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1 Introduction 1

In the context of SBML, “hierarchical model composition” refers to the ability to include models as submodels 2

inside another model. The goal is to support the ability of modelers and software tools to do such things as (1) 3

decompose larger models into smaller ones, as a way to manage complexity; (2) incorporate multiple instances 4

of a given model within one or more enclosing models, to avoid literal duplication of repeated elements; and (3) 5

create libraries of reusable, tested models, much as is done in software development and other engineering fields. 6

SBML Level 3 Version 1 Core (Hucka et al., 2010), by itself, has no direct support for allowing a model to include 7

other models as submodels. Software tools either have to implement their own schemes outside of SBML, or (in 8

principle) could use annotations to augment a plain SBML Level 3 model with the necessary information to allow 9

a software tool to compose a model out of submodels. However, such solutions would be proprietary and tool- 10

specific, and not conducive to interoperability. There is a clear need for an official SBML language facility for 11

hierarchical model composition. 12

This document describes a specification for an SBML Level 3 package that provides exactly such a facility. Figure 1 13

illustrates some of the scenarios targeted by this package. 14

<sbml>!

<model>!

model definition A!

Pointer to!
model definition A!

Pointer to!
model definition A!

Pointer to!
model definition A!

<sbml>!

<model>!

model definition B!

Pointer to!
model definition A!

model definition C!

model definition A!

Pointer to!
model definition C!

Pointer to!
model definition B!

<sbml>!

<model>!

Pointer to!
model definition A!

Pointer to!
model definition B!

external model 
definition A!

model definition B!

file2.xml!

<model>!

Figure 1: Three different examples of model composition scenarios. From left to right: (1) a model composed of multiple
instances of a single, internally-defined submodel definition; (2) a model composed of a submodel that is itself composed
of submodels; and (3) a model composed of submodels, one of which is defined in an external file.

The effort to create a hierarchical model composition mechanism in SBML has a long history, which we summarize 15

in Section 2. It has also been known by different names. In the beginning, it was called modularity because it 16

allows a model to be divided into structural and conceptual modules. It was renamed model composition when 17

it became apparent that the name “modularity” was easily confused with other notions modularity, particularly 18

XHTML 1.1 (Pemberton et al., 2002) modularity (which concerns decomposition into separate files). To make clear 19

that the purpose is structural model composition, regardless of whether the components are stored in separate 20

files, the SBML community adopted the name SBML Hierarchical Model Composition. 21

To support a variety of composition scenarios, this package provides for optional black-box encapsulation by 22

means of defined data communication interfaces (here called ports). In addition, it also separates model defi- 23

nitions (i.e., blueprints, or templates) from instances of those definitions, it supports optional external file storage, 24

and it allows recursive model decomposition with arbitrary submodel nesting. 25
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1.1 Proposal corresponding to this package specification 1

This specification for Hierarchical Model Composition in SBML Level 3 Version 1 is based on the proposal by the 2

same authors, located at the following URL: 3

https://sbml.svn.sf.net/svnroot/sbml/trunk/specifications/sbml-level-3/version-1/comp/proposal 4

The tracking number in the SBML issue tracking system (SBML Team, 2010) for Hierarchical Model Composition 5

package activities is 2404771. The version of the proposal used as the starting point for this specification is the 6

version of August, 2011. 7

1.2 Package dependecies 8

The Hierarchical Model Composition package has no dependencies on other SBML Level 3 packages. It is also 9

designed with the goal of being able to work seamlessly with other SBML Level 3 packages. For example, one can 10

create a set of hierarchical models that also use Groups or Spatial Geometry features. (If you find incompatibilities 11

with other packages, please contact the authors. Contact information is shown on the front page of this document.) 12

1.3 Document conventions 13

Following the precedent set by the SBML Level 3 Core specification document, we use UML 1.0 (Unified Modeling 14

Language; Eriksson and Penker 1998; Oestereich 1999) class diagram notation to define the constructs provided by 15

this package. We also use color in the diagrams to carry additional information for the benefit of those viewing the 16

document on media that can display color. The following are the colors we use and what they represent: 17

Black: Items colored black in the UML diagrams are components taken unchanged from their definition in 18

the SBML Level 3 Core specification document. 19

Green: Items colored green are components that exist in SBML Level 3 Core, but are extended by this package. 20

Extensions may add attributes or new subcomponents. 21

Blue: Items colored blue are new components introduced in this package specification. They have no equiv- 22

alent in the SBML Level 3 Core specification. 23

We also use the following typographical conventions to distinguish the names of objects and data types from other 24

entities; these conventions are identical the conventions used in the SBML Level 3 Core specification document: 25

AbstractClass: Abstract classes are classes that are never instantiated directly, but rather serve as parents of other 26

object classes. Their names begin with a capital letter and they are printed in a slanted, bold, sans-serif type- 27

face. In electronic document formats, the class names defined within this document are also hyperlinked to 28

their definitions; clicking your computer pointer on these items will, given appropriate software, switch the 29

view to the section in this document containing the definition of that class. (However, for classes that are 30

unchanged from their definitions in SBML Level 3 Core, the class names are not hyperlinked because they 31

are not defined within this document.) 32

Class: Names of ordinary (concrete) classes begin with a capital letter and are printed in an upright, bold, sans- 33

serif typeface. In electronic document formats, the class names are also hyperlinked to their definitions in 34

this specification document. (However, as in the previous case, class names are not hyperlinked if they are 35

for classes that are unchanged from their definitions in the SBML Level 3 Core specification.) 36

SomeThing, otherThing: Attributes of classes, data type names, literal XML, and generally all tokens other than 37

SBML UML class names, are printed in an upright typewriter typeface. Primitive types defined by SBML 38

begin with a capital letter; SBML also makes use of primitive types defined by XML Schema 1.0 (Biron and 39

Malhotra, 2000; Fallside, 2000; Thompson et al., 2000), but unfortunately, XML Schema does not follow any 40

capitalization convention and primitive types drawn from the XML Schema language may or may not start 41

with a capital letter. 42

For other matters involving the use of UML and XML, we follow the conventions used in the SBML Level 3 Core 43

specification document. 44
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2 Background and context 1

The focus of this section is prior work on the topic of model composition in SBML. We also explain how the current 2

specification relates to that prior work. 3

2.1 Prior work on model composition in SBML 4

The SBML community has discussed the need to add model composition to SBML since SBML’s very beginning, 5

some ten years ago. The formulation of model composition contained in the present document draws substantially 6

from prior work. Before we turn to a narrative of the history that led to the current specification, we want to 7

highlight a number of individuals for their inspirations and past work in the development of precursors to this 8

package. These individuals are listed in Table 1. 9

10Contributor Affiliation City and Country

11Stefan Hoops Virginia Bioinformatics Institute Blacksburg, Virginia, US
12Nicolas Le Novère EMBL-European Bioinformatics Institute Hinxton, Cambridge, UK
13Andrew Finney (Independent) Oxford, UK
14Martin Ginkel Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, DE
15Wolfram Leibermeister Max Planck Institute for Molecular Genetics Berlin, DE
16Ranjit Randhawa Dept. of Computer Science, Virginia Tech. Blacksburg, VA, US
17Jonathan Webb BBN Technologies Cambridge, MA, US

Table 1: List of individuals who made significant contributions to the development of prior SBML proposals that influenced
the present version of hierarchical model composition.

The first known written proposal for composition in SBML appeared in an internal discussion document titled 18

Possible extensions to the Systems Biology Markup Language (Finney, 2000) principally authored by Andrew Finney 19

(and, notably, written even before SBML Level 1 Version 1 was finalized in March of 2001). The first of the four 20

titular possible extensions in that document concerns “submodels”: the main model in a file can contain a list 21

of submodels, each of which are model definitions only, and a list of submodel instantiations, each of which are 22

references to model definitions. Finney’s proposal also extends the syntax of SBML identifiers (the SId data type) 23

to allow entity references using a dotted notation, in which X.y signifies element y of submodel instance X; the 24

proposal also defines a form of linking model elements through “substitutions”. In addition, the proposal also 25

introduces the concept of validation through what it called the “expanded” version of the model (now commonly 26

referred to as the “flattened” form, meaning translation to a plain SBML format that does not use composition 27

features): if the flat version of the model is valid, then the model as a whole must also be valid. 28

In June of 2001, at the Third Workshop on Software Platforms for Systems Biology, Martin Ginkel and Jörg Stelling 29

presented their proposal titled XML Notation for Modularity (Ginkel and Stelling, 2001), complete with an ac- 30

companying proposal document and sample XML file, partially in response to deficiencies or missing elements 31

they believed existed in the proposal by Finney. In their proposal, Ginkel and Stelling present a “classic view” of 32

modularity, where models are packaged as black boxes with interfaces. One of their design goals is to support 33

the substitution of one module for another with the same defined interface, thereby supporting the simplification 34

or elaboration of models as needed. Their proposal emphasizes the reuse of models and with the possibility of 35

developing libraries of models. 36

Martin Ginkel presented an expanded version of that proposal (Ginkel, 2002) at in the July 2002 Fifth Workshop on 37

Software Platforms for Systems Biology, in the hope that it could be incorporated into the definition of SBML Level 38

2 that was being developed at the time. This proposal clarified the need to separate model definitions from model 39

instantiations, and, further, the need to designate one model per document as the “main” model. 40

In March of 2003, Jonathan Webb produced an independent proposal (Webb, 2003) and circulated it on the mailing 41

list sbml-discuss@caltech.edu. This proposal included a unified, generic approach to making links and refer- 42

ences to elements in submodels using XML XPath (Clark and DeRose, 1999). Previous proposals used separate 43
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mechanisms for species, parameters, compartments, and reactions. Webb also raised the issue of how to success- 1

fully resolve conflicting attributes of linked elements, debated whether formal interfaces were necessary or even 2

preferable to directly access model elements, discussed type-checking for linkages, and discussed issues with unit 3

incompatibilities. Around this time, Martin Ginkel formed the Model Composition Special Interest Group (Ginkel, 4

2003), a group that eventually reached 18 members (including Webb). 5

Model composition did not make it into SBML Level 2 when that specification was released in June of 2003, because 6

the changes between SBML Level 1 and Level 2 were already substantial enough that software developers at the 7

time expressed a desire to delay the introduction of composition to a later revision of SBML. Andrew Finney (now 8

the co-chair of the Model Composition SIG) presented yet another proposal (Finney, 2003b) in May of 2003, even 9

before SBML Level 2 Version 1 was finalized, that aimed to add model composition to SBML Level 3. With only 10

two years having passed between SBML Level 1 and Level 2, the feeling at the time was that Level 3 was likely to 11

be released in 2005 or 2006, and the model composition proposal would be ready when it was. However, Level 2 12

ended up occupying the SBML community longer than expected, with four versions of Level 2 produced to adjust 13

features in response to user feedback and developers’ experiences. 14

In the interim, the desire to develop model composition features for SBML continued unabated. Finney revised his 15

2003 proposal in October 2003 Finney (2003c); this new version represented an attempt to synthesize the earlier 16

proposals by Ginkel and Webb, supplemented with his own original submodel ideas, and was envisioned to exist 17

in parallel with another proposal by Finney, for arrays and sets of SBML elements (including submodels) (Finney, 18

2003a). Finney attempted to resolve the differences in the two basic philosophies (essentially, black-box versus 19

white-box encapsulation) by introducing optional “ports” as interfaces between a submodel and its containing 20

model, as well as including an XPath-based method to allow referencing model entities. The intention was that 21

a modeler who wanted to follow the classic modularity (black-box) approach could do so, but other modelers 22

could still use models in ways not envisioned by the original modeler simply by accessing a model’s elements 23

directly via XPath-based references. In both schemes, elements in the submodels were replaced by corresponding 24

elements of the containing model. Finney’s proposal also provided a direct link facility that allows a containing 25

model to refer directly to submodel elements without providing placeholder elements in the containing model. 26

For example, a containing model could have a reaction that converts a species in one submodel to a species in a 27

different submodel, and in the direct-link approach, it would only need to define the reaction, with the reactant 28

and product being expressed as links directly to the species defined in the submodels. 29

After Finney’s last effort, activities in the SBML community focused on updates to SBML Level 2, and since model 30

composition was slated for Level 3, not much progress was made for several years, apart from Finney including a 31

summary of his 2003 proposal and of some of the unresolved issues in a poster (Finney, 2004) at the 2004 Intelligent 32

Systems for Molecular Biology (ISMB) conference held in Glasgow. 33

Finally, in June of 2007, unplanned discussions at the Fifth SBML Hackathon (SBML Team, 2007) prompted the 34

convening of a workshop specifically to revitalize the model composition package, and in September of 2007, the 35

SBML Composition Workshop (Various, 2007) was held at the University of Connecticut Health Center, hosted by 36

the Virtual Cell group and organized by Ion Moraru and Michael Blinov. The event produced several artifacts, still 37

available online: 38

1. Martin Ginkel provided a list of goals for model composition (Ginkel, 2007), including use cases, and sum- 39

marized many of the issues described above, including the notion of definition versus instantiation, linking, 40

referencing elements that lack SBML identifiers, and the creation of optional interfaces. The list of goals also 41

mentioned the need of allowing parameterization of instances (i.e., setting new numerical values that over- 42

ride the defaults), and the need to be able to “delete” or elide elements out of submodels. (He also provided 43

a summary of ProMoT’s model composition approach and a summary of other approaches.) 44

2. Andrew Finney wrote a list of issues and comments, recorded on the meeting wiki page (Finney, 2007); these 45

included some old issues as well as some new ones: 46

• There should perhaps be a flag for ports to indicate whether a given port must be overloaded. 47

• There should be support for N-to-M links, when a set of elements in one model are replaced as a group, 48

conceptually, with one or more elements from a different model. 49

• The proposal should be generic enough to accommodate future updates and other Level 3 packages. 50
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3. Wolfram Liebermeister presented his group’s experience with SBMLMerge (Leibermeister, 2007), dealing 1

with the pragmatics of merging multiple models. He also noted that the annotations in a composed model 2

need to be considered, particularly since they can be crucial to successfully merging models in the first place. 3

4. On behalf of Ranjit Randhawa, Cliff Shaffer summarized Ranjit’s work in the JigCell group on model fusion, 4

aggregation, and composition (Randhawa, 2007). Highlights of this presentation and work include the fol- 5

lowing: 6

• A description of different methods which all need some form of model composition, along with the 7

realization that model fusion and model composition, though philosophically different, entail exactly 8

the same processes and require the same information. 9

• A software application (the JigCell Composition Wizard) that can perform conversion between types. 10

The application can, for example, promote a parameter to a species, a concept which had been as- 11

sumed to be impossible and undesirable in previous proposals. 12

• The discovery that merging of SBML models should be done in the order Compartments → Species 13

→ Function Definitions → Rules → Events → Units → Reactions → Parameters. If done in this order, 14

potential conflicts are resolved incrementally along the way. 15

5. Nicolas Le Novère created a proposal for SBML modularity in Core (Novère, 2007). This is actually unrelated 16

to the efforts described above; it is an attempt to modularize a “normal” SBML model in the sense of divvying 17

up the information into modules or blocks stored in separate files, rather than composing a model from 18

different chunks. It was agreed at the workshop that this is a completely separate idea, and while it has 19

merits, should be handled separately. 20

6. As a collective, the group produced an “Issues to Address” document (Various, 2007a), with several conclu- 21

sions: 22

• It should be possible to “flatten” a composed model to produce a valid SBML Level 3 Core model, and 23

all questions of validity can then be simply applied to the flattened model. If the Core-only version is 24

valid, the composed model is valid. 25

• The model composition proposal should cover both designed-ahead-of-time as well as ad-hoc compo- 26

sition. (The latter refers to composing models out of components that were not originally developed 27

with the use of ports or the expectation of being incorporated into other models.) 28

• The approach probably needs a mechanism for deleting SBML model elements. The deletion syntax 29

should be explicit, instead of being implied by (e.g.) using a generic replacement construct and omit- 30

ting the target of the replacement. 31

• It should be possible to link any part of a model, not just (e.g.) compartments, species and parameters. 32

• The approach should support item “object overloading” (Various, 2007b) and be generally applicable 33

to all SBML objects. However, contrary to what is provided in the JigCell Composition Wizard, changing 34

SBML component types is not supported in object overloading. 35

• A proposition made during the workshop is that elements in the outer model always override elements 36

in the submodels, and perhaps that sibling linking be disallowed. This idea was hotly debated. 37

• Interfaces (ports) are indeed considered helpful, but should be optional. They do not need to be direc- 38

tional as in the electrical engineering “input” and “output” sense—the outer element always overrides 39

the inner element, but apart from that, biology does not tend to work in the directional way that elec- 40

trical components do. 41

• The ability to refer to or import external files may need a mechanism to allow an application to check 42

whether what is being imported is the same as it was when the modeler created the model. The mech- 43

anism offered in this context was the use of MD5 hashes. 44

• A model composition approach should probably only allow whole-model imports, not importing of 45

individual SBML elements such as species or reactions. The reason is that model components are in- 46

variably defined within a larger context, and attempting to pull a single piece out of a model is unlikely 47

to be safe or desirable. 48
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• The model composition approach must provide a means to handle the conversion of units, so that the 1

units of entities defined in a submodel can be made congruent with the entities that refer to them in 2

the enclosing model. 3

During the workshop, the attendees worked on a draft proposal. Stefan Hoops acted as principal editor. The 4

proposal for the SBML package (which was renamed Hierarchical Model Composition (Hoops, 2007)), was issued 5

one day after the end of the workshop. It represented an attempt to summarize the workshop as a whole, and 6

provide a coherent whole, suitable as a Level 3 package. It provided a brief overview of the history and goals of the 7

proposal, as well as several UML diagrams of the proposed data structures. Hoops presented (Hoops, 2008) the 8

proposal in August, 2008, at the 13th SBML Forum, and again at the 7th SBML Hackathon in March of 2009 as well 9

as the 14th SBML Forum in September of 2009, in a continuing effort to raise interest. 10

Roughly concurrently, Herbert Sauro, one of the original developers of SBML, received a grant to develop a modular 11

human-readable model definition language, and hired Lucian Smith in November of 2007 to work on the project. 12

Sauro and Frank Bergmann, then a graduate student with Herbert, had previously written a proposal (Bergmann 13

and Sauro, 2006) for a human-readable language that provided composition features, and this was the design 14

document Smith initially used to create a software system that was eventually called Antimony. Through a few 15

iterations, the design eventually settled on was very similar in concept (largely by coincidence) to that developed 16

by the group at the 2007 Connecticut workshop: namely, with model definitions placed separately from their in- 17

stantiations in other models, and with the ability to link (or “synchronize”, in Antimony terminology) elements 18

of models with each other. Because Antimony was designed to be “quick and dirty”, it allowed type conversions 19

much like the JigCell Composition Wizard, whereby a parameter could become a species, compartment, or even 20

reaction. Synchronized elements could end up with aspects of both parent elements in their final definitions: if 21

one element defined a starting condition and the other how it changed in time, the final element would have both. 22

If both elements defined the same aspect (like a starting condition), the one designated the “default” would be 23

used in the final version. Smith developed methods to import other Antimony files and even SBML models, which 24

could then be used as submodels of other models and exported as flattened SBML. 25

At the 2010 SBML-BioModels.net Hackathon, in response to popular demand from people at the workshop, Smith 26

put together a short presentation (Smith, 2010a) about model composition and some of the limitations he found 27

with the 2007 proposal. He proposed the separation of the replacement concept (where old references to replaced 28

values are still valid) from the deletion concept (where old references to replaced values are no longer valid). Smith 29

wrote a summary of that discussion, added some more of thoughts, and posted it to the sbml-discuss@caltech.edu 30

mailing list (Smith, 2010b). In this posting, he proposed and/or reported several possible modifications to the 31

Hoops et al. 2007 proposal, including the following: 32

• Separation of replacement from deletion. 33

• Separation of model definition from instantiation. 34

• Elimination of ports, and the use of annotations instead. 35

• Annotation for identifying N-to-M replacements, instead of giving them their own construct. 36

The message to sbml-discuss@caltech.edu was met with limited discussion. However, it turns out that several 37

of the issues raised by Smith were brought up at the 2007 meeting, and had simply been missed in the generation 38

of the (incomplete) proposal after the workshop. The meeting attendees had, for example, originally preferred to 39

differentiate deletions from replacements more strongly than by simply having an empty list of replacements, but 40

omitted this feature because no better method could be found. Similarly, the separation of definitions from instan- 41

tiations had been in every proposal up until 2007, and was mentioned in the notes for that meeting. The decision to 42

merge the two was a last-minute design decision brought about when the group noted that if the XInclude (Marsch 43

et al., 206) construct was used, the separation was not strictly necessary from a technical standpoint. 44

Smith joined the SBML team in September of 2010, and was tasked with going through the old proposals and 45

synthesizing from them a new version that would work with the final incarnation of SBML Level 3. That version 46

(the first version of this document) was presented at COMBINE in October 2010 (Smith and Hucka, 2010), and 47

further discussed on the sbml-discuss@caltech.edumailing list. At HARMONY in April of 2011, consensus was 48

reached on a way forward for resolving the remaining controversies surrounding the specification, resulting in the 49

current version of the document you are reading. 50
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2.2 Genesis of the current formulation of the package 1

The present specification for Hierarchical Model Composition is an attempt to blend features of previous efforts 2

into a concrete, Level 3-compatible syntax. The specification has been written from scratch, but draws strongly on 3

the Hoops 2007 and Finney 2003 proposals, as well as, to some degree, every one of the sources mentioned above. 4

Some practical decisions are new to this proposal, sometimes due to additional design constraints resulting from 5

the final incarnation of SBML Level 3, but all of them draw from a wealth of history and experimentation by many 6

different people over the last decade. Where this proposal differs from the historical consensus, the reasoning is 7

explained, but for the most part, the proposal follows the road most traveled, and focuses on being clear, simple, 8

only as complex as necessary, and applicable to the largest number of situations. 9

2.3 Design goals for the Hierarchical Model Composition package 10

The following are the basic design goals followed in this package: 11

• Allow modelers to build models by aggregation, composition, or modularly. These methods are so similar 12

to one another, and the process of creating an SBML Level 3 package is so involved, that we believe it is 13

not advantageous to create one SBML package for aggregation and composition, and a separate package for 14

modularity. Users of the hierarchical model composition package should be able to use and create models 15

in the style that is best suited for their individual tasks, using any of these mechanisms, and to exchange and 16

reuse models from other groups simply and straightforwardly. 17

• Interoperate cleanly with other packages. The rules of composition should be such that they could apply to 18

any SBML element, even unanticipated elements not defined in SBML Level 3 Core and introduced by some 19

future Level 3 package. 20

• Allow models produced with these constructs to be valid SBML if the constructs are ignored. As proposed by 21

Nicolas Le Novère (Novère, 2003) and affirmed by the SBML Editors (The SBML Editors, 2010), whenever 22

possible, ignoring elements defined in a Level 3 package namespace should result in syntactically-correct 23

SBML models that can still be interpreted to some degree, even if it cannot produce the intended simulation 24

results of the full (i.e., interpreting the package constructs) model. For example, inspection and visualization 25

of the Core model should still be possible. 26

• Ignore verbosity of models. We assume that software will deal with the “nuts and bolts” of reading and writing 27

SBML. If there are two approaches to designing a mechanism for this hierarchical composition package, 28

where one approach is clear but verbose and the other approach is concise but complex or unobvious, we 29

prefer the clear and verbose approach. We assume that software tools can abstract away the verbosity for the 30

user. (However, tempering this goal is the next point.) 31

• Avoid over-complicating the specification. Apart from the base constructs defined by this specification, any 32

new element or attribute introduced should have a clear use case that cannot be achieved in any other way. 33

• Allow modular access to files outside the modeler’s control. In order to encourage direct referencing of models 34

(e.g., to models hosted online on sites such as BioModels Database (http://biomodels.net/database), 35

whenever possible, we will require referenced submodels only to be in SBML Level 3 Core format, and not 36

require that they include constructs from this specification. 37

• Incorporate most, if not all, of the desirable features of past proposals. The names may change, but the aims 38

of past efforts at SBML model composition should still be achievable with the present specification. 39
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3 Package syntax and semantics 1

In this section, we define the syntax and semantics of the Hierarchical Model Composition package for SBML 2

Level 3 Version 1. We expound on the various data types and constructs defined in this package, then in Section 4, 3

we provide complete examples of using the constructs in example SBML models. 4

3.1 Primitive data types 5

Section 3.1 of the SBML Level 3 specification defines a number of primitive data types and also uses a number 6

of XML Schema 1.0 data types (Biron and Malhotra, 2000). We assume and use some of them in the rest of this 7

specification, specifically boolean, ID, IDREF, SId, SIdRef, UnitSId, UnitSIdRef, and string. The Hierarchical 8

Model Composition package also makes use of or defines other primitive types; they are described below. 9

3.1.1 Type anyURI 10

Type anyURI is defined by XML Schema 1.0. It is a character string data type whose values are interpretable 11

as URIs (Universal Resource Identifiers; Harold and Means 2001; W3C 2000) as described by the W3C document 12

RFC 3986 (Berners-Lee et al., 2005). 13

3.1.2 Type PortSId 14

The type PortSId is derived from SId (SBML Level 3 Version 1 Core specification Section 3.1.7) and has identical 15

syntax. The PortSId type is used as the data type for the identifiers of ports (Section 3.4.3) in the Hierarchical 16

Model Composition package. The purpose of having a separate type for such identifiers is to enable the space of 17

possible port identifier values to be separated from the space of all other identifier values in SBML. The equality 18

of PortSId values is determined by an exact character sequence match; i.e., comparisons of these identifiers must 19

be performed in a case-sensitive manner. 20

3.1.3 Type PortSIdRef 21

Type PortSIdRef is used for all attributes that refer to identifiers of type PortSId. This type is derived from 22

PortSId, but with the restriction that the value of an attribute having type PortSIdRef must match the value 23

of a PortSId attribute in the relevant model; in other words, the value of the attribute must be an existing port 24

identifier in the referenced model. As with PortSId, the equality of PortSIdRef values is determined by exact 25

character sequence match; i.e., comparisons of these identifiers must be performed in a case-sensitive manner. 26

3.2 Namespace scoping rules for identifiers 27

In the Hierarchical Model Composition package, as in SBML Level 3 Version 1 Core, the Model object contains the 28

main components of an SBML model, such as the species, compartments and reactions. The package adds the 29

ability to put multiple models inside an SBML document, and therefore must define the scope of identifiers in 30

such a way that identifier collisions are prevented. 31

Although the definitions of the main constructs in the package are not presented until later in this section, the 32

scoping rules apply to all constructs and therefore are appropriate to discuss separately. Here are the rules: 33

1. A shared namespace exists for SId values defined at the SBML document level. This namespace applies 34

to the identifiers of Model and ExternalModelDefinition objects within the SBML document. The identifier 35

of every Model and ExternalModelDefinition object must be unique across the set of all such identifiers in 36

the document. The namespace is limited to that SBML document, and is not shared with any other SBML 37

document, even if that document is referenced via an ExternalModelDefinition. This namespace is known as 38

the model namespace of the document. 39

2. The namespace for SId identifiers defined within a Model object used in Hierarchical Model Composition 40

follows the same rules as those defined in SBML Level 3 Core for plain Model objects. That is, the scope of the 41
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identifiers is limited to the enclosing Model object. This means that two or more Model objects in the same 1

document may reuse the same identifiers—identifiers do not need to be unique at the level of the SBML 2

document. (For example, two model definitions could use the same SId value for Parameter objects within 3

their respective contents. However, this does not imply that the two objects are equated with each other!) 4

This is known as the object namespace of the model. An implication of this rule is that to fully locate an object 5

when there are multiple models in an SBML document, one must know not only the object’s identifier, but 6

also the identifier of the model in which it is located. 7

3. As in SBML Level 3 Version 1 Core, the identifier of every UnitDefinition object must be unique across the set 8

of all such identifiers in the Model to which they belong. This is referred to as the unit namespace of the model. 9

Similar to the case above, an implication of this rule is that to fully locate a user-defined unit definition when 10

there are multiple models in an SBML document, one must know not only the unit definition’s identifier, but 11

also the identifier of the model in which it is located. 12

4. The Hierarchical Model Composition package defines a new kind of component: the port, represented by 13

Port objects. The identifier of every Port object must be unique across the set of all such identifiers in the 14

Model object to which they belong. Again, an implication of this rule is that to fully locate a port when 15

there are multiple models in an SBML document, one must know not only the port’s identifier, but also the 16

identifier of the model in which it is located. 17

5. Reaction objects introduce a local namespace for LocalParameter objects. These objects cannot be refer- 18

enced from outside a given reaction definition. For the Hierarchical Model Composition package, the impli- 19

cation is that the the SBaseRef class (Section 3.6) cannot reference reaction local parameters by their identi- 20

fiers. However, the LocalParameter objects can be given meta identifiers (i.e., a value for their SBase-derived 21

metaid attribute) and be referenced using those. 22

The following example may clarify some of these rules. Suppose a given SBML document contains a Model object 23

having the identifier “mod1”. This Model cannot contain another object with the same identifier (e.g., it could not 24

have a Parameter object with the identifier “mod1”), nor can there be any other Model or ExternalModelDefinition 25

objects identified as “mod1” within the same SBML document. The first restriction is simply the regular SBML 26

rule about uniqueness of identifiers throughout a Model object; the second restriction is due to point (1) above. 27

On the other hand, there could be a second Model object in the same document containing a component (e.g., a 28

Parameter) with the identifier “mod1”. This would not conflict with the first Model identifier (because the Parameter 29

would be effectively hidden at a lower level within the second Model). 30

3.3 The extended SBML class 31

The top level of an “SBML document” is a container whose structure is defined by the object class SBML in the 32

SBML Level 3 specification. In Level 3 Core, this container can contain only one model, an object of class Model. 33

As outlined in the introduction (Section 1), the purpose of the Hierarchical Model Composition package is to allow 34

SBML documents to contain more than one model. To explain how this is accomplished, we first need to introduce 35

some new terms to help in our explanations. 36

In the approach taken here, we make a distinction between (a) the definition of a model, before it is actually used 37

anywhere, and (b) the actual use of a model inside another. We use the term model definition for the former, and 38

submodel for the latter. A model definition is akin to a Platonic ideal: it may be a complete model in and of itself, 39

but until it is instantiated, it exists only as a concept. A submodel, on the other hand, is an instantiation or instance 40

of a previously-defined model: it is the realization of that model inside another model. From the perspective of 41

the model that contains the submodel, it has come into being, and now exists as something that can be used (and 42

possibly modified and adapted, as we will explain later). If the containing model is the Model object of the SBML 43

file, it has been fully instantiated. If the containing model is instead another model definition, the submodel 44

becomes part of that larger model, but has not been fully instantiated in the SBML document until that model 45

definition is itself instantiated in the Model object. 46

Past proposals for model composition in SBML tended to call model definitions themselves the “submodels”. We 47

avoid that term because the model definitions must be valid Model objects in and of themselves, and may be 48
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used standalone (i.e., may not ever be included inside another model). Instead, we reserve the term “submodel” 1

specifically for the instance of a model inside a containing model. Another term proposed in prior work is “model 2

template”, which is close to what is intended by our use of the term model definition, but tends to imply that the 3

model in question is somehow incomplete and needs to be filled in. While this is indeed possible in the scheme 4

described here, it is not required; for example, in a model aggregation situation, several complete working mod- 5

els may be integrated to form a larger whole. We therefore eschew the term “model template” in favor of model 6

definition. 7

The components that are used to implement these notions of model definition and submodel are defined in Fig- 8

ures 2–4 in the pages that follow. The extension of SBML Level 3’s standard SBML class consists of adding two new 9

lists, listOfModelDefinitions and listOfExternalModelDefinitions, of classes ListOfModelDefinitions and 10

ListOfExternalModelDefinitions, respectively. 11

id: SId
source: anyURI
modelRef: SIdRef  { use="optional" }
md5: string  { use="optional" }

SBase (extended)

SBML (extended)

ListOfExternalModelDefinitions

ExternalModelDefinition

listOfModelDefinitions 0,1

modelDefinition

externalModelDefinition

model

1..*

Model (extended)
1..*

ListOfModelDefinitions

listOfExternalModelDefinitions 0,1

Figure 2: The definitions of the extended SBML class as well as the new classes ListOfModelDefinitions, ListOfExter-
nalModelDefinitions, and ExternalModelDefinition. The color conventions are explained in Section 1.3.

3.3.1 The lists of internal and external model definitions 12

Model definition objects are not “owned” by any other model (they can be instantiated anywhere, even by models 13

in other files); therefore, the approach used here pulls them out of the Model class entirely, and instead, puts 14

them in a separate list. The list is a child of the SBML object itself. Like other ListOf classes in SBML, the 15

ListOfModelDefinitions is derived from SBase (more specifically, the extended SBase class defined in Section 3.7). 16

It inherits SBase’s attributes metaid and sboTerm, as well as the subcomponents for Annotation and Notes, but 17

adds no especial attributes of its own. 18

If a model from an external SBML document is needed, it can be referenced with an ExternalModelDefinition object 19

(Section 3.3.2). The ListOfExternalModelDefinitions container gathers all such references. It is derived from SBase 20

but adds no especial attributes of its own. Like the other ListOf classes, it inherits the attributes metaid and 21

sboTerm, as well as the subcomponents for Annotation and Notes, that most SBML components have. 22

3.3.2 The ExternalModelDefinition class 23

As mentioned above, references to externally-located models are implemented as instances of ExternalModelDef- 24

inition objects. This class is defined in Figure 2. It contains several attributes, two of them required (source and 25

id), and two of them optional (modelRef and md5). These attributes are defined in the subsections below. 26
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The id attribute 1

The id attribute serves to provide a handle for the external model reference so that Submodel objects can refer to 2

it. (Crucially, it is not the identifier of the model being referenced; rather, it is an identifier for this ExternalMod- 3

elDefinition object within the current model.) The id attribute takes a required value of type SId. 4

The source attribute 5

The required attribute source is used to locate the SBML document containing an external model definition. The 6

value of this attribute must be of type anyURI (see Section 3.1.1). Since URIs may be either URLs, URNs, or relative 7

or absolute file locations, this offers flexibility in referencing SBML documents. In all cases, the source attribute 8

value must refer specifically to an SBML Level 3 Version 1 document; prior Levels/Versions of SBML are not sup- 9

ported by this package. The entire file at the given location is referenced. The source attribute must have a value 10

for every ExternalModelDefinition instance. 11

The modelRef attribute 12

ExternalModelDefinition’s optional attribute modelRef, of type SIdRef, in is used to identify a Model object within 13

the SBML document located at source. The object referenced may be the main model in the document, or a model 14

definition contained in the SBML document’s listOfModelDefinitions list. 15

In standard SBML, id on Model is an optional attribute, and therefore, it is possible that the Model object in a given 16

SBML document does not have an identifier. In that case, there is no value to give to the modelRef attribute in Ex- 17

ternalModelDefinition. If modelRef does not have a value, then the main model (i.e., the <model> element within 18

the <sbml> element) in the referenced file is interpreted as being the model referenced by this ExternalModelDefi- 19

nition instance. 20

The md5 attribute 21

The optional md5 attribute takes a string value. If set, it must be an MD5 checksum value computed over the doc- 22

ument referenced by source. This checksum can be used as a data integrity check over the contents of the source. 23

Applications may use this to verify that the contents have not changed since the time that the ExternalModelDefi- 24

nition reference was constructed. The procedure for using the md5 attribute is described in Table 2. 25

26Case Procedure

27Creating and writing 1. Compute the MD5 hash for the document located at source.
28an SBML document 2. Store the hash value as the value of the md5 attribute.

29Reading an SBML 1. Read the value of the md5 attribute.
30document 2. Read the document at the location indicated by the source attribute value.
313. Compute the MD5 hash for the document.
324. Compare the computed MD5 value to the value in the md5 attribute. If they are identical, assume the

document has not changed since the time the ExternalModelDefinition object was defined; if the values
are different, assume that the document indicated by source has changed.

Table 2: Procedures for using the md5 attribute on ExternalModelDefinition.

Software tools encountering a difference in the MD5 checksums should warn their users that a discrepancy exists, 33

because a difference in the documents may imply a difference in the mathematical interpretation of the models. 34

Note that the MD5 approach is not without limitations. An MD5 hash is typically expressed as a 32-bit hexadecimal 35

number. If a difference arises in the checksum values, there is no way to determine the cause of the difference 36

without an component-by-component comparison of the models. (Even a difference in annotations, which cannot 37

affect a models’ mathematical interpretations, will result in a difference in the MD5 checksum values.) On the 38

other hand, it is also not impossible that two different documents yield the same MD5 hash value, although it is 39

extremely unlikely in practice. In any event, the MD5 approach is intended as an optional, simple and fast data 40

integrity check, and not a final answer. 41
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3.4 The extended Model class 1

In the Hierarchical Model Composition package, a model definition is, in fact, a Model object in a new context. 2

The SBML Level 3 Core Model class is extended here, and consists of two new lists: one for holding submodels 3

(listOfSubmodels, of class ListOfSubmodels), and one for holding a list of ports (listOfPorts, of class ListOf- 4

Ports). The rest of this section defines the extended Model class and the Port class, while the Submodel class is 5

described in Section 3.5. 6

SBase (extended)

Model (extended)

ListOfSubmodels

listOfPorts 0,1

port

submodel 1..*

1..*

ListOfPorts

listOfSubmodels 0,1

Port

id: PortSId

SBaseRef

Submodel

Figure 3: The extensions of the Model class and the definitions of the classes Port, ListOfPorts, and ListOfSubmodels.
Submodel is defined in Section 3.5. In other respects, Model remains defined as in the SBML Level 3 Core specification.

Comparing the definition of SBML in Figure 2 on page 12 with the definition of Model in Figure 3, it becomes clear 7

that submodels are permitted both inside model definitions (the entities contained by the ListOfModelDefinitions) 8

as well as in the top-level model itself. This is a key feature of the design that permits the capabilities described 9

in the introduction to the Section 3.3. When the top-level model references submodels, they are instantiated, 10

whereas when the Model object of a model definition references submodels, they are simply part of that model 11

definition—they are not instantiated until the model definitions themselves are instantiated. 12

3.4.1 The list of submodels 13

The extended Model class has an optional listOfSubmodels subcomponent for holding a ListOfSubmodels con- 14

tainer object. If present, it must contain one or more Submodel objects. The Submodel class and its use is discussed 15

separately in Section 3.5. 16

3.4.2 The list of ports 17

The port concept allows a modeler to design a submodel such that it can be used in a particular way by a con- 18

taining model. The intention is that a modeler can indicate explicitly the intended points of interaction between 19

a (sub)model and other models including or otherwise interacting with it. Users of the model are encouraged to 20

respect the intention. However, note that in the present formulation of the Hierarchical Model Composition pack- 21

age, the use of ports is not enforced, nor is there any mechanism to place restrictions on which ports may be used 22

in what ways: they are only an advisory construct. Future versions of this package may incorporate these attributes 23

to provide additional functionality to support explicit restrictions on port use. 24

In the Hierarchical Model Composition package, the concept of ports is implemented in the the form of a Port 25

object and a list of ports available on the extended Model object (see Figure 3). Ports are elements that are designed 26

to be used in replacements or deletions, which are operations described below. 27
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3.4.3 The Port class 1

The Port class is defined in Figure 3 on the previous page. It is derived from SBaseRef, a class whose exact defini- 2

tion we leave to Section 3.6; the class provides attributes portRef, idRef, unitRef and metaIdRef, and a recursive 3

subcomponent, sbaseRef. In addition to what it inherits from SBaseRef, Port adds one required attribute, id, de- 4

scribed below. 5

We say that a Port object defines a port for a component in a model. As will become clear in Section 3.6, the facilities 6

of the SBaseRef parent class from which Port is derived are what provides the means for the component to be 7

identified. All of the options described in Section 3.6 for referencing other objects are available to Port objects. 8

For example, a port could be created by using the metaIdRef attribute to identify the object for which a given 9

Port instance is the port. (In other words, “what does this port correspond to?” is answered by the value of the 10

metaIdRef attribute.) 11

The id attribute 12

The required attribute id is used to give an identifier to a Port object so that other objects can refer to it. The at- 13

tribute has type PortSId and is essentially identical to the SBML primitive type SId, except that its namespace is 14

limited to the identifiers of Port objects defined within a Model object. In parallel, the PortSId type has a com- 15

panion type, PortSIdRef, that corresponds to the SBML primitive type SIdRef; the value space of PortSIdRef is 16

limited to PortSId values. (See also Figure 5 on page 18.) 17

Note the implication of the separate namespaces of port identifiers (values of type PortSId) and other identifiers 18

(values of SId or UnitSId). Since PortSId values are in their own namespace within the parent Model, it is possible 19

for a PortSId value to be the same as some SId value in the model, without causing an identifier collision. 20

Additional restrictions on Port objects 21

Several additional restrictions exist on the use of ports. It will immediately become apparent that these restrictions 22

are common-sense rules, but they are worth making explicit: 23

1. The model to which a Port object refers with its SBaseRef constructs must be the parent Model object con- 24

taining the Port object itself. 25

2. Each port in a model must refer to a unique component of that model; that is, no two ports in a model may 26

both refer to the same model component. 27

3. A port cannot refer to another port of the same model. 28

4. A port cannot refer to itself. 29

3.5 The Submodel class 30

In the Hierarchical Model Composition package, submodels are the concrete realization of models contained 31

within other models. Figure 4 on the next page shows the definition of Submodel. 32

A Submodel object must say which Model object it instantiates, and may additionally contain information about 33

how the Model object is to be modified. There are two possible types of direct modifications: conversion factors, 34

and deletions. We describe these two mechanisms in more detail in the subsections below, but the following in- 35

formal description may serve as a useful guide. If numerical values in the referenced model must be changed in 36

order to fit them into their new context as part of the submodel, the changes can be handled through conversion 37

factors. Deletions, on the other hand, are useful when a feature in the referenced model no longer makes sense in 38

its new context, have no equivalent in the new model, and should be removed entirely; for example, it might be a 39

no-longer-relevant initial assignment, reaction, or an event assignment within an Event object. 40

3.5.1 The attributes of Submodel 41

Figure 4 on the following page shows that Submodel has numerous attributes, as well as a single subcomponent, 42

listOfDeletions. We describe the attributes below, then turn to listOfDeletions in Sections 3.5.2–3.5.3. 43
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SBase (extended)

ListOfDeletions

Deletiondeletion 1..*

listOfDeletions 0,1

id: SId
modelRef: SIdRef
lengthConversionFactor: SIdRef  { use="optional" }
areaConversionFactor: SIdRef  { use="optional" }
volumeConversionFactor: SIdRef  { use="optional" }
substanceConversionFactor: SIdRef  { use="optional" }
timeConversionFactor: SIdRef  { use="optional" }
extentConversionFactor: SIdRef  { use="optional" }

Submodel

id: SId  { use="optional" }

SBaseRef

Figure 4: The definition of the Submodel, Deletion and ListOfDeletions classes.

The id attribute 1

The id is a required attribute of type SId that gives an identifier to the Submodel instance. It is required so that 2

other references may always have a means through which a parent model may refer to this submodel instance’s 3

elements (e.g., to link and replace them). The identifier has no mathematical meaning. 4

This identifier must follow the normal restrictions on SBML SId values for uniqueness within Model objects. In 5

addition, the id value may not be referenced by SBML Level 3 Core components; this is necessary so that if a 6

software package does not have support for the Hierarchical Model Composition package, it can ignore the package 7

constructs and still end up with a syntactically value (though perhaps diminished) SBML document. 8

The modelRef attribute 9

The Model object that a Submodel object instantiates may either be another model in the same SBML document, 10

or it may be a model defined in a separate SBML document. The required attribute modelRef, of type SIdRef, 11

must refer to the identifier of a Model or ExternalModelDefinition object within the enclosing SBML document (i.e., 12

in the model namespace of the document). 13

It is legal for the model referenced by modelRef to have its own submodels. The chain of inclusion should be 14

followed. The only restriction is that loops are not allowed: the referenced model may not refer to its parent model, 15

nor may it refer to a model which in turn instantiates its parent model, etc. 16

It is also legal for the model referenced by modelRef to refer to the <model> child of the enclosing SBML document, 17

i.e., the main Model object in the SBML object where it is itself located. This would mean that the document 18

contains a model definition that itself contains (and perhaps modifies) the model it presents to the world as the 19

main or top-level model in the document. A possible use for this might be to define a common scenario in the main 20

model, then create alternate scenarios with different initial conditions or parameter sets using the list of model 21

definitions (Figure 2 on page 12) in the SBML object. Because the model namespace is defined per document, 22

this means that it is possible to define and include a new model namespace by creating a new document, then 23

importing one or more of those models using the ExternalModelDefinition class. 24
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The conversion factor attributes 1

Conversion factors enable the matching up of mathematical values and units of measurement between submodels 2

and models. There are six possible conversion factors, corresponding to the six conversion factors defined by SBML 3

Level 3 Core’s basic Model object class. The six attributes representing these conversion factors on Submodel are 4

lengthConversionFactor, areaConversionFactor, volumeConversionFactor, substanceConversionFactor, 5

timeConversionFactor, and extentConversionFactor. 6

All of these optional attributes have type SIdRef. If set, the value must be the identifier of a Parameter object in the 7

parent Model object. The parameter will be used to convert the value of the submodel quantities of the indicated 8

type (e.g., volume, time, etc.) to the units used in the parent model. The procedures are involved, and a separate 9

section (Section 3.8) is devoted to explaining them. 10

3.5.2 The list of deletions 11

The listOfDeletions subcomponent on Submodel holds an optional ListOfDeletions container which, if present, 12

must contain one or more Deletion objects. This list of deletions specifies objects to be removed from the submodel 13

when composing the overall model. (This “removal” of course does not involve physically editing the files; rather, 14

it is mathematical and conceptual.) 15

Deletions may be needed for various reasons. For example, some components in a submodel may be redundant 16

in the composed model, perhaps because the same features are implemented in a different way in the new model. 17

3.5.3 The Deletion class 18

The Deletion object class is used to define a deletion operation to be applied when a submodel instantiates a model 19

definition. More specifically, when the Model to which the Submodel object refers (via the modelRef attribute) is 20

read and processed for inclusion into the composed model, each Deletion object identifies an object to “remove” 21

from that Model instance. The resulting submodel instance will consist of everything in the Model object instance 22

minus the entities referenced by the list of Deletion objects. 23

As shown in Figure 4 on the preceding page, Deletion is subclassed from SBaseRef, described in detail in Sec- 24

tion 3.6. It reuses all the machinery provided by SBaseRef, and in addition, adds a single attribute, id. 25

The id attribute 26

The Deletion attribute id can be used to give an identifier to a given deletion. The identifier has no mathematical 27

meaning, but providing it may be useful for creating submodels that can be manipulated more directly by other 28

submodels. 29

Implications of a deletion 30

There are several points worth clarifying about deletions. 31

1. An object that has been “deleted” is considered inaccessible. Any element that has been replaced or deleted 32

may not be referenced by an SBaseRef object, including anything deleted or replaced within the submodel. 33

2. If the deleted object has child objects or substructure, the child objects and substructure are also considered 34

to be deleted. 35

3. It is not an error to delete explicitly an object that is already deleted by implication (for example as a result 36

of point number 2 above). The resulting model is the same. 37

We leave additional comments about best practices surrounding deletions to Section 5.2. 38

3.6 The SBaseRef class 39

With the extensions to SBML described up to this point, and the introduction of ExternalModelDefinition, the Hi- 40

erarchical Model Composition package constructs introduced so far have only provided a means for aggregating 41
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models without connecting them. While this may be useful for some applications, more interesting uses of com- 1

position involving linking or restructuring components of different models—for example, telling a simulator that 2

some component X in one model is the same as a component Y in a submodel, or indicating that a given com- 3

ponent Z should be removed from the composed whole model. These operations require the capability to refer 4

to specific components within enclosed models or even external models located in other files. The machinery for 5

constructing such references is embodied in the SBaseRef class. This class is the parent class of the Port, Deletion 6

and ReplacedElement classes described in the previous sections. 7

Figure 5 gives the definition of SBaseRef. It includes several attributes used to implement alternative approaches 8

to referencing a particular component, and it also has a recursive structure, providing the ability to refer to ele- 9

ments buried within (say) a sub-submodel configuration. 10

SBase (extended)

sbaseRef 0,1

portRef: PortSIdRef  { use="optional" }
idRef: SIdRef  { use="optional" }
unitRef: UnitSIdRef  { use="optional" }
metaIdRef: IDREF  { use="optional" }

SBaseRef

Figure 5: The extensions of the SBaseRef class. The four attributes portRef, idRef, unitRef and metaIdRef are
mutually exclusive; only one can have a value in a given object instance. The recursive structure also allows referencing
entities in submodels of submodels, to arbitrary depths, as described in the text.

Readers may wonder why so many different alternatives are necessary. The reason is that in a given scenario, the 11

referenced model may be located in an external file beyond the direct control of the modeler, and so the preferred 12

methods of referencing the subobjects may not be available. SBaseRef provides multiple alternatives so that a 13

variety of modeling scenarios can be supported. 14

3.6.1 The attributes of SBaseRef 15

The four different attributes on SBaseRef are mutually exclusive: only one of the attributes can have a value at any 16

given time, and exactly one must have a value in a given SBaseRef object instance. (Note that this is true of the 17

basic SBaseRef class; however, derived classes such as ReplacedElement may add additional attributes and extend 18

or override the basic attributes and mechanisms.) 19

The portRef attribute 20

The optional attribute portRef takes a value of type PortSIdRef. As its name implies, this attribute is used to refer 21

to a port identifier, in the case when the reference being constructed with the SBaseRef is intended to refer to a 22

port on a submodel. The namespace of the PortSIdRef value is the set of identifiers of type PortSId defined in 23

the submodel, not the parent model. 24

The idRef attribute 25

The optional attribute idRef takes a value of type SIdRef. As its name implies, this attribute is used to refer to 26

a regular identifier (i.e., the value of an id attribute on some other object), in the case when the reference being 27

constructed with the SBaseRef is intended to refer to an object that does not have a port identifier. The namespace 28

of the SIdRef value is the set of identifiers of type SId defined in the submodel, not the parent model. 29
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The unitRef attribute 1

The optional attribute unitRef takes a value of type UnitSIdRef. This attribute is used to refer to the identifier 2

of a UnitDefinition object. The namespace of the UnitSIdRef value is the set of unit identifiers defined in the 3

submodel, not the parent model. 4

Note that even though this attribute is of type UnitSIdRef, the reserved unit identifiers that are defined by SBML 5

Level 3 (see Section 3.1.10 of the SBML Level 3 Version 1 core specification) are not permitted as values of unitRef. 6

Reserved unit identifiers may not be replaced or deleted. 7

The metaIdRef attribute 8

The optional attribute metaIdRef takes a value of type XML IDREF. This attribute is used to refer to a metaid at- 9

tribute value on some other object, in the case when the reference being constructed with the SBaseRef is intended 10

to refer to an object that does not have a port identifier. Since meta identifiers are optional attributes of SBase, all 11

SBML objects have the potential to have a meta identifier value. 12

3.6.2 Recursive SBaseRef structures 13

SBaseRef has the capability to have up to one subcomponent of type SBaseRef named sbaseRef (see Figure 5 on 14

the preceding page), leading to the possbility of constructing nested or recursive chains of references. This feature 15

can be used to refer to objects inside submodels in the following way. All parent SBaseRef instances in the chain 16

must refer to a Submodel (using either idRef, portRef or metaIdRef, as suits the particular object), and all child 17

SBaseRef objects in the chain must refer to an SBML component inside the Model instance to which the Submodel 18

refers. 19

Examples 20

The following example may help clarify the nested structure. Suppose that we want to delete an object with the 21

identifier “p1” inside the Submodel “m1”. The following XML fragment illustrates how the constructs will look: 22

23

<listOfDeletions> 24

<deletion idRef="m1"> 25

<sbaseRef idRef="p1" /> 26

</deletion> 27

</listOfDeletions> 28
29

If the desired element is within a submodel of a submodel (or deeper) this nested construct can be extended to an 30

arbitrary depth: as long as an SBaseRef object points to a Submodel object, particular elements of that submodel 31

(including other submodels) may be referenced by a child SBaseRef. 32

To illustrate that possibility, suppose that the submodel “m1” from the previous example is actually nested inside 33

another submodel “m2”. Then we would have the following: 34

35

<listOfDeletions> 36

<deletion idRef="m2"> 37

<sbaseRef idRef="m1"> 38

<sbaseRef idRef="p1" /> 39

</sbaseRef> 40

</deletion> 41

</listOfDeletions> 42
43

Although this use of nested SBaseRef objects allows a model to refer to components buried inside submodels, it is 44

considered inelegant model design. It is better to promote any element in a submodel to a local element if it can 45

be predicted that containing models may need to reference it. However, if the submodel is fixed (e.g., if is in an 46

external file), then no other option may be available except to use nested references. 47
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3.6.3 Additional requirements for SBaseRef 1

As mentioned in Section 3.2, attributes of type SId, UnitSId, and PortSId need only be unique on a per-Model 2

basis. Therefore, a reader must also know the model to which the idRef, unitRef, and portRef attributes refer. 3

In addition, even though IDREF attributes are unique on per-document level, the same SBML element may be 4

instantiated in multiple submodels, in any number of Model objects, and therefore the metaIdRef attribute must 5

also know to which Model instantiation it is referring. This will vary based on SBaseRef sub-class, and will be 6

explained in those sections. For ”bare” SBaseRef objects (which only exist as children of other SBaseRef objects, 7

as explained above) the Model instance to which they are referring is the one referenced by the Submodel to which 8

its parent is pointing. 9

3.7 Replacements 10

Replacements are the glue that connects submodels together with each other and with the containing model. To 11

implement the replacement mechanism, this package extends the SBML SBase class as shown in Figure 6. 12

SBase (extended)

ListOfReplacedElements

replacedElement 1..*

SBaseRef
listOfReplacedElements 0,1

ReplacedElement

submodelRef: SIdRef
identical: boolean
deletion: SIdRef  { use="optional" }
conversionFactor: SIdRef  { use="optional" }

Figure 6: The extension of SBase and the definition of the ListOfReplacedElements and ReplacedElement classes.
The SBaseRef class is defined in Section 3.6.

SBase in SBML is the abstract base class of almost all other object classes. It is not instantiated directly; rather, 13

other SBML component classes such as Species, Compartment and Reaction objects are subclassed from SBase. 14

In this context, the list of replacements shown in Figure 6 defines all of the replacements that this object (i.e., the 15

concrete instantiation, be it a species, parameter, or something else) replaces in any submodels where a replace- 16

ment is to be performed. The nature of replacements will become more clear in the Section 3.7.2 below. 17

3.7.1 The list of replaced elements 18

Figure 6 shows that the extension of SBase by the Hierarchical Model Composition package adds an optional 19

listOfReplacedElements subcomponent for holding a ListOfReplacedElements container object. If present, it 20

must contain at least one ReplacedElement object. 21

3.7.2 The ReplacedElement class 22

Replacements are a general mechanism that serve multiple purposes. At their most basic, they allow a model 23

builder to make a statement of the form “entity W in this model replaces entity X in submodel Y ”. In the final 24

composed model, all references to X in Y are replaced with references to W. This same approach is also used 25

as the mechanism for linking or glueing entities from different models together. Thus, to establish a connection 26

between entity X and some other entity Z located in another submodel, make W define multiple replacements 27

simultaneously: one for X and another for Z. Entity W acts as an intermediary at the level of the containing model. 28

The ReplacedElement objects are essentially pointers to submodel objects that are being replaced. The object 29

holding the ReplacedElement instance is the one doing the replacing; the object pointed to by the ReplacedEle- 30
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ment object is the object being replaced. A replacement implies that the entire chain of dependencies linked to the 1

replaced object must be followed—all references to the replaced object are instead taken to refer to the replace- 2

ment object. For example, if one species replaces another, then any reference to the original species in mathemat- 3

ical formulas, or lists of reactants or products or modifiers in reactions, or initial assignments, or any other SBML 4

construct, are taken to refer to the replacement species instead (with its value possibly modified by either this 5

object’s conversionFactor attribute or the relevant submodel’s conversion factors—see Section 3.8). Moreover, 6

any annotations that refer to the replaced species’ metaid value must be made to refer to the replacement species’ 7

metaid value instead; and anything else that referred either to the object identifier (i.e., the id attribute) or meta 8

identifier (i.e., the metaid attribute) must be made to refer to the replacement species object instead. 9

This identifier-redirection process has some additional important implications. First, when anything refers to a 10

replaced object’s id and/or metaid value, the replacement object must itself define its own id and/or metaid 11

value, or else the step of adjusting references will be impossible to perform because there will not be new id or 12

metaid values to use in place of the old ones. Second, if other SBML Level 3 packages attach identifiers in their 13

own namespaces to an object being replaced, those identifiers must also be likewise redirected. (And again, this 14

implies that the SBML document must put suitable identifier attributes from those package namespaces on the 15

replacement object, so that the replacement object’s identifiers can be substituted for those of the object being 16

replaced.) 17

Finally, an important and far-reaching consequence of replacements is that if the object being replaced contains 18

other objects, then those other objects are considered deleted. For example, replacing a Reaction or an Event object 19

means all of the substructure of those entities in a model are deleted, and references to the identifiers of those 20

deleted entities are made invalid. 21

Attributes inherited from SBaseRef 22

The ReplacedElement class, being derived from SBaseRef, inherits all of that class’ attributes and its subelement. 23

This means that ReplacedElement has the portRef, idRef, unitRef and metaIdRef attributes, as well as the sub- 24

component sbaseRef and the recursive structure that it implies. 25

It is the properties of SBaseRef that allow a ReplacedElement object to refer to what is being replaced. For example, 26

if the object being replaced has a Port identifying it, the instance of ReplacedElement would have its portRef 27

attribute value set to the id of the Port pointing to the object being replaced. If there is no corresponding Port 28

object, but it has a regular identifier (typically an attribute named id), then the ReplacedElement object would set 29

idRef instead, and so on. 30

The submodelRef attribute 31

The required attribute submodelRef takes a value of type SIdRef. It must be set to the identifier of a Submodel 32

object in the containing model. The Model to which this Submodel refers defines the object namespace to which 33

the portRef, idRef, unitRef and metaIdRef attributes refer. 34

The identical attribute 35

The required attribute identical takes a boolean value. Its purpose is to indicate that a replacement is meant to 36

be effectively identical to the replaced object. (This is the case when a replacement only exists in order to create a 37

reference to an object in a submodel so that the containing model may work with that object.) 38

When identicalhas the value “true”, the two linked objects are expected to be identical in all respects except pos- 39

sibly their identifiers (i.e., their id and metaid attribute values, as well as similar identifiers that may be added by 40

other SBML Level 3 packages). If the objects differ in any other way, validation systems should report an error. This 41

applies to all attributes and subcomponents, including Annotation and Notes subcomponents; even a difference 42

in the name attribute of the objects is considered a deviation from being “identical”. Importantly, the numerical 43

values of all attributes (e.g., initialAmount on Species) must be equivalent to each other after accounting for any 44

relevant conversion factors. 45

When identical has the value “false”, no comparisons for identical properties need to be performed, and no 46

warnings or errors can be reported if the two objects are or are not identical. 47
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The deletion attribute 1

The optional attribute deletion takes a value of type SIdRef. The value must be the identifier of a Deletion object 2

in the parent Model of the ReplacedElement (that is, the value of some Deletion object’s id attribute). 3

When deletion is set, it means the ReplacedElement object is actually an annotation to indicate that the replace- 4

ment object replaces something deleted from a submodel. The use of the deletion attribute overrides the use of 5

the attributes inherited from SBaseRef: instead of using, e.g., portRef or idRef, the ReplacedElement instance 6

sets deletion to the identifier of the Deletion object. The use of ReplacedElement objects to refer to deletions 7

has no effect on the composition of models or the mathematical properties of the result. It serves instead to help 8

record the decision-making process that lead a modeler to construct the model they did. It can be particularly 9

useful for visualization purposes, as well as to serve as scaffolding where other types of annotations can be added 10

using the normal Annotation subcomponents available on all SBase objects in SBML. 11

The conversionFactor attribute 12

The ReplacedElement’s conversionFactor attribute may be used to define how to transform or rescale the re- 13

placed object’s value so that it is appropriate for the new contexts in which it appears. The value of this attribute 14

must be of type SIdRef and refer to a Parameter object instance defined in the model. The conversion factor 15

identified by the conversionFactor attribute overrides any automatic conversion that may have been performed 16

based on the submodel’s relevant conversion factors. The details of this are left to Section 3.8. 17

Additional requirements for ReplacedElement 18

The element in the parent model always takes precedence over elements from the submodels, and no “horizontal 19

replacements” are possible that involve only subelements. An example of horizontal replacement might be when 20

one species in one submodel is the conceptual replacement for a second species in a second submodel. In practice, 21

the lack of a direct mechanism for horizontal replacements is not a true limitation: to achieve the same effect as 22

in the example, a local species would be created in the containing model replacing both species from the two 23

submodels, setting identical=“true” for the first, and identical=“false” for the second. 24

Note that there is no restriction here that replaced objects must be of the same type as the replacing object. The 25

only restriction is that all old references to the replaced object must now point to the replacing object, so they 26

must continue to make sense and produce valid SBML. Thus, replacing a Species object that appeared in a Re- 27

action object would lead to an invalid SBML document if the replacement was a Parameter object. There is no 28

requirement for like-kind replacements, however, because errors do not necessarily result. To take the same exam- 29

ple, the Species object could be replaced by a Parameter if that Species never appeared in any Reaction object or 30

if all the Reaction objects were deleted. 31

Finally, any given object being replaced may only appear in exactly one ReplacedElement object anywhere in a 32

model; otherwise, it would imply multiple entities replace the same object, and this would lead to ambiguities 33

(e.g., in old references to the entities being replaced). A “deletion” ReplacedElement (one that utilizes the ’deletion’ 34

attribute) is the sole exception to this rule, and is the only type of entity that may be listed in more than one 35

ListOfReplacedElements. 36

3.8 Conversion factors 37

In SBML Level 3 Version 1 Core, units of measurement are optional information. Modelers are required to write 38

their models in such a way that all conversions between units are explicitly incorporated into the quantities, so that 39

nowhere do units need to be understood and values implicitly converted before use. Given the Hierarchical Model 40

Composition package’s design goal of compatibility with existing models and files that may not be changeable, 41

it is not an option to require that all included models must be written in such a way that they are numerically 42

compatible with each other. For example, if one submodel defines how a species amount changes in time, and a 43

second submodel defines an initial assignment for that same species in terms of concentration, something must 44

be done to make the model as a whole coherent without editing the submodels directly. That is the purpose of the 45

conversion factor attributes on the Submodel and ReplacedElement classes. 46
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There are many situations to account for, so unfortunately, the topic of conversion factors is rather involved. We 1

begin with the relatively straightforward case of ReplacedElement. 2

3.8.1 Conversion factors involving ReplacedElement 3

As explained in Section 3.7.2, the various conversion factor attributes on ReplacedElement override any conversion 4

factors defined on the Submodel object that the ReplacedElement references via its modelRef attribute. 5

If the submodels of the merged model retain any mathematical formulas (that is, if there are any reactions, as- 6

signments, or any other construct with a MathML <math> element that has not been replaced or deleted from the 7

submodel), then those formulas may be subject to different scales and units than the mathematical formulas of 8

the containing model. In that case, the entities and formulas should be converted to the new units. If a replaced 9

element has a defined conversion factor, then any time a calculation is performed within the math of the Submodel 10

object where the replaced element’s identifier is found on the left-hand side of an equation, the right-hand side 11

is multiplied by that conversion factor before assignment to that variable. For example, if a species has an initial 12

assignment of 4x +3, and has a conversion factor of c, the initial assignment formula become c(4x +3). The same 13

is true for assignment rules, rate rules, kinetic laws, event assignments, and the implied rates of change of species 14

as calculated from kinetic laws, as described in section 4.11.7 of the SBML Level 3 Version 1 Core specification. 15

Conversely, wherever the identifier of a replaced element appears on the right-hand side of an equation in its 16

original submodel, its appearance in that equation should be divided by the conversion factor. In our previous 17

example of an initial assignment of 4x + 3, if the x had been replaced and given a conversion factor of cx , that 18

initial assignment formula would become 4(x/cx )+3. This holds true for any mathematical equation in the model, 19

including algebraic rules. This also means that if a value appears on the right and left-hand sides of an equation, 20

you must apply the conversion factor twice: if the rate rule of x is 4x+3, it becomes cx (4(x/cx )+3). (This simplifies 21

to 4x +3cx , as you would expect—the x is already in the correct scale; it is only the 3 that must be converted.) 22

3.8.2 Conversion factors involving Submodel 23

The six attributes on Submodel with the names of the form ConversionFactor dictate how any submodel 24

mathematics whose unit types are defined by the Level 3 Core specification are to be converted whether or not 25

that element was replaced, in the absence of an explicit conversion factor for that element. To understand the 26

rules, it is first helpful to have a summary of the conversion factors implied by the SBML Level 3 Version 1 Core 27

specification. We provide a summary in Table 3 on the following page. 28

The procedures for using the conversion factor attributes on Submodel are based on the conversion factors de- 53

fined by the Core. Thus, all compartments that set spatialDimension=“1” in the submodel must be converted 54

according to the lengthConversionFactor, with all assignments to that compartment multiplied by the conver- 55

sion factor, and that compartment’s identifier divided by it wherever it appears inside a math element. All rates 56

of change of species amounts (defined in section 4.11.7 of the Level 3 Version 1 Core specification) are converted 57

by the substanceConversionFactor divided by the timeConversionFactor, after being converted (if necessary) 58

by any internal conversion factors, as described. All species concentrations from compartments of dimension 2 59

are converted by the substanceConversionFactor divided by the areaConversionFactor. Non-replaced ele- 60

ments with defined unit types are still converted, so that the output of any simulation will be on the same scale as 61

elements from the containing model. 62

In the core specification for SBML Level 3, if the conversion factor attributes for Model and Species are undefined, 63

the rate of change of species amounts over time is defined to be equal to the rate of extent of the reaction over time, 64

arguably creating a default conversion of extent to amount of 1. Similarly, all conversion factors here effectively 65

default to ’1’ as well, so that if (for example) ’substanceConversionFactor’ is defined but ’areaConversionFactor’ 66

is not, species concentrations from compartments of dimension 2 are still converted according to the substance- 67

ConversionFactor, ’divided by 1’. 68

Critically, if an element’s unit type cannot be determined, it has no default conversion factor, and one must be set 69

explicitly for the element in question. All Parameter objects fall into this category, as parameters may have any unit 70

at all, and have no defined unit type as a class. Similarly, compartments with no spatialDimension set, or set to 71

a fractal spatialDimension such as 2.6 should not be converted automatically. This means that if a parameter is 72
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29Component Attribute value Automatic conversion factor

30AlgebraicRule (All) 1

31AssignmentRule (All) Conversion factor for referenced object

32Compartment spatialDimensions=“1” lengthConversionFactor

33Compartment spatialDimensions=“2” areaConversionFactor

34Compartment spatialDimensions=“3” volumeConversionFactor

35Compartment spatialDimensions not equal to “1”, “2”, or “3” 1

36Constraint (All) (None needed)

37Delay (All) timeConversionFactor

38EventAssignment (All) Conversion factor for referenced object

39FunctionDefinition (All) 1

40InitialAssignment (All) Conversion factor for referenced object

41KineticLaw (All) extentConversionFactor
timeConversionFactor

42Implied rate of change
of a species

(All) substanceConversionFactor
timeConversionFactor

43Parameter (All) 1

44Priority (All) 1

45RateRule (All) Conversion factor for referenced object
timeConversionFactor

46Species hasOnlySubstanceUnits=“true” substanceConversionFactor

47Species hasOnlySubstanceUnits=“false” substanceConversionFactor
Conversion factor for referenced object

48

Species
hasOnlySubstanceUnits=“true” replaced by a
Species having hasOnlySubstanceUnits=“false”

substanceConversionFactor
Compartment size

49

Species
hasOnlySubstanceUnits=“false” replaced by a
Species having hasOnlySubstanceUnits=“true”

substanceConversionFactor ·(Compart. size)
Conversion factor for compartment

50SpeciesReference (All) 1

51Trigger (All) (None needed)

52(Unknown) (All) 1

Table 3: Conversion factors used for the different components defined by SBML Level 3 Core.

internal to a submodel and not replaced, there is no way to convert it, and it will remain in its original scale. This 45

will not affect the math of the converted elements, as the rules above first convert all math to the original scale, 46

and only convert it to the new scale when assigning it to a variable. However, if it is displayed as output, these 47

values may be in a different scale from other displayed output. The only way to correct this situation is to replace 48

the parameter in question, and give it an explicit conversion factor. 49

Some math may use a combination of conversion factors defined on the Submodel object with the conversion 50

factors defined explicitly on an element’s replacement construct. The simplest example is that of a rate rule that 51

defines how a parameter changes with time. If the Parameter object has been replaced and given a conversion fac- 52

tor, the parameter’s explicit conversion factor is divided by the submodel’s timeConversionFactor to act as the 53

overall conversion factor for the rate rule’s formula. As a slightly more complicated example, a species concentra- 54

tion that has no explicit conversion factor set for its replacement, and which is contained in a compartment that 55

does have an explicit conversion factor, will be converted according to the substanceConversionFactor from the 56

Submodel object divided by the conversion factor defined by the compartment replacement construct. 57

Species concentrations of species from compartments with undefined unit types will be converted according to 58

the substanceConversionFactor alone, if no conversion factor is defined for its compartment. An odd potential 59

situation arises here in the case where the species’ compartment has been actually deleted instead of replaced, the 60

replacement species being put into a new compartment in the containing model. In this case, no automatic con- 61

version factor is possible, and if one is needed, it must be set explicitly on the species’ replacement itself. Another 62
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complication is the situation where a species is set hasOnlySubstanceUnits=“true” in the submodel, but is set 1

hasOnlySubstanceUnits=“false” in its replacement, or vice versa. In this case, the species must be converted 2

according to the actual value of its compartment. If an explicit conversion factor is set, it is assumed that the mod- 3

eler took this into consideration, and created an assignment rule (or similar) such that the conversion parameter 4

would function appropriately. If not, the automatic conversion must use the value for the compartment of the 5

replacement species to convert the species values to amounts from concentrations, and back again. Unreplaced 6

species are still converted, but if they were in amounts before, they remain in amounts afterwards and likewise 7

when in concentrations. 8

Any math not directly associated with a replaced element and that does not have a defined unit type is assumed to 9

exist in the same scale as all other similar elements across all submodels. The only example of this in the Level 3 10

Core is the math associated with the Priority subcomponent of Event objects. A Priority element may be replaced 11

directly by a ReplacedElement construct or by replacing its parent Event, but when comparing priority expressions 12

from submodels with priority expressions from the containing model or from other submodels, they are all as- 13

sumed to be on the same scale relative to each other. (If one model had priorities set on a scale of 0 to 10 and 14

another had priorities set on a scale of -100 to 100, that is just the way it is, and to fix it, all incompatible prior- 15

ities would have to be replaced.) The same would be true of math defined in any other Level 3 package without 16

a defined unit type, or with a newly-defined unit type: none of it would be converted automatically, and all such 17

elements would have to be converted explicitly by being replaced, or that package would have to extend this Hier- 18

archical Model Composition package to define a new attribute on Submodel that could be used to automatically 19

convert all such elements in the submodel with that unit type. 20
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4 Examples 1

This section contains a variety of examples of SBML Level 3 Version 1 documents employing the Hierarchical Model 2

Composition package. 3

4.1 Simple aggregate model 4

The following is a simple aggregate model, with one defined model being instantiated twice: 5

6

<?xml version="1.0" encoding="UTF-8"?> 7

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1" 8

xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true"> 9

10

<model id="aggregate"> 11

<comp:listOfSubmodels> 12

<comp:submodel comp:id="submod1" comp:modelRef="enzyme"/> 13

<comp:submodel comp:id="submod2" comp:modelRef="enzyme"/> 14

</comp:listOfSubmodels> 15

</model> 16

17

<comp:listOfModelDefinitions> 18

<comp:modelDefinition id="enzyme" name="enzyme"> 19

<listOfCompartments> 20

<compartment id="comp" spatialDimensions="3" size="1" constant="true"/> 21

</listOfCompartments> 22

<listOfSpecies> 23

<species id="S" compartment="comp" hasOnlySubstanceUnits="false" 24

boundaryCondition="false" constant="false"/> 25

<species id="E" compartment="comp" hasOnlySubstanceUnits="false" 26

boundaryCondition="false" constant="false"/> 27

<species id="D" compartment="comp" hasOnlySubstanceUnits="false" 28

boundaryCondition="false" constant="false"/> 29

<species id="ES" compartment="comp" hasOnlySubstanceUnits="false" 30

</listOfSpecies> 31

<listOfReactions> 32

<reaction id="J0" reversible="true" fast="false"> 33

<listOfReactants> 34

<speciesReference species="S" stoichiometry="1" constant="true"/> 35

<speciesReference species="E" stoichiometry="1" constant="true"/> 36

</listOfReactants> 37

<listOfProducts> 38

<speciesReference species="ES" stoichiometry="1" constant="true"/> 39

</listOfProducts> 40

</reaction> 41

<reaction id="J1" reversible="true" fast="false"> 42

<listOfReactants> 43

<speciesReference species="ES" stoichiometry="1" constant="true"/> 44

</listOfReactants> 45

<listOfProducts> 46

<speciesReference species="E" stoichiometry="1" constant="true"/> 47

<speciesReference species="D" stoichiometry="1" constant="true"/> 48

</listOfProducts> 49

</reaction> 50

</listOfReactions> 51

</comp:modelDefinition> 52

</comp:listOfModelDefinitions> 53

</sbml> 54
55

In the model above, we defined a two-step enzymatic process, with species “S” and “E” forming a complex, then 56

dissociating to “E” and “D”. The aggregate model instantiates it twice, so the resulting model “aggregate” has two 57

parallel processes in two parallel compartments performing the same reaction. 58
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4.2 Example of importing definitions from external files 1

Now suppose that we have saved the above SBML content to a file named “enzyme_model.xml”. The following 2

example imports the model “enzyme” from that file into a new model: 3

4

<?xml version="1.0" encoding="UTF-8"?> 5

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1" 6

xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true"> 7

<model> 8

<listOfCompartments> 9

<compartment id="comp" spatialDimensions="3" size="1" constant="true"> 10

<comp:listOfReplacedElements> 11

<comp:replacedElement comp:idRef="comp" comp:submodelRef="A" comp:identical="true"/> 12

<comp:replacedElement comp:idRef="comp" comp:submodelRef="B" comp:identical="true"/> 13

</comp:listOfReplacedElements> 14

</compartment> 15

</listOfCompartments> 16

<listOfSpecies> 17

<species id="S" compartment="comp" hasOnlySubstanceUnits="false" 18

boundaryCondition="false" constant="false"> 19

<comp:listOfReplacedElements> 20

<comp:replacedElement comp:idRef="S" comp:submodelRef="A" comp:identical="true"/> 21

<comp:replacedElement comp:idRef="S" comp:submodelRef="B" comp:identical="true"/> 22

</comp:listOfReplacedElements> 23

</species> 24

</listOfSpecies> 25

<comp:listOfSubmodels> 26

<comp:submodel comp:id="A" comp:modelRef="ExtMod1"/> 27

<comp:submodel comp:id="B" comp:modelRef="ExtMod1"/> 28

</comp:listOfSubmodels> 29

</model> 30

<comp:listOfExternalModelDefinitions> 31

<comp:externalModelDefinition comp:id="ExtMod1" comp:source="enzyme_model.xml" 32

comp:model="enzyme"/> 33

</comp:listOfExternalModelDefinitions> 34

</sbml> 35
36

In the model above, we import “enzyme” twice. We then create a compartment and species local to the parent 37

model, but use that compartment and species to replace “comp” and “S”, respectively, from the two instantiations 38

of “enzyme”. The result is a model with a single compartment and two reactions; the species “S” can either bind 39

with enzyme “E” (from instance “A”) to form “D” (from instance “A”), or with enzyme “E” (from instance “B”) to 40

form “D” (from instance “B”). 41

4.3 Example of using ports 42

In the following, we define one model (“simple”) with a single reaction involving species “S” and “D”, and ports, 43

and we again import model “enzyme”: 44

45

<?xml version="1.0" encoding="UTF-8"?> 46

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1" 47

xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true"> 48

<model id="complexified"> 49

<listOfCompartments> 50

<compartment id="comp" spatialDimensions="3" size="1" constant="true"> 51

<comp:listOfReplacedElements> 52

<comp:replacedElement comp:idRef="comp" comp:submodelRef="A" comp:identical="true"/> 53

<comp:replacedElement comp:portRef="comp_port" comp:submodelRef="B" comp:identical="true"/> 54

</comp:listOfReplacedElements> 55

</compartment> 56

</listOfCompartments> 57

<listOfSpecies> 58

<species id="S" compartment="comp" initialConcentration="5" hasOnlySubstanceUnits="false" 59

boundaryCondition="false" constant="false"> 60
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<comp:listOfReplacedElements> 1

<comp:replacedElement comp:idRef="S" comp:submodelRef="A" comp:identical="false"/> 2

<comp:replacedElement comp:portRef="S_port" comp:submodelRef="B" comp:identical="true"/> 3

</comp:listOfReplacedElements> 4

</species> 5

<species id="D" compartment="comp" initialConcentration="10" hasOnlySubstanceUnits="false" 6

boundaryCondition="false" constant="false"> 7

<comp:listOfReplacedElements> 8

<comp:replacedElement comp:idRef="D" comp:submodelRef="A" comp:identical="false"/> 9

<comp:replacedElement comp:portRef="D_port" comp:submodelRef="B" comp:identical="true"/> 10

</comp:listOfReplacedElements> 11

</species> 12

</listOfSpecies> 13

<comp:listOfSubmodels> 14

<comp:submodel comp:id="A" comp:modelRef="ExtMod1"/> 15

<comp:submodel comp:id="B" comp:modelRef="simple"> 16

<comp:listOfDeletions> 17

<comp:deletion comp:portRef="J0_port"/> 18

</comp:listOfDeletions> 19

</comp:submodel> 20

</comp:listOfSubmodels> 21

</model> 22

<comp:listOfModelDefinitions> 23

<comp:modelDefinition id="simple"> 24

<listOfCompartments> 25

<compartment id="comp" spatialDimensions="3" size="1" constant="true"/> 26

</listOfCompartments> 27

<listOfSpecies> 28

<species id="S" compartment="comp" initialConcentration="5" hasOnlySubstanceUnits="false" 29

boundaryCondition="false" constant="false"/> 30

<species id="D" compartment="comp" initialConcentration="10" hasOnlySubstanceUnits="false" 31

boundaryCondition="false" constant="false"/> 32

</listOfSpecies> 33

<listOfReactions> 34

<reaction id="J0" reversible="true" fast="false"> 35

<listOfReactants> 36

<speciesReference species="S" stoichiometry="1" constant="true"/> 37

</listOfReactants> 38

<listOfProducts> 39

<speciesReference species="D" stoichiometry="1" constant="true"/> 40

</listOfProducts> 41

</reaction> 42

</listOfReactions> 43

<comp:listOfPorts> 44

<comp:port comp:idRef="S" comp:id="S_port"/> 45

<comp:port comp:idRef="D" comp:id="D_port"/> 46

<comp:port comp:idRef="comp" comp:id="comp_port"/> 47

<comp:port comp:idRef="J0" comp:id="J0_port"/> 48

</comp:listOfPorts> 49

</comp:modelDefinition> 50

</comp:listOfModelDefinitions> 51

<comp:listOfExternalModelDefinitions> 52

<comp:externalModelDefinition comp:id="ExtMod1" comp:source="enzyme_model.xml" 53

comp:modelRef="enzyme"/> 54

</comp:listOfExternalModelDefinitions> 55

</sbml> 56
57

In model “simple” above, we give ports to the compartment, the two species, and the reaction. Then, in model 58

“complexified”, we import both “simple” and the model “enzyme” from the file “enzyme_model.xml”, and re- 59

place the simple reaction with the more complex two-step reaction by deleting reaction “J0” from model “simple” 60

and replacing “S” and “D” from both models with local replacements. Note that it is model “simple” that defines 61

the initial concentrations of “S” and “D”, so our modeler set the attribute identical to “true” for those elements, 62

faithfully reproducing the values “5” and “10” in the local copy, and set the attribute identical to “false” for 63

the replacement of those elements from model “enzyme”. Also note that since “simple” defines ports, the port 64
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attribute is used for the subelements that referenced “simple” model elements, but “symbol” still had to be used 1

for subelements referencing “enzyme”. 2

In the resulting model, “S” is converted to “D” by a two-step enzymatic reaction defined wholly in model “enzyme”, 3

with the initial concentrations of “S” and “D” set, in effect, in “simple” (through the appropriate setting of the 4

attribute identical). If “simple” had other reactions that created “S” and destroyed “D”, “S” would be created, 5

would bind with “E” to form “D”, and “D” would then be destroyed, even though those reaction steps were defined 6

in separate models. 7

4.4 Example of replacement 8

In reference to the previous example, what if we would like to annotate that the deleted reaction had been replaced 9

by the two-step enzymatic process? To do that, we must move those reactions to the parent model, and, since 10

those reactions involve “E” and “ES”, we must also move those species as well. The following SBML fragment 11

demonstrates one way of doing that. 12

13

<?xml version="1.0" encoding="UTF-8"?> 14

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1" 15

xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true"> 16

<model id="complexified"> 17

<listOfCompartments> 18

<compartment id="comp" spatialDimensions="3" size="1" constant="true"> 19

<comp:listOfReplacedElements> 20

<comp:replacedElement comp:idRef="comp" comp:submodelRef="A" comp:identical="true"/> 21

<comp:replacedElement comp:portRef="comp_port" comp:submodelRef="B" comp:identical="true"/> 22

</comp:listOfReplacedElements> 23

</compartment> 24

</listOfCompartments> 25

<listOfSpecies> 26

<species id="S" compartment="comp" initialConcentration="5" hasOnlySubstanceUnits="false" 27

boundaryCondition="false" constant="false"> 28

<comp:listOfReplacedElements> 29

<comp:replacedElement comp:idRef="S" comp:submodelRef="A" comp:identical="false"/> 30

<comp:replacedElement comp:portRef="S_port" comp:submodelRef="B" comp:identical="true"/> 31

</comp:listOfReplacedElements> 32

</species> 33

<species id="D" compartment="comp" initialConcentration="10" hasOnlySubstanceUnits="false" 34

boundaryCondition="false" constant="false"> 35

<comp:listOfReplacedElements> 36

<comp:replacedElement comp:idRef="D" comp:submodelRef="A" comp:identical="false"/> 37

<comp:replacedElement comp:portRef="D_port" comp:submodelRef="B" comp:identical="true"/> 38

</comp:listOfReplacedElements> 39

</species> 40

<species id="E" compartment="comp" hasOnlySubstanceUnits="false" 41

boundaryCondition="false" constant="false"> 42

<comp:listOfReplacedElements> 43

<comp:replacedElement comp:portRef="E_port" comp:submodelRef="A" comp:identical="true"/> 44

<comp:replacedElement comp:portRef="D_port" comp:submodelRef="B"/> 45

</comp:listOfReplacedElements> 46

</species> 47

<species id="ES" compartment="comp" hasOnlySubstanceUnits="false" 48

boundaryCondition="false" constant="false"> 49

<comp:listOfReplacedElements> 50

<comp:replacedElement comp:portRef="ES_port" comp:submodelRef="A" comp:identical="true"/> 51

<comp:replacedElement comp:portRef="D_port" comp:submodelRef="B"/> 52

</comp:listOfReplacedElements> 53

</species> 54

</listOfSpecies> 55

<listOfReactions> 56

<reaction id="J0" reversible="true" fast="false"> 57

<listOfReactants> 58

<speciesReference species="S" stoichiometry="1" constant="true"/> 59

<speciesReference species="E" stoichiometry="1" constant="true"/> 60
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</listOfReactants> 1

<listOfProducts> 2

<speciesReference species="ES" stoichiometry="1" constant="true"/> 3

</listOfProducts> 4

<comp:listOfReplacedElements> 5

<comp:replacedElement comp:submodelRef="B" comp:deletion="oldrxn"/> 6

<comp:replacedElement comp:portRef="J0_port" comp:submodelRef="A" comp:identical="true"/> 7

</comp:listOfReplacedElements> 8

</reaction> 9

<reaction id="J1" reversible="true" fast="false"> 10

<listOfReactants> 11

<speciesReference species="ES" stoichiometry="1" constant="true"/> 12

</listOfReactants> 13

<listOfProducts> 14

<speciesReference species="E" stoichiometry="1" constant="true"/> 15

<speciesReference species="D" stoichiometry="1" constant="true"/> 16

</listOfProducts> 17

<comp:listOfReplacedElements> 18

<comp:replacedElement comp:submodelRef="B" comp:deletion="oldrxn"/> 19

<comp:replacedElement comp:portRef="J1_port" comp:submodelRef="A" comp:identical="true"/> 20

</comp:listOfReplacedElements> 21

</reaction> 22

</listOfReactions> 23

<comp:listOfSubmodels> 24

<comp:submodel comp:id="A" comp:modelRef="enzyme"/> 25

<comp:submodel comp:id="B" comp:modelRef="simple"> 26

<comp:listOfDeletions> 27

<comp:deletion comp:portRef="J0_port" comp:id="oldrxn"/> 28

</comp:listOfDeletions> 29

</comp:submodel> 30

</comp:listOfSubmodels> 31

</model> 32

<comp:listOfModelDefinitions> 33

<comp:modelDefinition id="enzyme" name="enzyme"> 34

<listOfCompartments> 35

<compartment id="comp" spatialDimensions="3" size="1" constant="true"/> 36

</listOfCompartments> 37

<listOfSpecies> 38

<species id="S" compartment="comp" hasOnlySubstanceUnits="false" 39

boundaryCondition="false" constant="false"/> 40

<species id="E" compartment="comp" hasOnlySubstanceUnits="false" 41

boundaryCondition="false" constant="false"/> 42

<species id="D" compartment="comp" hasOnlySubstanceUnits="false" 43

boundaryCondition="false" constant="false"/> 44

<species id="ES" compartment="comp" hasOnlySubstanceUnits="false" 45

boundaryCondition="false" constant="false"/> 46

</listOfSpecies> 47

<listOfReactions> 48

<reaction id="J0" reversible="true" fast="false"> 49

<listOfReactants> 50

<speciesReference species="S" stoichiometry="1" constant="true"/> 51

<speciesReference species="E" stoichiometry="1" constant="true"/> 52

</listOfReactants> 53

<listOfProducts> 54

<speciesReference species="ES" stoichiometry="1" constant="true"/> 55

</listOfProducts> 56

</reaction> 57

<reaction id="J1" reversible="true" fast="false"> 58

<listOfReactants> 59

<speciesReference species="ES" stoichiometry="1" constant="true"/> 60

</listOfReactants> 61

<listOfProducts> 62

<speciesReference species="E" stoichiometry="1" constant="true"/> 63

<speciesReference species="D" stoichiometry="1" constant="true"/> 64

</listOfProducts> 65

</reaction> 66

</listOfReactions> 67
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<comp:listOfPorts> 1

<comp:port comp:idRef="comp" comp:id="comp_port"/> 2

<comp:port comp:idRef="S" comp:id="S_port"/> 3

<comp:port comp:idRef="E" comp:id="E_port"/> 4

<comp:port comp:idRef="D" comp:id="D_port"/> 5

<comp:port comp:idRef="ES" comp:id="ES_port"/> 6

<comp:port comp:idRef="J0" comp:id="J0_port"/> 7

<comp:port comp:idRef="J1" comp:id="J1_port"/> 8

</comp:listOfPorts> 9

</comp:modelDefinition> 10

<comp:modelDefinition id="simple"> 11

<listOfCompartments> 12

<compartment id="comp" spatialDimensions="3" size="1" constant="true"/> 13

</listOfCompartments> 14

<listOfSpecies> 15

<species id="S" compartment="comp" initialConcentration="5" hasOnlySubstanceUnits="false" 16

boundaryCondition="false" constant="false"/> 17

<species id="D" compartment="comp" initialConcentration="10" hasOnlySubstanceUnits="false" 18

boundaryCondition="false" constant="false"/> 19

</listOfSpecies> 20

<listOfReactions> 21

<reaction id="J0" reversible="true" fast="false"> 22

<listOfReactants> 23

<speciesReference species="S" stoichiometry="1" constant="true"/> 24

</listOfReactants> 25

<listOfProducts> 26

<speciesReference species="D" stoichiometry="1" constant="true"/> 27

</listOfProducts> 28

</reaction> 29

</listOfReactions> 30

<comp:listOfPorts> 31

<comp:port comp:idRef="S" comp:id="S_port"/> 32

<comp:port comp:idRef="D" comp:id="D_port"/> 33

<comp:port comp:idRef="comp" comp:id="comp_port"/> 34

<comp:port comp:idRef="J0" comp:id="J0_port"/> 35

</comp:listOfPorts> 36

</comp:modelDefinition> 37

</comp:listOfModelDefinitions> 38

</sbml> 39
40

In the example above, we have recreated “enzyme” so as to provide it with ports, then recreated basically the entire 41

model in the parent “complexified” so we can reference the deleted “oldrxn” in the replacements lists. Note that 42

we list the deletion of “oldrxn” both for the two new reactions and for the two new species “E” and “ES”, since those 43

species were themselves elided in the simple form of the “S” to “D” reaction in “simple”. The attribute identical 44

is used throughout, so that any visualization or manipulation software knows that the only reason those elements 45

exist in the parent model is to create a reference, not to actually change the element itself. 46
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5 Best practices 1

In this section, we recommend a number of practices for using and interpreting various constructs in the Hierar- 2

chical Model Composition package. These recommendations are non-normative, but we advocate them strongly; 3

ignoring them will not render a model invalid, but may reduce interoperability between software and models. 4

5.1 Best practices for using SBaseRef for references 5

5.2 Best practices for deletions and replacements 6

Note that there may be model composition situations in which a model contains elements that do not have an 7

identifier, nor a meta identifier, nor a port identifier. In that case, there is no way to refer to it using the with the 8

Deletion or ReplacedElement objects defined in this specification. A viable alternative to use in that case is to copy 9

the original model and modify it, either to perform the desired deletions directly or to add the necessary identifiers 10

so that Deletion objects can be defined and used in a submodel. (Presumably, the original model was readable in 11

the first place, or else composition would have been impossible anyway.) Copying a model and making one’s own 12

version may have additional benefits, such as the ability to control versions explicitly and references. A second 13

method may be to delete or replace the parent object of the element you wish to replace, assuming that element 14

has an identifier, meta identifier, or port identifier. When this is performed, the errant element will be deleted 15

implicitly, allowing you to create replacements in the containing model without overlapping functionality. 16

5.3 Best practices for using ports 17

Software developers who wish to include restrictions are encouraged to experiment here, and add new attributes 18

in a namespace of their own devising. 19
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A Validation of SBML documents 1

An important issue for software systems is being able to determine the validity of a given SBML document that 2

uses constructs from the Hierarchical Model Composition package. This section describes operational rules for 3

assessing validity. 4

A.1 Validation procedure 5

Overall, there are two steps to the process of validating a model that uses the Hierarchical Model Composition 6

package. First, the structure and references are 7

A.2 Validation and consistency rules 8

This section summarizes all the conditions that must (or in some cases, at least should) be true of an SBML Level 3 9

Version 1 model that uses the Hierarchical Model Composition package. We use the same conventions as are 10

used in the SBML Level 3 Version 1 Core specification document. In particular, there are different degrees of rule 11

strictness. Formally, the differences are expressed in the statement of a rule: either a rule states that a condition 12

must be true, or a rule states that it should be true. Rules of the former kind are strict SBML validation rules—a 13

model encoded in SBML must conform to all of them in order to be considered valid. Rules of the latter kind are 14

consistency rules. To help highlight these differences, we use the following three symbols next to the rule numbers: 15

2X A checked box indicates a requirement for SBML conformance. If a model does not follow this rule, it does 16

not conform to the Hierarchical Model Composition specification. (Mnemonic intention behind the choice 17

of symbol: “This must be checked.”) 18

s A triangle indicates a recommendation for model consistency. If a model does not follow this rule, it is not 19

considered strictly invalid as far as the Hierarchical Model Composition specification is concerned; however, 20

it indicates that the model contains a physical or conceptual inconsistency. (Mnemonic intention behind the 21

choice of symbol: “This is a cause for warning.”) 22

F A star indicates a strong recommendation for good modeling practice. This rule is not strictly a matter of 23

SBML encoding, but the recommendation comes from logical reasoning. As in the previous case, if a model 24

does not follow this rule, it is not strictly considered an invalid SBML encoding. (Mnemonic intention behind 25

the choice of symbol: “You’re a star if you heed this.”) 26

The validation rules listed in the following subsections are all stated or implied in the reset of this specification 27

document. They are enumerated here for convenience. Unless explicitly stated, all validation rules concern objects 28

and attributes specifically defined in the Hierarchical Model Composition package. 29

General rules about this package 30

comp10101. 2X To conform to the Hierarchical Model Composition package specification for SBML Level 3 Ver- 31

sion 1, an SBML document must declare the use of the following XML Namespace: 32

“http://www.sbml.org/sbml/level3/version1/comp/version1”. 33

comp10102. 2X When appearing in an SBML document, all elements and attributes from the SBML Level 3 Ver- 34

sion 1 Hierarchical Model Composition package must be placed in the XML namespace 35

“http://www.sbml.org/sbml/level3/version1/comp/version1”. 36

General rules about identifiers 37

comp10201. 2X Within an SBMLDocument, the value of the attribute id and comp:id on every instance of all 38

Model and ExternalModelDefinition objects must be unique across the set of all id and comp:id 39

attribute values of such identifiers in the SBML document to which they belong. 40

comp10202. 2X (Extending the SBML Level 3 Version 1 Core validation rule #10301) Within a Model or Exter- 41
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nalModelDefinition object, the value of the attribute id and comp:id on every instance of the 1

following classes of objects must be unique across the set of all id and comp:id attribute values of 2

all such objects in a model: the Model itself, plus all contained FunctionDefinition, Compartment, 3

Species, Reaction, SpeciesReference, ModifierSpeciesReference, Event, and Parameter objects, 4

plus the newly-defined objects Submodel and Deletion. 5

comp10203. 2X Within a Model or ExternalModelDefinition object, the value of the attribute comp:id on every 6

instance of all Port objects must be unique across the set of all comp:id attribute values of all 7

such objects in the model. 8

comp10204. 2X The value of a comp:id attribute must always conform to the syntax of the SBML data type SId. 9

comp10205. 2X The value of model attributes on ExternalModelDefinition objects, submodelRef, deletion, and 10

conversionFactor attributes on ReplacedElement objects, modelRef, lengthConversionFactor, 11

areaConversionFactor, volumeConversionFactor, substanceConversionFactor, timeConversionFactor,12

and extentConversionFactor attributes on Submodel objects, and port and idRef attributes 13

on SBaseRef objects must always conform to the syntax of the SBML data type SId. 14

comp10206. 2X The value of the unitRef attribute on SBaseRef objects must always conform to the syntax of the 15

SBML data type UnitSId. 16

comp10207. 2X The value of the metaIdRef attributes on SBaseRef objects must always conform to the syntax of 17

the XML data type ID. 18

comp10208. 2X The value of the source attribute on ExternalModelDefinition objects must always conform to the 19

syntax of the XML Schema 1.0 data type anyURI. 20

comp10209. 2X The value of the md5 attribute on ExternalModelDefinition objects must always conform to the 21

syntax of type string. 22

General rules about SBaseRef class objects and subclasses 23

comp10301. 2X No Port object may use the optional port attribute, as this would cause either a circular reference, 24

or would cause two port objects in the same model to point to the same object. 25

comp10302. 2X No two Port objects in the same Model may reference the same XML element. That is, the element 26

pointed to through the use of the idRef, unitRef, or metaIdRef attributes, in conjunction with 27

any child SBaseRef element, may not be the same element pointed to by a Port object with the 28

same parent ListOfPorts, whether it uses the same attribute to point to that object or not. 29

comp10303. 2X No two ReplacedElement objects in the same Model may reference the same XML element unless 30

that element is a Deletion. That is, the element pointed to through the use of the port, idRef, 31

unitRef, or metaIdRef attributes, in conjunction with any child SBaseRef element, may not be 32

the same element pointed to by any other ReplacedElement in the same Model, whether it uses 33

the same attribute to point to that object or not. 34

General rules about circular references in models 35

comp10401. 2X No ExternalModelDefinition may reference an ExternalModelDefinition in a different SBML docu- 36

ment that in turn refers to the original ExternalModelDefinition object, whether directly or indi- 37

rectly through a chain of ExternalModelDefinition objects. 38

comp10402. 2X No Model may contain a Submodel which references itself. That is, the id attribute of a Model 39

may not match the modelRef attribute on any of its Submodel objects. 40

comp10403. 2X No Model may contain a Submodel which references itself indirectly. That is, the modelRef at- 41

tribute of a Submodel may not point to a Model, any of whose Submodel objects point to the 42

original Model, whether directly or indirectly through a chain of Model/Submodel pairs. 43
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General rules about class inheritance 1

comp10501. 2X The Deletion, ExternalModelDefinition, ModelDefinition, Port, ReplacedElement, SBaseRef, Sub- 2

model, ListOfDeletions, ListOfExternalModelDefinitions, ListOfModelDefinitions, ListOfPorts, ListOfRe-3
placedElements, and ListOfSubmodels classes are comp namespace elements that inherit from 4

the SBML Level 3 Version 1 class SBase. As such, they must follow the validation rules for L3v1 5

core attributes and child elements from the SBase class. 6

comp10502. 2X The ListOfDeletions, ListOfExternalModelDefinitions, ListOfModelDefinitions, ListOfPorts, ListOfRe- 7

placedElements, and ListOfSubmodels classes are comp namespace elements that inherit from 8

the SBML Level 3 Version 1 class ListOf. As such, they must follow the validation rules for L3v1 9

core attributes and child elements from the ListOf class. 10

comp10501. 2X The ModelDefinition class is a comp namespace element that inherits from the SBML Level 3 11

Version 1 class Model. As such, it must follow the validation rules for L3v1 core attributes and 12

child elements from the Model class. 13

Rules for the extended SBML container object 14

comp20101. 2X There may be at most one instance of each of the following kind of object in an SBML document: 15

ListOfModelDefinitions, and ListOfExternalModelDefinitions. 16

comp20102. 2X The required attribute must be set true if its Model child contains any Submodel objects with 17

Species, Parameter, Reaction, or Event objects (directly or indirectly) that have not been replaced. 18

[Note: This may be too hard to implement–maybe go for a warning instead?] 19

comp20103. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a 20

ListOfModelDefinitions container object may only contain ModelDefinition objects. 21

comp20104. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a 22

ListOfExternalModelDefinitions container object may only contain ExternalModelDefinition ob- 23

jects. 24

comp20105. 2X A ListOfModelDefinitions object may define no attribute from the comp namespace. 25

comp20106. 2X A ListOfExternalModelDefinitions object may define no attribute from the comp namespace. 26

Rules for SBaseRef, Deletion, Port and ReplacedElement objects 27

comp20201. 2X Every SBaseRef object must point to an object. That is, SBaseRef, Deletion, and Port objects 28

must define one of the attributes port, idRef, unitRef, or metaIdRef, and ReplacedElement ob- 29

jects must define one of the attributes port, idRef, unitRef, metaIdRef, or deletion. 30

comp20202. 2X No SBaseRef object may point to an object using more than one method. That is, SBaseRef, 31

Deletion, and Port objects must not define more than one of the attributes port, idRef, unitRef, 32

or metaIdRef, and ReplacedElement objects must not define more than one of the attributes 33

port, idRef, unitRef, metaIdRef, or deletion. 34

comp20203. 2X The value of a port attribute on an SBaseRef object must be the identifier of a Port object from 35

the referenced Model. 36

comp20204. 2X The value of an idRef attribute on an SBaseRef object must be the identifier of an object from 37

the referenced Model within the SId namespace for that model. This includes elements with id 38

attributes which are defined in packages other than Level 3 core or this comp package. 39

comp20205. 2X The value of a unitRef attribute on an SBaseRef object must be the identifier of a 40

UnitDefinition object from the referenced Model. 41

comp20206. 2X The value of a metaIdRef attribute on an SBaseRef object must be the value of a metaid attribute 42

on any element contained in the referenced Model. This includes elements with metaid attributes 43

which are defined in packages other than Level 3 core or this comp package. 44
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comp20207. 2X If an SBaseRef object contains an SBaseRef child, it must point to a Submodel element. 1

comp20208. 2X The value of a submodelRef attribute on a ReplacedElement object must be the identifier of a 2

Submodel object from the parent Model of the ReplacedElement. 3

comp20209. 2X The value of a deletion attribute on a ReplacedElement object must be the identifier of a Dele- 4

tion object from the parent Model of the ReplacedElement. 5

comp20210. 2X The value of a submodelRef attribute on a ReplacedElement object which also defines a deletion 6

attribute must be the identifier of the Submodel object to which the referenced Deletion belongs. 7

comp20211. 2X The value of a conversionFactor attribute on a ReplacedElement object must be the identifier 8

of a Parameter object from the parent Model of the ReplacedElement. 9

comp20212. 2X The value of an identical attribute on a ReplacedElement object must, if present, have a value 10

of type boolean. 11

comp20213. 2X If the value of the identical attribute on a ReplacedElement object is “true”, the parent element 12

of the ListOfReplacedElements to which the ReplacedElement belongs must be the same class as 13

the referenced element. 14

comp20214. 2X If the value of the identical attribute on a ReplacedElement object is “true”, the parent element 15

of the ListOfReplacedElements to which the ReplacedElement belongs must define all of the at- 16

tributes present on the referenced element. This includes attributes from other namespaces, 17

such as from packages other than Level 3 core and this ’comp’ package. 18

comp20215. 2X If the value of the identical attribute on a ReplacedElement object is “true”, the parent ele- 19

ment of the ListOfReplacedElements to which the ReplacedElement belongs must only define 20

attributes present on the referenced element, with the exception of the id and metaid attributes, 21

which may be added even if not present on the referenced element. 22

comp20216. 2X If the value of the identical attribute on a ReplacedElement object is “true”, all attributes of 23

the parent element of the ListOfReplacedElements to which the ReplacedElement belongs (in- 24

cluding attributes from other namespaces) must be identical to the corresponding attributes of 25

the referenced element, with the exception of the id and metaid attributes, which may be any- 26

thing, and with the exception of attributes of type SIdRef, UnitSIdRef, PortSIdRef, and IDREF, 27

which must now reference elements of the parent model which themselves are replacements for 28

the original target of the reference attribute. Those referenced replacements need not be flagged 29

with ’identical=true’, and need not be identical to the elements they replace. If any attributes 30

define a numerical value in the submodel that would be converted to a new value in the parent 31

model though the use of a conversionFactor, that attribute must be set to be equal to the new 32

numerical value. 33

comp20217. 2X If the value of the identical attribute on a ReplacedElement object is “true”, the children of the 34

parent element of the ListOfReplacedElements to which the ReplacedElement belongs must be 35

identical to the corresponding children of the referenced element, with the exception of any child 36

ListOfReplacedElements objects (which have no restrictions). ’Identical’ means these child ob- 37

jects themselves must follow validation rules comp20213, comp20214, comp20215, comp20216, 38

and comp20217. 39

comp20218. 2X (warning) If the identical attribute on a ReplacedElement object is not set, all attributes with de- 40

fined values on the referenced element should be defined on the parent element of the ListOfRe- 41

placedElements to which the ReplacedElement belongs. 42

comp20219. 2X (warning) If the identical attribute on a ReplacedElement object is not set, the parent element 43

of the ListOfReplacedElements to which the ReplacedElement belongs should contain the same 44

number and type of children as the referenced element, with the exception of ListOfReplacedEle- 45

ments children. 46
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comp20220. 2X SBaseRef objects may define port, idRef, unitRef, and metaIdRef attributes. SBaseRef objects 1

which are not Port, Deletion, or ReplacedElement objects may not define any other attributes 2

from the comp namespace. 3

comp20221. 2X Port objects may define an id attribute in addition to the port, idRef, unitRef, and metaIdRef 4

attributes. No other attributes from the comp namespace are permitted on a Port object. 5

comp20222. 2X Deletion objects may define an id attribute in addition to the port, idRef, unitRef, and metaIdRef 6

attributes. No other attributes from the comp namespace are permitted on a Deletion object. 7

comp20223. 2X ReplacedElement objects must define a submodelRef attribute, and may define deletion, identical, 8

and conversionFactor attributes, in addition to the port, idRef, unitRef, and metaIdRef at- 9

tributes. No other attributes from the comp namespace are permitted on a ReplacedElement 10

object. 11

Rules for ModelDefinition objects 12

comp20301. 2X ModelDefinition objects inherit from the Model class, and must follow the same restrictions present 13

on Model objects. This includes any validation rules from the SBML Level 3 Version 1 core speci- 14

fication as well as this document. 15

Rules for Model objects 16

comp20401. 2X There may be at most one instance of each of the following kind of object in a Model: ListOfSub- 17

models, and ListOfPorts. 18

comp20402. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a 19

ListOfSubmodels container object may only contain Submodels objects. 20

comp20403. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a 21

ListOfPorts container object may only contain Port objects. 22

comp20404. 2X A ListOfSubmodels object may define no attribute from the comp namespace. 23

comp20405. 2X A ListOfPorts object may define no attribute from the comp namespace. 24

Rules for ExternalModelDefinition objects 25

comp20501. 2X ExternalModelDefinition objects must define the id and source attributes, and may define the 26

model and md5 attributes. No other attributes from the comp namespace are permitted on an 27

ExternalModelDefinition object. 28

comp20502. 2X The value of the source attribute on an ExternalModelDefinition object must point to a SBML Level 29

3 document. 30

comp20503. 2X The value of the model attribute on an ExternalModelDefinition object, if present, must refer to an 31

id in the model namespace of the SBML document pointed to by the source attribute. 32

comp20504. s The value of the md5 attribute on an ExternalModelDefinition object, if present, should match the 33

calculated MD5 hash of the SBML document pointed to by the source attribute. [Note: This is 34

almost certainly too vague and perhaps also incorrect, since I just made it up without knowing 35

thing one about md5’s, so consider this a placeholder.] 36

Rules for Submodel objects 37

comp20601. 2X Submodel objects must define the id and modelRef attributes, and may define the lengthConversionFactor,38

areaConversionFactor, volumeConversionFactor, substanceConversionFactor, timeConversionFactor,39

and extentConversionFactor attributes. No other attributes from the comp namespace are 40

permitted on a Submodel object. 41
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comp20602. 2X There may be at most one instance of the ListOfDeletions object in a Submodel. 1

comp20603. 2X The lengthConversionFactor, areaConversionFactor, volumeConversionFactor, substanceConversionFactor,2

timeConversionFactor, and extentConversionFactor attributes on a Submodel object must, 3

if defined, refer to Parameter objects in the same Model as the Submodel. 4

comp20605. 2X The modelRef attribute on a Submodel must refer to the id of a Model, ModelDefinition, or Ex- 5

ternalModelDefinition object in the same SBMLDocument as the Submodel. 6

comp20606. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a 7

ListOfDeletions container object may only contain Deletion objects. 8

comp20607. 2X A ListOfDeletions object may define no attribute from the comp namespace. 9

Rules for the extended SBase class 10

comp20701. 2X SBase objects (that is, all elements inheriting from the SBase class, as defined in the SBML Level 11

3 Version 1 core specification, as defined in this package, and as defined in other packages) may 12

contain at most one instance of the ListOfReplacedElements object. 13

comp20702. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a 14

ListOfReplacedElements container object may only contain ReplacedElement objects. 15

comp20703. 2X A ListOfReplacedElements object may define no attribute from the comp namespace. 16
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