,∞) → Rn such that
‖u‖2 < 0.

! For u : [0,∞) → Rn and for T ≥ 0, define uT : [0,∞) → Rn

as

uT (t) :
{

u(t), 0 ≤ t ≤ T
0, T < t

! L2,e is the set of measurable functions u : [0,∞) → Rn such
that uT ∈ L2 for all T ≥ 0.
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Upper bounds on “local” L2 → L2 input-output gains

Goal: Establish relations between inputs and
outputs:

z! ẋ = f(x, w)
z = h(x)

!w

x(0) = 0 & ‖w‖2 ≤ R ⇒ ‖z‖2 ≤ γ‖w‖2.

! Given R, minimize γ

! Given γ, maximize R

The H∞ norm is a lower bound
on the set of γ’s which satisfy
inequalty.

Why“local” analysis?

R

γ
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Upper bounds on “local” L2 → L2 input-output gains

Goal: Establish relations between inputs and
outputs:

z! ẋ = f(x, w)
z = h(x)

!w

x(0) = 0 & ‖w‖2 ≤ R ⇒ ‖z‖2 ≤ γ‖w‖2.

! Given R, minimize γ

! Given γ, maximize R

The H∞ norm is a lower bound
on the set of γ’s which satisfy
inequalty.

Why“local” analysis?

R

γ
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Local gain analysis

Theorem: If there exists a continuously differentiable function V
such that V (0) = 0, V (x) > 0 for all x *= 0,

! ΩV,R2 := {x : V (x) ≤ R2} is bounded

z! ẋ = f(x, w)
z = h(x)

!w

! ∇V f(x, w) ≤ wT w − 1
γ2 h(x)T h(x) for all x ∈ ΩV,R2 and

w ∈ Rnw ,

then

x(0) = 0, w ∈ L2,e, & ‖w‖2,T ≤ R ⇒ ‖z‖2,T ≤ γ‖w‖2,T .

! Note that algebraic condition on (x, w) ∈ Rn × Rnw implies a
relation between the signals w ∈ L2,e and z = h(x) ∈ L2,e.

! Supply rate, wT w − 1
γ2 h(x)T h(x); Storage function, V .
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Bilinear SOS problem formulation for gain analysis

For given γ > 0 and positive definite function l, define RL2 by

R2
L2

:= max
V ∈Vpoly,R2>0,s1∈S1

R2 subject to

V (0) = 0, s1 ∈ Σ[(x, w)],
V − l ∈ Σ[x],

−
[
(R2 − V )s1 +∇V f(x, w)− wT w + γ−2zT z

]
∈ Σ[(x, w)].

Then,

x(0) = 0 & ‖w‖2 ≤ RL2 ⇒ ‖z‖2 ≤ γ‖w‖2.

! Vpoly and S’s are prescribed finite-dimensional subsets of R[x].
! R2

L2
is a function of Vpoly, S, and γ. This dependence will be

dropped in notation.

• Similar problem for minimizing γ for given R.
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Strategy to solve the bilinear SOS problem in gain analysis

Coordinate-wise affine search: Given a “feasible” V , alternate
between

! maximize R2 by choice of s1 (requires bisection on R!)

R2
L2

:= max
R2>0,s1∈S1

R2 subject to

s1 ∈ Σ[(x, w)],
−

[
(R2 − V )s1 +∇V f(x, w)− wT w + γ−2zT z

]
∈ Σ[(x, w)].

! fix the multiplier and maximize R2 by choice of V .

R2
L2

:= max
V ∈Vpoly,R2>0

R2 subject to

V (0) = 0, V − l ∈ Σ[x],
−

[
(R2 − V )s1 +∇V f(x, w)− wT w + γ−2zT z

]
∈ Σ[(x, w)].
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Strategy to solve the bilinear SOS problem in gain analysis

Finding initial “feasible” V :
! Incorporate simulation data (requires to sample the input

space!)

! Let γ > gain of the linearized dynamics

δ̇x = Aδx + δw

δz = Cδx

and let P 2 0 satisfy
[

AT P + PA + 1
γ2 CT C PB

BT P −I

]
≺ 0.

Then, there exists a small enough R such that

x(0) = 0 & ‖w‖2 ≤ R ⇒ ‖z‖2 ≤ γ‖w‖2.
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Lower bound for L2 → L2 gain

Let γ and R be obtained through the SOS based gain analysis.
Then, for T ≥ 0

max
w

{‖z‖2,T : x(0) = 0 & ‖w‖2,T ≤ R} ≤ γR.

The first-order conditions for stationarity of the above finite horizon
maximum are the existence of signals (x, λ) and w which satisfy

ẋ = f(x, w)
‖w‖22,T = R2

λ(T ) =
(

∂‖z‖22,T

∂x

)T

λ̇(t) = −
(

∂f(x(t),w(t))
∂x

)T
λ(t)

w(t) = µ
(

∂f(x(t),w(t))
∂w

)T
λ(t),

for t ∈ [0, T ], where µ is chosen such that ‖w‖2,T = R.
Tierno, et.al., propose a power-like method to solve a similar
maximization. 85/100



Gain Lower-Bound Power Algorithm
Adapting for this case yields: Pick T > 0 and w with
‖w‖22,T = R2. Repeat the following steps until w converges.

1. Compute ‖z‖2,T (integration ẋ = f(x, w) with x(0) = 0
forward in time).

2. Set λ(T ) =
(

∂‖z‖22,T

∂x

)T

.

3. Compute the solution of λ̇(t) = −∂f(x(t),w(t))
∂x

T
λ(t),

t ∈ [0, T ] (integration backward in time).

4. Update w(t) = µ
(

∂f(x(t),w(t))
∂w

)T
λ(t).

! Step (1) of each iteration gives a valid lower bound on the
maximum (over ‖w‖2 = R) of ‖z‖2,T , independent of whether
the iteration converges;

! (main point of Tierno) if dynamics are linear and p quadratic,
then the iteration is convergent power iteration for H∞.

Implemented in worstcase.
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Adaptive Control: I/O Gain

Plant:

ẋ = −x + w + u

y = −1.8x + w + u

x ∈ R is the plant state, u ∈ R is the control input, y ∈ R is the
output, and w ∈ R is a disturbance.

Model-reference adaptive controller:

ẋm = −xm + r

żx = −x2 + xxm

żr = −xr + xmr

u = (1 + zr)r + zxx

xm is the reference model state, r is the reference signal, and zx

and zr are feedback gains which are tuned by the adaptation.

Question: What is the gain from disturbance w to output y?
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Results: Gain Bounds

0 1 2 3 4 5 6
1

2

3

4

5

R

!

Figure: Upper bounds on ‖S‖R for deg(V) = 2 (with 4) and deg(V) = 4
(with ×) before the refinement (blue curves) and after the refinement
(green curves) along with the lower bounds (red curve).
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Upper bounds on the reachable set

ẋ = f(x, w) with f(0, 0) = 0
! Find upper bounds on the reachable set from the origin for

bounded L2 input norm
! Denote the set of points reached from the origin with input

signals w such that ‖w‖2 ≤ R by ReachR.

ReachR := {x(t) : x(0) = 0, t ≥ 0, ‖w‖2 ≤ R}

Goal:
! Given a shape factor p (positive definite, convex function with

p(0) = 0), establish relations of the form

x(0) = 0 & ‖w‖2 ≤ R ⇒ p(x(t)) ≤ β ∀t ≥ 0.

! Two types of optimization
! Given R, minimize β
! Given β, maximize R
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A characterization of upper bounds on the reachable set

ẋ = f(x, w) with f(0, 0) = 0

Theorem: If there exists a continuously differentiable function V

such that

! V (x) > 0 for all x *= 0 and V (0) = 0
! ΩV,R2 =

{
ξ : V (ξ) ≤ R2

}
is bounded

! ∇V f(x, w) ≤ wT w for all x ∈ ΩV,R2 and for all w ∈ Rnw

then ReachR ⊆ ΩV,R2 .

Given R, solve

min
V,β

β

s.t. ΩV,R2 ⊆ Ωp,β

V satisfies above conditions

OR

Given β, solve

max
V,R2

R2

s.t. ΩV,R2 ⊆ Ωp,β

V satisfies above conditions
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Bilinear SOS problem formulation for reachability analysis

max
R2,V

R2 Original Problem

subject to:
V (0) = 0, V (x) > 0 ∀x *= 0{

x ∈ Rn : V (x) ≤ R2
}

is bounded
ΩV,R2 ⊆ Ωp,β

∇V f(x, w) ≤ wT w ∀ x ∈ ΩV,R2 & w ∈ Rnw

⇑ S-procedure - SOS

max
R2,V,s1,s2

R2 Reformulation

subject to:

−
[
(β − p) + (V −R2)s1

]
is SOS[x],

−
[
(R2 − V )s2 +∇V f(x, w) + wT w

]
is SOS[x, w],

V − εxT x is SOS[x], V (0) = 0, and
s1, s2, s3 are SOS.
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Generalizations: dissipation inequalities

The system
ẋ = f(x, w)
z = h(x)

with f(0, 0) = 0 and h(0) = 0 is said to be dissipative w.r.t. to
the supply rate r : (w, z) 6→ R if there exists a positive definite
function V such that V (0) = 0 and the following dissipation
inequality (DIE) holds

∂V

∂x
f(x, w) ≤ r(w, z)

for all x ∈ Rn & w ∈ Rnw .

! L2 → L2 gain: r(w, z) = wT w − zT z

! Reachability: r(w, z) = wT w

The system is said to be locally dissipative if the above DIE holds
only for all x ∈ {x : V (x) ≤ γ} for some γ > 0.
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Robust ROA and performance
analysis with unmodeled

dynamics
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Recall: the small-gain theorem

For stable M and Φ, the feedback interconnec-
tion is internally stable if

γ(M)γ(Φ) < 1. z w

" Φ

M !

! γ is an upper bound on the global L2 → L2 gain.

! Extensively used in linear robustness analysis where M is
linear time-invariant (existence of global gains is guaranteed).

! How to generalize to nonlinear M with possibly only local
gain relations?
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Local small-gain theorems for stability analysis
dx/dt = f(x,w) 

z = h(x) 

d!/dt = g(!,z) 

w = k(!) 

M 

" 

w z Let l be a positive definite func-
tion with l(0) = 0 e.g. l(x) =
εxT x and R > 0.
Let l̃ be a positive definite func-
tion with l̃(0) = 0.

For M : There exists a positive definite function V such that ΩV,R2

is bounded and for all x ∈ ΩV,R2 and w ∈ Rnw

∇V · f(x, w) ≤ wT w − h(x)T h(x)− l(x).

[M is “locally strictly dissipative” w.r.t. the supply rate
wT w − zT z certified by the storage function V.]
For Φ: There exists a positive definite function Q such that for all
η ∈ Rnη and z ∈ Rnz

∇Q · g(η, z) ≤ zT z − k(η)T k(η)− l̃(η).

[Φ is “strictly dissipative” w.r.t. zT z − wT w.]
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Local small-gain theorems for stability analysis (2)

Conclusion: S := V + Q is a Lya-
punov function for the closed-loop for
the closed-loop dynamics (ξ̇ = F (ξ)).

dx/dt = f(x,w) 

z = h(x) 

d!/dt = g(!,z) 

w = k(!) 

M 

" 

w z 

ξ =

»
x
η

–

Proof:

∇V · f(x, w) ≤ wT w − zT z − l(x) ∀x ∈ ΩV,R2 & w ∈ Rnw

∇Q · g(η, z) ≤ zT z − wT w − l̃(η) ∀η ∈ Rnη & z ∈ Rnz

∇V · f(x, g(η)) +∇Q · g(η, h(x)) ≤ l(x) + l̃(η)
∀(x, η) ∈

{
(x, η) : V (x) + Q(η) ≤ R2

}

∇S · F (ξ) ≤ −l(x)− l̃(η) = −L(ξ)
∀(x, η) ∈

{
(x, η) : S(x, η) ≤ R2

}

Corollary:

! {(x, η) : V (x) + Q(η) ≤ R2} is an invariant subset of the
ROA for the closed-loop dynamics.
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Estimating the ROA (for x states)

Let p be a shape factor (as before) and (V̄ , β̄, R̄) be a solution to
the above optimization

max
V ∈V,β≥0,R≥0

β subject to

V (x) > 0 for all x *= 0, V (0) = 0,
Ωp,β ⊆ ΩV,R2 ,

ΩV,R2 is bounded,
∇V f(x, w) ≤ wT w − zT z − l(x) ∀ x ∈ ΩV,R2 , ∀ w ∈ Rnw .

If Φ is strictly dissipative w.r.t. zT z − wT w and η(0) = 0, then for
any x(0) ∈ Ωp,β̄,

! x(t) stays in ΩV̄ ,R̄2

! x(t) → 0 as t →∞.
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Example: Controlled aircraft dynamics with unmodeled
dynamics

ẋ4 = Acx4 + Bcy
v = Ccx4

"

z w

$

"

1.25

0.75

Φ

#•
+

" "u ẋp = fp(xp, δp) + B(xp, δp)u

y = [x1 x3]T
y"

no δp with δp

no ∆ 9.4 / 16.1 5.5 / 7.9
with ∆ 4.2 / 6.7 2.4 / 4.1

In the table :
(∂(V ) = 2/∂(V ) = 4)

Closed-loop response with randomly generated first-order LTI Φ:
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Generalization to generic supply rates

Results hold when the “L2-gain supply rate” is
replaced by a general supply rate. z w

" Φ

M !

Suppose that

! Φ is strictly dissipative w.r.t. the supply rate r1(z, w) with the
corresponding storage function Q

! M satisfies

V f(x, w) ≤ r2(w, z)− l(x) ∀x ∈ ΩV,R2 & w ∈ Rnw

with
r1(z, w) = −r2(w, z) ∀w, z.

Then, {(x, η) : V (x) + Q(η) ≤ R2} is an invariant subset of the
ROA for the closed-loop dynamics.
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General procedure to construct “certificates”

! System properties → Algebraic conditions
! Lyapunov, dissipation inequalities.

! Algebraic conditions → Numerical optimization problems
! Restrict the attention to polynomial vector fields, polynomial

certificates,...
! S-procedure like conditions (for set containment constraints)
! Sum-of-squares (SOS) relaxations for polynomial nonnegativity
! Pass to semidefinite programming (SDP) that are equivalent of

SOS conditions

! Solve the resulting (linear or “bilinear”) SDPs

! Construct polynomial certificates

Recurring procedure for most computational analysis questions
(that I know) for dynamical systems.
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Robust ROA calculations

dynamics:

x1dot = x2;

x2dot = -x2-2*x1+2*x1^3 + delta*(-x1+x1^3);

with delta \in [-1,1]

This example was also used in Topcu and Packard, IEEE TAC, 2009 (in the special issue on
positive polynomials in controls (example 1 in the paper)

% Form the vector field
pvar x1 x2;
x = [x1;x2];
x1dot = x2;
x2dot = -x2-2*x1+2*x1^3;

Nominal system

f = [x1dot; x2dot];

Introduce an uncertain parameter

pvar d1

Specify its range

ini_cell = [-1 1];

Form the uncertain vector field

f = f + d1*[0; -x1+x1^3];

% Get the vertex system
[roaconstr,opt,sys] = GetRoaOpts(f, x);
[fNOM,fVER] = getf(sys,ini_cell);

% Generate the options, etc.
zV = monomials(x,2:4);
Bis.flag = 0;
Bis.r1deg = 4;

[roaconstr,opt,sys] = GetRoaOpts(fVER, x, zV, [], Bis);
sys.fWithDel = [];

opt.sim.NumConvTraj = 40;
opt.display.roaest = 1;
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Run the computations

outputs = wrapper(sys,[],roaconstr,opt);

------------------Beginning simulations
System 1: Num Stable = 0  Num Unstable = 1  Beta for Sims = 3.289  Beta UB = 3.289 
System 1: Num Stable = 0  Num Unstable = 2  Beta for Sims = 1.390  Beta UB = 1.390 
System 1: Num Stable = 2  Num Unstable = 3  Beta for Sims = 1.306  Beta UB = 1.306 
System 1: Num Stable = 4  Num Unstable = 4  Beta for Sims = 0.913  Beta UB = 0.913 
System 1: Num Stable = 6  Num Unstable = 5  Beta for Sims = 0.861  Beta UB = 0.861 
System 1: Num Stable = 12  Num Unstable = 6  Beta for Sims = 0.818  Beta UB = 0.842 
System 1: Num Stable = 18  Num Unstable = 7  Beta for Sims = 0.777  Beta UB = 0.808 
System 2: Num Stable = 1  Num Unstable = 1  Beta for Sims = 1.476  Beta UB = 0.808 
System 2: Num Stable = 3  Num Unstable = 2  Beta for Sims = 1.402  Beta UB = 0.808 
System 2: Num Stable = 6  Num Unstable = 3  Beta for Sims = 1.114  Beta UB = 0.808 
System 2: Num Stable = 6  Num Unstable = 4  Beta for Sims = 1.058  Beta UB = 0.808 
System 2: Num Stable = 8  Num Unstable = 5  Beta for Sims = 1.000  Beta UB = 0.808 
System 2: Num Stable = 10  Num Unstable = 6  Beta for Sims = 0.929  Beta UB = 0.808 
System 2: Num Stable = 11  Num Unstable = 7  Beta for Sims = 0.882  Beta UB = 0.808 
------------------End of simulations
------------------Begin search for feasible V
Try = 1   Beta for Vfeas = 0.882
Try = 2   Beta for Vfeas = 0.838
------------------Found feasible V
Initial V (from the cvx outer bnd) gives Beta = 0.173
-------------------Iteration = 1 
Beta = 0.567 (Gamma = 0.535) 
-------------------Iteration = 2 
Beta = 0.665 (Gamma = 0.604) 
-------------------Iteration = 3 
Beta = 0.716 (Gamma = 0.640) 
-------------------Iteration = 4 
Beta = 0.739 (Gamma = 0.656) 

Extract the solution

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

beta

beta =

    0.7388

Upper bound on beta

betaUpper

betaUpper =

    0.8822
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Plot the results

[Cp4,hp4] = pcontour(p,beta,[-2 2 -2 2],'k'); hold on;
set(hp4,'linewidth',2);
[CV4,hV4] = pcontour(V,gamma,[-2 2 -2 2],'b');
set(hV4,'linewidth',2);
set(gca,'xlim',[-1.5 1.5],'ylim',[-1.5 1.5]);

traj = outputs.RoaEstInfo.info.SimLFG.sim.Trajectories(1).unstab(end).state;
pval = peval(traj,p.coef,p.deg);
[aux,ind] = min(pval);
plot(traj(1,ind),traj(2,ind),'r*','markersize',8);
grid on;
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