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Abstract 

Escherichia coli K-12 is an ideal test bed for pushing forward the limits of our 
ability to understand cellular systems through computational modeling. A com-
plete understanding will require arrays of mathematical models, a wealth of data 
from measurements of various life processes, and readily accessible databases that 
can be interrogated for testing our understanding. Accomplishing this will require 
improved approaches for mathematical modeling, unprecedented standardization 
for experimentation and data collection, completeness of data sets, and improved 
methods of accessing and linking information. Solving the whole cell problem, 
even for a simple E. coli model cell, will require the concerted efforts of many 
scientists with different expertise. In this chapter, we review advances in (i) com-
puting for modeling cells, (ii) creating a common language for representing com-
putational models (the Systems Biology Markup Language), and (iii) developing 
the International E. coli Alliance, which has been created to tackle the whole cell 
problem.  

1 Introduction 

Biology has come a long way since Robert Hooke first used the term “cell” to de-
scribe the basic structural unit of cork in 1665. The tiny, room-like structures he 
saw under his microscope had solid walls, but they were empty because the cork 
was dead. Today, we can describe in exquisite detail many of the molecular parts 
and processes that furnish biological rooms. The complete genetic blueprints are 
available for common and deadly microbes, for economically important animals 
and plants, and even for human beings. And yet, we still lack a comprehensive 
understanding of any living cell. 

One of the most striking successes of twentieth-century biology has been the 
identification and characterization of the molecules of life. This has been brought 
about through the development of disciplines such as biochemistry, biophysics, 
cell biology, molecular biology, molecular genetics, structural biology, and others. 
A major challenge of the twenty-first century is to describe the dynamic interac-
tions of these molecules of life in the complex processes that are the essence of a 
living cell. Meeting this challenge requires that we enhance the highly successful, 
but limiting, reductionist approaches of the last several decades by revisiting 
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themes first articulated early in the twentieth century by systems-oriented thinkers 
such as Bogdanov and Bertalanffy (Capra 1996), and somewhat later by Wiener, 
Kacser, Mesarovic, and others (Wiener 1961; Kacser 1957; Mesarovic 1968). 
Fundamentally, systems biology strives to augment reductionist molecule-by-
molecule accounts of cells by embedding the components within accounts of the 
broader context of cells and cell systems. This approach is simply an acknowl-
edgment that dynamical interactions between components give rise to new func-
tional properties at all levels from the genome, to molecular modules and net-
works, up through entire cell systems and beyond, and that these interactions are 
measurable and quantifiable. 

These themes are the core of the definition of systems biology by Alberghia 
and Westerhoff (this volume) and others (Hood 1998; Ideker et al. 2001; Kitano 
2001, 2002). The contemporary resurgence of interest in systems biology can be 
attributed to at least three major factors. First, there is the explosion of data 
brought about by modern molecular techniques and the commensurate realization 
by many researchers that future progress in understanding biological function rests 
inescapably in the development and application of computational methods (Alm 
and Arkin 2003; Arkin 2001; Fraser and Harland 2000; Hartwell et al. 1999; No-
ble 2002; Tyson et al. 2001; Zerhouni 2003). Second, there is the vastly greater 
power afforded by modern information technology (Butler 1999), beckoning us to 
reattempt solutions to problems that were beyond reach in the mid-twentieth cen-
tury. And third, only in recent decades has the mathematical theory of nonlinear 
systems and stochastic systems advanced sufficiently to allow us to handle the 
classes of systems that emerge naturally when describing complex biological 
processes in a detailed, mathematical fashion (Burns 1971; Gillespie 1977; Gilles-
pie and Petzold 2003; Kacser and Burns 1967; Savageau 1969, 1970). 

The contrast between our tremendously increased computational and biological 
powers and technologies on the one hand, and our continuing lack of understand-
ing of any whole cell on the other, has been the major inspiration for the formation 
of the IECA—the International E. coli Alliance (Holden 2002). The mission of 
this alliance has been to coordinate global efforts to understand a living bacterial 
cell, the K-12 strain of Escherichia coli that has laid so many of the golden eggs 
of basic biochemistry, genetics, and molecular biology in the last half of the twen-
tieth century (Kornberg 2003). Scientists around the world are working together to 
create a computer model of E. coli, integrating all of the dynamic molecular inter-
actions required for the life of a simple, self-replicating cell. A whole cell model 
of E. coli would not only significantly advance the field of biology; it would also 
have immediate practical benefits as well, for everything from drug discovery to 
bioengineering. 

The IECA effort is emblematic of systems biology as a whole. The ambitious 
goal of the IECA is beyond the means of any single investigator or labora-
tory (Crick 1973). It requires an integrative research program and collaborations 
between scientists with expertise in biology, chemistry, computer sciences, engi-
neering, mathematics, and physics. Success will depend crucially on bringing to 
bear both social and technological tools: namely, consortia that help forge collabo-
rations and common understanding, computational tools that permit analysis of 
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vast and complex data, and agreed-upon standards and tools that enable research-
ers to communicate, integrate, and use their results in practical and unambiguous 
ways. 

In this chapter, we discuss these topics in the context of the IECA effort. We 
begin in Section 2 by describing the kind of models ultimately sought by Systems 
Biologists and provide an overview of computational modeling. In Section 3, we 
survey some of the software tools available today to help with computing in sys-
tems biology and follow this in Section 4 with a discussion of the Systems Biol-
ogy Markup Language (SBML) and its role as an enabling technology for model-
ers to share their models. Section 5 briefly describes the kinds of experimental 
standards envisioned by IECA that will be required for successful whole cell mod-
eling. One way of carrying out such standardized experiments as a community is 
also given in Section 5. It is unrealistic and probably unwise to develop a single 
database encompassing all information, even for a single cell. Section 6 describes 
an alternative approach for creation of an accessible and interoperable database 
that would not only store massive amounts of data in different formats but would 
also have the capability of interrogating other meaningful databases. Consortia 
such as the International E. coli Alliance have been created as one way to meet 
this challenge (see Section 7). We close by bringing the discussion back to the 
IECA effort itself. Several contributors to this book are also participating in the 
IECA. 

2 Quantitative, formal models are essential instruments in 
systems biology 

Models, as abstractions representing observed or hypothesized phenomena, are 
nothing new to the life sciences, having long been used by life scientists as tools 
for organizing and communicating conceptual and factual information. However, 
the majority of models in biology traditionally have been expressed in natural lan-
guage narratives, sometimes augmented with block-and-arrow diagrams (Bower 
and Bolouri 2001a). These certainly can be useful and important for describing 
hypotheses about a system's components and their interactions, but these types of 
models also have crucial limitations that make them inadequate as vehicles for de-
scribing and understanding large and complex systems (Bialek and Botstein 
2004). A block-and-arrow diagram combined with verbal explanations and state-
ments about observed effects, quantities of substances involved, and so forth, may 
appear detailed and precise, but in practice it leaves too much room for ambiguity, 
misinterpretation, and hidden complexity. More importantly, as Phair and Misteli 
wrote: 

 “... it often remains difficult to make quantitative predictions for a given ex-
perimental protocol with the use of diagrams alone. Scientific intuition has been 
successful when systems are limited to a few molecules and processes, but today’s 
summary diagrams generally have many more molecules and arrows than this, and 
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even simple systems often behave in surprising ways. What is needed is a way to 
know what the diagram predicts in a given experiment” (Phair and Misteli 2001). 

This is not to say that narrative descriptions and diagrams should be aban-
doned; rather, they should be used as stepping-stones, not stopping points. Scien-
tists must go further and express their models in such a way that each molecular 
entity is knowable and quantifiable in terms of empirical evidence and each proc-
ess is expressed step-by-step in a formal, mathematical language. It is by systema-
tizing how entities and processes are defined, represented, manipulated and inter-
preted, that formal, quantitative models can enable “meaningful comparison 
between the consequences of basic assumptions and the empirical facts” (May 
2004). 

2.1 Computational modeling is an extension of the scientific method 

Computational models are simply formal models expressed in a form that can be 
manipulated by a computer. The resulting descriptions are more likely to be co-
herent and internally consistent, because computable representations must be pre-
cise and detailed—vague or incomplete elements will not do, else it will not be 
possible to simulate or analyze the model. While frustrating at times, this is ex-
actly the reason why computational models are an invaluable tool in helping us 
understand phenomena. Only if one can express every step of a process in such 
detail that it can be simulated in a computer program can one justifiably claim to 
understand it very well. This is the fundamental premise for doing computational 
modeling in biology, and other fields. 

Computational models also allow quantitative calculations to be done on a 
model, allowing researchers not only to test their understanding, but also to ex-
plore “what-if” scenarios and make testable predictions about the behavior of the 
system being studied. This is an essential requirement for being able to understand 
complicated systems that are replete with feedback mechanisms (the hallmark of 
biological systems), where the resulting behaviors are rarely predictable through 
intuitive reasoning alone. Even for the simplest components and systems, it can be 
impossible to predict such characteristics as sensitivity to exact parameter values 
without constructing and analyzing a model. Such analyses have shown that some 
systems are insensitive (e.g. Yi et al. 2000) whereas others are exquisitely sensi-
tive (e.g. McAdams and Arkin 1999). Computational modeling is thus an exten-
sion of the scientific method (Phair and Misteli 2001; Fall et al. 2002; Slepchenko 
et al. 2002), providing the means to create precise, unambiguous, quantitative de-
scriptions of biological phenomena that can be used to evaluate hypotheses sys-
tematically and to explore non-obvious dynamical behavior of a biological sys-
tem (Hartwell et al. 1999; Csete and Doyle 2002; Endy and Brent 2001). For all of 
these reasons, the emphasis on developing and using models for quantitative pre-
dictions is one of the foundations of systems biology. 

Life scientists sometimes object to the idea of modeling by arguing, “If you un-
derstand something so well that you can simulate it, why bother? You already un-
derstand it!” But, this argument misses the point of modeling. One does not begin 
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creating models with understanding; indeed, the opposite is often the case—one 
begins with ignorance. It is the exercise of developing a model(s) that leads to un-
derstanding. Developing a computer model requires a greater degree of intellec-
tual honesty than writing down an informal verbal model or drawing a block-and-
arrow diagram. It is all too easy to imagine that one understands something, but it 
is quite another to make a computer model work. 

Many sometimes feel that they cannot create a model because they do not have 
enough data. Here again we reiterate a basic premise of modeling that developing 
the model can be an extremely useful exercise for discovering what data are miss-
ing. “[The] complexity of biological systems makes it increasingly difficult to 
identify the next best experiment without such a tool” (Bower and Bolouri 2001b). 

Finally, biologists often express the concern that computational modeling is a 
lot of work and that it requires an entirely different training than, e.g., “wet-
bench” experimentation. Unfortunately, this is to a large extent still true. How-
ever, modern software tools can provide considerable assistance in developing, 
verifying, analyzing and sharing computational models (see Section 3). 

2.2 Mechanistic models can serve as frameworks for organizing data 
and hypotheses 

A spectrum of types of formal models exists (Gershenfeld 1998; Phair and Misteli 
2001). On one end of the spectrum lie observational models: ones that characterize 
and quantify patterns in data, but in such a way that the elements and processes in 
the model are not directly related to the components of the underlying system. 
Curve-fitting models fall into this category. On the other end of the spectrum lie 
mechanistic models: ones in which the entities and processes correspond directly 
to hypothesized structures and processes in the biological system being modeled. 
While mechanistic models are much more difficult to develop, they are also more 
valuable for making predictions that can be related to empirical data. 

Detailed, mechanistic models are designed to capture essential structural, bio-
chemical, and genetic aspects of a biological system, staying faithful to chemical 
and physical laws. Many scientists have been developing such models for decades, 
and have long recognized the utility of computers for assisting with model simula-
tion and analysis—in fact, the first simulations of biochemical reaction models 
were made before the advent of digital computers (Chance et al. 1940, 1952; 
Chance 1943, 1960; Garfinkel 1965). However, the power afforded by modern 
computers has made possible new levels of model detail and analysis. 

What is sometimes lost in the excitement over the power of simulation and 
analysis is the value of computational models to serve as focal points for research 
in ways that databases of experimental data cannot. Mechanistic, computational 
models are specifically constructed to illuminate the functional implications of the 
data upon which they are built. A realistic computational model represents a mod-
eler's understanding of the structure and function of part of a biological system. 
Models thus can serve not only as the point of entry for data; they can also serve 
as dynamic tools that can be used to understand its significance (Bailey 1998). As 
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the number of researchers constructing realistic models continues to grow, and as 
the models become ever more sophisticated, they collectively represent a signifi-
cant accumulation of knowledge about the structural and functional organization 
of the system. Moreover, the assimilation of new hypotheses and data into existing 
models can be done in a more systematic fashion because the additions must be 
fitted into the existing constructs using the same rules as for the models them-
selves. Computational models can thus be far more useful than just encapsulating 
one modeler's abstraction of a particular system: once properly constructed, the 
models become a dynamic representation of our current state of understanding of 
a system in a form that can facilitate communication between research groups and 
help to direct further experimental investigations. 

3 A variety of software resources are available today for 
computational modeling  

One of the great advantages of modern software packages for biological modeling 
is that they allow users to avoid having to work with formal mathematics directly. 
Although one can certainly use a general-purpose mathematical package for de-
veloping and working with computational models, specialized tools can offer 
dedicated user interfaces and functionality for model development, simulation, 
and analysis, as well as other capabilities designed to simplify the work of bio-
logical modeling. In this section, we survey some of the capabilities provided by 
different tools as a way of informing prospective modelers of the choices avail-
able. 

The user-interface paradigm used by a software system is one major dimension 
along which biological modeling tools can differ. The four most popular types of 
interfaces offered by modeling tools today are the following: 

Diagrammatic: the tool enables users to express models visually by placing or 
drawing elements, structures, and relationships on a digital canvas. Often this 
takes the form of a graph resembling the block-and-arrow diagrams commonly 
presented by biologists as depictions of metabolic or signaling pathways. Addi-
tional quantitative information about the model is usually obtained from the user 
using a small number of fill-in-the-blank forms. Examples of tools implementing 
this   kind   of   interface   include   JDesigner   (Sauro et al.   2003;   Sauro  2001), 

 

Fig. 1 (overleaf). (Top) Screen image of JDesigner (Sauro 2001), a program that provides a 
graph-based interface allowing users to “draw” models. Nodes represent chemical species 
and arcs represent chemical reactions. Assignments of chemical rate laws to the arcs and 
chemical values for concentrations and other parameters are made using pop-up dialogue 
boxes. (Bottom) Screen image of the JigCell Model Builder (Vass et al. 2004), a program 
that provides a spreadsheet-style interface. Users input chemical equations, but different 
parts go into separate columns; moreover, the program performs consistency checking on 
the user’s input, helping to eliminate some common errors. 
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CellDesigner (Funahashi et al. 2003; Kirkwood et al. 2003b), TERANODE De-
sign Suite (Duncan et al. 2004; Teranode Inc. 2004), and the Virtual Cell (Schaff 
et al. 1997, 2001). The top half of Figure 1 shows an example screenshot from 
JDesigner. 

Spreadsheet: the tool provides a multicolumn grid interface reminiscent of 
spreadsheet programs commonly offered in contemporary office productivity 
software suites. Information about reactions, species, and compartments typically 
are entered in separate spreadsheet areas, each having separate columns for differ-
ent characteristics of the elements being entered. An example of a package provid-
ing this kind of interface is the JigCell Model Builder (Allen et al. 2003; Vass et 
al. 2004), a screenshot of which is shown in the bottom portion of Figure 1. 

Forms-based: the tool prompts the user for information about a model using 
fill-in-the-blank forms or dialog boxes. An example of a tool implementing this 
kind of interface is COPASI (Mendes 2003) and its predecessor, Gepasi (Mendes 
1993, 2001). Note that some tools take the information so gathered and display the 
resulting model using a diagram or a spreadsheet view but do not allow the user to 
edit the model directly using the diagram or spreadsheet, blurring the distinction 
somewhat. 

Text-based: the tool enables users to define models using a formalized textual 
language and notation meant to be read and written by a human. Some of these 
languages mix constructs for defining models with directives for controlling simu-
lations or other actions on the model. Some of the software packages provide a no-
tation based on traditional chemical reaction style notation (e.g. A + B ↔ C), 
while others explore different notations. Examples of tools using this general user-
interface paradigm include Cellerator (Shapiro et al. 2004b, 2003), Dizzy (Ramsey 
and Bolouri 2004), Jarnac (Sauro 2000b, 2000a), MathSBML (Shapiro 2004; 
Shapiro et al. 2004a), and WinSCAMP (Sauro and Fell 1991; Sauro et al. 2003). 

Some packages provide more than one of these interface paradigms simultane-
ously, allowing users to switch between interface styles. An example in this cate-
gory is TERANODE Design Suite. 

Of course, the primary purpose of modeling tools is to allow users to perform 
analysis on the models created by users. Some software tools are dedicated model 
editors lacking built-in simulation and analysis capabilities; in these, users are ex-
pected to transfer the model to a separate analysis package. For this purpose, the 
Systems Biology Markup Language (SBML; see Section 4) is a popular model 
export format. Other tools provide built-in analysis capabilities. 

In the context of simulation and analysis, software tools differ in the type of 
model representation framework they employ. The following are among the most 
popular types of frameworks in use today: 

Logical: the tool converts the model description into a Boolean or extended 
logical representation (de Jong 2002). Certain classes of models, such as abstract 
models of regulatory networks, are more conveniently cast into this form than 
into, for example, differential-algebraic equations. An example of a tool in this 
category is NetBuilder (Brown et al. 2002; Schilstra and Bolouri 2002). 

Ordinary differential equations (ODE): the tool converts the model description 
into a system of ordinary differential equations. This commonly involves one dif-
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ferential equation for each chemical species in the model. The ODE framework is 
the most popular one in use today for biochemical systems simulation. Represen-
tative examples include COPASI (Mendes 2003), Gepasi (Mendes 1993, 2001) 
and Jarnac (Sauro 2000b, 2000a). 

Differential-algebraic equations (DAE): the tool converts the model into a sys-
tem of ordinary differential equations with algebraic constraints. ODE representa-
tions are a popular framework, but complex models often include algebraic con-
straints and require the use of DAE representations. An example is a model that 
imposes constraints on species concentrations. The DAE framework subsumes the 
ODE framework. Because the DAE framework supports more of the constructs 
that modelers often want to express, it is a better match for modelers’ needs. How-
ever, DAE solvers are more difficult to implement than ODE solvers, and fewer 
software packages provide full DAE support. An example of a tool that provides 
limited DAE support is Jarnac (Sauro 2000b, 2000a); an example of a tool provid-
ing a full DAE solver is MathSBML (Shapiro 2004; Shapiro et al. 2004a). 

Partial differential equations (PDE): the tool converts the model into a system 
of partial differential equations. These arise when there is more than one inde-
pendent variable in the system. For example, modeling spatial diffusion requires 
both time and space as independent variables. PDE solvers are much more diffi-
cult than ODE or DAE solvers to implement and use properly, which is why so 
few software tools use a PDE framework. One that does is the Virtual Cell (Schaff 
et al. 1997, 2001). (We note in passing that SBML does not currently have support 
to represent PDE-level models or chemical diffusion.) 

Hybrid: the tool converts the model to a (continuous) differential equation 
framework that also supports time-dependent discontinuous events. Discontinui-
ties can cause abrupt changes in the system of equations and the behavior of the 
system, and require specialised support in the model interpretation system. Hybrid 
modeling frameworks are necessary for properly handling such things as cell cycle 
models. Some packages providing hybrid simulators include E-Cell (Tomita et al. 
1999; Tomita 2001), MathSBML (Shapiro 2004; Shapiro et al. 2004a), and 
TERANODE Design Suite (Duncan et al. 2004; Teranode Inc. 2004). 

Stochastic: the tool casts the model as a set of discrete quantities (molecules or 
chemical species) and associated probabilities for interactions (reactions). Most 
such software uses the stochastic simulation algorithm by Gillespie (1977) or the 
Gibson-Bruck variant of Gillespie’s algorithm (Gibson and Bruck 2000). Unlike 
differential-equation frameworks, stochastic frameworks do not approximate the 
model as a continuous, deterministic system. Instead, a stochastic framework 
treats the underlying biochemical reactions as random discrete processes in accor-
dance with the chemical and physical properties of the component parts. In es-
sence, stochastic frameworks more accurately represent true molecular interac-
tions. However, the greater accuracy of stochastic frameworks comes at a high 
cost. Because the behavior of each chemical entity is individually modeled as a 
stochastic process, simulations are extremely demanding of computational re-
sources. Some examples of systems implementing stochastic simulation capability 
include BASIS (Kirkwood et al. 2003a, 2003b), Dizzy (Ramsey and Bolouri 
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2004), E-Cell (Tomita et al. 1999; Tomita 2001), SigTran (DiValentin 2004) and 
StochSim (Morton-Firth and Bray 1998; Le Novere and Shimizu 2001). 

Most of the packages discussed above are standalone applications (i.e. they can 
be installed and run locally on a computer), while a few are web-based, offering a 
service located on the Internet which users access remotely using a web browser. 
BASIS (Kirkwood et al. 2003a, 2003b) and the Virtual Cell (Schaff et al. 1997, 
2001) are examples in the latter category. 

A few software systems also provide database functionality. Some have an in-
tegrated database used to store models and model components in a form more or-
ganized than simply a collection of files. These systems sometimes also offer a 
means to share the database among different users. Examples in this category in-
clude Monod, TERANODE Design Suite (Duncan et al. 2004; Teranode Inc. 
2004), and the Virtual Cell (Schaff et al. 1997, 2001). A few other systems pro-
vide a means to access third-party external repositories data, models or other in-
formation. An example in this category is E-Cell (Tomita et al. 1999; Tomita 
2001). 

Finally, most of the tools mentioned in this section are free for personal and/or 
educational use, although there may be costs for other users. Other packages, such 
as TERANODE Design Suite (Duncan et al. 2004; Teranode Inc. 2004), are com-
mercial products. 

4 Exchanging models between software tools: The 
Systems Biology Markup Language 

To be useful as formal embodiments for understanding biological systems, com-
putational models must be put into a format that can be communicated effectively 
between different software tools that work with them. The Systems Biology 
Markup Language (SBML) project is an effort to create a machine-readable for-
mat for representing computational models at the biochemical reaction level (Fin-
ney and Hucka 2003; Hucka et al. 2003). By supporting SBML as input and out-
put formats, different software tools can operate on the identical representation of 
a model, removing chance for errors in translation and assuring a common starting 
point for analyses and simulations. 

The SBML project is not an attempt to define a standard universal language for 
representing quantitative models; the fluid and rapidly evolving views of biologi-
cal function, and the vigorous rate at which new computational techniques and in-
dividual tools are being developed today are incompatible with a one-size-fits-all 
concept of a universal language. Instead of trying to define how software tools 
should represent their models internally, the goal of the SBML project is to reach 
agreement on a format on how the tools communicate models externally. The 
SBML language allows software developers the freedom to explore different rep-
resentations within their tools while still allowing some degree of interoperability 
between the tools. Such a format can serve as a lingua franca enabling communi-
cation of the most essential aspects of models between software systems in much 
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the same way as “contact languages” first enabled human societies to communi-
cate in the Mediterranean during the Middle Ages. 

4.1 The general form of SBML 

Although SBML models are intended to be read and written by software tools and 
not by humans, it is useful to overview the general characteristics of the represen-
tation in order to better understand how it organizes information about biological 
systems. 

SBML is a machine-readable model definition language based upon XML, the 
eXtensible Markup Language (Bray et al. 2000; Bosak and Bray 1999), which is a 
simple and portable text-based substrate that has gained widespread acceptance in 
computational biology (Augen 2001; Achard et al. 2001). SBML can encode 
models consisting of biochemical entities (species) linked by reactions to form 
biochemical networks. An important principle in SBML is that models are decom-
posed into explicitly labeled constituent elements, the set of which resembles a 
verbose rendition of chemical reaction equations; the representation deliberately 
does not cast the model directly into a set of differential equations or other specific 
interpretations of the model. This decomposition makes it easier for a software 
tool to interpret the model and translate the SBML format into whatever internal 
form the tool actually uses. 

SBML is being developed in levels, where each higher level adds richness to 
the model definitions that can be represented by the language. Level 2 is currently 
the highest level defined; it represents an incremental evolution of the language 
(Finney et al. 2003) resulting from the practical experiences of many users and 
developers, who have been working with Level 1 (Hucka et al. 2001, 2003). In 
SBML Level 2, the definition of a model consists of lists of one or more of the fol-
lowing components: 

Compartment, a container of finite volume for homogeneously-mixed sub-
stances where reactions take place; 

Species, a pool of a chemical substance located in a specific compartment, 
where this represents the concentration or amount of a substance and not a single 
molecule (example substances that form species are ions such as calcium and 
molecules such as ATP or DNA); 

Reaction, a statement describing some transformation, transport or binding 
process that can change one or more species (each reaction is characterized by the 
stoichiometry of its products and reactants and optionally by a rate equation); 

Parameter, a quantity that has a symbolic name, such as a frequently-used con-
stant; 

Unit definition, a name for a unit used in the expression of quantities in a 
model; 

Rule, a mathematical expression that is added to the model equations con-
structed from the set of reactions (rules can be used to set parameter values, estab-
lish constraints between quantities, etc.); 
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Function, a named mathematical function that can be used in place of repeated 
expressions in rate equations and other formulas; and 

Event, a mathematical formula evaluated at a specified moment in the time evo-
lution of the system. 

This simple formalism allows modeling of a wide range of biological phenom-
ena, including cell signaling, metabolism, gene regulation, and others. Flexibility 
and power come from the ability to define arbitrary formulae for the rates of 
change of variables as well as the ability to express other constraints mathemati-
cally. 

Many kinds of analyses can be applied to models in the elementary SBML for-
mat. The tools discussed in Section 3 are representative of the range of applica-
tions for which SBML is suitable.  

4.2 The continued evolution of SBML 

From its inception, SBML has been largely driven by practical needs of research-
ers interested in exchanging quantitative computational models between different 
software tools, databases, and other resources. The language reflects this, and in 
some respects exhibits the results of pragmatic choices more than elegant, top-
down design. The development of SBML Level 2 benefited from two years of ex-
perience with SBML Level 1 by many modellers and software developers, and 
distils more effectively the fundamental needs of the biological network simula-
tion community. It represents, in a concrete way, the consensus of a large segment 
of the modelling community about the intersection of features that should be pos-
sessed by a lingua franca for communicating models between today’s software 
tools. 

SBML's popularity has led to the formation of an active community of re-
searchers and software developers who are now working together to push SBML 
in new directions. As a language that is an intersection rather than a union of fea-
tures needed by all tools, SBML currently cannot support all the representational 
capabilities that all software systems offer to users. Some packages offer features 
that have no explicit equivalent in SBML Level 2, and those tools currently can 
only store those features as annotations in an SBML model. Yet, in many cases, 
those features could potentially be used by more than one tool, and thus it would 
be appropriate to have some agreed-upon representation for them in SBML. Using 
Level 2 as a starting point, the SBML community has been developing proposals 
and prototype implementations of many new capabilities that will become part of 
SBML Level 3. 

Because of the demand-driven, consensus-oriented approach to SBML evolu-
tion, the features currently in SBML and in development for SBML Level 3 are a 
reflection of the state of computational modeling today. The list of planned fea-
tures thus serves to foreshadow what is to come in terms of modeling capabilities 
in the near future: 

Composition: The biochemical network models being constructed by modelers 
are becoming increasingly large and complex. Structuring the models in a modular 
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fashion is an essential approach to managing their complexity. Composition, as its 
name suggests, involves composing a model out of a set of instances of submod-
els. The resulting model structure is hierarchical; for example, a model of a cell 
might be composed from a model of a nucleus, multiple model mitochondria, and 
various other model structures. The E-CELL (Tomita et al. 1999, 2001) and Pro-
MoT/DIVA (Stelling et al. 2001) systems are examples of simulation tools that 
support composing models out of submodels. The addition of a modular composi-
tion facility into SBML will bring several benefits. First, it will allow a component 
submodel to be reused multiple times within a single (larger) model. Second, it 
will allow the creation of libraries of model components. In time, the systems bi-
ology field will be able to develop standard, vetted submodels for commonly-
needed components, and eventually, modelers will be able to compose models us-
ing high-level components taken from libraries rather than have to re-create every 
piece from scratch themselves. And third, it will enable modelers to incorporate 
several alternative submodels for a given model instance, in which each alterna-
tive could contain a representation at a different level of detail and/or use a repre-
sentation that is appropriate for a particular type of simulation algorithm. 

Multi-component species: SBML Levels 1 and 2 can represent models in which 
the chemical species are treated as simple, indivisible biochemical entities having 
only one possible state. However, this approach becomes untenable when model-
ing systems in which the species have many possible internal states or the species 
are composed from subcomponents (Goldstein et al. 2002). An example of this 
situation involves a protein that can be phosphorylated at multiple locations: the 
possible phosphorylation combinations lead to a combinatorial explosion of states 
of the protein. Although currently this can be represented in SBML Levels 1 and 2 
by treating each state or combination of subcomponents as a separately named 
chemical species, this approach is an awkward and limited solution. To address 
this problem, another current area of SBML development is a representation 
scheme in which the subcomponents of chemical species are the smallest logical 
entities, rather than whole species being the entities. The research task is to define 
a representation scheme that is flexible enough to represent all the relevant bio-
chemical phenomena while remaining computationally feasible for simulation and 
analysis. 

Diagram Layout: Biochemical models are often visualized and edited using 
software in diagrammatic form. Examples of software that enables this include: 
JDesigner (Sauro 2003, 2001) and CellDesigner (Funahashi et al. 2003, 2004). 
The diagram layout that the user creates with these programs is especially useful 
for interpreting models created with this software. Another active area of SBML 
development is extending SBML so that diagram information can be added to 
models in a standard form. 

Spatial geometry: The spatial distribution and diffusion of chemical species in 
space can be highly significant (Fink et al. 2000) and often needs to be represented 
in models. Not all software tools today support the use of spatial information, but 
it is likely that more will in the near future. 

Alternative Mathematical Representations for Reactions: The current definition 
of SBML is somewhat biased towards on ODE-based representation of biochemi-



14  Barry L. Wanner, Andrew Finney, Michael Hucka 

cal models. While it is possible to transform a subset of models encoded in this 
representation into a form acceptable to stochastic simulators, this, unfortunately, 
does not allow expression of the complete range of facilities that are available in 
stochastic simulators. Similarly, while it is possible to describe deterministic dis-
crete events explicitly in SBML Level 2, it is not possible to define a reaction that 
operates in this way. Addressing these and other issues are included in develop-
ment for SBML Level 3. 

5 Development of an E. coli systems biology project 

A wealth of information has been gained from reductionist biology over the past 
fifty years. Reductionism has been especially rewarding when directed towards 
understanding highly amenable systems. Studies of E. coli and its phages have 
given birth to early concepts of the fine structure of the gene, co-linearity of gene 
structure and protein sequence, molecular mechanisms of suppression, gene regu-
lation, transposition, and many other phenomena. E. coli is now the source for 
much of our information on biochemistry, molecular biology, metabolic pathways, 
and regulation, and it continues to be a source for new insights into how cells 
work. E. coli has served as a model for understanding innumerable fundamental 
processes like the mechanisms of DNA replication (Kornberg and Baker 1992) 
and DNA repair (Chen et al. 2001), DNA transcription, gene repression and acti-
vation, protein synthesis, protein folding, protein targeting, macromolecular as-
sembly, signal transduction, the catalytic nature of disulfide bond formation, cell 
division, the function of catalytic and small regulatory RNAs, and other processes. 

The decision to focus early studies of cell physiology on E. coli has often been 
credited to a well-known phrase by Jacques Monod dating from 1954 “Anything 
found to be true of E. coli must also be true of elephants.” Early successes from 
E. coli research have also led many, most notably Sydney Brenner, to develop 
E. coli-like models for other processes (behavior, development, the immune re-
sponse, multigene families, the nervous system, and many more). Many model or-
ganisms now exist for eukaryotic molecular biology (like yeast Saccharomyces 
cerevisiae and S. pombe and Dictyostelium discoidium), development and human 
disease (e.g. Drosophila melanogaster, Caenorhabditis elegans, Fugu rubripes 
(pufferfish), Brachydanio rerio (zebrafish), and human biology (Mus musculus 
(the laboratory mouse) and primates. E. coli-like models also exist for important 
processes in other bacteria (e.g. sporulation in Bacillus subtilis, cell division in 
Caulobacter crescentus, and development in Myxococcus xanthus) and for the Ar-
chae (e.g. Haloferax volcani and Sulfolobus solfataricus). Huge successes in 
pathogenic bacteriology have been more rapid for those bacteria most closely re-
lated to E. coli. The decision to create a Shewanella consortium for studying envi-
ronmental bioremediation was based largely on its similarity with E. coli. Yet, no 
similar project exists for E. coli systems biology. 

To meet this challenge, a small group of mostly E. coli biologists and modelers 
convened an informal workshop at the Intelligent Systems of Molecular Biology 
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Conference in Edmonton, Canada, in August 2002. Their meeting gave birth to the 
International E. coli Alliance (IECA), which was announced a few weeks later 
(Holden 2002). IECA was organized to help with the development of highly inte-
grated and interdisciplinary research in bioinformatics, experimental, and model-
ing sciences that will be required to gain deeper understanding of cellular subsys-
tems (gene regulatory, metabolic, and signaling networks), work that will 
contribute towards the development of a rudimentary whole cell model. 

Subsequent meetings included discussions on how to organize a worldwide 
E. coli systems biology project. These were held in November 2002 at North 
Mymms, nearby London, UK, in February 2003 in San Diego, USA, and in March 
2003 in Magdeburg, Germany. There was consensus that much work was needed. 
A standard strain would have to be selected, preferably based on data from rigor-
ously controlled experiments. What kind? How many? Who would do them? New 
technologies would have to be developed. Metadata generated would be enor-
mous. These data would need to be stored, disseminated, and modeled. We would 
need to reach agreements on data sharing and many other issues. Modelers were in 
a quandary about data formats and modeling languages, because modeling uses 
different kinds of data depending upon the approach, as described above. Commit-
tees were formed on strain and experimental standards, metabolic measurement 
and nomenclature, and modeling. 

If our objective were modeling of E. coli, then experimentalists and modelers 
would need to work together from the start. This would require cooperation and 
collaborations among scientists with diverse interests and expertise. Experimental-
ists and modelers would need to be equally represented. To further promote E. coli 
systems biology research, the First IECA Conference was held in June 2003 at the 
Institute for Advanced Biosciences, Tsuruoka, Japan. The Second IECA Confer-
ence was held in June 2004 in Banff, Canada. More than one hundred interna-
tional scientists have attended. Plans are now underway to hold the Third IECA 
Conference in September 2006 in Korea. 

A major modeling problem is biological variability, even for experiments with 
the “same” strain by various investigators in the same or different laboratories. 
One way to overcome this hurdle would be to grow cells for modeling at a central 
location and to provide samples from standardized cultures to other researchers for 
an assortment of measurements. Predictive quantitative modeling is also often be-
yond the comprehension and belief of many biologists. Indeed, it is difficult to 
find examples in which modeling has given predictive outcomes where the results 
had not been known beforehand or could not have been inferred solely on the ba-
sis of prior experimental knowledge. It will be necessary to coordinate new ex-
perimentation with mathematical modeling as a means to validate or refute the 
predictive value of different modeling approaches for understanding new features 
of E. coli biology. 

Foremost, a standard strain must be chosen that conforms as close to wild type 
as possible. This will probably be the E. coli K-12 sequenced strain MG1655 
(Blattner et al. 1997). The finding of discrepancies for the “same” standard strain, 
e.g.  Corbin  et  al.  (2003),   in  different  labs  gives  impetus  to  the  concept  for 
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Fig. 2. Schematic of a centralized microbial growth facility. Normal E. coli, specific mutant 
E. coli, or E. coli cells identified from screening mutant libraries in microplates and charac-
terized by high throughput techniques would be examined. Strains possessing an interesting 
phenotype would be selected for growth under standardized, rigorously controlled condi-
tions. The fermentation would be continuous mode and samples would be collected and 
immediately frozen for further analysis by collaborators. 

development of a standardized growth facility. To be sure, others had found dis-
crepancies between east and west coast variants of E. coli K-12 AB1157 (Verma 
and Egan 1985). Comparisons of RNA polymerase sigma factor subunits of E. coli 
K-12 W3110 samples revealed multiple variants existed between labs in Japan 
(Jishage and Ishihama 1997). 

Accordingly, a consortium may grow standard cells at a community microbial 
growth facility (MGF), collect samples, and distribute them to researchers with 
special expertise in conducting measurements. This should permit doing “commu-
nity experiments” that capture the interest and expertise of many talented investi-
gators in different fields, regardless of their affiliation with consortia. This should 
also foster an open data-sharing policy between members and rapid release to the 
entire scientific community. Numerous kinds of measurements (e.g. transcriptome, 
proteome, metabolome, and interactome analyses) require diverse expertise that 
seldom can be found at one location (Fig. 2). These new technologies are also rap-
idly evolving. Ideally, all measurements to develop, verify or refute quantitative 
models should be made on the same culture. Thus, a central source for generation 
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of samples under rigorously optimized and standardized growth and harvesting 
procedures may be a key to success of a whole cell E. coli systems biology pro-
ject. 

6 An integrated E. coli database for community research 
and systems biology  

One of the requirements of an E. coli systems biology project is the establishment 
of an information center where all data on E. coli and related cells are integrated. 
Several gene, protein, or function-specific E. coli databases now contain vast in-
formation on gene structure, metabolic pathways, gene regulation, protein func-
tion, and other processes, e.g., ASAP (Glasner et al. 2003), ColiBase (Chaudhuri 
et al. 2004), Colibri (Medigue et al. 1993), EcoCyc (Karp et al. 2002), EcoGene 
(Rudd 2000), Ecoli Genome (www.genome.wisc.edu), Genobase (http://ecoli.aist-
nara.ac.jp/GB5/), GenProtEC (Serres et al. 2004), RegulonDB (Salgado et al. 
2004), and others. Links to these and other databases can be found at 
www.EcoliCommunity.org. Yet, none of these is comprehensive and substantial 
gaps exist. Also, many contain redundant information that has often been acquired 
from other databases, sometimes without proper attribution. Considerable biologi-
cal resources (e.g. mutants, clones, fusions, etc.) now exist for systematic, ge-
nome-wide studies of E. coli (Mori et al. 2000; Baba et al. 2005; Kang et al. 
2004), however, access to information about them is often unavailable or hard to 
find. 

Whole cell modeling will require the application of new systems approaches as 
well as continual reductionist experimentation of the E. coli cell, especially for 
processes that are still poorly understood. New computational and experimental 
resources are needed. These resources should support both the development of an 
E. coli systems biology project and enhancement of the highly successful bio-
chemistry, biophysics, molecular biology, molecular genetics, and physiology re-
search now being done by the E. coli community. One way to strengthen both 
community and consortia research would be to develop a federated E. coli data-
base, which for the purpose of discussion we will call EcoliBase. 

A model organism database such as the envisioned EcoliBase should contain all 
available information on E. coli, a repository of computational and modeling tools, 
database(s) of all experimental resources for studying E. coli and their availability, 
and a data warehouse for storage, manipulation, and analysis of diverse kinds of 
high-throughput data. 

The development of a new experimental resources database would be of value 
to E. coli systems biology, as well as the E. coli community, including both ex-
perimentalists and computational scientists. This database should be an integral 
component of EcoliBase (Fig. 3). EcoliBase should be accessible via a web 
browser, so that researchers can easily view, retrieve, and exchange data. It should 
be designed so that it can be queried by typing or clicking on a scrollable genome 
map,  as  well as  being  accessible by  modeling software.  Various  kinds of  data 
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Fig. 3. Steps envisioned when a user submits a request to EcoliBase. A user would submit a 
request over the web to EcoliBase (Steps 1 and 2). EcoliBase would compile the request, 
decompose it into multiple sub-queries, and then submit the sub-queries to interoperating, 
participant databases including the E. coli Resources Database (Steps 3 and 4). Each par-
ticipating database would evaluate the query and submit the answer back to EcoliBase 
(Steps 5 and 6). EcoliBase would compile and integrate the results, possibly addressing 
conflicts, and submit the compiled answer to the initiating user (Steps 7 and 8). 

should be visualized for integration. An important aim of centralized databases is 
to set standards for the format of various data. Many kinds of data are essential to 
bring E. coli research to the goals of the next level, the foundation of systems bi-
ology and cell simulation of this organism. A few categories that would be stored 
in the database are discussed below. 

The core and most important basis of a database is the list of parts determined 
by the genomic sequence, accurately annotated. A serious problem with current 
sequence annotation databases, including the new UniProt database (a combina-
tion of the ExPASy (Swiss-Prot), TrEMBL, and PIR databases, which were most 
commonly used) is that the source of annotation information is sometimes unclear. 
Since a new genome is usually annotated by homology searching against existing 
sequence databases, once wrong information is contaminated in the sequence da-
tabase, the error can be propagated to another gene. Unfortunately, this error 
propagation is frequently observed in the current databases (Galperin and Koonin 
1998; Gilks et al. 2002). In the database that we envision, the annotation of genes 
will clearly indicate the source of the information (history tracking), by indicating 
whether it is from experimental evidence or prediction by sequence similarity. In 
the former case, minimally a link pointing to the relevant literature should be 
added. In the latter case, a gene(s) with high sequence similarity to the gene of in-
terest should be shown together with the score and homologous regions between 
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the two to clarify where the predicted function originates so that one can trace the 
annotation history of genes to a set of genes with experimental evidence. To im-
plement this annotation chain management system, we would first need to select 
only proteins annotated by experimental evidence from the UniProt database then 
repeat the sequence annotation procedure again. Once a new experiment provides 
new function information of a gene, the updated information would be passed to 
“downstream” genes that are annotated from the gene by tracking the annotation 
chain. These clean annotation data would be valuable not only for the E. coli re-
search community but also for all bioinformatics research dealing with gene func-
tion. 

Any cis-acting regulatory sites associated with a sequence, the boundaries of 
protein coding and structural RNA genes would also be included in the annotation 
with information as to how they were determined. Also included should be all 
other sequence features within the genome: replication origins, repeat elements, 
non-coding and structural RNAs, prophages (as intact elements as well as compo-
nent parts). Transcriptional and non-transcriptional regulatory information, at the 
level of the gene, operon, regulon, and other regulatory circuits would also be de-
scribed together with experimental information. Non-transcriptional regulation 
would include allostery and feedback inhibition, translational regulation, modifi-
cations, and protein degradation.  

Annotations should aim to describe what is known about the gene and encoded 
protein, as well as any known interactions with other functions, defined geneti-
cally, biochemically, and by regulatory patterns. Some of this information would 
appear in other forms in other parts of the set of interoperating databases, but 
cross-annotation to the particular gene would be important as well. 

As high throughput experiments continue to accumulate, an accessible and 
searchable repository for these data would be critical for allowing researchers to 
make correlations and do preliminary tests of hypotheses. These data would be 
deposited from collaborators around the world. In all cases, clear indications of the 
strains and growth conditions used and how the data were collected would need to 
be available, to allow the user to have sense of the reliability of the data. In many 
cases, the information would be linked to publications describing it. It is expected 
that this category of information would grow at the greatest rate and thus would 
require attention to simplify the access to new data as it becomes available, includ-
ing the discussion of possible templates for experimental protocols and data analy-
sis to allow comparisons. 

Many groups have undertaken computational methods for predicting not only 
genes and the families of the predicted proteins, but sites, non-coding RNAs and 
secondary structure elements such as terminators. Such studies, with information 
about the nature of the predictions, would provide investigators with the ability to 
incorporate these predictions into their work. Combined with some large-scale ex-
perimental data, these analyses will give a system-wide view of the organism. 
Several groups have already begun collaborations to identify all probable regula-
tory motifs in the E. coli genome by using a variety of approaches. These would 
be shown with a confidence score in the database. Predicted protein tertiary struc-
ture (Kihara and Skolnick 2004) and protein localization would be included. 
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Table 1. Features of an envisioned E. coli federated database integrated system. 

EcoliBase Integrated Tools EcoliBase Federated Database Engine 
Data-mining  Data importing/exporting  
Bioinformatics & statistics  Metadata/version management  
Microarray analysis  Schema mapping, evolution & integration  
Data visualization  Multi-DB query translation & integration  
 Access control & backup  
 Annotation management  
 Federated DBMS engine 
 Web manager and user interfaces 

 
Comparative information allows one to leverage the whole genome information 

available for E. coli to the understanding of other organisms. Orthologous and 
paralogous genes in other organisms would be listed from an E. coli gene. 
BLAST/FASTA methods, inference of phylogenetic trees and studies of within-
species variability are powerful methods of DNA and protein sequence analysis 
that allow predicting functions of genes and proteins based upon experimentally 
determined functions in E. coli and tracing the evolutionary transformations of 
functions (gene duplications, genome organization, pseudogenes, etc.). Bioinfor-
matics analyses would be made to the other organisms to allow a comparative 
study. 

Standard sequence analysis tools, such as homology search, motif search, pro-
tein secondary structure prediction, should be available by simple manipulation 
from each gene. Experimental data, such as microarray data, would be linked to 
analysis tools so that it can be analyzed instantly and in a standard way. Some 
pathway simulators (Mendes and Kell 2001; Shapiro et al. 2003; Takahashi et al. 
2003) would be made available on the web, or if not, at least downloadable. 

Not only public domain databases, such as PDB (protein structure), UniProt 
(proteins), PROSITE (motifs), EcoCyc and KEGG (pathways), but also other ex-
isting E. coli databases would be integrated as much as possible by collaboration. 
We would need a unified E. coli database (EcoliBase) that would be designed for 
interoperability so that it can be linked transparently to a larger database structure 
in the future. We envision EcoliBase to be a web-based interoperable federated 
database integration system.  

All interoperating participant E. coli databases including the E. coli Resources 
Database would be registered with EcoliBase. Users would have a web interface 
to access EcoliBase (Fig. 3). A user may issue a request to EcoliBase via the web. 
EcoliBase translates and decomposes the submitted requests into sub-queries, then 
submits the sub-queries to the corresponding and interoperating participant data-
bases. The results of each sub-query are integrated inside EcoliBase and are re-
turned to the user. It is expected that EcoliBase will have the functional compo-
nents shown in Table 1. 
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7 Putting models to work: The International E. coli 
Alliance 

From the dawn of modern biology, the intestinal bacterium E. coli has been the 
most intensively studied organism. Many basic molecular events, best understood 
in E. coli, are universal throughout the natural world. E. coli has laid so many of 
the golden eggs of basic biochemistry, genetics, and molecular biology that no 
doubt it will lay even more. Our present day level of basic understanding of natu-
ral phenomenon far exceeds the imagination of even the most creative scientists a 
few decades ago. New tools for gaining even more biological information ensure 
future revelations will continue to be uncovered at an ever-increasing pace. Al-
though creating a truly virtual cell may be far in the future, the place to start is 
with a well understood system for which there are tools for deepening our knowl-
edge. Systems biology approaches are needed for conceptualizing and testing our 
interpretations of these data. 

It was with these concepts in mind that IECA was formed as a worldwide alli-
ance for the purpose of constructing a large-scale model of a simple, self-
replicating cell. Bringing such a dream to fruition requires not only computational 
and experimental tools, but also changes in how we do science – the human factor. 
Many impediments must be overcome. Large-scale experimentation is new to bi-
ologists. Other fields of science, most notably areas of physics requiring huge and 
expensive resources, have dealt with issues now facing systems biology. Much 
more time is spent planning and designing major experiments in physics than 
seems to be the norm in systems biology. As in many present day physics projects, 
systems biology projects of the future will depend more and more on large num-
bers of researchers working together in distantly located teams. How to achieve 
this through collaboration and building consortia will be challenging. Funding 
agencies must also find creative ways of encouraging scientists with diverse ex-
pertise to work together in teams to reach a common goal. 

Like the physicists’ goal for a complete understanding of the world from the 
inner workings of an atom to the motion and expansion of the universe, the goal of 
IECA is the complete modeling of a whole cell. Perhaps, modeling a cell is itself a 
bit too ambitious. However, the time to start is now. A practical way to do this 
would be to begin by studying modules, like regulatory systems or metabolic or 
signaling pathways, then to build these into networks that can then be joined to-
gether at an ever higher level. Surely, a computerized E. coli virtual cell will add 
powerful new tools to our existing arsenal of discovery, including virtual experi-
mentation and mathematical simulation. These biological and computational tools 
promise to be useful for everything from drug discovery to bioengineering. 
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