Specification, Design and Verification of Distributed Embedded Systems

Richard M. Murray
California Institute of Technology

Sayan Mitra Ufuk Topcu Nok Wongpiromsarn
UIUC (CMI) Caltech CDS Caltech ME

V&V MURI 2009 Annual Review
17 September 2009
Motivating Example: Alice (DGC07)

Alice
- 300+ miles of fully autonomous driving
- 8 cameras, 8 LADAR, 2 RADAR
- 12 Core 2 Duo CPUs + Quad Core
- ~75 person team over 18 months

Software
- 25 programs with ~200 exec threads
- 237,467 lines of executable code
V&V focus: planning “stack”

- Hourglass architecture: reasoning at interconnected layers of abstraction
- Apply different tools to verify different aspects of the design
- Evolution from verification → design for verification → proof by construction
Specifying Behavior with Temporal Logic

Description

- State of the system is a snapshot of values of all variables
- Reason about behaviors \(\sigma \): sequence of states of the system
- No strict notion of time, just ordering of events
- Actions are relations between states: state \(s \) is related to state \(t \) by action \(a \) if \(a \) takes \(s \) to \(t \) (via prime notation: \(x' = x + 1 \))
- Formulas (specifications) describe the set of allowable behaviors
- Safety specification: what actions are allowed
- Fairness specification: when can a component take an action (eg, infinitely often)

Example

- Action: \(a \equiv x' = x + 1 \)
- Behavior: \(\sigma \equiv x := 1, x := 2, x := 3, \ldots \)
- Safety: \(\Box x > 0 \) (true for this behavior)
- Fairness: \(\Box (x' = x + 1 \lor x' = x) \land \Diamond (x' \neq x) \)

Properties

- Can reason about time by adding “time variables” \((t' = t + 1) \)
- Specifications and proofs can be difficult to interpret by hand, but computer tools existing (eg, TLC, Isabelle, PVS, etc)
DGC Example: Changing Gear

Verify that we can’t drive while shifting or drive in the wrong gear

- Five component: follower Control, gcdrive Arbiter, gcdrive Control, actuators and network
- Construct temporal logic models for each component (including network)

Asynchronous operation

- Notation: Message_{mod,dir} - message to/from a module; Len = length of message queue

- Verify: follower has the right knowledge of the gear that we are currently in, or it commands a full brake.
 - $\Box ((\text{Len}(\text{TransResp}_{f,r}) = \text{Len}(\text{Trans}_{f,s})) \land \text{TransResp}_{f,r}[\text{Len}(\text{TransResp}_{f,r})] = \text{COMPLETED} \Rightarrow \text{Trans}_{f} = \text{Trans})$

- $\Box (\text{Trans}_{f} = \text{Trans} \lor \text{Acc}_{f,s} = -1)$

- Verify: at infinitely many instants, follower has the right knowledge of the gear that we are currently in, or we have hardware failure.
 - $\Box \Box (\text{Trans}_{f} = \text{Trans} = \text{Trans}_{f,s}[\text{Len}(\text{Trans}_{f,s})] \lor \text{HW failure})$
Verification of Periodically Controlled Hybrid Systems

Hybrid system: continuous dynamics + discrete updates

- **Vehicle**
 - Captures the state (position, orientation and velocity) of the vehicle.
 - Specifies the dynamics of the autonomous ground vehicle with respect to the acceleration and the angle of the steering wheel.
 - Limits the magnitude of the steering input to ϕ_{max}.

- **Controller**
 - Receives the state of the vehicle, a path and an externally triggered brake input.
 - Periodically computes the input steering.
 - Restricts the steering angle to δv for mechanical protection of the steering.
 - Sampling period: $\Delta \in \mathbb{R}^+$.

- **Desired properties**
 - (Safety) At all reachable states, the deviation of the vehicle from the current path is upper-bounded by e_{max}.
 - (Progress) The vehicle reaches successive waypoints.
Periodically Controlled Hybrid Automata (PCHA)

PCHA setup
- Continuous dynamics with piecewise constant inputs
- Controller executes with period $T \in [\Delta_1, \Delta_2]
- Input commands are received asynchronously
- Execution consists of trajectory segments + discrete updates
- Verify safety (avoid collisions) + performance (turn corner)

Proof technique: verify invariant (safe) set via barrier functions
- Let I be an (safe) set specified by a set of functions $F_i(x) \geq 0$
- Step 1: show that the control action renders I invariant
- Step 2: show that between updates we can bound the continuous trajectories to live within appropriate sets
- Step 3: show progress by moving between nested collection of invariant sets $I_1 \rightarrow I_2$, etc

Remarks
- Can use this to show that settings in Alice were not properly chosen; modified settings lead to proper operation (after the fact)
- Very difficult to find invariant sets (barrier functions) for given control system...
Moving up the Planning Stack

Nonlinear design
- global nonlinearities
- input saturation
- state space constraints

Local design

Extending RHC to planning is tricky
- Modes as integers => MILP (slow)
- Hard to encode temporal logic specifications as cost functions
 - Eg, intersection operations

Approach: *rapidly* explore feasible paths
- Enumerate all executions, then eliminate executions that violate LTL specs
- Issue: state space explosion, especially due to environment
Receding Horizon Control for Linear Temporal Logic

Find planner (logic + path) to solve general control problem

\[(\varphi_{\text{init}} \land \Box \varphi_e) \implies (\Box \varphi_s \land \Diamond \varphi_g)\]

- \(\varphi_{\text{init}} = \) init conditions
- \(\varphi_e = \) envt description
- \(\varphi_s = \) safety property
- \(\varphi_g = \) planning goal

- Can find automaton to satisfy this formula in \(O((nm|\Sigma|^3))\) time (!)

Basic idea

- Discretize state space into regions \(\{\mathcal{V}_i\}\) + interconnection graph
- Organize regions into a partially ordered set \(\{\mathcal{W}_i\}; \mathcal{W}_j \preceq_{\varphi_g} \mathcal{W}_i\)
 \(\Rightarrow\) if state starts in \(\mathcal{W}_i\), must transition through \(\mathcal{W}_j\) on way to goal
- Find a finite state automaton \(A_i\) satisfying

\[\Psi_i = ((v \in \mathcal{W}_i) \land \Phi \land \Box \varphi_e) \implies (\Box \varphi_s \land \Diamond (v \in \mathcal{W}_{g_i}) \land \Box \Phi)\]

 - \(\Phi\) describes receding horizon invariants (eg, no collisions)
 - Automaton states describe sequence of regions we transition through; \(\mathcal{W}_{g_i} \preceq_{\varphi_g} \mathcal{W}_i\) is intermediate (fixed horizon) goal
 - Planner generates trajectory for each discrete transition
 - Partial order condition guarantees that we move closer to goal

Properties

- Provably correct behavior according to spec
Comments and Example

Comments and caveats

- Automaton synthesis is basically searching thru all feasible trajectories (efficiently)
- Complexity is polynomial, but can still get large ⇒ receding horizon is a huge help!
- Discretization of the state space is important and non-trivial

Example: driving down a lane with unknown obstacles

- Demonstrates basic feasibility of approach
- Lots of tuning required to get everything to work
- Clever discretization + RHC are key enablers...
Summary and Next Steps

Specification, Design and Verification for Alice
- Most of the actual design was ad hoc; with lots of testing
- Starting to develop tools for systematic design, verification

Analysis techniques based on invariants & model checking
- Specify desired behavior in terms of temporal logic
- Model checking using existing tools (TLA+, TLC, SPIN, ...)
- Theorem proving techniques using Lyapunov fcns, lattices

Synthesis techniques for LTL specifications using receding horizon planning
- Convert the specification into a design criterion
- Use fast solvers to find trajectories that satisfy constraints (including temporal logic specifications)
- Manage complexity using receding horizon approach

Next steps
- More systematic design of regions, lattices, invariants
- Better integration of trajectory planning and logic planning