
A Profile of Today’s SBML-Compatible Software
Michael Hucka∗, Frank T. Bergmann∗, Sarah M. Keating∗†, Lucian P. Smith‡

∗California Institute of Technology, Pasadena, CA, USA
†EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

‡University of Washington, Seattle, WA, USA

Email: {mhucka, fbergman, skeating}@caltech.edu, lpsmith@u.washington.edu

Abstract—Computational systems biologists today have a
healthy selection of software resources to help them do research.
Many software packages, especially those concerned with com-
putational modeling, have adopted SBML (the Systems Biology
Markup Language) as a machine-readable format to permit users
to exchange models. Our group has a keen interest in under-
standing the landscape of SBML support. To help us ascertain
the state of modern SBML-compatible software, in mid-2011 we
initiated a survey of software packages that support SBML. Here
we report the preliminary survey results. Based on 81 packages
for which we have data so far, we summarize the trends in six
areas: (1) What are the major types of functionality offered by
the software systems? (2) What mathematical frameworks do
they support? (3) What are their SBML-specific capabilities? (4)
What other standards do they support besides SBML? (5) What
are their characteristics with respect to run-time environments?
And finally, (6) what are the availability and licensing terms?

Index Terms—systems biology; bioinformatics; computational
systems biology; data handling; application software; open source
software; software tools; software standards

I. INTRODUCTION

Modern software systems are indispensable to research, and
they are so deeply coupled to continued progress that there is a
positive feedback loop at work: better and more sophisticated
tools enable better and deeper research, which in turn lead to
demand for new and more powerful software.

While software tools evolve, the products of research per-
formed with them must survive for longer periods of time so
that researchers everywhere may build upon each other’s work.
This in turn drives a need to agree on standard electronic for-
mats for data of all kinds—not only experimental data, but the
computational models, procedures, and results obtained with
them. SBML, the Systems Biology Markup Language [1]–[3],
has become a de facto standard for representing computational
models in this field. By our count, at least 230 software sys-
tems have implemented SBML support over the past decade.

This bounty of software often leads to questions from users,
such as, which tool(s) should they use for a particular task?
Software developers also have questions; for example, they
often want to know whether other tools implement capabilities
similar to those of their own systems. Unfortunately, these and
similar questions rarely have simple answers because there are
so many dimensions to software systems. We have attempted to
help people answer the questions for themselves by providing
information resources on the SBML.org portal website, notably
in the form of the SBML Software Guide [4]. Among the

features of the Guide are (i) a table listing known SBML-
compatible software tools along with their characteristics on
particular dimensions, and (ii) a separate page giving narrative
descriptions of different tools grouped into categories. How-
ever, with the rapid growth in the number and variety of SBML
software, and the emergence of new related standards such as
SBGN [5] and SED-ML [6], it has become clear that better
and more detailed information resources are needed.

For the benefit of the systems biology community, as well as
to help us understand the state of SBML today, we initiated a
project to overhaul the SBML Software Guide. As part of that
effort, in May, 2011, we issued a new SBML software survey.
Here we report on some of our results to date. We begin with
an explanation of our methods in Section II. We report the raw
results in Section III and provide interpretations of the results
in Section IV. We close with some conclusions in Section V.

II. METHODS

The SBML Software Details Questionnaire [7] is an elec-
tronic survey targeted at developers of SBML-compatible
software systems. It contains a total of 28 questions. We imple-
mented the survey using a commercial Web-based service [8].

We used multiple approaches to notify developers and
request that they complete the questionnaire. We announced
the survey on several SBML-oriented mailing lists and to
sysbio@caltech.edu, a general systems biology list. We made
the first call for participation in May, 2011, and made a second
call a few weeks later. We also sent direct email to the majority
of the contact addresses associated with the software listed in
the existing SBML Software Guide [4].

These approaches have produced a total of 85 responses to
date. Of these, four were clearly incomplete (due to missing
data), and therefore we omit them from the following analyses.
This left a total of 81 usable responses for this article. We
performed some additional due diligence on these remaining
entries by comparing the responses to information given in
documentation on the software’s own web pages. In a few
cases, we made small adjustments to the responses, in par-
ticular to add missing software dependencies or to note other
standards supported by the software but not reported in the
survey. We did not perform wholesale correction of the survey
entries submitted by other people, because we are concerned
this could just as easily introduce errors as correct them.

Creation/editing
Utility functions

Simulation
Analysis (other than simulation)

Database

0 20 40 60 80

20
41

43
43

50

(a) Facilities provided directly by the software tools (without invoking other software). Bars indicate the total number of tools providing each facility.

Simulation software
Analysis software (in addition, or instead of, simulation)

Creation/model development software
Visualization/display/formatting software
Utility software (e.g., format conversion)

Data integration and management software
Repository or database

Framework or library (for use in developing software)
Software for interactive environments (e.g., MATLAB, R, ...)

Annotation software

0 20 40 60 80

11
13
13
14

16
23

31
31

40
42

(b) Categories of software. Bars indicate the total number of tools for which respondents judged the given category to apply.

Fig. 1. Survey responses for the two questions discussed in Section III-A. The total number of tools represented is 81. For each question, the response choices
are not mutually exclusive, and consequently the summed number of responses can add up to more than 81.

III. RESULTS

We begin by noting that the total number of software tools
represented by the returns obtained so far (85) is significantly
less than the 230 listed in today’s SBML Software Guide [4].
We attribute the discrepancy to a combination of factors. First,
the survey so far has only been available for less than three
months, and it is likely that not all developers have taken the
time to fill it out yet. (By contrast, the current SBML Software
Guide has been active and collecting answers for many years.)
Second, some of the software systems listed in the current
Guide no longer appear to be actively maintained, but it is
not easy to verify this in all cases. Part of our motivation for
performing the current survey is to help identify these tools.

In this paper, we focus on a subset of the survey questions.
We explain the questions and report the results below.

A. Capabilities of SBML-compatible software systems

SBML began life a decade ago as a format specifically
intended to enable the direct exchange of models between
different simulation packages. Since that time, the kinds of
resources available for systems biology have increased con-
siderably in variety and number. Consequently, one of the
first topics we sought to explore is, what do today’s SBML-
compatible software systems offer in terms of main function-
ality? We probed this topic using two related questions.

In one of the two questions, we presented a short list of
categories intended to cover the most fundamental facilities
that we believe are provided by different software tools in
this area. We then asked, “What facilities does the package

provide by itself (i.e., without invoking another package) for
working with SBML? ‘Creation’ = creating/editing models,
‘Simulation’ = performing time-series simulation of models,
‘Analysis’ = analyzing models (e.g., sensitivity analysis, flux-
balance analysis, etc.), ‘Database’ = implementing a database
of models (and not merely access to an external database), and
‘Utility’ = providing other utility functions (e.g., translating
SBML to/from other formats). Check all that apply.” We
summarize the results in Fig. 1(a).

In the second question, we provided a larger list of software
categories and asked “Which of the following categories best
describe your software? (Check all that apply.)”. This larger
list was created based on our own experiences with the current
SBML Software Guide [4]. The list of options is shown, along
with the survey results, in Fig. 1(b).

Although both questions deal with the capabilities of the
tools, they differ in that the first is concerned with core
functionality that a tool implements, while the second is
concerned with what are the purposes at which the tool is
aimed. Most tools offer a combination of capabilities and can
be applied to a variety of purposes.

B. Mathematical frameworks in use

Related to the topic of the previous section is the following
question: what kinds of mathematical frameworks are sup-
ported by these software systems? SBML itself is compatible
with many frameworks, but different modelers and model
designs find different frameworks suitable. What do today’s
software tools offer?

Ordinary differential equations (ODE)
Discrete stochastic simulation
Discontinuous event handling

Differential-algebraic equations (DAE)
Logical/Boolean networks

Delay-differential equations (DDE)
Partial differential equations (PDE)

None of the above, or other framework

0 20 40 60 80

20
8
9

11
17

25
28

54

Fig. 2. Responses to the question discussed in Section III-B: mathematical frameworks supported by the software tools. Choices are not mutually exclusive.

We addressed this by listing a set of common frame-
works and then asking the question, “Regardless of whether
your software provides simulation capabilities, what modeling
frameworks does the package support when working with
SBML files? (Check all that apply.)” Fig. 2 lists the options
we provided, and the responses to this question. Note that the
options are not mutually exclusive; many systems support more
than one framework. For the choice of “None of the above, or
other”, we also requested an explanation and provided a text
box for the reply; we will return to this in Section IV-B.

C. SBML-specific software capabilities

Our survey included several questions related to the com-
ponents of SBML understood by software packages. Many of
the questions are of such a deeply SBML-specific nature that
they are outside the scope of this paper, but we believe a few
results may be of sufficiently general interest.

The first question is very basic: does the software import
SBML, export SBML, or both? We report the results in Fig. 3.

Import
28%

Export
11%

Import &
export
60%

Fig. 3. Proportion of tools that read SBML, write SBML, or both.

The second question concerns the editions of SBML that
the software packages can interpret. Major editions of SBML
are termed Levels and represent substantial changes to the
composition and structure of the language. Minor revisions
of SBML are termed Versions and constitute changes within
a Level to correct, adjust, and refine language features. In
practice, once a new Level of SBML is defined, no further
development is undertaken on Versions of lower Levels. The
most recent Level of SBML is Level 3, the first version
of which was finalized in October, 2010 [9]. We issued an
updated version of libSBML [10], an open-source library for
working with SBML, at the same time as the release of the

SBML Level 3 specification so that software developers could
immediately begin working on Level 3 support for their tools.
We are therefore very interested in assessing the degree of
support of SBML Level 3 since its introduction.

Towards that goal, we asked respondents to indicate the
highest Level/Version of SBML that their software could
understand. Here we focus on the subset of results concerning
support for SBML Level 3. The results are shown in Fig. 4.

Supports
Level 3

36%
Does not
support
Level 3

64%

Fig. 4. Proportion of tools that support SBML Level 3.

A third question focused on the model-understanding ca-
pabilities of the software. Specifically, we asked “In terms
of interpretation/simulation/analysis/output performed by your
software, what is the most complex degree of quantitative or
mathematical understanding that your software can do with
SBML models? Please pick all that are relevant.” We provided
a list of options that ranged from basic to relatively advanced,
along with an “Other or not applicable” choice.

The choices offered in this question merit elaboration. The
most basic degree of understanding is to display or manip-
ulate species, reactions, parameters and/or compartments in
an SBML model; this requires no simulation or dynamical
analysis and can be performed by (e.g.) network visualization
tools. A step up in degree of understanding is the ability to
interpret stoichiometric relationships; this is typically needed
for working with metabolic maps (such as those created in
network reconstructions [11]) where the models lack rate laws.
The next degree up from that is interpretation of reaction rate
laws and reaction kinetics, and this is the bread and butter of
many simulation tools in systems biology. Beyond this lie more
specialized capabilities: handling other mathematical relation-
ships besides those expressed by reactions and stoichiometries,
handling discontinuous events (which requires hybrid numer-

Interpret species, reactions, parameters, and/or compartments

Work with reaction kinetics

Work with stoichiometric relationships/maps

Work with other mathematical relationships

Work with conditional discontinuous events

Work with time delays

Other, or not applicable

0 20 40 60 80

14

10

26

30

39

46

58

Fig. 5. Responses to the question discussed in Section III-C, regarding the software systems’ quantitative or mathematical understanding of SBML models.
Once again, choices are not mutually exclusive. Also see the important discussion of these results in Section IV-C and a revised graph in Fig. 9.

ical solvers), and/or handling time-delay expressions (which
requires even more specialized numerical solvers).

We list the results of the survey in Fig. 5. Note that, again,
the choices are not mutually exclusive, and many respondents
selected more than one option for their software.

D. Other standards supported

SBML is not the only standard or proposed standard used in
systems biology. We wondered what other, related standards
are supported by SBML-compatible software packages. We
asked respondents to provide a comma-separated list of each
one supported by their software. We counted the times each
different standard was mentioned and discounted those that are
unrelated to systems biology (e.g., GraphML [12]). In Fig. 6,
we show a graph of the frequency with which the remaining
standards were mentioned in the survey results.

MIRIAM
SBO

SBGN
BioPAX
CellML
SED-ML
KGML
MFAML
NeuroML
PNML
SBOL 1

1
1
1
2
3
3

6
13
14

16

Fig. 6. Other standards or widely-used formats supported by tools reported
in this survey. Bars show the number of times each standard/format was listed.

The standards that respondents mentioned are: MIRIAM
(Minimum Information Requested in the Annotation of Mod-
els [13]), SBO (Systems Biology Ontology [14]), SBGN (Sys-
tems Biology Graphical Notation [5]), BioPAX (Biological
Pathway Exchange [15]), CellML [16], SED-ML (Simulation
Experiment Description Markup Language [6]), KGML [17],
NeuroML [18], MFAML (Metabolic Flux Analysis Markup
Language [19]), PNML (Petri Net Markup Language [20]),
and SBOL (Synthetic Biology Open Language [21]).

E. General properties of the software implementations

Software portability and interoperability issues frequently
can be the deciding factor in choosing one software package
over another. Users need to know basic properties such as the
operating systems on which SBML-compatible tools can run.
We sought answers to this and other questions in the survey.

First, we asked respondents to list all the operating systems
under which their software could run. We included the three
dominant platforms (Windows, Linux and Mac OS) and “web
browser” as four explicit options, and additionally, allowed for
write-in answers in an “Other” field. Here we focus on only
the main choices and show the results in Fig. 7(a).

We also asked whether the software tool depends on other
software or environments, such that it is fundamentally neces-
sary to have this other software or environment to use either
the tool or its output. Examples of such environments are
MATLAB [22] and R [23]. We gave special instructions with
respect to scripting environments and converters. For scripting
environments, we stated that the crucial point is whether the
user interacts with the software by typing commands to the
script language interpreter. If the language is merely used to
implement the software tool, and users interact with it via a
graphical user interface or other non-script-interface means,
then it should not be counted. For converters, we gave the
following instructions. If a converter targets another system,
even if it does not require the system to be present when
running, it should list the target system as a dependency. The
logic behind this is that the output of the converter is not
sufficiently useful to a user without the target system. The
results of this question are shown in Fig. 7(b).

Finally, we asked whether the software tools expose an
application programming interface (API), such that a user
could program with it. This includes APIs for environments
such as MATLAB [22], as well as web services and other
network APIs. The results are presented in Fig. 7(c).

F. Availability and licensing

A final set of questions in the survey concerned the distribu-
tion and licensing terms of the software. The legal and practical
consequences of different alternatives in this area can have a
significant impact on users’ choice of the tools they use.

Microsoft Windows

Apple Mac OS

Linux

Web browser

0 20 40 60 80

7

0

0

8

26

58

64

69

(a) Major operating systems/platforms supported.

Has
depend.

35%
Does
not

have
dependencies

65%

(b) Dependencies.

No API
47%

API
53%

(c) APIs.

Fig. 7. (a) Number of applications that run on the most common operating systems and platforms. Dark gray (longer) bars indicate totals for each platform;
light gray (shorter) bars indicate the subset of those tools that support only that platform. (b) Proportion of tools that depend on other environments such as
MATLAB [22]. (c) Proportion of tools that provide an application programming interface (API).

We first asked respondents whether their software is avail-
able for free, or at cost, to academic and (separately) non-
academic users. Fig. 8(a) and (b) summarize the results as
percentages of the total responses.

We also asked whether the source code for the software
was available. We specifically asked that this question be
considered separately from whatever might be the terms of
redistribution for the software source code. We show the
results for this question in Fig. 8(c). (We did also include a
separate question in the survey asking respondents to indicate
whether redistribution was permitted under open-source terms.
However, upon analyzing the results for that question, we now
believe many respondents were confused about the intended
meaning. We therefore omit that question’s results entirely.
We believe the other questions were not affected as a result of
possible confusion over the redistribution question.)

Finally, we asked about licensing terms. We provided a free-
form text field in the survey, for respondents to write the name
of the license used (if it is a common license) or a web address
detailing the terms. We tabulated the number of times different
licenses were mentioned and graphed the results in Fig. 8(d).

IV. DISCUSSION

In this section, we discuss the results reported above. We
cover each topic in the same order as in Section III.

A. Capabilities of SBML-compatible software systems

Perhaps the most striking aspect of the results shown in
Fig. 1 is how many software tools are available with each
of the capabilities listed. For example, over half of the tools
provide simulation, and well over half provide some kind
of model creation/editing facility. When we consider that the
number of responses to this survey represents only a portion
of the SBML-compatible software tools in the world, this
is an exciting result. If the same proportions hold for the
entire landscape of SBML-compatible software systems, then
for computational scientists in biology today, the number of
options available is surely a boon to research.

Simulation and analysis software are the most prominent
in the results (see Fig. 1(b)). This is unsurprising considering
that these areas historically have been the reasons for SBML’s

existence. On the other side of the spectrum, we are surprised
by the relatively low number of tools that are categorized as
annotation software. Although being able to create, edit and
analyze a model are central goals in computational modeling,
annotations are crucial to making a model interpretable and
reusable by others (whether they are other humans, or other
software) [24], [25]. We hope that support for working with
annotations will increase in the future.

B. Mathematical frameworks in use

The results shown in Fig. 2 are a blend of unsurprising
and surprising. It is unsurprising that the ordinary differen-
tial equation (ODE) framework is the most common among
SBML-compatible software tools, simply because it is the most
commonly-used framework in computational systems biology
as a whole. It is also good to see a reasonable proportion of
tools (28 out of 81, or 1/3) support discrete stochastic simu-
lation, an important framework for many research problems.

Some of the other frameworks concern areas that have
not traditionally been SBML’s forte, notably PDE and logi-
cal/Boolean networks. In fact, these are ongoing development
areas for SBML today. The low showing for these frameworks
may reflect a simple feedback loop: without adequate support
in SBML, modelers may not have been easily able to express
these models, which in turn led to software developers not
being motivated to support these frameworks. With the in-
troduction of SBML Level 3 Packages (such as the Spatial
Package [26]), SBML will become better able to express
these kinds of models, which will hopefully encourage the
development of software support for the other frameworks.

The surprisingly high number of “None of the above”
responses prompted us to look at the answers written in the
text field provided for elaborations. The most common answers
given were: (i) steady-state or flux-balance analysis, and (ii)
“not applicable” (most often given for format conversion
tools). The former suggests that we need to add this as an
option to a revised version of this survey.

C. SBML-specific software capabilities

Turning now to the SBML-specific capabilities reported in
Section III-C, we were surprised that a significant number of

Fee-based
2%

Free
98%

(a) Availability to academic users.

Fee-based
10%

Free
90%

(b) Availability to non-academic users.

Not
avail.
21%

Code
available
79%

(c) Availability of source code.

BSD
GPL

Custom license
LGPL

Creative Commons
Apache License
Artistic License

DARPA BioCOMP
MIT

None

0 20 40 60 80

5
1
1
1
1

4
10

13
22
23

(d) Distribution of software licenses used among the 81 software tools examined in this survey.

Fig. 8. Software availability and licensing.

tools understand SBML only in one direction, either reading or
writing SBML, and not both. We examined the specific cases
where tools only offered one direction, and found that most of
them were conversion tools, model-generation tools, database
systems, or simulation engines—in other words, either the
starting point or the end point of common modeling workflows.
(For example, databases are often the starting point of a
workflow that moves models from retrieval, to simulation, to
visualization, while simulation engines are often the end point.)

Support for SBML Level 3 stands at slightly over one third
of the tools, as shown in Fig. 4. The Level 3 specification has
been available for nine months (a draft version was available
for a year longer). Software libraries compatible with Level 3
have existed since last year, and an updated libSBML [10]
released at the same time as the specification was designed
to make it easy to transition from SBML Level 2 to Level 3.
We therefore hoped to see greater support for Level 3. On the
other hand, we need to keep in mind two factors that may have
influenced the lower than expected level of Level 3 adoption
to date. First, many software tools are developed with limited
funding and personnel. The degree of support for Level 3 today
may thus not reflect a lack of desire on the part of developers,
but simply a lack of resources during the past nine months.
Second, there may also be a chicken-and-egg problem at work:
tool developers may not be motivated to implement support for
SBML Level 3 because there are not many Level 3 models
“in the wild”—-but there may not be many Level 3 models
available precisely because tool support is limited.

Finally, the pattern of results for the question about quanti-
tative/mathematical understanding (see Fig. 5) left us puzzled.
We could not understand how so few tools could not interpret
basic SBML elements such as species and still consider
themselves to be SBML-compatible tools. If we subtract the
number of responses for “Other, or not applicable” (14)
from the maximum (81), we are still left with 9 tools that
did not indicate they could interpret the most basic SBML
constructs—possibly indicating an inconsistency in the survey
responses. We went back to the original question and data, and
upon closer examination of the results, we noticed a pattern.
The choices in the survey question were organized as follows:

1) Interpret species, reactions, parameters, and/or compartments
2) Work with stoichiometric relationships/maps
3) Work with reaction kinetics
4) Work with other mathematical relationships
5) Work with conditional discontinuous events
6) Work with time delays
7) Other, or not applicable

This sequence of questions had a relatively natural ordering
in terms of complexity of mathematical understanding. When
we examined the individual responses, we found that some
respondents selected only one of the options, yet we knew
from direct experience that the tools in question could also
interpret the “simpler” SBML elements listed prior to their
selections in the list of choices. In other words, it appeared
some respondents misunderstood the instructions and did not
check all the applicable choices, but rather selected only the
most complex option that their software could work with.

Interpret species, reactions, parameters, and/or compartments

Work with reaction kinetics

Work with stoichiometric relationships/maps

Work with other mathematical relationships

Work with conditional discontinuous events

Work with time delays

Other, or not applicable

0 20 40 60 80

14

10

27

32

46

48

65

Fig. 9. Responses to the question from Fig. 5 after correcting for a likely misunderstanding in the instructions.

To correct for this, we generated a new table and graph by
applying the following simple rule: if an entry had only one
option selected from the list of choices above, we also checked
all the prior options. For example, if a tool listed only “Work
with reaction kinetics”, we also checked “Interpret species,
reactions, parameters, and/or compartments” and “Work with
stoichiometric relationships/maps”, because those appeared
prior to “Work with reaction kinetics” in the list above.

Fig. 9 displays a graph of the results. Now the sum of
responses for “Interpret species, reactions, parameters, and/or
compartments” and “Other, or not applicable” add up to 79,
which is more plausible. Examining the remaining two tools,
we find that they selected multiple other capabilities such as
(e.g., “Work with other mathematical relationships” and “Work
with conditional discontinuous events”) but not others. We plan
on examining these tools more carefully to understand the
operations they are performing and whether there remains a
misunderstanding about this question in the survey.

D. Other standards supported

The results of Fig. 6 illustrates that SBML-compatible
software tools support a number of other standards—clearly
a benefit to software interoperability in general.

We are surprised at the low degree of support for
MIRIAM [13], a basic standard for encoding annotations
such as authorship information. The 16 responses (Fig. 6)
represent less than one-fifth of the tools in this survey. We
then realized that many tools are concerned with analysis and
utility functions, and may not have any reason to operate
on MIRIAM annotations. Limiting consideration to tools that
specifically offer model creation capabilities (of which there
are 50, according to Fig. 1(a)), we see the number for MIRIAM
now represents nearly one third of the total—an improvement.
We then examined specific cases of non-supporting tools, and
found many that we suspect could support MIRIAM in at
least a minimal fashion. It is possible that in some cases,
the developers simply lack the resources to develop MIRIAM
support, but in other cases, we suspect we need to do further
outreach to promote the benefits of MIRIAM annotations.

E. General properties of the software implementations

Windows is the most widely-supported operating system
(Fig. 7(a)), which is not surprising given that Windows has the

dominant market share in operating systems. The results show,
however, that Windows developers are not limiting their efforts
to supporting only Windows, because the numbers indicate that
few tools (a total of eight) are Windows-only.

What is perhaps more surprising is that Mac OS is in second
place, edging out Linux. Many of the SBML-compatible
software systems are developed in academic environments for
academic users, where Linux is quite popular. We would have
expected Linux to be the second-most popular choice. The
result is even more surprising when one considers that none
of the tools were designed only for the Mac OS environment.

Another pleasant surprise is that over half of the tools
offer a means for interacting with the software through an
application programming interface (API). This suggests that
many developers are motivated to make their tools program-
matically accessible, despite the extra effort normally required
to implement this capability. This is gratifying to see, because
both users and developers benefit from being able to join
multiple tools together in pursuit of a research goal.

F. Availability and licensing

The survey reveals that software in this area is remarkably
open and free. Fig. 8(a) shows that the overwhelming majority
of the software is free to academic users, and Fig. 8(b) shows
90% of the software is likewise free to commercial users too.

The source code to most of the applications is available
under open-source terms. The BSD [27] and GPL [28] licenses
are the most popular, together accounting for over half of the
software in the survey. Custom licenses are used for those
tools that have restricted distribution terms. LGPL [29] and a
smattering of other licenses account for most of the remainder.

We find the popularity of BSD to be interesting because it
is more open and less restrictive than GPL. More generally,
the fact that the majority of tools are available under any
open-source terms at all suggests that developers genuinely
want their software to be used and reused by others. Perhaps
they recognize the positive feedback loop described in the
introduction: better and more sophisticated tools enable better
and deeper research, which in turn drives the evolution of new
and more powerful software.

V. CONCLUSIONS

The survey results point to an abundance of software tools
available today for computational systems biologists. The tools
provide many capabilities, and nearly all are available under
open-source terms. The simple fact that so many tools support
SBML is a testament to SBML’s utility and interoperability.

We would like to see greater software support for other
related standards, especially MIRIAM and annotations. We
believe that with greater support for these features will come
even more powerful software systems in the future. Conversely,
this survey revealed that many systems offer support for classes
of modeling frameworks outside of SBML’s core competence,
which only serves to renew our sense of urgency to develop
SBML Level 3 packages covering these other important areas.

ACKNOWLEDGMENTS

We thank the SBML community, the survey respondents, the
reviewers (for their comments), and NIH NIGMS (for support
through grant R01 GM070923).

REFERENCES

[1] M. Hucka, A. Finney, H. Sauro, H. Bolouri, J. Doyle, H. Kitano,
A. Arkin, B. Bornstein, D. Bray, A. Cornish-Bowden, A. Cuellar,
S. Dronov, E. Gilles, M. Ginkel, V. Gor, I. Goryanin, W. Hedley,
T. Hodgman, J. Hofmeyr, P. Hunter, N. Juty, J. Kasberger, A. Kremling,
U. Kummer, N. L. Novère, L. Loew, D. Lucio, P. Mendes, E. Minch,
E. Mjolsness, Y. Nakayama, M. Nelson, P. Nielsen, T. Sakurada,
J. Schaff, B. Shapiro, T. Shimizu, H. Spence, J. Stelling, K. Takahashi,
M. Tomita, J. Wagner, and J. Wang, “The Systems Biology Markup
Language (SBML): a medium for representation and exchange of
biochemical network models,” Bioinformatics, vol. 19, pp. 524–31, 2003.

[2] M. Hucka, A. Finney, B. J. Bornstein, S. M. Keating, B. E. Shapiro,
J. Matthews, B. L. Kovitz, M. J. Schilstra, A. Funahashi, J. C. Doyle,
and H. Kitano, “Evolving a lingua franca and associated software
infrastructure for computational systems biology: the Systems Biology
Markup Language (SBML) project,” IEE Systems Biology, vol. 1, no. 1,
pp. 41–53, 2004.

[3] SBML Team, “SBML.org,” Available at http://sbml.org, 2011.
[4] ——, “The SBML software guide,” Available at http://sbml.org/SBML

Software Guide, 2011.
[5] N. L. Novère, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin,

E. Demir, K. Wegner, M. I. Aladjem, S. M. Wimalaratne, F. T. Bergmann,
R. Gauges, P. Ghazal, H. Kawaji, L. Li, Y. Matsuoka, A. Villéger,
S. E. Boyd, L. Calzone, M. Courtot, U. Dogrusoz, T. C. Freeman,
A. Funahashi, S. Ghosh, A. Jouraku, S. Kim, F. Kolpakov, A. Luna,
S. Sahle, E. Schmidt, S. Watterson, G. Wu, I. Goryanin, D. B. Kell,
C. Sander, H. Sauro, J. L. Snoep, K. Kohn, and H. Kitano, “The Systems
Biology Graphical Notation,” Nature Biotechnology, vol. 27, no. 8, pp.
735–741, Aug. 2009.

[6] D. Köhn and N. Le Novère, “SED-ML – an XML format for the
implementation of the MIASE guidelines,” in Computational Methods
in Systems Biology, ser. Lecture Notes in Computer Science, M. Heiner
and A. Uhrmacher, Eds. Springer, 2008, vol. 5307, ch. 15, pp. 176–190.

[7] SBML Team, “SBML software details questionnaire,” http://sbml.org/
SBML Software Guide/SBML Software Details Questionnaire, 2011.

[8] SurveyMonkey, “SurveyMonkey,” http://www.surveymonkey.com, 2011.
[9] M. Hucka, F. T. Bergmann, S. Hoops, S. M. Keating, S. Sahle, J. C.

Schaff, L. P. Smith, and D. J. Wilkinson, “The Systems Biology Markup
Language (SBML): Language Specification for Level 3 Version 1 Core,”
Available at http://sbml.org/Documents/Specifications, 2010.

[10] B. J. Bornstein, S. M. Keating, A. Jouraku, and M. Hucka, “LibSBML:
an API library for SBML,” Bioinformatics, vol. 24, pp. 880–881, 2008.

[11] M. J. Herrgård, N. Swainston, P. Dobson, W. B. Dunn, K. Y. Arga,
M. Arvas, N. Blüthgen, S. Border, R. Costenoble, M. Heinemann,
M. Hucka, N. Le Novère, P. Li, W. Liebermeister, M. L. Mo, A. P. Oliv-
eria, D. Petranovic, S. Pettifer, E. Simeonidis, K. Smallbone, I. Spasić,
D. Weichart, R. Brent, D. S. Broomhead, H. V. Westerhoff, B. Krdar,
M. Penttilä, E. Klipp, B. Ø. Palsson, U. Sauer, S. G. Oliver, P. Mendes,
J. Nielsen, and D. B. Kell, “A consensus yeast metabolic network

reconstruction obtained from a community approach to systems biology,”
Nature Biotechnology, vol. 26, no. 10, pp. 1155–1160, 2008.

[12] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall,
“Graphml progress report: Structural layer proposal,” in Proc. of the 9th
International Symposium on Graph Drawing. Springer-Verlag, 2002.

[13] N. L. Novère, A. Finney, M. Hucka, U. S. Bhalla, F. Campagne,
J. Collado-Vides, E. J. Crampin, M. Halstead, E. Klipp, P. Mendes,
P. Nielsen, H. Sauro, B. Shapiro, J. L. Snoep, H. D. Spence, and
B. L. Wanner, “Minimum information requested in the annotation of
biochemical models (MIRIAM),” Nature Biotechnology, vol. 23, no. 12,
pp. 1509–1515, Dec. 2005.

[14] N. Le Novère, M. Courtot, and C. Laibe, “Adding semantics in kinetics
models of biochemical pathways,” in 2nd Int’l. ESCEC Workshop
on Experimental Standard Conditions on Enzyme Characterizations,
C. Kettner and M. G. Hicks, Eds. Beilstein Institut, 2006, pp. 137–153.

[15] E. Demir, M. P. Cary, S. Paley, K. Fukuda, C. Lemer, I. Vastrik, G. Wu,
P. D’Eustachio, C. Schaefer, J. Luciano, F. Schacherer, I. Martinez-
Flores, Z. Hu, V. Jimenez-Jacinto, G. Joshi-Tope, K. Kandasamy,
A. C. Lopez-Fuentes, H. Mi, E. Pichler, I. Rodchenkov, A. Splendiani,
S. Tkachev, J. Zucker, G. Gopinath, H. Rajasimha, R. Ramakrishnan,
I. Shah, M. Syed, N. Anwar, O. Babur, M. Blinov, E. Brauner, D. Cor-
win, S. Donaldson, F. Gibbons, R. Goldberg, P. Hornbeck, A. Luna,
P. Murray-Rust, E. Neumann, O. Reubenacker, M. Samwald, M. van
Iersel, S. Wimalaratne, K. Allen, B. Braun, M. Whirl-Carrillo, K.-H. H.
Cheung, K. Dahlquist, A. Finney, M. Gillespie, E. Glass, L. Gong,
R. Haw, M. Honig, O. Hubaut, D. Kane, S. Krupa, M. Kutmon,
J. Leonard, D. Marks, D. Merberg, V. Petri, A. Pico, D. Ravenscroft,
L. Ren, N. Shah, M. Sunshine, R. Tang, R. Whaley, S. Letovksy,
K. H. Buetow, A. Rzhetsky, V. Schachter, B. S. Sobral, U. Dogrusoz,
S. McWeeney, M. Aladjem, E. Birney, J. Collado-Vides, S. Goto,
M. Hucka, N. Le Novère, N. Maltsev, A. Pandey, P. Thomas, E. Wingen-
der, P. D. Karp, C. Sander, and G. D. Bader, “The BioPAX community
standard for pathway data sharing.” Nature biotechnology, vol. 28, no. 9,
pp. 935–942, Sep. 2010.

[16] C. M. Lloyd, M. D. Halstead, and P. F. Nielsen, “CellML: its future,
present and past,” Prog. Biophysics & Molecular Biology, vol. 85, 2004.

[17] M. Kanehisa and S. Goto, “KEGG Markup Language,” Available at
http://www.genome.jp/kegg/xml/, 2010.

[18] P. Gleeson, S. Crook, R. C. Cannon, M. L. Hines, G. O. Billings,
M. Farinella, T. M. Morse, A. P. Davison, S. Ray, U. S. Bhalla, S. R.
Barnes, Y. D. Dimitrova, and R. A. Silver, “NeuroML: A language for
describing data driven models of neurons and networks with a high
degree of biological detail,” PLoS Computational Biology, vol. 6, no. 6,
p. e1000815, 2010.

[19] H. Yun, D.-Y. Lee, J. Jeong, S. Lee, and S. Y. Lee, “MFAML: a standard
data structure for representing and exchanging metabolic flux models,”
Bioinformatics, vol. 21, no. 15, pp. 3329–3330, 2005.

[20] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber, “The Petri Net Markup
Language: Concepts, Technology, and Tools,” in Applications and The-
ory of Petri Nets 2003: 24th Int. Conf., Jun. 2003, pp. 1023–1024.

[21] M. Galdzicki, C. Rodriguez, D. Chandran, H. M. Sauro, and J. H.
Gennari, “Standard Biological Parts Knowledgebase,” PLoS ONE, vol. 6,
no. 2, pp. e17 005+, Feb. 2011.

[22] MathWorks, Inc., “MATLAB,” Available at http://mathworks.com, 2011.
[23] R Development Core Team, R: A Language and Environment for

Statistical Computing, Available at http://www.R-project.org, 2011.
[24] C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah,

L. Li, E. U. He, A. Henry, M. I. Stefan, J. L. Snoep, M. Hucka,
N. Le Novère, and C. Laibe, “Biomodels database: An enhanced, curated
and annotated resource for published quantitative kinetic models,” BMC
Systems Biology, vol. 4, 6 2010.

[25] J. Saez-Rodriguez, L. G. Alexopoulos, and G. Stolovitzky, “Setting the
standards for signal transduction research,” Science Signaling, vol. 4, no.
160, p. pe10, 2011.

[26] SBML Team, “SBML Level 3 Status Summary Table,” Available at http:
//sbml.org/Community/Wiki, 2011.

[27] Linux Information Project, “BSD license definition,” Available at http:
//www.linfo.org/bsdlicense.html, 2011.

[28] Free Software Foundation, “GNU General Public License,” Available at
http://www.gnu.org/licenses, 2011.

[29] ——, “GNU Lesser General Public License,” Available at http://www.
gnu.org/licenses/, 2011.

http://sbml.org
http://sbml.org/SBML_Software_Guide
http://sbml.org/SBML_Software_Guide
http://sbml.org/SBML_Software_Guide/SBML_Software_Details_Questionnaire
http://sbml.org/SBML_Software_Guide/SBML_Software_Details_Questionnaire
http://www.surveymonkey.com
http://sbml.org/Documents/Specifications
http://www.genome.jp/kegg/xml/
http://mathworks.com
http://www.R-project.org
http://sbml.org/Community/Wiki
http://sbml.org/Community/Wiki
http://www.linfo.org/bsdlicense.html
http://www.linfo.org/bsdlicense.html
http://www.gnu.org/licenses
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

