
Richard M. Murray, Caltech CDSV&V MURI, Sep 09

Richard M. Murray
California Institute of Technology

 Sayan Mitra Ufuk Topcu Nok Wongpiromsarn
UIUC (CMI) Caltech CDS Caltech ME .

V&V MURI 2009 Annual Review
17 September 2009

Specification, Design and Verification of
Distributed Embedded Systems

1

Richard M. Murray, Caltech CDSTeam Caltech, Jan 08

Motivating Example: Alice (DGC07)
Alice
• 300+ miles of fully autonomous driving
• 8 cameras, 8 LADAR, 2 RADAR
• 12 Core 2 Duo CPUs + Quad Core
• ~75 person team over 18 months

Software
• 25 programs with ~200 exec threads
• 237,467 lines of executable code

2

Richard M. Murray, Caltech CDSTeam Caltech, Jan 08

V&V focus: planning “stack”
• Hourglass architecture: reasoning at interconnected layers of abstraction
• Apply different tools to verify different aspects of the design
• Evolution from verification ➞ design for verification ➞ proof by construction

System Architecture

3

Feature
Classificat’n

Elevation
Mapping

Obstacle
Detect/Track

LADAR (6)

Stereo/Road
Finding

Gimbaled
Sensor

Urban Environment

World Map

Obstacle Map

Vehicles

Sensing

Navigation

Systems

Process
Manager

Health
Manager

Logging/
Visualization

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle State
Estimator Vehicle

Simulation

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

Richard M. Murray, Caltech CDSV&V MURI, Sep 09

Specifying Behavior with Temporal Logic
Description
• State of the system is a snapshot of values of all

variables

• Reason about behaviors σ: sequence of states of
the system

• No strict notion of time, just ordering of events

• Actions are relations between states: state s is
related to state t by action a if a takes s to t (via
prime notation: x’ = x + 1)

• Formulas (specifications) describe the set of
allowable behaviors

• Safety specification: what actions are allowed

• Fairness specification: when can a component
take an action (eg, infinitely often)

Example
• Action: a ≡ x’ = x + 1

• Behavior: σ ≡ x := 1, x := 2, x:= 3, ...

• Safety: x > 0 (true for this behavior)

• Fairness: (x’ = x + 1 ∨ x’ = x) ∧ ◊ (x’ ≠ x)

Properties
• Can reason about time by adding

“time variables” (t’ = t + 1)

• Specifications and proofs can be
difficult to interpret by hand, but
computer tools existing (eg, TLC,
Isabelle, PVS, etc)

4

 p ≡ always p (invariance)
 ◊p ≡ eventually p (guarantee)
 p → ◊q ≡ p implies eventually q

(response)
 p → q U r ≡ p implies q until r

(precedence)
 ◊p ≡ always eventually p

(progress)
 ◊p ≡ eventually always p

(stability)
 ◊p → ◊q ≡ eventually p implies

eventually q (correlation)

Richard M. Murray, Caltech CDSTeam Caltech, Jan 08

DGC Example: Changing Gear
Verify that we can’t drive while shifting or drive in the wrong gear
• Five component: follower Control, gcdrive Arbiter, gcdrive Control, actuators and network

• Construct temporal logic models for each component (including network)

5

follower
Control

actuators

Actuator commandResponse

follower
Arbiter

gcdrive
Control

gcdrive
Arbiter

Actuator commandResponse

follower
Tactics

gcdrive
Tactics

follower

gcdrive

Asynchronous operation
• Notation: Messagemod,dir - message to/from

a module; Len = length of message queue

• Verify: follower has the right knowledge of
the gear that we are currently in, or it
commands a full brake.

-  ((Len(TransRespf,r) = Len(Transf,s))
∧ TransRespf,r[Len(TransRespf,r)] =
COMPLETED ⇒ Transf = Trans))

-  (Transf = Trans ∨ Accf,s = -1)

• Verify: at infinitely many instants, follower
has the right knowledge of the gear that we
are currently in, or we have hardware
failure.

- ◊ (Transf = Trans =
Transf,s[Len(Transf,s)] ∨ HW failure)

Wongpiromsarn and M
CDC 2008

Richard M. Murray, Caltech CDSV&V MURI, Sep 09

Verification of Periodically Controlled Hybrid Systems
Hybrid system: continuous dynamics + discrete updates
• Vehicle

- Captures the state (position, orientation and velocity) of the
vehicle.

- Specifies the dynamics of the autonomous ground vehicle
with respect to the acceleration and the angle of the
steering wheel.

- Limits the magnitude of the steering input to ϕmax.
• Controller

- Receives the state of the vehicle, a path and an externally
triggered brake input.

- Periodically computes the input steering
- Restricts the steering angle to δv for mechanical protection

of the steering.
- Sampling period: Δ ∈ R+.

• Desired properties
- (Safety) At all reachable states, the deviation of the vehicle

from the current path is upper-bounded by emax.
- (Progress) The vehicle reaches successive waypoints.

6

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

Wongpiromsarn, Mitra and M
HSCC09

Richard M. Murray, Caltech CDSV&V MURI, Sep 09

Periodically Controlled Hybrid Automata (PCHA)
PCHA setup
• Continuous dynamics with piecewise constant inputs

• Controller executes with period T ∈ [Δ1, Δ2]

• Input commands are received asynchronously
• Execution consists of trajectory segments + discrete updates
• Verify safety (avoid collisions) + performance (turn corner)

Proof technique: verify invariant (safe) set via barrier functions
• Let I be an (safe) set specified by a set of functions Fi(x) ≥ 0
• Step 1: show that the control action renders I invariant
• Step 2: show that between updates we can bound the continuous

trajectories to live within appropriate sets
• Step 3: show progress by moving between nested collection of

invariant sets I1 → I2, etc

Remarks
• Can use this to show that settings in Alice were not properly chosen; modified

settings lead to proper operation (after the fact)
• Very difficult to find invariant sets (barrier functions) for given control system...

7

Wongpiromsarn, Mitra and M
HSCC09

Richard M. Murray, Caltech CDSV&V MURI, Sep 09

Moving up the Planning Stack

Extending RHC to planning is tricky
• Modes as integers => MILP (slow)
• Hard to encode temporal logic

specifications as cost functions
- Eg, intersection operations

Approach: rapidly explore feasible paths
• Enumerate all executions, then elim-

inate executions that violate LTL specs
• Issue: state space explosion, especially

due to environment

8

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

Δ

Plant
P

Local
Control

noise
Trajectory
Generation

ref

output

Local designNonlinear design
• global nonlinearities
• input saturation
• state space constraints

“RHC”

LQR/PIDOptimal Control

Richard M. Murray, Caltech CDSV&V MURI, Sep 09

Receding Horizon Control for Linear Temporal Logic
Find planner (logic + path) to solve general control problem

• Can find automaton to satisfy this formula in O((nm|Σ|3) time (!)

Basic idea
• Discretize state space into regions { } + interconnection graph
• Organize regions into a partially ordered set { };
⇒ if state starts in , must transition through on way to goal

• Find a finite state automaton satisfying

- Φ describes receding horizon invariants (eg, no collisions)
- Automaton states describe sequence of regions we transition

through; is intermediate (fixed horizon) goal
- Planner generates trajectory for each discrete transition
- Partial order condition guarantees that we move closer to goal

Properties
• Provably correct behavior according to spec

9

(ϕinit ∧ !ϕe) =⇒ (!ϕs ∧ ♦ϕg)
• φinit = init conditions

• φe = envt description
• φs = safety property

• φg = planning goal

Ψi =((v ∈Wi) ∧ Φ ∧ !ϕe) =⇒ (!ϕs ∧ ♦(v ∈Wgi) ∧ !Φ)

W1

W2

W3

W4Wi

Vi

Ai

Wj !ϕg Wi

Wi Wj

Wgi !φg Wi

Wongpiromsarn, Topcu and M
CDC 09 (s)

Richard M. Murray, Caltech CDSV&V MURI, Sep 09

Comments and Example
Comments and caveats
• Automaton synthesis is basically searching thru all feasible trajectories (efficiently)
• Complexity is polynomial, but can still get large ⇒ receding horizon is a huge help!

• Discretization of the state space is important and non-trivial

Example: driving down a lane with unknown obstacles

• Model dynamics in each directions as simple second order systems (F = m a)

• Specs: avoid obstacles, stay in lane when possible, reach the goal

• Assumptions: we can detect obstacles far enough away; obstacles don’t disappear

• State space discretization: get 11 cells for each direction (x vs vx)

• Automaton: horizon = 3 meters -> 2845 nodes (of 100k gen’d)

10

[
z[t + 1]
vz[t + 1]

]
=

[
1 0.0952
0 0.9048

] [
z[t]
vz[t]

]
+

[
0.0048
0.0952

]
qz

|qz| ≤
√

0.5

• Demonstrates basic
feasibility of approach

• Lots of tuning required
to get everything to work

• Clever discretization +
RHC are key enablers...

Wongpiromsarn, Topcu and M
CDC 09 (s)

Richard M. Murray, Caltech CDSV&V MURI, Sep 09

Summary and Next Steps
Specification, Design and Verification for Alice
• Most of the actual design was ad hoc; with lots of testing
• Starting to develop tools for systematic design, verification

Analysis techniques based on invariants & model checking
• Specify desired behavior in terms of temporal logic
• Model checking using existing tools (TLA+, TLC, SPIN, ...)
• Theorem proving techniques using Lyapunov fcns, lattices

Synthesis techniques for LTL specifications using
receding horizon planning
• Convert the specification into a design criterion
• Use fast solvers to find trajectories that satisfy constraints

(including temporal logic specifications)
• Manage complexity using receiding horizon approach

Next steps
• More systematic design of regions, lattices, invariants
• Better integration of trajectory planning and logic planning

11

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

