
Quantitative Local Analysis of Nonlinear Systems

Ufuk Topcu
Control and Dynamical Systems

California Institute of Technology

September 17, 2009

Advertisement

Another workshop on V&V

! September 23&24, 2009
! At Caltech

Speakers:

Karl-Erik Arzen, Gerard Holzmann, Brian Williams, Mani Chandy,
Nancy Leveson, Rupak Majumdar, Paulo Tabuada, Sayan Mitra,
Stavros Tripakis, Edmund Clarke, Eric Feron, Rajeev Alur,
Allessandro Pinto, Andrew Packard, Ashish Tiwari, Domitilla Del
Vecchio, Calin Belta, Koushik Sen, Andre Platzer.

Participants include researchers from the academia, NSF, NASA,
Boeing, UTRC, Honeywell, Toyota, SRI.

http://www.cds.caltech.edu/~utopcu/VVworkshop.html

To attend, contact Ufuk Topcu at utopcu@cds.caltech.edu.
2/100

Acknowledgements

! The presentation is based on the slides from a pre-conference
workshop (ACC 2009) by Andrew Packard, Gary Balas, Peter
Seiler, and Ufuk Topcu.

! All material, required code, and other examples are available
through

http://www.cds.caltech.edu/~utopcu/NLShortCourse.html

! Ryan Feeley, Evan Haas, George Hines, Zachary
Jarvis-Wloszek, Erin Summers, Kunpeng Sun, Weehong Tan,
Timothy Wheeler, Abhijit Chakraborty.

! AFOSR and NASA NRA.

3/100

Tools for quantitative nonlinear robustness analysis

Quantify with certificate (and through an automated procedure)

ẋ = f(x, δ)
y! ẋ = f(x, w, δ)

y = h(x, δ)
!w

Region-of-attraction
(ROA)

Reachable set
Local input-output gain

Repeat the above in the presence of parametric uncertainties
δ ∈ ∆ (+ unmodeled dynamics)

f and h are vectors of polynomials in x and w.
! If not polynomial, much harder.

! Approximate and account for (extra) uncertainty

4/100

General procedure to construct “certificates”

! System properties → Algebraic conditions
! Lyapunov, dissipation inequalities.

! Algebraic conditions → Numerical optimization problems
! Restrict the attention to polynomial vector fields, polynomial

certificates,...
! S-procedure like conditions (for set containment constraints)
! Sum-of-squares (SOS) relaxations for polynomial nonnegativity
! Pass to semidefinite programming (SDP) that are equivalent of

SOS conditions

! Solve the resulting (linear or “bilinear”) SDPs

! Construct polynomial certificates

5/100

Preliminaries

6/100

Linear and Bilinear Matrix Inequalities

! Given matrices {Fi}N
i=0 ⊂ Sn×n, Linear Matrix Inequality

(LMI) is a constraint on λ ∈ RN of the form:

F0 +
N∑

k=1

λkFk $ 0

! Given matrices {Fi}N
i=0, {Gj}M

j=1, and {Hk,j}N
k=1

M
j=1

⊂ Sn×n, a Bilinear Matrix Inequality (BMI) is a constraint on

λ ∈ RN and γ ∈ RM of the form:

F0 +
N∑

k=1

λkFk +
M∑

j=1

γkGj +
N∑

k=1

M∑

j=1

λkγjHk,j $ 0

! Semidefinite program (?)

7/100

Properties of SDPs

SDPs with LMI constraints

! “Easy” to solve.

! Public domain, efficient solvers: SeDuMi, SDPT3,...

! Link to SeDuMi through

http://www.cds.caltech.edu/~utopcu/NLShortCourse.html

SDPs with BMI constraints

! Non-convex in general (our problems are specifically
non-convex by counterexample).

! No general purpose solvers

! Global optimization methods, e.g. branch-and-bound.

! Local solvers, e.g. PENBMI.

8/100

Optimizations with BMIs

min
λ∈RN ,γ∈RM

cT λ + dT γ

subject to:

F0 +
N∑

k=1

λkFk +
M∑

j=1

γkGj +
N∑

k=1

M∑

j=1

λkγjHk,j $ 0

! One useful property is that the constraint is an LMI if either λ
or γ is held fixed.

! Coordinate-wise Iterations:
1. Initialize a value of λ.
2. Hold λ fixed and solve for optimal γ. This is an SDP.
3. Hold γ fixed and solve for optimal λ. This is an SDP.
4. Go back to step 2 and repeat until values converge.

! This is local search scheme. Not even guaranteed to converge
to local optimal points but works well for our problems.

9/100

Multipoly Toolbox (available through workshop web page)

! Multipoly is a Matlab toolbox for the creation and
manipulation of polynomials of one or more variables.

! Example:

pvar x1 x2
p = 2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4
q = x1^2
p*q =

2*x1^6 + 2*x1^5*x2 - x1^4*x2^2 + 5*x1^2*x2^4
jacobian(p, [x1;x2]) =

[8*x1^3 + 6*x1^2*x2 - 2*x1*x2^2 ,
2*x1^3 - 2*x1^2*x2 + 20*x2^3]

! Algebraic manipulation, visualization (sublevel sets, etc.),...

10/100

Positive Semidefinite Polynomials

! p ∈ R [x] is positive semi-definite (PSD) if p(x) ≥ 0 ∀x. The
set of PSD polynomials in n variables {x1, . . . , xn} will be
denoted P [x1, . . . , xn] or P [x].

! Testing if p ∈ P [x] is NP-hard when the polynomial degree is
at least four.

! For a general class of functions, verifying global non-negativity
is recursively undecidable.

Reference: Parrilo, P., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and

Optimization, Ph.D. thesis, California Institute of Technology, 2000. (Chapter 4 of this thesis and the reference

contained therein summarize the computational issues associated with verifying global non-negativity of functions.)

11/100

Sum of Squares Polynomials

! p is a sum of squares (SOS) if there exist polynomials {fi}N
i=1

such that p =
∑N

i=1 f2
i .

! The set of SOS polynomials in n variables {x1, . . . , xn} will
be denoted Σ [x1, . . . , xn] or Σ [x].

! If p is a SOS then p is PSD.
! The Motzkin polynomial, p = x2y4 + x4y2 + 1− 3x2y2, is

PSD but not SOS.
! Hilbert (1888) showed that P [x] = Σ [x] only for a) n = 1, b)

d = 2, and c) d = 4, n = 2.

! p is a SOS iff there exists Q $ 0 such that p = zT Qz.

Reference: Choi, M., Lam, T., and Reznick, B., Sums of Squares of Real Polynomials, Proceedings of Symposia in

Pure Mathematics, Vol. 58, No. 2, 1995, pp. 103 − 126.

12/100

SOS Example

All possible Gram matrix representations of

p = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2

are given by zT (Q + λN) z where:

z =
[

x2
1

x1x2

x2
2

]
, Q =

[
2 1 −0.5
1 0 0

−0.5 0 5

]
, N =

[
0 0 −0.5
0 1 0

−0.5 0 0

]

p is SOS iff

Q + λN $ 0

for some λ ∈ R.

13/100

SOS Test with issos
The issos function tests if p ∈ Σ [x] by converting to an LMI
feasibility problem:

[feas,z,Q,f] = issos(p)

feas=1 if p ∈ Σ [x] and feas=0 otherwise. If feasible, then

! z and Q provide a Gram matrix decomposition:

p = z’*Q*z,

where z is a vector of monomials and Q is a positive
semidefinite matrix.

! z may not include the complete list of
(

n+d
d

)
monomials since

issos uses some simple heuristics to prune out un-needed
monomials.

! f is a vector of polynomials providing the SOS decomposition:

p = f’*f,

14/100

SOS Example using issos
>> pvar x1 x2;
>> p = 2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4;
>> [feas,z,Q,f]=issos(p);

% Verify feasibility of p \in SOS
>> feas
feas =

1

% Verify z and Q are a Gram matrix decomposition
>> p - z’*Q*z
ans =

-1.3185e-012*x1^4 + 6.5814e-013*x1^3*x2 - 2.3075e-012*x1^2*x2^2 +
5.6835e-016*x1*x2^3 - 3.304e-013*x2^4

% Verify Q is positive semi-definite
>> min(eig(Q))
ans =

0.7271

% Verify SOS decomposition of p
>> p - f’*f
ans =

-1.3221e-012*x1^4 + 6.5148e-013*x1^3*x2 - 2.3106e-012*x1^2*x2^2 +
1.3323e-015*x1*x2^3 - 3.3396e-013*x2^4

15/100

SOS Programming

SOS Programming: Given c ∈ Rm and polynomials {fk}m
k=0, solve:

min
α∈Rm

cT α

subject to:

f0 +
m∑

k=1

αkfk ∈ Σ [x]

This SOS programming problem is an SDP.

! The cost is a linear function of α.

! The SOS constraint can be replaced with either the primal or
dual form LMI constraint.

A more general SOS program can have many SOS constraints.

16/100

General SOS Programming

SOS Programming: Given c ∈ Rm and polynomials {fj,k}Ns
j=1

m
k=0,

solve:

min
α∈Rm

cT α

subject to:

f1,0(x) + f1,1(x)α1 + · · ·+ f1,m(x)αm ∈ Σ [x]
...

fNs,0(x) + fNs,1(x)α1 + · · ·+ fNs,m(x)αm ∈ Σ [x]

There is freely available software (e.g. SOSTOOLS, YALMIP,
SOSOPT) that:

1. Converts the SOS program to an SDP

2. Solves the SDP with available SDP codes (e.g. Sedumi)

3. Converts the SDP results back into polynomial solutions

17/100

SOS Synthesis Example (1)

Problem: Minimize α subject to f0 + αf1 ∈ Σ [x] where

f0(x) := −x4
1 + 2x3

1x2 + 9x2
1x

2
2 − 2x4

2

f1(x) := x4
1 + x4

2

For every α,λ ∈ R, the Gram Matrix Decomposition equality holds:

f0 + αf1 = zT (Q0 + αQ1 + λN1) z

where

z :=
[

x2
1

x1x2

x2
2

]
, Q0 =

[−1 1 4.5
1 0 0

4.5 0 −2

]
, Q1 =

[
1 0 0
0 0 0
0 0 1

]
, N1 =

[
0 0 −0.5
0 1 0

−0.5 0 0

]

If α = 2 and λ = 0 then Q0 + 2Q1 + 9N1 =
[

1 1 0
1 9 0
0 0 0

]
$ 0.

18/100

SOS Synthesis Example (2)

Use sosopt to minimize α subject to f0 + αf1 ∈ Σ [x]

% Problem set-up with polynomial toolbox and sosopt
>> pvar x1 x2 alpha;
>> f0 = -x1^4 + 2*x1^3*x2 + 9*x1^2*x2^2 - 2*x2^4;
>> f1 = x1^4 + x2^4;
>> x = [x1;x2];
>> obj = alpha;
>> [info,dopt,sossol]=sosopt(f0+alpha*f1,x,obj);

% s is f0+alpha*f1 evaluated at the minimal alpha
>> s = sossol{1};

% z and Q are the Gram matrix decomposition of s
>> z=sossol{2}; Q=sossol{3};

19/100

SOS Synthesis Example (3)
% Feasibility of sosopt result
>> info.feas
ans =

1

% Minimal value of alpha
>> dopt
dopt =

’alpha’ [2.0000]

% Verify s is f0+alpha*f1 evaluated at alpha = 2.00
>> s-subs(f0+alpha*f1, dopt)
ans =

0

% Verify z and Q are the Gram matrix decomposition of s
>> s-z’*Q*z
ans =

-2.4095e-010*x1^4 + 4.3804e-011*x1^3*x2 - 2.1894e-011*x1^2*x2^2
+ 9.2187e-016*x1*x2^3 - 2.6285e-010*x2^4

% Verify Q is positive semi-definite
>> min(eig(Q))
ans =

1.3718e-010
20/100

Set Containment Conditions

! Many nonlinear analysis problems can be formulated with set
containment constraints.

! Need conditions for proving set containments:

Given polynomials g1 and g2, define sets S1 and S2:

S1 := {x ∈ Rn : g1(x) ≤ 0}
S2 := {x ∈ Rn : g2(x) ≤ 0}

Is S2 ⊆ S1?

! In control theory, the S-procedure is a common condition used
to prove set containments involving quadratic functions. This
can be generalize to higher degree polynomials.

21/100

Polynomial S-Procedure

! Theorem: Let g1 and g2 be given polynomials. If there exists
a positive semidefinite polynomial λ ∈ P [x] such that
−g1(x) + λ(x)g2(x) ∈ P [x] is positive semidefinite, then
S2 ⊆ S1.

! The PSD constraints are numerically difficult to handle. The
theorem still holds if relaxed to SOS constraints:

! If there exists a polynomial λ ∈ Σ [x] such that
−g1(x) + λ(x)g2(x) ∈ Σ [x] then S2 ⊆ S1.

22/100

Set Containment Maximization

! Given polynomials g1 and g2, the set containment
maximization problem is:

γ∗ = max
γ∈R

γ

s.t.: {x ∈ Rn : g2(x) ≤ γ} ⊆{ x ∈ Rn : g1(x) ≤ 0}

! The polynomial S-procedure can be used to relax the set
containment constraint:

γlb = max
γ∈R,s∈Σ[x]

γ

s.t.: − g1 + (g2 − γ)s ∈ Σ [x]

! The solution of this optimization satisfies γlb ≤ γ∗.

23/100

pcontain Example
% Maximize size of a disk inside
% the contour of a 6th degree poly
pvar x1 x2;
x = [x1;x2];

% S1 := { x : g1(x)<= 0}
g1 = 0.3*x1^6 + 0.05*x2^6 - 0.5*x1^5 - 1.4*x1^3*x2

+ 2.3*x1^2*x2^2 - 0.9*x1^3 + 2.6*x1^2*x2 - 1;

% S2 := { x : g2(x)<= gamma}
g2 = x’*x;

% Define monomials for s
z = monomials(x,0:2);

% Use pcontain to maximize gamma s.t. S2 \in S1
% gbnds gives lower/upper bounds on optimal gamma
% sopt is the optimal multiplier
[gbnds,sopt]=pcontain(g1,g2,z)
gamma = gbnds(1);
gbnds =

0.5560 0.5569

sopt =
1.4483*x1^4 + 0.055137*x1^3*x2 + 0.44703*x1^2*x2^2 - 0.043336*x1*x2^3
+ 1.2961*x2^4 - 0.21988*x1^3 - 0.26998*x1^2*x2 - 0.050453*x1*x2^2
+ 0.13586*x2^3 + 1.6744*x1^2 - 0.41955*x1*x2 + 1.4875*x2^2
- 0.49756*x1 + 0.50148*x2 + 1.2679

% Plot contours of unit disk and maximal ellipse
plotdomain = [-2 3 -2 2];
pcontour(g1,0,plotdomain,’b’) hold on;
pcontour(g2,gamma,plotdomain,’r’)
axis equal; axis(plotdomain)

x1
x
2

Gamma = 0.556

!2 !1 0 1 2 3
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2
g1==0

g2==0.556

24/100

ROA analysis using SOS
optimization and solution

strategies

25/100

Region of Attraction

Consider the autonomous nonlinear dynamical system

ẋ(t) = f(x(t))

where x ∈ Rn is the state vector and f : Rn → Rn.
Assume:

! f ∈ R [x]

! f(0) = 0, i.e. x = 0 is an equilibrium point.

! x = 0 is asymptotically stable.

Define the region of attraction (ROA) as:

R0 := {ξ ∈ Rn : lim
t→∞

φ(ξ, t) = 0}

where φ(ξ, t) denotes the solution at time t starting from the
initial condition φ(ξ, 0) = ξ.

Objective: Compute or estimate the ROA.
26/100

Global Stability Theorem

Theorem: Let l1, l2 ∈ R [x] satisfy li(0) = 0 and li(x) > 0 ∀x *= 0
for i = 1, 2. If there exists V ∈ R [x] such that:

! V (0) = 0
! V − l1 ∈ Σ [x]
! −∇V · f − l2 ∈ Σ [x]

Then R0 = Rn.

Reference: Vidyasagar, M., Nonlinear Systems Analysis, SIAM, 2002.

(Refer to Section 5.3 for theorems on Lyapunov’s direct method.)

27/100

Global Stability Example with sosopt
% Code from Parrilo1_GlobalStabilityWithVec.m

% Create vector field for dynamics
pvar x1 x2;
x = [x1;x2];
x1dot = -x1 - 2*x2^2;
x2dot = -x2 - x1*x2 - 2*x2^3;
xdot = [x1dot; x2dot];

% Use sosopt to find a Lyapunov function
% that proves x = 0 is GAS

% Define decision variable for quadratic
% Lyapunov function
zV = monomials(x,2);
V = polydecvar(’c’,zV,’vec’);

% Constraint 1 : V(x) - L1 \in SOS
L1 = 1e-6 * (x1^2 + x2^2);
sosconstr{1} = V - L1;

% Constraint 2: -Vdot - L2 \in SOS
L2 = 1e-6 * (x1^2 + x2^2);
Vdot = jacobian(V,x)*xdot;
sosconstr{2} = -Vdot - L2;

% Solve with feasibility problem
[info,dopt,sossol] = sosopt(sosconstr,x);
Vsol = subs(V,dopt)
Vsol =

0.30089*x1^2 + 1.8228e-017*x1*x2 + 0.6018*x2^2

!4 !2 0 2 4
!4

!3

!2

!1

0

1

2

3

4

0
.1

0.5

0.5

1

1

1

2
2

2

2

2

5
5

5

5

5
5

5

x1

x
2

28/100

Local Stability Theorem

Theorem: Let l1 ∈ R [x] satisfy l1(0) = 0 and l1(x) > 0 ∀x.
If there exists V ∈ R [x] such that:

! V (0) = 0
! V − l1 ∈ Σ [x]
! ΩV,γ := {x ∈ Rn : V (x) ≤ γ} ⊆{ x ∈ Rn : ∇V · f < 0} ∪{ 0}

Then ΩV,γ ⊆ R0.

Proof: The conditions imply that ΩV,γ is bounded and hence the
result follows from Lemma 40 in Vidyasagar.

0

∂V
∂x f < 0

V ≤ γ

29/100

Local Stability via SOS Optimization

Idea: Let ẋ = Ax be the linearization of ẋ = f(x). If A is Hurwitz
then a quadratic Lyapunov function shows that x = 0 is locally
asymptotically stable. Use the polynomial S-procedure to verify a
quantitative estimate.

1. Select Q ∈ Sn×n, Q > 0 and compute P > 0 that satisfies
the Lyapunov Equation: AT P + PA = −Q

! Vlin(x) = xT Px is a quadratic Lyapunov function proving
x = 0 is locally asymptotically stable.

! This step can be done with: [Vlin,A,P]=linstab(f,x)

2. Define l2 ∈ R [x] such that l2(0) = 0 and l2(x) > 0 ∀x. Solve
the set containment maximization problem using pcontain:

max
γ∈R

γ subject to ΩV,γ ⊂ {x ∈ Rn : ∇Vlin · f − l2 ≤ 0}

30/100

Example: ROA Estimate for the Van der Pol Oscillator (1)

% Code from VDP_LinearizedLyap.m

% Vector field for VDP Oscillator
pvar x1 x2;
x = [x1;x2];
x1dot = -x2;
x2dot = x1+(x1^2-1)*x2;
f = [x1dot; x2dot];

% Lyap fnc from linearization
Q = eye(2);
Vlin = linstab(f,x,Q);

% maximize gamma
% subject to:
% {Vlin<=gamma} in {Vdot<0} U {x=0}
z = monomials(x, 1:2);
L2 = 1e-6*(x’*x);
Vdot = jacobian(Vlin,x)*f;
[gbnds,s] = pcontain(Vdot+L2,Vlin,z);
Gamma = gbnds(1)

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

x1

y
1

gamma = 2.3041

Q=eye(2)

31/100

Example: ROA Estimate for the Van der Pol Oscillator (2)

Choosing Q = [1 0
0 2] slightly increases ΩV,γ along one direction but

decreases it along another.

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

x1

x
2

gamma = 3.1303

Q=eye(2)Q=diag([1 2])

32/100

Example: ROA Estimate for the Van der Pol Oscillator (3)

Choosing Q = [5 0
0 2] has the opposite effect on ΩV,γ .

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

x1

x
2

gamma = 6.987

Q=eye(2)Q=diag([1 2])

Q=diag([5 2])

33/100

Increasing the ROA Estimate
For this problem, pcontain solves:

max
γ∈R,s∈Σ[x]

γ

s.t.: − (∇Vlin · f + l2 + s(γ − Vlin)) ∈ Σ [x]

Objective: Increase the “size” of ΩV,γ subject to the same
constraints by searching over quadratic or higher degree Lyapunov
functions.

Question: How should we measure the “size” of the ROA estimate?

Approach:
Introduce a shape factor p which:

! is a positive definite polynomial

! captures the intent of the analyst

! (preferably) has simple sublevel sets

0

V ≤ γ

dV
dx f < 0

p ≤ β

34/100

Increasing the ROA Estimate

We increase the ROA estimate by increasing the shape function
contained with a Lyapunov level set.

β∗ = max
V ∈R[x], β∈R

β

subject to:

Ωp,β ⊆ ΩV,1

ΩV,1 ⊆ {∇V · f(x) < 0} ∪{ 0}
V − l1 ∈ Σ [x] , V (0) = 0

0

V ≤ 1

∂V
∂x f < 0

p ≤ β

How are the set contaiments verified?

35/100

Increasing the ROA Estimate

Applying the polynomial S-procedure to both set containment
conditions gives:

max
s1,s2∈Σ[x], V ∈R[x], β∈R

β

subject to:

− ((V − 1) + s1(β − p)) ∈ Σ [x]

− ((∇V · f + l2) + s2(1− V)) ∈ Σ [x]

V − l1 ∈ Σ [x] , V (0) = 0

0

V ≤ 1

∂V
∂x f < 0

p ≤ β

This is not an SOS programming problem since the first constraint
is bilinear in variables s1 and β and the second constraint is
bilinear in variables s2 and V .

36/100

Solving the Bilinear ROA Problem
A coordinate-wise V -s iteration is a simple algorithm to find a
sub-optimal solution to this optimization.

! For fixed V , the constraints decouple into two subproblems

γ∗ = max
γ∈R,s2∈Σ[x]

γ s.t. − ((∇V · f + l2) + s2(1− V)) ∈ Σ [x]

≤ max
γ∈R

γ s.t. ΩV,γ ⊆ {∇V · f(x) < 0} ∪ {0}

β∗ = max
β∈R,s1∈Σ[x]

β s.t. − ((V − γ∗) + s1(β − p)) ∈ Σ [x]

≤ max
β∈R

β s.t. Ωp,β ⊆ ΩV,γ∗

pcontain can be used to compute γ∗ and β∗ as well as
multipliers s1 and s2.

! For fixed s1 and s2, we could maximize β with V subject to
the local ROA constraints. We obtain better results by re-
centering V to the analytic center of the LMI associated with:

−
`
(V − 1) + s1(β∗ − p)

´
∈ Σ [x]

−
`
(∇V · f + l2) + s2(γ∗ − V)

´
∈ Σ [x]

V − l1 ∈ Σ [x] , V (0) = 0

37/100

Example: V-s Iteration for the Van der Pol Oscillator
% Code from VDP_IterationWithVlin.m
pvar x1 x2;
x = [x1;x2];
x1dot = -x2;
x2dot = x1 + (x1^2-1)*x2;
f = [x1dot; x2dot];

% Create shape function and monomials vectors
p = x’*x;
zV = monomials(x, 2:6); % V has Deg = 6
z1 = monomials(x, 0:2);
z2 = monomials(x, 1:2);
L2 = 1e-6*(x’*x);

% Initialize Lyapunov Function
V = linstab(f,x);

% Run V-s iteration
opts.L2 = L2;
for i1=1:30;

% gamma step
Vdot = jacobian(V,x)*f;
[gbnds,s2] = pcontain(Vdot+L2,V,z2,opts);
gamma = gbnds(2);

% beta step
[bbnds,s1] = pcontain(V-gamma,p,z1,opts);
beta = bbnds(1)

% V step (then scale to roughly normalize)
if i1~=30

V = roavstep(f,p,x,zV,beta,gamma,s1,s2,opts);
V = V/gamma;

end
end

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

x1

x
2

Iteration = 30 beta = 2.3236

Limit Cycle

V==!

p=="

38/100

Use of Simulation Data

! The performance of the V -s iteration depends on the initial
choice for V .

! Up to this point we have only started the iteration using the
Lyapunov function obtained from linear analysis.

! It is also possible to used simulation data to construct initial
Lyapunov function candidates for the iteration.

! The following slides explore this use of simulation data.

39/100

Use of Simulation Data

! Given a set G, is G ⊂ ROA ?

! Run simulations starting in G.

! If any diverge, no.

! If all converge, “maybe yes.”

G

Fact: A Lyapunov certificate would remove the “maybe”.

G ∈ ΩV,γ=1 ⊆ {x ∈ Rn : ∇V (x) · f(x) < 0}

Question: Can we use the simulation data to construct candidate
Lyapunov functions for assessing the ROA?

40/100

How can the simulation data be used?
If there exists V to certify that G is in the ROA through Lyapunov
arguments, it is necessary that

! V > 0
! V ≤ 1 on converging trajectories starting in G
! V̇ < 0 on converging trajectories starting in G
! V > 1 on non-converging trajectories starting in the

complement of G

V ≤ 1

∂V
∂x f < 0

c

d

G

The V we are looking for (which may not even exist) must satisfy
these constraints.

41/100

Simulation-based constraints on V

! Assume V is linearly parameterized in some basis functions
V (x) = αT φ(x), e.g. φ(x) can be a vector of monomials.

! Let Fα denote the set of coefficients α of Lyapunov functions
which satisfy the constraints on some domain in the state
space.

! Enforcing the constraints on the previous slide on the
simulation trajectory points leads to LP constraints on α.

! The collection of the LP constraints forms a polytope outer
bound on the set Fα of coefficients.

Fα

42/100

Set of Candidate V ’s

! We can sample the polytope outer bound of Fα by solving an
LP feasibility problem.

! If the LP is infeasible then Fα is empty.
! If the LP is feasible then we can test if V = αT φ is a

Lyapunov function using SOS optimization methods.

! We can incorporate additional convex constraints on α
! V − l1 ∈ Σ [x] ⇒ LMI constraints on α
! The linear part of f and quadratic part of V must satisfy the

Lyapunov inequality ⇒ LMI constraints on α.

! Let Y denote the set of α which satisfy the LP constraints
from simulation data and the LMI constraints described above.

43/100

Hit-and-run (H&R) algorithm

• As the number of constraints in-
creases, the outer convex set Y
becomes a tighter relaxation.

⇒ Samples from Y become
more likely to be in Fα.

α(0)

α(1)
α(5)

α(4)
α(2)

α(3)

ΦT
3 α = b3

ΦT
2 α = b2

ΦT
4 α = b4

ΦT
1 α
= b1

• Strategy: generate points in Y, i.e., Lyapunov function
candidates, and evaluate β they certify.

• Generation of each point Y (after the initial feasible point)
involves solving 4 small LMIs and trivial manipulations.

t(k) := min
{

maxj

{
0,

bj−ΦT
j α(k)

ΦT
j ζ(k)

}
, t(k)

SOS , t(k)
lin

}
,

t(k) := max
{

minj

{
0,

bj−ΦT
j α(k)

ΦT
j ζ(k)

}
, t(k)

SOS , t(k)
lin

}
,

44/100

Assessing the candidate: checking containments

For a given V ,

βV := max
β,γ

β subject to:

0

V ≤ γ

dV
dx f < 0

p ≤ β

This can be solved in two steps solving smaller “affine” SDPs
sequentially:

γ∗ := max γ
−

[
(γ − V)s2 + s3

dV
dx f + l2

]
∈ Σ[x]

βV := max β
− [(β − p)s1 + (V − γ∗)] ∈ Σ[x]

0

∂V
∂x f < 0

V ≤ γ∗

p ≤ β∗

These are the same γ and β steps from the V -s iteration.

45/100

Overview of the method

Is G ⊂ ROA? "

V ≤ 1

∂V
∂x f < 0

G

x-space

" Large bilinear
SOS problem

" Prior info
simulation, etc.

"

Fα

α-space

" Smaller affine
SOS problem

!

#
Further optimization

#
Relatively efficient results

46/100

Properties of simulation-aided analysis

• Integration of simulation data yields higher reliability and better
scalability

! Balance between expressive power, computational complexity,
and conservatism.

! Not blind search, not hit-or-miss – Start collecting proofs from
initial steps on and then refine.

Most of the computation is trivially parallelizable.

• We have automated this procedure (and more add-ons).

!"##$%&&

'()*&+,"-.+/),%& %(012/-#3%&

+#3+21%(4,&

+#0!1)/-#3/225&+*/22,36(36&

(3+#3+21%(4,&

%+/2/72,&

47/100

Example: controlled aircraft [Short period pitch axis model]

• States: pitch rate (q), AoA (α), and pitch angle (θ).
• Control: elevator deflection (u)(2-state LTI).
• Cubic polynomial approximation (from Honeywell).
• p(x) = xT x, [x: plant and controller states].

η̇ = Acη + Bcy
u = Ccη + Dcy

"u
q̇ = fq(q, α, u)
α̇ = fα(q, α, u)

θ̇ = q, y = [q θ]T
y"

Just sample-and-assess:
β = 8.9 (quartic)

β = 6.2 (quadratic)

Simulation-aided analysis + coordinate-wise affine iterations:
! deg(V)= 2 ⇒ β = 8.6 in 2 minutes

! deg(V)= 4: 14.6 < 15.3 ≤ βopt ≤ 16.1
↑ ↑ ↑

30 min 45 min div. traj.

sim-aided off-the-shelf solver
5 states 30 minutes 38 hours

5 states + 1st order Pade (in u) 50 minutes out-of-memory

48/100

Falling leaf mode in F/A-18 Hornet

Falling leaf motion: out-of-control

! oscillations in roll and yaw

! fluctuations in AoA and sideslip
→ loss of lift

!"#$%&'()&*+(,-./001112#3455"#6+4#,"7'52#*+(

!!"#$%"

"!"#$%"

!"#$%&#'%

%(#)*&#'%

Revised flight control law:

Extensive flight tests → suppression of the falling leaf mode.

Linear analysis has not detected any performance issues for the
baseline controller. What does nonlinear analysis say?

49/100

Modeling Summary

! The reduced order, nonlinear 3rd polynomial model captures
the characteristics of the falling leaf motion.

! For analysis purpose, roll-coupled maneuvers that drive the
aircraft to the falling leaf motion are considered.

! The velocity is assumed to be fixed at 250 ft/s.

ẋ = f(x, u) , y = h(x)

x=

2

666664

angle-of-attack(α)
sideslip angle(β)

roll rate(p)
yaw rate(r)
pitch rate(q)
bank angle(φ)

3

777775
, y =

2

66666664

angle-of-attack(α)
roll rate(p)
yaw rate(r)
pitch rate(q)

lateral acceleration(ay)
sideslip rate(β̇)
sideslip angle(β)

3

77777775

u =

2

4
aileron deflection(δail)
rudder deflection(δrud)

stabilator deflection(δstab)

3

5

50/100

Nonlinear Region-of-Attraction Analysis

Results on Estimating ROA: α vs. β

51/100

Nonlinear Region-of-Attraction Analysis

Results on Estimating ROA: p vs. r

52/100

Nonlinear Region-of-Attraction Analysis (cont’d)

Computational Aspects

! Computational time for estimating both lower and upper
bound are as follows:

Analysis Iteration Steps Baseline Revised
V-s Iteration(1) 40 6.8 Hrs 4.7 Hrs

Monte Carlo Upper Bound(2) 5 million 96 Hrs 96 Hrs

(1) V-s iteration analysis performed on Intel(R) Core(TM) i7 CPU 2.67GHz 8.00GB RAM

(2) Monte Carlo analysis performed on Intel(R) Core(TM)2 Duo CPU E65550 2.33GHz 3.00GB RAM

53/100

Robust ROA analysis with
parametric uncertainty

54/100

Systems with parametric uncertainty

System with parametric uncertainty governed by

ẋ(t) = f(x(t), δ)

The parameter δ is

! constant

! unknown

! known to take values on the bounded set ∆

Assumption:

! For each δ ∈ ∆, the origin is an equilibrium point, i.e.,

f(0, δ) = 0 for all δ ∈ ∆.

55/100

ROA analysis for systems with parametric uncertainty

System with constant parametric uncertainty governed by

ẋ(t) = f(x(t), δ)

Question: Given a set G,

! is G in the ROA for each δ ∈ ∆?
! is G a subset of the robust ROA, defines as⋂

δ∈∆

{ζ ∈ Rn : lim
t→∞

ϕ(ζ, t; δ) = 0}?

[ϕ(ζ, t; δ) is the solution at time t with initial condition ζ for δ.]

G
δ1

δ2

δ3

56/100

ROA analysis for ẋ = f(x, δ)

Theorem: If there exists a continuously differentiable function V
such that

! V (0) = 0, and V (x) > 0 for all x *= 0
! ΩV,1 = {x : V (x) ≤ 1} is bounded

! For each δ ∈ ∆, the set containment

{x : V (x) ≤ 1}\{0} ⊂ {x : ∇V (x)f(x, δ) < 0}

holds, then {x ∈ Rn : V (x) ≤ 1} is an invariant subset of the
robust ROA.
Proof: Apply Lyapunov theory to each system ...

A few issues:

! “For each δ ∈ ∆...” there are infinite number of set containment
conditions.

! V does not depend on δ, though f does, will this be restrictive?

57/100

ROA analysis: f(x, δ) affine in δ

Affine uncertainty dependence & bounded, polytopic ∆ (with
vertices E)

ẋ(t) = f0(x(t)) +
m∑

i=1

fi(x(t))δi = f0(x(t)) + F (x(t))δ

Theorem: If ∆ is a polytope, and for all δ ∈ E

ΩV \ {0} ⊆{ x ∈ Rn : ∇V (x)(f0(x) + F (x)δ) < 0} ,

then the set containment holds for all δ ∈ ∆.

Proof:
For each δ̃ ∈ ∆, ∇V (x)F (x)δ̃
is a convex combination of
{∇V (x)F (x)δ : δ ∈ ∆}.

δ1

f [3] = f0 + F δ[3]

f [2] = f0 + F δ[2]f [1] = f0 + F δ[1]

δ2

f [5]

f [4]

58/100

ROA analysis with parameter-independent V (2)

ẋ(t) = f0(x(t)) + F (x(t))δ

Impose at the vertices of ∆, then they hold everywhere on ∆.

ΩV \ {0} ⊆{ x ∈ Rn : ∇V (x)(f0(x) + F (x)δ) < 0}

0

V ≤ 1

∂V
∂x f [1] < 0

∂V
∂x f [2] < 0

∂V
∂x f [3] < 0

δ1

f [3] = f0 + F δ[3]

f [2] = f0 + F δ[2]f [1] = f0 + F δ[1]

δ2

f [5]

f [4]

For every i = 1, . . . , Nvertex (index to elements of E),

−
[
(1− V)s2 + s3∇V · (f0 + F δ[i]) + l2

]
is SOS in x (only)

59/100

SOS problem for robust ROA computation

max
0<γ,0<β,V ∈V,s1∈S1,s2δ∈S2,s3δ∈S3

β subject to

s2δ ∈ Σ[x], and s3δ ∈ Σ[x]

−[(γ − V)s2δ +∇V (f0 + F (x)δ)s3δ + l2] ∈ Σ[x] ∀δ ∈ E ,

−[(β − p)s1 + V − 1] ∈ Σ[x]

! Bilinear optimization problem
! SOS conditions:

! only in x
! δ does not appear, but...
! there are a lot of SOS constraints (δ ∈ E)

60/100

Example

Consider the system with a single uncertain parameter δ

ẋ1 = x2

ẋ2 = −x2 − (δ + 2)(x1 − x3
1)

with δ ∈ [−1, 1].

Codepad Demo: attached to the end of the slides.

61/100

Dealing with conservatism: partition ∆
$

"δ1

δ2

For all δ ∈ ∆:

{x : V0(x) ≤ 1}\{0}
⊂

{
x : ∂V0

∂x f(x, δ) < 0
}

$

"δ1

δ2

For all δ ∈ upper half of ∆:

{x : V1(x) ≤ 1}\{0}
⊂

{
x : ∂V1

∂x f(x, δ) < 0
}

For all δ ∈ lower half of ∆:
{x : V2(x) ≤ 1}\{0}
⊂

{
x : ∂V2

∂x f(x, δ) < 0
}

V1 := V0 and V2 := V0 are feasible for the right-hand side.
Improve the results by searching for different V1 and V2.

62/100

Dealing with conservatism: branch-and-bound in ∆

Systematically refine the partition of ∆:

! Run an informal branch-and-bound (B&B) refinement
procedure

Sub-division strategy: Divide the worst cell into 2 subcells.

$

"δ1

δ2

63/100

Properties of the branch-and-bound refinement
! Yields piecewise-polynomial,

δ-dependent V .

! Local problems are decoupled
→ parallel computing

$

"δ1

δ2

! Organizes extra info regarding system behavior: returns a data
structure with useful info about the system

! Lyapunov functions, SOS certificates,
! certified β,
! worst case parameters,
! initial conditions for divergent trajectories,
! values of β not achievable, etc.

64/100

Non-affine dependence on δ

Let g : R → R.

ẋ(t) = f0(x(t)) + δf1(x(t)) + g(δ)f2(x(t))
= f0(x(t)) + δf1(x(t)) + ζf2(x(t))

Treat (δ, g(δ)) as 2 parameters, whose values lie on a
1-dimensional curve. Then

∗ Cover 1-d curve with 2-polytope
∗ Compute ROA
∗ Refine polytope into a union of
smaller polytopes
∗ Solve robust ROA on each poly-
tope
∗ Intersect ROAs → robust ROA

0! 0.1! 0.2! 0.3! 0.4! 0.5! 0.6! 0.7! 0.8! 0.9! 1!
0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

!!

!
!2!

65/100

Non-affine dependence on δ

Let g : R → R.

ẋ(t) = f0(x(t)) + δf1(x(t)) + g(δ)f2(x(t))
= f0(x(t)) + δf1(x(t)) + ζf2(x(t))

Treat (δ, g(δ)) as 2 parameters, whose values lie on a
1-dimensional curve. Then

∗ Cover 1-d curve with 2-polytope
∗ Compute ROA
∗ Refine polytope into a union of
smaller polytopes
∗ Solve robust ROA on each poly-
tope
∗ Intersect ROAs → robust ROA

0! 0.1! 0.2! 0.3! 0.4! 0.5! 0.6! 0.7! 0.8! 0.9! 1!
0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!
3 subdivisions!

65/100

Generalization of covering manifold
Given:

! polynomial g(δ) in many real variables, δ ∈ Rq

! domain H ⊆ Rq, typically a polytope

Find a polytope that covers {(δ, g(δ)) : δ ∈ H} ⊆ Rq+1.

! Tradeoff between number of vertices, and

! excess “volume” in polytope

One approach: Find “tightest” affine upper and lower bounds to g
over H.

g(!)

H

min
c0,c

∫

H
(c0 + cT δ)dδ subject to c0 + cT δ ≥ g(δ) ∀δ ∈ H

This optimization can be solved as a SOS program.
66/100

Non-affine dependence on δ (2)

Covering {(δ, g(δ) : δ ∈ H} introduces extra conservatism.

H
1

H
2

H

partition H

B&B refinement reduces the conservatism due to covering by
reducing the extra covered space.

67/100

Multiple non-affine parametric uncertainty

For multivariable g,

ẋ = f0(x) + δ1f1(x) + · · ·+ δqfq(x)+
g1(δ)fq+1(x) + · · ·+ gm(δ)fq+m(x)

On H, bound each gi with affine functions ci and di

ci(δ) ≤ gi(δ) ≤ di(δ) ∀δ ∈ H

Then (Amato, Garofalo, Gliemo) a poly-
tope covering {(δ, g(δ)) : δ ∈ H} is
{
(δ, v) ∈ Rq×m : δ ∈ H,C(δ) ≤ v ≤ D(δ)

}

with 2q+m easily computed vertices.

δ

ζ1

ζ2

68/100

Example: Interesting 2-state uncertain dynamics [Chesi, 2004]

ẋ =
[

−x1

3x1 − 2x2

]
−

[
6x2 − x2

2 − x3
1

10x1 − 6x2 − x1x2

]
δ+

[
4x2 − x2

2

12x1 − 4x2

]
δ2,

• δ ∈ [0, 1].
• No common quadratic V for uncertain linearized dyn.
• p(x) = xT x.
• 50 branch-and-bound refinements

x
1

x
2

!1 0 1

!1

!0.5

0

0.5

1

1.5

Blue dotted curve: Result from Chesi,
2004.

Red curves: Intersection of ΩV,1 for
V ’s obtained through the B&B refine-
ment (inner for deg(V) = 2 and outer
for deg(V) = 4)

Black dotted curves: Certified Ωp,β

for deg(V) = 2 (inner) and for deg(V)
= 4 (outer)

69/100

Example: Interesting 2-state uncertain dynamics
B&B iterations: Divide the cell with the smallest β into 2.

deg(V) = 2

10 20 30
0

0.5

1

number of iterations

!

deg(V) = 4

10 20 30
0

0.5

1

number of iterations

!

! Upper bounds from divergent trajectories
! Upper bound does not depend on the complexity/degree of V

! Upper bounds from infeasibility of the affine relaxation
! This bound shows how the basis choice for V impacts what is

certifiable.
! Certified values (using ideas from last previous 100+ slides)

70/100

Dealing with large number of constraints

The SOS problem for the robust ROA includes the constraint:

−[(γ − V)s2δ +∇V (f0 + F (x)δ)s3δ + l2] ∈ Σ[x] ∀δ ∈ E

The number of vertices grows fast with the dimension of the
uncertainty space.

$

"δ1

δ2

•

• •

•

Suboptimal procedure:
! Sample ∆ with fewer points (fewer than in E)
! Optimize V for this restricted sampling
! Certify a value of β, using this V , at all vertices of ∆

The last step involves solving decoupled smaller problems.
71/100

Dealing with large number of constraints: 2-step procedure

! Call the Lyapunov function computed for a sample of ∆ as Ṽ .

! For each δ ∈ E , compute

γδ := max
0<γ,s2δ∈S2,s3δ∈S3

γ subject to

s2δ ∈ Σ[x], and s3δ ∈ Σ[x]
−[(γ − Ṽ)s2δ +∇Ṽ (f0 + F δ)s3δ + l2] ∈ Σ[x],

and define
γsubopt := min {γδ : δ ∈ E} .

ΩṼ ,γsubopt is an invariant subset of the robust ROA.

! Determine the largest sublevel set of p contained in ΩṼ ,γsubopt

max
s1∈S1,β

β subject to

s1 ∈ Σ[x]
−[(β − p)s1 + Ṽ − γsubopt] ∈ Σ[x].

72/100

Revisit Chesi, 2004 with suboptimal ∆ sampling
B&B iterations: Divide the cell with the smallest β into 2.

deg(V) = 2

10 20 30 40 50
0

0.5

1

number of iterations

!

deg(V) = 4

20 40 60
0

0.5

1

number of iterations

!

! Upper bounds from divergent trajectories

! Upper bounds from infeasibility of the affine relaxation

! Lower bounds directly computing the robust ROA

! Lower bounds computing the robust ROA in two steps (sample
∆ at cell center → optimize V → verify at the vertices)

73/100

Controlled aircraft [Short period pitch axis model]

Uncertain closed loop dynamics with
! x = (xp, x4), p(x) = xT x
! Cubic poly approx from Honeywell

ẋ = f0(x) + f1(x)δ1 + f2(x)δ2 + f3(x)δ2
1

! δ1 ∈ [0.99, 2.05] (uncertainty in the center of gravity)

! δ2 ∈ [−0.1, 0.1] (uncertainty in mass)

Implemented on a 9-processor cluster

! Problems for 9 cells are solved at a time

! Trivial speed up as expected.

ẋ4 = Acx4 + Bcy
v = Ccx4

controller

"u ẋp = fp(xp, δ1, δ2) + B(xp)u
y = [x1 x3]T

plant
(pitch rate, AoA, pitch angle)

y"

74/100

Results - controlled aircraft dynamics

! " # $ % & '
!

&

"!

"&

()*+,-./0.121.34,53

!
!
(6

78)93:!)55,-7.9(;.</=,-.+/)(;3.0/-.">?@.A.#

78)93:!)55,-7.9(;.</=,-.+/)(;3.0/-.">?@.A.%

Strategy:

! Optimize at the center

! Verify at the vertices

Quasi upper bound: β cer-
tified (by the SOS problem)
for the “center system” in
the first step.

0.8 1 1.2 1.4 1.6 1.8 2 2.2

!0.1

!0.05

0

0.05

0.1

δ
1

δ
2

ẋ = f0(x) + f1(x)δ1

+ f2(x)δ2 + f3(x)δ2
1

75/100

Controlled aircraft + 1st order unmodeled dynamics

ẋ4 = Acx4 + Bcy
v = Ccx4

δ3 ∈ [−1, 1], δ4 ∈ [10−2, 102]

"v

" 0.75δ3
s−δ4
s+δ4

1.25 #•
+

" "u

δp = (δ1, δ2)

ẋp = fp(xp, δp) + B(xp, δp)u
y = [x1 x3]T

y"

ẋ = f0(x) +
4∑

i=1

fi(x)δi + f5(x)δ2
1 + f6(x)δ1δ3 + f7(x)δ2δ3

! First order LTI
unmodeled dyn
(state x5)

! p(x) = xT x,

x =
[
xT

p x4 x5

]T
.

Certified

%%%%%%%%%%%%%%dyn uncer
param uncer

with without

with 2.8 4.9
without 5.4 8.0

How about other uncertainty descriptions (e.g. unmodeled
dynamics)?

Coming up later
76/100

Local input-output analysis

77/100

What if there is external input/disturbance?

So far, only internal properties, no external inputs!

What if there are external inputs/disturbances?

z! ẋ = f(x, w)
z = h(x)

! w

f(0, 0) = 0, h(0) = 0

If w has bounded energy/amplitude and system starts from rest

! (reachability) how far can x be driven from the origin?

! (input-output gain) what are bounds on the output
energy/amplitude in terms of input energy?

78/100

Notation

! For u : [0,∞) → Rn, define the (truncated) L2 norm as

‖u‖2,T :=

√∫ T

0
u(t)T u(t)dt.

! For simplicity, denote ‖u‖2,∞ by ‖u‖2.
! L2 is the set of all functions u : [0,∞) → Rn such that
‖u‖2 < 0.

! For u : [0,∞) → Rn and for T ≥ 0, define uT : [0,∞) → Rn

as

uT (t) :
{

u(t), 0 ≤ t ≤ T
0, T < t

! L2,e is the set of measurable functions u : [0,∞) → Rn such
that uT ∈ L2 for all T ≥ 0.

79/100

Upper bounds on “local” L2 → L2 input-output gains

Goal: Establish relations between inputs and
outputs:

z! ẋ = f(x, w)
z = h(x)

!w

x(0) = 0 & ‖w‖2 ≤ R ⇒ ‖z‖2 ≤ γ‖w‖2.

! Given R, minimize γ

! Given γ, maximize R

The H∞ norm is a lower bound
on the set of γ’s which satisfy
inequalty.

Why“local” analysis?

R

γ

80/100

Upper bounds on “local” L2 → L2 input-output gains

Goal: Establish relations between inputs and
outputs:

z! ẋ = f(x, w)
z = h(x)

!w

x(0) = 0 & ‖w‖2 ≤ R ⇒ ‖z‖2 ≤ γ‖w‖2.

! Given R, minimize γ

! Given γ, maximize R

The H∞ norm is a lower bound
on the set of γ’s which satisfy
inequalty.

Why“local” analysis?

R

γ

80/100

Local gain analysis

Theorem: If there exists a continuously differentiable function V
such that V (0) = 0, V (x) > 0 for all x *= 0,

! ΩV,R2 := {x : V (x) ≤ R2} is bounded

z! ẋ = f(x, w)
z = h(x)

!w

! ∇V f(x, w) ≤ wT w − 1
γ2 h(x)T h(x) for all x ∈ ΩV,R2 and

w ∈ Rnw ,

then

x(0) = 0, w ∈ L2,e, & ‖w‖2,T ≤ R ⇒ ‖z‖2,T ≤ γ‖w‖2,T .

! Note that algebraic condition on (x, w) ∈ Rn × Rnw implies a
relation between the signals w ∈ L2,e and z = h(x) ∈ L2,e.

! Supply rate, wT w − 1
γ2 h(x)T h(x); Storage function, V .

81/100

Bilinear SOS problem formulation for gain analysis

For given γ > 0 and positive definite function l, define RL2 by

R2
L2

:= max
V ∈Vpoly,R2>0,s1∈S1

R2 subject to

V (0) = 0, s1 ∈ Σ[(x, w)],
V − l ∈ Σ[x],

−
[
(R2 − V)s1 +∇V f(x, w)− wT w + γ−2zT z

]
∈ Σ[(x, w)].

Then,

x(0) = 0 & ‖w‖2 ≤ RL2 ⇒ ‖z‖2 ≤ γ‖w‖2.

! Vpoly and S’s are prescribed finite-dimensional subsets of R[x].
! R2

L2
is a function of Vpoly, S, and γ. This dependence will be

dropped in notation.

• Similar problem for minimizing γ for given R.

82/100

Strategy to solve the bilinear SOS problem in gain analysis

Coordinate-wise affine search: Given a “feasible” V , alternate
between

! maximize R2 by choice of s1 (requires bisection on R!)

R2
L2

:= max
R2>0,s1∈S1

R2 subject to

s1 ∈ Σ[(x, w)],
−

[
(R2 − V)s1 +∇V f(x, w)− wT w + γ−2zT z

]
∈ Σ[(x, w)].

! fix the multiplier and maximize R2 by choice of V .

R2
L2

:= max
V ∈Vpoly,R2>0

R2 subject to

V (0) = 0, V − l ∈ Σ[x],
−

[
(R2 − V)s1 +∇V f(x, w)− wT w + γ−2zT z

]
∈ Σ[(x, w)].

83/100

Strategy to solve the bilinear SOS problem in gain analysis

Finding initial “feasible” V :
! Incorporate simulation data (requires to sample the input

space!)

! Let γ > gain of the linearized dynamics

δ̇x = Aδx + δw

δz = Cδx

and let P 2 0 satisfy
[

AT P + PA + 1
γ2 CT C PB

BT P −I

]
≺ 0.

Then, there exists a small enough R such that

x(0) = 0 & ‖w‖2 ≤ R ⇒ ‖z‖2 ≤ γ‖w‖2.

84/100

Lower bound for L2 → L2 gain

Let γ and R be obtained through the SOS based gain analysis.
Then, for T ≥ 0

max
w

{‖z‖2,T : x(0) = 0 & ‖w‖2,T ≤ R} ≤ γR.

The first-order conditions for stationarity of the above finite horizon
maximum are the existence of signals (x, λ) and w which satisfy

ẋ = f(x, w)
‖w‖22,T = R2

λ(T) =
(

∂‖z‖22,T

∂x

)T

λ̇(t) = −
(

∂f(x(t),w(t))
∂x

)T
λ(t)

w(t) = µ
(

∂f(x(t),w(t))
∂w

)T
λ(t),

for t ∈ [0, T], where µ is chosen such that ‖w‖2,T = R.
Tierno, et.al., propose a power-like method to solve a similar
maximization. 85/100

Gain Lower-Bound Power Algorithm
Adapting for this case yields: Pick T > 0 and w with
‖w‖22,T = R2. Repeat the following steps until w converges.

1. Compute ‖z‖2,T (integration ẋ = f(x, w) with x(0) = 0
forward in time).

2. Set λ(T) =
(

∂‖z‖22,T

∂x

)T

.

3. Compute the solution of λ̇(t) = −∂f(x(t),w(t))
∂x

T
λ(t),

t ∈ [0, T] (integration backward in time).

4. Update w(t) = µ
(

∂f(x(t),w(t))
∂w

)T
λ(t).

! Step (1) of each iteration gives a valid lower bound on the
maximum (over ‖w‖2 = R) of ‖z‖2,T , independent of whether
the iteration converges;

! (main point of Tierno) if dynamics are linear and p quadratic,
then the iteration is convergent power iteration for H∞.

Implemented in worstcase.
86/100

Adaptive Control: I/O Gain

Plant:

ẋ = −x + w + u

y = −1.8x + w + u

x ∈ R is the plant state, u ∈ R is the control input, y ∈ R is the
output, and w ∈ R is a disturbance.

Model-reference adaptive controller:

ẋm = −xm + r

żx = −x2 + xxm

żr = −xr + xmr

u = (1 + zr)r + zxx

xm is the reference model state, r is the reference signal, and zx

and zr are feedback gains which are tuned by the adaptation.

Question: What is the gain from disturbance w to output y?
87/100

Results: Gain Bounds

0 1 2 3 4 5 6
1

2

3

4

5

R

!

Figure: Upper bounds on ‖S‖R for deg(V) = 2 (with 4) and deg(V) = 4
(with ×) before the refinement (blue curves) and after the refinement
(green curves) along with the lower bounds (red curve).

88/100

Upper bounds on the reachable set

ẋ = f(x, w) with f(0, 0) = 0
! Find upper bounds on the reachable set from the origin for

bounded L2 input norm
! Denote the set of points reached from the origin with input

signals w such that ‖w‖2 ≤ R by ReachR.

ReachR := {x(t) : x(0) = 0, t ≥ 0, ‖w‖2 ≤ R}

Goal:
! Given a shape factor p (positive definite, convex function with

p(0) = 0), establish relations of the form

x(0) = 0 & ‖w‖2 ≤ R ⇒ p(x(t)) ≤ β ∀t ≥ 0.

! Two types of optimization
! Given R, minimize β
! Given β, maximize R

89/100

A characterization of upper bounds on the reachable set

ẋ = f(x, w) with f(0, 0) = 0

Theorem: If there exists a continuously differentiable function V

such that

! V (x) > 0 for all x *= 0 and V (0) = 0
! ΩV,R2 =

{
ξ : V (ξ) ≤ R2

}
is bounded

! ∇V f(x, w) ≤ wT w for all x ∈ ΩV,R2 and for all w ∈ Rnw

then ReachR ⊆ ΩV,R2 .

Given R, solve

min
V,β

β

s.t. ΩV,R2 ⊆ Ωp,β

V satisfies above conditions

OR

Given β, solve

max
V,R2

R2

s.t. ΩV,R2 ⊆ Ωp,β

V satisfies above conditions

90/100

Bilinear SOS problem formulation for reachability analysis

max
R2,V

R2 Original Problem

subject to:
V (0) = 0, V (x) > 0 ∀x *= 0{

x ∈ Rn : V (x) ≤ R2
}

is bounded
ΩV,R2 ⊆ Ωp,β

∇V f(x, w) ≤ wT w ∀ x ∈ ΩV,R2 & w ∈ Rnw

⇑ S-procedure - SOS

max
R2,V,s1,s2

R2 Reformulation

subject to:

−
[
(β − p) + (V −R2)s1

]
is SOS[x],

−
[
(R2 − V)s2 +∇V f(x, w) + wT w

]
is SOS[x, w],

V − εxT x is SOS[x], V (0) = 0, and
s1, s2, s3 are SOS.

91/100

Generalizations: dissipation inequalities

The system
ẋ = f(x, w)
z = h(x)

with f(0, 0) = 0 and h(0) = 0 is said to be dissipative w.r.t. to
the supply rate r : (w, z) 6→ R if there exists a positive definite
function V such that V (0) = 0 and the following dissipation
inequality (DIE) holds

∂V

∂x
f(x, w) ≤ r(w, z)

for all x ∈ Rn & w ∈ Rnw .

! L2 → L2 gain: r(w, z) = wT w − zT z

! Reachability: r(w, z) = wT w

The system is said to be locally dissipative if the above DIE holds
only for all x ∈ {x : V (x) ≤ γ} for some γ > 0.

92/100

Robust ROA and performance
analysis with unmodeled

dynamics

93/100

Recall: the small-gain theorem

For stable M and Φ, the feedback interconnec-
tion is internally stable if

γ(M)γ(Φ) < 1. z w

" Φ

M !

! γ is an upper bound on the global L2 → L2 gain.

! Extensively used in linear robustness analysis where M is
linear time-invariant (existence of global gains is guaranteed).

! How to generalize to nonlinear M with possibly only local
gain relations?

94/100

Local small-gain theorems for stability analysis
dx/dt = f(x,w)

z = h(x)

d!/dt = g(!,z)

w = k(!)

M

"

w z Let l be a positive definite func-
tion with l(0) = 0 e.g. l(x) =
εxT x and R > 0.
Let l̃ be a positive definite func-
tion with l̃(0) = 0.

For M : There exists a positive definite function V such that ΩV,R2

is bounded and for all x ∈ ΩV,R2 and w ∈ Rnw

∇V · f(x, w) ≤ wT w − h(x)T h(x)− l(x).

[M is “locally strictly dissipative” w.r.t. the supply rate
wT w − zT z certified by the storage function V.]
For Φ: There exists a positive definite function Q such that for all
η ∈ Rnη and z ∈ Rnz

∇Q · g(η, z) ≤ zT z − k(η)T k(η)− l̃(η).

[Φ is “strictly dissipative” w.r.t. zT z − wT w.]

95/100

Local small-gain theorems for stability analysis (2)

Conclusion: S := V + Q is a Lya-
punov function for the closed-loop for
the closed-loop dynamics (ξ̇ = F (ξ)).

dx/dt = f(x,w)

z = h(x)

d!/dt = g(!,z)

w = k(!)

M

"

w z

ξ =

»
x
η

–

Proof:

∇V · f(x, w) ≤ wT w − zT z − l(x) ∀x ∈ ΩV,R2 & w ∈ Rnw

∇Q · g(η, z) ≤ zT z − wT w − l̃(η) ∀η ∈ Rnη & z ∈ Rnz

∇V · f(x, g(η)) +∇Q · g(η, h(x)) ≤ l(x) + l̃(η)
∀(x, η) ∈

{
(x, η) : V (x) + Q(η) ≤ R2

}

∇S · F (ξ) ≤ −l(x)− l̃(η) = −L(ξ)
∀(x, η) ∈

{
(x, η) : S(x, η) ≤ R2

}

Corollary:

! {(x, η) : V (x) + Q(η) ≤ R2} is an invariant subset of the
ROA for the closed-loop dynamics.

96/100

Estimating the ROA (for x states)

Let p be a shape factor (as before) and (V̄ , β̄, R̄) be a solution to
the above optimization

max
V ∈V,β≥0,R≥0

β subject to

V (x) > 0 for all x *= 0, V (0) = 0,
Ωp,β ⊆ ΩV,R2 ,

ΩV,R2 is bounded,
∇V f(x, w) ≤ wT w − zT z − l(x) ∀ x ∈ ΩV,R2 , ∀ w ∈ Rnw .

If Φ is strictly dissipative w.r.t. zT z − wT w and η(0) = 0, then for
any x(0) ∈ Ωp,β̄,

! x(t) stays in ΩV̄ ,R̄2

! x(t) → 0 as t →∞.

97/100

Example: Controlled aircraft dynamics with unmodeled
dynamics

ẋ4 = Acx4 + Bcy
v = Ccx4

"

z w

$

"

1.25

0.75

Φ

#•
+

" "u ẋp = fp(xp, δp) + B(xp, δp)u

y = [x1 x3]T
y"

no δp with δp

no ∆ 9.4 / 16.1 5.5 / 7.9
with ∆ 4.2 / 6.7 2.4 / 4.1

In the table :
(∂(V) = 2/∂(V) = 4)

Closed-loop response with randomly generated first-order LTI Φ:

98/100

Generalization to generic supply rates

Results hold when the “L2-gain supply rate” is
replaced by a general supply rate. z w

" Φ

M !

Suppose that

! Φ is strictly dissipative w.r.t. the supply rate r1(z, w) with the
corresponding storage function Q

! M satisfies

V f(x, w) ≤ r2(w, z)− l(x) ∀x ∈ ΩV,R2 & w ∈ Rnw

with
r1(z, w) = −r2(w, z) ∀w, z.

Then, {(x, η) : V (x) + Q(η) ≤ R2} is an invariant subset of the
ROA for the closed-loop dynamics.

99/100

General procedure to construct “certificates”

! System properties → Algebraic conditions
! Lyapunov, dissipation inequalities.

! Algebraic conditions → Numerical optimization problems
! Restrict the attention to polynomial vector fields, polynomial

certificates,...
! S-procedure like conditions (for set containment constraints)
! Sum-of-squares (SOS) relaxations for polynomial nonnegativity
! Pass to semidefinite programming (SDP) that are equivalent of

SOS conditions

! Solve the resulting (linear or “bilinear”) SDPs

! Construct polynomial certificates

Recurring procedure for most computational analysis questions
(that I know) for dynamical systems.

100/100

6/8/09 11:21 AMRobust ROA calculations

Page 1 of 3file:///Users/utopcu/Documents/All_Documents/research/workshop/acc2009/material1/Demos/special1.html

Robust ROA calculations

dynamics:

x1dot = x2;

x2dot = -x2-2*x1+2*x1^3 + delta*(-x1+x1^3);

with delta \in [-1,1]

This example was also used in Topcu and Packard, IEEE TAC, 2009 (in the special issue on
positive polynomials in controls (example 1 in the paper)

% Form the vector field
pvar x1 x2;
x = [x1;x2];
x1dot = x2;
x2dot = -x2-2*x1+2*x1^3;

Nominal system

f = [x1dot; x2dot];

Introduce an uncertain parameter

pvar d1

Specify its range

ini_cell = [-1 1];

Form the uncertain vector field

f = f + d1*[0; -x1+x1^3];

% Get the vertex system
[roaconstr,opt,sys] = GetRoaOpts(f, x);
[fNOM,fVER] = getf(sys,ini_cell);

% Generate the options, etc.
zV = monomials(x,2:4);
Bis.flag = 0;
Bis.r1deg = 4;

[roaconstr,opt,sys] = GetRoaOpts(fVER, x, zV, [], Bis);
sys.fWithDel = [];

opt.sim.NumConvTraj = 40;
opt.display.roaest = 1;

6/8/09 11:21 AMRobust ROA calculations

Page 2 of 3file:///Users/utopcu/Documents/All_Documents/research/workshop/acc2009/material1/Demos/special1.html

Run the computations

outputs = wrapper(sys,[],roaconstr,opt);

------------------Beginning simulations
System 1: Num Stable = 0 Num Unstable = 1 Beta for Sims = 3.289 Beta UB = 3.289
System 1: Num Stable = 0 Num Unstable = 2 Beta for Sims = 1.390 Beta UB = 1.390
System 1: Num Stable = 2 Num Unstable = 3 Beta for Sims = 1.306 Beta UB = 1.306
System 1: Num Stable = 4 Num Unstable = 4 Beta for Sims = 0.913 Beta UB = 0.913
System 1: Num Stable = 6 Num Unstable = 5 Beta for Sims = 0.861 Beta UB = 0.861
System 1: Num Stable = 12 Num Unstable = 6 Beta for Sims = 0.818 Beta UB = 0.842
System 1: Num Stable = 18 Num Unstable = 7 Beta for Sims = 0.777 Beta UB = 0.808
System 2: Num Stable = 1 Num Unstable = 1 Beta for Sims = 1.476 Beta UB = 0.808
System 2: Num Stable = 3 Num Unstable = 2 Beta for Sims = 1.402 Beta UB = 0.808
System 2: Num Stable = 6 Num Unstable = 3 Beta for Sims = 1.114 Beta UB = 0.808
System 2: Num Stable = 6 Num Unstable = 4 Beta for Sims = 1.058 Beta UB = 0.808
System 2: Num Stable = 8 Num Unstable = 5 Beta for Sims = 1.000 Beta UB = 0.808
System 2: Num Stable = 10 Num Unstable = 6 Beta for Sims = 0.929 Beta UB = 0.808
System 2: Num Stable = 11 Num Unstable = 7 Beta for Sims = 0.882 Beta UB = 0.808
------------------End of simulations
------------------Begin search for feasible V
Try = 1 Beta for Vfeas = 0.882
Try = 2 Beta for Vfeas = 0.838
------------------Found feasible V
Initial V (from the cvx outer bnd) gives Beta = 0.173
-------------------Iteration = 1
Beta = 0.567 (Gamma = 0.535)
-------------------Iteration = 2
Beta = 0.665 (Gamma = 0.604)
-------------------Iteration = 3
Beta = 0.716 (Gamma = 0.640)
-------------------Iteration = 4
Beta = 0.739 (Gamma = 0.656)

Extract the solution

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

beta

beta =

 0.7388

Upper bound on beta

betaUpper

betaUpper =

 0.8822

6/8/09 11:21 AMRobust ROA calculations

Page 3 of 3file:///Users/utopcu/Documents/All_Documents/research/workshop/acc2009/material1/Demos/special1.html

Plot the results

[Cp4,hp4] = pcontour(p,beta,[-2 2 -2 2],'k'); hold on;
set(hp4,'linewidth',2);
[CV4,hV4] = pcontour(V,gamma,[-2 2 -2 2],'b');
set(hV4,'linewidth',2);
set(gca,'xlim',[-1.5 1.5],'ylim',[-1.5 1.5]);

traj = outputs.RoaEstInfo.info.SimLFG.sim.Trajectories(1).unstab(end).state;
pval = peval(traj,p.coef,p.deg);
[aux,ind] = min(pval);
plot(traj(1,ind),traj(2,ind),'r*','markersize',8);
grid on;

Published with MATLAB® 7.6

	TopcuCut
	special1

