Specification, Design and Verification of
Distributed Embedded Systems

Richard M. Murray
California Institute of Technology

Sayan Mitra Ufuk Topcu Nok Wongpiromsarn
UIUC (CMI) Caltech CDS Caltech ME

V&V MURI 2009 Annual Review
17 September 2009

V&V MURI, Sep 09 Richard M. Murray, Caltech CDS




\%{‘ Motivating Example: Alice (DGCO07) ;ﬂﬁﬂﬁeﬁa

Alice
e 300+ miles of fully autonomous driving

e 8 cameras, 8 LADAR, 2 RADAR
® 12 Core 2 Duo CPUs + Quad Core
® ~75 person team over 18 months

Software
e 25 programs with ~200 exec threads

e 237,467 lines of executable code

Fl | module startup map Fl0| health monitor mplanner F3
F4 } f
| el B
)
! LADAR -:—\_.. _/—T Obet -:—\_" ME(2) . Update map F?
: ! ! ! a FSM
H E \ i Mapper A, Plan path
[ .
Ster ' 5 " Line ' Compute vel Fg
1 | 1
1 | 1
I I
L] mU | e :
RADAR 1 M Road [ Classify trafsim | | || follow |=— ROA |i
1 | 1 | 1
| 1 | 1
_________________ %
s S bt e
_\_’L Moving Vehicle || |
PTU atten’n . — asim adrive astate ||
L 1| Vehicles Frediction
+ ____________________________________
:_ __________________________________________________________
Field Ope | || Mounts Cabin Power Vehicle Estop Actuators
)

Team Caltech, Jan 08 Richard M. Murray, Caltech CDS




'.‘;‘\Y ure O

"DARPA

JRORNI,
A 3 AN,

ot
&) A
O1onH2>

Sie

.

System Architecture R Haly

Logging/ Process --
Visualization Manager

Feature
LADAR (6) Classificat’n \
/ — 1
Finding Mapping S o ——— a :
Planner ."
: * ; (R _Path
Gimbaled Obstacle > e
Sensor Detect/Track

Missior Mission

Plannel pjanner

Follower .
Path » ~ctuation

Followe~- Interface

1

1 Actuation

: 'V Interface “

1 .

Ml Vehicie State ! Vehicle

Es‘imatc

Urban Environment

- Vehicle -

V&YV focus: planning “stack”
e Hourglass architecture: reasoning at interconnected layers of abstraction
e Apply different tools to verify different aspects of the design
e Evolution from verification — design for verification — proof by construction

Team Caltech, Jan 08 Richard M. Murray, Caltech CDS




V&V MURI, Sep 09

Specifying Behavior with Temporal Logic

Description

e State of the system is a snapshot of values of all
variables

e Reason about behaviors 0. sequence of states of
the system

e No strict notion of time, just ordering of events

Actions are relations between states: state s is
related to state f by action a if a takes s to t (via
prime notation: X’ = x + 1)

e formulas (specifications) describe the set of
allowable behaviors

e Safety specification: what actions are allowed

e Fairness specification: when can a component
take an action (eg, infinitely often)

Example
e Actionia=x=x+1
e Behavior:c=x:=1,x:=2,x:=3, ...
e Safety: [Ix > 0 (true for this behavior)
e Fairness: (X' =x+ 1 v X' =x) A O (X' # X)

[1p = always p (invariance)

Op = eventually p (guarantee)
p — (q = p implies eventually q
(response)

p — q Ur=pimplies g until r
(precedence)

O0p = always eventually p
(progress)

OOp = eventually always p
(stability)

Op — (q = eventually p implies
eventually g (correlation)

Properties

e Can reason about time by adding
“time variables” (' =t + 1)

e Specifications and proofs can be
difficult to interpret by hand, but
computer tools existing (eg, TLC,
Isabelle, PVS, etc)

Richard M. Murray, Caltech CDS




[DARPA

DGC Example: Changing Gear e

Wongpiromsrn and M

Verify that we can’t drive while shifting or drive in the wrong gear CDC 2008
e Five component: follower Control, gcdrive Arbiter, gcdrive Control, actuators and network
e Construct temporal logic models for each component (including network)

follower follower
Arbiter
follower follower
Control Tactics
Response Actuator command
gcdrive gcdrive
Arbiter
gedrive gedrive
Control Tactics
Response Actuator command
A\ 4
actuators

Team Caltech, Jan 08

Richard M. Murray, Caltech CDS

Asynchronous operation

e Notation: Messagemod,dir - message to/from
a module; Len = length of message queue

e Verify: follower has the right knowledge of
the gear that we are currently in, or it
commands a full brake.

- O ((Len(TransRespy,) = Len(Trans;g))
n TransResp; [Len(TransRespy,)] =
COMPLETED => Trans; = Trans))

- O (Trans; = Trans v Accss = -1)

e \erify: at infinitely many instants, follower
has the right knowledge of the gear that we
are currently in, or we have hardware
failure.

- ) (Trans; = Trans =
Transss[Len(Transs)] v HW failure)




Verification of Periodically Controlled Hybrid Systems

Hybrid system: continuous dynamics + discrete updates
e \ehicle

- Captures the state (position, orientation and velocity) of the
vehicle.

- Specifies the dynamics of the autonomous ground vehicle

with respect to the acceleration and the angle of the
steering wheel.

- Limits the magnitude of the steering input to ¢max.
e Controller

- Receives the state of the vehicle, a path and an externally
triggered brake input.

- Periodically computes the input steering

- Restricts the steering angle to dv for mechanical protection
of the steering.

- Sampling period: A € R-.
e Desired properties

- (Safety) At all reachable states, the deviation of the vehicle
from the current path is upper-bounded by emax.

- (Progress) The vehicle reaches successive waypoints.

V&V MURI, Sep 09 Richard M. Murray, Caltech CDS

br

Wongpiromsarn, Mitra and M

HSCCO09

Planner
|

ake(b)
-|-> Controller

‘ X,y
a,o
0, v

path(p)

Mission
Planner

Traffic
Planner

Path
Planner

V.V'

Path
Follower

Actuation
Interface




Wongpiromsarn, Mitra and M

HSCC09
Periodically Controlled Hybrid Automata (PCHA)
PCHA setup Planner
e Continuous dynamics with piecewise constant inputs
e Controller executes with period T & [A1, As] kb ) path(p)
® Input commands are received asynchronously T R
e Execution consists of trajectory segments + discrete updates 2 d X,y
e Verify safety (avoid collisions) + performance (turn corner) A O,v
Vehicle
Proof technique: verify invariant (safe) set via barrier functions

e Let | be an (safe) set specified by a set of functions Fi(x) =20
e Step 1: show that the control action renders | invariant

e Step 2: show that between updates we can bound the continuous
trajectories to live within appropriate sets

e Step 3: show progress by moving between nested collection of
invariant sets |11 — Iz, etc

Remarks

e Can use this to show that settings in Alice were not properly chosen; modified
settings lead to proper operation (after the fact)

e Very difficult to find invariant sets (barrier functions) for given control system...

V&V MURI, Sep 09 Richard M. Murray, Caltech CDS 7




Moving up the Planning Stack

Nonlinear design Local design
» global nonlinearities Mission
. . Planner
* iInput saturation A
* state space constraints S—
Planner
u, noise Pl;nt —_, output Path
' O Planner
ref —| Trajectory
Generation v.v'
X4 Path
R Ou Follower
Local ‘
Control Actuation
N Interface
“RHC”
Optimal Control LQR/PID
Extending RHC to planning is tricky Approach: rapidly explore feasible paths
® Modes as integers => MILP (slow) e Enumerate all executions, then elim-
e Hard to encode tempora| |Ogic inate executions that violate LTL SpeCs
specifications as cost functions ® |ssue: state space explosion, especially
- Eg, intersection operations due to environment

V&V MURI, Sep 09 Richard M. Murray, Caltech CDS




Wongpiromsarn, Topcu and M
. . . CDC 09 (s)
Receding Horizon Control for Linear Temporal Logic
Find planner (logic + path) to solve general control problem
® Oinit = init conditions ® (s = safety property
® e = envt description ® (pg = planning goal

e Can find automaton to satisfy this formula in O((nm|Z|3) time (1)

(@init A\ Dgpe) — (DSDS A ngg)

Basic idea
e Discretize state space into regions {V;} + interconnection graph
e Organize regions into a partially ordered set {W,}; W; <, W;
= if state starts in W;, must transition through V; on way to goal

Wi

=y
n‘g:?/\

o

>

¢ Find a finite state automaton A; satisfying
U, =((veW) AN @ A Op.) = (Hps A O(veW,) A OP)

= O describes receding horizon invariants (eg, no collisions)

- Automaton states describe sequence of regions we transition
through; W,, =, W; is intermediate (fixed horizon) goal

- Planner generates trajectory for each discrete transition
- Partial order condition guarantees that we move closer to goal

4_\?\)
2/
b=

/;2/\‘

>

&

Properties
® Provably correct behavior according to spec

V&V MURI, Sep 09 Richard M. Murray, Caltech CDS 9




Wongpiromsarn, Topcu and M
CDC 09 (s)

Comments and Example

Comments and caveats
e Automaton synthesis is basically searching thru all feasible trajectories (efficiently)
e Complexity is polynomial, but can still get large = receding horizon is a huge help!

e Discretization of the state space is important and non-trivial

Example: driving down a lane with unknown obstacles

iime: 0.00 s

1.4 e Demonstrates basic
feasibility of approach

e Lots of tuning required
12 to get everything to work

e Clever discretization +
o RHC are key enablers...

1 1 1 1 1 ]
0 5 10 15 20 25 30

V&V MURI, Sep 09 Richard M. Murray, Caltech CDS 10




Summary and Next Steps

Specification, Design and Verification for Alice
e Most of the actual design was ad hoc; with lots of testing
e Starting to develop tools for systematic design, verification

Analysis techniques based on invariants & model checking
e Specify desired behavior in terms of temporal logic
e Model checking using existing tools (TLA+, TLC, SPIN, ...)
e Theorem proving techniques using Lyapunov fcns, lattices
Synthesis techniques for LTL specifications using
receding horizon planning
e Convert the specification into a design criterion

e Use fast solvers to find trajectories that satisfy constraints
(including temporal logic specifications)

¢ Manage complexity using receiding horizon approach
Next steps

e More systematic design of regions, lattices, invariants
e Better integration of trajectory planning and logic planning

V&V MURI, Sep 09 Richard M. Murray, Caltech CDS

Mission
Planner

Traffic

Planner

Path
Planner

Yy %
Path
Follower

Actuation
Interface




