
BIOINFORMATICS APPLICATIONS NOTE Vol. 20 no. 16 2004, pages 2829–2831
doi:10.1093/bioinformatics/bth271

MathSBML: a package for manipulating
SBML-based biological models

Bruce E. Shapiro1,∗, Michael Hucka2, Andrew Finney3 and John
Doyle2

1Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 126-347,
4800 Oak Grove Drive, Pasadena, CA 91109, USA, 2Control and Dynamical Systems,
California Institute of Technology, Pasadena, CA 91125, USA and 3Science and
Technology Research Center, University of Hertfordshire, Hatfield, UK

Received on December 22, 2003; revised on March 7, 2004; accepted on April 1, 2004

Advance Access publication April 15, 2004

ABSTRACT
Summary: MathSBML is a Mathematica package designed
for manipulating Systems Biology Markup Language (SBML)
models. It converts SBML models into Mathematica data struc-
tures and provides a platform for manipulating and evaluating
these models. Once a model is read by MathSBML, it is
fully compatible with standard Mathematica functions such
as NDSolve (a differential-algebraic equations solver). Math-
SBML also provides an application programming interface for
viewing, manipulating, running numerical simulations; export-
ing SBML models; and converting SBML models in to other
formats, such as XPP, HTML and FORTRAN. By accessing
the full breadth of Mathematica functionality, MathSBML is fully
extensible to SBML models of any size or complexity.
Availability: Open Source (LGPL) at http://www.sbml.org and
http://www.sf.net/projects/sbml.
Contact: bshapiro@caltech.edu
Supplementary information: Extensive online documenta-
tion is available at http://www.sbml.org/mathsbml.html. Addi-
tional examples are provided at http://www.sbml.org/software/
mathsbml/bioinformatics-application-note

MathSBML is an open-source package for Mathematica
(Wolfram, 2003) that facilitates working with systems biology
markup language (SBML) models (Hucka et al., 2003,
http://bioinformatics.oupjournals.org/cgi/content/abstract/19/
4/524). It supports both the SBML Level 1 (Hucka et al.,
2003) and SBML Level 2 (Finney and Hucka, 2003) standards
as defined at http://www.sbml.org. SBML is a software-
independent format for representing computational models
of biological systems that is currently supported by over
50 different software tools. MathSBML allows investigat-
ors to explore SBML models using the full range of features
available in Mathematica, which includes an exhaustive
mathematical environment capable of supporting all SBML

∗To whom correspondence should be addressed.

features including the solution of differential-algebraic equa-
tions and discontinuous events. Mathematica is one of several
platforms widely used by biological modelers that is avail-
able in many academic and commercial environments [over
500 US colleges and universities have site licenses (A.de
Laix, personal communication)], and MathSBML provides
full model interoperability with this environment as well as
a candidate reference implementation of SBML. MathSBML
has a complete Applications Programming Interface (API)
for model manipulation; and includes simple function points
for model-based event-driven simulation, model exploration,
plotting and file import and export.

The core module of MathSBML is SBMLRead; the main
function of SBMLRead is to convert the model into a
Mathematica rule list and produce all the differential equa-
tions derived thereof in a format suitable for further user-
manipulation. Various options are available that allow the user
to produce an interpretive listing of the model or immediately
attempt to run a simulation and plot the results. The following
example shows the use of SBMLRead:

m = SBMLRead[filename, options]; (1)

The data structure returned by SBMLRead for an SBML
Level 2 model can be represented schematically as

{ SBMLODES→{variable′[t]==expression, variable′
[t]==expression, …},

SBMLParameters→{id→value, id→value,…},

SBMLIC→{ variable[0]==value, variable[0]==value,
…},

SBMLSpecies→{id, id,…},

SBMLAlgebraicRules→{variable[t]==expression,
variable[t]==expression, …},

SBMLUnitDefinitions→{unit→expression, unit→
expression,…},

Bioinformatics vol. 20 issue 16 © Oxford University Press 2004; all rights reserved. 2829

http://www.sbml.org
http://www.sf.net/projects/sbml
http://www.sbml.org/mathsbml.html
http://www.sbml.org/software/
http://bioinformatics.oupjournals.org/cgi/content/abstract/19/
http://www.sbml.org


B.E.Shapiro et al.

SBMLUnitAssociations→{variable→unit, variable→
unit,…},

SBMLReactions→{reactant+reactant+…→
product+ product+…, …},

SBMLFunctions→{id→Function[{arguments},
expression], …},

SBMLNameIDAssociations→{name→id,
name→id,…},

SBMLEvents→{id→{“trigger” →expression,

‘delay’ →expression,

‘events’ →{id→expression, id→expression,…}},

id→…},

SBMLModelName→name,

SBMLNumericalSolution→numericalSolution

};

Here id and name are the SBML id and name fields of
the corresponding SBML parameter, species, function or
event; variable is the Mathematica name of a model vari-
able; reactant and product or the id’s of the corresponding
fields in SBML reactions; and expression is the correspond-
ing algebraic (for ODE’s, rules, units, functions, event delays
and actions) or logical expression (for event triggers). The
arrow (‘→’ is normally represented by Unicode 62754) can
be represented in Mathematica by the ‘->’ key combina-
tion. The format is slightly different for an SBML Level
1 file. Model variable names in Mathematica are identical
to the values of their SBML Level 2 id or SBML Level 1
name field, except that the reserved character ‘_’ is replaced
in Mathematica with ‘$ ’ (or with any other character the
user specifies); the reverse translation is performed during
file export. No conflicts can arise from this because ‘$ ’
is not part of the SBML character set for identifiers. Vari-
ables are stored in a model-specific scope (referenced by a
unique Mathematica context) to provide maximum extens-
ibility. If the user requests a numerical simulation in the
invocation to SBMLRead, the model representation is passed
on to SBMLNDSolve (see next paragraph) and the result
is assigned to SBMLNumericalSolution. The MathSBML
program documentation provides more detail on this.

This model data structure [e.g. m in Equation (1)] can be
directly processed by standard Mathematica functions such as
NDSolve. For example, if the model includes values for rate
constants and initial conditions, its DAEs can be integrated in
time from t = 0 to t = 10 with the command

s = NDSolve[Join[SBMLODES /. m, SBMLIC /. m],

SBMLSpecies /. m, {t, 0, 10}];

To reduce syntactical confusion, the following wrapper for
NDSolve provides the same result:

s = SBMLNDSolve[m,10, solveOptions];

where solveOptions is any valid option list for NDSolve.
The output of SBMLNDSolve (as with NDSolve) a list
of Mathematica rules for the variable concentrations as
InterpolatingFunctions.

Events are handled by stopping the simulator when an event
is triggered, applying the requested action, and restarting the
simulation with appropriately modified initial conditions. In
this case, the return value of SBMLNDSolve is a list of Inter-
polationSets that encapsulate the InterpolatingFunctions
for each solution time interval. SBMLNDSolve interpolates
backwards from the inexact stopping time produced by the
StoppingTest option (of NDSolve) to determine the exact
event trigger time. InterpolationSet is an extension to Math-
ematica provided by MathSBML to represent solutions that
cross event points.

Each InterpolatingFunction returned by SBMLNDSolve
can be plotted using Plot; e.g. to plot model variable x from
the solution s one would type

Plot [x [t] / .s, {t, 0, 10}, plotOptions];
Here plotOptions is a list of valid options for Plot. Since plot-
ting of different variables in Mathematica requires repeated
calls to Plot, MathSBML provides added functionality with
SBMLPlot. For example to plot variables x1, x2, . . . from
t = t1 to t = t2 with the same plotOptions,

SBMLPlot [s, {x1, x2, . . .}, {t1, t2}, plotOptions];
The argument s passed to SBMLPlot is the data struc-
ture returned by either SBMLNDSolve or NDSolve. The
function is capable of plotting across events.

MathSBML also includes a complete API for ad hoc
model creation, manipulation, plotting and export. These
commands allow users to add, modify or remove single
SBML elements from the model; users may also cre-
ate a completely new model or start from a pre-existing
SBML file. API commands are formatted textually (i.e.
they do not require use of Mathematica palettes or
its extended keyset) so that they can be called dir-
ectly by other programming languages using J/Link (Gayley,
2003, http://www.wolfram.com/solutions/mathlink/jlink/
documentation/), or by other Mathematica-based simulators
such as Cellerator (Shapiro et al., 2003, http://bioinformatics.
oupjournals.org/cgi/content/abstract/19/5/677). Models can
be iteratively evaluated with SBMLNDSolve and manip-
ulated with the API; when satisfied, users can save the
modified (or created) model as a new SBML file. Models can
also be exported in other formats such as XPP (Ermentrout,
2002), LSODI-compatible FORTRAN (Hindmarsh, 1980,
http://www.netlib.org/alliant/ode/prog/lsodi.f) or HTML. The
XPP and FORTRAN files contain all the differential/algebraic
equations that are implied by model reactions and rules.
HTML files contain tabular listings of all model variables,
initial conditions, units, etc.

2830

http://www.wolfram.com/solutions/mathlink/jlink/
http://bioinformatics
http://www.netlib.org/alliant/ode/prog/lsodi.f


MathSBML

Tools for additional language and simulator compatibil-
ity are listed on the sbml.org website; e.g. on-line tools are
available there for model validation, visualization and con-
version from SBML Level 1 in to SBML Level 2. Users
can also write their own model import, manipulation or
export routines for any software package by linking with
libSBML, an open-source C-library providing an SBML API
and language bindings for Java, Python, MATLAB and
others.

MathSBML is open source, platform-independent and
freely downloadable from Sourceforge (http://www.sf.net/
projects/sbml). It can run on any platform or operat-
ing system that has Mathematica version 4.1 or higher
installed; differential-algebraic equations require Mathem-
atica 5.0 or higher. MathSBML is extensively docu-
mented; available options for all functions and detailed
examples are accessible in the usual way (e.g. by typing?
function-name from within Mathematica) as well as online
at http://www.sbml.org/mathsbml.html. The supplementary
material includes examples illustrating MathSBML features
for three well-known models: the Repressilator (Elowitz and
Leibler, 2000, http://www.nature.com/cgi-taf/DynaPage.taf?
file=/nature/journal/v403/n6767/abs/403335a0_fs.html), a
three-stage oscillating MAP-kinase network with negative
feedback (Kholodenko, 2000) and a simple mitotic oscillator
with event-triggered cell division (Tyson, 1991).

Support for higher levels of SBML will be added to
MathSBML as the standards become available.

ACKNOWLEDGEMENTS
Valuable suggestions during the development of MathSBML
were provided by Ben Bornstein. The research described

in this paper was carried out at the California Institute of
Technology, and was supported by the JST/ERATO Kitano
Symbiotic Systems Project and the US National Science
Foundation.

REFERENCES
Elowitz,M.B. and Leibler,S. (2000) A synthetic oscillatory network

of transcriptional regulators. Nature, 403, 335–338.
Ermentrout,B. (2002) Simulating, Analyzing, and Animating

Dynamical Systems: A Guide to XPPAUT for Researchers and
Students. PA Society of Industrial and Applied Mathematics.

Finney,A. and Hucka,M. (2003) Systems biology markup language:
level 2 and beyond. Biochem. Soc. Trans., 31, 1472–1473.

Gayley,T. (2003) J/Link User Guide.
Hindmarsh,A.C. (1980) LSODE and LSODI, two new initial value

ordinary differential equation solvers. ACM SIGNUM Newsletter,
15:10-11.

Hucka,M., Finney,A., Sauro,H.M., Bolouri,H., Doyle,J.C.,
Kitano,H., Arkin,A.P., Bornstein,B.J., Bray,D., Cornish-
Bowden,A. et al., (2003) The systems biology markup
language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics, 19,
513–523.

Kholodenko,B.M. (2000) Negative feedback and ultrasensitivity can
bring about oscillations in the mitogen-activated protein kinase
cascades. Eur. J. Biochem., 267, 1583–1588.

Shapiro,B.E. Levchenko,A., Wold,B.J., Meyerowitz,E.M. and
Mjolsness,E.D. (2003) Cellerator: extending a computer algebra
system to include biochemical arrows for signal transduction
modeling. Bioinformatics, 19, 677–678.

Tyson,J.J. (1991) Modeling the cell division cycle: cdc2 and cyclin
interactions. Proc. Natl Acad. Sci., USA, 88, 7328–7332.

Wolfram,S. (2003) The Mathematica Book, 5th edn. Wolfram
Media, Inc.

2831

http://www.sf.net/
http://www.sbml.org/mathsbml.html
http://www.nature.com/cgi-taf/DynaPage.taf?

