Next Generation Simulation Tools: The Systems
Biology Workbench and BioSPICE Integration

*Herbert M. Sauro!?, Michael Hucka?, Andrew Finney?, Cameron Wellock!,
Hamid Bolouri??, John Doyle? and Hiroaki Kitano*

Keck Graduate Institute, 535 Watson Drive, Claremont, USA, 91711
2 Control and Dynamical Systems 107-81,
California Institute of Technology, CA 91125, USA
3 Institute of Systems Biology, Seattle
4+ ERATO Kitano Symbiotic Systems Project, M-31 Suite 6A 6-31-15
Jingumae Shibuya-ku, Tokyo 150-0001, Japan

July 14, 2003

*Address for Correspondence: Herbert M Sauro, Keck Graduate Institute, 535 Watson Drive, Claremont,
USA, 91711 Phone: (909) 607 0377 Fax: (909) 607 8086 e-mail: hsauro@kgi.edu

1

Abstract

Researchers in quantitative systems biology make use of a large number of different
software packages for modelling, analysis, visualization and general data manipulation. In
this paper, we describe the Systems Biology Workbench (SBW), a software framework that
allows heterogeneous application components — written in diverse programming languages
and running on different platforms — to communicate and use each others’ capabilities via
a fast binary encoded-message system. Our goal was to create a simple, high performance,
open-source software infrastructure which is easy to implement and understand. SBW en-
ables applications (potentially running on separate, distributed computers) to communicate
via a simple network protocol. The interfaces to the system are encapsulated in client-side
libraries that we provide for different programming languages. We describe in this pa-
per the SBW architecture, a selection of current modules, including Jarnac, JDesigner
and SBWNMetatool, and the close integration of SBW into BioSPICE which enables both
frameworks to share tools and compliment and strengthen each others capabilities.

Introduction

The application of mathematics and computer science to understanding biochemical networks has a
long history, going back in fact to the initial development of computers in the 30s and 40s (Chance
et al., 1962; Burns, 1971). More recently and especially since the development of high-throughput data
collection and the completion of the human genome project there has been a renewed and vigorous
interest in understanding the dynamic aspects of cellular networks (Endy & Brent, 2001; R. Rao &
Arkin, 2002; Tyson et al., 2003). Although it has been appreciated for many years that cellular networks
were dynamic, intricate control systems, the molecular biology revolution of the last thirty years with
its focus on DNA and protein structure has taken center stage in mainstream biology at the expense of
other studies. It is only in the last few years that 'quantitative systems biology’ is finally becoming a
mainstream topic in biology.

One of the important techniques at the disposal of the quantitative systems biologist is computer
modelling. This involves constructing kinetic models of the biochemical reaction networks, incorporating
network as well as kinetic information. The models can vary in size from very small models comprising
of only two reaction steps to whole cell models incorporating hundreds of reaction steps. The models
are studied by computing the time-course behavior or the steady state. By these means hypotheses can
be tested, new hypotheses developed and a general understanding of the network’s behavior developed.

Almost from the earliest days of simulation it was realized that developing the necessary mathe-
matical models was tedious and error prone. As a result specialized software was developed to help
users input the models into the computer. This involved allowing users to enter reaction networks in a
familiar form, often as a list of reactions and kinetic laws. This approach has been followed ever since.
Interestingly, though perhaps not surprisingly, the software tools themselves have tended to progress in
step with technological developments. In the early years of modelling, tools took a script-based approach
to specifying models (Garfinkel, 1968; Park & Wright, 1973; Fell & Sauro, 1990; Sauro & Fell, 1991).
With the beginning of the widespread use of graphical user interfaces in the 1980s simulation tools took
a marked change in direction. Instead of specifying models using text-based script files, users could now
specify models using much friendlier GUIl-based user interfaces. The most famous of this new generation
was and still is, Gepasi, developed by Pedro Mendes (Mendes, 1993). The development of Gepasi began
a new episode in software development which continues to the present day and there are now numerous
tools available that take a similar approach.

Easier you use, GUI-based simulators tend to be less flexible compared to script-based tools. In fact
many general-purpose commercial simulation tools are script based for this very reason (Mathematica,

2

Matlab, MathCAD, etc). As a result, script based tools have continued to be developed, the most
advanced example of this being Jarnac ?? which incorporates a full programming language as well as
extensive libraries for numerical analysis. for In more recent years a second generation of GUI based
tools has also emerged which take the user interface to an even more visual level. That is, models in the
form of networks are drawn on a canvas and the diagrams converted into a mathematical representation
for simulation. Examples of such tools include JDesigner, CellDesigner and KinCyte. At the last count
there were over thirty-three different packages for simulating cellular networks. This proliferation of tools
has resulted in a variety of capabilities and interfaces. However, though welcome in many respects, this
proliferation has resulted in two unwelcome side effects:

1. Each tool uses its own format, often undocumented, to store models. The result is that a model
saved in one tool cannot be loaded into another. This obviously hinders the free exchange of models
from one tool to another.

2. The second problem is that many of the tools duplicate each other's capabilities. Writing
simulation tools takes time and many of the projects are short-lived which means that the authors are
unable to develop the tools much further than basic functionality. As a result many of the tools provide
similar functionality.

Unlike other software development communities, there is little tradition of code reuse in the system
biology community. As a result the community has seen much duplicated effort and little true novelty.

The first problem, that of model exchange has been addressed by introducing a standard format for
all tools writers to employ. This standard is called SBML or the Systems Biology Markup Language
(Hucka et al., 2003). Along with CellML (Hedley et al., 2001), the introduction of a standard format
is beginning to make significant impact on tools writers and the majority of the most widely used tools
now employ SBML as a means to exchange models.

The second issue is more difficult to address, that is how to encourage code reuse in the community.
Our attempt to resolve this has been to develop a software framework called the System Biology
Workbench. The workbench allows different tools to expose programmatic functionality to other tools.
This means that a developer can now build on previous work without having to understand in detail the
often intricate internal workings of other tools. All a developer need know is the interface that the tool
exposes. Thus a particular tool may expose a time dependent simulation interface from a simulation
tool, another tool developer rather than invent another simulation tool can exploit this capability and
develop a new tool which can carry out additional functions. The workload for the second developer is
greatly reduced and they can instead concentrate on novel functionality.

BioSPICE takes a very similar approach, so much so that both SBW and BioSPICE are becoming
closely integrated. Like SBW, the goal of the BioSPICE project (BioSPICE, 2001) is to create an open
source framework and toolset for modelling dynamic cellular network functions. The hope is that this
will develop a user community committed to using and extending the tools. Clearly the SBW project
has considerable overlap with the BioSPICE project. We are (Wellock) currently developing a software
bridge that will allow modules in both SBW and BioSPICE to communicate with each other. At the
moment, SBW and BioSPICE are to an large extent complimentary in functionality, whereas BioSPICE
is more data centric, SBW'’s emphasis is on analysis. As a result SBW can provide a range of ready
made modules to the BioSPICE program, including simulators, both stochastic and deterministic, model
buiding tools, network analysis tools (based on METATOOL (Pfeiffer et al., 1999)) and as part of the
BioSPICE program, tools for optimization and bifurcation analysis. Such a bridge would therefore clearly
benefit both communities.

A number of documents have been published in the past on SBW (Hucka et al., 2002) but none
have focused on the internal workings of SBW or on some of the applications that we have developed
in conjunction with SBW. In this paper we will focus on these issues, in particular we will describe the

data structures and the mode of operation of SBW, tools such as Jarnac, JDesigner and Metatool and
how SBW will be integrated into BioSPICE.

Systems Biology Workbench

The Systems Biology Workbench is a computational resource sharing framework. It allows applications to
communicate with each other efficiently and without loosing their identity. Applications can be written
in a variety of different languages and can run on different operating systems across the internet.
The entire workbench is open-source and vendor independent. SBW was designed to offer excellent
performance and be geared specifically towards scientific applications.

SBW Architecture

In setting out the requirements for SBW, the following items were our highest priority:

e Simplicity: The framework must be simple enough that interested developers can use it in their
projects with a minimum amount of learning and coding effort. We considered here the full range
of developers, from experienced to novice.

e Performance: Since SBW will be used for scientific work, performance was an important issue.
Moving data from module to module has to be efficient.

e Component modularity: As new tools and methods are developed, it must be possible to imple-
ment them as modules that can be hooked into the existing framework without having to modify
the framework itself.

e Language interoperability: The framework must support the interaction of modules written in
different programming languages.

e Free distribution: All interested users must be able to obtain both SBW and its source code for
free. Any software that is incorporated into SBW and distributed with it, such as GUI widgets
or object libraries, must itself be free of licensing fees or restrictions on redistribution. (This is
only a requirement on SBW itself, and not on modules built for SBW or other software developed
using SBW.)

e Portability: The framework must be portable to Microsoft Windows (NT, 2000, XP) and Linux
initially, and clearly be portable to other platforms in the future.

e On-demand plug-in loading: Modules that implement particular capabilities should not have to be
pre-loaded into SBW every time it is started; instead, the system should be data- and task-driven
and dynamically load modules on an as-needed basis. This helps keep the size of the running
system to a minimum.

e Support for distributed computing: The user should have control over where processes are exe-
cuted and the ability to interact with remote services.

Given the requirements lists above, the question then arose, what software technology should we
employ to build the framework. Some of the requirements immediately eliminated certain existing
frameworks, including DCOM because it is limited to Microsoft Windows platforms, and Java JNI and
Java RMI because this would limit the framework to Java.

Other frameworks such as XML-RPC (Winer, 2001) or SOAP (Box et al., 2000) were also unsuitable
because these frameworks did not meet our performance criteria. Some recent studies in particular
(Olson & Ogbuji, 2002) indicate that SOAP and XML-RPC are orders of magnitude slower compared
to CORBA or simple socket transmission.

CORBA was another possibility (OMG, 2001). However, CORBA is notorious for being difficult to
master and requires highly skilled programmers to work with. Hence CORBA was not in line with our
first requirement, that of simplicity. Since the development of SBW, Microsoft has released .NET which
in some limited respects is similar to SBW. The .NET framework has many of the desirable features we
sought in the requirements, however it has an uncertain future due to its availability on only a single
platform although there is now an open-source, platform independent variant called Mono.

Since we couldn’t find a suitable existing framework which satisfied all our requirements, it was
decided to develop our own. During the period when we were considering the design, peer-2-peer
technologies were becoming a fashionable and useful mode of communication (Oram, 2001). Peer-
2-peer possessed many of the attributes which were attractive to us. The three main features which
stood out were simplicity, performance and language independence. Most peer-2-peer frameworks were
characterized by binary transmission of data over simple TCP/IP sockets. In addition, they were also
characterized by simple APIs which helped ensure their rapid take up by third-party developers as
witnessed by the plethora of peer-2-peer clients. As a result of these observations it was decided to base
SBW on a binary messaging passing architecture over TCP/IP sockets.

Architecture

SBW uses a broker-based, message-passing architecture that allows dynamic extensibility and configura-
bility. Software modules in SBW interact with each other as peers in the overall framework. Modules are
started on demand through user requests or program commands. Modules are executables which have
their own event loops and all remote calls run in their own threads. As shown in Fig. 1, interactions are
mediated through the SBW Broker, a small program running on a user's computer. The Broker enables
locating and starting other modules and establishing communications links between them. Communi-
cation is implemented using simple TCP/IP sockets which are fast, lightweight with a straightforward
programming interface.

Broker-based architectures are a means of structuring a distributed software system with decoupled
components that interact by remote service invocations. In SBW, the remote service invocations are
implemented using message passing. Because interactions in a message-passing framework are defined
at the level of messages and protocols for their exchange, it is easier to make the framework neutral with
respect to implementation languages and platforms: modules can be written in any language, as long
as they can send, receive and process appropriately-structured messages using agreed-upon conventions.
The organization of SBW means that modules can be easily exchanged, added or removed, even at
run-time, under user or program control.

We strove to develop an API for SBW that provides a natural and easy-to-use interface in each of
the different languages for which we have implemented libraries. By “natural”, we mean that it uses a
style and features that programmers accustomed to that language would find familiar. For example, in
Java, the high-level API is oriented around providing SBW clients with proxy objects whose methods
implement the operations that another application exposes through SBW.

An SBW module provides one or more interfaces or services. Each service provides one or more
methods. Modules register the services they provide with the SBW Broker. The module optionally
places each service it provides into a category. By convention, a category is a group of services from
one or more modules that have a common set of methods.

Supported Languages and Operating Systems

One of the key advantages of SBW is it's language and OS neutrality. At this point in time, we have
support for Windows, and Linux operating systems (MacOS is scheduled for future development). The

languages we support, through language bindings, include Java, C, C++, Delphi, C#, VB.NET, Python
and Perl. There are developments currently underway to create bindings for Matlab and Mathematica.

Capabilities

Here we summarize the capabilities of SBW.

e Dynamic service and module discovery: The SBW Broker keeps track of modules, services and
service categories, and provides facilities for a module to learn about them.

e Remote method invocation: The bread and butter of SBW is enabling one module to invoke
a service method in another module. If necessary, the SBW Broker will automatically start an
instance of a module whose services are requested.

e Data serialization: Method invocations involve sending messages between modules, with argu-
ments and data packed into message streams. For some languages such as Java, Delphi, C#,
VB.NET, Perl and Python, the SBW library provides proxy objects that hide the message-passing,
so that to client programs, remote services appear as local objects whose methods can be invoked
like any other object method in that language.

e Exception handling: SBW provides facilities for dealing transparently with exceptional conditions.

e Event notification: Certain events in SBW, such as the startup or shutdown of an instance of a
module, are announced to all modules upon their occurrence.

e Module, service and method registration: Modules which are not running but wish nevertheless,
to advertise their services, can do so by registering with the broker. This is accomplished by
running the module once, in a special mode. The registration facilities allow a module to record
with the Broker the services that the module provides, the command that should be used to start
up the module on demand, and other information. The SBW Broker stores this in a disk file,
so that the information provided by modules is persistent between start-up and shutdown of the
modules and the Broker.

Messaging Protocols

At the heart of SBW is the messaging protocol used to exchange information between the different
modules. For efficiency reasons, messages that are exchanged between modules are simple sequences
of binary data. For each programming language there is a language binding library which takes care
of much, if not all, of the housekeeping necessary to operate through SBW, including connection and
transmission of data. In addition, issues such as little and big-endian byte ordering need not concern the
developer as this is taken care of automatically by the binding libraries. Each binding also provides the
necessary message packing and unpacking logic and exposes functionality in the form of an easy-to-use
API (see example later on).

All modules that make a connection to the SBW Broker are assigned a numeric identification
handle. The handle is generated when a module makes its initial connection with the SBW broker or
when SBW starts a module and makes a connection. The Broker itself has its own publicly reserved
handle which allows modules to make requests to services provided by the Broker. When a module
wishes to communicate to another module, it does so by sending a message through the Broker. The
message will contain the destination module handle which the Broker will use to route the message onto
the appropriate module.

Module One {mm 4 Vodule Two

~<—> | SBWBroker | —>

F N

SBW Java Binding
SBW C++ Binding

v

SBW Python Binding

Module Three

Figure 1: Connection between Broker, Modules and Binding Libraries

There are four basic message types: messages which represent blocking calls to methods in other
modaules or to the broker itself, messages which represent non-blocking calls to methods in other modules
or the broker itself, messages which represent replies to earlier messages, and messages which represent
error conditions as a result of poorly formatted messages or exceptions which occur in modules.

Call and Send Messages

These messages come in two varieties, send (non-blocking) and call (blocking). Both types of message
have the same internal structure. What distinguishes the two is the value of the message type byte; see

below.

Header: 25 bytes Variable Length
[1 1

Length

(32-bit)

Destld
(32-bit)

Type
(byte)

uiD
(32-bit)

Srcld
(32-bit)

Serviceld
(32-bit)

Methodld
(32-bit)

Data Payload

The fields in a call/send message have the following meanings:

Figure 2: Structure of the Send/Call Message.

Length Length of the message in bytes, including the length integer itself.
Destld A handle which indicates the destination module for this message.
Type Indicates whether the message is a call, send, reply or an error condition.
UID A unique identifier associated with this message. A corresponding reply
will have the same UID (Unique identifier) and can be used to
match a reply to the original sender.
Srcld A handle which indicates the source module for this message.
Serviceld Indicates the required service.
Methodld Indicates the particular method in the service.

Data Payload

A data payload containing the arguments required by the method.

Reply Messages

A reply messages is sent in response to a call message. Its sole purpose is to deliver raw data to the
recipient as a result of a method call. The format of the first thirteen bytes of a reply message is
identical to a calling message except that the type byte is set to reply message type. All remaining data
in the reply message is composed of data returned by the call.

Header: 13 bytes Variable Length
[] 1

Length | Destld | Type uiD
(32-bit) (32-bit) | (byte) | (32-bit)

Data Payload

Figure 3: Structure of the Reply Message.

Error Messages

Error messages are sent in response to an error condition originating either as a result of a badly formatted
message or as a result of an exception in the method which was meant to service the message. The
error byte is a byte to indicate the type of error, these are defined in the developer documentation at
the main SBW web site.

Header: 14 bytes Variable Length

Length | Destld |Type| UID Error | Readable Error | Detailed Error
(32-bit) (32-bit) | (byte)| (32-bit) | Byte Message Message

Figure 4: Structure of the Error Message

Data Types

In the previous section we described the structure for the four different SBW messages types. The call
and send messages include an optional data payload which may be required by the recipient. Likewise,
a reply message may also include a data payload for the recipient. In order for data to be easily
exchangeable between modules we needed to decide on a collection of defined data types. Obviously it
would not be possible to imagine every possible type of data type that a module might wish to package
and send to another module, therefore we devised a set of data types, of sufficient generality, from
which any other data type could be constructed. In the first version of SBW we defined seven basic
data types. Five of these are fundamental data types, such as byte, boolean, integer, double and string.
The remaining two are structured data types which provides most the flexility, these include arrays and
lists.

Byte Bytes start with a byte code (dtByte) indicating a byte type. This is then followed by an 8 bit
byte value.

Data Type Type Code Description

Byte dtByte Simple Byte

Integer dtInteger 32 bit integer

Double dtDouble [EEE 754 double 64 bit format

Boolean dtBoolean Byte indicating true or false (0 represents false)

String dtString Sequence of characters, the first unsigned integer
indicates the length of the string

Array dtArray Homogeneous array of data (n dimensional)

List dtList Heterogenous, nested list structure

Table 1: Data Types.

Integers Integers start with a byte code (dtInteger) indicating an integer type. This is then followed
by a signed 32 bit integer value in Intel-byte order which has the range -2147483648 to 2147483647.

Double Double values start with a byte code (dtDouble) indicating a double type. This is then
followed by a floating-point value stored in standard IEEE standard 754 double 64-bit format,
that is 1-bit sign, 11-bit base 2 exponent and 52-bit fraction in Intel-byte order.

Length: 5 bytes Length: 9 bytes
[| [|
Int Type : Double Type | Double IEEE 754
(byte) | 2 Pitinteger (byte) (64-bit)

Figure 5: Integer and Double Data Types

Boolean Boolean values start with a byte code (dtBoolean) indicating a boolean type. This is then
followed by a further byte indicating the value of the boolean. A byte value of zero indicates False and
a value of one indicates True.

String String values start with a byte code (dtString) indicating a string type. This is then followed
by an unsigned 32-bit integer denoting the number of bytes in the string. The remainder of the data
consists of the sequence of characters that make up the string. Note that the string is also null
terminated.

Length: 2 bytes Length: 5 bytes Variable Length
| | | I |
Int Type _ String Type | Length of Character list
(byte) | 2Vte (07false) (byte) |String (32-bit)| oo

Figure 6: Boolean and String Data Types

Arrays Arrays are multi-dimensional objects of arbitrary size containing homogeneous data. Arrays
start with a header made up of one byte indicating the data type stored in the array, and an integer
indicating the number of dimensions, followed by a sequence of integers, one for each dimension,
denoting the number of elements in each dimension. The header is therefore (2 + 4 4 4d) bytes long,
where d equals the number of dimensions of the array. Array access can be optimized at the module
if it is known that the data type has a fixed size. This is especially the case for simple types such as
integers and doubles. In these cases, the application can carry out block copies of the data in order to
greatly improve performance.

Lists Lists are recursively defined structures for storing heterogeneous data. This means that lists
can be used to store other lists which allows complex relationships to be represented.

A list is a much simpler structure that an array. A list starts with a list type byte, followed by a
32-bit integer indicating the number of items in the list. Each items in the list can be any of the data
types previously described, including a list.

For example, the following are legal list structures:

1, 2, 3, 4]

1, "ATP", 3.1415, {1, 2, 3}]

[“Sl", “SQ", ns3||, [4’ 5, 6]], "kl“, "k2"]

[qun, [[uxon]’ ["Sl"]]’ "k1S1"], [I|J2H’ [["Sl", ngon]’ [ng3n]]’
"k282"],]

[
[
[
[
Note the nested lists in the third and fourth examples.

Length: 2 + 4 + 4d bytes
| |

Array Type | Data | Number of |Number of Elements | Number of Elements | ... Number of Elements
(byte) Type |Dimensions| in first dimension |in second dimension in nth dimension
Byte 32-bit 32-bit 32-bit 32-bit

Dimensions are stored row by row

Element 1 Element 2 Element 3 > ROW One
d rows
deep

Element 1 Element 2 Element 3 > ROWJ

Figure 7: Array Data Type.

10

Length: 1 + 4 bytes

List Type Number of
(byte) elements

32-bit

First Data Element |Second Data Element | nth Data Elements

The size of each data element is data type dependent

Data elements can be any of the standard types, byte, boolean, integer,
double, string, arrays and lists

Figure 8: List Data Type.

Event Support

SBW supplies a number of special method calls to modules which are sent when certain events occur.
These include:

void onModuleShutdown(Module module) This method on the listener is called every time a module
instance somewhere in the SBW system disconnects from the SBW Broker. The module passed to the
method represents the module instance that has just shut down.

void onModuleStart(Module module) This method on the listener is called every time a module
instance starts up or connects to the SBW Broker. The module passed to the method represents the
module instance that has just started.

void onRegistrationChange() This method on the listener is called whenever a registration change
for a module occurs in the SBW Broker. Registration changes are: a module registering itself with the
Broker, a module registering a service with the Broker, or a module being unregistered.

Simple Example

Having described in some detail the internal structures and design of SBW, it is now worth showing
a simple example to illustrate how it might be used. The following example shows how to set up a
module which provides two math services, trig and log, and another module which uses these services.
The code is shown using Java but similar code would apply to other languages.

We first declare the classes which represent the services that the module is going to provide. In
this case we will provide two services, one that offers basic trigonometric functions, and another that
provides basic logarithmic functions.

class TrigClass {
public double sin(double x) throws SBWApplicationException {
return Math.sin(x);

3

public double cos(double x) throws SBWApplicationException {
return Math.cos(x);
}
}

class LogClass {
public double log(double x) throws SBWApplicationException {

11

return Math.log(x);
}

public double exp(double x) throws SBWApplicationException {
return Math.exp(x);

}

In the main program we create a new instance of an object that represents the object that other modules
will see. Into this object we register the two services that we wish to provide. Finally we call the run
method of the module object which initiates the connection to the SBW broker. Once the broker
receives the connection request it transmits a startup event to all connected modules indicating that
a new module is available. At this point modules may now interrogate the new module and use the
services that the module provides.

ModuleImpl module = new ModuleImpl("edu.caltech.math", "math", ModuleImpl.UNIQUE);

module.addService ("Trigonometry", "trig functions", TrigClass.class);
module.addService("Logarithmic", "log functions", LogClass.class);

module.run(args) ;

The argument args in the run method is the command line argument that invoked the module.

If a remote module wishes to use the services provided by math, it would use the following code:

Interface ITrigService {
double sin(double x) throws SBWException;
double cos(double x) throws SBWException;
3

Interface ILogService {
double log(double x) throws SBWException;
double exp(double x) throws SBWException;
Module module = SBW.getModuleInstance("edu.caltech.math");

// Get the individual services

Service trig = module.findServiceByName("Trigonometry") ;
Service log = module.findServiceByName("Logarithmic");

// Create proxy with this interface and call it:

ITtrigService trigService = trig.service.getServiceObject(ITrigService.class);
ILogService logService = log.service.getServiceObject(ILogService.class);

Double result;
Double x = 12.2;

result = trigService.sin(x);

logService.log (x);

result

12

The first two sections declare interfaces of the services which will be used. In this case the services
are hard-coded but SBW also allows runtime reflection on a remote module and thus allows methods
and services to be used dynamically if need be. Under Java the easiest approach to access remote
services is to use interfaces.

Once the interfaces have been declared a call is made to obtain a handle of the module. If the
module has been registered with the Broker but is not currently running, this call will cause the module
to be automatically started up.

Finally, the objects representing the individual services are created using the getServiceObject
method call. Last but not least, the methods are called through the service object returned previously.

Thus it only takes a few lines of code to access and call remote methods. For more details of the
API the reader is referred to the APl manual available the the SBW web site. Note that services and
methods on remote modules are also available via a number of interactive scripting tools, in particular
Python and Perl. In these cases, interaction is even simpler, as the scripting tools will automatically
wrap remote services in to Python and Perl objects. Thus under Python, to the access the trigonometric
method, sin, only requires a single line:

print edu caltech math.Trigonometry.sin (30.0)

The BioSPICE/SBW Bridge

One of BioSPICEs' main interfaces is based on the Netbeans IDE. This has enabled the developers of
BioSPICE to implement a data flow GUI which allows users to direct data from one module to another
through a GUI interface. This allows users to chain a series of processes in whatever fashion that suits
their needs. The BioSPICE modules themselves are made accessible to the Netbeans IDE either via
OAA (Open Agent Architecture) or directly into the Netbeans IDE itself.

Work is nearing completion to construct a software bridge between SBW and OAA, which will enable
clients of either system to access the services provided by the other system. These services will be made
to appear as native services, identical to any other. This is made possible by a special generic translation
layer.

OAA is based on a Prolog programming model, and is organized in terms of agents which provide
specific functions. Parameters are untyped, and may be numbers, strings, lists, and several other
Prolog-specific data types. Prolog functions do not have return values; rather they use a system called
"unification” wherein unbound variables are replaced with results. For example, to get the sum of two
numbers in Prolog one might call a function as follows:

sum(2,5,X)
and get the result
sum(2,5,7).

SBW in contrast uses a more common model for methods, which take typed parameters and have a
single typed result, i.e.

int sum(int,int).
The bridge handles the conversion of the method signatures between OAA and SBW automatically. If

there was a method in OAA such as get_some_data_3 (the name, ‘get_some_data,’ and three parameters),
this would be translated into an appropriate SBW method signature:

get_some_data()

The most recent version of OAA provides for typed, directional parameters. If get_some_data_3 had
two input parameters of integer type, and one output parameter of double type, then the SBW method
signature would be

13

double get_some_data(int,int)
In the other direction, an SBW method such as
int get_just_an_int(int)

would be translated by the bridge into an OAA method get_just_an_int_2-the second parameter is
just the SBW function’s return value.

Incompatible data types are mapped whenever possible to equivalent types. As an example, arrays,
which are used by SBW, are not recognized in OAA. These are translated into lists or lists-of-lists,
which OAA can handle. Services in SBW appear as separate agents in OAA, and agents in OAA are
represented as services of a single module (the “oaabridge”) module in SBW.

_— OAA to SBW ~a
OAA Facilitator SBW Broker
\ SBW to OAA -
.)

'Y)
'Y)

)
)

X X

EDCBEEN O @)

Figure 9: Structure of the BioSPICE/SBW Bridge

Applications of SBW and BioSPICE via the SBW /BioSPICE
Bridge

In this section we will describe an application of SBW which utilizes three SBW-compliant tools, Jarnac,
JDesigner and METATOOL.

Jarnac

Jarnac is a script-based simulation tool that can operate either interactively via a console window or as

a simulation server for SBW. Details of Jarnac can be found in (Sauro, 2000). Here we will just describe
the SBW interface.

The Jarnac SBW interface supports four services: modelServices, msim, mat and asim. asim is
used to interface to the SBW GUI, details of which can be found at the SBW web site http://www. sbw-sbml.org.
The interface provided by msim is more extensive than asim and is the one described here.

msim supports multiple simulation instances, that is more than one simulation can be active at any
one time. All the methods in msim require a model handle to indicate the current model instance.
Model instances can be created and destroyed through the modelServices service. msim provides a
range of methods to control, interrogate and simulate either continuous (ordinary differential equation
based), or probabilistic (based on the Gillespie method) models.

Models are loaded into a model instance in the form of SBML Level 1 (Hucka et al., 2003) via the
loadSBML() method. A range of access methods are provided to interrogate the currently loaded model.

14

For example, remote modules can request the number of reactions, the rates of change of species, the
reaction velocities etc. In addition, methods are provided for a remote application to access the model
equations, including the list of differential equations, the rate law expressions (both in infix format) and
the list of any conservation laws in the model. Methods are also provided to allow a remote application
to modify parameters and initial conditions. Finally there is a range of analysis methods, include time
course simulation, Gillespie stochastic simulation, steady-state analysis, sensitivity analysis and specialist
information such as the Jacobian matrix.

The remaining service, mat supplies two matrix related methods, one method to compute the
eigenvalues for a matrix and a second method to compute the inverse for a matrix.

Jarnac can be run in two modes, either interactively, where a users has access to the model capabili-
ties through a console window and via the SBW interface, or in server mode where Jarnac runs invisibly
as a background service. The only way to access Jarnac in server mode is via the SBW interface.

Note that we provide a GUI based browser tool that allows a users to inspect the services and
methods available from a particular module.

JDesigner

JDesigner is a model design tool for editing biochemical networks visually. It has no simulation capa-
bilities itself but it can interface to the Jarnac SBW interface. Unlike Jarnac or SCAMP (Sauro & Fell,
1991; Sauro, 2000), where models are entered in the form of a script describing the chemical reactions
and rate laws, under JDesigner, models are entered visually as reaction networks. JDesigner stores
models in the form of SBML Level 1 (Hucka et al., 2003) with specific annotation added to support
layout information. Details of this and other information on JDesigner can be found at the web site,
www.sys-bio.org. The figure below illustrates a basic screen shot from JDesigner.

15

" Network Visual Designer - [Drawing Canvas]
i/ File Edit Actions View

Options

DEE
Anslysis Viewers SBW Window Help HEE
0D &= & =] % B g g By &l
New Open Save Saveds Mew Cut Copy Paste Export Viewers

SBW Connected B

3[R

11, 191

YeastGlycolysisIDClean.ml Mag: 0.8

Figure 10: JDesigner, illustrating a model of Glycolysis taken from (Pritchard & Kell, 2002)

Interaction of JDesigner with Jarnac, or any other compatible simulator, is automatic. Figure 10
illustrates a simulation displayed by JDesigner but actually carried out by Jarnac via SBW.

16

1" Network Visual Designer - [Drawing Canvas]

17 Fle Edit Actions View

0D & W 5

New DOpen Sawe Saveds

Time Course

Time End | 2000

Mumber of Paints: | 1000

Edit Dutput List
Default is all Species
Sliders | Goan Parameters

Slider Control

4. =
Defite | Display

Graphical Output

Options

]

MNew

Time Course Simulation Control a

Analysis Viewers

By

Cut Copy Paste

)
undo

&

=
-

£ o g AAA D

S5 Q0 » ¥ SE

#

=)

SBW Window

Help

Q a

. Ve
2
- NN / 3, \
- \ / \/ A\ / A
10 / v /\ \/ /\
. N\ IN.L S AAN
0 100 200 300 400 500 800 700 800 900 1,000 1,100 1,200 1,300 1,400 1500 1600 1,700 1,800 1,900
[tacto [tetko | o | cip [tecle | tetRp | 1ach | tetfe | ol [et [act | ot a
Standing By SBW Connected B 15, 264 repressilator ol Mag: 0.8

Figure 11: JDesigner and Jarnac working together to carry out and display the results from a
simulation. The model was taken from (Elowitz & Leibler, 2000) which illustrates a synthetic
oscillatory circuit that was constructed in Escherichia coli

SBWMetatool

METATOOL (Pfeiffer et al., 1999) is an application developed by Stefan Shuster, Thomas Pfeif-
fer and more recently by Ferdinand Moldenhauer and Juan Carlos Nuno (http://www.bioinf.mdc-
berlin.de/projects/metabolic/metatool/). It's primary task is the determination of elementary modes
(Schuster et al., 2000) but it also has a variety of other functions, including null space computation
and conservation analysis. It easily runs on Linux or Windows, or for that matter any platform which
can compile standard C code. METATOOL generates a multitude of information, including but not ex-
clusively, the null space of the stoichiometry matrix, conservation relations, and what METATOOL was
specifically designed to generate, elementary modes. Generating elementary modes is a non-trivial exer-
cise and other packages, such as the interactive simulator, Jarnac (Sauro, 2000), employ METATOOL
for this task.

To make METATOOL available to SBW we wrote a small controlling application that has an interface
to SBW and controls the running of METATOOL.

Figure 11 illustrates the interaction of METATOOL with JDesigner. JDesigner acts as the model
editor from which users can initiate simulation and METATOOL analysis. The figure illustrates two
aspects, the lower panel shows the SBWMetatool interface, this displays all the elementary modes that
METATOOL found for the displayed model (Calvin Cycle). Note that one of the elementary modes in
the lower panel is highlighted. The main canvas shows the Calvin reaction network and the selected
elementary mode is displayed on the reaction network by highlighting the appropriate reactions. This

17

allows a user to easily visualize each elementary mode in turn. The example illustrates the ability of
SBW to combine two unrelated applications (JDesigner and METATOOL) and deliver completely new
functionality. The other point to make is that METATOOL was not modified in this project, we only
wrote a small separate SBW based module which could control the running of METATOOL.

% * Network Visual Designer - [Drawing Canvas] EEx
17 Gle Edit Actons View Optons Apalysis Viewers SBW Window Help _ 8 x
0D & H & =] ©o % BB @ Q B V&

MNew Open Sawe Savelbs New undo Cut Copy Paste Export Analysis Viewers

Calvin Cycle - from Poolman)

=
.

SR . - A N R A E

< >
Mode Selectar
Fiesat
Elementary Mades | Canservation Vectars | Null Space Vectars
Elementary modes by METATODL (Stefan Schuster <t al

01 J2 U304 J5 U6 J7 00 J12 J13 14 117 118 13 J20
1102 U3 04 J5 U6 J7 00 J3 12 13 114 J17 019 020
2.1 02 U3 04 J5 U6 J7 J0 JB 12 13 14 17 013 020
J12 15 16
143 J4 5 J6 J7 10 11 J0 J12 J13 J14 J16 J18)1
6 J7 10 17 J0 J3 J12 013 014 016 J1E
6 7 .10 17 J0 JB J12 J13 014 J16 J1E
J6 7)10 J11 J0 J12 013 014 015 017

3
&
5
E:
7: J10)

= et
&

Standing By SBW Connected B 2, 505 calvin.xml Network Stack: 10179

Figure 12: Operation of METATOOL with JDesigner illustrating the visualization of elementary
modes in the Calvin Cycle(Model curtesy of M Poolman, D Fell and C Raines (Poolman et al.,
2003)

Conclusion

Software reuse is considered a well-known technique for increasing development productivity but the
promise often falls short of the expectation. There are some success stories, in particular the number
of reusable components for Delphi (Borland) and Visual Basic (Microsoft) run into the thousands
(www.torry.com) and probably many more for Visual Basic. The question is why have some development
environments been more successful than others at encouraging a vibrant community of code reuse? One
of the distinguishing features of VB and Delphi development is the ease with which it is possible to
develop stand-alone reusable components. Other environments such as CORBA or basic COM have a
much steeper learning curve and thus the number of people actively engaged in supporting code reuse
is correspondingly smaller. For code reuse to be a actively supported, code development should be
correspondingly easy to accomplish.

In terms of SBW, we have tried to achieve this situation by making the development of reusable
SBW modules as easy as development under VB or Delphi. Developing reusable modules in Java or
Delphi is particulary straight forward under SBW.

18

In terms of our own development, code reuse was most successful. In developing JDesigner, we
did not need to write yet-another-simulator, instead we leveraged the existing simulator Jarnac. As an
example of third-party component use, we were able to wrap METATOOL into a SBW-compliant tool
thus making available the sophisticated algorithms present in METATOOL to all SBW modules.

Some of the key advantages of SBW over other technologies is performance, simplicity of imple-
mentation, and language and platform neutrality. With the rapid rise in interest in Systems Biology, it
is fair to say that it it probably impossible for one person or even a group to attempt to write the all
singing, all dancing software tool for Systems Biology, simply because the breadth of the field is too
wide.

One great advantage of SBW is that it does not constrain developers to a single platform or even a
single language, it eliminates language and platform wars at a stroke which means we can concentrate
on functionality instead.

Future Directions

The future direction of SBW is in two places, enhancements to the core SBW technology, that is
enhancements to the Broker and/or binding libraries and enhancements to modules.

Module Development

Module development is taking place on two levels, enhancements to existing modules and development
of new modules. The existing modules, in particular JDesigner will continue to be enhanced. One of
the most interesting projects is the development of library based model construction. That is, models
can be developed in parts and combined at a later date.

As for new modules, two are currently planned for development, this includes an optimization module
and a bifurcation module. Both modules are being primarily developed for BioSPICE and will be made
available to BioSPICE via the SBW/BioSPICE bridge.

Core Development - Broker, Language Bindings and BioSPICE Integration

The first version of SBW is complete and in production. The current plans for the development of
the core are fairly limited. There are a couple of items that we would like to include in a future
version. For example, we would like to add an additional type to the core data types that can be
transmitted from module to module, this type being the complex number type. Since SBW is primarily
aimed at the scientific community, complex numbers would prove a very useful addition. One of the
primary applications of complex numbers in systems biology is stability analysis and data analysis such
as principal component analysis. Of course, in the current version, complex numbers can be transmitted
by combining existing types; however, since complex numbers are fundamental to quantitative science
there is no reason why they should not have ‘first class’ status as one of the fundamental types.

A second addition we would like to make is to give the binding libraries the ability to decide whether
to compress messages before transmission. Some messages especially those containing XML data can
be very large. These messages, by their nature are also highly compressible. It would seem sensible
therefore to be able to compress such messages automatically before they get transmitted to the receiver.
Depending on where the threshold is set to compress a message according to its size, performance
increases could easily be achieved.

The most immediate project however to the SBW core is the development of a bridge between SBW
and BioSPICE. This is currently underway and should be completed very soon. As previously mentioned

19

the bridge will allow modules in both SBW and BioSPICE to communicate with each other. At the
moment, SBW and BioSPICE are complimentary in functionality, and such a bridge would therefore
greatly benefit both communities.

Acknowledgements

This work was initially funded by the Japan Science and Technology Corporation under the ERATO
Kitano Systems Biology Project. The development of JDesigner and Jarnac were partially funded by
ERATO and the Keck Graduate Institute. More recent support for HMS and CW was received via a
grant awarded from the DARPA/IPTO BioCOMP program, contract number MIPR #03-M296-01. We
wish to acknowledge Mark Borisuk, Mineo Morohashi and Tau-Mu Yi for support, comments and advice
and the BioSPICE team at SRI and Berkeley for their invaluable assistance in enabling BioSPICE/SBW
integration.

20

References

BioSPICE (2001). Home page. The BioSPICE Development Project, http://www.biospice.org/.

Box, D., Ehnebuske, D., Kakivayat, G., Layman, A., Mendelsohn, N., Nielsen, H. F., Thatte, S.
& Winer, D. (2000). Simple object access protocol (SOAP) 1.1: W3C note 08 May 2000.
http://www.w3.org/TR/SOAP/.

Burns, J. A. (1971). Studies on Complex Enzyme Systems. PhD thesis, University of Edinburgh. url:
http://www.cds.caltech.edu/ hsauro/Burns/jimBurns.pdf.

Chance, B., Higgins, J. J. & Garfinkel, D. (1962) Analogue and digital computer representations of
biochemical processes. Proc. Fedn. Am. Socs. exp. Biol., 21, 75-86.

Elowitz, M. B. & Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature,
403, 335-338.

Endy, D. & Brent, R. (2001) Modeling cellular behavior. Nature, 409, 391-395.

Fell, D. A. & Sauro, H. M. (1990) Metabolic control analysis by computer: progress and prospects.
Biomed. Biochim. Acta, 8/9, 811-816.

Garfinkel, D. (1968) A machine-independent language for the simulation of complex chemical and
biochemical systems. Comput. Biomed. Res., 2, 31-44.

Hedley, W. J., Melanie, N. R., Bullivant, D. P. & Nielson, P. F. (2001) A short introduction to CellML.
Phil. Trans. Roy. Soc. London A, 359, 1073-1089.

Hucka, H. M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. & Kitano, H. (2002) The ERATO Systems
Biology Workbench: enabling interaction and exchange between software tools for computational
biology. In Pac Symp Biocomput. pp. 450-461 World Scientific Pub Co.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein,
B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor,
V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-H., Hunter, P. J., Juty, N. S.,
Kasberger, J. L., Kremling, A., Kummer, U., Novere, N. L., Loew, L. M., Lucio, D., Mendes,
P., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C,,
Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J.
& Wang, J. (2003) The Systems Biology Markup Language (SBML): a medium for representation
and exchange of biochemical network models. Boinformatics, 19, 524-531.

Mendes, P. (1993) Gepasi: a software package for modelling the dynamics, steady states and control of
biochemical and other systems. Comput. Applic. Biosci., 9, 563-571.

Olson, M. & Ogbuji, U. (2002). The Python web services developer: messaging technologies compared.
http://www-106.ibm.com /developerworks/webservices/library /ws-pyth9/.

OMG (2001). CORBA specication. http://www.omg.org.
Oram, A. (2001) Peer-to-Peer : Harnessing the Power of Disruptive Technologies. O'Reilly & Associates.

Park, D. J. M. & Wright, B. E. (1973) Metasim, a general purpose metabolic simulator for studying
cellular transformations. Comput. Progm. Biomed., 3, 10-26.

Pfeiffer, T., Sanchez-Valdenebro, I., Nuno, J. C., Montero, F. & Schuster, S. (1999) Metatool: for
studying metabolic networks. Bioinformatics, 15, 251-257.

21

Poolman, M. G., Fell, D. A. & Raines, C. A. (2003) Elementary modes analysis of photosynthate
metabolism in the chloroplast stroma. Eur. J. Biochem, 270, 430-439.

Pritchard, L. & Kell, D. K. (2002) Schemes of flux control in a model of saccharomyces cerevisiae
glycolysis. Eur. J. Biochem, 269, 3894-3904.

R. Rao, D. M. W. & Arkin, A. P. (2002) Control, exploitation and tolerance of intracellular noise.
Nature, 420, 231-237.

Sauro, H. M. (2000) Jarnac: a system for interactive metabolic analysis. In Animating the Cellular Map:
Proceedings of the 9th International Meeting on Bio ThermoKinetics, (Hofmeyr, J.-H. S., Rohwer,
J. M. & Snoep, J. L., eds),. Stellenbosch University Press.

Sauro, H. M. & Fell, D. A. (1991) Scamp: a metabolic simulator and control analysis program. Mathl.
Comput. Modelling, 15, 15-28.

Schuster, S., Fell, D. A. & Dandekar, T. (2000) A general definition of metabolic pathways useful for
systematic organization and analysis of complex metabolic networks. Nature Biotechnlogy, 18,
326-332.

Tyson, J. J., Chen, K. C. & Novak, B. (2003) Sniffers, buzzers, toggles and blinkers: dynamics of
regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15, 221-231.

Winer, D. (2001). XML-RPC. http://www.xmlrpc.com/spec/.

22

(@)] (@)]
[[
ho] S
= £
Module One “g <—> | SBW Broker | <—| 7 (= Module Two
5 &
= 4 =
[an)] o
n 3 n

SBW Python Binding

Module Three

Figure 1: Connection between Broker, Modules and Binding Libraries

Sauro et al.

23

peojAed ejeq

(ng-z¢)
PIPOYIsN

(g-z¢)
pledInIes

(ng-zg)
PIoIS

(ng-z¢)
dain

(814q)
adA|

(M9-z¢)
pisad

(1g-z¢)
yibua

yibua s|qenen

s9]Aq Gz 1epesH

Figure 2: Structure of the Send/Call Message.
Sauro et al.

24

Header: 13 bytes

Variable Length

Length
(32-bit)

Destld
(32-bit)

Type
(byte)

ulD
(32-bit)

Data Payload

Figure 3: Structure of the Reply Message.

Sauro et al.

25

abessa|\

abesso\

loug pajelaq |Jos13 a|qepeay

alAg
Jou3

(nag-zg)
din

(e¥4q)
adA|

(ng-z¢)
PlIsa(d

(1g-z¢)
yibuaT

yibua ajqeren

so)Aq 1| :lepesH

Figure 4: Structure of the Error Message.

Sauro et al.

26

Length: 5 bytes

Int Type
(byte)

32 bit Integer

Figure 5: Integer and Double Data Types

Sauro et al.

27

Length: 9 bytes

Double Type
(byte)

Double IEEE 754
(64-bit)

Length: 2 bytes

Int Type
(byte)

Byte (O=false)

Length: 5 bytes

Variable Length

String Type Length of Character list

(byte) |String (32-bit)

Figure 6: Boolean and String Data Types

Sauro et al.

28

[moy > €juswse|3 | z Juswo|7 || Jusws|g
desp
SMoJ p

auQ Moy - € Juswa|3 | z Juswa(g | | Juswa|g
moJ AQ moJ palo]s ale suoisusuiq

Hg-¢¢ Hg-2e Hg-2¢ Hg-¢¢ alkg
uoISuUsWIpP Ylu Ul UOISUSWIP PUODaS UI| uoisuawip }siiy ul |Suoisuswiq| 9dAL (214q)

sjuswis|g Jo JequinN | " sjuswia|g Jo Jequiny | sjuswse|3 Jo JaquinN | Jo Jequunp | eyeq | adA| Aeuy

solAq py + ¢ + C (yibuaT

Figure 7: Array Data Type.
Sauro et al.

29

Sisl| pue sAeuse ‘bulis ‘sjgnop

‘Jabajul ‘ues|ooq ‘©1Aq ‘sadA} piepuels ayj Jo Aue aq ueod sjusws|s eleq

Juspuadap adA} ejep si JUsWae elep Yoes Jo azIs ay |

H9-¢€

sjuswa|g eleg Yiu

Juswa|3 ejeq puUoO8s

Juswa|3 ejeq isiid

sjusWwa|e (9)40q)
jo JoquinN | @©dAl1sIT

salAq ¢ + | :yjbueT]

Figure 8: List Data Type.

Sauro et al.

30

OAA Facilitator

)
)

\
OISt

Structure of the BioSPICE/SBW Bridge

Sauro et al.

31

o

\/
[y

SBW Broker

)
)
)
)
)

|

@)

> " Network Visual Designer - [Drawing Canvas]
ir Elle Edit Actions View
O = &

Mew Open Save

Viewers SBW Window Help

BB g q

Copy Paste

Analysis

&

Cut

Options

E xpart

=]

Wiewers

=

Save Az Mew

)]

ERL

2 7, 7

& |5

o

o,

.

¢ -

|

|w (¢

Standing By SBW Connected BH 11, 191 YeastGlyoolysisIDClean..xml Mag: 0.8

Figure 9: JDesigner, illustrating a model of Glycolysis taken from (Pritchard & Kell, 2002)
Sauro et al.

32

% " Metwork Visual Designer - [Drawing Canvas] E
x

1# File Edit Actions View Options Analysis Viewers SBW Window Help

O = H] = & =8 ® K By @ @l

Mew Open Save Saveds Mew unda Cut Copy Paste Expart Analyziz Viewers
Tirne Course | &]
a Repressilator Model
Time Course Simulation Control '.‘ This version was tsken from
nRpigene genetics uga eou'~alemankinne
m ‘Simutate for 1000 time uniks %0 osene oscllitions.
oo
Time End | 2000 _b{
! T
MNumber of Points: | 1000
L)
E dit Output List ey
Default iz all Species Q
£ w =3
Iders | Scan Parameters E{, T
Slider Control éﬁ”
—_— “ﬁ
4 = e
Define Dizplay 53 E]
T >
ElowRz M5, Lelbler 5 ;“Em;.qa:.-'\:'\e’.l:oazlllawr_.- network of transcriptional IE;Jla'.Ofé Nature 403 335 - 338 L3
= [2L
Graphical Output |
chL AU Y KS®
o — //\\ // Y — lacid
20 / \ e N / s \ / \ / — [etRD
l N / VY \ / V. —%
15 i —clp
AT N AT |
a7 -, / / \ \/’\{) — tetRp
S \ N /N /N N/ \ VRN SN e
i [N, S N) N, e
% —or
0 100 200 300 400 500 G600 70O 800 500 1,000 1,100 1200 1,300 1,400 1,500 1,600 1,700 1,800 1,500
| Iachl tetHD| c:ID| clp| Iac:lp| teth| Iac:lr| tech| c:Ir| tetR1 | lacl1 | cll ha
Standing By SBW Connected ER 15, 264 repressilator . xml Mag: 0.8

Figure 10: JDesigner and Jarnac working together to carry out and display the results from a simulation.
The model was taken from (Elowitz & Leibler, 2000) which illustrates a synthetic oscillatory circuit that
was constructed in Escherichia coli.

Sauro et al.

33

" Metwork Visual Designer - [Drawing Canvas]

J# File Edit Actions View Options Analysis Viewers SBW Window Help -5 X
D & Hd B = o 3 B @8 g g /e Bl
Mew Open Save Saveds MNew undao Cut Copy Paste Export Analyziz Yiewers
- - Al
R Calvin Cycle - from Poolman Py =
ae 0
L]
|
e i
3
3
¥
o}—bo
T
0y
N
T
A
L i) 2|
Mode Selectar |
Reset
Elementary Modes | Conservation Yectars | Mull Space Vectors
Elementary modes by METATOOL [Stefan Schuster et al]
01 02 43 04 J5 JB J7 J0 12 13 014 17 J18 019 J2C
100102 03 04 U5 B J7 U0 J9 12 13 114 17 19 J20
20102 03 J4 J5 JB JF U0 J8 12 13 114 17 19 420
12 115 1B
4.1 03 J4 U5 JE JT 10 J11 40 12 13 14 18 18 N
5103 04 05 06 J7 010 11 J0 03 12 13 014 16 1S
£:.J1 JSJE U7 J10 01T J0 08 12 013 014 J16 J1S
Fa] . 710 J11 J0
Standing By SEW Cornected EH 2, 505 calvin.xml Metwork Stack: 10179

Figure 11: Operation of METATOOL with JDesigner illustrating the visualization of elementary modes
in the Calvin Cycle(Model curtesy of M Poolman, D Fell and C Raines (Poolman et al., 2003)

Sauro et al.

34

