
The Systems Biology Markup Language (SBML):
Language Specification for Level 3 Version 1 Core

Michael Hucka (Chair) California Institute of Technology, US
Frank T. Bergmann California Institute of Technology, US
Stefan Hoops Virginia Bioinformatics Institute, US
Sarah M. Keating California Institute of Technology, US
Sven Sahle University of Heidelberg, DE
James C. Schaff University of Connecticut, US
Lucian P. Smith University of Washington, US
Darren J. Wilkinson Newcastle University, GB

sbml-editors@sbml.org

SBML Level 3 Version 1 Core

Release 1

6 October 2010

Corrections and other changes to this SBML language specification may appear over time.
Notifications of new releases are broadcast on the mailing list sbml-announce@sbml.org

The latest release of the SBML Level 3 Version 1 Core specification is available at
http://sbml.org/specifications/sbml-level-3/version-1/core

This release of the specification is available at
http://sbml.org/specifications/sbml-level-3/version-1/core/release-1/

The list of known issues in all releases of SBML Level 3 Version 1 Core is available at
http://sbml.org/specifications/sbml-level-3/version-1/core/errata/

Formal schemas for use with XML are available at
http://sbml.org/specifications/sbml-level-3/version-1/schemas/

mailto:sbml-editors@sbml.org
http://www.sbml.org/forums
http://sbml.org/specifications/sbml-level-3/version-1/core
http://sbml.org/specifications/sbml-level-3/version-1/core/release-1/
http://sbml.org/specifications/sbml-level-3/version-1/core/errata/
http://sbml.org/specifications/sbml-level-3/version-1/schemas/

Contents
1 Introduction 3

1.1 Developments, discussions, and notifications of updates . 3
1.2 SBML Levels, Versions, and Releases . 3
1.3 SBML Level 3 Packages . 4
1.4 Document conventions . 4

2 Overview of SBML 8
3 Preliminary definitions and principles 10

3.1 Primitive data types . 10
3.2 Type SBase . 13
3.3 The id and name attributes on SBML components . 16
3.4 Mathematical formulas in SBML Level 3 . 18

4 SBML components 28
4.1 The SBML container . 28
4.2 Model . 29
4.3 Function definitions . 33
4.4 Unit definitions . 35
4.5 Compartments . 40
4.6 Species . 43
4.7 Parameters . 47
4.8 Initial assignments . 49
4.9 Rules . 52
4.10 Constraints . 56
4.11 Reactions . 58
4.12 Events . 70

5 The Systems Biology Ontology and the sboTerm attribute 80
5.1 Principles . 80
5.2 Using SBO and sboTerm . 81
5.3 Relationships to the SBML annotation element . 86
5.4 Discussion . 87

6 A standard format for the annotation element 88
6.1 Motivation . 88
6.2 XML namespaces in the standard annotation . 88
6.3 General syntax for the standard annotation . 89
6.4 Use of URIs . 90
6.5 Relation elements . 90
6.6 History . 92
6.7 Examples . 93

7 Example models expressed in XML using SBML 99
7.1 A simple example application of SBML . 99
7.2 A simple example using the conversionFactor attribute . 101
7.3 An alternative formulation of the conversionFactor example . 104
7.4 Example of a discrete version of a simple dimerization reaction . 107
7.5 Example involving assignment rules . 110
7.6 Example involving algebraic rules . 112
7.7 Example with combinations of boundaryCondition and constant values on Species with RateRule objects 114
7.8 Example of translation from a multi-compartmental model to ODEs . 116
7.9 Example involving function definitions . 119
7.10 Example involving delay functions . 120
7.11 Example involving events . 121
7.12 Example involving two-dimensional compartments . 123
7.13 Example of a reaction located at a membrane . 127
7.14 Example using an event with a non-persistent trigger and a delay . 129

8 Recommended practices 132
8.1 Recommended practices concerning common SBML attributes and objects . 132
8.2 Recommended practices concerning specific SBML components . 134

A Validation and consistency rules for SBML 141
B A method for assessing whether an SBML model is overdetermined 159
C Mathematical consequences of the fast attribute on Reaction 162
Acknowledgments 164
References 165

2

1 Introduction1

This document defines Version 1 of the Systems Biology Markup Language (SBML) Level 3 Core, an2

electronic model representation format for systems biology. SBML is oriented towards describing biological3

processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling4

pathways, and many others. SBML is defined neutrally with respect to programming languages and software5

encoding; however, it is oriented primarily towards allowing models to be encoded using XML, the eXtensible6

Markup Language (Bray et al., 2004). This document contains many examples of SBML models written in7

XML. Formal schemas describing the syntax of SBML, as well as other materials and software, are available8

from the SBML project web site, http://sbml.org/.9

The SBML project is not an attempt to define a universal language for representing quantitative models. The10

rapidly evolving views of biological function, coupled with the vigorous rates at which new computational11

techniques and individual tools are being developed today, are incompatible with a one-size-fits-all idea of a12

universal language. A more realistic alternative is to acknowledge the diversity of approaches and methods13

being explored by different software tool developers, and seek a common intermediate format—a lingua14

franca—enabling communication of the most essential aspects of the models.15

The definition of the model description language presented here does not specify how programs should16

communicate or read/write SBML. We assume that for a simulation program to communicate a model17

encoded in SBML, the program will have to translate its internal data structures to and from SBML, use a18

suitable transmission medium and protocol, etc., but these issues are outside the scope of this document.19

1.1 Developments, discussions, and notifications of updates20

SBML has been, and continues to be, developed in collaboration with an international community of re-21

searchers and software developers. As in many projects, the primary mode of interaction between members22

is electronic mail. Discussions about SBML take place on the mailing list sbml-discuss@caltech.edu. The23

mailing list archives and a web-browser-based interface to the list are available at http://sbml.org/Forums/.24

A low-volume, broadcast-only mailing list is available where notifications of revisions to the SBML speci-25

fication, notices of votes on SBML technical issues, and other critical matters are announced. This list26

is sbml-announce@caltech.edu and anyone may subscribe to it freely. This list will never be used for27

advertising and its membership list will never be disclosed. It is vitally important that all users of SBML28

stay informed about new releases and other developments by subscribing to this list, even if they do not29

wish to participate in discussions on the sbml-discuss@caltech.edu list. Please visit http://sbml.org/ for30

information about how to subscribe to sbml-announce@caltech.edu as well as for access to the list archives.31

1.2 SBML Levels, Versions, and Releases32

Major editions of SBML are termed levels and represent substantial changes to the composition and structure33

of the language. The edition of SBML defined in this document, SBML Level 3, represents an evolution of34

the language resulting from the practical experiences of users and developers working with SBML since its35

introduction in the year 2001 (Hucka et al., 2001, 2003). All of the constructs of Level 1 can be mapped to36

Level 2; likewise, all of the constructs from Level 2 can be mapped to Level 3 (when Level 3 is considered37

in terms of the Core and Level 3 packages; see next section). In addition, a subset of Level 3 constructs can38

be mapped to Level 2, and a subset of Level 2 constructs can be mapped to Level 1. However, the levels39

remain distinct; a valid SBML Level 1 document is not a valid SBML Level 2 document, and so on.40

In practice, once a new level of SBML is defined, no further development is undertaken on lower levels. An41

exception is made for the correction of problems and other issues that may be identified in the specifications42

of lower levels; such corrections are handled as described below.43

Minor revisions of SBML are termed versions and constitute changes within a level to correct, adjust, and44

refine language features. The present document defines Level 3 Version 1 Core. A separate document45

provides information about the changes between SBML Level 3 and SBML Level 2.46

3

http://sbml.org/
http://sbml.org/Forums
http://sbml.org/Forums/
http://sbml.org/Forums
http://sbml.org/Forums
http://sbml.org/
http://sbml.org/Forums

Specification documents inevitably require minor editorial changes as their users discover errors and ambi-1

guities. As a practical reality, these discoveries occur over time. In the context of SBML, such problems2

are formally announced publicly as errata in a given specification document. Borrowing concepts from the3

World Wide Web Consortium (Jacobs, 2004), we define SBML errata as changes of the following types:4

(a) formatting changes that do not result in changes to textual content; (b) corrections that do not affect5

conformance of software implementing support for a given combination of SBML level and version; and (c)6

corrections that may affect such software conformance, but add no new language features. A change that7

affects conformance is one that either turns conforming data, processors, or other conforming software into8

non-conforming software, or turns non-conforming software into conforming software, or clears up an ambi-9

guity or insufficiently-documented part of the specification in such a way that software whose conformance10

was once unclear now becomes clearly conforming or non-conforming (Jacobs, 2004). In short, errata do11

not change the fundamental semantics or syntax of SBML; they clarify and disambiguate the specification12

and correct errors. (New syntax and semantics are only introduced in SBML versions and levels.) A public13

tracking system for reporting and monitoring such issues is available at http://sbml.org/issue-tracker,14

and we urge readers to use that system to report any issues found in this document.15

SBML errata eventually result in new Releases of the specification. Each such release is numbered, with16

the first release of the specification being number 1. Subsequent releases of an SBML specification doc-17

ument contain a section describing the accumulated issues corrected since the first release. If errata are18

acknowledged for SBML Level 3 Version 1 Core since the publication of Release 1, they are listed publicly19

at http://sbml.org/ specifications/sbml-level-3/version-1/core/errata/. Announcements of errata,20

updates to the SBML specification and other major changes are made on the sbml-announce@caltech.edu21

mailing list.22

1.3 SBML Level 3 Packages23

SBML Level 3 is being developed as a modular language, with a central core comprising a self-sufficient model24

definition language, and extension packages layered on top of this core to provide additional, optional sets of25

features. This document defines the core of Level 3. The definition is based largely on SBML Level 2, with26

some modifications to address sources of problems found by experience with Level 2, and some simplifications27

to remove Level 2 constructs that are expected to be supported more thoroughly through SBML Level 328

packages. Section 4.1.2 describes the mechanism by which models defined in SBML Level 3 can declare29

which packages they use.30

The specifications for packages available for SBML Level 3 is maintained separately on the SBML website31

at http://sbml.org/Documents/Specifications. A list of packages is not provided in this specification32

document (i.e., for Level 3 Core) because the development of packages for Level 3 proceeds independently,33

and new ones may be introduced over time after Level 3 Core is published. The SBML website provides34

information about ongoing activities in this area, as well as about the process whereby individuals and groups35

may propose new packages.36

1.4 Document conventions37

In this section, we describe the conventions used in this specification document to communicate information38

more effectively.39

1.4.1 Color conventions40

Throughout this document, we use coloring to carry additional information for the benefit of those viewing41

the document on media that can display color:42

• We use red color in text and figures to indicate changes between this version of the specification (SBML43

Level 3 Version 1 Core Release 1) and the most recent previous release of the specification (which, for44

the present case, is SBML Level 3 Version 1 Core Release 1 Candidate). The changes may be either45

additions or deletions of text; in the case of deletions, entire sentences, paragraphs or sections are46

colored to indicate a change has occurred inside them.47

4

http://sbml.org/issue-tracker
http://sbml.org/specifications/sbml-level-3/version-1/core/errata/
http://sbml.org/specifications/sbml-level-3/version-1/core/errata/
http://sbml.org/Forums
http://sbml.org/Documents/Specifications

• We use blue color in text to indicate a hyperlink from one point in this document to another. Clicking1

your computer’s pointing device on blue-colored text will cause a jump to the section, figure, table or2

page to which the link refers. (Of course, this capability is only available when using electronic formats3

that support hyperlinking, such as PDF and HTML.)4

1.4.2 Typographical conventions for names5

We use the following typographical conventions to distinguish objects and data types from other entities:6

AbstractClass: Abstract classes are classes that are never instantiated directly, but rather serve as parents7

of other object classes. Their names begin with a capital letter and they are printed in a slanted,8

bold, sans-serif typeface. In electronic document formats, the class names are also hyperlinked to their9

definitions in the specification. For example, in the PDF and HTML versions of this document, clicking10

on the word SBase will send the reader to the section containing the definition of this class.11

Class: Names of ordinary (concrete) classes begin with a capital letter and are printed in an upright,12

bold, sans-serif typeface. In electronic document formats, the class names are also hyperlinked to their13

definitions in the specification. For example, in the PDF and HTML versions of this document, clicking14

on the word Species will send the reader to the section containing the definition of this class.15

SomeThing, otherThing: Attributes of classes, data type names, literal XML, and generally all tokens16

other than SBML UML class names, are printed in an upright typewriter typeface. Primitive types17

defined by SBML begin with a capital letter; SBML also makes use of primitive types defined by18

XML Schema 1.0 (Biron and Malhotra, 2000; Fallside, 2000; Thompson et al., 2000), but unfortu-19

nately, XML Schema does not follow any capitalization convention and primitive types drawn from the20

XML Schema language may or may not start with a capital letter.21

1.4.3 UML notation22

Previous specifications of SBML used a notation that was at one time (in the days of SBML Level 1) fairly23

close to UML, the Unified Modeling Language (Eriksson and Penker, 1998; Oestereich, 1999), though many24

details were omitted from the UML diagrams themselves. Over the years, the notation used in successive25

specifications of SBML grew increasingly less UML-like. Beginning with SBML Level 2 Version 3, we have26

completely overhauled the specification’s use of UML and once again define the XML syntax of SBML using,27

as much as possible, proper and complete UML 1.0. We then systematically map this UML notation to28

XML. In the rest of this section, we summarize the UML notation used in this document and explain the29

few embellishments needed to support transformation to XML form.30

We see three main advantages to using UML as a basis for defining SBML data objects. First, compared31

to using other notations or a programming language, the UML visual representations are generally easier32

to grasp by readers who are not computer scientists. Second, the notation is implementation-neutral: the33

objects can be encoded in any concrete implementation language—not just XML, but C, Java and other34

languages as well. Third, UML is a de facto industry standard that is documented in many resources.35

Readers are therefore more likely to be familiar with it than other notations.36

Object class definitions37

Object classes in UML diagrams are drawn as simple tripartite boxes, as shown in Figure 1 (left). UML38

allows for operators as well as data attributes to be defined, but SBML only uses data attributes, so all39

SBML class diagrams use only the top two portions of a UML class box (Figure 1, right).40

As mentioned above, the names of ordinary (concrete) classes begin with a capital letter and are printed in41

an upright, bold, sans-serif typeface. The names of attributes begin with a lower-case letter and generally42

use a mixed case (sometimes called “camel case”) style when the name consists of multiple words. Attributes43

and their data types appear in the part below the class name, with one attribute defined per line. The colon44

character on each line separates the name of the attribute (on the left) from the type of data that it stores45

(on the right). The subset of data types permitted for SBML attributes is given in Section 3.1.46

5

Class Name

attributes
operators

ExampleClass

attribute: int
anotherAttribute: double

Figure 1: (Left) The general form of a UML class diagram. (Right) Example of a class diagram of the sort seen in SBML.
SBML classes never use operators, so SBML class diagrams only show the top two parts.

In the right-hand diagram of Figure 1, the symbols attribute and anotherAttribute represent attributes of1

the object class ExampleClass. The data type of attribute is int, and the data type of anotherAttribute is2

double. In the scheme used by SBML for translating UML to XML, object attributes map directly to XML3

attributes. Thus, in XML, ExampleClass would yield an element of the form <element attribute="42"4

anotherAttribute="10.0">.5

Notice that the element name is not <ExampleClass ...>. Somewhat paradoxically, the name of the element6

is not the name of the UML class defining its structure. The reason for this may be subtle at first, but quickly7

becomes obvious: object classes define the form of an object’s content, but a class definition by itself does8

not define the label or symbol referring to an instance of that content. It is this label that becomes the name9

of the XML element. In XML, this symbol is most naturally equated with an element name. This point will10

hopefully become clearer with additional examples below.11

Subelements12

We use UML composition to indicate a class object can have other class objects as parts. Such containment13

hierarchies map directly to element-subelement relationships in XML. Figure 2 gives an example.14

Whole

A: int
B: string

Part

C: double

inside

Figure 2: Example illustrating composition: the definition of one class of objects employing another class of objects in a
part-whole relationship. In this particular example, an instance of a Whole class object must contain exactly one instance
of a Part class object, and the label referring to the Part class object is inside. In XML, this symbol becomes the name
of a subelement and the content of the subelement follows the definition of Part.

The line with the black diamond indicates composition, with the diamond located on the “container” side15

and the other end located at the object class being contained. The label on the line is used to refer to16

instances of the contained object, which in XML, maps directly to the name of an XML element. The class17

pointed to by the composition relationship (Part in Figure 2) defines the contents of that element. Thus, if18

we are told that some element named barney is of class Whole, the following is an example XML fragment19

consistent with the class definition of Figure 2:20

<barney A="110" B="some string">21

<inside C="444.4">22

</barney>23

Sometimes numbers are placed above the line near the “contained” side of a composition to indicate how24

many instances can be contained. The common cases in SBML are the following: [0..*] to signify a list25

containing zero or more; [1..*] to signify a list containing at least one; and [0..1] to signify exactly26

zero or one. The absence of a numerical label means “exactly 1”. This notation appears throughout this27

specification document.28

6

Inheritance1

Parent

A: int
B: boolean

Child

C: int
D: string

Figure 3: Inheritance.

Classes can inherit properties from other classes. Since SBML only uses2

data attributes and not operators, inheritance in SBML simply involves3

data attributes from a parent class being inherited by child classes. Inheri-4

tance is indicated by a line between two classes, with an open triangle next5

to the parent class; Figure 3 illustrates this. In this example, the instances6

of object class Child would have not only attributes C and D, but also at-7

tributes A and B. All of these attributes would be required (not optional)8

on instances of class Child because they are mandatory on both the Parent9

and Child classes.10

Additional notations for XML purposes11

Not everything is easily expressed in plain UML. For example, it is often necessary to indicate some con-12

straints placed on the values of an attribute. In computer programming uses of UML, such constraints are13

often expressed using Object Constraint Language (OCL), but since we are most interested in the XML ren-14

dition of SBML, in this specification we use XML Schema 1.0 (when possible) as the language for expressing15

value constraints. Constraints on the values of attributes are written as expressions surrounded by braces16

({ }) after the data type declaration, as in the example of Figure 4.17

SBase

SBML

xmlns: string { use=”required” fixed=”http://www.sbml.org/sbml/level3/version1/core” }
level: positiveInteger { use=”required” fixed=”3” }
version: positiveInteger { use=”required” fixed=”1” }
{ Additional attributes permitted. }

Model
model

Figure 4: A more complex example definition drawing on the concepts introduced so far in this section. Both SBML and
Model are derived from SBase; further, SBML contains a single Model object named model. Note the constraints on the
values of the attributes in SBML; they are enclosed in braces and often written in XML Schema language. The particular
constraints here state that the xmlns, level and version attributes must be present, and that the values are fixed as
indicated. In addition, other attributes are permitted (for example, such as those added by Level 3 packages).

In other situations, when something cannot be concisely expressed using a few words of XML Schema, we18

write constraints using English language descriptions surrounded by braces ({ }). To help distinguish these19

from literal XML Schema, we set the English text in a slanted typeface. The text accompanying all SBML20

component definitions provides explanations of the constraints and any other conditions applicable to the21

use of the components.22

7

2 Overview of SBML1

The following is an example of a simple network of biochemical reactions that can be represented in SBML:2

S1
k1[S1]/([S1]+k2)
−−−−−−−−−−−−→ S2

S2
k3[S2]

−−−−−−−−−−−−→ S3 + S4

3

In this particular set of chemical equations above, the symbols in square brackets (e.g., “[S1]”) represent4

concentrations of molecular species, the arrows represent reactions, and the formulas above the arrows5

represent the rates at which the reactions take place. (And while this example uses concentrations, it6

could equally have used other measures such as molecular counts.) Broken down into its constituents, this7

model contains a number of components: reactant species, product species, reactions, reaction rates, and8

parameters in the rate expressions. To analyze or simulate this network, additional components must be9

made explicit, including compartments for the species, and units on the various quantities.10

SBML allows models of arbitrary complexity to be represented. Each type of component in a model is11

described using a specific type of data object that organizes the relevant information. The top level of an12

SBML model definition consists of lists of these components, with every list being optional:13

14 beginning of model definition
15 list of function definitions (optional) (Section 4.3)
16 list of unit definitions (optional) (Section 4.4)
17 list of compartments (optional) (Section 4.5)
18 list of species (optional) (Section 4.6)
19 list of parameters (optional) (Section 4.7)
20 list of initial assignments (optional) (Section 4.8)
21 list of rules (optional) (Section 4.9)
22 list of constraints (optional) (Section 4.10)
23 list of reactions (optional) (Section 4.11)
24 list of events (optional) (Section 4.12)
25 end of model definition

The meaning of each component is as follows:26

Function definition: A named mathematical function that may be used throughout the rest of a model.27

Unit definition: A named definition of a new unit of measurement. Named units can be used in the28

expression of quantities in a model.29

Compartment : A well-stirred container of finite size where species may be located. Compartments may or30

may not represent actual physical structures.31

Species: A pool of entities of the same kind located in a compartment and participating in reactions32

(processes). In biochemical network models, common examples of species include ions, proteins and33

other molecules; however, in practice, an SBML species can be any kind of entity that makes sense in34

the context of a given model.35

Parameter : A quantity with a symbolic name. In SBML, the term parameter is used in a generic sense36

to refer to named quantities regardless of whether they are constants or variables in a model. SBML37

Level 3 provides the ability to define parameters that are global to a model as well as parameters that38

are local to a single reaction.39

Initial Assignment : A mathematical expression used to determine the initial conditions of a model. This40

type of object can only be used to define how the value of a variable can be calculated from other41

values and variables at the start of simulated time.42

8

Rule: A mathematical expression added to the set of equations constructed based on the reactions defined1

in a model. Rules can be used to define how a variable’s value can be calculated from other variables,2

or used to define the rate of change of a variable. The set of rules in a model can be used with the3

reaction rate equations to determine the behavior of the model with respect to time. Rules constrain4

the model for the entire duration of simulated time.5

Constraint : A means of detecting out-of-bounds conditions during a dynamical simulation and optionally6

issuing diagnostic messages. Constraints are defined by an arbitrary mathematical expression comput-7

ing a true/false value from model variables, parameters and constants. An SBML constraint applies at8

all instants of simulated time; however, the set of constraints in model should not be used to determine9

the behavior of the model with respect to time.10

Reaction: A statement describing some transformation, transport or binding process that can change the11

amount of one or more species. For example, a reaction may describe how certain entities (reactants) are12

transformed into certain other entities (products). Reactions have associated kinetic rate expressions13

describing how quickly they take place.14

Event : A statement describing an instantaneous, discontinuous change in one or more variables of any type15

(species, compartment, parameter, etc.) when a triggering condition is satisfied.16

A software package can read an SBML model description and translate it into its own internal format for17

model analysis. For example, a package might provide the ability to simulate the model by constructing18

differential equations representing the network and then perform numerical time integration on the equations19

to explore the model’s dynamic behavior. By supporting SBML as an input and output format, different20

software tools can all operate on an identical external representation of a model, removing opportunities for21

errors in translation and assuring a common starting point for analyses and simulations.22

9

3 Preliminary definitions and principles1

This section covers certain concepts and constructs that are used repeatedly in the rest of SBML Level 3.2

3.1 Primitive data types3

Most primitive types in SBML are taken from the data types defined in XML Schema 1.0 (Biron and4

Malhotra, 2000; Fallside, 2000; Thompson et al., 2000). A few other primitive types are defined by SBML5

itself. What follows is a summary of the XML Schema types and the definitions of the SBML-specific types.6

Note that, while we have tried to provide accurate and complete summaries of the XML Schema types, the7

following descriptions should not be taken to be normative definitions of these types. Readers should consult8

the XML Schema 1.0 specification for the normative definitions of the XML data types used by SBML.9

3.1.1 Type string10

The XML Schema 1.0 type string is used to represent finite-length strings of characters. The characters11

permitted to appear in XML Schema string include all Unicode characters (Unicode Consortium, 1996)12

except for two delimiter characters, 0xFFFE and 0xFFFF (Biron and Malhotra, 2000). In addition, the13

following quoting rules specified by XML for character data (Bray et al., 2004) must be obeyed:14

• The ampersand (&) character must be escaped using the entity &.15

• The apostrophe (’) and quotation mark (") characters must be escaped using the entities ' and16

", respectively, when those characters are used to delimit a string attribute value.17

Other XML built-in character or entity references, e.g., < and &x1A;, are permitted in strings.18

3.1.2 Type boolean19

The XML Schema 1.0 type boolean is used for SBML object attributes that represent binary true/false20

values. XML Schema 1.0 defines the possible literal values of boolean as the following: “true”, “false”,21

“1”, and “0”. The value “1” maps to “true” and the value “0” maps to “false” in attribute values.22

Note that there is a discrepancy between the value spaces of type boolean as defined by XML Schema 1.0 and23

MathML: the latter uses only “true” and “false” to represent boolean values, with “0” and “1” reserved24

for numbers. Software tools should take care not to attempt using “0” and “1” as boolean values in MathML25

expressions. See further discussion in Section 3.4.4.26

3.1.3 Type int27

The XML Schema 1.0 type int is used to represent decimal integer numbers in SBML. The literal represen-28

tation of an int is a finite-length sequence of decimal digit characters with an optional leading sign (“+” or29

“-”). If the sign is omitted, “+” is assumed. The value space of int is the same as a standard 32-bit signed30

integer in programming languages such as C, i.e., 2147483647 to −2147483648.31

3.1.4 Type positiveInteger32

The XML Schema 1.0 type positiveInteger is used to represent nonzero, nonnegative, decimal integers:33

i.e., 1, 2, 3, The literal representation of an integer is a finite-length sequence of decimal digit characters,34

optionally preceded by a positive sign (“+”). There is no restriction on the absolute size of positiveInteger35

values in XML Schema; however, the only situations where this type is used in SBML involve very low-36

numbered integers. Consequently, applications may safely treat positiveInteger as unsigned 32-bit integers.37

3.1.5 Type double38

The XML Schema 1.0 type double is the data type of floating-point numerical quantities in SBML. It is39

restricted to IEEE double-precision 64-bit floating-point type IEEE 754-1985. The value space of double40

consists of (a) the numerical values m · 2x, where m is an integer whose absolute value is less than 253,41

10

and x is an integer between -1075 and 970, inclusive, (b) the special value positive infinity (INF), (c) the1

special value negative infinity (-INF), and (d) the special value not-a-number (NaN). The order relation on2

the values is the following: x < y if and only if y − x is positive for values of x and y in the value space of3

double. Positive infinity is greater than all other values other than NaN. NaN is equal to itself but is neither4

greater nor less than any other value in the value space. (Software implementors should consult the XML5

Schema 1.0 definition of double for additional details about equality and relationships to IEEE 754-1985.)6

The general form of double numbers is “xey”, where x is a decimal number (the mantissa), “e” is a separator7

character, and y is an exponent; the meaning of this is “x multiplied by 10 raised to the power of y”, i.e.,8

x · 10y. More precisely, a double value consists of a mantissa with an optional leading sign (“+” or “-”),9

optionally followed by the character E or e followed by an integer (the exponent). The mantissa must be a10

decimal number: an integer optionally followed by a period (.) optionally followed by another integer. If the11

leading sign is omitted, “+” is assumed. An omitted E or e (and associated exponent) means that a value of12

0 is assumed for the exponent. If the E or e is present, it must be followed by an integer, or else an error13

results. The integer exponent must consist of a decimal number optionally preceded by a leading sign (“+”14

or “-”). If the sign is omitted, “+” is assumed. The following are examples of legal literal double values:15

-1E4, +4, 234.234e3, 6.02E-23, 0.3e+11, 2, 0, -0, INF, -INF, NaN16

As described in Section 3.4, SBML uses a subset of the MathML 2.0 standard (W3C, 2000b) for expressing17

mathematical formulas in XML. This is done by stipulating that the MathML language be used whenever18

a mathematical formula must be written into an SBML model. Doing this, however, requires facing two19

problems: first, the syntax of numbers in scientific notation (“e-notation”) is different in MathML from that20

just described for double, and second, the value space of integers and floating-point numbers in MathML21

is not defined in the same way as in XML Schema 1.0. We elaborate on these issues in Section 3.4.2; here22

we summarize the solution taken in SBML. First, within MathML, the mantissa and exponent of numbers23

in “e-notation” format must be separated by one <sep/> element. This leads to numbers of the form <cn24

type="e-notation"> 2 <sep/> -5 </cn>. Second, SBML stipulates that the representation of numbers in25

MathML expressions obey the same restrictions on values as defined for types double and int (Section 3.1.3).26

3.1.6 Type ID27

The XML Schema 1.0 type ID is identical to the XML 1.0 type ID. The literal representation of this type28

consists of strings of characters restricted as summarized in Figure 5.29

30 NameChar ::= letter | digit | ’.’ | ’-’ | ’ ’ | ’:’ | CombiningChar | Extender

31 ID ::= (letter | ’ ’ | ’:’) NameChar*

Figure 5: Type ID expressed in the variant of BNF used by the XML 1.0 specification (Bray et al., 2004). The characters
(and) are used for grouping, the character * indicates “zero or more times”, and the character | indicates “or”. The
production letter consists of the basic upper and lower case alphabetic characters of the Latin alphabet along with a
large number of related characters defined by Unicode 2.0; similarly, the production digit consists of the numerals 0..9
along with related Unicode 2.0 characters. The CombiningChar production is a list of characters that add such things
as accents to the preceding character. (For example, the Unicode character #x030A when combined with ‘a’ produces
‘å’.) The Extender production is a list of characters that extend the shape of the preceding character. Please consult the
XML 1.0 specification (Bray et al., 2004) for the complete definitions of letter, digit, CombiningChar, and Extender.

In SBML, type ID is the data type of the metaid attribute on SBase, described in Section 3.2. An important32

aspect of ID is the XML requirement that a given value of ID must be unique throughout an XML document.33

All data values of type ID are considered to reside in a single common global namespace spanning the entire34

XML document, regardless of the attribute where type ID is used and regardless of the level of nesting of35

the objects (or XML elements).36

3.1.7 Type SId37

The type SId is the type of the id attribute found on the majority of SBML components. SId is a data38

type derived from the basic XML type string, but with restrictions about the characters permitted and the39

sequences in which those characters may appear. The definition is shown in Figure 6 on the following page.40

11

1 letter ::= ’a’..’z’,’A’..’Z’

2 digit ::= ’0’..’9’

3 idChar ::= letter | digit | ’ ’

4 SId ::= (letter | ’ ’) idChar*

Figure 6: The definition of the type SId. (Please see the caption of Figure 5 for an explanation of the notation.)

The equality of SId values is determined by an exact character sequence match; i.e., comparisons of these5

identifiers must be performed in a case-sensitive manner. This applies to all uses of SId.6

Type SId is purposefully not derived from the XML ID type (Section 3.1.6). Using ID would force all SBML7

identifiers to exist in a single global namespace, affecting not only Reaction local parameter definitions but8

also SBML packages for (e.g.) hierarchical model composition. Further, the use of ID for SBML identifiers9

would have limited utility because MathML 2.0 ci elements are not of the type IDREF (see Section 3.4). Since10

the IDREF/ID linkage cannot be exploited in MathML constructs, the utility of XML’s ID type is greatly11

reduced. Finally, unlike ID, SId does not include Unicode character codes; the identifiers are plain text.12

3.1.8 Type SIdRef13

Type SIdRef is used for all attributes that refer to identifiers of type SId in a model. This type is derived14

from SId, but with the restriction that the value of an attribute having type SIdRef must equal the value15

of some SId attribute in the model where it appears. In other words, a SIdRef value must be an existing16

identifier in a model.17

As with SId, the equality of SIdRef values is determined by exact character sequence match; i.e., comparisons18

of these identifiers must be performed in a case-sensitive manner.19

3.1.9 Type UnitSId20

The type UnitSId is derived from SId (Section 3.1.7) and has identical syntax. The UnitSId type is used as21

the data type for the identifiers of units (Section 4.4.1) in SBML objects. The purpose of having a separate22

type for such identifiers is to enable the space of possible unit identifier values to be separated from the space23

of all other identifier values in SBML. The equality of UnitSId values is determined by an exact character24

sequence match; i.e., comparisons of these identifiers must be performed in a case-sensitive manner.25

A number of reserved symbols are defined in the space of values of UnitSId. These reserved symbols are the26

list of base unit names defined in Table 2 on page 37.27

3.1.10 Type UnitSIdRef28

Type UnitSIdRef is used for all attributes that refer to identifiers of type UnitSId, which are the identifiers29

of units (Section 4.4.1) in SBML objects. This type is derived from UnitSId, but with the restriction that30

the value of an attribute having type UnitSIdRef must match either the value of a UnitSId attribute in the31

model, or one of the base units in Table 2. In other words, the value of a UnitSIdRef attribute must be an32

existing unit identifier in the model or in SBML.33

As with UnitSId, the equality of UnitSIdRef values is determined by exact character sequence match; i.e.,34

comparisons of these identifiers must be performed in a case-sensitive manner.35

3.1.11 Type SBOTerm36

The type SBOTerm is used as the data type of the attribute sboTerm on SBase. The type consists of strings37

of characters matching the restricted pattern described in Figure 7.38

39 digit ::= ’0’..’9’

40 SBOTerm ::= ’SBO:’ digit digit digit digit digit digit digit

Figure 7: The definition of SBOTerm. (Please see the caption of Figure 5 for an explanation of the notation.)

12

Examples of valid string values of type SBOTerm are “SBO:0000014” and “SBO:0003204”. These values are1

meant to be the identifiers of terms from an ontology whose vocabulary describes entities and processes in2

computational models. Section 5 provides more information about the ontology and principles for the use3

of these terms in SBML models.4

3.2 Type SBase5

Nearly every object composing an SBML Level 3 model definition has a specific data type that is derived6

directly or indirectly from a single abstract type called SBase. In addition to serving as the parent class for7

most other classes of objects in SBML, this base type is designed to allow a modeler or a software package8

to attach arbitrary information to each major element or list in an SBML model. The definition of SBase is9

presented in Figure 8.10

SBase

metaid: ID { use="optional" }
sboTerm: SBOTerm { use="optional" }

Notes
xmlns: string { "http://www.w3.org/1999/xhtml" }
{ Almost any well-formed content permitted in XHTML,
subject to a few restrictions; see text. }

Annotation
{ Any well-formed XML content, and with each top-level
 element placed in a unique XML namespace; see text. }

notes

annotation

0..1

0..1

Figure 8: The definition of abstract class SBase. Please refer to Section 1.4 for a summary of the notation used here.

SBase contains two attributes and two subobjects, all of which are optional: metaid, sboTerm, Notes and11

Annotation. These are discussed separately in the following subsections.12

3.2.1 The metaid attribute13

The metaid attribute is present for supporting metadata annotations using RDF (Resource Description14

Format; Lassila and Swick, 1999). It has a data type of XML ID (the XML identifier type; see Section 3.1.6),15

which means each metaid value must be globally unique within an SBML file. The metaid value serves to16

identify a model component for purposes such as referencing that component from metadata placed within17

annotation elements (see Section 3.2.4). Such metadata can use RDF description elements, in which an18

RDF attribute called “rdf:about” points to the metaid identifier of an object defined in the SBML model.19

This topic is discussed in greater detail in Section 6.20

3.2.2 The sboTerm attribute21

The attribute called sboTerm is provided on SBase to support the use of the Systems Biology Ontology22

(SBO; see Section 5). When a value is given to this attribute, it must conform to the data type SBOTerm23

(Sections 3.1.11). SBO terms are a type of optional annotation, and each different class of SBML object24

derived from SBase imposes its own requirements about the values permitted for sboTerm. Specific details25

on the permitted values are provided with the definitions of SBML classes throughout this specification26

document, and a broader discussion is provided in Section 5.27

13

3.2.3 Notes1

The subcomponent Notes in SBase is a container for XHTML 1.0 (Pemberton et al., 2002) content. It is2

intended to serve as a place for storing optional information intended to be seen by humans. An example use3

of Notes would be to contain formatted user comments about the model element in which the Notes object4

is enclosed. Every object derived directly or indirectly from type SBase can have a separate Notes object5

instance, allowing users considerable freedom when adding comments to their models.6

XML namespace requirements for notes7

In XML, the notes elements must declare the use of the XHTML XML namespace. This can be done in8

multiple ways. One way is to place a namespace declaration for the appropriate namespace URI (which9

is http://www.w3.org/1999/xhtml) on the top-level SBML object (see Section 4.1) and then reference the10

namespace in the notes content using a prefix. The following example illustrates this approach:11

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"12

xmlns:xhtml="http://www.w3.org/1999/xhtml">13

...14

<notes>15

<xhtml:body>16

<xhtml:center><xhtml:h2>A Simple Mitotic Oscillator</xhtml:h2></xhtml:center>17

<xhtml:p>A minimal cascade model for the mitotic oscillator18

involving cyclin and cdc2 kinase</xhtml:p>19

</xhtml:body>20

</notes>21

...22

Another approach is to declare the XHTML namespace within the notes content itself, as in the following23

example:24

...25

<notes>26

<body xmlns="http://www.w3.org/1999/xhtml">27

<center><h2>A Simple Mitotic Oscillator</h2></center>28

<p>A minimal cascade model for the mitotic oscillator29

involving cyclin and cdc2 kinase</p>30

</body>31

</notes>32

...33

The xmlns="http://www.w3.org/1999/xhtml" declaration on body as shown above changes the default XML34

namespace within it, such that all of its content is by default in the XHTML namespace. This is a particularly35

convenient approach because it obviates the need to prefix every element with a namespace prefix (i.e.,36

“xhtml:” in the earlier example). Other approaches are also possible.37

The XHTML content of notes38

SBML Level 3 does not require the content of a Notes object to be any particular XHTML element; the39

content simply should be any well-formed XHTML content. There is only one restriction, and it comes40

from the requirements of XML: the notes element must not contain an XML declaration or a DOCTYPE41

declaration. That is, notes must not contain42

<?xml version="1.0" encoding="UTF-8"?>43

nor the following (where the following is only one specific example of a DOCTYPE declaration):44

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"45

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">46

3.2.4 Annotation47

Whereas Notes is a container for content to be shown directly to humans, Annotation is a container for48

optional software-generated content not meant to be shown to humans. Every object derived from SBase49

14

can have its own Annotation object instance. In XML, the Annotation content type is any, allowing essentially1

arbitrary well-formed XML data content. SBML places only a few restrictions on the organization of the2

content; these are intended to help software tools read and write the data as well as help reduce conflicts3

between annotations added by different tools.4

The use of XML namespaces in annotations5

At the outset, software developers should keep in mind that multiple software tools may attempt to read6

and write annotation content. To reduce the potential for collisions between annotations written by different7

applications, SBML Level 3 Version 1 Core stipulates that tools must use XML namespaces (Bray et al., 1999)8

to specify the intended vocabulary of every annotation. The application’s developers must choose a URI9

(Universal Resource Identifier ; Harold and Means 2001; W3C 2000a) reference that uniquely identifies the10

vocabulary the application will use, and a prefix string for the annotations. Here is an example. Suppose an11

application uses the URI http://www.mysim.org/ns and the prefix mysim when writing annotations related12

to molecules. The content of an annotation might look like the following:13

<annotation>14

<mysim:molecule xmlns:mysim="http://www.mysim.org/ns"15

mysim:weight="18.02" mysim:atomCount="3"/>16

</annotation>17

In this particularly simple example, the content consists of a single XML element (molecule) with two18

attributes (weight, atomCount), all of which are prefixed by the string mysim. (Presumably this particular19

content would have meaning to the hypothetical application in question.) The content in this particular20

example is small, but it should be clear that there could easily have been an arbitrarily large amount of data21

placed inside the mysim:molecule element.22

The key point of the example above is that application-specific annotation data are entirely contained inside23

a single top-level element within the SBML annotation container. SBML Level 3 Version 1 places the24

following restrictions on annotations:25

• Within a given annotation element, there can only be one top-level element using a given names-26

pace. An annotation element can contain multiple top-level elements but each must be in a different27

namespace.28

• The ordering of top-level elements within a given annotation element is not significant. An application29

should not expect that its annotation content appears first in the annotation element, nor in any30

other particular location. Moreover, the ordering of top-level annotation elements may be changed by31

different applications as they read and write the same SBML file.32

The use of XML namespaces in this manner is intended to improve the ability of multiple applications to33

place annotations on SBML model elements with reduced risks of interference or name collisions. Annota-34

tions stored by different simulation packages can therefore coexist in the same model definition. The rules35

governing the content of annotation elements are designed to enable applications to easily add, change,36

and remove their annotations from SBML elements while simultaneously preserving annotations inserted by37

other applications when mapping SBML from input to output.38

As a further simplification and to improve software interoperability, applications are only required to preserve39

other annotations (i.e., annotations they do not recognize) when those annotations are self-contained entirely40

within annotation, complete with namespace declarations. The following is an example:41

<annotation>42

<topLevelElement xmlns="URI">43

... content in the namespace identified by “URI”...44

</topLevelElement>45

</annotation>46

Some more examples hopefully will make these points more clear. The following example is invalid because47

it contains two top-level elements using the same XML namespace. Note that it does not matter that these48

15

are two different top-level elements (<molecule> and <atom>); what matters for SBML is that these separate1

elements are both in the same namespace rather than having been collected and placed inside one overall2

container element for that namespace:3

<annotation>4

<mysim:molecule xmlns:mysim="http://www.mysim.org/ns"5

mysim:weigth="18.02" mysim:atomCount="3"/>6

<mysim:atom xmlns:mysim="http://www.mysim.org/ns"7

mysim:weight="18.02" mysim:atomCount="3"/>8

</annotation>9

On the other hand, the following example is valid:10

<annotation>11

<mysim:molecule xmlns:mysim="http://www.mysim.org/ns" mysim:weight="18.02" mysim:atoms="3"/>12

<struct:bonds xmlns:size="http://www.struct.org/ns" struct:number="2" struct:type="ionic" />13

<othersim:icon xmlns:othersim="http://www.othersim.com/">WS2002</othersim:icon>14

</annotation>15

For completeness, we note that annotations legally can be empty (but such annotations have no meaning):16

<annotation />17

It is worth keeping in mind that although XML namespace names must be URIs, they are (like all XML18

namespace names) not required to be directly usable in the sense of identifying an actual, retrieval document19

or resource on the Internet (Bray et al., 1999). URIs such as http://www.mysim.org/ may appear as though20

they are (e.g.,) Internet addresses, but they are not the same thing. This style of URI strings, using a domain21

name and other parts, is only a simple and commonly-used way of creating a unique name string.22

Finally, note that the namespaces being referred to here are XML namespaces specifically in the context of23

the annotation element on SBase. The namespace issue here is unrelated to the namespaces discussed in24

Section 3.3.1 in the context of component identifiers in SBML.25

Content of annotations and implications for software tools26

Annotation exists as a subobject of SBase in order that software developers may attach optional application-27

specific data to the elements in an SBML model. However, it is important that this facility is not misused.28

In particular, it is critical that data essential to a model definition or that can be encoded in existing29

SBML elements is not stored in annotations. Parameter values, functional dependencies between model30

elements, etc., should not be recorded as annotations. It is crucial to keep in mind the fact that data placed31

in annotations can be freely ignored by software applications. If such data affect the interpretation of a32

model, then software interoperability is greatly impeded. Recommendations regarding the use of any sort of33

annotation are given in Section 8.1.4.34

3.3 The id and name attributes on SBML components35

As will become apparent below, most objects in SBML include two common attributes: id and name. These36

attributes are not defined on SBase (as explained in Section 3.3.3 below), but where they do appear, the37

common rules of usage described below apply.38

3.3.1 The id attribute and identifier scoping39

The id attribute is mandatory on most (but not all) objects in SBML. It is used to identify a component40

within the model. Other SBML objects can refer to the component using this identifier. The data type of41

id is always either SId (Section 3.1.7) or UnitSId (Section 3.1.9), depending on the object in question.42

A model can contain a large number of components representing different parts. This leads to a problem43

in deciding the scope of an identifier: in what contexts does a given identifier X represent the same thing?44

The approaches used in existing simulation packages tend to fall into two categories which we may call45

global and local. The global approach places all identifiers into a single global space of identifiers, so that an46

identifier X represents the same thing wherever it appears in a given model definition. The local approach47

16

places symbols in separate identifier namespaces, depending on the context, where the context may be, for1

example, individual reaction rate expressions. The latter approach means that a model may use the same2

identifier X in different rate expressions and have each instance represent a different quantity.3

The scoping rules in SBML Level 3 are intended as a compromise to help support both scenarios:4

• The identifier (i.e., the value of the attribute id) of every FunctionDefinition, Compartment, Species,5

Parameter, Reaction, SpeciesReference, ModifierSpeciesReference, Event, and Model, must be unique6

across the set of all such identifiers in the model. This means, for example, that a reaction and a7

species definition cannot both have the same identifier.8

• The identifier of every UnitDefinition must be unique across the set of all such identifiers in the model.9

However, unit identifiers live in a separate space of identifiers from other identifiers in the model, by10

virtue of the fact that the data type of unit identifiers is UnitSId (Section 3.1.9) and not SId.11

• Each Reaction instance (see Section 4.11) establishes a separate private local space for local parameters12

represented by objects of class LocalParameter. Within the definition of that reaction, local parameter13

identifiers override (shadow) identical identifiers (whether those identifiers refer to parameters, species14

or compartments) outside of that reaction. Of course, the corollary of this is that local parameters15

inside a Reaction object instance are not visible to other objects outside of that reaction.16

3.3.2 The name attribute17

In contrast to the id attribute, the name attribute is optional and is not intended to be used for cross-18

referencing purposes within a model. Its purpose instead is to provide a human-readable label for the19

component. The data type of name is the type string defined in XML Schema (Biron and Malhotra, 2000;20

Thompson et al., 2000) and discussed further in Section 3.1. SBML imposes no restrictions as to the content21

of name attributes beyond those restrictions defined by the string type in XML Schema. In addition, there22

are no restrictions on the uniqueness of name values in a model (unlike the restrictions on id values discussed23

in Section 3.3.1).24

3.3.3 Why id and name are not defined on SBase25

Although many SBML components feature id and name, these attributes are purposefully not defined on26

SBase. There are several reasons for this.27

• The presence of an SBML identifier attribute (id) necessarily requires specifying scoping rules for the28

corresponding identifiers. However, the SBase abstract type is used as the basis for defining components29

whose scoping rules are in some cases different from each other. (See Section 3.3.1 for more details).30

If SBase were to have an id attribute, then the specification of SBase would need a default scoping31

rule and this would then have to be overloaded on derived classes that needed different scoping. This32

would make the SBML specification even more complex.33

• Identifiers are optional on some SBML components and required on most others. If id were defined as34

optional on SBase, most component classes would separately have to redefine id as being mandatory—35

hardly an improvement over the current arrangement. Conversely, if id were defined as mandatory on36

SBase, it would prevent it from being optional on components where it is currently optional.37

• The SBase abstract type is used as the base type for certain objects such as SBML, AssignmentRule,38

etc., which do not have identifiers because these components do not need to be referenced by other39

components. If SBase had a mandatory id attribute, all objects of these other types in a model40

would then need to be assigned unique identifiers. Similarly, because SBase is the base type of the41

listOf lists, putting id on SBase would require all of these lists in a model to be given42

identifiers. This would be a needless burden on software developers, tools, and SBML users, requiring43

them to generate and store additional identifiers for objects that never need them.44

• SBase does not have a name simply because such an attribute is always paired with an id. Without id45

on SBase, it does not make sense to have name.46

17

3.4 Mathematical formulas in SBML Level 31

Mathematical expressions in SBML Level 3 are represented using MathML 2.0 (W3C, 2000b). MathML is2

an international standard for encoding mathematical expressions using XML. There are two principal facets3

of MathML, one for encoding content (i.e., the semantic interpretation of a mathematical expression), and4

another for encoding presentation or display characteristics. SBML only makes direct use of a subset of the5

content portion of MathML. However, it is not possible to produce a completely smooth and conflict-free6

interface between MathML and other standards used by SBML (in particular, XML Schema). Two specific7

issues and their resolutions are discussed in Sections 3.4.2.8

The XML namespace URI for all MathML elements is http://www.w3.org/1998/Math/MathML. Everywhere9

MathML content is allowed in SBML, the MathML elements must be properly placed within the MathML 2.010

namespace. In XML, this can be accomplished in a number of ways, and the examples throughout this11

specification illustrate the use of this namespace and MathML in SBML. Please refer to the W3C document12

by Bray et al. (1999) for more technical information about using XML namespaces.13

3.4.1 Subset of MathML used in SBML Level 314

The subset of MathML elements used in SBML is listed below:15

• token: cn, ci, csymbol, sep16

• general : apply, piecewise, piece, otherwise, lambda (however, as discussed elsewhere, lambda is17

restricted to use in FunctionDefinition)18

• relational operators: eq, neq, gt, lt, geq, leq19

• arithmetic operators: plus, minus, times, divide, power, root, abs, exp, ln, log, floor, ceiling,20

factorial21

• logical operators: and, or, xor, not22

• qualifiers: degree, bvar, logbase23

• trigonometric operators: sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin,24

arccos, arctan, arcsec, arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth25

• constants: true, false, notanumber, pi, infinity, exponentiale26

• MathML annotations: semantics, annotation, annotation-xml27

The inclusion of logical operators, relational operators, piecewise, piece, and otherwise elements facilitates28

the encoding of discontinuous expressions.29

As defined by MathML 2.0, the semantic interpretation of the mathematical functions listed above follows30

the definitions of the functions laid out by Abramowitz and Stegun (1977) and Zwillinger (1996). Readers31

are directed to these sources and the MathML specification for information for further information, such as32

which principal values of the inverse trigonometric functions to use.33

Software authors should take particular note of the MathML semantics of the N-ary operators plus, times,34

and, or and xor, when they are used with different numbers of arguments. The MathML specification (W3C,35

2000b) appendix C.2.3 describes the semantics for these operators with zero, one, and more arguments.36

The following are the only attributes permitted on MathML elements in SBML (in addition to the xmlns37

attribute on math elements):38

• style, class and id on any element;39

• encoding on csymbol, annotation and annotation-xml elements;40

• definitionURL on ci, csymbol and semantics elements; and41

• type and sbml:units (see Section 3.4.2) on cn elements.42

Missing values for the MathML attributes are to be treated in the same way as defined by MathML 2.0.43

These restrictions on attributes are designed to confine the MathML elements to their default semantics and44

to avoid conflicts in the interpretation of the type of token elements.45

18

3.4.2 Numbers and cn elements1

In MathML, literal numbers are written as the content portion of a particular element called cn. This2

element takes an optional attribute, type, used to indicate the type of the number (such as whether it is3

meant to be an integer or a floating-point quantity). Here is an example of its use:4

<math xmlns="http://www.w3.org/1998/Math/MathML">5

<apply>6

<times/> <cn type="integer"> 42 </cn> <cn type="real"> 3.3 </cn>7

</apply>8

</math>9

The content of a cn element must be a number. The number can be preceded and succeeded by whitespace10

(see Section 3.4.5). The following are the only permissible values for the type attribute on MathML cn11

elements: “e-notation”, “real”, “integer”, and “rational”. The value of the type attribute defaults to12

“real” if it is not specified on a given cn element.13

Value space restrictions on cn content14

SBML imposes certain restrictions on the value space of numbers allowed in MathML expressions. According15

to the MathML 2.0 specification, the values of the content of cn elements do not necessarily have to conform16

to any specific floating-point or integer representations designed for CPU implementation. For example, in17

strict MathML, the value of a cn element could exceed the maximum value that can be stored in an IEEE18

64 bit floating-point number (IEEE 754). This is different from the XML Schema type double that is used19

in the definition of floating-point attributes of objects in SBML; the XML Schema double is restricted to20

IEEE double-precision 64-bit floating-point type IEEE 754-1985. To avoid an inconsistency that would result21

between numbers elsewhere in SBML and numbers in MathML expressions, SBML Level 3 Version 1 Core22

imposes the following restriction on MathML content appearing in SBML:23

• Integer values (i.e., the values of cn elements having type=“integer” and both values in cn elements24

having type=“rational”) must conform to the int type used elsewhere in SBML (Section 3.1.3)25

• Floating-point values (i.e., the content of cn elements having type=“real” or type=“e-notation”)26

must conform to the double type used elsewhere in SBML (Section 3.1.5)27

Syntactic differences in the representation of numbers in scientific notation28

It is important to note that MathML uses a style of scientific notation that differs from what is defined in XML29

Schema, and consequently what is used in SBML attribute values. The MathML 2.0 type “e-notation” (as30

well as the type “rational”) requires the mantissa and exponent to be separated by one <sep/> element. The31

mantissa must be a real number and the exponent part must be a signed integer. This leads to expressions32

such as33

<cn type="e-notation"> 2 <sep/> -5 </cn>34

for the number 2 · 10−5. It is especially important to note that the following expression,35

<cn type="e-notation"> 2e-5 </cn>36

is not valid in MathML 2.0 and therefore cannot be used in MathML content in SBML. However, elsewhere in37

SBML, when an attribute value is declared to have the data type double (a type taken from XML Schema),38

the compact notation “2e-5” is in fact allowed. In other words, within MathML expressions contained in39

SBML (and only within such MathML expressions), numbers in scientific notation must take the form <cn40

type="e-notation"> 2 <sep/> -5 </cn>, and everywhere else they must take the form “2e-5” or “2E-5”.41

This is a regrettable difference between two standards that SBML replies upon, but it is not feasible to42

redefine these types within SBML because the result would be incompatible with parser libraries written to43

conform to the MathML and XML Schema standards. It is also not possible to use XML Schema to define44

a data type for SBML attribute values permitting the use of the <sep/> notation, because XML attribute45

values cannot contain XML elements—that is, <sep/> cannot appear in an XML attribute value.46

19

Units associated with numbers in MathML cn expressions1

What units should be attributed to numbers appearing inside MathML cn elements? One answer is to2

assume that the units should be “whatever units are appropriate in the context where the number appears”.3

This implies that units can always be assigned unambiguously to any number by inspecting the expression4

in which it appears, and this turns out to be false. Another answer is that numbers should be considered5

“dimensionless”. Many people argue that this is the correct interpretation, but even if it is, there is an6

overriding practical reason why it cannot be adopted for SBML’s domain of application: when numbers7

appear in expressions in SBML, they are rarely intended by the modeler to have the unit “dimensionless”8

even if the unit is not declared—instead, the numbers are supposed to have specific units, but the units are9

usually undeclared. (Being “dimensionless” is not the same as having undeclared units!) If SBML defined10

numbers as being by default dimensionless, it would result in many models being technically incorrect without11

the modeler being aware of it unless their software tools performed dimensional analysis. Many software12

tools do not perform unit analysis, and so potential errors due to inconsistent units in a model would not13

be detected until other researchers and database curators attempted to use the model in software packages14

that did check units. We believe the negative impact on interoperability would be too high.15

SBML borrows an idea from CellML (Hedley et al., 2001), another model definition language with goals16

similar to SBML’s, and allows an additional attribute to appear on MathML cn elements; the value of this17

attribute can be used to indicate the unit of measurement to be associated with the number in the content18

of the cn element. The attribute is named units but, because it appears inside MathML element (which is19

in the XML namespace for MathML and not the namespace for SBML), it must always be prefixed with an20

XML namespace prefix for the SBML Level 3 Version 1 Core namespace. The value of the attribute must21

have the data type UnitSIdRef (Section 3.1.10) and can be the identifier of a UnitDefinition object in the22

model or a base unit listed in Table 2 on page 37. The following example illustrates how this attribute can23

be used to define a number with value “10” and unit of measurement “second”:24

<math xmlns="http://www.w3.org/1998/Math/MathML"25

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">26

<cn type="integer" sbml:units="second"> 10 </cn>27

</math>28

In this example, we chose to use the string “sbml” as the XML namespace prefix for the SBML Level 329

Version 1 Core namespace, which leads to the use of sbml:units as the attribute on the cn element. We30

could have used another prefix string besides “sbml”, and the definition of the prefix could also have appeared31

on a higher-level element in the model. Section 4.1 provides more information about the XML namespace32

for SBML Level 3 Version 1 Core.33

An alternative approach to specifying units is to avoid using cn elements altogether, and always use ci34

elements to reference Parameter objects having both value and units defined. In the example above, we could35

have avoided putting the literal number “10” inside the mathematical expression, and instead, defined a36

parameter in the model, given it the value “10” and unit “second”, and finally, referred to that parameter in37

the math content above. The approach of using named parameters provides additional power and advantages38

over simply using sbml:units attributes on cn elements; for example, Parameter allows the association of39

terms from the Systems Biology Ontology (SBO; Section 5) as well as MIRIAM annotations (Section 3.2.4).40

In summary, a literal number within MathML content without an SBML units attribute has no declared41

unit associated with it. Either of the approaches described above (i.e., avoiding cn in favor of ci elements42

and Parameter objects, or using an sbml:units attribute on cn) leads to formulas whose units can be fully43

determined, enabling software tools to perform dimensional analysis and, potentially, detect and report44

problems with the model. Conversely, in the absence of an SBML units attribute on a MathML cn element,45

no unit is associated with the number within the cn element. If the example above lacked the attribute46

sbml:units, the value “10” would have no declared unit associated with it.47

Finally, although SBML provides ways of associating units with numbers and entities, SBML does not48

stipulate that implicit unit conversions be performed. Section 3.4.11 explores this topic in more detail.49

20

3.4.3 Use of ci elements in MathML expressions in SBML1

The content of a ci element must be an SBML identifier that is declared elsewhere in the model. The2

identifier can be preceded and succeeded by whitespace within the ci. The set of possible identifiers that3

can appear in a ci element depends on the containing element in which the ci is used:4

• If a ci element appears in the math body of a FunctionDefinition object (Section 4.3), the referenced5

identifier must be either (i) one of the declared arguments to that function, or (ii) the identifier of6

another FunctionDefinition object in the model.7

• Otherwise, the identifier referenced by the ci element must belong to a FunctionDefinition, Compartment,8

Species, Parameter, Reaction or SpeciesReference object defined in the model. Table 1 lists the only9

possible interpretations of using such an identifier in SBML.10

11 Identifier kind Interpretation Units explanation

12 FunctionDefinition a call to the function (using a MathML apply element) Section 4.3.4

13 Compartment the size of the compartment Section 4.5.4

14 Species the quantity of the species, which may be either an amount
of substance or a concentration, depending on the value of
the Species object’s attribute hasOnlySubstanceUnits

Section 4.6.5

15 Parameter the value of the parameter Section 4.7.3

16 Reaction the rate of the reaction, but only if the reaction contains
a KineticLaw object; otherwise, referencing the reaction
identifier is an error

Section 4.11.7

17 SpeciesReference the stoichiometry of the indicated reactant or product in
the reaction where the SpeciesReference object is defined

Section 4.11.3

Table 1: The possible interpretations of different SBML component identifiers when they appear in MathML ci elements
outside the body of a FunctionDefinition object. (Inside a FunctionDefinition object’s mathematical formula, different
rules apply, as described in Section 3.4.3.)

The content of ci elements in MathML formulas outside of a KineticLaw or FunctionDefinition must always18

refer to objects declared in the top-level global namespace; i.e., SBML uses “early binding” semantics. Inside19

of KineticLaw, ci elements can additionally refer to identifiers of LocalParameter objects defined within that20

KineticLaw instance; see Section 4.11.5 for more information.21

3.4.4 Interpretation of boolean values22

As noted already in Section 3.1.2, there is another unfortunate difference between the XML Schema 1.0 and23

MathML 2.0 standards that impacts mathematical expressions in SBML: in XML Schema, the value space24

of type boolean includes “true”, “false”, “1”, and “0”, whereas in MathML, only “true” and “false”25

count as boolean values.26

The impact of this difference is, thankfully, minimal because the XML Schema definition is only used27

for attribute values on SBML objects, and those values turn out never to be accessible from MathML28

content in SBML—values of boolean attributes on SBML objects can never enter into MathML expressions.29

Nevertheless, software authors and users should be aware of the difference and in particular that “0” and30

“1” are interpreted as numerical quantities in mathematical expressions. There is no automatic conversion31

of “0” or “1” to boolean values in contexts where booleans are expected. This allows stricter type checking32

and unit verification during the validation of mathematical expressions.33

21

3.4.5 Handling of whitespace1

MathML 2.0 defines “whitespace” in the same way as XML does, i.e., the space character (Unicode hex-2

adecimal code 0020), horizontal tab (code 0009), newline or line feed (code 000A), and carriage return (code3

000D). In MathML, the content of elements such as cn and ci can be surrounded by whitespace characters.4

Prior to using the content, this whitespace is “trimmed” from both ends: all whitespace at the beginning5

and end of the content is removed (Ausbrooks et al., 2003). For example, in <cn> 42 </cn>, the amount6

of white space on either side of the “42” inside the <cn> . . . </cn> container does not matter. Prior to7

interpreting the content, the whitespace is removed altogether.8

3.4.6 Use of csymbol elements in MathML expressions in SBML9

SBML Level 3 uses the MathML csymbol element to denote certain built-in mathematical entities without10

introducing reserved names into the component identifier namespace. The encoding attribute of csymbol11

must be set to “text”. The definitionURL should be set to one of the following URIs defined by SBML:12

• http://www.sbml.org/sbml/symbols/time. This represents the current simulation time. See Sec-13

tion 3.4.7 for more information. The unit of measurement associated with time is determined by the14

value of the attribute timeUnits on Model.15

• http://www.sbml.org/sbml/symbols/delay. This represents a delay function. The delay function has16

the form delay(x, d), taking two MathML expressions as arguments. The function’s value is the value17

of argument x, but taken at a time d before the current time. There are no restrictions on the form of x.18

Since the parameter d represents a time value, the unit of measurement associated with d is expected19

to match the unit of time in the model as specified by the value of the Model attribute timeUnits.20

The value of the d parameter, when evaluated, must be numerical (i.e., a number in MathML real,21

integer, rational, or “e-notation” format) and be greater than or equal to 0. The unit of measurement22

associated with the return value of the delay function is identical to that of the parameter x. See23

Section 3.4.7 below for additional considerations surrounding the use of this csymbol.24

• http://www.sbml.org/sbml/symbols/avogadro. This represents the numerical value of Avogadro’s25

constant. The value of Avogadro’s constant is determined experimentally; for the purposes of SBML26

Level 3 Version 1, the numerical value is taken to be the one recommended by the 2006 edition of27

CODATA (Mohr et al., 2008), but the unit of the value is dimensionless. In other words, the value28

of this csymbol is equivalent to the following:29

(6.02214179 · 1023) · dimensionless30

If the value of the constant is revised by international standards-setting organizations in the future, a31

future Version of the SBML Level 3 specification may stipulate a new value to be used for this csymbol32

constant. However, all software applications reading models expressed in this Version of SBML Level 333

should always use the value of Avogadro’s constant given above. (In other words, changes will apply34

only beginning with a possible new Version of SBML Level 3 and not this existing version.)35

The following examples demonstrate these concepts. The XML fragment below encodes the formula x + t,36

where t stands for time.37

<math xmlns="http://www.w3.org/1998/Math/MathML">38

<apply>39

<plus/>40

<ci> x </ci>41

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time">42

t43

</csymbol>44

</apply>45

</math>46

22

In the fragment above, the use of the token t is mostly a convenience for human readers—the string inside1

the csymbol could have been almost anything, because it is essentially ignored by MathML parsers and2

SBML. It can even be empty. Some MathML and SBML processors will take note of the token and use it3

when presenting the mathematical formula to users, but the token used has no impact on the interpretation4

of the model and it does not enter into the SBML component identifier namespace. In other words, the5

SBML model cannot refer to t in the example above. The content of the csymbol element is for rendering6

purposes only and can be ignored by the parser.7

As a further example, the following XML fragment encodes the equation k + delay(x, 0.1) or, alternatively,8

kt + xt−0.1:9

<math xmlns="http://www.w3.org/1998/Math/MathML"10

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">11

<apply>12

<plus/>13

<ci> k </ci>14

<apply>15

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/delay" />16

<ci> x </ci>17

<cn sbml:units="second"> 0.1 </cn>18

</apply>19

</apply>20

</math>21

Finally, the use of Avogadro’s number is illustrated in the following XML fragment:22

<math xmlns="http://www.w3.org/1998/Math/MathML">23

<apply>24

<times/>25

<apply>26

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/avogadro" />27

<ci> x </ci>28

</apply>29

</apply>30

</math>31

3.4.7 Simulation time32

The principal use of SBML is to represent quantitative dynamical models whose behaviors manifest over33

time. In defining an SBML model using constructs such as reactions, time is most often implicit and does34

not need to be referred to in the mathematical expressions themselves. However, sometimes an explicit time35

dependency needs to be stated, and for this purpose, the time csymbol (described above in Section 3.4.6)36

may be used. This time symbol refers to “instantaneous current time” in a simulation, frequently given the37

literal name t in one’s equations.38

An assumption in SBML is that “start time” or “initial time” in a simulation is zero, that is, if t0 is the39

initial time in the system, t0 = 0. This corresponds to the most common scenario. Initial conditions in40

SBML take effect at time t = 0. There is no mechanism in SBML for setting the initial time to a value41

other than 0. To refer to a different time in a model, one approach is to define a Parameter for a new time42

variable and use an AssignmentRule in which the assignment expression subtracts a value from the csymbol43

time. For example, if the desired offset is 2 seconds, the MathML expression would be44

<math xmlns="http://www.w3.org/1998/Math/MathML"45

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">46

<apply>47

<minus/>48

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time"/>49

<cn sbml:units="second"> 2 </cn>50

</apply>51

</math>52

SBML’s assignment rules (Section 4.9.3) can be used to express mathematical statements that hold true at53

all moments, so using an assignment rule with the expression above will result in the value being equal to54

t− 2 at every point in time. A parameter assigned this value could then be used elsewhere in the model.55

23

3.4.8 Initial conditions and special considerations1

The identifiers of Species, SpeciesReference, Compartment, Parameter, and Reaction object instances in a2

given SBML model refer to the main variables in a model. Depending on certain attributes of these objects3

(e.g., the attribute constant on species, species references, compartments and parameters—this and other4

conditions are explained in the relevant sections elsewhere in this document), some of the variables may have5

constant values throughout a simulation, and others’ values may change. These changes in values over time6

are determined by the system of equations constructed from the model’s reactions, initial assignments, rules,7

and events.8

As described in Section 3.4.7, an SBML model’s simulation is assumed to begin at t = 0. The availability9

of the delay csymbol (Section 3.4.6) introduces the possibility that at t ≥ 0, mathematical expressions in a10

model may draw on values of model components from time prior to t = 0. A simulator may therefore need11

to compute the values of variables at time points ti ≤ 0 to allow the calculation of values required for the12

evaluation of delay expressions in the model for t ≥ 0. If there are no delays in the model, then ti = 0.13

The following is how the definitions of the model should be applied:14

1. At time ti:15

• Every Species, SpeciesReference, Compartment, and Parameter whose definition includes an initial16

value is assigned that value. If an element has constant=“false”, its value may be changed by17

other constructs or reactions in a model according to the steps below; if constant=“true”, only18

an InitialAssignment can override the value.19

• All InitialAssignment definitions take effect at ti and continue to have effect up to and including20

t = 0, overriding any initial values on Species, SpeciesReference, Compartment, and Parameter.21

Since InitialAssignments contain mathematical formulas, different values may be computed at each22

time step t in ti ≤ t ≤ 0.23

2. For time t ≥ ti:24

• AssignmentRule and AlgebraicRule definitions are in effect from this point in time forward and25

may influence the values of Species quantity, SpeciesReference stoichiometry, Compartment size,26

and Parameter values. (Note there cannot be both an AssignmentRule and an InitialAssignment27

for the same identifier; see Section 4.9.)28

3. At time t = 0:29

• The system of equations constructed by combining AssignmentRule equations, AlgebraicRule equa-30

tions, RateRule equations, and the equations constructed from the Reaction definitions in the31

model, are used to obtain consistent initial conditions for numerical solver algorithms. (Note32

that there cannot be both an AssignmentRule and a RateRule for the same identifier, or both an33

AssignmentRule and an InitialAssignment for the same identifier; see Section 4.9.3.)34

• Constraint definitions begin to take effect (and a constraint violation may result; see Section 4.10).35

• Event definitions whose Trigger objects have initialValue attribute values of “false” can trigger36

and take effect. (Note that an Event cannot be defined to change the value of a variable that is37

also the subject of an AssignmentRule; see Section 4.12.)38

4. For time t > 0:39

• RateRule definitions can begin to take effect.40

• Event definitions whose Trigger objects have initialValue attribute values of “true” can begin41

to take effect. (As noted above, an Event cannot be defined to change the value of a variable that42

is also the subject of an AssignmentRule; see Section 4.12.)43

• System simulation proceeds.44

To reiterate: in modeling situations that do not involve the use of the delay csymbol, then ti becomes ti = 0,45

but this does not alter the steps numbers 1–4 above.46

24

3.4.9 MathML expression data types1

MathML operators in SBML return results in one of two possible types: boolean and numerical. By numerical2

type, we mean either (1) a number in MathML real, integer, rational, or “e-notation” format; or (2) the3

csymbol for time or the csymbol for the delay function described in Section 3.4.6. The following guidelines4

summarize the different possible cases.5

The relational operators (eq, neq, gt, lt, geq, leq), the logical operators (and, or, xor, not), and the boolean6

constants (false, true) always return boolean values. As noted in Section 3.4.4, the numbers 0 and 1 do7

not count as boolean values in MathML contexts in SBML.8

The type of an operator referring to a FunctionDefinition is determined by the type of the top-level operator9

of the expression in the math element of the FunctionDefinition instance, and can be boolean or numerical.10

All other operators, values and symbols return numerical results.11

The roots of the expression trees used in the following contexts must yield boolean values:12

• the arguments of the MathML logical operators (and, or, xor, not);13

• the second argument of a MathML piece operator;14

• the trigger element of an SBML Event; and15

• the math element of an SBML Constraint.16

The roots of the expression trees used in the following contexts can yield boolean or numerical values:17

• the arguments to the eq and neq operators;18

• the first arguments of MathML piece and otherwise operators; and19

• the top-level expression of a function definition.20

The roots of expression trees in other contexts must yield numerical values.21

The type of expressions should be used consistently. The set of expressions that make up the first arguments22

of the piece and otherwise operators within the same piecewise operator should all return values of the23

same type. The arguments of the eq and neq operators should return the same type.24

3.4.10 Consistency of units in mathematical expressions and treatment of unspecified units25

Strictly speaking, physical validity of mathematical formulas requires not only that physical quantities added26

to or equated with each other have the same fundamental dimensions and units of measurement; it also27

requires that the application of operators and functions to quantities produces sensible results. Yet, in28

real-life models today, these conditions are often and sometimes legitimately disobeyed.29

In a public vote held in late 2007, the SBML community decided to revoke the requirement (present up30

through Level 2 Version 3) for strict unit consistency in SBML. As a result, SBML Level 3 follows this31

decision; the units on quantities and the results of mathematical formulas in a model should be consistent,32

but it is not a strict error of SBML model representation if they are not. The following are thus formulated33

as recommendations that should be followed except in special circumstances.34

Recommendations for unit consistency of mathematical expressions35

The consistency of units is defined in terms of dimensional analysis applied recursively to every operator and36

function and every argument to them. The following conditions should hold true in a model (and software37

developers may wish to consider having their software warn users if one or more of the following conditions38

is not true):39

1. All arguments to the following operators should have the same units (regardless of what those units40

happen to be): plus, minus, eq, neq gt, lt, geq, leq.41

2. The unit associated with each argument in a call to a FunctionDefinition should match the unit expected42

by the lambda expression within the math expression of that FunctionDefinition instance.43

25

3. All of the possible return values from piece and otherwise subelements of a piecewise expression1

should have the same unit, regardless of what that unit is. (Without this guideline, the piecewise2

expression would return values having different units depending on which case evaluated to true.)3

4. For the delay csymbol (Section 3.4.6) function, which has the form delay (x, d), the second argument d4

should match the model’s unit of time (as determined by the Model object’s “timeUnits” attribute).5

5. The unit of the value returned by the delay csymbol (Section 3.4.6) function should match the unit6

associated with the first argument x.7

6. The units of each argument to the following operators should be “dimensionless”: exp, ln, log,8

factorial, sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan,9

arcsec, arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth.10

7. The two arguments to power, which are of the form power (a, b) with the meaning ab, should be as11

follows: (1) if the second argument is an integer, then the first argument can have any unit; (2) if the12

second argument b is a rational number n/m, it should be possible to derive the m-th root of (a{unit})n,13

where {unit} signifies the unit associated with a; otherwise, (3) the unit of the first argument should14

be “dimensionless”. The second argument (b) should always have the unit of “dimensionless”.15

8. The two arguments to root, which are of the form root (n, a) with the meaning n
√
a and where the16

degree n is optional (defaulting to “2”), should be as follows: (1) if the optional degree qualifier n is an17

integer, then it should be possible to derive the n-th root of a; (2) if the optional degree qualifier n is18

a rational n/m then it should be possible to derive the n-th root of (a{unit})m, where {unit} signifies19

the unit associated with a; otherwise, (3) the unit of a should be “dimensionless”.20

9. Where the units of literal numbers have not been specified directly in SBML, it is possible for the21

unit of a FunctionDefinition object’s return value to be effectively different in different contexts where22

it is called (see below). If a FunctionDefinition’s mathematical formula contains literal constants (i.e.,23

numbers within MathML cn elements with no sbml:units attribute), the units of the constants should24

be identical in all contexts the function is called.25

The units of other operators such as abs, floor, and ceiling, can be anything.26

Item number 9 above, regarding FunctionDefinition, merits additional elaboration. An example may help27

illustrate the problem. Suppose the formula x+ 5 is defined as a function, where x is an argument and the28

literal number 5 has no specified unit. If this function is called with an argument whose unit of measurement29

is mole, the only possible consistent unit for the return value is mole. If in another context in the same model,30

the function is called with an argument whose unit of measurement is second, the function return value will31

have a unit of second. Now suppose that a modeler decides to change all uses of seconds to milliseconds32

in the model. To make the function definition return the same quantity in terms of seconds, the 5 in the33

formula would need to be changed, but doing so would change the result of the function everywhere it is34

called—with the wrong consequences in the context where moles were intended. This illustrates the subtle35

danger of using numbers with unspecified units in function definitions. There are at least two approaches for36

avoiding this: (1) define separate functions for each case where the units of the constants are supposed to37

be different, optionally explicitly defining the units of literal numbers; or (2) declare the necessary constants38

as Parameter objects in the model (with declared units!) and pass those parameters as arguments to the39

function, avoiding the use of literal numbers in the function’s formula.40

Treatment of unspecified units41

If an expression contains literal numbers and/or SBML components without declared units, the consistency42

or inconsistency of units may be impossible to determine. In the absence of a verifiable inconsistency, an43

expression in SBML is accepted as-is; the writer of the model is assumed to have written what they intended.44

However, this is not equivalent to assuming the expression does have consistent units. The lack of declared45

units on quantities in an SBML model does not render the model invalid insofar as the SBML specification46

is concerned, but it reduces the types of consistency checks and useful operations (such as conversions and47

translations) that software systems can perform.48

26

In some cases, it may be possible to determine that expressions containing unspecified units are inconsistent1

regardless of what units would be attributed to the unspecified quantities. For example, the expression2

dX

dt
=

[Y] · [Z]n

[Z]m + 1
· V3

with X, Y and Z in units of substance, V in units of volume, and m 6= n, cannot ever be consistent, no4

matter what units the literal 1 takes on. (This also illustrates the need not to stop verifying the units of an5

expression immediately upon encountering an unspecified quantity—the rest of the expression may still be6

profitably evaluated and checked for inconsistency.)7

3.4.11 SBML does not define implicit unit conversions8

Implicit unit conversions do not exist in SBML. Consider the following example. Suppose that in some9

model, a species S1 has been declared as having a mass of 1 kg, and a second species S2 has been declared10

as having a mass of 500 g. What should be the result of evaluating an expression such as S1 > S2? If the11

numbers alone are considered,12

1 > 50013

would evaluate to “false”, but if the units were implicitly converted by the software tool interpreting the14

model,15

1 kg > 500 g16

would evaluate to “true”. This is a trivial example, but the problem for SBML is that implicit unit17

conversions of this kind can lead to controversial situations where even humans do not agree on the answer.18

Consequently, SBML only requires that mathematical expressions be evaluated numerically. It is up to19

the model writer to ensure that the units on both sides of an expression match, by inserting explicit unit20

conversion factors if necessary.21

27

4 SBML components1

In this section, we define each of the major components of SBML. We use the UML notation described in2

Section 1.4.3 for defining classes of objects. We also illustrate the use of SBML components by giving partial3

model definitions in XML. Section 7 provides many complete example models encoded in SBML.4

4.1 The SBML container5

All well-formed SBML documents must begin with an XML declaration, which specifies both the version6

of XML assumed and the document character encoding. The declaration begins with the characters <?xml7

followed by the XML version and encoding attributes. SBML Level 3 uses XML version 1.0 and requires8

a document encoding of UTF-8. Following this declaration, the outermost portion of a model expressed in9

Level 3 consists of an object of class SBML, defined in Figure 9. This class contains three required attributes10

(level, version and xmlns), and a required model element.11

SBase

SBML

xmlns: string { use=”required” fixed=”http://www.sbml.org/sbml/level3/version1/core” }
level: positiveInteger { use=”required” fixed=”3” }
version: positiveInteger { use=”required” fixed=”1” }
{ Additional attributes permitted. }

Model
model

Figure 9: The definition of class SBML for SBML Level 3 Version 1 Core. The class Model is defined in Section 4.2. Note
that SBML and Model are subclasses of SBase, and therefore inherit the attributes of that abstract class.

The SBML class defines the structure and content of the sbml outermost element in an SBML file. The12

following is an abbreviated example of an SBML class object translated into XML form for an SBML Level 313

Version 1 Core document (and here, ellipses are used to indicate content elided from this example):14

<?xml version="1.0" encoding="UTF-8"?>15

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">16

...17

<model ...>18

...19

</model>20

</sbml>21

The attribute xmlns declares the XML namespace used within the sbml element. The URI for SBML Level 322

Version 1 Core is http://www.sbml.org/sbml/level3/version1/core. All SBML Level 3 Version 1 Core23

elements and attributes must be placed in this namespace either by assigning the default namespace as shown24

in the example above, or using a tag prefix on every element. The sbml element may contain additional25

attributes, in particular, attributes to support the inclusion of SBML Level 3 packages; see Section 4.1.2. For26

purposes of checking conformance to the SBML Level 3 Core specification, only the elements and attributes27

in the SBML Level 3 Core XML namespace are considered.28

4.1.1 The model element29

The actual model contained within an SBML document is defined by an instance of the Model class element.30

The structure of this object and its use are described in Section 4.2. Every SBML document must contain31

one model definition. (As a result of extension packages defined in SBML Level 3, it is possible that a model32

is composed of multiple submodels; however, there must still be one top-level model defining the structure33

of the overall composition.)34

28

4.1.2 Package declarations1

SBML Level 3 is modular, in the sense of having a defined core set of features and optional packages adding2

features on top of the core. This modular approach means that models can declare which feature-sets they3

use, and likewise, software tools can declare which packages they support. The mechanism for models to4

declare which packages they use involves two parts: a standard XML namespace declaration, and an attribute5

that every package must declare in this namespace.6

1. Every SBML Level 3 package is identified uniquely by an XML namespace URI. The use of a given7

SBML Level 3 package must be declared by a model using the standard XML namespace declaration8

approach. The declaration is made using the character sequence “xmlns:” (without the quotes),9

followed by additional characters providing a prefix by which elements and attributes in that namespace10

are known in the rest of the SBML document, and finally followed by the namespace URI as a value.11

The following is an example of namespace declarations for a package nicknamed “multi” and another12

package nicknamed “layout” (and here, ellipses are used to indicate content elided from this example):13

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"14

xmlns:multi="http://www.sbml.org/sbml/level3/version1/multi/version1"15

xmlns:layout="http://www.sbml.org/sbml/level3/version1/layout/version1" ...>16

...17

</sbml>18

There are no restrictions on the prefixes used for XML namespaces referring to SBML Level 3 packages19

beyond those imposed by the relevant specifications of XML 1.0 and XML namespaces. (In other words,20

the prefix strings “multi” and “layout” in the example above are arbitrarily chosen, and could have21

been something else.)22

2. SBML Level 3 requires that every package defines the addition of at least one attribute named required.23

The attribute, being in the namespace of the Level 3 package in question, must be referenced by the24

XML namespace prefix described in point number 1 above. The value of the required attribute25

indicates whether understanding the package is required for complete mathematical interpretation of26

a model, or whether the package is optional. A value of required=“true” indicates that interpreting27

the package is required. The following is an example:28

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"29

xmlns:multi="http://www.sbml.org/sbml/level3/version1/multi/version1"30

xmlns:layout="http://www.sbml.org/sbml/level3/version1/layout/version1"31

multi:required="true"32

layout:required="false" ... >33

...34

</sbml>35

If a package is declared optional, it means the time-course dynamics of the model can be correctly36

inferred even if the elements and attributes added by that particular SBML package are ignored.37

“Ignoring” a package can be accomplished in multiple ways; a reader could either skip those elements38

or attributes altogether during parsing, or read them but not interpret them, or do something similar.39

The XML namespace declaration for an SBML Level 3 package is an indication that a model makes use of40

features defined by that package, while the required attribute indicates whether the features may be ignored41

without compromising the mathematical meaning of the model. Both are necessary for a complete reference42

to an SBML Level 3 package. (On the other hand, no declaration is necessary for the Level 3 Core package,43

since it is the base package and support for it is required in any case.)44

4.2 Model45

The definition of Model is shown in Figure 10 on the following page. Only one instance of a Model object is46

allowed per instance of an SBML Level 3 Version 1 Core document or data stream, and it must be located47

inside the <sbml> ... </sbml> element as described in Section 4.1.48

29

ListOfFunctionDefinitions

functionDefinition

listOfFunctionDefinitions

FunctionDefinition1..*

ListOfUnitDefinitions

unitDefinition

listOfUnitDefinitions

UnitDefinition1..*

ListOfCompartments

compartment

listOfCompartments

Compartment1..*

ListOfSpecies

species

listOfSpecies

Species1..*

ListOfParameters

parameter

listOfParameters

Parameter1..*

ListOfInitialAssignments

initialAssignment

listOfInitialAssignments

InitialAssignment1..*

ListOfRules
listOfRules

Rule1..*

ListOfConstraints
listOfContraints

Constraint1..*

ListOfReactions
listOfReactions

Reaction1..*

ListOfEvents
listOfEvents

Event1..*

constraint

reaction

event

SBase

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

Model

id: SId { use="optional" }
name: string { use="optional" }
substanceUnits: UnitSIdRef { use="optional" }
timeUnits: UnitsSIdRef { use="optional" }
volumeUnits: UnitSIdRef { use="optional" }
areaUnits: UnitsSIdRef { use="optional" }
lengthUnits: UnitsSIdRef { use="optional" }
extentUnits: UnitsSIdRef { use="optional" }
conversionFactor: SIdRef { use="optional" }

Figure 10: The definition of Model and the many helper classes ListOfFunctionDefinitions, ListOfUnitDefini-
tions, ListOfCompartments, ListOfSpecies, ListOfParameters, ListOfInitialAssignments, ListOfRules, ListOfCon-
straints, ListOfReactions, and ListOfEvents.

30

Model serves as a container for components of classes FunctionDefinition, UnitDefinition, Compartment, Species,1

Parameter, InitialAssignment, Rule, Constraint, Reaction and Event. Instances of the classes are placed in-2

side instances of classes ListOfFunctionDefinitions, ListOfUnitDefinitions, ListOfCompartments, ListOfSpecies,3

ListOfParameters, ListOfInitialAssignments, ListOfRules, ListOfConstraints, ListOfReactions, and ListOfEvents.4

The “list” classes are defined in Figure 10. All of the lists are optional, but if a given list container is present5

within the model, the list must not be empty; that is, it must have length one or more. The resulting XML6

data object for a full model containing every possible list would have the following form:7

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">

<model id="My Model">
<listOfFunctionDefinitions>

one or more <functionDefinition> ... </functionDefinition> elements

}
optional

</listOfFunctionDefinitions>
<listOfUnitDefinitions>

one or more <unitDefinition> ... </unitDefinition> elements

}
optional

</listOfUnitDefinitions>
<listOfCompartments>

one or more <compartment> ... </compartment> elements

}
optional

</listOfCompartments>
<listOfSpecies>

one or more <species> ... </species> elements

}
optional

</listOfSpecies>
<listOfParameters>

one or more <parameter> ... </parameter> elements

}
optional

</listOfParameters>
<listOfInitialAssignments>

one or more <initialAssignment> ... </initialAssignment> elements

}
optional

</listOfInitialAssignments>
<listOfRules>

one or more elements of subclasses of Rule

}
optional

</listOfRules>
<listOfConstraints>

one or more <constraint> ... </constraint> elements

}
optional

</listOfConstraints>
<listOfReactions>

one or more <reaction> ... </reaction> elements

}
optional

</listOfReactions>
<listOfEvents>

one or more <event> ... </event> elements

}
optional

</listOfEvents>
</model>

</sbml>

Although the lists are optional, there are dependencies between SBML components such that defining some8

components requires defining others. For example, defining a species requires defining a compartment, and9

defining a reaction requires defining a species. Such dependencies are explained throughout this document.10

4.2.1 The id and name attributes11

The Model object has an optional attribute, id, used to give the model an identifier. The value of id must12

conform to the syntax permitted by the SId data type described in Section 3.1.7. Model also has an optional13

name attribute, of type string. The name and id attributes must be used as described in Section 3.3.14

4.2.2 The sboTerm attribute15

Model inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sections 3.1.1116

and 5). When a value is given to this attribute in a Model instance, it should be an SBO identifier belonging17

to the branch for type Model indicated in Table 6. The relationship is of the form “the model definition is-a18

X”, where X is the SBO term. The term chosen should be the most precise (narrow) one that captures the19

overall process or phenomenon represented by the overall SBML model.20

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore21

sboTerm values. A model must be interpretable without the benefit of SBO labels.22

31

4.2.3 The substanceUnits attribute1

The substanceUnits attribute is used to specify the unit of measurement associated with substance quantities2

of Species objects that do not specify units explicitly. The attribute’s value must be of type UnitSIdRef3

(Section 3.1.10). A list of recommended units is given in Section 8.2.1.4

If a given Species object definition does not specify its unit of substance quantity via the substanceUnits at-5

tribute on Species (described in Section 4.6), then the species inherits the value of the Model substanceUnits6

attribute. If the Model does not define a value for this attribute, then there is no unit to inherit, and all7

species that do not specify individual substanceUnits attribute values then have no declared units for their8

quantities. Section 4.6.4 provides more information about the units of species quantities.9

Note that when the identifier of a species appears in a model’s mathematical expressions, the unit of mea-10

surement associated with that identifier is not solely determined by setting substanceUnits on Model or11

Species. Sections 4.6.5 and 4.6.8 explain this point in more detail.12

4.2.4 The timeUnits attribute13

The timeUnits attribute is used to specify the unit in which time is measured in the model. The value of this14

attribute must be of type UnitSIdRef (Section 3.1.10). A list of recommended units is given in Section 8.2.1.15

This attribute on Model is the only way to specify a unit for time in a model. It is a global attribute; time is16

measured in the model everywhere in the same way. This is particularly relevant to Reaction and RateRule17

objects in a model: all Reaction and RateRule objects in SBML define per-time values, and the unit of time18

is given by the timeUnits attribute on the Model object instance. If the Model timeUnits attribute has19

no value, it means that the unit of time is not defined for the model’s reactions and rate rules. Leaving it20

unspecified in an SBML model does not result in an invalid model; however, as a matter of best practice,21

we strongly recommend that all models specify units of measurement for time.22

4.2.5 The volumeUnits, areaUnits and lengthUnits attributes23

The attributes volumeUnits, areaUnits and lengthUnits together are used to set the units of measure-24

ments for the sizes of Compartment objects in the model when those objects do not otherwise specify25

units. The three attributes correspond to the most common cases of compartment dimensions: volumeUnits26

for compartments having attribute value spatialDimensions=“3”, areaUnits for compartments having27

spatialDimensions=“2”, and lengthUnits for compartments having spatialDimensions=“1”. The values28

of these attributes must be of type UnitSIdRef (Section 3.1.10). A list of recommended units is given in29

Section 8.2.1. The attributes are not applicable to compartments whose spatialDimensions attribute values30

are not one of “1”, “2” or “3”.31

If a given Compartment object instance does not provide a value for its units attribute, then the unit of32

measurement of that compartment’s size is inherited from the value specified by the Model volumeUnits,33

areaUnits or lengthUnits attribute, as appropriate based on the Compartment object’s spatialDimensions34

attribute value. If the Model object does not define the relevant attribute, then there are no units to inherit,35

and all compartments that do not set a value for their units attribute then have no units associated with36

their compartment sizes. Section 4.5.4 provides more information about units of compartment sizes.37

The use of three separate attributes is a carry-over from SBML Level 2. Note that it is entirely possible38

for a model to define a value for two or more of the attributes volumeUnits, areaUnits and lengthUnits39

simultaneously, because SBML models may contain compartments with different numbers of dimensions.40

4.2.6 The extentUnits attribute41

Reactions are processes that occur over time. These processes involve events of some sort, where a single42

“reaction event” is one in which some set of entities (known as reactants, products and modifiers in SBML)43

interact, once. The extent of a reaction is a measure of how many times the reaction has occurred, while the44

time derivative of the extent gives the instantaneous rate at which the reaction is occurring. Thus, what is45

colloquially referred to as the “rate of the reaction” is in fact equal to the rate of change of reaction extent.46

32

The combination of extentUnits and timeUnits defines the units of kinetic laws in SBML and establishes1

how the numerical value of each KineticLaw’s mathematical formula (Section 4.11.5) is meant to be interpreted2

in a model. The units of the kinetic laws are taken to be extentUnits divided by timeUnits. A list of3

recommended units is given in Section 8.2.1.4

Note that this embodies an important principle in SBML models: all reactions in an SBML model must have5

the same units for the rate of change of extent. In other words, the units of all reaction rates in the model6

must be the same. There is only one global value for extentUnits and one global value for timeUnits.7

4.2.7 The conversionFactor attribute8

The attribute conversionFactor defines a global value inherited by all Species object instances that do not9

define separate values for their conversionFactor attributes. The value of this attribute must be of type10

SIdRef (Section 3.1.8) and refer to a Parameter object instance defined in the model. The Parameter object11

in question must be a constant; i.e., it must have its constant attribute value set to “true”.12

If a given Species object definition does not specify a conversion factor via the conversionFactor attribute13

on Species (described in Section 4.6), then the species inherits the conversion factor specified by the Model14

conversionFactor attribute. If the Model does not define a value for this attribute, then there is no conversion15

factor to inherit. Section 4.11.7 describes how to interpret the effects of reactions on species in that situation.16

More information about conversion factors in SBML is provided in Sections 4.6 and 4.11.17

4.2.8 The ListOf container classes18

The various ListOf classes defined in Figure 10 are merely containers used for organizing the main19

components of an SBML document. ListOfFunctionDefinitions, ListOfUnitDefinitions, ListOfCompartments,20

ListOfSpecies, ListOfParameters, ListOfInitialAssignments, ListOfRules, ListOfConstraints, ListOfReactions, and21

ListOfEvents are all derived from the abstract class SBase (Section 3.2), and inherit SBase’s various attributes22

and subelements. The ListOf classes do not add any attributes of their own.23

There are several motivations for grouping SBML components within XML elements with names of the24

form listOfClassNames rather than placing all the components directly at the top level. First, the fact25

that the container classes are derived from SBase means that software tools can add information about26

the lists themselves into each list container’s Annotation, a feature that a number of today’s software tools27

exploit. Second, we believe the grouping leads to a more modular structure that is helpful when working28

with elements from multiple SBML Level 3 packages. Third, we believe that it makes visual reading of29

models in XML easier, for situations when humans must inspect and edit SBML directly.30

4.3 Function definitions31

The FunctionDefinition object associates an identifier with a function definition. This identifier can then be32

used as the function called in subsequent MathML apply elements. FunctionDefinition is shown in Figure 11.33

SBase

FunctionDefinition

id: SId
name: string { use=”optional” }

Lambda

xmlns: string { ”http://www.w3.org/1998/Math/MathML” }
{ MathML content restricted to one MathML lambda
or one semantics element containing a lambda. }

math

Figure 11: The definition of class FunctionDefinition. A Lambda class object must contain a single MathML lambda
expression (or a lambda surrounded by a semantics element). A function definition must contain exactly one math
element defined by the Lambda class. Note also that Lambda is not derived from SBase, which means that the attributes
defined on SBase are not available on the math element. A sequence of one or more instances of FunctionDefinition
objects can be located in an instance of ListOfFunctionDefinitions in Model, as shown in Figure 10.

Function definitions in SBML (also informally known as “user-defined functions”) have purposefully limited34

capabilities. As is made clearer below, a function cannot reference parameters or other model quantities35

33

outside of itself; values must be passed as parameters to the function. Moreover, recursive and mutually-1

recursive functions are not permitted. The purpose of these limitations is to balance power against complexity2

of implementation. With the restrictions as they are, function definitions could, if desired, be implemented as3

textual substitutions. Software implementations therefore do not need the full function-definition machinery4

typically associated with programming languages.5

4.3.1 The id and name attributes6

The id and name attributes have types SId and string, respectively, and operate in the manner described in7

Section 3.3. MathML ci elements in an SBML model can refer to the function defined by a FunctionDefinition8

using the value of its id attribute.9

4.3.2 The math element10

The math element is a container for MathML content that defines the function. The content of this element11

can only be a MathML lambda element or a MathML semantics element containing a lambda element.12

FunctionDefinition is the only place in SBML Level 3 Core where a lambda element can be used. The lambda13

element must begin with zero or more bvar elements, followed by any other of the elements in the MathML14

subset listed in Section 3.4.1 except lambda (i.e., a lambda element cannot contain another lambda element).15

A further restriction on the content of math is it cannot contain references to identifiers other than the16

variables declared in the lambda itself. That is, the contents of MathML ci elements inside the body of the17

lambda can only be one of two kinds of identifiers: (i) the variables declared by its bvar elements, or (ii) the18

identifiers of other FunctionDefinition objects defined in the same model. This restriction also applies to the19

csymbol elements for time, avogadro and delay . Functions must be written so that all model variables they20

use are passed to them via their parameters.21

4.3.3 The sboTerm attribute22

FunctionDefinition inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see23

Sections 3.1.11 and 5). When a value is given to this attribute in a FunctionDefinition instance, it should be24

an SBO identifier belonging to the branch for type FunctionDefinition indicated in Table 6. The relationship25

is of the form “the function definition is-a X”, where X is the SBO term. The term chosen should be the26

most precise (narrow) one that captures the role of the function in the model.27

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore28

sboTerm values. A model must be interpretable without the benefit of SBO labels.29

4.3.4 Calling user-defined functions30

Within MathML expressions in an SBML model, all calls to a function defined by a FunctionDefinition must31

use the same number of arguments as specified in the function’s definition. The number of arguments is32

equal to the number of bvar elements inside the lambda element of the function definition.33

Note that FunctionDefinition does not have a separate attribute for defining the unit of measurement asso-34

ciated with the value returned by the function. The unit is taken to be whatever results from evaluating35

the expression when the FunctionDefinition’s math is applied to the arguments supplied in the call to that36

function. (See also Section 3.4.10.)37

4.3.5 Examples38

The following abbreviated SBML example shows a FunctionDefinition object instance defining pow3 as the39

identifier of a function computing the mathematical expression x3, and after that, the invocation of that40

function in the mathematical formula of a rate law. Note how the invocation of the function uses its identifier.41

<model ...>42

<listOfFunctionDefinitions>43

<functionDefinition id="pow3">44

<math xmlns="http://www.w3.org/1998/Math/MathML"45

34

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">1

<lambda>2

<bvar><ci> x </ci></bvar>3

<apply> <power/> <ci> x </ci> <cn sbml:units="dimensionless"> 3 </cn> </apply>4

</lambda>5

</math>6

</functionDefinition>7

</listOfFunctionDefinitions>8

...9

<listOfReactions>10

<reaction id="reaction_1" reversible="true" fast="false">11

...12

<kineticLaw>13

<math xmlns="http://www.w3.org/1998/Math/MathML">14

<apply> <ci> pow3 </ci> <ci> S1 </ci> </apply>15

</math>16

</kineticLaw>17

...18

</reaction>19

</listOfReactions>20

...21

</model>22

4.4 Unit definitions23

The unit of measurement associated with the value produced by a mathematical formula is whatever arises24

naturally from the components and mathematical expressions comprising the formula, or in other words, the25

unit obtained by doing dimensional analysis on the formula. To support this, units may be supplied in a26

number of contexts in an SBML model and associated with a variety of components, and SBML provides a27

facility for defining units that can be reused and referenced throughout a model. The unit definition facility28

uses two classes of objects, UnitDefinition and Unit. Their definitions are shown in Figure 12 on the next page29

and explained in more detail below.30

Before delving further into the definition of SBML units, we must highlight two important and sometimes-31

confusing points. First, unit declarations in SBML models are optional. The consequence of this is that32

a model must be numerically self-consistent independently of unit declarations, for the benefit of software33

tools that cannot interpret or manipulate units. Unit declarations in SBML are thus more akin to a type34

of annotation; they can indicate intentions, and can be used by model readers for checking the consistency35

of the model, labeling simulation output, etc., but any transformations of values implied by different units36

must be incorporated explicitly into a model. We revisit this topic in Section 4.4.4, and illustrate it again37

with the example given in Section 7.2.38

Second, the vast majority of situations that require new SBML unit definitions involve simple multiplicative39

combinations of base units and factors. An example is “moles per litre per second”. What distinguishes40

these sorts of unit definitions from more complex ones is that they may be expressed without the use of41

an additive offset from a zero point. The use of offsets complicates all unit definition systems, yet in the42

domain of SBML, the real-life cases requiring offsets are few (and in fact, to the best of our knowledge,43

only involve temperature). Consequently, the SBML unit system has been consciously designed to simplify44

implementation of unit support for the most common cases in systems biology. The cost of this simplification45

is to require units with offsets to be handled explicitly by the modeler. Section 8.2.1 discusses approaches46

for handling situations requiring units with offsets.47

4.4.1 UnitDefinition48

The approach to defining units in SBML is compositional; for example, metre second−2 is constructed by49

combining a Unit object representing metre with another Unit object representing second−2. The combina-50

tion is wrapped inside a UnitDefinition, which provides for assigning an identifier and optional name to the51

combination. These object classes are defined in Figure 12. Once a unit is defined using a UnitDefinition52

object, it can then be referenced from elsewhere in a model.53

35

SBase

listOfUnits
ListOfUnits

0..1

Unit

kind: UnitSId { Restricted to values in Table 2. }
exponent: double
scale: int
multiplier: double

unit

1..*

UnitDefinition

id: UnitSId { Excludes values from Table 2. }
name: string { use="optional" }

Figure 12: The definition of classes UnitDefinition and Unit. A sequence of one or more instances of UnitDefinition can
be located in an instance of ListOfUnitDefinitions in Model (Figure 10). ListOfUnits has no attributes (beyond those
it inherits from class SBase); it merely acts as a container for one or more instances of Unit objects. Note that the only
permitted values of kind on Unit are the reserved words in Table 2 on the next page, but these symbols are excluded
from the permitted values of UnitDefinition’s id because SBML’s unit system does not allow redefining the base units.

The id and name attributes1

The required attribute id and optional attribute name have data types UnitSIdRef (Section 3.1.10) and2

string, respectively. The id attribute is used to give the defined unit a unique identifier by which other3

parts of the model may refer to the unit. The name attribute is intended to be used for giving the unit4

definition an optional human-readable name; see Section 3.3.2 for more guidelines about the use of names.5

There is one important restriction about the use of unit definition id values: the id of a UnitDefinition must6

not be equal to one of the reserved base unit names listed in Table 2, the list of reserved base unit names.7

This constraint simply prevents the redefinition of base units.8

The list of Units9

A UnitDefinition object may contain a ListOfUnits container which must contain one or more Unit objects.10

Section 4.4.2 explains the meaning and use of Unit.11

Example12

The following skeleton of a unit definition illustrates an example use of UnitDefinition:13

<model ...>14

<listOfUnitDefinitions>15

<unitDefinition id="unit1">16

<listOfUnits>17

...18

</listOfUnits>19

</unitDefinition>20

<unitDefinition id="unit2">21

<listOfUnits>22

...23

</listOfUnits>24

</unitDefinition>25

</listOfUnitDefinitions>26

...27

</model>28

4.4.2 Unit29

A Unit object represents a reference to a (possibly transformed) base unit chosen from the list in Table 2 on30

the following page. The attribute kind indicates the base unit, whereas the attributes exponent, scale, and31

multiplier define how the base unit is being transformed. The attributes are described in detail below.32

36

The kind attribute1

The Unit attribute kind specifies a base unit to serve as the starting point for a new unit definition. The2

value of the attribute must be taken from the list of reserved words given in Table 2. These reserved symbols3

are defined in the value space of the data type UnitSId (Section 3.1.9).4

5 ampere farad joule lux radian volt

6 avogadro gram katal metre second watt

7 becquerel gray kelvin mole siemens weber

8 candela henry kilogram newton sievert

9 coulomb hertz litre ohm steradian

10 dimensionless item lumen pascal tesla

Table 2: Base units defined in SBML. These symbols are predefined values of type UnitSId (Section 3.1.9). All
are names of base or derived SI units (Bureau International des Poids et Mesures, 2006), except for “avogadro”,
“dimensionless” and “item”, which are SBML additions. The unit “dimensionless” is intended for cases where
a quantity is a ratio whose units cancel out, the unit “avogadro” is the unit “dimensionless” multiplied with Avogadro’s
number, and “item” is used for expressing such things as “N items” when “mole” is not an appropriate unit. The gram and
litre are not strictly part of SI; however, they are frequently used in SBML’s areas of application and therefore are included
as predefined unit identifiers. (The standard SI unit of mass is the kilogram, and volume in SI is defined in terms of cubic
metres.) Comparisons of these values, like all values of type UnitSId, must be performed in a case-sensitive manner.

Note that the set of acceptable values for the attribute kind does not include units defined by UnitDefinition11

objects. This means that the unit definition system in SBML is not hierarchical: user-defined units cannot12

be built on top of other user-defined units, only on top of base units.13

The presence of avogadro in Table 2 warrants an explanation. The Bureau International des Poids et14

Mesures specifically states, “When the mole is used, the elementary entities must be specified and may be15

atoms, molecules, ions, electrons, other particles, or specified groups of such particles” (Bureau International16

des Poids et Mesures, 2006, p. 115)—in other words, the SI unit mole is technically a unit of measure for17

substance amount. Although people sometimes use “mole” loosely to refer to other things besides substance18

amounts (e.g., “a mole of X ” to mean a number of X equal to Avogadro’s number, 6.022 · 1023), such usage19

is not strictly correct. We believe it is even less correct in the context of reactions: although in SBML20

they are called “reactions”, there is nothing preventing the SBML Reaction construct from being used to21

represent other kinds of processes not involving substances. Consequently, we avoid using “mole” loosely22

where substances may not be involved, and instead use “Avogadro’s number of X ”. In order to make it easier23

for models to define units in these terms, the SBML unit system includes the pseudo-unit “avogadro”, whose24

definition is identical to the definition of the avogadro csymbol described in Section 3.4.6. The numerical25

value is taken to be the one recommended by CODATA (Mohr et al., 2008), but the unit is dimensionless.26

In other words, it is defined as27

(6.02214179 · 1023) · dimensionless28

where the dot (·) indicates simple scalar multiplication. If the value of Avogadro’s constant is revised by29

international standards-setting organizations in the future, a future Version of the SBML Level 3 specification30

may stipulate a new value to be used for avogadro. However, all software reading models expressed in this31

version of SBML Level 3 should always use the value of Avogadro’s constant given above.32

Software tools must use identical numerical values of Avogadro’s constant for both the base unit mole and33

the unit avogadro.34

The exponent, scale and multiplier attributes35

The attributes exponent, scale and multiplier work together to permit the use of Unit for expressing new36

units in terms of the base units listed in Table 2. The formula underlying this definition is the following:37

unew = (multiplier · 10scale · u kind)exponent (1)38

37

This formula defines a new unit, unew, in terms of another unit, u kind. The unit u kind is one of the units listed1

in Table 2; in a given Unit object, it is chosen by setting the kind attribute. Each of the other components2

on the right-hand side of Equation 1 corresponds to the remaining attributes in a Unit object instance, and3

their meanings are as follows:4

• The multiplier attribute can be used to multiply the kind unit by a real-numbered factor. This enables5

the definition of units that are not power-of-ten multiples of SI units. For instance, a multiplier of6

0.3048 could be used to define “foot” as a measure of length in terms of a “metre”. A value of7

multiplier must always be provided in a Unit object instance, but the value can be “1”.8

• The scale attribute can be used to set the exponent for a power-of-ten multiplier that rescales the9

unit. For example, a unit having a kind value of “gram” and a scale value of “-3” signifies 10−3 ·gram,10

or milligrams. In those cases where a unit does not need to be scaled by a power of ten, the value of11

scale can be set to “0” (zero), because 100 = 1.12

• The exponent attribute can be used to specify an overall exponent on the unit definition. This provides13

a way to define units such as “cubic metre” in terms of the base unit “metre” (for which an exponent14

value of “3” would be appropriate). A value of exponent must always be provided.15

4.4.3 Semantics of Unit and UnitDefinition16

A single Unit object instance takes one of the base units from Table 2 and specifies how it should be17

transformed. A UnitDefinition object instance combines one or more Unit objects to define a new, composed18

unit, u. The new unit u created by a UnitDefinition is defined as the product of all the Unit objects contained19

in the ListOfUnits within the UnitDefinition object instance. More formally,20

u = u1 · u2 · . . . · un (2)21

where the {ui}’s are individual Unit definitions as defined by Equation 1. Now, let the value of the multiplier22

attribute of a given unit {ui} be represented by the variable mi. Similarly, let the value of the scale attribute23

be represented by si, and the value of the exponent attribute be represented by xi. Equation 2 can be24

rewritten in expanded form as25

u = (m1 · 10s1 · ub1)x1 · (m2 · 10s2 · ub2)x2 · . . . · (mn · 10sn · ubn)xn
26

= mx1
1 ·m

x2
2 · . . . ·mxn

n · 10(s1x1+s2x2+...+snxn) · ux1

b1
· ux2

b2
· . . . · uxn

bn
27

= m · 10s · ux1

b1
· ux2

b2
· . . . · uxn

bn
(3)28

29

where the terms m and s in the last line (Equation 3) are defined as30

m = mx1
1 ·m

x2
2 · . . . ·mxn

n31

s = s1x1 + s2x2 + . . .+ snxn32

Equation 3 expresses how a UnitDefinition object instance combines multiple Unit object instances to produce33

a new unit definition in an SBML model.34

Examples35

As a concrete example to illustrate the definitions above, let us define a unit for “foot” in terms of the base36

unit “metre”. This requires using multiplier=“0.3048”, scale=“0”, and exponent=“1”:37

foot = 0.3048 · 100 · metre38

The following fragment of SBML illustrates how this could be represented in XML:39

<listOfUnitDefinitions>40

<unitDefinition id="foot">41

<listOfUnits>42

<unit kind="metre" multiplier="0.3048" scale="0" exponent="1"/>43

</listOfUnits>44

</unitDefinition>45

</listOfUnitDefinitions>46

38

To give another example, the following illustrates the definition of an abbreviation “mmls” for the unit1

millimoles l−1 s−1:2

<listOfUnitDefinitions>3

<unitDefinition id="mmls">4

<listOfUnits>5

<unit kind="mole" exponent="1" scale="-3" multiplier="1"/>6

<unit kind="litre" exponent="-1" scale="0" multiplier="1"/>7

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>8

</listOfUnits>9

</unitDefinition>10

</listOfUnitDefinitions>11

Section 8.2.1 provides suggestions for possible ways of handling cases that involve offsets, which happen in12

particular with temperature measurements.13

4.4.4 Use of units in a model14

As already mentioned, unit declarations are optional in SBML. This design decision was a consensus choice15

among SBML developers and users, driven by the exigencies of non-commercial software development and16

the realities of models found in existence. It has an important and possibly counterintuitive implication that17

must be kept in mind when writing and interpreting SBML models: units associated with quantities do not18

alter the numerical interpretation of those quantities.19

An example may help make this more clear. We know that one metre equals 1000 millimetres:20

1m = 1000mm21

However, the equality above relies on interpreting the units on both sides, and taking the “1” and “1000” to22

be dimensionless. If readers ignored unit labels altogether or were unable to process them, they would see23

1 = 100024

which is obviously incorrect. In an SBML model, the necessary factor must be included explicitly, even if it25

is part of the definition of the unit. A ramification of this is that units attached to SBML quantities must26

be viewed as a kind of independent annotation or label that does not enter into the numerical interpretation27

of the actual quantity or the mathematical formulas appearing in a model. In the present simple formula,28

an explicit factor such as the following needs to be inserted (and here we put unit names in { } braces to29

indicate they are annotations that do not enter into the mathematics):30

1 {m} = 1000 · 1 {m}
1000 {mm}

{mm} (4)31

This is despite the fact that a unit definition for millimetres in SBML would take the following form:32

<listOfUnitDefinitions>33

<unitDefinition id="millimetre">34

<listOfUnits>35

<unit kind="metre" exponent="1" scale="-3" multiplier="1"/>36

</listOfUnits>37

</unitDefinition>38

</listOfUnitDefinitions>39

In other words, the definition also includes a factor of 1/1000. While the result is that information is40

duplicated between the definition of millimetre above and the explicit factor inserted into Equation 4,41

the machinery provided by UnitDefinition is still necessary in order to allow units themselves to be properly42

defined. The result is still useful and powerful: it permits software tools to check the consistency of a model,43

perform unit conversions, label numbers in the outputs of simulations, and so on.44

39

4.5 Compartments1

A compartment in SBML represents a bounded space in which species are located. Compartments do not2

necessarily have to correspond to actual structures inside or outside of a biological system, although models3

are often designed that way. The definition of Compartment is shown in Figure 13.4

SBase

Compartment

id: SId
name: string { use=”optional” }
spatialDimensions: double { use=”optional” }
size: double { use=”optional” }
units: UnitSIdRef { use=”optional” }
constant: boolean

Figure 13: The definition of class Compartment. A sequence of one or more instances of Compartment objects can be
located in an instance of ListOfCompartments in Model, as shown in Figure 10.

It is important to note that although compartments are optional in the overall definition of Model, every5

species in an SBML model must be located in a compartment. This in turn means that if a model defines any6

species, the model must also define at least one compartment. The reason is simply that species represent7

physical things, and therefore must exist somewhere. Compartments represent the somewhere.8

4.5.1 The id and name attributes9

Compartment has one required attribute, id, of type SId, to give the compartment a unique identifier by10

which other parts of an SBML model definition can refer to it. A compartment can also have an optional11

name attribute of type string. Identifiers and names must be used according to the guidelines described in12

Section 3.3.13

4.5.2 The spatialDimensions attribute14

A Compartment object has an optional floating-point attribute named spatialDimensions whose value in-15

dicates the number of spatial dimensions possessed by the compartment. Most modeling scenarios in-16

volve compartments with integer values of spatialDimensions=“3” (i.e., a three-dimensional compartment,17

which is to say, a volume), spatialDimensions=“2” (i.e., a two-dimensional compartment, a surface), or18

spatialDimensions=“1” (i.e., a one-dimensional compartment, which is to say, a line). However, SBML19

Level 3 does not restrict compartments’ spatialDimensions values, in order to allow for the possibility of20

representing structures with fractal dimensions.21

In SBML Level 3 Version 1 Core, the number of spatial dimensions possessed by a compartment cannot enter22

into mathematical formulas, and therefore cannot directly alter the numerical interpretation of a model.23

However, the value of spatialDimensions does affect the interpretation of units. Specifically, the value of24

spatialDimensions is used to select among the Model attributes volumeUnits, areaUnits and lengthUnits25

when a Compartment object does not define a value for its units attribute. This is described in more detail26

below in Section 4.5.4.27

4.5.3 The size attribute28

The optional Compartment attribute size, with a data type of double, can be used to set the initial size29

of the compartment. The size may correspond to a volume (if the compartment is a three-dimensional30

one), or it may be an area (if the compartment is two-dimensional), or a length (if the compartment is31

one-dimensional).32

40

A compartment’s size is set by its size attribute exactly once. If the compartment’s attribute constant has1

the value “true”, then the compartment’s size is fixed and cannot be changed except by an InitialAssignment2

in the model. The approach of using an InitialAssignment differs from setting the size attribute in that size3

can only be used to set the compartment size to a literal floating-point number, whereas InitialAssignment4

allows the value to be set using an arbitrary mathematical expression (which, thanks to MathML’s expres-5

siveness, may evaluate to a rational number). If the compartment’s constant attribute is “false”, the size6

value may be overridden by an InitialAssignment or changed by an AssignmentRule or AlgebraicRule, and7

in addition, for simulation time t > 0, it may also be changed by a RateRule or Events. (However, some8

constructs are mutually exclusive; see Sections 4.9 and 4.12.) It is not an error to set the value of size on9

a compartment and also redefine the value using an InitialAssignment, but the original size value in that10

case is ignored. Section 3.4.8 provides additional information about the semantics of assignments, rules and11

values for simulation time t ≤ 0.12

It is important to note that in SBML Level 3, a missing size value does not imply that the compartment13

size is “ 1”. A missing value for size for a given compartment signifies that the value either is unknown, or14

to be obtained from an external source, or determined by an initial assignment (Section 4.8) or other SBML15

construct elsewhere in the model. Further, due to the fact that alternative methods exist for setting the size16

of a compartment, the size attribute must be defined as optional; however, it is good practice to specify a17

value for the size of every compartment in a model, no matter what method is used, when compartment size18

values are available. The reasons for this are explained in Section 8.2.2.19

4.5.4 The units attribute20

The measurement unit associated with the value of the compartment’s size attribute may be specified using21

the optional attribute units. This attribute’s value must have the data type UnitSIdRef (Section 3.1.10).22

The units attribute may be left unspecified for a given compartment in a model; in that case, the com-23

partment inherits the unit of measurement specified by one of the attributes on the enclosing Model object24

instance. The applicable attribute on Model depends on the value of the compartment’s spatialDimensions25

attribute; the relationship is shown in Table 3. If the Model object does not define the relevant attribute26

(volumeUnits, areaUnits or lengthUnits) for a given spatialDimensions value, the unit associated with27

that Compartment object’s size is undefined. If both spatialDimensions and units are left unset on a given28

Compartment object instance, then no unit can be chosen from among the Model’s volumeUnits, areaUnits29

or lengthUnits attributes (even if the Model instance provides values for those attributes), because there is30

no basis to select between them and there is no default value of spatialDimensions. Leaving the units of31

compartments’ sizes undefined in an SBML model does not render the model invalid; however, as a matter of32

best practice, we strongly recommend that all models specify the units of measurement for all compartment33

sizes. A discussion of recommended units is given in Section 8.2.1.34

35 Value of attribute Attribute of Model used
36 spatialDimensions for inheriting the unit Recommended candidate units

37 “3” volumeUnits units of volume, or dimensionless
38 “2” areaUnits units of area, or dimensionless
39 “1” lengthUnits units of length, or dimensionless
40 other no units inherited no specific recommendations

Table 3: When a Compartment object instance does not specify a value for the attribute units, but does specify a value
for spatialDimensions, a value for units is inherited from the enclosing Model instance according to the rules listed
above. The left-hand column indicates the value of the compartment’s spatialDimensions attribute, and the middle
column indicates the attribute on Model whose value should be used in that case. The right-hand column lists the kinds
of units recommended for use in each case.

41

The unit of measurement associated with a compartment’s size, as defined by the units attribute or (if1

units is not set) the inherited value from Model according to Table 3 on the page before, is used in the2

following ways:3

• When the identifier of the compartment appears as a numerical quantity in a mathematical formula4

expressed in MathML (discussed in Section 3.4.3), it represents the size of the compartment, and the5

unit associated with the size is the value of the units attribute.6

• When a Species is to be treated in terms of concentrations or density, the unit associated with the7

spatial size portion of the concentration value (i.e., the denominator in the formula amount/size) is8

specified by the value of the units attribute on the compartment in which the species is located.9

• The math elements of AssignmentRule, InitialAssignment and EventAssignment objects setting the value10

of the compartment size should all have the same units as the unit associated with the compartment’s11

size (see Sections 4.9.3 and 4.8).12

• In a RateRule object that defines a rate of change for a compartment’s size (Section 4.9.4), the unit13

of the rule’s math element should be identical to the compartment’s units attribute divided by the14

model-wide unit of time. (In other words, {unit of compartment size}/{unit of time}.)15

4.5.5 The constant attribute16

A Compartment also has a mandatory boolean attribute called constant that indicates whether the compart-17

ment’s size stays constant or can vary during a simulation. A value of “false” indicates the compartment’s18

size can be changed by other constructs in SBML. A value of “true” indicates the compartment’s size19

cannot be changed by any construct except InitialAssignment. Section 4.5.3 provides more information.20

4.5.6 The sboTerm attribute21

Compartment inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sec-22

tions 3.1.11 and 5). When a value is given to this attribute in a Compartment instance, it should be an SBO23

identifier belonging to the branch for type Compartment indicated in Table 6. The relationship is of the form24

“the compartment is-a X”, where X is the SBO term. The term chosen should be the most precise (narrow)25

one that captures the role of the compartment in the model.26

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore27

sboTerm values. A model must be interpretable without the benefit of SBO labels.28

4.5.7 Examples29

The following example illustrates three compartments in an abbreviated SBML example of a model definition.30

The compartment definitions do not set their units attribute, so these compartments inherit units from the31

model element attributes areaUnits and volumeUnits.32

<model areaUnits="area" volumeUnits="litre" ...>33

...34

<listOfUnitDefinitions>35

<unitDefinition id="area">36

<listOfUnits>37

<unit kind="metre" exponent="2" scale="-6" multiplier="1"/>38

</listOfUnits>39

</unitDefinition>40

</listOfUnitDefinitions>41

...42

<listOfCompartments>43

<compartment id="Extracellular" spatialDimensions="3" size="1e-14" constant="true"/>44

<compartment id="PlasmaMembrane" spatialDimensions="2" size="1e-14" constant="true"/>45

<compartment id="Cytosol" spatialDimensions="3" size="1e-15" constant="true"/>46

</listOfCompartments>47

...48

</model>49

42

4.6 Species1

A species in SBML refers to a pool of entities that (a) are considered indistinguishable from each other for2

the purposes of the model, (b) may participate in reactions, and (c) are located in a specific compartment.3

The SBML Species object class is intended to represent these pools. Its definition is shown in Figure 14.4

SBase

Species

id: SId
name: string { use=”optional” }
compartment: SIdRef
initialAmount: double { use=”optional” }
initialConcentration: double { use=”optional” }
substanceUnits: UnitSIdRef { use=”optional” }
hasOnlySubstanceUnits: boolean
boundaryCondition: boolean
constant: boolean
conversionFactor: SIdRef { use=”optional” }

Figure 14: The definition of class Species. One or more instances of Species objects can be located in an instance of
ListOfSpecies in Model, as shown in Figure 10.

4.6.1 The id and name attributes5

As with other major objects in SBML, Species has a mandatory attribute, id, used to give the species an6

identifier. The identifier must be a text string conforming to the syntax permitted by the SId data type7

described in Section 3.1.7. Species also has an optional name attribute, of type string. The name and id8

attributes must be used as described in Section 3.3.9

4.6.2 The sboTerm attribute10

Species inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sections 3.1.1111

and 5). Values for this attribute should be SBO identifiers taken the branch for type Species indicated in12

Table 6. The relationship is of the form “the species is-a X”, where X is the SBO term. The term chosen13

should be the most precise (narrow) one that captures the role of the species in the model.14

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore15

sboTerm values. A model must be interpretable without the benefit of SBO labels.16

4.6.3 The compartment attribute17

The required attribute compartment, of type SIdRef, is used to identify the compartment in which the species18

is located. The attribute’s value must be the identifier of an existing Compartment object in the model. Note19

that SBML does not have a concept of a default compartment—every species in an SBML model must be20

assigned a compartment explicitly, by setting the value of the compartment attribute. (This also implies that21

every model with one or more Species objects must define at least one Compartment object.)22

4.6.4 The initialAmount, initialConcentration, and substanceUnits attributes23

The optional attributes initialAmount and initialConcentration, both having a data type of double, can24

be used to set the initial quantity of the species in the compartment where the species is located. These25

two attributes are mutually exclusive—either one can be used, but only one can have a value on any given26

instance of a Species object. (Setting both is an error.) Missing initialAmount and initialConcentration27

values implies that their values either are unknown, or to be obtained from an external source, or determined28

by an initial assignment (Section 4.8) or other SBML construct elsewhere in the model.29

43

A species’ initial quantity is set by the initialAmount or initialConcentration attributes exactly once.1

If the constant attribute is “true”, then the value of the species’ quantity is fixed and cannot be changed2

except by an InitialAssignment. These methods differ in that the initialAmount and initialConcentration3

attributes can only be used to set the species quantity to a literal floating-point number, whereas the use4

of an InitialAssignment object allows the value to be set using an arbitrary mathematical expression (which,5

thanks to MathML’s expressiveness, may evaluate to a rational number). If the species’ constant attribute is6

“false”, the species’ quantity value may be overridden by an InitialAssignment or changed by AssignmentRule7

or AlgebraicRule, and in addition, for t > 0, it may also be changed by a RateRule, Events, and as a result of8

being a reactant or product in one or more Reactions. (However, some constructs are mutually exclusive; see9

Sections 4.9 and 4.12.) It is not an error to define initialAmount or initialConcentration on a species and10

also redefine the value using an InitialAssignment, but the initialAmount or initialConcentration setting11

in that case is ignored. Section 3.4.8 provides additional information about the semantics of assignments,12

rules and values for simulation time t ≤ 0.13

When the attribute initialAmount is set, the unit of measurement associated with its value is specified by14

the Species attribute substanceUnits, whose value must have the data type UnitSIdRef (Section 3.1.10).15

When the initialConcentration attribute is set, the unit of measurement associated with this concen-16

tration value is {unit of amount}/{unit of size}, where the unit of amount is specified by the Species17

substanceUnits attribute, and the unit of size is specified by the units attribute of the Compartment object18

in which the species is located. Note that in either case, a unit of amount is involved and determined by the19

substanceUnits attribute. If the substanceUnits attribute is not set on a given Species object instance,20

then the unit of amount for that species is inherited from the substanceUnits attribute on the enclosing21

Model object instance. If that attribute on Model is not set either, then the unit associated with the species’22

quantity is undefined. Leaving units of species quantities undefined in an SBML model does not render the23

model invalid; however, as a matter of best practice, we strongly recommend that all models specify the24

units of measurement for all species quantities. A list of recommended units is given in Section 8.2.1.25

Simply setting initialAmount or initialConcentration alone does not determine whether a species iden-26

tifier represents an amount or a concentration when it appears elsewhere in an SBML model. Instead, that27

aspect is controlled by the attribute hasOnlySubstanceUnits, discussed in Section 4.6.5 below.28

4.6.5 The hasOnlySubstanceUnits attribute29

Independently from how the initial value of a species’ quantity is set (Section 4.6.4), SBML allows choos-30

ing the meaning intended for a species’ identifier when the identifier appears in mathematical expres-31

sions or as the subject of SBML rules or assignments. The interpretation is controlled by the attribute32

hasOnlySubstanceUnits. If the attribute has the value “false”, then the unit of measurement associ-33

ated with the value of the species is {unit of amount}/{unit of size} (i.e., concentration or density). If34

hasOnlySubstanceUnits has the value “true”, then the value is interpreted as having a unit of amount only.35

Although it may seem as though this intention could be determined by either (i) determining whether whether36

the initialAmount or initialConcentration attribute is set on a given Species object or (ii) examining37

the particular unit declared by the Species or Model object’s substanceUnits attributes, the fact that all of38

these attributes are optional means that a separate flag is needed. (Consider the situation where neither is39

set, and instead the species’ quantity is established by an InitialAssignment or AssignmentRule—something40

else is then needed to indicate whether the species’ identifier represents a concentration or an amount.)41

The unit of measurement associated with a species’ quantity is used in the following ways in SBML:42

• When the species’ identifier appears in a MathML formula (discussed in Section 3.4.3), it represents43

the species’ quantity, and the unit of measurement associated with the quantity is as described above.44

• The math elements of AssignmentRule, InitialAssignment and EventAssignment objects referring to this45

species should all have the same units as the unit of measurement associated with the species quantity.46

• In a RateRule object that defines the rate of change of the species’ quantity, the unit associated with47

the rule’s math element should be equal to the unit of the species’ quantity (Section 4.6.5) divided by48

the model-wide unit of time (Section 4.2.4); in other words, {unit of species quantity}/{unit of time}.49

44

4.6.6 The constant and boundaryCondition attributes1

The Species object has two other mandatory boolean attributes named constant and boundaryCondition,2

used to indicate whether and how the quantity of that species can vary during a simulation. Table 4 shows3

how to interpret the combined values of the boundaryCondition and constant attributes.4

5 Can have Can be
6 constant boundaryCondition assignment reactant or What can change
7 value value or rate rule? product? the species’ quantity?

8 true true no yes (never changes)
9 false true yes yes rules and events

10 true false no no (never changes)
11 false false yes yes reactions or rules (but not both), and events

Table 4: How to interpret the values of the constant and boundaryCondition attributes on Species. Note that column
four is specifically about reactants and products and not also about species acting as modifiers; the latter are by definition
unchanged by reactions.

When a species is a product or reactant of one or more reactions, its quantity is determined by those reactions.12

In SBML, it is possible to indicate that a given species’ quantity is not determined by the set of reactions13

even when that species occurs as a product or reactant; i.e., the species is on the boundary of the reaction14

system, and its quantity is not determined by the reactions. The boolean attribute boundaryCondition15

with value “true” can be used to indicate this. A value of “false” indicates that the species is part of the16

reaction system.17

The constant attribute indicates whether the species’ quantity can be changed at all, regardless of whether18

by reactions, rules, or constructs other than InitialAssignment. A value of “false” indicates that the species’19

quantity can be changed. This is the most common situation because the purpose of many models is precisely20

to calculate changes in species quantities over time. Note that the initial quantity of a species can be set by21

an InitialAssignment irrespective of the value of the constant attribute.22

In practice, a boundaryCondition value of “true” means a differential equation derived from the reaction23

definitions should not be generated for the species. However, the species’ quantity may still be changed by24

AssignmentRule, RateRule, AlgebraicRule, Event, and InitialAssignment constructs if its constant attribute is25

“false”. Conversely, if both the species’ boundaryCondition and constant attributes are “true”, then its26

value cannot be changed by anything except InitialAssignment.27

A species having boundaryCondition=“false” and constant=“false” can appear as a product and/or28

reactant of one or more reactions in the model. If the species is a reactant or product of a reaction, it must29

not also appear as the target of any AssignmentRule or RateRule object in the model. If instead the species30

has boundaryCondition=“false” and constant=“true”, then it cannot appear as a reactant or product,31

or as the target of any AssignmentRule, RateRule or EventAssignment object in the model.32

The example model in section 7.7 contains all four possible combinations of the boundaryCondition and33

constant attributes on species elements. Section 7.8 gives an example of how one can translate into ODEs34

a model that uses boundaryCondition and constant attributes.35

4.6.7 The conversionFactor attribute36

The attribute conversionFactor defines a conversion factor that applies to a particular species. The value37

of the attribute must have the data type SIdRef and must be the identifier of a Parameter object instance38

defined in the model. That Parameter object must be a constant, meaning its constant attribute must be set39

to “true”. If a given Species object definition defines a value for its conversionFactor attribute, it takes40

precedence over any factor defined by the Model object’s conversionFactor attribute.41

In SBML, the unit of measurement associated with a species’ quantity can be different from the unit of42

extent of reactions in the model. SBML avoids implicit unit conversions by providing an explicit way to43

45

indicate any unit conversion that might be required. The use of a conversion factor in computing the effects1

of reactions on a species’ quantity is explained in Section 4.11.7. Because the value of the conversionFactor2

attribute is the identifier of a Parameter object, and because parameters can have units attached to them, the3

transformation from reaction extent units to species units can be completely specified using this approach.4

Note that the unit conversion factor is only applied when calculating the effect of a reaction on a species. It5

is not used in any rules or other SBML constructs that affect the species, and it is also not used when the6

value of the species is referenced in a mathematical expression.7

4.6.8 Additional considerations for interpreting the numerical value of a species8

Species are unique in SBML in that they have a kind of duality: a species identifier may stand for either9

substance amount (meaning, a count of the number of individual entities) or a concentration or density10

(meaning, amount divided by a compartment size). The previous sections explain the meaning of a species11

identifier when it is referenced in a mathematical formula or in rules or other SBML constructs; however, it12

remains to specify what happens to a species when the compartment in which it is located changes in size.13

When a species definition has the attribute value hasOnlySubstanceUnits=“false” and the size of the14

compartment in which the species is located changes, the default in SBML is to assume that it is the15

concentration that must be updated to account for the size change. This follows from the principle that, all16

other things held constant, if a compartment simply changes in size, the size change does not in itself cause17

an increase or decrease in the number of entities of any species in that compartment. In a sense, the default18

is that the amount of a species is preserved across compartment size changes. Upon such size changes,19

the value of the concentration or density must be recalculated from the simple relationship concentration20

= amount/size if the value of the concentration is needed (for example, if the species identifier appears21

in a mathematical formula or is otherwise referenced in an SBML construct). There is one exception: if22

the species’ quantity is determined by an AssignmentRule, RateRule, AlgebraicRule, or an EventAssignment23

and the species has the attribute value hasOnlySubstanceUnits=“false”, it means that the concentration24

is assigned by the rule or event; in that case, the amount must be calculated when the compartment size25

changes. (Events also require additional care in this situation, because an event with multiple assignments26

could conceivably reassign both a species quantity and a compartment size simultaneously. Section 4.12.527

describes the handling of species in event assignments.)28

Note that the above only matters if a species has the attribute value hasOnlySubstanceUnits=“false”,29

meaning that the species identifier refers to a concentration wherever the identifier appears in a mathematical30

formula. If instead the attribute’s value is “true”, then the identifier of the species always stands for an31

amount wherever it appears in a mathematical formula or is referenced by an SBML construct. In that32

case, there is never a question about whether an assignment or event is meant to affect the amount or33

concentration: it is always the amount.34

A particularly confusing situation can occur when the species has attribute value constant=“true” in35

combination with attribute value hasOnlySubstanceUnits=“false”. Suppose this species is given a value36

for initialConcentration. Does constant=“true” mean that the concentration is held constant if the37

compartment size changes? No; it is still the amount that is kept constant across a compartment size38

change. The fact that the species was initialized using a concentration value is irrelevant.39

4.6.9 Example40

The following example shows a species definition within an abbreviated SBML model definition. The example41

shows that species are listed under the heading listOfSpecies in the model:42

<model ...>43

...44

<listOfSpecies>45

<species id="Glucose" compartment="cell" initialConcentration="4"46

hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false"/>47

</listOfSpecies>48

...49

</model>50

46

4.7 Parameters1

A Parameter is used in SBML to define a symbol associated with a value; this symbol can then be used in2

mathematical formulas in a model. The definition of Parameter is shown in Figure 15.3

SBase

Parameter

id: SId
name: string { use=”optional” }
value: double { use=”optional” }
units: UnitSIdRef { use=”optional” }
constant: boolean

Figure 15: The definition of class Parameter. A sequence of one or more instances of Parameter objects can be located
in an instance of ListOfParameters in Model, as shown in Figure 10.

The use of the term parameter in SBML sometimes leads to confusion among readers who have a particular4

notion of what something called “parameter” should be. It has been the source of heated debate, but despite5

this, no one has yet found an adequate replacement term that does not have different connotations to different6

people and hence leads to confusion among some subset of users. Perhaps it would have been better to have7

two constructs, one called “constants” and the other called “variables”. The current approach in SBML is8

simply more parsimonious, using a single Parameter construct with the boolean flag constant to indicate9

which flavor the parameter is. In any case, readers are implored to look past their particular definition of10

a “parameter” and simply view SBML’s Parameter as a single mechanism for defining both constants and11

(additional) variables in a model. (We write additional because the species in a model are usually considered12

to be the central variables.) After all, software tools are not required to expose to users the actual names13

of particular SBML constructs, and thus tools can present to their users whatever terms their designers feel14

best matches their target audience.15

4.7.1 The id and name attributes16

Parameter has one required attribute, id, of type SId, to give the parameter a unique identifier by which other17

parts of an SBML model definition can refer to it. A parameter can also have an optional name attribute of18

type string. Identifiers and names must be used according to the guidelines described in Section 3.3.19

4.7.2 The value attribute20

The optional attribute value determines the value (of type double) assigned to the identifier. A missing21

value implies that the value either is unknown, or to be obtained from an external source, or determined22

by an initial assignment (Section 4.8) or other SBML construct elsewhere in the model.23

A parameter’s value is set by its value attribute exactly once. If the parameter’s constant attribute (Sec-24

tion 4.7.4) has the value “true”, then the value is fixed and cannot be changed except by an InitialAssignment.25

These two methods of setting the parameter’s value differ in that the value attribute can only be used to set26

it to a literal floating-point number, whereas InitialAssignment allows the value to be set using an arbitrary27

mathematical expression (which, thanks to MathML’s expressiveness, may evaluate to a rational number).28

If the parameter’s constant attribute has the value “false”, the parameter’s value may be overridden by29

an InitialAssignment or changed by AssignmentRule or AlgebraicRule, and in addition, for simulation time30

t > 0, it may also be changed by a RateRule or Events. (However, some of these constructs are mutually31

exclusive; see Sections 4.9 and 4.12.) It is not an error to define value on a parameter and also redefine32

the value using an InitialAssignment, but the value in that case is ignored. Section 3.4.8 provides additional33

information about the semantics of assignments, rules and values for simulation time t ≤ 0.34

47

4.7.3 The units attribute1

The unit of measurement associated with the value of the parameter can be specified using the optional2

attribute units. The attribute’s value must have the data type UnitSIdRef (Section 3.1.10). There are no3

constraints on the units that can be assigned to parameters in a model; there are also no units to inherit4

from the enclosing Model object (unlike the case for, e.g., Species and Compartment).5

The unit of measurement associated with a parameter’s value is used in the following ways:6

• When the identifier of the parameter appears as a numerical quantity in a mathematical formula7

expressed in MathML (discussed in Section 3.4.3), it represents the value of the parameter, and the8

unit associated with the value is set by the parameter’s units attribute.9

• The math elements of AssignmentRule, InitialAssignment and EventAssignment objects setting the value10

of the parameter should all have the same units as the units attribute value of the parameter.11

• In a RateRule object that defines the rate of change of the parameter’s value (Section 4.9.4), the12

unit associated with the rule’s math element should be equal to the parameter’s units attribute value13

divided by the model-wide unit of time. (In other words, {parameter units}/{unit of time}.)14

The fact that the units attribute value is optional means that models can define parameters with undeclared15

units. Leaving the units of parameter values undefined in an SBML model does not render the model invalid;16

however, as mentioned elsewhere, as a matter of best practice, we strongly recommend that all models specify17

units of measurement for all parameters.18

4.7.4 The constant attribute19

The Parameter object has a mandatory boolean attribute named constant that indicates whether the pa-20

rameter’s value can vary during a simulation. A value of “true” indicates the parameter’s value cannot be21

changed by any construct except InitialAssignment. Conversely, if constant=“false”, other constructs in22

SBML, such as rules and events, can change the value of the parameter. More information about the effects23

of constant on value is presented in Section 4.7.2.24

What if a parameter has its constant attribute set to “false”, but the model does not contain any rules,25

events or other constructs that ever change its value over time? Although the model may be suspect (why26

is the parameter in question not flagged as being constant?), this situation is not strictly an error. A value27

of “false” for constant only indicates that a parameter can change value, not that it must.28

4.7.5 The sboTerm attribute29

Parameter inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sec-30

tions 3.1.11 and 5). When a value is given to this attribute in a Parameter instance, it should be an SBO31

identifier belonging to the branch for type Parameter indicated in Table 6. The relationship is of the form32

“the parameter is-a X”, where X is the SBO term. The term chosen should be the most precise (narrow)33

one that captures the role of the parameter in the model.34

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore35

sboTerm values. A model must be interpretable without the benefit of SBO labels.36

4.7.6 Example37

The following is an example of parameters defined at the Model level:38

<model ...>39

...40

<listOfParameters>41

<parameter id="tau2" value="3e-2" units="second" constant="true"/>42

<parameter id="Km1" value="10.7" units="molesperlitre" constant="true"/>43

</listOfParameters>44

...45

</model>46

48

4.8 Initial assignments1

SBML Level 3 Version 1 Core provides two ways of assigning initial values to entities in a model. The2

simplest and most basic is to set the values of the appropriate attributes in the relevant components; for3

example, the initial value of a model parameter (whether it is a constant or a variable) can be assigned4

by setting its value attribute directly in the model definition (Section 4.7). However, this approach is not5

suitable when the value must be calculated, because the initial value attributes on different components6

such as species, compartments, and parameters are single values and not mathematical expressions. This is7

the reason for the existence of InitialAssignment: to permit the calculation of the value of a constant or the8

initial value of a variable from the values of other quantities in a model. The definition of InitialAssignment9

is shown in Figure 16.10

SBase

InitialAssignment

symbol: SIdRef

Math

xmlns: string { ”http://www.w3.org/1998/Math/MathML” }
{ MathML content. }

math

Figure 16: The definition of class InitialAssignment. The contents of the Math class can be any MathML permitted
in SBML; see Section 3.4.1. A sequence of one or more instances of InitialAssignment objects can be located in an
instance of ListOfInitialAssignments in Model, as shown in Figure 10.

As explained below, the provision of InitialAssignment does not mean that models necessarily must use this11

construct when defining initial values of quantities. If a value can be set using the relevant attribute of a12

component in a model, then that approach may be more efficient and more portable to other software tools.13

InitialAssignment should be used when the other mechanism is insufficient for the needs of a particular model.14

Initial assignments have some similarities to assignment rules (Section 4.9.3). The main differences are (a)15

unlike AssignmentRule, an InitialAssignment definition only applies up to and including the beginning of16

simulation time, i.e., t ≤ 0, while an AssignmentRule applies at all times; and (b) an InitialAssignment can17

set the value of a constant whereas an AssignmentRule cannot.18

4.8.1 The symbol attribute19

InitialAssignment contains the mandatory attribute symbol, of type SIdRef. The value of this attribute can20

be the identifier (i.e., the value of the id attribute) of a Compartment, Species, SpeciesReference or global21

Parameter elsewhere in the model. The purpose of the InitialAssignment is to define the initial value of22

the constant or variable referred to by the symbol attribute. (The attribute’s name is symbol rather than23

variable because it may assign values to constants as well as variables in a model; see Section 4.8.4 below.)24

An initial assignment cannot be made to reaction identifiers, that is, the symbol attribute value of an25

InitialAssignment cannot be an identifier that is the id attribute value of a Reaction object in the model.26

This is identical to a restriction placed on rules (see Section 4.9.5).27

4.8.2 The math element28

The math element contains a MathML expression used to calculate the value of the entity referenced by29

symbol. The unit of measurement associated with the value should match the unit associated with the30

identifier given in the symbol attribute.31

4.8.3 The sboTerm attribute32

InitialAssignment inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see33

Sections 3.1.11 and 5). When a value is given to this attribute in a InitialAssignment instance, it should be34

an SBO identifier belonging to the branch for type InitialAssignment indicated in Table 6. The relationship35

is of the form “the initial assignment is-a X”, where X is the SBO term. The term chosen should be the36

most precise (narrow) one that captures the role of the initial assignment in the model.37

49

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore1

sboTerm values. A model must be interpretable without the benefit of SBO labels.2

4.8.4 Semantics of initial assignments3

The value calculated by an InitialAssignment object overrides the value assigned to the given symbol by the4

object defining that symbol. For example, if a Compartment’s size is set in its definition, and the model also5

contains an InitialAssignment having that compartment’s id as its symbol value, then the interpretation is6

that the size assigned in the Compartment object definition should be ignored and the value assigned based7

on the computation defined in the InitialAssignment. Initial assignments can take place for Compartment,8

Species, SpeciesReference and global Parameter objects regardless of the value of their constant attribute.9

This does not mean that a definition of a symbol can be omitted if there is an InitialAssignment object for10

that symbol; the symbols must always be defined even if they are assigned a value separately. For example,11

there must be a Parameter definition for a given parameter if there is an InitialAssignment for that parameter.12

The actions of all InitialAssignment objects are in general terms the same, but differ in the precise details13

depending on the type of variable being set:14

• In the case of a species, an InitialAssignment sets the referenced species’ initial quantity (concentration15

or amount) to the value determined by the formula in math. The unit associated with the value16

produced by the math formula should be equal to the unit associated with the species’ quantity. (See17

Section 4.6.5 for an explanation of how a species’ quantity is determined.)18

• In the case of a species reference, an InitialAssignment sets the initial stoichiometry of the reactant or19

product referenced by the SpeciesReference object to the value determined by the formula in math.20

The unit associated with the value produced by the math formula should be consistent with the unit21

dimensionless, because reactant and product stoichiometries in reactions are dimensionless quantities.22

• In the case of a compartment, an InitialAssignment sets the referenced compartment’s initial size to23

the size determined by the formula in math. The unit associated with the value produced by the math24

formula should be the same as that specified for the compartment’s size. (See Section 4.5.4 for more25

information about compartment units.)26

• In the case of a parameter, an InitialAssignment sets the parameter’s initial value to the value of the27

formula in math. The unit associated with the value produced by the math formula should be the same28

as parameter’s units attribute value. (See Section 4.7.3 for more information about parameter units.)29

In the context of a simulation, initial assignments establish values that are in effect prior to and including30

the start of simulation time, i.e., t ≤ 0. Section 3.4.8 provides information about the interpretation of31

assignments, rules, and entity values for simulation time up to and including the start time t = 0; this is32

important for establishing the initial conditions of a simulation if the model involves expressions containing33

the delay csymbol (Section 3.4.6).34

There cannot be two initial assignments for the same symbol in a model; that is, a model must not contain35

two or more InitialAssignment objects that both have the same identifier as their symbol attribute value.36

A model must also not define initial assignments and assignment rules for the same entity. That is, there37

cannot be both an InitialAssignment and an AssignmentRule for the same symbol in a model, because both38

kinds of constructs apply prior to and at the start of simulated time—allowing both to exist for a given39

symbol would result in indeterminism. (See also Section 4.9.5.)40

The ordering of InitialAssignment objects in a model is not significant. The collection of InitialAssignment,41

AssignmentRule and KineticLaw objects forms a set of assignment statements that must be considered as a42

whole. The combined set of assignment statements should not contain algebraic loops: a chain of dependency43

between these statements should terminate. (More formally, consider the directed graph of assignment44

statements where nodes are a model’s assignment statements and directed arcs exist for each occurrence of45

a symbol in an assignment statement math attribute. The directed arcs in this graph start from statements46

assigning the symbol and end at statements containing the symbol in their math elements. Such a graph47

must be acyclic.) Examples of valid and invalid set of assignment statements are given in Section 4.9.5.48

50

Finally, it is worth being explicit about the expected behavior in the following situation. Suppose (1) a given1

symbol has a value x assigned to it in its definition, (2) there is an initial assignment having the identifier2

as its symbol value and reassigning the value to y, and (3) the identifier is also used in the mathematical3

formula of a second initial assignment. What value should the second initial assignment use? It is y, the4

value assigned to the symbol by the first initial assignment, not whatever value was given in the symbol’s5

definition. This follows directly from the behavior at the defined at the beginning of this section and in6

Section 3.4.8: if an InitialAssignment object exists for a given symbol, then the symbol’s value is overridden7

by that initial assignment.8

4.8.5 Example9

The following example shows how the species “x” can be assigned the initial value 2 · y, where “y” is an10

identifier defined elsewhere in the model:11

<listOfSpecies>12

<species id="x" compartment="C" substanceUnits="mole"13

hasOnlySubstanceUnits="true" boundaryCondition="false" constant="false"/>14

</listOfSpecies>15

...16

<listOfInitialAssignments>17

<initialAssignment symbol="x">18

<math xmlns="http://www.w3.org/1998/Math/MathML"19

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">20

<apply>21

<times/>22

<ci> y </ci>23

<cn sbml:units="dimensionless"> 2 </cn>24

</apply>25

</math>26

</initialAssignment>27

</listOfInitialAssignments>28

The next example illustrates the more complex behavior discussed above, when a symbol has a value assigned29

in its definition but there also exists an InitialAssignment for it and another InitialAssignment uses its value30

in its mathematical formula.31

<listOfSpecies>32

<species id="x" initialAmount="50" compartment="C" substanceUnits="item"33

hasOnlySubstanceUnits="true" boundaryCondition="false" constant="false"/>34

</listOfSpecies>35

...36

<listOfInitialAssignments>37

<initialAssignment symbol="x">38

<math xmlns="http://www.w3.org/1998/Math/MathML"39

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">40

<cn sbml:units="item"> 10 </cn>41

</math>42

</initialAssignment>43

<initialAssignment symbol="othersymbol">44

<math xmlns="http://www.w3.org/1998/Math/MathML"45

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">46

<apply>47

<times/>48

<ci> x </ci>49

<cn sbml:units="dimensionless"> 2 </cn>50

</apply>51

</math>52

</initialAssignment>53

</listOfInitialAssignments>54

The value of “othersymbol” in the SBML fragment above will be “20”. The case illustrates the rule of55

thumb that if there is an initial assignment for a symbol, the value assigned to the symbol in its definition56

(here, the value of initialAmount) must be ignored and the value created by the initial assignment used57

instead.58

51

4.9 Rules1

In SBML, Rules provide additional ways to define the values of variables in a model, their relationships,2

and the dynamical behaviors of those variables. Rules enable the encoding of relationships that cannot be3

expressed using reactions alone (Section 4.11) nor by the assignment of an initial value to a variable in a4

model (Section 4.8).5

SBML separates rules into three subclasses for the benefit of model analysis software. The three subclasses6

are based on the following three different possible functional forms (where x is a variable, f is some arbitrary7

function returning a numerical result, V is a vector of variables that does not include x, and W is a vector8

of variables that may include x):9

10 Algebraic left-hand side is zero: 0 = f(W)
11 Assignment left-hand side is a scalar: x = f(V)
12 Rate left-hand side is a rate-of-change: dx/dt = f(W)

In their general form given above, there is little to distinguish between assignment and algebraic rules. They13

are treated as separate cases for the following reasons:14

• Assignment rules can simply be evaluated to calculate intermediate values for use in numerical methods;15

• SBML needs to place restrictions on assignment rules, for example the restriction that assignment rules16

cannot contain algebraic loops (discussed further in Section 4.9.5);17

• Many simulators do not contain numerical solvers capable of solving unconstrained algebraic equations,18

and providing more direct forms such as assignment rules may enable those simulators to process models19

they could not process if the same assignments were put in the form of general algebraic equations;20

• Those simulators that can solve these algebraic equations make a distinction between the different21

categories listed above; and22

• Some specialized numerical analyses of models may only be applicable to models that do not contain23

algebraic rules.24

The approach taken to covering these cases in SBML is to define an abstract Rule class containing an25

element, math, to hold the right-hand side expression, then to derive subclasses of Rule that add attributes26

to distinguish the cases of algebraic, assignment and rate rules. Figure 17 gives the definitions of Rule and27

the subclasses derived from it. The figure shows there are three subclasses, AlgebraicRule, AssignmentRule28

and RateRule derived directly from Rule. These correspond to the cases Algebraic, Assignment, and Rate29

described above, respectively.30

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content. }

Rule

AssignmentRule

variable: SIdRef

RateRule

variable: SIdRef

AlgebraicRule

math

SBase

Figure 17: The definition of Rule and derived types AlgebraicRule, AssignmentRule and RateRule.

52

4.9.1 Common attributes in Rule1

The classes derived from Rule inherit math and the attributes and elements from SBase, including sboTerm.2

The math element3

A Rule object has a required element called math, containing a MathML expression defining the mathematical4

formula of the rule. This MathML formula must return a numerical value. The formula can be an arbitrary5

expression referencing the variables and other entities in an SBML model. The interpretation of math and6

its associated unit of measurement are described in more detail in Sections 4.9.2, 4.9.3 and 4.9.4 below.7

The sboTerm attribute8

Rule inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sections 3.1.119

and 5). When a value is given to this attribute in an AlgebraicRule, AssignmentRule, or RateRule instance,10

it should be an SBO identifier belonging to the branch for type AlgebraicRule, AssignmentRule, or RateRule11

indicated in Table 6. The relationship is of the form “the rule is-a X”, where X is the SBO term. The term12

chosen should be the most precise (narrow) one that captures the role of the rule in the model.13

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore14

sboTerm values. A model must be interpretable without the benefit of SBO labels.15

4.9.2 AlgebraicRule16

The rule type AlgebraicRule is used to express equations that are neither assignments of model variables nor17

rates of change. The AlgebraicRule class does not add any attributes to the basic Rule; its role is simply to18

distinguish this case from the other cases. An example of the use of AlgebraicRule is given in Section 7.6.19

In the context of a simulation, algebraic rules are in effect at all times, t ≥ 0. To allow evaluating expres-20

sions that involve the delay csymbol (Section 3.4.6), algebraic rules are considered to apply also at t ≤ 0.21

Section 3.4.8 describes the semantics of assignments, rules, and entity values for simulation time t ≤ 0.22

An SBML model must not be overdetermined. The ability to define arbitrary algebraic expressions in an23

SBML model introduces the possibility that a model is mathematically overdetermined by the overall system24

of equations constructed from its rules, reactions and events. Therefore, if an algebraic rule is introduced in25

a model, for at least one of the entities referenced in the rule’s math element the value of that entity must26

not be completely determined by other constructs in the model. This means that at least this entity must27

not have the attribute constant=“true” and there must also not be a rate rule or assignment rule for it.28

Furthermore, if the entity is a Species object, its value must not be determined by reactions, which means29

that it must either have the attribute boundaryCondition=“true” or else not be involved in any reaction at30

all. These restrictions are explained in more detail in Section 4.9.5 below.31

Reaction identifiers can be referenced in the math expression of an algebraic rule, but reaction rates can32

never be determined by algebraic rules. This is true even when a reaction does not contain a KineticLaw33

element. (In such cases of missing KineticLaw elements, the model is valid but incomplete; the rates of34

reactions lacking kinetic laws are simply undefined, and not determined by the algebraic rule.)35

4.9.3 AssignmentRule36

The rule type AssignmentRule is used to express equations that set the values of variables. The left-hand37

side (the variable attribute) of an assignment rule can refer to the identifier of a Species, SpeciesReference,38

Compartment, or global Parameter object in the model (but not a reaction). The entity identified must not39

have its constant attribute set to “true”. The effects of an AssignmentRule are in general terms the same,40

but differ in the precise details depending on the type of variable being set:41

• In the case of a species, an AssignmentRule sets the referenced species’ quantity (whether a concentra-42

tion or amount) to the value determined by the formula in math. The unit associated with the value43

produced by the math formula should be equal to the unit associated with the species’ quantity. (See44

Section 4.6.5 for an explanation of how a species’ quantity is determined.)45

53

Restrictions: There must not be both an AssignmentRule variable attribute and a SpeciesReference1

species attribute having the same value, unless that species has its boundaryCondition attribute2

set to “true”. In other words, an assignment rule cannot be defined for a species that is created or3

destroyed in a reaction unless that species is defined as a boundary condition in the model.4

• In the case of a species reference, an AssignmentRule sets the stoichiometry of the corresponding5

reactant or product to the value determined by the formula in math. The unit associated with the value6

produced by the math formula should be consistent with the unit dimensionless, because reactant and7

product stoichiometries in reactions are dimensionless quantities.8

• In the case of a compartment, an AssignmentRule sets the referenced compartment’s size to the size9

determined by the formula in math. The unit associated with the value produced by the math formula10

should be the same as that specified for the compartment’s size. (See Section 4.5.4 for more information11

about compartment units.)12

• In the case of a parameter, an AssignmentRule sets the referenced parameter’s value to the value of13

the formula in math. The unit associated with the value produced by the formula should be the same14

as parameter’s units attribute value. (See Section 4.7.3 for more information about parameter units.)15

In the context of a simulation, assignment rules are in effect at all times, t ≥ 0. For purposes of evaluating16

expressions that involve the delay csymbol (Section 3.4.6), assignment rules are considered to apply also at17

t ≤ 0. Section 3.4.8 provides additional information about how t ≤ 0 should be handled.18

A model must not contain more than one AssignmentRule or RateRule object having the same value of19

variable; in other words, in the set of all assignment rules and rate rules in an SBML model, each variable20

appearing in the left-hand sides can only appear once. This simply follows from the fact that an indeterminate21

system would result if a model contained more than one assignment rule for the same variable or both an22

assignment rule and a rate rule for the same variable.23

Similarly, a model must also not contain both an AssignmentRule and an InitialAssignment for the same24

variable, because both kinds of constructs apply prior to and at the start of simulation time, i.e., t ≤ 0. If a25

model contained both an initial assignment and an assignment rule for the same variable, an indeterminate26

system would result. (See also Section 4.8.4.)27

The value calculated by an AssignmentRule object overrides the value assigned to the given symbol by the28

object defining that symbol. For example, if a Compartment’s size is set in its definition, and the model also29

contains an AssignmentRule having that compartment’s id as its variable value, then the size assigned30

in the Compartment definition is ignored and the value assigned based on the computation defined in the31

AssignmentRule. This does not mean that a definition for a given symbol can be omitted if there is an32

AssignmentRule object for it. For example, there must be a Parameter definition for a given parameter if33

there is an AssignmentRule for that parameter.34

4.9.4 RateRule35

The rule type RateRule is used to express equations that determine the rates of change of variables. The36

left-hand side (the variable attribute) can refer to the identifier of a species, species reference, compartment,37

or parameter (but not a reaction). The entity identified must have its constant attribute set to “false”.38

The effects of a RateRule are in general terms the same, but differ in the precise details depending on which39

variable is being set:40

• In the case of a species, a RateRule sets the rate of change of the species’ quantity (concentration or41

amount) to the value determined by the formula in math. The unit associated with the rule’s math42

element should be equal to the unit of the species’ quantity (Section 4.6.5) divided by the model-wide43

unit of time (Section 4.2.4), or in other words, {unit of species quantity}/{unit of time}.44

Restrictions: There must not be both a RateRule variable attribute and a SpeciesReference species45

attribute having the same value, unless that species has its boundaryCondition attribute is set to46

“true”. This means a rate rule cannot be defined for a species that is created or destroyed in a47

reaction, unless that species is defined as a boundary condition in the model.48

54

• In the case of a species reference, a RateRule sets the rate of change of the stoichiometry of the referenced1

reactant or product to the value determined by the formula in math. The unit associated with the value2

produced by the formula should be consistent with {unit derived from dimensionless}/{unit of time}.3

• In the case of a compartment, a RateRule sets the rate of change of the compartment’s size to the4

value determined by the formula in math. The unit of the rule’s math element should be identical to5

the compartment’s units attribute divided by the model-wide unit of time. (In other words, {unit of6

compartment size}/{unit of time}.)7

• In the case of a parameter, a RateRule sets the rate of change of the parameter’s value to that determined8

by the formula in math. The unit associated with the rule’s math element should be equal to the9

parameter’s units attribute value divided by the model-wide unit of time. (In other words, {parameter10

units}/{unit of time}.)11

In the context of a simulation, rate rules are in effect for simulation time t > 0. Other types of rules and12

initial assignments are in effect at different times; Section 3.4.8 describes these conditions.13

As mentioned in Section 4.9.3 for AssignmentRule, a model must not contain more than one RateRule or14

AssignmentRule object having the same value of variable; in other words, in the set of all assignment rules15

and rate rules in an SBML model, each variable appearing in the left-hand sides can only appear once. This16

simply follows from the fact that an indeterminate system would result if a model contained more than one17

assignment rule for the same variable or both an assignment rule and a rate rule for the same variable.18

4.9.5 Additional restrictions on rules19

An important design goal of SBML rule semantics is to ensure that a model’s simulation and analysis results20

will not be dependent on when or how often rules are evaluated. To achieve this, SBML needs to place21

two additional restrictions on rule use in addition to the conditions described above regarding the use of22

AlgebraicRule, AssignmentRule and RateRule. The first concerns algebraic loops in the system of assignments23

in a model, and the second concerns overdetermined systems.24

The model must not contain algebraic loops25

The combined set of InitialAssignment, AssignmentRule and KineticLaw objects constitute a set of assignment26

statements that should be considered as a whole. (A KineticLaw object is counted as an assignment because27

it assigns a value to the symbol contained in the id attribute of the Reaction object in which it is defined.)28

This combined set of assignment statements must not contain algebraic loops—dependency chains between29

these statements must terminate. To put this more formally, consider a directed graph in which nodes are30

assignment statements and directed arcs exist for each occurrence of an SBML species, species reference,31

compartment or parameter symbol in an assignment statement’s math element. Let the directed arcs point32

from the statement assigning the symbol to the statements that contain the symbol in their math element33

expressions. This graph must be acyclic.34

SBML does not specify when or how often rules should be evaluated. Eliminating algebraic loops ensures35

that assignment statements can be evaluated any number of times without the result of those evaluations36

changing. As an example, consider the following equations:37

x = x+ 1, y = z + 200, z = y + 10038

If this set of equations were interpreted as a set of assignment statements, it would be invalid because the39

rule for x refers to x (exhibiting one type of loop), and the rule for y refers to z while the rule for z refers40

back to y (exhibiting another type of loop).41

Conversely, the following set of equations would constitute a valid set of assignment statements:42

x = 10, y = z + 200, z = x+ 10043

55

The model must not be overdetermined1

An SBML model must not be overdetermined; that is, a model must not define more equations than there2

are unknowns in a model. An SBML model without AlgebraicRule objects cannot be overdetermined.3

Assessing whether a given continuous, deterministic, mathematical model is overdetermined does not require4

dynamic analysis; it can be done by analyzing the system of equations created from the model. It should be5

noted that when a model contains both reactions and events, there are several sets of equations to consider6

in order to assess whether a model is overdetermined. The set of equations derived from the combined set7

of rules and reactions and, for each event, the set of equations derived from the combined set of rules and8

event assignments for the particular event.9

One approach is to construct a bipartite graph in which one set of vertices represents the variables and10

the other set of vertices represents the equations. The approach involves placing edges between vertices11

such that variables in the system are linked to the equations that determine them. A mathematical model12

is overdetermined if the maximal matchings (Chartrand, 1977) of the bipartite graph contain disconnected13

vertexes representing equations. (If one maximal matching has this property, then all the maximal matchings14

will have this property; i.e., it is only necessary to find one maximal matching.) Appendix B describes a15

method of applying this procedure to specific SBML data objects. In some cases it is possible to avoid the16

use of an AlgebraicRule. This is discussed in more detail in Section 8.2.3.17

4.9.6 Example of rule use18

This section contains an example set of rules. Consider the following set of equations:19

k =
k3

k2
, s2 =

k · x
1 + k2

, A = 0.10 · x20

This can be encoded by the following scalar rule set (where the definitions of x, s, k, k2, k3 and A are21

assumed to be located elsewhere in the model and not shown in this abbreviated example):22

<listOfRules>23

<assignmentRule variable="k">24

<math xmlns="http://www.w3.org/1998/Math/MathML">25

<apply> <divide/> <ci> k3 </ci> <ci> k2 </ci> </apply>26

</math>27

</assignmentRule>28

<assignmentRule variable="s2">29

<math xmlns="http://www.w3.org/1998/Math/MathML">30

<apply>31

<divide/>32

<apply> <times/> <ci> k </ci> <ci> x </ci> </apply>33

<apply> <plus/> <cn> 1 </cn> <ci> k2 </ci> </apply>34

</apply>35

</math>36

</assignmentRule>37

<assignmentRule variable="A">38

<math xmlns="http://www.w3.org/1998/Math/MathML">39

<apply> <times/> <cn> 0.10 </cn> <ci> x </ci> </apply>40

</math>41

</assignmentRule>42

</listOfRules>43

4.10 Constraints44

The Constraint object is a mechanism for stating the assumptions under which a model is designed to operate.45

The constraints are statements about permissible values of different quantities in a model. Figure 18 shows46

the definition of the Constraint object class.47

The essential meaning of a constraint is this: if a dynamical analysis of a model (such as a simulation)48

reaches a state in which a constraint is no longer satisfied, the results of the analysis are deemed invalid49

beginning with that point in time. The exact behavior of a software tool, upon encountering a constraint50

56

Constraint

math
SBase

0..1

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content evaluating to a boolean value. }

Message
xmlns: string { "http://www.w3.org/1999/xhtml" }
{ Almost any well-formed content permitted in XHTML,
subject to a few restrictions; see text. }

message

Figure 18: The definition of class Constraint. The contents of the Math class can be any MathML permitted in SBML,
but it must return a boolean value. As shown above, an instance of Constraint can also contain zero or one instances of
Message objects; this class of object is simply a wrapper (in the XML form, <message> ... </message>) for XHTML
content. The same guidelines for XHTML content as explained in Section 3.2.3 for notes on SBase also apply to the
XHTML within messages in a Constraint. A sequence of one or more instances of Constraint objects can be located in
an instance of ListOfConstraints in Model, as shown in Figure 10.

violation, is left up to the software; however, a software tool must somehow indicate to the user when a1

model’s constraints are no longer satisfied. (Otherwise, a user may not realize that the analysis has reached2

an invalid state and is potentially producing nonsense results.) If a software tool does not have support for3

constraints, it should indicate this to the user when encountering a model containing constraints.4

The sboTerm attribute5

Constraint inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sec-6

tions 3.1.11 and 5). When a value is given to this attribute in a Constraint instance, it should be an SBO7

identifier belonging to the branch for type Constraint indicated in Table 6. The relationship is of the form8

“the constraint is-a X”, where X is the SBO term. The term chosen should be the most precise (narrow)9

one that captures the role of the constraint in the model.10

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore11

sboTerm values. A model must be interpretable without the benefit of SBO labels.12

4.10.1 The math element13

Constraint has one required subelement, math, containing a MathML formula defining the condition of the14

constraint. This formula must return a boolean value of “true” when the model is in a valid state. The15

formula can be an arbitrary expression referencing the variables and other entities in an SBML model. The16

evaluation of math and behavior of constraints are described in more detail in Section 4.10.3 below.17

4.10.2 Message18

A Constraint object can contain an optional element named message whose content is determined by object19

class Message. This element can contain a message in XHTML format that may be displayed to the user20

when the condition of the constraint in math evaluates to a value of “false”. Software tools are not required21

to display the message, but it is recommended that they do so as a matter of best practice.22

The XHTML content within a Message object must follow the same restrictions as for Notes objects described23

in Section 3.2.3. In particular, the element must declare the use of the XHTML XML namespace, and must24

not contain an XML declaration or a DOCTYPE declaration.25

4.10.3 Semantics of constraints26

In the context of a simulation, a Constraint has effect at all times t ≥ 0. Each Constraint’s math element is27

first evaluated after any InitialAssignment definitions in a model at t = 0 and can conceivably trigger at that28

point. (In other words, a simulation could fail a constraint immediately.)29

57

Constraint definitions cannot and should not be used to compute the dynamical behavior of a model as part1

of, for example, simulation. Constraints may be used as input to non-dynamical analysis, for instance by2

expressing flux constraints for flux balance analysis.3

The results of a simulation of a model containing a constraint are invalid from any simulation time at and4

after a point when the function given by the math returns a value of “false”. Invalid simulation results5

do not make a prediction of the behavior of the biochemical reaction network represented by the model.6

The precise behavior of simulation tools is left undefined with respect to constraints. If invalid results are7

detected with respect to a given constraint, the contents of the Message subobject (Section 4.10.2) may8

optionally be displayed to the user. The simulation tool may also halt the simulation or clearly delimit in9

output data the simulation time point at which the simulation results become invalid.10

There are no restrictions on duplicate Constraint definitions or the order of evaluation of Constraint objects11

in a model. It is possible for a model to define multiple constraints all with the same math element. Since12

the failure of any constraint indicates the simulation has entered an invalid state, a system is not required13

to attempt detecting whether other constraints in the model have failed once any one constraint has failed.14

4.10.4 Example15

As an example, the following SBML fragment demonstrates the constraint that species “S1” should only16

have values between 1 and 100:17

<model ...>18

...19

<listOfConstraints>20

<constraint>21

<math xmlns="http://www.w3.org/1998/Math/MathML"22

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">23

<apply>24

<and/>25

<apply>26

<lt/>27

<cn sbml:units="mole"> 1 </cn>28

<ci> S1 </ci>29

</apply>30

<apply>31

<lt/>32

<ci> S1 </ci>33

<cn sbml:units="mole"> 100 </cn>34

</apply>35

</apply>36

</math>37

<message>38

<p xmlns="http://www.w3.org/1999/xhtml"> Species S1 is out of range. </p>39

</message>40

</constraint>41

</listOfConstraints>42

...43

</model>44

4.11 Reactions45

A reaction in SBML represents any kind of process that can change the quantity of one or more species in a46

model. Examples of such processes can include transformation, transport, molecular interactions, and more.47

In SBML, the notion of a reaction is generalized to allow entities that may not be chemical substances; thus,48

a reaction in SBML does not necessarily have to be a biochemical reaction—a biochemical reaction is just49

one possible kind of process.50

At minimum, to describe a reaction in SBML, it is necessary to define its structural properties, specifically51

the participating reactants and/or products (and their corresponding stoichiometries) and the reversibility52

of the process. In addition, an SBML reaction can also contain a quantitative description of the rate of the53

reaction; this aspect consists of a mathematical formula expressing describing the rate at which the reaction54

58

process takes place, together with an optional list of modifier species and parameters influencing the reaction1

rate. The various parts of a reaction are recorded in the SBML Reaction object class and other supporting2

data classes, defined in Figure 19.3

4.11.1 Reaction4

Each reaction in an SBML model is defined using an instance of a Reaction object. As shown in Figure 19,5

it contains several scalar attributes and several lists of other objects.6

Reaction

id: SId
name: string { use="optional" }
reversible: boolean
fast: boolean
compartment: SIdRef { use="optional" }

KineticLaw

SBase

ListOfLocalParameters

speciesReference

kineticLaw

math

listOfLocalParameters

0..1

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content evaluating to a numerical value. }

1..*localParameter

0..1

ListOfSpeciesReferences

listOfReactants

listOfProducts

listOfModifiers

0..10..1

modifierSpeciesReference

1..*

0..1

1..*

ListOfModifierSpeciesReferences

ModifierSpeciesReferenceSpeciesReference
stoichiometry: double { use="optional" }
constant: boolean

SimpleSpeciesReference

id: SId { use="optional" }
name: string { use="optional" }
species: SIdRef

LocalParameter

id: SId
name: string { use="optional" }
value: double { use="optional" }
units: UnitSIdRef { use="optional" }

Figure 19: The definitions of Reaction, KineticLaw, SpeciesReference, ModifierSpeciesReference, LocalParameter,
as well as the container classes ListOfSpeciesReferences, ListOfModifierSpeciesReferences, and ListOfLocalPa-
rameters. Note that SimpleSpeciesReference is an abstract class used only to provide some common attributes to its
derived classes.

59

The id and name attributes1

As with most other main kinds of objects in SBML, the Reaction object class includes a mandatory attribute2

called id, of type SId, and an optional attribute name, of type string. The id attribute is used to give the3

reaction a unique identifier in the model. This identifier can be used in mathematical formulas elsewhere4

in an SBML model to represent the rate of that reaction; this usage is explained in detail in Section 4.11.85

below. The name attribute can be used to give the reaction a more free-form, descriptive name. The name6

and id attributes must be used as described in Section 3.3.7

The lists of reactants, products and modifiers8

Each species participating as a reactant, product, and/or modifier in a reaction must be declared using9

a SpeciesReference and/or ModifierSpeciesReference object stored in the list elements listOfReactants,10

listOfProducts and listOfModifiers. The object classes SpeciesReference and ModifierSpeciesReference11

are described in more detail in Sections 4.11.3 and 4.11.4 below. Throughout this text, we use the informal12

expressions “list of reactants”, “list of products” and “list of modifiers” to mean, respectively, the list13

of species identified by SpeciesReference objects within a Reaction listOfReactants element, the list of14

species identified by SpeciesReference objects within a Reaction listOfProducts element, and the list of15

species identified by ModifierSpeciesReference objects within a Reaction listOfModifiers element.16

Certain restrictions are placed on the appearance of species in reaction definitions:17

• The ability of a species to appear as a reactant or product of any reaction in a model is governed18

by certain combinations of the attributes constant and boundaryCondition on the Species object19

instance; see Section 4.6.6 for more information.20

• Any species appearing in the math element of the kineticLaw of a Reaction instance must be declared21

in at least one of that Reaction’s lists of reactants, products, and/or modifiers. It is an error for a22

reaction’s kinetic law formula to refer to species that have not been declared for that reaction.23

• A reaction definition can contain an empty list of reactants or an empty list of products, but it must24

have at least one reactant or product; in other words, a reaction without any reactant or product species25

is not permitted. (This restriction does not apply to modifier species, which are always optional.)26

The kineticLaw element27

A Reaction object can contain up to one KineticLaw object, in the kineticLaw element. This “kinetic law”28

defines the speed at which the process defined by the reaction takes place. A more detailed description of29

KineticLaw is left to Section 4.11.5 below.30

The inclusion of a KineticLaw object in an instance of a Reaction is optional. For some modeling purposes,31

models containing reactions without defined rates are an acceptable alternative (and may even be the only32

possible option, such as when the kinetics of the reactions are unknown). However, missing kinetic laws33

preclude the application of many model analysis techniques, including simulation.34

The reversible attribute35

The mandatory boolean attribute reversible on Reaction indicates whether the reaction is reversible. To36

say that a reaction is reversible is to say it can proceed in either the forward or the reverse direction. This37

information may be redundant in cases where the reversibility of the reaction can be deduced by inspecting38

the rate formula given in the kinetic law. However, a reaction is not required to have a kinetic law, and39

besides, when a rate expression is present, it may not always be possible to deduce the reversibility by40

inspecting it. Having a separate attribute for reversible allows certain kinds of structural analysis, such41

as elementary mode analysis, even in these cases.42

Mathematically, the reversible attribute on Reaction has no impact on the construction of the equations43

for change of the species quantities. However, labeling a reaction as irreversible is interpreted as an assertion44

that the rate expression will not have negative values during a simulation. Software developers may wish to45

provide their software systems with a means of testing that this condition holds.46

60

The presence of reversibility information in two places (i.e., the rate expression in the kinetic law, and the1

reversible flag) leaves open the possibility that a model could contain contradictory information, but this2

would be considered to be an error of the encoded model, rather than an invalid SBML encoding.3

The fast attribute4

The boolean attribute fast is another required boolean attribute of Reaction. When a model contains a5

value of “true” for fast on any of its reactions, it indicates that the creator of the model is distinguishing6

different time scales of reactions in the system. If a model does not distinguish between time scales, the fast7

attribute should be set to “false” for all reactions.8

The model’s reactions are divided into two sets by the values of the fast attributes. The set of reactions9

having fast=“true” (known as fast reactions) should be assumed to be operating on a time scale significantly10

faster than the other reactions (the slow reactions). Fast reactions are considered to be instantaneous relative11

to the slow reactions. Software tools should use a pseudo steady-state approximation for the set of fast12

reactions when constructing the system of equations for the model. More specifically, the set of reactions13

that have the fast attribute set to “true” forms a subsystem that should be described by a pseudo steady-14

state approximation in relationship to all other reactions in the model. Under this description, relaxation15

from any initial condition or perturbation from any intermediate state of this subsystem would be infinitely16

fast. Appendix C provides a technical explanation of an approach to solving systems with fast reactions.17

The correctness of the approximation requires a significant separation of time scales between the fast reactions18

and other processes. It is the responsibility of the modeler or of the software system writing the SBML model19

to ensure this condition is fulfilled.20

Note that the fast attribute has a significant effect on the mathematical interpretation of a model and21

cannot be safely ignored if a software tool does not implement support for the corresponding concept.22

Software systems should indicate to users when they encounter models with reactions having fast=“true”23

and do not have the capacity to analyze the model using a pseudo steady-state approximation.24

The compartment attribute on Reaction25

The optional attribute compartment, of data type SIdRef, can be used to indicate the compartment in26

which the reaction is assumed to take place. If the attribute is present, its value must be the identifier of a27

Compartment object defined in the enclosing Model object.28

Similar to the reversible attribute, the value of the compartment attribute has no direct impact on the29

construction of mathematical equations for the SBML model. When a reaction has a kinetic law, the30

compartment location may already be implicit in the kinetic law (though this cannot always be guaranteed).31

Nevertheless, software tools may find the compartment attribute value useful for such purposes as analyzing32

the structure of the model, guiding the modeler in constructing correct rate formulas, and visualization.33

The sboTerm attribute on Reaction34

Reaction inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sec-35

tions 3.1.11 and 5). When a value is given to this attribute in a Reaction instance, it should be an SBO36

identifier belonging to the branch for type Reaction indicated in Table 6. The relationship is of the form37

“the reaction is-a X”, where X is the SBO term. The term chosen should be the most precise (narrow) one38

that captures the role of the reaction in the model.39

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore40

sboTerm values. A model must be interpretable without the benefit of SBO labels.41

4.11.2 SimpleSpeciesReference42

As mentioned above, every species that enters into a given reaction must appear in that reaction’s lists of43

reactants, products and/or modifiers. In an SBML model, all species that may participate in any reaction44

are listed in the ListOfSpecies object of the top-level Model object instance (see Section 4.2). The lists of45

61

products, reactants and modifiers in Reaction objects do not introduce new species, but rather, they refer1

back to those listed in the model’s top-level ListOfSpecies object. For reactants and products, the connection2

is made using a SpeciesReference object; for modifiers, it is made using a ModifierSpeciesReference object.3

SimpleSpeciesReference, defined in Figure 19 on page 59, is an abstract type that serves as the parent class4

of both SpeciesReference and ModifierSpeciesReference. It is used simply to hold the attributes and elements5

that are common to the latter two objects.6

The id and name attributes7

SimpleSpeciesReference has optional attributes for an identifier (id, of data type SId) and name (name, of8

data type string). The id and name attributes must be used as described in Section 3.3.9

The id value (whether it is in a SpeciesReference or ModifierSpeciesReference object) exists in the global10

namespace of the model. In SBML Level 3 Version 1 Core, the only meaning defined for the use of such11

identifiers concerns the id of a SpeciesReference object (discussed further in Section 4.11.3); no meaning or12

value is associated with the identifiers of ModifierSpeciesReference. However, the identifiers are present on13

both object classes for possible use by SBML Level 3 packages.14

The species attribute15

The SimpleSpeciesReference object class has a required attribute, species, of data type SIdRef. As with16

the other attributes, it is inherited by SpeciesReference and ModifierSpeciesReference. The value of species17

must be the identifier of a species defined in the enclosing Model; the referenced species is thereby declared18

as participating in the reaction being defined. The precise role of that species as a reactant, product, or19

modifier in the reaction is determined by the subtype of SimpleSpeciesReference (i.e., either SpeciesReference20

or ModifierSpeciesReference) in which the identifier appears and by the specific list of species references in21

which the SpeciesReference appears.22

The sboTerm attribute23

SimpleSpeciesReference inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase24

(see Sections 3.1.11 and 5). When a value is given to this attribute in a SimpleSpeciesReference instance, it25

should be an SBO identifier belonging to the branch for type SimpleSpeciesReference indicated in Table 6.26

The relationship is of the form “the species reference is-a X”, where X is the SBO term. The term chosen27

should be the most precise (narrow) one that captures the role of the species reference in the model.28

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore29

sboTerm values. A model must be interpretable without the benefit of SBO labels.30

4.11.3 SpeciesReference31

Reaction provides a way to express which species act as reactants and which species act as products in a32

reaction, and to declare their stoichiometries. This is done using SpeciesReference objects. As mentioned33

above in Section 4.11.2, SpeciesReference inherits the mandatory attribute species and optional attributes34

id, name, and sboTerm from the parent type SimpleSpeciesReference. It also defines the optional attribute35

stoichiometry and the mandatory attribute constant, described below.36

The stoichiometry attribute37

The stoichiometry of a species in a reaction describes how much of the species changes when a reaction event38

takes place. In SBML, product and reactant stoichiometries are specified using the optional stoichiometry39

on SpeciesReference object. The stoichiometry attribute is of type double and should contain values40

greater than zero (0). A missing stoichiometry implies that the stoichiometry is either unknown, or to41

be obtained from an external source, or determined by an initial assignment (Section 4.8) or other SBML42

construct elsewhere in the model.43

A species reference’s stoichiometry is set by its stoichiometry attribute exactly once. If the SpeciesReference44

object’s constant attribute (see below) has the value “true”, then the stoichiometry is fixed and cannot45

62

be changed except by an InitialAssignment. These two methods of setting the stoichiometry (i.e., using1

stoichiometry directly, or using an InitialAssignment) differ in that the stoichiometry attribute can only2

be set to a literal floating-point number, whereas InitialAssignment allows the value to be set using an arbitrary3

mathematical expression. (As an example, the approach could be used to set the stoichiometry to a rational4

number of the form p/q, where p and q are integers, something that is occasionally useful in the context5

of biochemical reaction networks.) If the species reference’s constant attribute has the value “false”,6

the species reference’s value may be overridden by an InitialAssignment or changed by AssignmentRule or7

AlgebraicRule, and in addition, for simulation time t > 0, it may also be changed by a RateRule or Events.8

(However, some of these constructs are mutually exclusive; see Sections 4.9 and 4.12.) It is not an error to9

define stoichiometry on a species reference and also redefine the stoichiometry using an InitialAssignment,10

but the stoichiometry attribute in that case is ignored. Section 3.4.8 provides additional information about11

the semantics of assignments, rules and values for simulation time t ≤ 0.12

An explanation of how exactly the stoichiometry is used in the mathematical interpretation of the model is13

given in Section 4.11.7.14

The constant attribute15

The SpeciesReference attribute constant is a mandatory boolean attribute used to indicate whether the16

stoichiometry value can vary during a simulation. If constant=“true”, the corresponding species’ sto-17

ichiometry in the reaction cannot be changed by other constructs elsewhere in the model except by an18

InitialAssignment. A value of “false” means the stoichiometry can be changed by other SBML constructs19

such as rules (see Section 4.9), as described above in the section on the stoichiometry attribute.20

Use of species reference identifiers in mathematical expressions21

The value of the id attribute of a SpeciesReference can be used as the content of a ci element in MathML22

formulas elsewhere in the model. When the identifier appears in a ci element, it represents the stoichiometry23

of the corresponding species in the reaction where the SpeciesReference object instance appears. More24

specifically, it represents the value of the stoichiometry attribute on the SpeciesReference object.25

The unit of measurement associated with a SpeciesReference’s stoichiometry value26

The unit associated with the value of a species’ stoichiometry is always considered to be dimensionless.27

This has the following implications:28

• When a species reference’s identifier appears in mathematical formulas elsewhere in the model, the29

unit associated with that value is dimensionless.30

• The units of the math elements of AssignmentRule, InitialAssignment and EventAssignment objects31

setting the stoichiometry of the species reference should be dimensionless.32

• If a species reference’s identifier is the subject of a RateRule, the unit associated with the RateRule ob-33

ject’s value should be dimensionless/time, where time is the model-wide unit of time (Section 4.2.4).34

Examples35

The following is a simple example of a species reference for species “X0”, with stoichiometry “2”, in a list of36

reactants within a reaction having the identifier “J1”:37

<model ...>38

...39

<listOfReactions>40

<reaction id="J1" reversible="false" fast="false">41

<listOfReactants>42

<speciesReference species="X0" stoichiometry="2" constant="true"/>43

</listOfReactants>44

...45

</reaction>46

...47

63

</listOfReactions>1

...2

</model>3

The following is a more complex example of a species reference with an id “sr01” and an initial assignment4

that assigns a rational number to the stoichiometry:5

<model ...>6

...7

<listOfInitialAssignments>8

<initialAssignment symbol="sr01">9

<math xmlns="http://www.w3.org/1998/Math/MathML"10

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">11

<cn type="rational" sbml:units="dimensionless"> 3 <sep/> 2 </cn>12

</math>13

</initialAssignment>14

...15

</listOfInitialAssignments>16

...17

<listOfReactions>18

<reaction id="J1" reversible="true" fast="false">19

<listOfReactants>20

<speciesReference id="sr01" species="X0" constant="true"/>21

</listOfReactants>22

...23

</reaction>24

...25

</listOfReactions>26

...27

</model>28

A species can occur more than once in the lists of reactants and products of a given Reaction instance. The29

effective stoichiometry for the species is the sum of the stoichiometry values given in the SpeciesReference30

objects in the list of products minus the sum of stoichiometry values given in the SpeciesReference objects31

in the list of reactants. A positive value indicates the species is effectively a product and a negative value32

indicates the species is effectively a reactant. SBML places no restrictions on the effective stoichiometry of33

a species in a reaction; for example, it can be zero. In the following SBML fragment, the two reactions have34

the same effective stoichiometry for all their species:35

<reaction id="x" reversible="false" fast="false">36

<listOfReactants>37

<speciesReference species="a" stoichiometry="1" constant="true"/>38

<speciesReference species="a" stoichiometry="1" constant="true"/>39

<speciesReference species="b" stoichiometry="1" constant="true"/>40

</listOfReactants>41

<listOfProducts>42

<speciesReference species="c" stoichiometry="1" constant="true"/>43

<speciesReference species="b" stoichiometry="1" constant="true"/>44

</listProducts>45

</reaction>46

<reaction id="y" reversible="false" fast="false">47

<listOfReactants>48

<speciesReference species="a" stoichiometry="2" constant="true"/>49

</listOfReactants>50

<listOfProducts>51

<speciesReference species="c" stoichiometry="1" constant="true"/>52

</listProducts>53

</reaction>54

4.11.4 ModifierSpeciesReference55

Sometimes a species appears in the kinetic rate formula of a reaction but is neither created nor destroyed in56

that reaction (for example, because it acts as a catalyst or inhibitor). In SBML, all such species are simply57

called modifiers without regard to the detailed role of those species in the model (though a model could use58

SBO terms to clarify the roles; see Section 5). The Reaction object class provides a way to express which59

64

species act as modifiers in a given reaction. This is the purpose of the list of modifiers available in Reaction.1

The list contains instances of ModifierSpeciesReference object.2

As shown in Figure 19 on page 59, the ModifierSpeciesReference class inherits the mandatory attribute3

species and optional attributes id and name from the parent class SimpleSpeciesReference; see Section 4.11.24

for their precise definitions. As already explained in Section 4.11.2, no meaning is assigned to the identifier of5

ModifierSpeciesReference object instances in SBML Level 3 Version 1 Core, but the identifiers are available6

for possible use by SBML Level 3 packages. Note also that modifiers in reactions also have no stoichiometries7

and therefore do not possess a stoichiometry attribute.8

The value of the species attribute must be the identifier of a species defined in the enclosing Model; this9

species is designated as a modifier for the current reaction. A reaction may have any number of modifiers.10

It is permissible for a modifier species to appear simultaneously in the list of reactants and products of the11

same reaction where it is designated as a modifier, as well as to appear in the list of reactants, products and12

modifiers of other reactions in the model.13

4.11.5 KineticLaw14

The KineticLaw object class is used to describe the rate at which the process defined by the Reaction takes15

place. As shown in Figure 19 on page 59, KineticLaw has elements called math and listOfLocalParameters,16

in addition to the attributes and elements it inherits from SBase.17

The math element18

As shown in Figure 19 on page 59, KineticLaw has an element called math for holding a MathML formula19

defining the rate of the reaction. The expression in math may refer to global identifiers defined in the model as20

well as LocalParameter object identifiers from the KineticLaw’s list of local parameters (see below). However,21

the only Species identifiers that can be used in math are those declared in the lists of reactants, products22

and modifiers in the Reaction object (see Sections 4.11.2, 4.11.3 and 4.11.4).23

Section 4.11.7 provides important discussions about the meaning and interpretation of SBML “kinetic laws”.24

The list of local parameters25

An instance of KineticLaw can contain a list of one or more LocalParameter objects (Section 4.11.6) defining26

new parameters whose identifiers can be used in the math formula. These “local parameters” are optional—a27

kinetic law can always refer to global Parameter objects. The local parameter facility simply provides a way28

to add additional parameters that may be relevant only to a specific reaction, and that may therefore be29

better handled by encapsulating their definitions within that kinetic law.30

As discussed in Section 3.3.1, reactions introduce local namespaces for local parameter identifiers, and within31

a KineticLaw object, a local parameter whose identifier is identical to a global identifier defined in the model32

takes precedence over the value associated with the global identifier. Note that this introduces the potential33

for a local parameter definition to shadow a global identifier. SBML does not separate symbols by class of34

object; consequently, inside the kinetic law mathematical formula, the value of a local parameter having the35

same identifier as a species, compartment, parameter or other global model entity will override the global36

value. Modelers and software developers may wish to take precautions to avoid this happening accidentally.37

The sboTerm attribute38

KineticLaw inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sec-39

tions 3.1.11 and 5). When a value is given to this attribute in a KineticLaw instance, it should be an SBO40

identifier belonging to the branch for type KineticLaw indicated in Table 6. The relationship is of the form41

“the kinetic law is-a X”, where X is the SBO term. The term chosen should be the most precise (narrow)42

one that captures the role of the kinetic law in the model.43

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore44

sboTerm values. A model must be interpretable without the benefit of SBO labels.45

65

4.11.6 LocalParameter1

The KineticLaw object within a Reaction object can contain a ListOfLocalParameters object containing the2

definitions of local parameter that are only accessible by the kinetic law formula of that particular reaction.3

The list contains LocalParameter objects, each of which associates an identifier with a value. This identifier4

can then be used in the kinetic law. The definition of LocalParameter is shown in Figure 19 on page 59.5

The id and name attributes6

LocalParameter has a required attribute id, of data type SId, to give the local parameter an identifier by7

which the kinetic law formula can refer to it. A local parameter can also have an optional name attribute of8

type string. The identifier of a local parameter needs to be unique only within the list of local parameters9

of one reaction. The details about the scope for identifiers are given in Sections 3.3.1 and 4.11.5, and about10

the use of names in Section 3.3.2.11

The value attribute12

The optional attribute value determines the value (of type double) assigned to the identifier. A missing13

value attribute implies that the value either is unknown, or to be obtained from an external source. (Note14

that, unlike the case with global Parameter objects, there is no way in SBML Level 3 Version 1 Core for15

InitialAssignment or other SBML constructs to be used for setting the value of LocalParameter objects, because16

local parameters are local to reactions.)17

The units attribute18

The unit of measurement associated with the value of the parameter can be specified using the optional19

attribute units. The attribute’s value must have the data type UnitSIdRef (Section 3.1.10). There are20

no constraints on the units that can be assigned to local parameters in a model; there are also no units to21

inherit from the enclosing Model object (unlike the case for, e.g., Species and Compartment).22

The units attribute is used in the following way: when a local parameter’s identifier appears in the content23

of the math element of the enclosing KineticLaw object, the unit of measurement associated with the local24

parameter’s value is determined by the LocalParameter object’s units attribute.25

The sboTerm attribute26

LocalParameter inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see27

Sections 3.1.11 and 5). When a value is given to this attribute in a LocalParameter instance, it should be28

an SBO identifier belonging to the branch for type LocalParameter indicated in Table 6. The relationship is29

of the form “the local parameter is-a X”, where X is the SBO term. The term chosen should be the most30

precise (narrow) one that captures the role of the local parameter in the model.31

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore32

sboTerm values. A model must be interpretable without the benefit of SBO labels.33

Example34

The following is an example of a Reaction object that defines a reaction with identifier J1, in which X0 → S135

at a rate given by k · [X0] · [S2], where S2 is a catalyst and k is a parameter, and the square brackets36

symbolizes that the species quantities are in terms of concentrations. The reaction is assumed to take place37

all in one compartment identified as “c1”. The example demonstrates the use of species references, KineticLaw38

objects and local parameters. The units associated with the species identifiers here are amount/volume (see39

Section 4.6), and so the rate expression k · [X0] · [S2] needs to be multiplied by the compartment volume40

(represented by its identifier, “c1”) to produce the desired units of amount/time for the rate expression.41

<model timeUnits="second" extentUnits="mole" substanceUnits="mole">42

<listOfUnitDefinitions>43

<unitDefinition id="per_concent_per_time">44

<listOfUnits>45

66

<unit kind="litre" exponent="1" scale="0" multiplier="1"/>1

<unit kind="mole" exponent="-1" scale="0" multiplier="1"/>2

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>3

</listOfUnits>4

</unitDefinition>5

</listOfUnitDefinitions>6

<listOfCompartments>7

<compartment id="c1" units="litre" size="0.001" spatialDimensions="3" constant="true"/>8

</listOfCompartments>9

<listOfSpecies>10

<species id="S1" compartment="c1" initialConcentration="2.0"11

hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false"/>12

<species id="S2" compartment="c1" initialConcentration="0.5"13

hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false"/>14

<species id="X0" compartment="c1" initialConcentration="1.0"15

hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false"/>16

</listOfSpecies>17

<listOfReactions>18

<reaction id="J1" reversible="false" fast="false">19

<listOfReactants>20

<speciesReference species="X0" stoichiometry="1" constant="true"/>21

</listOfReactants>22

<listOfProducts>23

<speciesReference species="S1" stoichiometry="1" constant="true"/>24

</listOfProducts>25

<listOfModifiers>26

<modifierSpeciesReference species="S2"/>27

</listOfModifiers>28

<kineticLaw>29

<math xmlns="http://www.w3.org/1998/Math/MathML">30

<apply>31

<times/> <ci> k </ci> <ci> S2 </ci> <ci> X0 </ci> <ci> c1 </ci>32

</apply>33

</math>34

<listOfLocalParameters>35

<localParameter id="k" value="0.1" units="per_concent_per_time"/>36

</listOfLocalParameters>37

</kineticLaw>38

</reaction>39

</listOfReactions>40

</model>41

4.11.7 Mathematical interpretation of SBML reactions and kinetic laws42

In SBML, reactions are the central mechanism for describing processes that change the quantities of species43

in a model. The kinetic law of an SBML reaction provides a quantitative description of the speed with44

which this happens. In this section, we provide an interpretation of SBML kinetic laws in the framework45

of a system of ordinary differential equations (ODEs). However, the choice of ODEs as the framework is46

only for exposition purposes here, in order to allow us to present a concrete mathematical expression of the47

model in terms that many readers will be familiar with; it is equally possible to translate a model into other48

frameworks, and some formulations, such as discrete stochastic systems, are indeed quite common.49

Semantics of rate law and stoichiometry50

The stoichiometry of a species S in a reaction describes the proportion, relative to other species participating51

in that reaction, of S involved in each reaction event. For example, in a reaction S1 + 2S2 → S3, twice as52

many entities of S2 as entities of S1 are involved each time a reaction event is counted. The value of the53

expression in the KineticLaw’s math element describes the rate at which the reaction takes place. The product54

of the reaction rate (of a given reaction) and the stoichiometry (of a given species in the reaction) describes55

the reaction’s contribution to the rate of change of the species’ quantity in the overall system.56

It is important to make clear that a “kinetic law” in SBML is not identical to a traditional rate law. When57

modeling species as continuous amounts (e.g., concentrations), the rate laws used are traditionally expressed58

in terms of concentration per time. Unfortunately, this approach only works well in cases where certain59

67

assumptions hold. Three assumptions in particular are incompatible with generalized multicompartmental1

modeling; they are listed in Table 5 along with the problems they entail.2

3 Assumption Problem

4 All species that participate in a given reaction
are located in one compartment

SBML must support reaction processes (e.g., trans-
port) that move species between compartments

5 Compartments are three-dimensional volume
containers

SBML must support models where reactions may take
place at interfaces (e.g., 2-D membranes) between com-
partments, thus involving compartments with different
dimensions

6 Compartment volumes are constant over time SBML must support systems with compartments that
can change size over time

Table 5: Assumptions behind “traditional” rate laws, and the problems they imply for general multicompartmental modeling.

A simple example can illustrate the problems that arise when describing reactions between multiple volumes7

using concentration/time units (which is to say, amount/volume/time). Suppose we have two species pools8

S1 and S2, with S1 located in a compartment having volume V1, and S2 located in a compartment having9

volume V2. Let the volume V2 = 3V1. Now consider a transport reaction S1 → S2 in which the species S1 is10

moved from the first compartment to the second. Assume we only want to model the overall effect, without11

getting into the molecular details (which might in reality involve such things as pores in a membrane between12

the compartments). Let us use the simplest type of chemical kinetics, in which the rate of the transport13

reaction is controlled by the activity of S1 and this rate is equal to some constant k times the activity of S1.14

For the sake of simplicity, assume S1 is in a diluted solution and thus that the activity of S1 can be taken15

to be equal to its concentration [S1]. The rate expression will therefore be k · [S1], with k having the unit16

1/time. Then:17

d[S2]

dt
= −d[S1]

dt
= k · [S1]18

So far, this looks normal—until we consider the number of molecules of S1 that disappear from the com-19

partment of volume V1 and appear in the compartment of volume V2. The number of molecules of S1 (call20

this nS1) is given by [S1] · V1 and the number of molecules of S2 (call this nS2) is given by [S2] · V2. Since21

our volumes have the relationship V2/V1 = 3, the relationship above implies that nS1
= k · [S1] ·V1 molecules22

disappear from the first compartment per unit of time and nS2
= 3 · k · [S1] · V1 molecules appear in the23

second compartment. In other words, we have created matter out of nothing!24

The problem lies in the use of concentrations as the measure of what is transferred by the reaction, be-25

cause concentrations depend on volumes and the scenario involves multiple unequal volumes. The problem26

is not limited to using concentrations or volumes; the same problem also exists when using density, i.e.,27

mass/volume, as well as dependency on other spatial distributions (i.e., areas or lengths). What must be28

done instead is to consider the number of “items” being acted upon by a reaction process irrespective of their29

distribution in space (volume, area or length). An “item” in this context may be a molecule, particle, mass,30

or other “thing”, as long as the substance measurement is independent of the size of the space in which the31

items are located and the processes take place.32

In multicompartmental models, to be able to specify a rate law only once and then use it unmodified in33

equations for different species, the rate law needs to be expressed in terms of an intensive property, that is,34

species quantity/time, rather than the extensive property typically used, species quantity/size/time. As a35

result, modelers and software tools in general cannot insert traditional textbook rate laws unmodified into36

the math element of a KineticLaw. The unusual term “kinetic law” was chosen to alert users to this difference.37

68

Constructing rate-of-change equations for the species1

A consequence of the approach to “kinetic laws” discussed in the previous section is this: when constructing2

equations describing the time-rates of change of different species defined by an SBML model, the equations3

are assumed to be in terms of time-rates of changes to amounts, not concentrations (or more generally4

densities, i.e., amount per size of compartment). A kinetic law does not describe how often a reaction would5

take place in a compartment of unit size, but rather how often it takes place (per time unit) given the actual6

size of the compartment. The dimension of the kinetic law is therefore number of reaction events per time.7

When constructing a system of equations dictating the rates of change of the species in an SBML model, we8

only need to consider species having attribute values constant=“false” and boundaryCondition=“false”,9

because as discussed in Section 4.6.6, these are the only species affected by the reactions in the model.10

(Other species not meeting these criteria may be affected by other SBML constructs, but here, we are11

focusing specifically on the implications of reactions.)12

Assume now a model in which N species S1, S2, . . . , SN having attribute values constant=“false” and13

boundaryCondition=“false” participate in M reactions R1, R2, . . . , RM . Let vRj represent the rate or14

velocity of reaction Rj as given by the formula in the math element of KineticLaw object for Rj . The unit of15

measurement associated with this rate expression is extent/time, where the extent and time units are specified16

by the extentUnits and timeUnits attributes on the Model object, respectively. Let stoichSi,Rj
represent17

the effective stoichiometry of species Si in reaction Rj . (By “effective stoichiometry”, we mean the number18

that results from taking the sum of the stoichiometry values of all references to Si in Rj ’s listOfReactants19

and subtracting the sum of the stoichiometric values of all references to Si in Rj ’s listOfProducts.) If Si20

is neither a reactant nor product in some reaction Rx, then stoichSi,Rx
= 0. Finally, let nSi

represent the21

amount of species Si in the model (and note that this value is not a concentration or density).22

There are three possible cases to consider when constructing rate-of-change equations for the species:23

1. No conversion factors defined. If neither the Species object for Si nor the Model object define values24

for their respective conversionFactor attributes, then the rate of change of the species amount is25

determined as follows (and note the implication that the unit of reaction extent should be identical to26

the unit in which the amount of species Si is measured):27

dnSi

dt
=

M∑
j=1

stoichSi,Rj
· vRj

28

2. Global conversion factor defined. If the Model object instance defines a value for its conversionFactor29

attribute, and the Species object for Si does not define a value for its conversionFactor, then the30

global conversion factor is used to convert between the unit of reaction extent in the model and the31

unit in which the amount of species Si is measured. Let cmodel represent the value of the parameter32

object identified by the conversionFactor attribute value on Model (see Section 4.2.7). The formula33

for the rate of change of Si’s amount then becomes the following:34

dnSi

dt
= cmodel ·

M∑
j=1

stoichSi,Rj · vRj35

3. Conversion factor defined for the species. If the Species object instance for Si defines a value for its36

conversionFactor attribute, then this factor is used to convert between the unit of reaction extent37

in the model and the unit in which the amount of species Si is measured. (The factor defined by the38

individual species overrides any value that may exist for the Model object’s conversionFactor.) Let39

cSi
represent the value of the parameter object identified by Si’s conversionFactor attribute value40

(see Section 4.6.7). The formula for the rate of change of Si’s amount then becomes the following:41

dnSi

dt
= cSi

·
M∑
j=1

stoichSi,Rj
· vRj

42

In Section 8.2.4, we present some recommendations for how to encode rate laws and models in SBML.43

69

4.11.8 Use of reaction identifiers in mathematical expressions1

The value of the id attribute of a Reaction can be used as the content of a ci element in MathML formulas2

elsewhere in the model. Such a ci element or symbol represents the rate of the given reaction as given3

by the reaction’s KineticLaw object. As explained above, the unit of measurement associated with the4

mathematical expression in a KineticLaw object is extent/time; therefore, this this is the unit associated with5

the id attribute of a Reaction when the identifier appears in MathML expressions.6

A KineticLaw object in effect forms an assignment statement assigning the evaluated value of the math7

element to the symbol value contained in the Reaction id attribute. No other object can assign a value8

to such a reaction symbol; i.e., the variable attributes of InitialAssignment, RateRule, AssignmentRule and9

EventAssignment objects cannot contain the value of a Reaction id attribute.10

The combined set of InitialAssignment, AssignmentRule and KineticLaw objects form a set of assignment11

statements that should be considered as a whole. The combined set of assignment rules should not contain12

algebraic loops: a chain of dependency between these statements should terminate. (More formally, consider13

the directed graph of assignment statements where nodes are statements and directed arcs exist for each14

occurrence of a symbol in an assignment statement math element. The directed arcs start from the statement15

defining the symbol to the statements that contain the symbol in their math elements. Such a graph must16

be acyclic.) Examples of valid and invalid set of assignment statements are given in Section 4.9.5.17

4.12 Events18

Model has an optional list of Event objects that describe the time and form of instantaneous, discontinuous19

state changes in the model. For example, an event may describe that a certain species quantity in a model20

is halved when another species’ quantity exceeds a given threshold value.21

An SBML Event object defines when the event can occur, the variables that are affected by it, how the22

variables are affected, and the event’s relationship to other events. The effect of the event can optionally be23

delayed after the occurrence of the condition which invokes it. Conceptually, the operation of every event is24

divided into two phases (even when it is not delayed): the first phase when the event is triggered and the25

second phase when the event is executed. The object classes Event, Trigger, Delay, Priority, EventAssignment26

and ListOfEventAssignments are derived from SBase (see Section 3.2) and are defined in Figure 20 on the27

following page. An example of a model which uses events is given in Section 7.28

4.12.1 Event29

An Event definition has one required attribute, useValuesFromTriggerTime, and one required subobject, a30

trigger condition in the form of Trigger. The remaining components (the other attributes on Event, and the31

subobjects Delay, Priority, ListOfEventAssignments, EventAssignment) are optional. These various features32

of Event are described below.33

The id and name attributes34

As with most components in SBML, an Event has id and name attributes, but in the case of Event, both are35

optional. These attributes operate in the manner described in Section 3.3.36

The optional sboTerm attribute on Event37

Event inherits an optional sboTerm attribute of type SBOTerm from SBase (see Sections 3.1.11 and 5). When38

this attribute is present on a given Event object instance, its value should be an SBO identifier belonging to39

the branch for type Event indicated in Table 6. The relationship is of the form “the event is-a X”, where40

X is the SBO term. The term chosen should be the most precise (narrow) one that captures the role of the41

event in the model.42

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore43

sboTerm values. A model must be interpretable without the benefit of SBO labels.44

70

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content evaluating to a boolean value. }

math

SBase

trigger

Event

id: SId { use="optional" }
name: string { use="optional" }
useValuesFromTriggerTime: boolean

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content evaluating to a nonnegative number. }

EventAssignment

variable: SId

math

eventAssignment
1..*

math

listOfEventAssignments

delay 0..1

ListOfEventAssignments

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content. }

Delay

0..1

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content evaluating to a number. }

math

0..1
Priority

priority

Trigger

initialValue: boolean
persistent: boolean

Figure 20: The definitions of Event, Trigger, Delay, Priority, EventAssignment, and ListOfEventAssignments.

The useValuesFromTriggerTime attribute1

The possibility of defining an optional Delay within Event, and the potential for multiple simultaneously-2

triggered events, means there are two times to consider when interpreting an event: the moment at which3

the event triggered, and the moment at which its assignments are executed. (If a Delay subobject is present,4

these moments are separated by simulation time. If multiple events are triggered simultaneously, these5

moments are separated by the sequential execution of the event assignments.) Similarly, it is also possible6

to distinguish between the moment at which the mathematical expression of an EventAssignment object is7

evaluated, and the moment at which this value is assigned to the entity referenced by the EventAssignment’s8

71

variable attribute. A model could intend the EventAssignment expression to be evaluated either at the1

moment the event is triggered, or at the moment the event assignments are executed. (In the former case,2

a model interpreter would have to save the calculated values until the moment of execution.)3

The attribute useValuesFromTriggerTime allows a model to indicate the moment at which the event’s4

assignments are to be evaluated. A value of “true” indicates the values assignments are to be computed at5

the moment the event is triggered. Conversely, useValuesFromTriggerTime=“false” means the assignments6

are to be computed at the moment the event is executed. The attribute has no default value.7

4.12.2 Trigger8

As shown in Figure 20, an Event object must contain exactly one object of class Trigger. This object in9

turn must contain two attributes, persistent and initialValue, as well as a MathML math element. The10

expression in the math element must evaluate to a value of type boolean. The exact moment at which this11

expression evaluates to “true” during a simulation is taken to be the time point when the Event is triggered.12

An event only triggers when the expression within its Trigger object makes the transition in value from13

“false” to “true”. The event will trigger again at any subsequent time points when the trigger makes the14

transition from “false” to “true”; in other words, an event can trigger multiple times during a simulation15

if its trigger condition makes the transition from “false” to “true” more than once. The behavior at the16

very start of simulation time (i.e., t = 0, where t stands for time) is determined in part by the boolean flag17

initialValue, discussed below.18

The persistent attribute on Trigger19

In the interval between when an Event object triggers (i.e., its Trigger object expression transitions in value20

from “false” to “true”) and when its assignments are to be executed, conditions in the model may change21

such that the trigger expression transitions back from “true” to “false”. Should the event’s assignments22

still be made if this happens? Answering this question is the purpose of the persistent attribute on Trigger.23

If the boolean attribute persistent has a value of “true”, then once the event is triggered, all of its assign-24

ments are always performed when the time of execution is reached. The name “persistent” is meant to evoke25

the idea that the trigger expression does not have to be re-checked after it triggers if persistent=“true”.26

Conversely, if the attribute value is “false”, then the trigger expression is not assumed to persist: if the27

expression transitions in value back to “false” at any time between when the event triggered and when it28

is to be executed, the event is no longer considered to have triggered and its assignments are not executed.29

(If the trigger expression transitions once more to “true” after that point, then the event is triggered, but30

this then constitutes a whole new event trigger-and-execute sequence.)31

The persistent attribute can be especially useful when Event objects contain Delay objects, but it is relevant32

even in a model without delays if the model contains two or more events. As explained in the introduction33

to this section, the operation of all events in SBML (delayed or not) is conceptually divided into two phases,34

triggering and execution; however, unless events have priorities associated with them (see Section 4.12.3),35

SBML does not mandate a particular ordering of event execution in the case of simultaneous events (see36

Section 4.12.7). Models with multiple events can lead to situations where the execution of one event affects37

another event’s trigger expression value. If that other event has persistent=“false”, and its trigger38

expression evaluates to “false” before it is to be executed, the event must not be executed after all.39

The initialValue attribute on Trigger40

As mentioned above, an event triggers when the mathematical expression in its Trigger object transitions in41

value from “false” to “true”. An unanswered question concerns what happens at the start of a simulation:42

can event triggers make this transition at t = 0, where t stands for time?43

In order to determine whether an event may trigger at t = 0, it is necessary to know what value the Trigger44

object’s math expression had immediately prior to t = 0. This starting value of the trigger expression45

is determined by the value of the boolean attribute initialValue. A value of “true” means the trigger46

expression is taken to have the value “true” immediately prior to t = 0. In that case, the trigger cannot47

72

transition in value from “false” to “true” at the moment simulation begins (because it has the value “true”1

both before and after t = 0), and can only make the transition from “false” to “true” sometime after t = 0.2

(To do that, it would also first have to transition to “false” before it could make the transition from “false”3

back to “true”.) Conversely, if initialValue=“false”, then the trigger expression is assumed to start with4

the value “false”, and therefore may trigger at t = 0 if the expression evaluates to “true” at that moment.5

The optional sboTerm attribute on Trigger6

Trigger inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sections 3.1.117

and 5). The value given to this attribute should be an SBO identifier belonging to the branch for type Trigger8

indicated in Table 6. The relationship is of the form “the trigger is-a X”, where X is the SBO term. The9

term chosen should be the most precise (narrow) one that captures the role of the trigger in the model.10

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore11

sboTerm values. A model must be interpretable without the benefit of SBO labels.12

4.12.3 Priority13

As shown in Figure 20, an Event object can contain an optional Priority subobject. The Priority object class,14

like Delay, is derived from SBase and contains a MathML formula stored in the element math. This formula15

is used to compute a dimensionless numerical value that influences the order in which a simulator is to16

perform the assignments of two or more events that happen to be executed simultaneously. The formula17

may evaluate to any double value (and thus may be a positive or negative number, or zero), with positive18

numbers taken to signifying a higher priority than zero or negative numbers. If no Priority object is present19

on a given Event object, no priority is defined for that event.20

The interpretation of priorities on events in a model21

For the purposes of SBML, simultaneous event execution is defined as the situation in which multiple events22

have identical times of execution. The time of execution is calculated as the sum of the time at which a23

given event’s Trigger is triggered plus its Delay duration, if any. Here, “identical times” means mathematically24

equal instants in time. (In practice, simulation software adhering to this specification may have to rely on25

numerical equality instead of strict mathematical equality; robust models will ensure that this difference will26

not cause significant discrepancies from expected behavior.)27

If no Priority subobjects are defined for two or more Event objects, then those events are still executed28

simultaneously but their order of execution is undefined by this SBML specification. A software implemen-29

tation may choose to execute such simultaneous events in any order, as long as each event is executed only30

once and the requirements of checking the persistent attribute (and acting accordingly) are satisfied. See31

Section 4.12.2 for more information about the attribute persistent.32

If Priority subobjects are defined for two or more simultaneously-triggered events, the order in which those33

particular events must be executed is dictated by their Priority objects, as follows. If the values calculated34

using the two Priority objects’ math expressions differ, then the event having the higher priority value must35

be executed before the event with the lower value. If, instead, the two priority values are mathematically36

equal, then the two events must be triggered in a random order. It is important to note that a random order37

is not the same as an undefined order : given multiple runs of the same model with identical conditions, an38

undefined ordering would permit a system to execute the events in (for example) the same order every time39

(according to whatever scheme may have been implemented by the system), whereas the explicit requirement40

for random ordering means that the order of execution in different simulation runs depends on random chance.41

In other words, given two events “A” and “B”, a randomly-determined order must lead to an equal chance42

of executing “A” first or “B” first, every time those two events are executed simultaneously.43

A model may contain a mixture of events, some of which have Priority subobjects and some do not. Should a44

combination of simultaneous events arise in which some events have priorities defined and others do not, the45

set of events with defined priorities must trigger in the order determined by their Priority objects, and the46

set of events without Priority objects must be executed in an undefined order with respect to each other and47

73

with respect to the events with Priority subobjects. (Note that undefined order does not necessarily mean1

random order, although a random ordering would be a valid implementation of this requirement.)2

The following example may help further clarify these points. Suppose a model contains four events that3

should be executed simultaneously, with two of the events having Priority objects with the same value and4

the other two events having Priority objects with the same, but different, value. The two events with the5

higher priorities must be executed first, in a random order with respect to each other, and the remaining two6

events must be executed after them, again in a random order, for a total of four possible and equally-likely7

event executions: A-B-C-D, A-B-D-C, B-A-C-D, and B-A-D-C. If, instead, the model contains four events8

all having the same Priority values, there are 4! or 24 possible orderings, each of which must be equally likely9

to be chosen. Finally, if none of the four events has a Priority subobject defined, or even if exactly one of10

the four events has a defined Priority, there are again 24 possible orderings, but the likelihood of choosing11

any particular ordering is undefined; the simulator can choose between events as it wishes. (The SBML12

specification only defines the effects of priorities on Event objects with respect to other Event objects with13

priorities. Putting a priority on a single Event object in a model does not cause it to fall within that scope.)14

Section 4.12.7 includes additional discussion of these topics.15

Evaluation of Priority expressions16

An event’s Priority object math expression must be evaluated at the time the Event is to be executed. During17

a simulation, all simultaneous events have their Priority values calculated, and the event with the highest18

priority is selected for next execution. Note that it is possible for the execution of one Event object to19

cause the Priority value of another simultaneously-executing Event object to change (as well as to trigger20

other events, as already noted). Thus, after executing one event, and checking whether any other events21

in the model have been triggered, all remaining simultaneous events that either (i) have Trigger objects22

with attributes persistent=“false” or (ii) have Trigger expressions that did not transition from “true” to23

“false”, must have their Priority expression reevaluated. The highest-priority remaining event must then be24

selected for execution next. Section 8.2.5 provides further discussion about implementing support for events.25

Units of Priority object’s mathematical expressions26

The unit associated with the value of a Priority object’s math expression should be dimensionless. This is27

because the priority expression only serves to provide a relative ordering between different events, and only28

has meaning with respect to other Priority object expressions. The value of Priority objects is not comparable29

to any other kind of object in an SBML model.30

The optional sboTerm attribute on Priority31

Priority inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sections 3.1.1132

and 5). When a value is given to this attribute in a Priority instance, it should be an SBO identifier belonging33

to the branch for type Priority indicated in Table 6. The relationship is of the form “the priority is-a X”,34

where X is the SBO term. The term chosen should be the most precise (narrow) one that captures the role35

of the priority in the model.36

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore37

sboTerm values. A model must be interpretable without the benefit of SBO labels.38

4.12.4 Delay39

As shown in Figure 20, an Event object can contain an optional Delay object. The Delay class is derived40

from SBase and contains a mathematical formula stored in math. The formula is used to compute the length41

of time between when the event has triggered and when the event’s assignments (see below) are actually42

executed. If no delay is present on a given Event, no delay is defined for that event.43

The expression in the Delay object’s math element must be evaluated at the time the event is triggered. The44

expression must always evaluate to a nonnegative number (otherwise, a nonsensical situation could arise45

where an event is defined to execute before it is triggered!).46

74

Units of delay expressions1

The unit associated with the value of a Delay object’s math expression should match the model’s unit of2

time (see Section 4.2.4). Note that, as in other cases of MathML expressions in SBML, units are not3

automatically predefined or assumed. As discussed in Section 3.4.10, expressions containing only literal4

numbers and/or Parameter objects without declared units are considered to have unspecified units. In such5

cases, the correspondence between the needed entity units and the (unknown) unit for the Delay’s math6

expression cannot be proven, and while such expressions are not considered inconsistent, all that can be7

assumed by model interpreters (whether software or human) is that the units may be consistent.8

The following Event example fragment helps illustrate this:9

<model timeUnits="second" ...>10

...11

<listOfEvents>12

<event useValuesFromTriggerTime="true">13

...14

<delay>15

<math xmlns="http://www.w3.org/1998/Math/MathML">16

<cn> 10 </cn>17

</math>18

</delay>19

...20

</event>21

</listOfEvents>22

...23

</model>24

Note that the “<cn> 10 </cn>” within the mathematical formula has no specified unit attached to it. The25

model is not invalid because of this, but a recipient of the model may justifiably be concerned about what26

“10” really means. (Ten seconds? What if the global unit of time on the model were changed from seconds27

to milliseconds? Would the modeler remember to change “10” to “10 000”?) A better approach would be28

to declare the unit explicitly, as in the following example:29

<model timeUnits="second" ...>30

...31

<listOfEvents>32

<event useValuesFromTriggerTime="true">33

...34

<delay>35

<math xmlns="http://www.w3.org/1998/Math/MathML"36

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">37

<cn sbml:units="second"> 10 </cn>38

</math>39

</delay>40

...41

</event>42

</listOfEvents>43

...44

</model>45

While this approach will not solve the problem of updating the value if the model’s global of unit of time is46

changed, it will at least inform readers of the intended duration of the delay itself as well as make it possible47

for software tools to potentially detect unit inconsistencies if the tools can perform unit analysis.48

Another, different approach is to define a global Parameter object for the time delay (with an appropriate49

unit attached), and to replace the cn element above with a ci element containing the parameter’s identifier.50

This has advantages because Parameter objects can have annotations and SBO terms associated with them.51

The optional sboTerm attribute on Delay52

Delay inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sections 3.1.1153

and 5). When a value is given to this attribute in a Delay instance, it should be an SBO identifier belonging54

75

to the branch for type Delay indicated in Table 6. The relationship is of the form “the delay is-a X”, where1

X is the SBO term. The term chosen should be the most precise (narrow) one that captures the role of the2

delay in the model.3

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore4

sboTerm values. A model must be interpretable without the benefit of SBO labels.5

4.12.5 EventAssignment6

Event contains an optional element called listOfEventAssignments, of class ListOfEventAssignments. In7

every instance of an event definition in a model, the object’s listOfEventAssignments element must have8

a non-empty list of one or more eventAssignment elements of class EventAssignment. The object class9

EventAssignment has one required attribute, variable, and a required element, math. Being derived from10

SBase, it also has all the usual attributes and elements of its parent class.11

An “event assignment” has effect when the event is executed. (As noted above, the operation of event is12

divided conceptually into two phases: the first phase when the event is triggered and the second phase when13

the event is executed.) See Section 4.12.7 below for more information about events and event assignments.14

The variable attribute15

The Event attribute variable has type SIdRef and can contain the identifier of a Compartment, Species,16

SpeciesReference, or Parameter instance defined in the model. When the event is executed, the value of17

the model component identified by variable is changed by the EventAssignment to the value computed18

by the math element; that is, a species’ quantity, species reference’s stoichiometry, compartment’s size or19

parameter’s value are reset to the value computed by math.20

Certain restrictions are placed on what can appear in variable:21

• The object identified by the value of the variable attribute must not have its constant attribute set22

to “true”. (Constants cannot be affected by events.)23

• The variable attribute must not contain the identifier of a reaction; only species, species references,24

compartment and parameter values may be set by an Event.25

• The value of every variable attribute must be unique among the set of EventAssignment objects26

within a given Event instance. In other words, a single event cannot have multiple EventAssignments27

assigning the same variable. (All of them would be performed at the same time, when that particular28

Event triggers, resulting in indeterminacy.) Separate Event instances can refer to the same variable.29

• A variable cannot be assigned a value in an EventAssignment object instance and also be assigned a30

value by an AssignmentRule, i.e., the value of the variable attribute in an EventAssignment instance31

cannot be the same as the value of a variable attribute in an AssignmentRule instance. (Assignment32

rules hold at all times, therefore it would be inconsistent to also define an event that reassigns the33

value of the same variable.)34

Note that the time of assignment of the object identified by the value of variable is always the time at which35

the Event is executed, not when it is triggered. The timing is controlled by the optional Delay. The time36

of assignment is not affected by the Event attribute useValuesFromTriggerTime—that attribute affects the37

time at which the EventAssignment’s math expression is evaluated. In other words, SBML allows decoupling38

the time at which the variable is assigned from the time at which its value expression is calculated.39

The optional sboTerm attribute on EventAssignment40

EventAssignment inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see41

Sections 3.1.11 and 5). When a value is given to this attribute in a EventAssignment instance, it should be42

an SBO identifier belonging to the branch for type EventAssignment indicated in Table 6. The relationship43

is of the form “the event assignment is-a X”, where X is the SBO term. The term chosen should be the44

most precise (narrow) one that captures the role of the event assignment in the model.45

76

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore1

sboTerm values. A model must be interpretable without the benefit of SBO labels.2

EventAssignment’s math3

The math element contains a MathML expression that defines the new value to be given to the object4

identified by the EventAssignment attribute variable.5

As mentioned above, the time at which the expression in math is evaluated is determined by the attribute6

useValuesFromTriggerTime on Event. If the attribute value is “true”, the expression must be evaluated7

when the event is triggered ; more precisely, the values of identifiers occurring in MathML ci attributes in8

the EventAssignment’s math expression are the values they have at the point when the event triggered. If,9

instead, useValuesFromTriggerTime’s value is “false”, it means the values at execution time should be10

used; that is, the values of identifiers occurring in MathML ci attributes in the EventAssignment’s math11

expression are the values they have at the point when the event executed.12

Units of the math formula in EventAssignment13

In all cases, as would be expected, the unit of measurement associated with value of the formula contained14

in the math element of an EventAssignment object should be consistent with the unit associated with the15

object identified by the variable attribute value. More precisely:16

• In the case of a species, an EventAssignment sets the referenced species’ quantity (concentration or17

amount) to the value determined by the formula in math. The unit associated with the value produced18

by the math formula should be equal to the unit associated with the species’ quantity. (See Section 4.6.519

for an explanation of how a species’ quantity is determined.)20

• In the case of a species reference, an EventAssignment sets the stoichiometry of the reactant or product21

referenced by the SpeciesReference object to the value determined by the formula in math. The unit22

associated with the value produced by the math formula should be dimensionless, because reactant23

and product stoichiometries in reactions are dimensionless quantities.24

• In the case of a compartment, an EventAssignment sets the referenced compartment’s size to the size25

determined by the formula in math. The unit associated with the value produced by the math formula26

should be the same as that specified for the compartment’s size. (See Section 4.5.4 for more.)27

• In the case of a parameter, an EventAssignment sets the parameter’s value to the value of the formula28

in math. The unit associated with the value produced by the math formula should be the same as29

parameter’s units attribute value. (Section 4.7.3 for more information about parameter units.)30

Note that the formula in math has no assumed unit of measurement associated with it. The consistency of31

the units between the formula and the entity affected by the assignment should be established explicitly.32

4.12.6 Example Event definitions33

The following is an example of an event. This structure makes the assignment k2 = 0 when P1 ≤ P2:34

<model>35

...36

<listOfUnitDefinitions>37

<unitDefinition id="per_second">38

<listOfUnits>39

<unit kind="second" exponent="-1" multiplier="1" scale="0"/>40

</listOfUnits>41

</unitDefinition>42

</listOfUnitDefinitions>43

...44

<listOfParameters>45

<parameter id="k2" value="0.05" units="per_second" constant="false"/>46

<parameter id="k2reset" value="0.0" units="per_second" constant="true"/>47

</listOfParameters>48

77

...1

<listOfEvents>2

<event useValuesFromTriggerTime="true">3

<trigger initialValue="false" persistent="true">4

<math xmlns="http://www.w3.org/1998/Math/MathML">5

<apply> <leq/> <ci> P_1 </ci> <ci> P_2 </ci> </apply>6

</math>7

</trigger>8

<listOfEventAssignments>9

<eventAssignment variable="k2">10

<math xmlns="http://www.w3.org/1998/Math/MathML">11

<ci> k2reset </ci>12

</math>13

</eventAssignment>14

<listOfEventAssignments>15

</event>16

</listOfEvents>17

</model>18

A complete example of a model using events is given in Section 7.11.19

4.12.7 Detailed semantics of events20

Any transition of a Trigger object’s math formula from the value “false” to “true” will cause the enclosing21

Event object to trigger. Such a transition is not possible at the very start of a simulation (i.e., at time t = 0)22

unless the Trigger object’s initialValue attribute has a value of “false”; this defines the value of the trigger23

formula to be “false” immediately prior to the start of simulation, thereby giving it the potential to change24

in value from “false” to “true” when the formula is evaluated at t = 0. If initialValue=“true”, then the25

trigger expression cannot transition from “false” to “true” at t = 0 but may do so at some time t > 0.26

Consider an Event object definition E with delay d in which the Trigger object’s math formula makes a27

transition in value from “false” to “true” at times t1 and t2. The EventAssignment within the Event object28

will have effect at t1 + d and t2 + d irrespective of the relative times of t1 and t2. For example, events can29

“overlap” so that t1 < t2 < t1 + d still causes an event assignments to occur at t1 + d and t2 + d.30

It is entirely possible for two events to be executed simultaneously, and it is possible for events to trigger31

other events (i.e., an event assignment can cause an event to trigger). This leads to several points:32

• A software package should retest all event triggers after executing an event assignment in order to33

account for the possibility that the assignment causes another event trigger to transition from “false”34

to “true”. This check should be made after each individual Event object’s execution, even when several35

events are to be executed simultaneously.36

• Any Event object whose Trigger persistent attribute has the value “false” must have its trigger37

expression reevaluated continuously between when the event has been triggered and when it is executed.38

If its trigger expression ever evaluates to “false”, it must be removed from the queue of events pending39

execution and treated as any other event whose trigger expression evaluates to “false”.40

• Although the precise time at which events are executed is not resolved beyond the given execution41

point in simulated time, it is assumed that the order in which the events occur is resolved. This order42

can be significant in determining the overall outcome of a given simulation. When an event X triggers43

another event Y and event Y has zero delay, then event Y is added to the existing set of simultaneous44

events that are pending execution. Events X and Y form a cascade of events at the same point in45

simulation time. An event such as Y may have a special priority if it contains a Priority subobject.46

• All events in a model are open to being in a cascade. The position of an event in the event queue47

does not affect whether it can be in the cascade: event Y can be triggered whether it is before or48

after X in the queue of events pending execution. A cascade of events can be potentially infinite49

(never terminate); when this occurs a simulator should indicate this has occurred—it is incorrect for a50

simulator to break a cascade arbitrarily and continue the simulation without at least indicating that51

the infinite cascade occurred.52

78

• Simultaneous events having no defined priorities are executed in an undefined order. This does not1

mean that the behavior of the simulation is completely undefined; merely that the order of execution2

of these particular events is undefined. A given simulator may use any algorithm to choose an order3

as long as every event is executed exactly once. (See also Section 4.12.3.)4

• Events with defined priorities are executed in the order implied by their Priority math formula values,5

with events having higher priorities being executed ahead of events with lower priorities, and events6

with identical priorities being executed in a random order with respect to one another (as determined7

at run-time by some random algorithm equivalent to coin-flipping). Newly-triggered events that are8

to be executed immediately (i.e., if they define no delays) should be inserted into the queue of events9

pending execution according to their priorities: events with higher priority values value must be inserted10

ahead of events with lower priority values and after any pending events with even higher priorities,11

and inserted randomly among pending events with the same priority values. Events without Priority12

objects must be inserted into the queue in some fashion, but the algorithm used to place it in the queue13

is undefined. Similarly, there is no restriction on the order of a newly-inserted event with a defined14

Priority with respect to any other pending Event without a defined Priority. (See Section 4.12.3.)15

• A model variable that is the target of one or more event assignments can change more than once when16

simultaneous events are processed at some time point t. The model’s behavior (output) for such a17

variable is the value of the variable at the end of processing all the simultaneous events at time t.18

79

5 The Systems Biology Ontology and the sboTerm attribute1

The values of id attributes on SBML components allow the components to be cross-referenced within a model.2

The values of name attributes on SBML components provide the opportunity to assign them meaningful labels3

suitable for display to humans (Section 3.3). The specific identifiers and labels used in a model necessarily4

must be unrestricted by SBML, so that software and users are free to pick whatever they need. However,5

this freedom makes it more difficult for software tools to determine, without additional human intervention,6

the semantics of models more precisely than the semantics provided by the SBML object classes defined in7

other sections of this document. For example, there is nothing inherent in a parameter with identifier “k”8

that would indicate to a software tool it is a first-order rate constant (if that’s what “k” happened to be9

in some given model). However, one may need to convert a model between different representations (e.g.,10

Henri-Michaelis-Menten vs. elementary steps), or to use it with different modeling approaches (discrete or11

continuous). One may also need to relate the model components with other description formats such as12

SBGN (http://www.sbgn.org/) using deeper semantics. Although an advanced software tool might be able13

to deduce the semantics of some model components through detailed analysis of the kinetic rate expressions14

and other parts of the model, this quickly becomes infeasible for any but the simplest of models.15

An approach to solving this problem is to associate model components with terms from carefully curated16

controlled vocabularies (CVs). This is the purpose of the optional sboTerm attribute provided on the SBML17

class SBase. The sboTerm attribute always refers to terms belonging to the Systems Biology Ontology (SBO,18

http://biomodels.net/SBO/). In this section, we discuss the sboTerm attribute, SBO, the motivations and19

theory behind their introduction, and guidelines for their use.20

SBO is not part of SBML; it is being developed separately, to allow the modeling community to evolve the21

ontology independently of SBML. However, the terms in the ontology are being designed keeping SBML22

components in mind, and are classified into subsets that can be directly related with SBML components23

such as reaction rate expressions, parameters, and a few others, see below. The use of sboTerm attributes24

is optional, and the presence of sboTerm on an element does not change the way the model is interpreted.25

Annotating SBML elements with SBO terms adds additional semantic information that may be used to26

convert the model into another model, or another format. Although SBO support provides an important27

source of information to understand the meaning of a model, software does not need to support sboTerm to28

be considered SBML-compliant.29

5.1 Principles30

Labeling model components with terms from shared controlled vocabularies allows a software tool to identify31

each component using identifiers that are not tool-specific. An example of where this is useful is the desire32

by many software developers to provide users with meaningful names for reaction rate equations. Software33

tools with editing interfaces frequently provide these names in menus or lists of choices for users. However,34

without a standardized set of names or identifiers shared between developers, a given software package cannot35

reliably interpret the names or identifiers of reactions used in models written by other tools.36

The first solution that might come to mind is to stipulate that certain common reactions always have the37

same name (e.g., “Michaelis-Menten”), but this is simply impossible to do: not only do humans often disagree38

on the names themselves, but it would not allow for correction of errors or updates to the list of predefined39

names except by issuing new releases of the SBML specification—to say nothing of many other limitations40

with this approach. Moreover, the parameters and variables that appear in rate expressions also need to be41

identified in a way that software tools can interpret mechanically, implying that the names of these entities42

would also need to be regulated.43

The Systems Biology Ontology (SBO) provides terms for identifying most elements of SBML. The rela-44

tionship implied by an sboTerm on an SBML model component is “is-a” between the characteristic of the45

component meant to be described by SBO on this element and the SBO term identified by the value of46

the sboTerm. By adding SBO term references on the components of a model, a software tool can provide47

additional details using shared vocabularies that can enable other software tools to recognize precisely what48

the component is meant to be. Those tools can then act on that information. For example, if the SBO49

80

http://www.sbgn.org/

identifier SBO:0000049 is assigned to the concept of “first-order irreversible mass-action kinetics, continuous1

framework”, and a given KineticLaw object in a model has an sboTerm attribute with this value, then regard-2

less of the identifier and name given to the reaction itself, a software tool could use this to inform users that3

the reaction is a first-order irreversible mass-action reaction. This kind of reverse engineering of the meaning4

of reactions in a model would be difficult to do otherwise, especially for more complex reaction types.5

The presence of SBO labels on Compartment, Species, and Reaction objects in SBML can help map those6

entities to equivalent concepts in other standards, such as (but not limited to) BioPAX (http://www.biopax.7

org/), PSI-MI (http://www.psidev.info/index.php?q=node/60), or the Systems Biology Graphical Nota-8

tion (SBGN, http://www.sbgn.org/). Such mappings can be used in conversion procedures, or to build9

interfaces, with SBO becoming a kind of “glue” between standards of representation.10

The presence of the label on a kinetic expression can also allow software tools to make more intelligent11

decisions about reaction rate expressions. For example, an application could recognize certain types of12

reaction formulas as being ones it knows how to solve with optimized procedures. The application could13

then use internal, optimized code implementing the rate formula indexed by identifiers such as SBO:000004914

(“mass action rate law for first order irreversible reactions, continuous scheme”) appearing in SBML models.15

Finally, SBO labels may be very valuable when it comes to model integration, by helping identify interfaces,16

convert mathematical expressions and parameters etc.17

Although the use of SBO can be beneficial, it is critical to keep in mind that the presence of an sboTerm18

value on an object must not change the fundamental mathematical meaning of the model. An SBML model19

must be defined such that it stands on its own and does not depend on additional information added by20

SBO terms for a correct mathematical interpretation. SBO term definitions will not imply any alternative21

mathematical semantics for any SBML object labeled with that term. Two important reasons motivate22

this principle. First, it would be too limiting to require all software tools to be able to understand the23

SBO vocabularies in addition to understanding SBML. Supporting SBO is not only additional work for24

the software developer; for some kinds of applications, it may not make sense. If SBO terms on a model25

are optional, it follows that the SBML model must remain unambiguous and fully interpretable without26

them, because an application reading the model may ignore the terms. Second, we believe allowing the27

use of sboTerm to alter the mathematical meaning of a model would allow too much leeway to shoehorn28

inconsistent concepts into SBML objects, ultimately reducing the interoperability of the models.29

5.2 Using SBO and sboTerm30

The sboTerm attribute data type is always SBOTerm, defined in Section 3.1.11. When present in a given31

model object instance, the attribute’s value must be an identifier taken from the Systems Biology Ontology32

(SBO; http://biomodels.net/SBO/). This identifier must refer to a single SBO term that best defines the33

entity encoded by the SBML object in question. An example of the type of relationship intended is: the34

KineticLaw in reaction R1 is a first-order irreversible mass action rate law.35

Note the careful use of the words “defines” and “entity encoded by the SBML object” in the paragraph36

above. As mentioned, the relationship between the SBML object and the URI is:37

The “thing” encoded by this SBML object has a characteristic that is an instance of the “thing”38

represented by the referenced SBO term.39

The characteristic relevant for each SBML object is described in the second column of Table 6.40

5.2.1 The structure of the Systems Biology Ontology41

The goal of SBO labeling for SBML is to clarify to the fullest possible extent the nature of each element in a42

model. The approach taken in the Systems Biology Ontology begins with a hierarchically-structured set of43

controlled vocabularies with six main divisions: (1) entity, (2) participant role, (3) quantitative parameter,44

(4) modeling framework, (5) mathematical expression, and (6) interaction. Figure 21 on the next page45

illustrates the highest level of SBO.46

81

http://www.biopax.org/
http://www.biopax.org/
http://www.biopax.org/
http://www.psidev.info/index.php?q=node/60
http://www.sbgn.org/

Each of the six branches of Figure 21 has a hierarchy of terms underneath them. At this time, we can only be-1

gin to list some initial concepts and terms in SBO; what follows is not meant to be complete, comprehensive or2

even necessarily consistent with future versions of SBO. The web site for SBO (http://biomodels.net/SBO/)3

should be consulted for the current version of the ontology. Section 5.4.1 describes how the impact of SBO4

changes on software applications is minimized.5

SBO term

participant
role

quantitative
parameter

modeling
framework

mathematical
expression

interactionentity

Figure 21: The six controlled vocabularies (CVs) that make up the main branches of SBO.

Figure 22 shows the structure for the entity branch, which reflects the hierarchical groupings of the types6

of entities that can be represented by a Compartment or Species object. Note that the values taken by the7

sboTerm attribute on those elements should refer to SBO terms belonging to the material entity branch,8

so as to distinguish whether the element represents a macromolecule, a simple chemical, etc. Indeed, this9

information remains valid for the whole model. The term should not belong to the functional entity branch,10

representing the function of the entity within a certain functional context. If one wants to use this infor-11

mation, one should refer to the SBO terms using a controlled RDF annotation instead (Section 6), carefully12

choosing the qualifiers (Section 6.5) to reflect the fact that a given Species object, for instance, can fulfill13

different functions within a given model (e.g., EGF receptor is a receptor and an enzyme).14

entity

material entity functional entity

macromolecule simple
chemical

physical
compartment

unit of genetic
information

enzyme channel

gene messenger
RNA

information
macromolecule

ribonucleic acid

...

... ...

... ...

...

...

...

Figure 22: Partial expansion of some of the terms in the entity branch of SBO.

Figure 23 shows the structure for the participant role branch, also grouping the concepts in a hierarchical15

manner. For example, in reaction rate expressions, there are a variety of possible modifiers. Some classes16

of modifiers can be further subdivided and grouped. All of this is easy to capture in the ontology. As more17

agreement is reached in the modeling community about how to define and name modifiers for different cases,18

the ontology can grow to accommodate it.19

participant role

reactant product modifier

inhibitor stimulator

functional
compartment

interactor substrate

...

...

...

Figure 23: Partial expansion of some of the terms in the participant role branch of SBO.

82

The controlled vocabulary for quantitative parameters is illustrated in Figure 24. Note the separation of1

kinetic constant into separate terms for unimolecular, bimolecular, etc. reactions, as well as for forward2

and reverse reactions. The need to have separate terms for forward and reverse rate constants arises in3

reversible mass-action reactions. This distinction is not always necessary for all quantitative parameters;4

for example, there is no comparable concept for the Michaelis constant. Another distinction for some5

quantitative parameters is decomposition into different versions based on the modeling framework being6

assumed. For example, different terms for continuous and discrete formulations of kinetic constants represent7

specializations of the constants for particular simulation frameworks. Not all quantitative parameters will8

need to be distinguished along this dimension.9

quantitative parameter

time
interval

...equilibrium or steady-
state characteristic

kinetic
constant

biochemical
coefficient

bimolecular
rate constant

unimolecular
rate constant

reverse
unimolecular
rate constant

forward
unimolecular
rate constant

...

thermodynamic
temperature

temperature
difference

Figure 24: Partial expansion of some of the terms in the quantitative parameter branch.

The terms of the SBO quantitative parameter branch contain mathematical formulas that are encoded using10

MathML 2.0; these formulas define the parameter value using other SBO parameters. The main use of this11

approach is to avoid listing all the variants of a mathematical expression, escaping a combinatorial explosion.12

The modeling framework controlled vocabulary is needed to elucidate how to simulate a mathematical ex-13

pression used in models. Figure 25 illustrates the structure of this branch, which is at this point extremely14

simple, but we expect that more terms will evolve in the future.15

modeling framework

continuous framework discrete frameworklogical framework

spatial
continuous framework

non-spatial
continuous framework

Figure 25: Partial expansion of some of the terms in the modeling framework branch.

The mathematical expression vocabulary encompasses the various mathematical expressions that constitute16

a model. Figure 26 on the following page illustrates a portion of the hierarchy. Rate law or conservation17

law formulas are part of the mathematical expression hierarchy, and subdivided by successively more refined18

distinctions until the leaf terms represent precise statements of common reaction or rule types. Other19

types of mathematical expressions may be included in the future in order to be able to further characterize20

mathematical components of a model, such as initial assignments, assignment rules, rate rules, algebraic21

rules, constraints, and event triggers and assignments.22

The leaf terms of the mathematical expression branch contain the mathematical formulas encoded using23

MathML 2.0. There are many potential uses for this. One is to allow a software application to obtain the24

formula corresponding to a term and use it as the basis of an expression to insert into a model. In effect, the25

formulas given in the CV act as templates for what to put into an SBML construct such as KineticLaw or26

83

mathematical expression

enzymatic rate law

rate law

mass-action rate law

.

mass-action rate law
for reversible reactions

zeroth-order irreversible reactions
mass-action rate law for . . .

kinetics of
unireactant enzymes

. . .

. . .

. . . conservation law

mass-action rate law
for irreversible reactions

first-order irreversible reactions
mass-action rate law for

Figure 26: Partial expansion of some of the terms in the mathematical expression branch.

Rule. The MathML definition also acts as a precise statement about the rate law in question. In particular,1

it carries information about the modeling framework to use in order to interpret the formula. Some of the2

non-leaf terms also contain formulas encoded using MathML 2.0. In that case, the formulas contained in3

the children terms are specific versions of the formula contained in the parent term. Those formulas may4

be generic, containing MathML constructs not yet supported by SBML, and need to be expanded into the5

MathML subset allowed in SBML before they can be used in conjunction with SBML models.6

To make this discussion concrete, here is an example definition of an entry in the SBO rate law hierarchy7

at the time of this writing. This term represents second-order, irreversible, mass-action rate laws with one8

reactant, formulated for use in a continuous modeling framework:9

ID : SBO:000005210

Name: mass-action rate law for second-order irreversible reactions, one reactant, continuous scheme11

Definition: Reaction scheme where the products are created from the reactants and the change of a product12

quantity is proportional to the product of reactant activities. The reaction scheme does not include13

any reverse process that creates the reactants from the products. The change of a product quantity14

is proportional to the square of one reactant quantity. It is to be used in a reaction modeled using a15

continuous framework.16

Parent(s):17

SBO:0000050: mass-action rate law for second-order irreversible reactions, one reactant (is-a).18

SBO:0000163: mass-action rate law for irreversible reactions, continuous sceheme (is-a).19

MathML:20

<math xmlns="http://www.w3.org/1998/Math/MathML">21

<semantics definitionURL="http://biomodels.net/SBO/#SBO:0000062">22

<lambda>23

<bvar><ci definitionURL="http://biomodels.net/SBO/#SBO:0000036">k</ci></bvar>24

<bvar><ci definitionURL="http://biomodels.net/SBO/#SBO:0000509">R</ci></bvar>25

<apply>26

<times/>27

<ci>k</ci>28

<ci>R</ci>29

<ci>R</ci>30

</apply>31

</lambda>32

</semantics>33

</math>34

In the MathML definition of the term shown above, the bound variables in the lambda expression are tagged35

with references to terms in the SBO quantitative parameter branch (for k and R). This makes it possible36

for software applications to interpret the intended meanings of the parameters in the expression. This also37

84

permits to convert an expression into another, by using the MathML 2.0 formula contained in the SBO terms1

associated with the parameters.2

The interaction branch of SBO defines types of biological processes, events or relationship involving entities.3

It lists the types of biochemical reactions, such as binding, conformational transition, or cleavage, and also4

the different controls that modify a biochemical reaction, such as inhibition, catalysis, etc.5

interaction

process relationship

biochemical
or transport reaction

molecular or
genetic interaction

logical
combination

control

simulation inhibition...

...

...

...

conversiondegradation isomerization

addition of a
chemical group

cleavage

methylation phosphorylation...

...

biochemical reaction transport reaction

...

Figure 27: Partial expansion of some of the terms in the interaction branch.

One of the goals of SBO is to permit a tool to traverse up and down the hierarchy in order to find equivalent6

terms in different frameworks. The hope is that when a software tool encounters a given rate formula in7

a model, the formula will be a specific form (say, “mass-action rate law, second order, one reactant, for8

discrete simulation”), but by virtue of the consistent organization of the reaction rate CV into framework-9

specific definitions, and the declaration of every parameters involved in each expression, the tool should in10

principle be able to determine the definitions for other frameworks (say, “mass-action rate law, second order,11

one reactant for continuous simulation”). If the software tool is designed for continuous simulation and it12

encounters an SBML model with rate laws formulated for discrete simulation, it could in principle look up13

the rate laws’ identifiers in the CV and search for alternative definitions intended for discrete simulation.14

And of course, the converse is true, for when a tool designed for discrete simulation encounters a model with15

rate laws formulated for continuous simulation.16

5.2.2 Relationships between individual SBML components and SBO terms17

The sboTerm attribute is defined on the abstract class SBase and can be used in all derived elements.18

However, not all SBO terms should be used to annotate all SBML elements. Table 6 summarizes the19

relationships between SBML components and the branches within SBO that apply to that component.20

(There are currently no specific SBO term that correspond to the SBML, UnitDefinition, Unit, and various21

ListOf list classes.)22

The parent identifiers shown in Table 6 are provided for reference. They are the highest-level terms in their23

respective branch; however, these are not the terms that would be used to annotate an element in SBML,24

because there are more specific terms underneath the parents shown here. A software tool should use the25

most specific SBO term available for a given concept rather than using the top-level identifier acting as the26

root of that particular vocabulary.27

85

SBML Component SBO Branch Branch Identifier

Model interaction SBO:0000231

FunctionDefinition mathematical expression SBO:0000064

Compartment material entity SBO:0000240

Species material entity SBO:0000240

Reaction interaction SBO:0000231

Parameter quantitative parameter SBO:0000002

SpeciesReference participant role SBO:0000003

ModifierSpeciesReference participant role SBO:0000003

KineticLaw rate law SBO:0000001

LocalParameter quantitative parameter SBO:0000002

InitialAssignment mathematical expression SBO:0000064

AlgebraicRule mathematical expression SBO:0000064

AssignmentRule mathematical expression SBO:0000064

RateRule mathematical expression SBO:0000064

Constraint mathematical expression SBO:0000064

Event interaction SBO:0000231

Trigger mathematical expression SBO:0000064

Priority mathematical expression SBO:0000064

Delay mathematical expression SBO:0000064

EventAssignment mathematical expression SBO:0000064

Table 6: SBML components and the main types of SBO terms that may be assigned to them. The identifiers of the highest-
level SBO terms in each branch are provided for guidance, but actual values used for sboTerm attributes should be more
specific child terms within these branches. Note that the important aspect here is the set of specific SBO identifiers, not
the SBO term names, because the names may change as SBO continues to evolve. See text for further explanations.

5.2.3 Tradeoffs in using SBO terms1

The SBO-based approach to annotating SBML components with controlled terms has the following strengths:2

1. The syntax is minimally intrusive and maximally simple, requiring only one string-valued attribute.3

2. It supports a significant fraction of what SBML users have wanted to do with controlled vocabularies.4

3. It does not interfere with any other scheme. The more general annotation-based approach described5

in Section 6 can still be used simultaneously in the same model.6

The scheme has the following weaknesses:7

1. An object can only have one sboTerm attribute; therefore, it can only be related to a single term in8

SBO. (This also impacts the design of SBO: it must be structured such that a class of SBML elements9

can logically only be associated with one class of terms in the ontology.)10

2. The only relationship that can be expressed by sboTerm is “is a”. It is not possible to represent different11

relationships (known as verbs in ontology-speak). This limits what can be expressed using SBO.12

The weaknesses are not shared by the annotation scheme described in Section 6.13

5.3 Relationships to the SBML annotation element14

Another way to provide this information would be to place SBO terms inside the SBase annotation element15

(Sections 3.2 and 6). However, in the interest of making the use of SBO in SBML as interoperable as possible16

between software tools, the best-practice recommendation is to place SBO references in the sboTerm attribute17

rather than inside the annotation element of an object. If instead the approach of using annotation is taken,18

the qualifiers (Section 6.5) linking the SBML element and SBO term should be chosen extremely carefully,19

since it will no longer be possible to assume an “instance to class” relationship.20

86

Although sboTerm is just another kind of optional annotation in SBML, SBO references are separated into1

their own attribute on SBML components, both to simplify their use for software tools and because doing so2

asserts a stronger and more focused connection in a more regimented fashion. SBO references are intended3

to allow a modeler to make a statement of the form “this object is identical in meaning and intention to the4

object defined in the term X of SBO”, and do so in a way that a software tool can interpret unambiguously.5

Some software applications may have their own vocabulary of terms similar in purpose to SBO. For maximal6

software interoperability, the best-practice recommendation in SBML is nonetheless to use SBO terms in7

preference to using application-specific annotation schemes. Software applications should therefore attempt8

to translate their private terms to and from SBO terms when writing and reading SBML, respectively.9

5.4 Discussion10

Here we discuss some additional points about the SBO-based approach.11

5.4.1 Frequency of change in the ontology12

The SBO development approach follows conventional ontology development approaches in bioinformatics.13

One of the principles being followed is that identifiers and meanings of terms in the CVs never change14

and the terms are never deleted. Where some terms are deemed obsolete, the introduction of new terms15

refine or supersede existing terms, but the existing identifiers are left in the CV. Thus, references never16

end up pointing to nonexistent entries. In the case where synonymous terms are merged after agreement17

that multiple terms are identical, the term identifiers are again left in the CV and they still refer to the18

same concept as before. Out-of-date terms cached or hard-coded by an application remain usable in all19

cases. (Moreover, machine-readable CV encodings and appropriate software design should render possible20

the development of API libraries that automatically map older terms to newer terms as the CVs evolve.)21

Therefore, a model is never in danger of ending up with SBO identifiers that cannot be dereferenced. If an22

application finds an old model with a term SBO:0000065, it can be assured that it will be able to find this23

term in SBO, even if it has been superseded by other, more preferred terms.24

5.4.2 Consistency of information25

If you have a means of linking (say) a reaction rate formula to a term in a CV, it is possible to have an26

inconsistency between the formula in the SBML model and the one defined for the CV term. However, this27

is not a new problem; it arises in other situations involving SBML models already. The guideline for these28

situations is that the model must be self-contained and stand on its own. Therefore, in cases where they29

differ, the definitions in the SBML model take precedence over the definitions referenced by the CV. In other30

words, the model (and its MathML) is authoritative.31

5.4.3 Implications for network access32

A software tool does not need to have the ability to access the network or read the CV every time it encounters33

a model or otherwise works with SBML. Since the SBO will likely stabilize and change infrequently once34

a core set of terms is defined, applications can cache the controlled vocabulary, and not make network35

accesses to the master SBO copy unless something forces them to (e.g., detecting a reference in a model36

to an SBO term that the application does not recognize). Applications could have user preference settings37

indicating how often the CV definitions should be refreshed (similar to how modern applications provide a38

setting dictating how often they should check for new versions of themselves). Simple applications may go39

further and hard code references to terms in SBO that have reached stability and community consensus.40

SBO is available for download under different formats (http://biomodels.net/SBO/). Web services are also41

available to provide programmatic access to the ontology.42

87

6 A standard format for the annotation element1

This section describes the recommended non-proprietary format for the content of Annotation objects in2

SBML when (a) referring to controlled vocabulary terms and database identifiers that define and describe3

biological and biochemical entities, and (b) describing the creator of a model and its modification history.4

Such a structured format should facilitate the generation of models compliant with the MIRIAM guidelines5

for model curation (Le Novère et al., 2005).6

The format described in this section is intended to be the form of one of the top-level elements that could7

reside in an Annotation object attached to an SBML object derived from SBase. The element is named8

rdf:RDF. The format described here is compliant with the constraints placed on the form of annotation9

elements described in Section 3.2.4. We refer readers to Section 3.2.4 for important information on the10

structure and organization of application-specific annotations; these are not described here.11

The annotations described in this section are optional on a model, but if present, they must conform to the12

details specified here in order to be considered valid annotations in this format. If they do not conform to13

the format described here, it does not render the overall SBML model invalid, but the annotations are then14

considered to be in a proprietary format rather than being SBML MIRIAM annotations.15

6.1 Motivation16

The SBML structures described elsewhere in this document do not have any biochemical or biological se-17

mantics. This section provides a scheme for linking SBML structures to external resources so that those18

structures can be given semantics. The motivation for the introduction of this scheme is similar to that given19

for the introduction of sboTerm; however, the general annotation scheme here is more flexible.20

It is generally not recommended that this format be used to refer to SBO terms. In most cases, the SBO21

terms should be assigned using the attribute sboTerm on objects derived from SBase (Section 5). However22

in certain situations, for instance to be able to add additional information about the functional role of a23

species, it is necessary to add the information using the annotation format described here.24

6.2 XML namespaces in the standard annotation25

This format uses a restricted form of Dublin Core (Dublin Core Metadata Initiative, 2005) and BioModels.net26

qualifier elements (see http://biomodels.net/qualifiers/) embedded in the XML form of RDF (W3C,27

2004b). The scheme defined here uses a number of external XML standards and associated XML namespaces.28

Table 7 lists these namespaces and relevant documentation on those namespaces. The format constrains the29

order of elements in these namespaces beyond the constraints defined in the standard definitions for those30

namespaces. For each standard listed, the format only uses a subset of the possible syntax defined by the31

given standard. Thus, it is possible for an annotation element to include XML that is compliant with those32

external standards but is not compliant with the format described here.33

34 Prefix used in
35 examples here Namespace URI Reference/description

36 dc http://purl.org/dc/elements/1.1/ Powell and Johnston (2003)

37 rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C (2004a)

38 dcterms http://purl.org/dc/terms/ Kokkelink and Schwänzl (2002),
39 DCMI Usage Board (2005)

40 vcard http://www.w3.org/2001/vcard-rdf/3.0# Iannella (2001)

41 bqbiol http://biomodels.net/biology-qualifiers/ http://sbml.org/miriam/qualifiers/

42 bqmodel http://biomodels.net/model-qualifiers/ http://sbml.org/miriam/qualifiers/

Table 7: The XML standards used in the SBML standard format for annotations. The namespace prefixes are only shown
to indicate the prefix used in the main text; the prefixes are not required to be the specific strings shown here.

88

http://biomodels.net/qualifiers/
http://sbml.org/miriam/qualifiers/
http://sbml.org/miriam/qualifiers/

6.3 General syntax for the standard annotation1

This standard format for an SBML annotation is placed in a single rdf:RDF element contained within the2

SBML annotation element. It can contain other elements in any order as described in Section 3.2.4. The3

format described in this section only defines the form of the rdf:RDF element. The containing SBML SBase4

element must have a metaid attribute value (and note that, because it is of XML type ID, its value must be5

unique to the entire SBML document). An outline of the format’s syntax is shown below.6

< SBML ELEMENT +++ metaid="SBML META ID" +++ >7

+++8

<annotation>9

+++10

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"11

xmlns:dc="http://purl.org/dc/elements/1.1/"12

xmlns:dcterm="http://purl.org/dc/terms/"13

xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"14

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"15

xmlns:bqmodel="http://biomodels.net/model-qualifiers/" >16

<rdf:Description rdf:about="#SBML META ID">17

[HISTORY]18

<RELATION ELEMENT>19

<rdf:Bag>20

<rdf:li rdf:resource=" URI " />21

...22

</rdf:Bag>23

</RELATION ELEMENT>24

...25

</rdf:Description>26

+++27

</rdf:RDF>28

+++29

</annotation>30

+++31

</ SBML ELEMENT >32

The outline above shows the expected order of the elements. The capitalized identifiers refer to generic33

strings of specific types, as follows: SBML ELEMENT refers to any SBML element name that can contain an34

annotation element; SBML META ID is an XML ID string; RELATION ELEMENT refers to element names in either35

the namespace http://biomodels.net/biology-qualifiers/ or http://biomodels.net/model-qualifiers/36

(see Section 6.5); URI is a URI identifying a resource (see Section 6.4); and [HISTORY] refers to optional37

content described in Section 6.6. The string ‘ +++ ’ is a placeholder for either no content or valid XML content38

that is not defined by the annotation scheme described here but is consistent with the relevant standards39

for the enclosing elements. Finally, the string ‘ ... ’ is a placeholder for zero or more elements of the same40

form as the immediately preceding element. The precise form of whitespace and the XML namespace prefix41

definitions is not constrained; however, the elements and attributes must be in the namespaces shown. The42

rest of this section describes the format formally in English.43

The first element of the rdf:RDF element must be an rdf:Description element with an rdf:about attribute.44

The value of the rdf:about attribute must be of the form #<string> where the string component is equal45

to the value of the metaid attribute of the containing SBML element. This format doesn’t define the form46

of subsequent subelements of the rdf:RDF element. In particular, the unique rdf:RDF element contained in47

the annotation can contain other rdf:Description, which content can be any valid RDF.48

The rdf:Description element can contain only an optional history section (see Section 6.6) followed by zero49

or more BioModels.net relation elements. The specific relation elements used will depend on the intended50

relationship between the SBML component and referenced information or resource. Although Section 6.551

describes the detailed semantics of each of the relation element types, the content of these elements follows52

the same form shown in the template above. A BioModels.net relation element must only contain a single53

rdf:Bag element which in turn must only contain one or more rdf:li elements. The rdf:li elements must54

only have a rdf:resource attribute containing a URI referring to an information resource (see Section 6.4).55

89

6.4 Use of URIs1

The SBML MIRIAM annotation format allows the expression of relationships between SBML elements on the2

one hand, and resources referred to by values of rdf:resource attributes on the other. The BioModels.net3

relation elements (see Section 6.5) simply define the nature of the relationship.4

The value of a rdf:resource attribute is a URI that uniquely identifies both the resource and the data5

within the resource. Since a URI is not a URL, it does not have to map to a physical Web object; it simply6

needs to identify, uniquely, a controlled vocabulary term or database object. It is essentially just a label.7

For instance, an actual URL for an Internet resource might be http://www.uniprot.org/entry/P12999, and8

this might correspond to the URI urn:miriam:uniprot:P12999.9

It is important that the portion of a rdf:resource value that identifies a data entry is always a perennial10

identifier. For example, a Species object representing a protein could be annotated with a reference to11

the database UniProt by the resource identifier urn:miriam:uniprot:P12999, thereby identifying exactly12

the intended protein. This identifier maps to a unique entry in UniProt which is never deleted from the13

database. In the case of UniProt, this is known as the “accession” portion of the entry. When the entry14

is merged with another one, both “accession” entries are conserved. A UniProt entry also possesses an15

“entry name” (the Swiss-Prot “identifier”), a “protein name”, “synonyms”, and other parts, but only the16

“accession” is perennial, and that is what should be used.17

SBML does not define how to interpret URIs. There may be several ways of transforming a URI into a18

physical URL. For example, urn:miriam:obo.go:GO%3A0007268 can be translated into any of the following:19

• http://www.ebi.ac.uk/ego/GTerm?id=GO:000726820

• http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&query=GO:000726821

• http://www.informatics.jax.org/searches/GO.cgi?id=GO:000726822

Similarly, the URI urn:miriam:ec-code:3.5.4.4 can refer to any of the following (among many):23

• ttp://www.ebi.ac.uk/intenz/query?cmd=SearchEC&ec=3.5.4.424

• http://www.genome.jp/dbget-bin/www bget?ec:3.5.4.425

• http://us.expasy.org/cgi-bin/nicezyme.pl?3.5.4.426

To enable interoperability of URIs between software systems, the community has standardized the URI rules27

for use within the SBML MIRIAM annotation format. These URIs are not part of the SBML standard per28

se, and will grow independently from specific SBML levels and versions. As the set changes, existing URIs29

will not be modified, although the physical resources associated with each one may change (for example, to30

use updated URLs). The form of the URIs will always have the form resource:identifier. An up-to-date list31

and explanations of the URIs are available online at the address http://biomodels.net/qualifiers. Each32

entry lists the relation elements in which the given URI can be appropriately embedded. The URI rule list33

will evolve with the evolution of databases and resources.34

Note this means that all rdf:resource must be MIRIAM URIs and thus cannot refer to, for example, other35

elements in the model. While it would be possible to place such information in RDF content elsewhere (e.g.,36

after the first rdf:Description element), the information will be outside the scope of the simple annotation37

scheme described here, and as such, there is no guarantee that other software could understand it.38

6.5 Relation elements39

Different BioModels.net qualifier elements encode different types of relationships. As described above, when40

appearing in an annotation, each qualifier element encloses a set of rdf:li elements. Its appearance in41

a relation element implies a specific relationship between the enclosing SBML object and the resources42

referenced by the rdf:li elements. When several relation elements with the same name are placed in the43

same SBML element’s annotation, they represent alternatives. For example, two bqbiol:hasPart elements44

within a Species object represent two different sets of references to the parts making up the biological entity45

represented by the species. (The species is not made up of all the entities represented by all the references46

combined; they are alternatives.)47

90

http://biomodels.net/qualifiers

Table 8 lists the elements defined at the time of this writing. The list is divided into two symbol namespaces.1

One is for model qualifiers, and this one has the URI http://biomodels.net/model-qualifiers/ (for which2

we use the prefix bqmodel in examples shown in this section). The other namespace is for biological qualifiers;3

this has the URI http://biomodels.net/biology-qualifiers/ (for which we use the prefix bqbiol). The4

list will only grow; i.e., no element will be removed from the list.5

6 Qualifier element Meaning

7 bqmodel:is The modeling object encoded by the SBML component is the subject of the referenced
resource. This might be used, e.g., to link the model to an entry in a model database.

8 bqmodel:isDerivedFrom The modeling object represented by the component of the encoded model is derived
from the modeling object represented by the referenced resource. For instance, they
can be the fruit of a refinement or their adaptation for use in a different context.

9 bqmodel:isDescribedBy The modeling object encoded by the SBML component is described by the referenced
resource. This could link a component (e.g., a reaction) to a publication describing it.

10 bqbiol:encodes The biological entity represented by the model component encodes, either directly or
by virtue of transitivity, the subject of the referenced resource.

11 bqbiol:hasPart The biological entity represented by the SBML component includes the subject of the
referenced resource, either physically or logically. This relation might be used to link a
complex to a description of its components.

12 bqbiol:hasProperty The subject of the referenced resource is a property of the biological entity represented
by the model component. This relation might be used when a biological entity has a
given activity or exerts a specific function.

13 bqbiol:hasVersion The subject of the referenced resource is a version or an instance of the biological entity
represented by the SBML component.

14 bqbiol:is The biological entity represented by the SBML component is the subject of the ref-
erenced resource. This could serve to link a reaction to its counterpart in (e.g.) the
KEGG or Reactome databases.

15 bqbiol:isDescribedBy The biological entity represented by the SBML component is described by the referenced
resource. This relation could be used, for example, to link a species or a parameter to
a publication describing the quantity of the species or the value of the parameter.

16 bqbiol:isEncodedBy The biological entity represented by the model component is encoded, either directly
or by virtue of transitivity, by the subject of the referenced resource.

17 bqbiol:isHomologTo The biological entity represented by the SBML component is homolog, to the subject
of the referenced resource, i.e., they share a common ancestor.

18 bqbiol:isPartOf The biological entity represented by the SBML component is a physical or logical part of
the subject of the referenced resource. This relation might be used to link a component
to the description of the complex to which it belongs.

19 bqbiol:isPropertyOf The biological entity represented by the SBML component is a property of the referenced
resource.

20 bqbiol:isVersionOf The biological entity represented by the SBML component is a version or an instance
of the subject of the referenced resource.

21 bqbiol:occursIn The biological entity represented by the model component takes place in the subject of
the reference resource.

Table 8: BioModels.net qualifiers at the time of this writing, and a summary of their meanings. The complete list of the
qualifier elements is documented online at http://biomodels.net/qualifiers/ . (The definitions given above are
slightly modified compared to the originals, to reflect the SBML-specific nature of this SBML specification document.)

91

http://biomodels.net/qualifiers/

6.6 History1

The SBML MIRIAM annotation format described in Section 6.3 can include additional elements to describe2

the history of the SBML encoding of the model or its individual components. (Note the emphasis on the3

SBML encoding—the history of the conceptual model underlying the encoding is not addressed by this4

scheme.) If this history data is present, it must occur immediately before the first BioModels.net relation5

elements of an annotation. The history encodes information about the creator(s) of the encoding and a6

sequence of dates recording the dates of creation and subsequent modifications of the SBML model encoding.7

The syntax for these elements is outlined below.8

<dc:creator>9

<rdf:Bag>10

<rdf:li rdf:parseType="Resource">11

+++
<vCard:N rdf:parseType="Resource">

<vCard:Family> FAMILY NAME </vCard:Family>

<vCard:Given> GIVEN NAME </vCard:Given>
</vCard:N>
+++

[<vCard:EMAIL> EMAIL ADDRESS </vCard:EMAIL>]

+++
[<vCard:ORG rdf:parseType="Resource" >

<vCard:Orgname> ORGANIZATION NAME </vCard:Orgname>
</vCard:ORG>]
+++

12

</rdf:li>13

...14

</rdf:Bag>15

</dc:creator>16

<dcterms:created rdf:parseType="Resource">17

<dcterms:W3CDTF> DATE </dcterms:W3CDTF>18

</dcterms:created>19

<dcterms:modified rdf:parseType="Resource">20

<dcterms:W3CDTF> DATE </dcterms:W3CDTF>21

</dcterms:modified>22

...23

The order of elements must be as shown above, except that elements of the format contained in the light24

gray box can occur in any order. The elements of the format contained between [and] are optional. The25

precise form of the whitespace, and the specific XML namespace prefixes used, are not constrained.26

The dc:creator element describes the person(s) who created the SBML encoding of the model or model27

component. It must contain a single rdf:Bag element. The rdf:Bag element can contain any number of28

elements; however, the first such element must be rdf:li. The rdf:li element can in turn contain any29

number of elements in any order. Among those elements can be the following: vCard:N, vCard:EMAIL30

and vCard:ORG. The vCard:N, dcterms:created, and dcterms:modified elements must have the attribute31

rdf:parseType set to the literal value “Resource”.32

The content placeholders FAMILY NAME and GIVEN NAME stand for the family name (surname) and the first33

(given) name, respectively, of a person who created the model; EMAIL ADDRESS is the email address of the34

same person who created the model; and ORGANIZATION NAME is the name of the organization with which35

the same person who created the model is affiliated. The string DATE is a date in W3C date format (Wolf36

and Wicksteed, 1998), which is a profile of (i.e., a restricted form of) ISO 8601. Finally, as in the overall37

template shown in Section 6.3, ‘ +++ ’ is a placeholder for either no content or valid XML syntax that is not38

defined by this scheme but is consistent with the relevant standards for the enclosing elements, and ellipses39

(‘ ... ’) are placeholders for zero or more elements of the same form as the immediately preceding element.40

Section 6.7 below provides an example of using these history elements in the SBML MIRIAM annotation41

format.42

92

6.7 Examples1

The following shows the annotation of a model with model creation data and links to external resources:2

<model metaid="_180340" id="GMO" name="Goldbeter1991_MinMitOscil">3

<annotation>4

<rdf:RDF5

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"6

xmlns:dc="http://purl.org/dc/elements/1.1/"7

xmlns:dcterms="http://purl.org/dc/terms/"8

xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#"9

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"10

xmlns:bqmodel="http://biomodels.net/model-qualifiers/"11

>12

<rdf:Description rdf:about="#_180340">13

<dc:creator>14

<rdf:Bag>15

<rdf:li rdf:parseType="Resource">16

<vCard:N rdf:parseType="Resource">17

<vCard:Family>Shapiro</vCard:Family>18

<vCard:Given>Bruce</vCard:Given>19

</vCard:N>20

<vCard:EMAIL>bshapiro@jpl.nasa.gov</vCard:EMAIL>21

<vCard:ORG rdf:parseType="Resource">22

<vCard:Orgname>NASA Jet Propulsion Laboratory</vCard:Orgname>23

</vCard:ORG>24

</rdf:li>25

</rdf:Bag>26

</dc:creator>27

<dcterms:created rdf:parseType="Resource">28

<dcterms:W3CDTF>2005-02-06T23:39:40+00:00</dcterms:W3CDTF>29

</dcterms:created>30

<dcterms:modified rdf:parseType="Resource">31

<dcterms:W3CDTF>2005-09-13T13:24:56+00:00</dcterms:W3CDTF>32

</dcterms:modified>33

<bqmodel:is>34

<rdf:Bag>35

<rdf:li rdf:resource="urn:miriam:biomodels.db:BIOMD0000000003"/>36

</rdf:Bag>37

</bqmodel:is>38

<bqmodel:isDescribedBy>39

<rdf:Bag>40

<rdf:li rdf:resource="urn:miriam:pubmed:1833774"/>41

</rdf:Bag>42

</bqmodel:isDescribedBy>43

<bqbiol:isVersionOf>44

<rdf:Bag>45

<rdf:li rdf:resource="urn:miriam:kegg.pathway:hsa04110"/>46

<rdf:li rdf:resource="urn:miriam:reactome:REACT_152"/>47

</rdf:Bag>48

</bqbiol:isVersionOf>49

</rdf:Description>50

</rdf:RDF>51

</annotation>52

</model>53

The following example shows a Reaction object annotated with a reference to its exact Reactome counterpart.54

<reaction id="cdc2Phospho" metaid="jb007" reversible="true" fast="false">55

<annotation>56

<rdf:RDF57

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"58

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"59

>60

<rdf:Description rdf:about="#jb007">61

<bqbiol:is>62

<rdf:Bag>63

<rdf:li rdf:resource="urn:miriam:reactome:REACT_6327"/>64

</rdf:Bag>65

93

</bqbiol:is>1

</rdf:Description>2

</rdf:RDF>3

</annotation>4

<listOfReactants>5

<speciesReference species="cdc2" stoichiometry="1"/>6

</listOfReactants>7

<listOfProducts>8

<speciesReference species="cdc2-Y15P" stoichiometry="1"/>9

</listOfProducts>10

<listOfModifiers>11

<modifierSpeciesReference species="wee1"/>12

</listOfModifiers>13

</reaction>14

The following example describes a species that represents a complex between the protein calmodulin and15

calcium ions:16

<species id="Ca_calmodulin" metaid="cacam" compartment="C"17

hasOnlySubstanceUnits="false" boundaryCondition="false"18

constant="false">19

<annotation>20

<rdf:RDF21

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"22

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"23

>24

<rdf:Description rdf:about="#cacam">25

<bqbiol:hasPart>26

<rdf:Bag>27

<rdf:li rdf:resource="urn:miriam:uniprot:P62158"/>28

<rdf:li rdf:resource="urn:miriam:kegg.compound:C00076"/>29

</rdf:Bag>30

</bqbiol:hasPart>31

</rdf:Description>32

</rdf:RDF>33

</annotation>34

</species>35

The following example describes a species that represents either “Calcium/calmodulin-dependent protein36

kinase type II alpha chain” or “Calcium/calmodulin-dependent protein kinase type II beta chain”. This37

is the case, for example, in the somatic cytoplasm of striatal medium-size spiny neurons, where both are38

present but they cannot be functionally differentiated.39

<species id="calcium_calmodulin" metaid="cacam" compartment="C"40

hasOnlySubstanceUnits="false" boundaryCondition="false"41

constant="false">42

<annotation>43

<rdf:RDF44

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"45

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"46

>47

<rdf:Description rdf:about="#cacam">48

<bqbiol:hasVersion>49

<rdf:Bag>50

<rdf:li rdf:resource="urn:miriam:uniprot:Q9UQM7"/>51

<rdf:li rdf:resource="urn:miriam:uniprot:Q13554"/>52

</rdf:Bag>53

</bqbiol:hasVersion>54

</rdf:Description>55

</rdf:RDF>56

</annotation>57

</species>58

The above approach should not be used to describe “any Calcium/calmodulin-dependent protein kinase type59

II chain”, because such an annotation requires referencing the products of other genes such as gamma or60

delta. All the known proteins could be enumerated, but such an approach would almost surely lead to in-61

accuracies because biological knowledge continues to evolve. Instead, the annotation should refer to generic62

94

information such as Ensembl family ENSFM00250000000111 “CALCIUM/CALMODULIN DEPENDENT1

KINASE TYPE II CHAIN” or PIR superfamily PIRSF000594 “Calcium/calmodulin-dependent protein ki-2

nase type II”.3

The following two examples show how to use the qualifier isVersionOf. The first example is the relationship4

between a reaction and an EC code. An EC code describes an enzymatic activity and an enzymatic reaction5

involving a particular enzyme can be seen as an instance of this activity. For example, the following reaction6

represents the phosphorylation of a glutamate receptor by a complex calcium/calmodulin kinase II.7

<reaction id="NMDAR_phosphorylation" metaid="thx1138"8

reversible="true" fast="false">9

<annotation>10

<rdf:RDF11

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"12

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"13

>14

<rdf:Description rdf:about="#thx1138">15

<bqbiol:isVersionOf>16

<rdf:Bag>17

<rdf:li rdf:resource="urn:miriam:ec-code:2.7.1.17"/>18

</rdf:Bag>19

</bqbiol:isVersionOf>20

</rdf:Description>21

</rdf:RDF>22

</annotation>23

<listOfReactants>24

<speciesReference species="NMDAR" stoichiometry="1"/>25

</listOfReactants>26

<listOfProducts>27

<speciesReference species="P-NMDAR" stoichiometry="1"/>28

</listOfProducts>29

<listOfModifiers>30

<modifierSpeciesReference species="CaMKII"/>31

</listOfModifiers>32

<kineticLaw>33

<math xmlns="http://www.w3.org/1998/Math/MathML">34

<apply>35

<times/>36

<ci>CaMKII</ci>37

<ci>kcat</ci>38

<apply>39

<divide/>40

<ci>NMDAR</ci>41

<apply> </times> <ci>NMDAR</ci> <ci>Km</ci> </apply>42

</apply>43

</apply>44

</math>45

<listOfLocalParameters>46

<localParameter id="kcat" value="1"/>47

<localParameter id="Km" value="5e-10"/>48

</listOfLocalParameters>49

</kineticLaw>50

</reaction>51

The second example of the use of isVersionOf is the complex between Calcium/calmodulin-dependent52

protein kinase type II alpha chain and Calcium/calmodulin, that is only one of the “calcium- and calmodulin-53

dependent protein kinase complexes” described by the Gene Ontology term GO:0005954. (Note also how54

the GO identifier is written—we return to this point below.)55

<species id="CaCaMKII" metaid="C8H10N4O2" compartment="C"56

hasOnlySubstanceUnits="false" boundaryCondition="false"57

constant="false">58

<annotation>59

<rdf:RDF60

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"61

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"62

>63

95

<rdf:Description rdf:about="#C8H10N4O2">1

<bqbiol:isVersionOf>2

<rdf:Bag>3

<rdf:li rdf:resource="urn:miriam:obo.go:GO%3A0005954"/>4

</rdf:Bag>5

</bqbiol:isVersionOf>6

</rdf:Description>7

</rdf:RDF>8

</annotation>9

</species>10

In the example above, the URN for the GO term is written as GO%3A0005954, yet in reality, the actual GO11

identifier is GO:0005954. The reason for this rests in the definition of RDF/XML and URNs. The essential12

point is that the colon character (“:”) is a reserved character representing the component separator in13

URNs. Thus, when an identifier contains a colon character as part of it (as GO, ChEBI, and certain other14

identifiers do), the colon characters must be percent-encoded. The sequence “%3A” is the percent-encoded15

form of “:”. Applications must percent-encode “:” characters that appear in entity identifiers (whether16

from ECO, ChEBI, GO, or other) when writing them in MIRIAM URIs, and percent-decode the identifiers17

when reading the URIs. More examples of this appear throughout the rest of this section.18

The previous case is different from the following one, although they could seem similar at first sight.19

The “Calcium/calmodulin-dependent protein kinase type II alpha chain” is a part of the above mentioned20

“calcium- and calmodulin-dependent protein kinase complex”.21

<species id="CaMKIIalpha" metaid="C10H14N2" compartment="C"22

hasOnlySubstanceUnits="false" boundaryCondition="false"23

constant="false">24

<annotation>25

<rdf:RDF26

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"27

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"28

>29

<rdf:Description rdf:about="#C10H14N2">30

<bqbiol:isPartOf>31

<rdf:Bag>32

<rdf:li rdf:resource="urn:miriam:obo.go:GO%3A0005954"/>33

</rdf:Bag>34

</bqbiol:isPartOf>35

</rdf:Description>36

</rdf:RDF>37

</annotation>38

</species>39

It is possible describe a component with several alternative sets of qualified annotations. For example, the40

following species represents a pool of GMP, GDP and GTP. We annotate it with the three corresponding41

KEGG compound identifiers but also with the three corresponding ChEBI identifiers. The two alternative42

annotations are encoded in separate hasVersion qualifier elements.43

<species id="GXP" metaid="GXP" compartment="C"44

hasOnlySubstanceUnits="false" boundaryCondition="false"45

constant="false">46

<annotation>47

<rdf:RDF48

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"49

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"50

>51

<rdf:Description rdf:about="#GXP">52

<bqbiol:hasVersion>53

<rdf:Bag>54

<rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI%3A17345"/>55

<rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI%3A17552"/>56

<rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI%3A17627"/>57

</rdf:Bag>58

</bqbiol:hasVersion>59

<bqbiol:hasVersion>60

<rdf:Bag>61

96

<rdf:li rdf:resource="urn:miriam:kegg.compound:C00035"/>1

<rdf:li rdf:resource="urn:miriam:kegg.compound:C00044"/>2

<rdf:li rdf:resource="urn:miriam:kegg.compound:C00144"/>3

</rdf:Bag>4

</bqbiol:hasVersion>5

</rdf:Description>6

</rdf:RDF>7

</annotation>8

</species>9

The following example presents a reaction being actually the combination of three different elementary10

molecular reactions. We annotate it with the three corresponding KEGG reactions, but also with the three11

corresponding enzymatic activities. Again the two hasPart elements represent two alternative annotations.12

The process represented by the Reaction structure is composed of three parts, and not six parts.13

<reaction id="adenineProd" metaid="adeprod" reversible="true" fast="false">14

<annotation>15

<rdf:RDF16

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"17

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"18

>19

<rdf:Description rdf:about="#adeprod">20

<bqbiol:hasPart>21

<rdf:Bag>22

<rdf:li rdf:resource="urn:miriam:ec-code:2.5.1.22"/>23

<rdf:li rdf:resource="urn:miriam:ec-code:3.2.2.16"/>24

<rdf:li rdf:resource="urn:miriam:ec-code:4.1.1.50"/>25

</rdf:Bag>26

</bqbiol:hasPart>27

<bqbiol:hasPart>28

<rdf:Bag>29

<rdf:li rdf:resource="urn:miriam:kegg.reaction:R00178"/>30

<rdf:li rdf:resource="urn:miriam:kegg.reaction:R01401"/>31

<rdf:li rdf:resource="urn:miriam:kegg.reaction:R02869"/>32

</rdf:Bag>33

</bqbiol:hasPart>34

</rdf:Description>35

</rdf:RDF>36

</annotation>37

</reaction>38

It is possible to mix different URIs in a given set. The following example presents two alternative annotations39

of the human hemoglobin, the first with ChEBI heme and the second with KEGG heme.40

<species id="heme" metaid="heme" compartment="C"41

hasOnlySubstanceUnits="false" boundaryCondition="false"42

constant="false">43

<annotation>44

<rdf:RDF45

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"46

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"47

>48

<rdf:Description rdf:about="#heme">49

<bqbiol:hasPart>50

<rdf:Bag>51

<rdf:li rdf:resource="urn:miriam:uniprot:P69905"/>52

<rdf:li rdf:resource="urn:miriam:uniprot:P68871"/>53

<rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI%3A17627">54

</rdf:Bag>55

</bqbiol:hasPart>56

<bqbiol:hasPart>57

<rdf:Bag>58

<rdf:li rdf:resource="urn:miriam:uniprot:P69905"/>59

<rdf:li rdf:resource="urn:miriam:uniprot:P68871"/>60

<rdf:li rdf:resource="urn:miriam:kegg.compound:C00032"/>61

</rdf:Bag>62

</bqbiol:hasPart>63

</rdf:Description>64

97

</rdf:RDF>1

</annotation>2

</species>3

As formally defined above it is possible to use different qualifiers in the same annotation element. The4

following phosphorylation is annotated by its exact KEGG counterpart and by the generic GO term “phos-5

phorylation”.6

<reaction id="phosphorylation" metaid="phosphorylation"7

reversible="true" fast="false">8

<annotation>9

<rdf:RDF10

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"11

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"12

>13

<rdf:Description rdf:about="#phosphorylation">14

<bqbiol:is>15

<rdf:Bag>16

<rdf:li rdf:resource="urn:miriam:kegg.reaction:R03313" />17

</rdf:Bag>18

</bqbiol:is>19

<bqbiol:isVersionOf>20

<rdf:Bag>21

<rdf:li rdf:resource="urn:miriam:obo.go:GO%3A0016310" />22

</rdf:Bag>23

</bqbiol:isVersionOf>24

</rdf:Description>25

</rdf:RDF>26

</annotation>27

</reaction>28

98

7 Example models expressed in XML using SBML1

In this section, we present several examples of complete models encoded in XML using SBML Level 3.2

7.1 A simple example application of SBML3

Consider the following representation of an enzymatic reaction:4

E + S
kon−−⇀↽−−
koff

ES
kcat−−→ E + P5

In our model, we use the following initial species amounts:6

E = 5 · 10−21 mole7

S = 10−20 mole8

P = 0 mole9

ES = 0 mole10

Note that the species quantities are initialized in terms of substance amounts rather than concentrations.11

We also define the following values for the kinetic constants:12

kon = 1 000 000 litre mole−1 second−1
13

koff = 0.2 second−1
14

kcat = 0.1 second−1
15

We place everything in a single compartment we call “comp” whose volume is 10−14 litres. The following is16

a minimal but complete SBML document encoding this model:17

<?xml version="1.0" encoding="UTF-8"?>18

<sbml level="3" version="1" xmlns="http://www.sbml.org/sbml/level3/version1/core">19

<model extentUnits="mole" timeUnits="second">20

<listOfUnitDefinitions>21

<unitDefinition id="per_second">22

<listOfUnits>23

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>24

</listOfUnits>25

</unitDefinition>26

<unitDefinition id="litre_per_mole_second">27

<listOfUnits>28

<unit kind="mole" exponent="-1" scale="0" multiplier="1"/>29

<unit kind="litre" exponent="1" scale="0" multiplier="1"/>30

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>31

</listOfUnits>32

</unitDefinition>33

</listOfUnitDefinitions>34

<listOfCompartments>35

<compartment id="comp" size="1e-14" spatialDimensions="3" units="litre" constant="true"/>36

</listOfCompartments>37

<listOfSpecies>38

<species compartment="comp" id="E" initialAmount="5e-21" boundaryCondition="false"39

hasOnlySubstanceUnits="false" substanceUnits="mole" constant="false"/>40

<species compartment="comp" id="S" initialAmount="1e-20" boundaryCondition="false"41

hasOnlySubstanceUnits="false" substanceUnits="mole" constant="false"/>42

<species compartment="comp" id="P" initialAmount="0" boundaryCondition="false"43

hasOnlySubstanceUnits="false" substanceUnits="mole" constant="false"/>44

<species compartment="comp" id="ES" initialAmount="0" boundaryCondition="false"45

hasOnlySubstanceUnits="false" substanceUnits="mole" constant="false"/>46

</listOfSpecies>47

<listOfReactions>48

<reaction id="veq" reversible="true" fast="false">49

<listOfReactants>50

<speciesReference species="E" stoichiometry="1" constant="true"/>51

<speciesReference species="S" stoichiometry="1" constant="true"/>52

</listOfReactants>53

99

<listOfProducts>1

<speciesReference species="ES" stoichiometry="1" constant="true"/>2

</listOfProducts>3

<kineticLaw>4

<math xmlns="http://www.w3.org/1998/Math/MathML">5

<apply>6

<times/>7

<ci>comp</ci>8

<apply>9

<minus/>10

<apply>11

<times/>12

<ci>kon</ci>13

<ci>E</ci>14

<ci>S</ci>15

</apply>16

<apply>17

<times/>18

<ci>koff</ci>19

<ci>ES</ci>20

</apply>21

</apply>22

</apply>23

</math>24

<listOfLocalParameters>25

<localParameter id="kon" value="1000000" units="litre_per_mole_second"/>26

<localParameter id="koff" value="0.2" units="per_second"/>27

</listOfLocalParameters>28

</kineticLaw>29

</reaction>30

<reaction id="vcat" reversible="false" fast="false">31

<listOfReactants>32

<speciesReference species="ES" stoichiometry="1" constant="true"/>33

</listOfReactants>34

<listOfProducts>35

<speciesReference species="E" stoichiometry="1" constant="true"/>36

<speciesReference species="P" stoichiometry="1" constant="true"/>37

</listOfProducts>38

<kineticLaw>39

<math xmlns="http://www.w3.org/1998/Math/MathML">40

<apply>41

<times/>42

<ci>comp</ci>43

<ci>kcat</ci>44

<ci>ES</ci>45

</apply>46

</math>47

<listOfLocalParameters>48

<localParameter id="kcat" value="0.1" units="per_second"/>49

</listOfLocalParameters>50

</kineticLaw>51

</reaction>52

</listOfReactions>53

</model>54

</sbml>55

The model features local parameter definitions in each reaction. In this case, the three parameters (kon,56

koff, kcat) all have unique identifiers and they could also have just as easily been declared global parameters.57

Local parameters frequently become more useful in larger models, where it may become tedious to assign58

unique identifiers for all the different parameters.59

The example above also demonstrates the use of unit specifications throughout the model. The model60

components define the units of kinetic laws as being mole/second by virtue of the values of the attributes61

extentUnits and timeUnits. In the rest of the model, species, parameters and compartments are defined62

with appropriate units so that the mathematical formulas inside the kineticLaw elements work out to be63

mole/second.64

100

7.2 A simple example using the conversionFactor attribute1

This example involves the same enzymatic reaction as in the example of Section 7.1:2

E + S
kon−−⇀↽−−
koff

ES
kcat−−→ E + P3

In this new version of the model, we deliberately define the species with different units from the unit of4

reaction extent in the model. This leads to two illustrative problems: (1) the reaction rate expressions must5

be changed in order to reconcile the differences between the species units and the unit of reaction extent6

in the model, and (2) the formulas constructed for species’ rate-of-change equations must use conversion7

factors to reconcile the differences between the units of the reaction rate expressions and the units in which8

the species quantities are measured.9

We begin with the following new Species object definitions:10

E = 5 · 10−18 millimole11

S = 10−17 millimole12

P = 0 gram13

ES = 0 millimole14

We keep the units of extent and time in the model the same as in Example 7.1; that is, the overall unit of15

extent in the model is mole and the unit of time is second, set by assigning appropriate values to the attributes16

extentUnits and timeUnits, respectively, on the Model object definition. The differences between these and17

the units of the species means that we have to adjust the reaction rate expressions from their original versions18

in the model. In what follows, we illustrate one approach to doing so, and in Section 7.3 we illustrate a second19

approach. The method in the present section involves changing the values of the kinetic rate constants in20

the reaction rate formulas, while the example of Section 7.3 does not change the kinetic constants but does21

require the introduction of additional parameters.22

The reaction rate formulas (i.e., the formulas in the math elements of KineticLaw objects) were previously23

vveq = Vcomp · (kon · [E] · [S]− koff · [ES]) (5)24

vvcat = Vcomp · kcat · [ES] (6)25

where Vcomp stands for the size of compartment “comp” in the SBML model. Recalling the values of the26

parameters kon, koff, and kcat,27

kon = 1 000 000 litre mole−1 second−1
28

koff = 0.2 second−1
29

kcat = 0.1 second−1
30

it becomes clear that, with the values of E, S and ES all in millimoles, Equations 5 and 6 no longer lead to31

units of mole/second for the reaction rates. To compensate, we change the values of the constants kon, koff,32

and kcat using the following simple transformations:33

k∗on = kon ·
(

1 mole

1000 millimoles

)2

= 1 litre mole millimole−2 second−1
34

k∗off = koff ·
1 mole

1000 millimoles
= 0.0002 mole millimole−1 second−1

35

k∗cat = kcat ·
1 mole

1000 millimoles
= 0.0001 mole millimole−1 second−1

36

The “mole/millimole” portion of the units are admittedly unconventional for mass-action kinetic rate con-37

stants. They are unlikely to correspond to values found in textbooks or databases. The logic of this approach38

is that in an actual experimental situation, with the units of the species as given in the model (presumably39

101

representing how the species are being measured), the kinetic rate constants are likely to be measured in1

terms of the units above. However, if that is not the case, then the approach of Section 7.3 may be more2

appropriate.3

Taking these new k∗on, k∗off and k∗cat parameters and replacing the original parameters in the reaction rate4

equations finally leads to the following:5

vveq = Vcomp · (k∗on · [E] · [S]− k∗off · [ES]) (7)6

vvcat = Vcomp · k∗cat · [ES] (8)7

Next, we turn to the rates-of-change equations for the species. There are two cases: species S, whose8

unit of substance is millimole, and species P , whose unit of substance is gram. We use SBML Level 3’s9

conversion factor mechanism to effectuate the necessary transformations, following the guidelines described10

in Section 4.11.7. In the model text below, we define a default conversion factor by setting the value of the11

Model object’s conversionFactor attribute to a parameter whose values is12

1000 millimole

1 mole
13

Let cmodel stand for the Model object’s conversionFactor attribute with the value above. The rate-of-change14

equation for S is the following:15

dnS
dt

= −cmodel · Vcomp · (k∗on · [E] · [S]− k∗off · [ES]) (9)16

The portion inside the gray box in Equation 9 is simply Equation 7, and its value will have the unit17

mole/second. Multiplying this by cmodel will produce a result in millimole/second. The stoichiometry of18

species S in the reaction is “1”, but it is a reactant, thus the need for the negative sign.19

For species P , we need a different conversion factor, to convert between the units of gram and mole. We20

accomplish this by setting a value for the Species object’s conversionFactor attribute. By virtue of being21

defined on the Species object for P , this conversion factor value overrides the global value defined on the22

Model object. Let cP represent this conversion factor. The equation for the rate-of-change of P is the23

following:24

dnP
dt

= cP · Vcomp · k∗cat · [ES] (10)25

The portion inside the gray box in Equation 10 is simply Equation 8, with a value in mole/second. Multi-26

plying by the conversion factor “convertToGram” defined in the model below will yield gram/second. The27

species P is a product, and its stoichiometry is “1”; thus, the right-hand side has a positive sign.28

The following is the SBML encoding of this model:29

<?xml version="1.0" encoding="UTF-8" ?>30

<sbml level="3" version="1" xmlns="http://www.sbml.org/sbml/level3/version1/core">31

<model extentUnits="mole" timeUnits="second" conversionFactor="convertToMilliMole">32

<listOfUnitDefinitions>33

<unitDefinition id="mole_per_millimole_second">34

<listOfUnits>35

<unit kind="mole" exponent="1" scale="0" multiplier="1" />36

<unit kind="mole" exponent="-1" scale="-3" multiplier="1" />37

<unit kind="second" exponent="-1" scale="0" multiplier="1" />38

</listOfUnits>39

</unitDefinition>40

<unitDefinition id="mole_litre_per_millimole_sq_second">41

<listOfUnits>42

<unit kind="mole" exponent="1" scale="0" multiplier="1" />43

<unit kind="litre" exponent="1" scale="0" multiplier="1" />44

<unit kind="mole" exponent="-2" scale="-3" multiplier="1" />45

<unit kind="second" exponent="-1" scale="0" multiplier="1" />46

</listOfUnits>47

</unitDefinition>48

<unitDefinition id="millimole">49

102

<listOfUnits>1

<unit kind="mole" exponent="1" scale="-3" multiplier="1"/>2

</listOfUnits>3

</unitDefinition>4

<unitDefinition id="gram_per_mole">5

<listOfUnits>6

<unit kind="gram" exponent="1" scale="0" multiplier="1"/>7

<unit kind="mole" exponent="-1" scale="0" multiplier="1"/>8

</listOfUnits>9

</unitDefinition>10

<unitDefinition id="millimole_per_mole">11

<listOfUnits>12

<unit kind="mole" exponent="1" scale="-3" multiplier="1"/>13

<unit kind="mole" exponent="-1" scale="0" multiplier="1"/>14

</listOfUnits>15

</unitDefinition>16

</listOfUnitDefinitions>17

<listOfCompartments>18

<compartment id="comp" size="1e-14" spatialDimensions="3" units="litre" constant="true" />19

</listOfCompartments>20

<listOfSpecies>21

<species compartment="comp" id="ES" initialAmount="0" boundaryCondition="false"22

hasOnlySubstanceUnits="false" substanceUnits="millimole" constant="false" />23

<species compartment="comp" id="P" initialAmount="0" boundaryCondition="false"24

hasOnlySubstanceUnits="false" substanceUnits="gram" constant="false"25

conversionFactor="convertToGram"/>26

<species compartment="comp" id="S" initialAmount="1e-17" boundaryCondition="false"27

hasOnlySubstanceUnits="false" substanceUnits="millimole" constant="false" />28

<species compartment="comp" id="E" initialAmount="5e-18" boundaryCondition="false"29

hasOnlySubstanceUnits="false" substanceUnits="millimole" constant="false" />30

</listOfSpecies>31

<listOfParameters>32

<parameter id="convertToMilliMole" value="1000" units="millimole_per_mole" constant="true"/>33

<parameter id="convertToGram" value="180" units="gram_per_mole" constant="true"/>34

</listOfParameters>35

<listOfReactions>36

<reaction id="veq" reversible="true" fast="false">37

<listOfReactants>38

<speciesReference species="E" stoichiometry="1" constant="true" />39

<speciesReference species="S" stoichiometry="1" constant="true" />40

</listOfReactants>41

<listOfProducts>42

<speciesReference species="ES" stoichiometry="1" constant="true" />43

</listOfProducts>44

<kineticLaw>45

<math xmlns="http://www.w3.org/1998/Math/MathML">46

<apply>47

<times />48

<ci>comp</ci>49

<apply>50

<minus />51

<apply> <times /> <ci> kon </ci> <ci> E </ci> <ci> S </ci> </apply>52

<apply> <times /> <ci> koff </ci> <ci> ES </ci> </apply>53

</apply>54

</apply>55

</math>56

<listOfLocalParameters>57

<localParameter id="kon" value="1" units="mole_litre_per_millimole_sq_second" />58

<localParameter id="koff" value="0.0002" units="mole_per_millimole_second" />59

</listOfLocalParameters>60

</kineticLaw>61

</reaction>62

<reaction id="vcat" reversible="false" fast="false">63

<listOfReactants>64

<speciesReference species="ES" stoichiometry="1" constant="true" />65

</listOfReactants>66

<listOfProducts>67

<speciesReference species="E" stoichiometry="1" constant="true" />68

<speciesReference species="P" stoichiometry="1" constant="true" />69

103

</listOfProducts>1

<kineticLaw>2

<math xmlns="http://www.w3.org/1998/Math/MathML">3

<apply>4

<times /> <ci> comp </ci> <ci> kcat </ci> <ci> ES </ci>5

</apply>6

</math>7

<listOfLocalParameters>8

<localParameter id="kcat" value="0.0001" units="mole_per_millimole_second" />9

</listOfLocalParameters>10

</kineticLaw>11

</reaction>12

</listOfReactions>13

</model>14

</sbml>15

7.3 An alternative formulation of the conversionFactor example16

Here we present an alternative formulation of the model from the previous section. Once again, it involves17

the same enzymatic reaction as in the example of Section 7.1:18

E + S
kon−−⇀↽−−
koff

ES
kcat−−→ E + P19

As in Section 7.2, we define the overall unit of extent on the model to be mole and the unit of time to be20

second; this means the unit of reaction rates is mole/second as before. We also set the initial amounts and21

units as in the previous section:22

E = 5 · 10−18 millimole23

S = 10−17 millimole24

P = 0 gram25

ES = 0 millimole26

Unlike in the previous section’s model, however, here we retain the values of the kinetic constants as they27

were originally in the model of Section 7.1:28

kon = 1 000 000 litre mole−1 second−1
29

koff = 0.2 second−1
30

kcat = 0.1 second−1
31

We take a different approach to adjusting the reaction rate expressions to account for the fact that the32

concentrations of the species as they appear in the KineticLaw elements are in units of millimole/litre,33

while the unit of reaction extent is mole and reaction rates are in mole/second. Our approach here is to34

introduce constants into the reaction rate expressions to convert the substance units to mole and multiply35

each occurence of a concentration by that constant. A separate constant is necessary for each Species object36

appearing in a KineticLaw object, although it turns out that in the particular situation under consideration37

here, the constants are all identical:38

cE = cS = cES = 10−3 mole millimole−1
39

Applying this approach, the reaction rate equations become the following:40

vveq = Vcomp · (kon · [E] · cE · [S] · cS − koff · [ES] · cES)41

vvcat = Vcomp · kcat · [ES] · cES42

where again Vcomp stands for the size of compartment called “comp” in the SBML model. We construct the43

rate-of-change equations for the each species using the guidelines described in Section 4.11.7, and in this44

104

case, the equations for species S and P are1

dnS
dt

= −cmodel · Vcomp · (kon · [E] · cE · [S] · cS − koff · [ES] · cES)2

dnP
dt

= cP · Vcomp · kcat · [ES] · cES3

where again cmodel stands for the value of the Model object’s conversionFactor attribute and cP is the value4

of the conversionFactor attribute of the Species object definition for P .5

The SBML encoding of this model is given below:6

<?xml version="1.0" encoding="UTF-8" ?>7

<sbml level="3" version="1" xmlns="http://www.sbml.org/sbml/level3/version1/core">8

<model extentUnits="mole" timeUnits="second" conversionFactor="convertToMilliMole">9

<listOfUnitDefinitions>10

<unitDefinition id="per_second">11

<listOfUnits>12

<unit kind="second" exponent="-1" scale="0" multiplier="1" />13

</listOfUnits>14

</unitDefinition>15

<unitDefinition id="litre_per_mole_second">16

<listOfUnits>17

<unit kind="mole" exponent="-1" scale="0" multiplier="1" />18

<unit kind="litre" exponent="1" scale="0" multiplier="1" />19

<unit kind="second" exponent="-1" scale="0" multiplier="1" />20

</listOfUnits>21

</unitDefinition>22

<unitDefinition id="millimole">23

<listOfUnits>24

<unit kind="mole" exponent="1" scale="-3" multiplier="1"/>25

</listOfUnits>26

</unitDefinition>27

<unitDefinition id="gram_per_mole">28

<listOfUnits>29

<unit kind="gram" exponent="1" scale="0" multiplier="1"/>30

<unit kind="mole" exponent="-1" scale="0" multiplier="1"/>31

</listOfUnits>32

</unitDefinition>33

<unitDefinition id="mole_per_millimole">34

<listOfUnits>35

<unit kind="mole" exponent="1" scale="0" multiplier="1"/>36

<unit kind="mole" exponent="-1" scale="-3" multiplier="1"/>37

</listOfUnits>38

</unitDefinition>39

<unitDefinition id="millimole_per_mole">40

<listOfUnits>41

<unit kind="mole" exponent="1" scale="-3" multiplier="1"/>42

<unit kind="mole" exponent="-1" scale="0" multiplier="1"/>43

</listOfUnits>44

</unitDefinition>45

</listOfUnitDefinitions>46

<listOfCompartments>47

<compartment id="comp" size="1e-14" spatialDimensions="3" units="litre" constant="true" />48

</listOfCompartments>49

<listOfSpecies>50

<species compartment="comp" id="ES" initialAmount="0" boundaryCondition="false"51

hasOnlySubstanceUnits="false" substanceUnits="millimole" constant="false" />52

<species compartment="comp" id="P" initialAmount="0" boundaryCondition="false"53

hasOnlySubstanceUnits="false" substanceUnits="gram" constant="false"54

conversionFactor="convertToGram"/>55

<species compartment="comp" id="S" initialAmount="1e-17" boundaryCondition="false"56

hasOnlySubstanceUnits="false" substanceUnits="millimole" constant="false" />57

<species compartment="comp" id="E" initialAmount="5e-18" boundaryCondition="false"58

hasOnlySubstanceUnits="false" substanceUnits="millimole" constant="false" />59

</listOfSpecies>60

<listOfParameters>61

<parameter id="convertToMilliMole" value="1000" units="millimole_per_mole" constant="true"/>62

105

<parameter id="convertToGram" value="180" units="gram_per_mole" constant="true"/>1

<parameter id="c_e" value="1e-3" units="mole_per_millimole" constant="true"/>2

<parameter id="c_s" value="1e-3" units="mole_per_millimole" constant="true"/>3

<parameter id="c_es" value="1e-3" units="mole_per_millimole" constant="true"/>4

</listOfParameters>5

<listOfReactions>6

<reaction id="veq" reversible="true" fast="false">7

<listOfReactants>8

<speciesReference species="E" stoichiometry="1" constant="true" />9

<speciesReference species="S" stoichiometry="1" constant="true" />10

</listOfReactants>11

<listOfProducts>12

<speciesReference species="ES" stoichiometry="1" constant="true" />13

</listOfProducts>14

<kineticLaw>15

<math xmlns="http://www.w3.org/1998/Math/MathML">16

<apply>17

<times />18

<ci>comp</ci>19

<apply>20

<minus />21

<apply>22

<times />23

<ci> kon </ci>24

<ci> E </ci>25

<ci> c_e </ci>26

<ci> S </ci>27

<ci> c_s </ci>28

</apply>29

<apply>30

<times />31

<ci> koff </ci>32

<ci> ES </ci>33

<ci> c_es </ci>34

</apply>35

</apply>36

</apply>37

</math>38

<listOfLocalParameters>39

<localParameter id="kon" value="1000000" units="litre_per_mole_second" />40

<localParameter id="koff" value="0.2" units="per_second" />41

</listOfLocalParameters>42

</kineticLaw>43

</reaction>44

<reaction id="vcat" reversible="false" fast="false">45

<listOfReactants>46

<speciesReference species="ES" stoichiometry="1" constant="true" />47

</listOfReactants>48

<listOfProducts>49

<speciesReference species="E" stoichiometry="1" constant="true" />50

<speciesReference species="P" stoichiometry="1" constant="true" />51

</listOfProducts>52

<kineticLaw>53

<math xmlns="http://www.w3.org/1998/Math/MathML">54

<apply>55

<times />56

<ci> comp </ci>57

<ci> kcat </ci>58

<ci> ES </ci>59

<ci> c_es </ci>60

</apply>61

</math>62

<listOfLocalParameters>63

<localParameter id="kcat" value="0.1" units="per_second" />64

</listOfLocalParameters>65

</kineticLaw>66

</reaction>67

</listOfReactions>68

</model> </sbml>69

106

7.4 Example of a discrete version of a simple dimerization reaction1

(SBO annotations for this model contributed by Lukas Endler, EMBL-EBI, Cambridge, UK.)2

This example illustrates subtle differences between models formulated for use in a continuous simulation3

framework (e.g., using differential equations) and those intended for a discrete simulation framework. The4

model shown here is suitable for use with a discrete stochastic simulation algorithm of the sort developed5

by Gillespie (1977). In such an approach, species are described in terms of molecular counts and simulation6

proceeds by computing the probability of the time and identity of the next reaction, then updating the7

species amounts appropriately.8

The model involves a simple dimerization reaction for a protein named P :9

2P ↔ P210

The SBML representation is shown below. There are several notable points. First, species P and P211

(represented by “P” and “P2”, respectively) are declared to be always in terms of discrete amounts by12

using the flag hasOnlySubstanceUnits=“true” on the Species object definitions. This indicates that when13

the species identifiers appear in mathematical formulas, their values have units of substance amount, not14

{substance amount}/size. A second point is that, as a result, the corresponding KineticLaw formulas do15

not need volume corrections. In Gillespie’s approach, the constants in the rate expressions (here, c1 and16

c2, represented in the SBML model by c1 and c2, respectively) contain a contribution from the kinetic17

constants of the reaction and the size of the compartment in which the reactions take place. This is a18

convention commonly adopted by stochastic modelers, but is in no way essential—it is perfectly reasonable19

to factor volume out of the rate constants, and in certain situations it may be desirable to do so (e.g., for20

models having time-varying compartment volume), but due to the use of substance units, it must be done21

differently compared to the deterministic case. Third, although the reaction is reversible, it is encoded as22

two separate irreversible reactions, one each for the forward and reverse directions, as averaging over the23

reactions will affect the stochasticity. Finally, note that the rate expression for the forward reaction is a24

second-order mass-action reaction, but it is the discrete formulation of such a reaction rate (Gillespie, 1977).25

<?xml version="1.0" encoding="UTF-8"?>26

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">27

<model id="dimerization" substanceUnits="item" timeUnits="second"28

volumeUnits="litre" extentUnits="item">29

<listOfUnitDefinitions>30

<unitDefinition id="per_second">31

<listOfUnits>32

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>33

</listOfUnits>34

</unitDefinition>35

<unitDefinition id="per_item_per_second">36

<listOfUnits>37

<unit kind="item" exponent="-1" scale="0" multiplier="1"/>38

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>39

</listOfUnits>40

</unitDefinition>41

</listOfUnitDefinitions>42

<listOfCompartments>43

<compartment id="Cell" size="1e-15" spatialDimensions="3"44

constant="true" sboTerm="SBO:0000290"/>45

</listOfCompartments>46

<listOfSpecies>47

<species id="P" compartment="Cell" initialAmount="301"48

hasOnlySubstanceUnits="true" boundaryCondition="false"49

constant="false" sboTerm="SBO:0000252"/>50

<species id="P2" compartment="Cell" initialAmount="0"51

hasOnlySubstanceUnits="true" boundaryCondition="false"52

constant="false" sboTerm="SBO:0000420"/>53

</listOfSpecies>54

<listOfReactions>55

<reaction id="Dimerization" reversible="false" fast="false" sboTerm="SBO:0000177">56

<listOfReactants>57

<speciesReference species="P" stoichiometry="2" constant="true"58

107

sboTerm="SBO:0000010"/>1

</listOfReactants>2

<listOfProducts>3

<speciesReference species="P2" stoichiometry="1" constant="true"4

sboTerm="SBO:0000011"/>5

</listOfProducts>6

<kineticLaw sboTerm="SBO:0000142">7

<math xmlns="http://www.w3.org/1998/Math/MathML"8

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">9

<apply>10

<divide/>11

<apply>12

<times/>13

<ci> c1 </ci>14

<ci> P </ci>15

<apply>16

<minus/>17

<ci> P </ci>18

<cn type="integer" sbml:units="item"> 1 </cn>19

</apply>20

</apply>21

<cn type="integer" sbml:units="dimensionless"> 2 </cn>22

</apply>23

</math>24

<listOfLocalParameters>25

<localParameter id="c1" value="0.00166" units="per_item_per_second"26

sboTerm="SBO:0000067"/>27

</listOfLocalParameters>28

</kineticLaw>29

</reaction>30

<reaction id="Dissociation" reversible="false" fast="false" sboTerm="SBO:0000180">31

<listOfReactants>32

<speciesReference species="P2" stoichiometry="1" constant="true"33

sboTerm="SBO:0000010"/>34

</listOfReactants>35

<listOfProducts>36

<speciesReference species="P" stoichiometry="2" constant="true"37

sboTerm="SBO:0000011"/>38

</listOfProducts>39

<kineticLaw sboTerm="SBO:0000141">40

<math xmlns="http://www.w3.org/1998/Math/MathML">41

<apply>42

<times/>43

<ci> c2 </ci>44

<ci> P </ci>45

</apply>46

</math>47

<listOfLocalParameters>48

<localParameter id="c2" value="0.2" units="per_second"49

sboTerm="SBO:0000066"/>50

</listOfLocalParameters>51

</kineticLaw>52

</reaction>53

</listOfReactions>54

</model>55

</sbml>56

This example also illustrates the need to provide additional information in a model so that software tools57

using different mathematical frameworks can properly interpret it. In this case, a simulation tool designed58

for continuous ODE-based simulation would likely misinterpret the model (in particular the reaction rate59

formulas), unless it deduced that a discrete stochastic simulation was intended. One of the purposes of60

SBO annotations (Section 5) is to enable such interpretation without the need for deduction. However, the61

interpretation of the model is essentially the same irrespective of whether the model is to be simulated in62

a deterministic or stochastic manner, and a properly SBML-compliant deterministic simulator will in most63

cases correctly simulate the continuous deterministic approximation of the stochastic model even if it has no64

stochastic simulation capability.65

108

The interpretation of rate laws for stochastic models is similar to, yet different from, that of deterministic1

models. Taking the first reaction as an example, the rate law is c1P (P − 1)/2 reaction events per second.2

In the continuous deterministic case, the interpretation of this is that the extent of the reaction in time dt3

is [c1P (P − 1)/2]dt (and this leads naturally to the usual ODE formulation of the model). In the stochastic4

case, the interpretation is that the propensity (or rate, or hazard) of the reaction is c1P (P − 1)/2. That is,5

the probability of a single reaction event occurring in time dt is [c1P (P − 1)/2]dt (and note that the expected6

extent of the reaction will be [c1P (P − 1)/2]dt). This interpretation leads to a Markov jump process for the7

system dynamics, where the inter-event times are exponentially distributed. Such dynamics can be simulated8

using a discrete event simulation algorithm such as the Gillespie algorithm. In this case, the algorithm for9

simulating the model can be described as follows:10

1. Initialize t := 0, c1 := 0.00166, c2 := 0.2, P := 301, P2 := 011

2. Compute h1 := c1P (P − 1)/2, h2 := c2P212

3. Compute h0 = h1 + h213

4. Simulate t′ ∼ Exp(h0) and set t := t+ t′14

5. With probability h1/h0 set P := P − 2, P2 := P2 + 1, otherwise set P := P + 2, P2 := P2 − 1.15

6. Output t, P, P216

7. If t < Tmax, return to step 2, otherwise stop.17

Although this is a simulation algorithm is a very practical way of describing how to construct exact realiza-18

tions of the Markov jump process corresponding to the discrete stochastic kinetic model, it is not a concise19

mathematical description. Such a description can be provided by writing the model as a time change of a pair20

of independent unit Poisson processes. Let N1(t) and N2(t) be the counting functions of these processes, so21

that for each i = 1, 2, t > 0, Ni(t) ∼ Poisson(t). Then, writing P (t) and P2(t) for the numbers of molecules22

of P and P2 at time t, respectively, we have that the stochastic process {P (t), P2(t) | t > 0} satisfies the23

stochastic integral equation24

P2(t) = N1

(∫ t

0

c1
P (τ)[P (τ)− 1]

2
dτ

)
−N2

(∫ t

0

c2P2(τ)dτ

)
25

P (t) = 301− 2P2(t).26

The above representation is arguably the most useful for mathematical analysis of the stochastic model;27

see Ball et al. (2006) for details. Another popular representation is the so-called chemical Master equation28

(CME) for the probability distribution of the possible states at all times (Gillespie, 1992). In this case, since29

there are 151 possible states of the system (corresponding to the 151 possible values of P2), the CME consists30

of 151 coupled ODEs,31

d

dt
p(P, P2, t) =

−c1
2
× 301× 299p(301, 0, t) + c2p(299, 1, t), P = 301, P2 = 0,

c1
2

(P + 2)(P + 1)p(P + 2, P2 − 1, t)− c1
2
P (P − 1)p(P, P2, t) P = 301− x, P2 = x,

+c2(P2 + 1)p(P − 2, P2 + 1, t)− c2P2p(P, P2, t), x = 1, 2, . . . , 149,

c1
2
× 2× 3p(3, 149, t)− c2 × 150p(1, 150, t), P = 1, P2 = 150,

32

where p(P, P2, t) denotes the probability that there are P molecules of P and P2 molecules of P2 at time t,33

and the ODEs are subject to the initial conditions34

p(301, 0, 0) = 1, p(301− 2x, x, 0) = 0, x = 1, 2, . . . , 150.35

See Evans et al. (2008) for further examples of discrete stochastic kinetic models encoded in SBML and36

Wilkinson (2006) for an introduction to discrete stochastic modeling using SBML.37

109

7.5 Example involving assignment rules1

This section contains a model that simulates a system containing a fast reaction. This model uses rules to2

express the mathematics of the fast reaction explicitly rather than using the fast attribute on a reaction3

element. The system modeled is4

X0
k1[X0]
−−−−→ S15

S1
kf [S1]−kr[S2]
←−−−−−−−−−→ S26

S2
k2[S2]
−−−−→ X17

k1 = 0.1, k2 = 0.15, kf = Keq10000, kr = 10000, Keq = 2.5.8

where [X0], [X1], [S1], and [S2] are species in concentration units, and k1, k2, kf , kr, and Keq are parameters.9

This system of reactions can be approximated with the following new system:10

X0
k1[X0]
−−−−→ T11

T
k2[S2]
−−−−→ X112

[S1] =
[T]

1 +Keq
13

[S2] = Keq[S1]14

where T is a new species. The following example SBML model encodes the second system.15

<?xml version="1.0" encoding="UTF-8"?>16

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">17

<model volumeUnits="litre" substanceUnits="mole" timeUnits="second" extentUnits="mole">18

<listOfUnitDefinitions>19

<unitDefinition id="per_second">20

<listOfUnits>21

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>22

</listOfUnits>23

</unitDefinition>24

</listOfUnitDefinitions>25

<listOfCompartments>26

<compartment id="cell" size="1" spatialDimensions="3" constant="true"/>27

</listOfCompartments>28

<listOfSpecies>29

<species id="X0" compartment="cell" initialConcentration="1" constant="false"30

hasOnlySubstanceUnits="false" boundaryCondition="false"/>31

<species id="X1" compartment="cell" initialConcentration="0" constant="false"32

hasOnlySubstanceUnits="false" boundaryCondition="false"/>33

<species id="T" compartment="cell" initialConcentration="0" constant="false"34

hasOnlySubstanceUnits="false" boundaryCondition="false"/>35

<species id="S1" compartment="cell" initialConcentration="0" constant="false"36

hasOnlySubstanceUnits="false" boundaryCondition="false"/>37

<species id="S2" compartment="cell" initialConcentration="0" constant="false"38

hasOnlySubstanceUnits="false" boundaryCondition="false"/>39

</listOfSpecies>40

<listOfParameters>41

<parameter id="Keq" value="2.5" units="dimensionless" constant="true"/>42

</listOfParameters>43

<listOfRules>44

<assignmentRule variable="S1">45

<math xmlns="http://www.w3.org/1998/Math/MathML"46

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">47

<apply>48

<divide/>49

110

<ci> T </ci>1

<apply>2

<plus/>3

<cn sbml:units="dimensionless"> 1 </cn>4

<ci> Keq </ci>5

</apply>6

</apply>7

</math>8

</assignmentRule>9

<assignmentRule variable="S2">10

<math xmlns="http://www.w3.org/1998/Math/MathML">11

<apply>12

<times/>13

<ci> Keq </ci>14

<ci> S1 </ci>15

</apply>16

</math>17

</assignmentRule>18

</listOfRules>19

<listOfReactions>20

<reaction id="in" reversible="false" fast="false">21

<listOfReactants>22

<speciesReference species="X0" stoichiometry="1" constant="true"/>23

</listOfReactants>24

<listOfProducts>25

<speciesReference species="T" stoichiometry="1" constant="true"/>26

</listOfProducts>27

<kineticLaw>28

<math xmlns="http://www.w3.org/1998/Math/MathML">29

<apply>30

<times/>31

<ci> k1 </ci>32

<ci> X0 </ci>33

<ci> cell </ci>34

</apply>35

</math>36

<listOfLocalParameters>37

<localParameter id="k1" value="0.1" units="per_second"/>38

</listOfLocalParameters>39

</kineticLaw>40

</reaction>41

<reaction id="out" reversible="false" fast="false">42

<listOfReactants>43

<speciesReference species="T" stoichiometry="1" constant="true"/>44

</listOfReactants>45

<listOfProducts>46

<speciesReference species="X1" stoichiometry="1" constant="true"/>47

</listOfProducts>48

<listOfModifiers>49

<modifierSpeciesReference species="S2"/>50

</listOfModifiers>51

<kineticLaw>52

<math xmlns="http://www.w3.org/1998/Math/MathML">53

<apply>54

<times/>55

<ci> k2 </ci>56

<ci> S2 </ci>57

<ci> cell </ci>58

</apply>59

</math>60

<listOfLocalParameters>61

<localParameter id="k2" value="0.15" units="per_second"/>62

</listOfLocalParameters>63

</kineticLaw>64

</reaction>65

</listOfReactions>66

</model>67

</sbml>68

111

7.6 Example involving algebraic rules1

This section contains an example model that contains two AlgebraicRule objects that are necessary to deter-2

mine the values of two variables within the model. In this particular case, the rules cannot be rewritten in3

terms of AssignmentRule. This example illustrates a more rigorous analysis of the enzymatic reaction given4

in the example of Section 7.1.5

E + S
k1on−−−⇀↽−−−
k1off

ES
k2−→ E + P6

In this example, we describe a quasi-steady-state approximation of the enzymatic reaction equation shown7

above. It is based on two assumptions. First, the rate at which the concentration of the substrate bound8

enzyme ([ES]) changes is assumed to be slow compared to the rate of change of concentration of both the9

substrate ([S]) and product ([P]). Second, the total concentration of the enzyme is assumed to stay constant10

over time. This means we can assume the concentration of [ES] and [E] are not governed by the reactions,11

and so some other equations must be used to determine the values of these concentrations in order to be12

able to simulate the model.13

Applying the first assumption means that the rate of change of [ES] should be set to zero:14

d[ES]

dt
= k1on · [E] · [S]− (k1off + k2) · [ES] = 015

The second assumption can be written as16

[Etotal] = [E] + [ES]17

which, after rearranging, becomes18

[Etotal]− ([E] + [ES]) = 019

Thus, we have two algebraic rules that must be applied to determine the values of [E] and [ES]. The SBML20

encoding of this model is given below. Note that the species E and ES have their boundaryCondition21

attribute set to “true”. This means that a simulation tool should not construct equations for them based on22

the reactions in the system. Their values are instead set using the rules in the model. Also, the model uses a23

dummy species Etotal with its constant attribute set to “true”; its role is to assign the total concentration24

of the enzyme in the model. This could just as easily have been done using a parameter instead of a constant25

dummy species, but we use the latter approach as an illustration.26

<?xml version="1.0" encoding="UTF-8" ?>27

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">28

<model substanceUnits="mole" volumeUnits="litre" timeUnits="second" extentUnits="mole">29

<listOfUnitDefinitions>30

<unitDefinition id="per_second">31

<listOfUnits>32

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>33

</listOfUnits>34

</unitDefinition>35

<unitDefinition id="mole_per_litre">36

<listOfUnits>37

<unit kind="mole" exponent="1" scale="0" multiplier="1"/>38

<unit kind="litre" exponent="-1" scale="0" multiplier="1"/>39

</listOfUnits>40

</unitDefinition>41

<unitDefinition id="litre_per_mole_per_second">42

<listOfUnits>43

<unit kind="litre" exponent="1" scale="0" multiplier="1"/>44

<unit kind="mole" exponent="-1" scale="0" multiplier="1"/>45

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>46

</listOfUnits>47

</unitDefinition>48

</listOfUnitDefinitions>49

<listOfCompartments>50

<compartment id="cell" size="1" spatialDimensions="3" constant="true"/>51

112

</listOfCompartments>1

<listOfSpecies>2

<species id="E" compartment="cell" initialConcentration="0.5" constant="false"3

hasOnlySubstanceUnits="false" boundaryCondition="true"/>4

<species id="S" compartment="cell" initialConcentration="1.0" constant="false"5

hasOnlySubstanceUnits="false" boundaryCondition="false"/>6

<species id="ES" compartment="cell" initialConcentration="0.5" constant="false"7

hasOnlySubstanceUnits="false" boundaryCondition="true"/>8

<species id="P" compartment="cell" initialConcentration="0" constant="false"9

hasOnlySubstanceUnits="false" boundaryCondition="false"/>10

<species id="E_total" compartment="cell" initialConcentration="1.0" constant="true"11

hasOnlySubstanceUnits="false" boundaryCondition="true"/>12

</listOfSpecies>13

<listOfParameters>14

<parameter id="k1_on" value="1" units="litre_per_mole_per_second" constant="true"/>15

<parameter id="k1_off" value="0.5" units="per_second" constant="true"/>16

<parameter id="k2" value="0.5" units="per_second" constant="true"/>17

</listOfParameters>18

<listOfRules>19

<algebraicRule>20

<math xmlns="http://www.w3.org/1998/Math/MathML">21

<apply>22

<minus/>23

<apply>24

<times/> <ci> k1_on </ci> <ci> E </ci> <ci> S </ci>25

</apply>26

<apply>27

<times/>28

<apply> <plus/> <ci> k1_off </ci> <ci> k2 </ci> </apply>29

<ci> ES </ci>30

</apply>31

</apply>32

</math>33

</algebraicRule>34

<algebraicRule>35

<math xmlns="http://www.w3.org/1998/Math/MathML">36

<apply>37

<minus/>38

<apply> <plus/> <ci> E </ci> <ci> ES </ci> </apply>39

<ci> E_total </ci>40

</apply>41

</math>42

</algebraicRule>43

</listOfRules>44

<listOfReactions>45

<reaction id="r1" reversible="true" fast="false">46

<listOfReactants>47

<speciesReference species="E" stoichiometry="1" constant="true"/>48

<speciesReference species="S" stoichiometry="1" constant="true"/>49

</listOfReactants>50

<listOfProducts>51

<speciesReference species="ES" stoichiometry="1" constant="true"/>52

</listOfProducts>53

<kineticLaw>54

<math xmlns="http://www.w3.org/1998/Math/MathML">55

<apply>56

<times/>57

<ci> cell </ci>58

<apply>59

<minus/>60

<apply> <times/> <ci> k1_on </ci> <ci> E </ci> <ci> S </ci> </apply>61

<apply> <times/> <ci> k1_off </ci> <ci> ES </ci> </apply>62

</apply>63

</apply>64

</math>65

</kineticLaw>66

</reaction>67

<reaction id="r2" reversible="false" fast="false">68

<listOfReactants>69

113

<speciesReference species="ES" stoichiometry="1" constant="true"/>1

</listOfReactants>2

<listOfProducts>3

<speciesReference species="E" stoichiometry="1" constant="true"/>4

<speciesReference species="P" stoichiometry="1" constant="true"/>5

</listOfProducts>6

<kineticLaw>7

<math xmlns="http://www.w3.org/1998/Math/MathML">8

<apply> <times/> <ci> cell </ci> <ci> k2 </ci> <ci> ES </ci> </apply>9

</math>10

</kineticLaw>11

</reaction>12

</listOfReactions>13

</model>14

</sbml>15

7.7 Example with combinations of boundaryCondition and constant values on Species with16

RateRule objects17

In this section, we discuss a model that includes four species, each with a different combination of values for18

their boundaryCondition and constant attributes. The model represents a hypothetical system containing19

one reaction,20

S1 + S2
k1[S1][S2][S3]
−−−−−−−−−−→ S421

where S3 is a species that catalyzes the conversion of species S1 and S2 into S4. Species S1 and S2 are on22

the boundary of the system (i.e., S1 and S2 are reactants but their values are not determined by kinetic23

laws). The value of S1 in the system is determined over time by the rate rule:24

d[S1]

dt
= k225

The species S2 and S3 are not affected by the either the reaction or the rate rule, and have the following26

initial concentration values:27

[S2] = 1, [S3] = 228

The values of constant parameters in the system are:29

k1 = 0.5, k2 = 0.130

and the initial values of varying species are:31

[S1] = 0, [S4] = 032

The value of [S1] varies over time and it is on the boundary, so in the SBML representation, S1 has a33

constant attribute with a value of “false” and a boundaryCondition attribute with a value of “true”. The34

value of [S2] is fixed and it is also on the boundary, so S2 has a constant attribute value of “false” and35

a boundaryCondition attribute value of “true”. [S3] is fixed but not on the boundary, so the constant36

attribute is “true” and the boundaryCondition attribute is “false”. Finally, [S4] is a product whose37

value is determined by a kinetic law and therefore in the SBML representation has “false” for both its38

boundaryCondition and constant attributes.39

The following is the SBML rendition of the model shown above:40

<?xml version="1.0" encoding="UTF-8"?>41

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">42

<model id="BoundaryCondExampleModel"43

volumeUnits="litre" substanceUnits="mole" timeUnits="second" extentUnits="mole">44

<listOfUnitDefinitions>45

<unitDefinition id="mole_per_litre_per_second">46

<listOfUnits>47

<unit kind="mole" exponent="1" scale="0" multiplier="1"/>48

114

<unit kind="litre" exponent="-1" scale="0" multiplier="1"/>1

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>2

</listOfUnits>3

</unitDefinition>4

<unitDefinition id="litre_sq_per_mole_sq_per_second">5

<listOfUnits>6

<unit kind="mole" exponent="-2" scale="0" multiplier="1"/>7

<unit kind="litre" exponent="2" scale="0" multiplier="1"/>8

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>9

</listOfUnits>10

</unitDefinition>11

</listOfUnitDefinitions>12

<listOfCompartments>13

<compartment id="compartmentOne" size="1" spatialDimensions="3" constant="true"/>14

</listOfCompartments>15

<listOfSpecies>16

<species id="S1" initialConcentration="0" compartment="compartmentOne" constant="false"17

hasOnlySubstanceUnits="false" boundaryCondition="true"/>18

<species id="S2" initialConcentration="1" compartment="compartmentOne" constant="false"19

hasOnlySubstanceUnits="false" boundaryCondition="true"/>20

<species id="S3" initialConcentration="3" compartment="compartmentOne" constant="false"21

hasOnlySubstanceUnits="false" boundaryCondition="false"/>22

<species id="S4" initialConcentration="0" compartment="compartmentOne" constant="false"23

hasOnlySubstanceUnits="false" boundaryCondition="false"/>24

</listOfSpecies>25

<listOfParameters>26

<parameter id="k1" value="0.5" units="litre_sq_per_mole_sq_per_second"27

constant="true"/>28

<parameter id="k2" value="0.1" units="mole_per_litre_per_second"29

constant="true"/>30

</listOfParameters>31

<listOfRules>32

<rateRule variable="S1">33

<math xmlns="http://www.w3.org/1998/Math/MathML">34

<ci> k2 </ci>35

</math>36

</rateRule>37

</listOfRules>38

<listOfReactions>39

<reaction id="reaction_1" reversible="false" fast="false">40

<listOfReactants>41

<speciesReference species="S1" stoichiometry="1" constant="true"/>42

<speciesReference species="S2" stoichiometry="1" constant="true"/>43

</listOfReactants>44

<listOfProducts>45

<speciesReference species="S4" stoichiometry="1" constant="true"/>46

</listOfProducts>47

<listOfModifiers>48

<modifierSpeciesReference species="S3"/>49

</listOfModifiers>50

<kineticLaw>51

<math xmlns="http://www.w3.org/1998/Math/MathML">52

<apply>53

<times/>54

<ci> k1 </ci>55

<ci> S1 </ci>56

<ci> S2 </ci>57

<ci> S3 </ci>58

<ci> compartmentOne </ci>59

</apply>60

</math>61

</kineticLaw>62

</reaction>63

</listOfReactions>64

</model>65

</sbml>66

115

7.8 Example of translation from a multi-compartmental model to ODEs1

This section contains a model with two compartments and four reactions. The model is derived from Lotka-2

Volterra, with the addition of a reversible transport step. When observed in a time-course simulation, three3

of this model’s species display damped oscillations.4

cytosol
nucleus

X + Y1n
k1−→ 2Y1n

KT−⇀↽− 2Y1c + 2Y2
k2−→ 4Y2

k3−→ ∅

Figure 28: An example multi-compartmental model.

Figure 28 illustrates the arrangement of compartments and reactions in the model LotkaVolterra transport.5

The reaction between the compartments called cytosol and nucleus is a transport reaction whose mecha-6

nisms are not modeled here; in particular, the reaction does not take place on the membrane between the7

compartments, and is modeled here simply as a process that spans the two three-dimensional compartments.8

The text of the SBML representation of the model is shown below, and it is followed by its complete9

translation into ordinary differential equations. As usual, in this SBML model, the reaction rate equations10

in the kinetic laws are in substance per time units. The reactions have also been simplified to reduce11

common stoichiometric factors in the original system depicted in Figure 28. The species variables in this12

SBML representation are in concentration units; their initial quantities are declared using the attribute13

initialAmount on the species definitions, but since the attribute hasOnlySubstanceUnits is not set to true,14

the identifiers of the species represent their concentrations when those identifiers appear in mathematical15

expressions elsewhere in the model. Note that the species whose identifier is “X” is a boundary condition, as16

indicated by the attribute boundaryCondition=“true” in its definition.17

<?xml version="1.0" encoding="UTF-8"?>18

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">19

<model name="LotkaVolterra_tranport" substanceUnits="mole" volumeUnits="litre"20

extentUnits="mole" timeUnits="second">21

<listOfUnitDefinitions>22

<unitDefinition id="per_second">23

<listOfUnits>24

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>25

</listOfUnits>26

</unitDefinition>27

<unitDefinition id="litre_per_mole_per_second">28

<listOfUnits>29

<unit kind="mole" exponent="-1" scale="0" multiplier="1"/>30

<unit kind="litre" exponent="1" scale="0" multiplier="1"/>31

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>32

</listOfUnits>33

</unitDefinition>34

</listOfUnitDefinitions>35

<listOfCompartments>36

<compartment id="cytoplasm" size="5" constant="true" spatialDimensions="3"/>37

<compartment id="nucleus" size="1" constant="true" spatialDimensions="3"/>38

</listOfCompartments>39

<listOfSpecies>40

<species id="X" compartment="nucleus" initialAmount="1" constant="false"41

boundaryCondition="true" hasOnlySubstanceUnits="false"/>42

<species id="Y1n" compartment="nucleus" initialAmount="1" constant="false"43

boundaryCondition="false" hasOnlySubstanceUnits="false"/>44

<species id="Y1c" compartment="cytoplasm" initialAmount="0" constant="false"45

boundaryCondition="false" hasOnlySubstanceUnits="false"/>46

<species id="Y2" compartment="cytoplasm" initialAmount="1" constant="false"47

boundaryCondition="false" hasOnlySubstanceUnits="false"/>48

</listOfSpecies>49

<listOfParameters>50

<parameter id="k1" value="2500" units="litre_per_mole_per_second" constant="true"/>51

116

<parameter id="k2" value="2500" units="litre_per_mole_per_second" constant="true"/>1

<parameter id="KT" value="25000" units="per_second" constant="true"/>2

<parameter id="k3" value="2500" units="per_second" constant="true"/>3

</listOfParameters>4

<listOfReactions>5

<reaction id="production" reversible="false" fast="false">6

<listOfReactants>7

<speciesReference species="X" stoichiometry="1" constant="true"/>8

<speciesReference species="Y1n" stoichiometry="1" constant="true"/>9

</listOfReactants>10

<listOfProducts>11

<speciesReference species="Y1n" stoichiometry="1" constant="true"/>12

<speciesReference species="Y1n" stoichiometry="1" constant="true"/>13

</listOfProducts>14

<kineticLaw>15

<math xmlns="http://www.w3.org/1998/Math/MathML">16

<apply>17

<times/>18

<ci>nucleus</ci>19

<ci>k1</ci>20

<ci>X</ci>21

<ci>Y1n</ci>22

</apply>23

</math>24

</kineticLaw>25

</reaction>26

<reaction id="transport" reversible="true" fast="false">27

<listOfReactants>28

<speciesReference species="Y1n" stoichiometry="1" constant="true"/>29

</listOfReactants>30

<listOfProducts>31

<speciesReference species="Y1c" stoichiometry="1" constant="true"/>32

</listOfProducts>33

<kineticLaw>34

<math xmlns="http://www.w3.org/1998/Math/MathML">35

<apply>36

<times/>37

<ci>cytoplasm</ci>38

<ci>KT</ci>39

<apply>40

<minus/>41

<ci>Y1n</ci>42

<ci>Y1c</ci>43

</apply>44

</apply>45

</math>46

</kineticLaw>47

</reaction>48

<reaction id="transformation" reversible="false" fast="false">49

<listOfReactants>50

<speciesReference species="Y1c" stoichiometry="1" constant="true"/>51

<speciesReference species="Y2" stoichiometry="1" constant="true"/>52

</listOfReactants>53

<listOfProducts>54

<speciesReference species="Y2" stoichiometry="2" constant="true"/>55

</listOfProducts>56

<kineticLaw>57

<math xmlns="http://www.w3.org/1998/Math/MathML">58

<apply>59

<times/>60

<ci>cytoplasm</ci>61

<ci>k2</ci>62

<ci>Y1c</ci>63

<ci>Y2</ci>64

</apply>65

</math>66

</kineticLaw>67

</reaction>68

<reaction id="degradation" reversible="false" fast="false">69

117

<listOfReactants>1

<speciesReference species="Y2" stoichiometry="1" constant="true"/>2

</listOfReactants>3

<kineticLaw>4

<math xmlns="http://www.w3.org/1998/Math/MathML">5

<apply>6

<times/>7

<ci>cytoplasm</ci>8

<ci>k3</ci>9

<ci>Y2</ci>10

</apply>11

</math>12

</kineticLaw>13

</reaction>14

</listOfReactions>15

</model>16

</sbml>17

The ODE translation of this model is as follows. First, we give the values of the constant parameters:18

k1 = 2500 litre mole−1 second−1
19

k2 = 2500 litre mole−1 second−1
20

K3 = 25000 second−1
21

KT = 25000 second−1
22

Now on to the initial conditions of the variables. In the following, the terms [X], [Y1n], [Y1c], and [Y2] refer23

to the species’ concentrations. Note that the corresponding species identifiers X, Y 1n, Y 1c and Y 2 in the24

model are in concentration units, even though all the values in the model are initialized in terms of amounts.25

(The reason the species identifiers in the model are still in concentration units goes back to the meaning of26

the hasOnlySubstanceUnits attribute on a Species; if the attribute is set to a value of “false”, a species’27

symbol in a model is interpreted as a concentration or density regardless of whether its initial value is set28

using initialAmount or initialConcentration.) We use Vn to represent the size of compartment “nucleus”29

and Vc the size of compartment “cytoplasm”:30

Vn = 1 litre31

Vc = 5 litre32

X = 1 mole33

Y1n = 1 mole34

Y1c = 0 mole35

Y2 = 1/5 mole36

And finally, here are the differential equations:37

d[X]

dt
= 038

Vn
d[Y1n]

dt
= k1[X][Y1n][Vn]−KT

(
[Y1n]− [Y1c]

)
Vc reactions production and transport39

Vc
d[Y1c]

dt
= KT

(
[Y1n]− [Y1c]

)
Vc − k2[Y1c][Y2]Vc reactions transport and transformation40

Vc
d[Y2]

dt
= k2[Y1c][Y2]Vc − k3[Y2]Vc reactions transformation and degradation41

42

As formulated here, this example assumes constant volumes. If the sizes of the compartments “cytoplasm”43

or “nucleus” could change during simulation, then it would be preferable to use a different approach to44

constructing the differential equations. In this alternative approach, the ODEs would compute substance45

change rather than concentration change, and the concentration values would be computed using separate46

equations. This approach is used in Section 4.11.7.47

118

7.9 Example involving function definitions1

This section contains a model that uses the function definition feature of SBML. Consider the following2

hypothetical system:3

S1
f([S1])
−−−−→ S24

where5

f(x) = 2x6

The following is the XML document that encodes the model shown above:7

<?xml version="1.0" encoding="UTF-8"?>8

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">9

<model id="Example" substanceUnits="mole" volumeUnits="litre"10

timeUnits="second" extentUnits="mole">11

<listOfUnitDefinitions>12

<unitDefinition id="conc">13

<listOfUnits>14

<unit kind="mole" multiplier="1" scale="0" exponent="1"/>15

<unit kind="litre" multiplier="1" scale="0" exponent="-1"/>16

</listOfUnits>17

</unitDefinition>18

</listOfUnitDefinitions>19

<listOfFunctionDefinitions>20

<functionDefinition id="f">21

<math xmlns="http://www.w3.org/1998/Math/MathML"22

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">23

<lambda>24

<bvar>25

<ci> x </ci>26

</bvar>27

<apply>28

<times/>29

<ci> x </ci>30

<cn sbml:units="dimensionless"> 2 </cn>31

</apply>32

</lambda>33

</math>34

</functionDefinition>35

</listOfFunctionDefinitions>36

<listOfCompartments>37

<compartment id="compartmentOne" size="1" spatialDimensions="3" constant="true"/>38

</listOfCompartments>39

<listOfSpecies>40

<species id="S1" initialConcentration="1" compartment="compartmentOne"41

hasOnlySubstanceUnits="false" boundaryCondition="false"42

constant="false"/>43

<species id="S2" initialConcentration="0" compartment="compartmentOne"44

hasOnlySubstanceUnits="false" boundaryCondition="false"45

constant="false"/>46

</listOfSpecies>47

<listOfParameters>48

<parameter id="t" value = "1" constant="true"/>49

</listOfParameters>50

<listOfReactions>51

<reaction id="reaction_1" reversible="false" fast="false">52

<listOfReactants>53

<speciesReference species="S1" stoichiometry="1" constant="true"/>54

</listOfReactants>55

<listOfProducts>56

<speciesReference species="S2" stoichiometry="1" constant="true"/>57

</listOfProducts>58

<kineticLaw>59

<math xmlns="http://www.w3.org/1998/Math/MathML">60

<apply>61

<divide/>62

<apply>63

119

<times/>1

<apply>2

<ci> f </ci>3

<ci> S1 </ci>4

</apply>5

<ci> compartmentOne </ci>6

</apply>7

<ci> t</ci>8

</apply>9

</math>10

</kineticLaw>11

</reaction>12

</listOfReactions>13

</model>14

</sbml>15

7.10 Example involving delay functions16

The following is a simple model illustrating the use of delay to represent a gene that suppresses its own17

expression. The model can be expressed in a single rule:18

d[P]

dt
=

1

1 +m[Pdelayed]q
− [P]

τ
19

where20
[Pdelayed] is delay([P],∆t) or [P] at t−∆t21

[P] is protein concentration22

τ is the response time23

m is a multiplier or equilibrium constant24

q is the Hill coefficient25

and the species quantities are in concentration units. The text of an SBML encoding of this model is given26

below:27

<?xml version="1.0" encoding="UTF-8"?>28

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">29

<model substanceUnits="mole" volumeUnits="litre"30

extentUnits="mole" timeUnits="second">31

<listOfUnitDefinitions>32

<unitDefinition id="conc">33

<listOfUnits>34

<unit kind="mole" multiplier="1" scale="0" exponent="1"/>35

<unit kind="litre" multiplier="1" scale="0" exponent="-1"/>36

</listOfUnits>37

</unitDefinition>38

<unitDefinition id="conc_sq">39

<listOfUnits>40

<unit kind="mole" multiplier="1" scale="0" exponent="2"/>41

<unit kind="litre" multiplier="1" scale="0" exponent="-2"/>42

</listOfUnits>43

</unitDefinition>44

</listOfUnitDefinitions>45

<listOfCompartments>46

<compartment id="cell" size="1" spatialDimensions="3" constant="true"/>47

</listOfCompartments>48

<listOfSpecies>49

<species id="P" compartment="cell" initialConcentration="0"50

hasOnlySubstanceUnits="false" boundaryCondition="false"51

constant="false"/>52

</listOfSpecies>53

<listOfParameters>54

<parameter id="tau" value="1" units="second" constant="true"/>55

<parameter id="m" value="0.5" units="dimensionless" constant="true"/>56

<parameter id="q" value="1" units="dimensionless" constant="true"/>57

<parameter id="delta_t" value="1" units="second" constant="true"/>58

120

</listOfParameters>1

<listOfRules>2

<rateRule variable="P">3

<math xmlns="http://www.w3.org/1998/Math/MathML"4

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">5

<apply>6

<divide/>7

<apply>8

<minus/>9

<apply>10

<divide/>11

<cn sbml:units="conc_sq"> 1 </cn>12

<apply>13

<plus/>14

<cn sbml:units="conc"> 1 </cn>15

<apply>16

<times/>17

<ci> m </ci>18

<apply>19

<power/>20

<apply>21

<csymbol22

encoding="text"23

definitionURL="http://www.sbml.org/sbml/symbols/delay">24

delay25

</csymbol>26

<ci> P </ci>27

<ci> delta_t </ci>28

</apply>29

<ci> q </ci>30

</apply>31

</apply>32

</apply>33

</apply>34

<ci> P </ci>35

</apply>36

<ci> tau </ci>37

</apply>38

</math>39

</rateRule>40

</listOfRules>41

</model>42

</sbml>43

7.11 Example involving events44

This section presents a simple model system that demonstrates the use of events in SBML. Consider a45

system with two genes, G1 and G2. G1 is initially on and G2 is initially off. When turned on, the two genes46

lead to the production of two products, P1 and P2, respectively, at a fixed rate. When P1 reaches a given47

concentration, G2 switches on. This system can be represented mathematically as follows:48

d[P1]

dt
= k1

(
[G1]− [P1]

)
49

d[P2]

dt
= k2

(
[G2]− [P2]

)
50

[G2] =

{
0 when [P1] ≤ τ ,
1 when [P1] > τ.

51

The initial values are:52

[G1] = 1, [G2] = 0, τ = 0.25, P1 = 0, P2 = 0, k1 = k2 = 1.53

The SBML Level 3 representation of this is as follows:54

121

<?xml version="1.0" encoding="UTF-8"?>1

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"2

xmlns:math="http://www.w3.org/1998/Math/MathML"3

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">4

<model substanceUnits="mole" volumeUnits="litre" timeUnits="second"5

extentUnits="mole">6

<listOfUnitDefinitions>7

<unitDefinition id="per_second">8

<listOfUnits>9

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>10

</listOfUnits>11

</unitDefinition>12

<unitDefinition id="concentration">13

<listOfUnits>14

<unit kind="mole" exponent="1" scale="0" multiplier="1"/>15

<unit kind="litre" exponent="-1" scale="0" multiplier="1"/>16

</listOfUnits>17

</unitDefinition>18

</listOfUnitDefinitions>19

<listOfCompartments>20

<compartment id="cell" size="1" spatialDimensions="3" constant="true"/>21

</listOfCompartments>22

<listOfSpecies>23

<species id="P1" compartment="cell" initialConcentration="0"24

hasOnlySubstanceUnits="false" boundaryCondition="false"25

constant="false"/>26

<species id="P2" compartment="cell" initialConcentration="0"27

hasOnlySubstanceUnits="false" boundaryCondition="false"28

constant="false"/>29

</listOfSpecies>30

<listOfParameters>31

<parameter id="k1" value="1" units="per_second" constant="true"/>32

<parameter id="k2" value="1" units="per_second" constant="true"/>33

<parameter id="tau" value="0.25" units="concentration" constant="true"/>34

<parameter id="G1" value="1" units="concentration" constant="false"/>35

<parameter id="G2" value="0" units="concentration" constant="false"/>36

</listOfParameters>37

<listOfRules>38

<rateRule variable="P1">39

<math:math>40

<math:apply>41

<math:times/>42

<math:ci> k1 </math:ci>43

<math:apply>44

<math:minus/>45

<math:ci> G1 </math:ci>46

<math:ci> P1 </math:ci>47

</math:apply>48

</math:apply>49

</math:math>50

</rateRule>51

<rateRule variable="P2">52

<math:math>53

<math:apply>54

<math:times/>55

<math:ci> k2 </math:ci>56

<math:apply>57

<math:minus/>58

<math:ci> G2 </math:ci>59

<math:ci> P2 </math:ci>60

</math:apply>61

</math:apply>62

</math:math>63

</rateRule>64

</listOfRules>65

<listOfEvents>66

<event useValuesFromTriggerTime="true">67

<trigger persistent="false" initialValue="true">68

122

<math:math>1

<math:apply>2

<math:gt/>3

<math:ci> P1 </math:ci>4

<math:ci> tau </math:ci>5

</math:apply>6

</math:math>7

</trigger>8

<listOfEventAssignments>9

<eventAssignment variable="G2">10

<math:math>11

<math:cn sbml:units="concentration"> 1 </math:cn>12

</math:math>13

</eventAssignment>14

</listOfEventAssignments>15

</event>16

<event useValuesFromTriggerTime="true">17

<trigger persistent="false" initialValue="true">18

<math:math>19

<math:apply>20

<math:leq/>21

<math:ci> P1 </math:ci>22

<math:ci> tau </math:ci>23

</math:apply>24

</math:math>25

</trigger>26

<listOfEventAssignments>27

<eventAssignment variable="G2">28

<math:math>29

<math:cn sbml:units="concentration"> 0 </math:cn>30

</math:math>31

</eventAssignment>32

</listOfEventAssignments>33

</event>34

</listOfEvents>35

</model>36

</sbml>37

7.12 Example involving two-dimensional compartments38

The following example is a model that uses a two-dimensional compartment. It is a fragment of a larger model39

of calcium regulation across the plasma membrane of a cell. The model includes a calcium influx channel,40

“Ca channel”, and a calcium-extruding PMCA pump, “Ca Pump”. It also includes two cytosolic proteins41

that buffer calcium via the “CalciumCalbindin gt BoundCytosol” and “CalciumBuffer gt BoundCytosol”42

reactions. Finally, the rate expressions in this model do not include explicit factors of the compartment43

volumes; instead, the various rate constants are assumed to include any necessary corrections for volume.44

<?xml version="1.0" encoding="UTF-8"?>45

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">46

<model id="facilitated_ca_diffusion" substanceUnits="substance"47

areaUnits="area" volumeUnits="litre" timeUnits="second" extentUnits="substance">48

<listOfUnitDefinitions>49

<unitDefinition id="substance">50

<listOfUnits>51

<unit kind="mole" exponent="1" scale="-6" multiplier="1"/>52

</listOfUnits>53

</unitDefinition>54

<unitDefinition id="area">55

<listOfUnits>56

<unit kind="metre" exponent="2" scale="-6" multiplier="1"/>57

</listOfUnits>58

</unitDefinition>59

<unitDefinition id="per_second">60

<listOfUnits>61

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>62

</listOfUnits>63

</unitDefinition>64

123

<unitDefinition id="litre_per_mole_per_second">1

<listOfUnits>2

<unit kind="mole" exponent="-1" scale="-6" multiplier="1"/>3

<unit kind="litre" exponent="1" scale="0" multiplier="1"/>4

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>5

</listOfUnits>6

</unitDefinition>7

<unitDefinition id="subs_per_vol">8

<listOfUnits>9

<unit kind="mole" exponent="1" scale="-6" multiplier="1"/>10

<unit kind="litre" exponent="-1" scale="0" multiplier="1"/>11

</listOfUnits>12

</unitDefinition>13

</listOfUnitDefinitions>14

<listOfCompartments>15

<compartment id="Extracellular"16

spatialDimensions="3" size="1" constant="true"/>17

<compartment id="PlasmaMembrane"18

spatialDimensions="2" size="1"19

constant="true"/>20

<compartment id="Cytosol"21

spatialDimensions="3" size="1"22

constant="true"/>23

</listOfCompartments>24

<listOfSpecies>25

<species id="CaBPB_C" compartment="Cytosol" initialConcentration="47.17"26

hasOnlySubstanceUnits="false" boundaryCondition="false"27

constant="false"/>28

<species id="B_C" compartment="Cytosol" initialConcentration="396.04"29

hasOnlySubstanceUnits="false" boundaryCondition="false"30

constant="false"/>31

<species id="CaB_C" compartment="Cytosol" initialConcentration="3.96"32

hasOnlySubstanceUnits="false" boundaryCondition="false"33

constant="false"/>34

<species id="Ca_C" name="Ca" compartment="Cytosol" initialConcentration="0.1"35

hasOnlySubstanceUnits="false" boundaryCondition="false"36

constant="false"/>37

<species id="Ca_EC" name="Ca" compartment="Extracellular"38

initialConcentration="1000"39

hasOnlySubstanceUnits="false" boundaryCondition="false"40

constant="false"/>41

<species id="CaCh_PM" compartment="PlasmaMembrane" initialConcentration="1"42

hasOnlySubstanceUnits="false" boundaryCondition="false"43

constant="false"/>44

<species id="CaPump_PM" compartment="PlasmaMembrane" initialConcentration="1"45

hasOnlySubstanceUnits="false" boundaryCondition="false"46

constant="false"/>47

<species id="CaBP_C" compartment="Cytosol" initialConcentration="202.83"48

hasOnlySubstanceUnits="false" boundaryCondition="false"49

constant="false"/>50

</listOfSpecies>51

<listOfReactions>52

<reaction id="CalciumCalbindin_gt_BoundCytosol" reversible="true" fast="true">53

<listOfReactants>54

<speciesReference species="CaBP_C" stoichiometry="1" constant="true"/>55

<speciesReference species="Ca_C" stoichiometry="1" constant="true"/>56

</listOfReactants>57

<listOfProducts>58

<speciesReference species="CaBPB_C" stoichiometry="1" constant="true"/>59

</listOfProducts>60

<kineticLaw>61

<notes>62

<p xmlns="http://www.w3.org/1999/xhtml">63

(((Kf_CalciumCalbindin_BoundCytosol * CaBP_C) * Ca_C) -64

(Kr_CalciumCalbindin_BoundCytosol * CaBPB_C))65

</p>66

</notes>67

<math xmlns="http://www.w3.org/1998/Math/MathML">68

<apply>69

124

<times/>1

<ci> Cytosol </ci>2

<apply>3

<minus/>4

<apply>5

<times/>6

<ci> Kf_CalciumCalbindin_BoundCytosol </ci>7

<ci> CaBP_C </ci>8

<ci> Ca_C </ci>9

</apply>10

<apply>11

<times/>12

<ci> Kr_CalciumCalbindin_BoundCytosol </ci>13

<ci> CaBPB_C </ci>14

</apply>15

</apply>16

</apply>17

</math>18

<listOfLocalParameters>19

<localParameter id="Kf_CalciumCalbindin_BoundCytosol" value="20.0"20

units="litre_per_mole_per_second"/>21

<localParameter id="Kr_CalciumCalbindin_BoundCytosol" value="8.6"22

units="per_second"/>23

</listOfLocalParameters>24

</kineticLaw>25

</reaction>26

<reaction id="CalciumBuffer_gt_BoundCytosol" reversible="true" fast="true">27

<listOfReactants>28

<speciesReference species="Ca_C" stoichiometry="1" constant="true"/>29

<speciesReference species="B_C" stoichiometry="1" constant="true"/>30

</listOfReactants>31

<listOfProducts>32

<speciesReference species="CaB_C" stoichiometry="1" constant="true"/>33

</listOfProducts>34

<kineticLaw>35

<notes>36

<p xmlns="http://www.w3.org/1999/xhtml">37

(((Kf_CalciumBuffer_BoundCytosol * Ca_C) * B_C) -38

(Kr_CalciumBuffer_BoundCytosol * CaB_C))39

</p>40

</notes>41

<math xmlns="http://www.w3.org/1998/Math/MathML">42

<apply>43

<times/>44

<ci> Cytosol</ci>45

<apply>46

<minus/>47

<apply>48

<times/>49

<ci> Kf_CalciumBuffer_BoundCytosol </ci>50

<ci> Ca_C </ci>51

<ci> B_C </ci>52

</apply>53

<apply>54

<times/>55

<ci> Kr_CalciumBuffer_BoundCytosol </ci>56

<ci> CaB_C </ci>57

</apply>58

</apply>59

</apply>60

</math>61

<listOfLocalParameters>62

<localParameter id="Kf_CalciumBuffer_BoundCytosol" value="0.1"63

units="litre_per_mole_per_second"/>64

<localParameter id="Kr_CalciumBuffer_BoundCytosol" value="1.0"65

units="per_second"/>66

</listOfLocalParameters>67

</kineticLaw>68

</reaction>69

125

<reaction id="Ca_Pump" reversible="true" fast="false">1

<listOfReactants>2

<speciesReference species="Ca_C" stoichiometry="1" constant="true"/>3

</listOfReactants>4

<listOfProducts>5

<speciesReference species="Ca_EC" stoichiometry="1" constant="true"/>6

</listOfProducts>7

<listOfModifiers>8

<modifierSpeciesReference species="CaPump_PM"/>9

</listOfModifiers>10

<kineticLaw>11

<notes>12

<p xmlns="http://www.w3.org/1999/xhtml">13

((Vmax * kP * ((Ca_C - Ca_Rest) / (Ca_C + kP)) /14

(Ca_Rest + kP)) * CaPump_PM)15

</p>16

</notes>17

<math xmlns="http://www.w3.org/1998/Math/MathML">18

<apply>19

<times/>20

<ci> PlasmaMembrane</ci>21

<apply>22

<divide/>23

<apply>24

<times/>25

<ci> Vmax </ci>26

<ci> kP </ci>27

<ci> CaPump_PM </ci>28

<apply>29

<minus/>30

<ci> Ca_C </ci>31

<ci> Ca_Rest </ci>32

</apply>33

</apply>34

<apply>35

<times/>36

<apply>37

<plus/>38

<ci> Ca_C </ci>39

<ci> kP </ci>40

</apply>41

<apply>42

<plus/>43

<ci> Ca_Rest </ci>44

<ci> kP </ci>45

</apply>46

</apply>47

</apply>48

</apply>49

</math>50

<listOfLocalParameters>51

<localParameter id="Vmax" value="4000" units="per_second"/>52

<localParameter id="kP" value="0.25" units="subs_per_vol"/>53

<localParameter id="Ca_Rest" value="0.1" units="subs_per_vol"/>54

</listOfLocalParameters>55

</kineticLaw>56

</reaction>57

<reaction id="Ca_channel" reversible="true" fast="false">58

<listOfReactants>59

<speciesReference species="Ca_EC" stoichiometry="1" constant="true"/>60

</listOfReactants>61

<listOfProducts>62

<speciesReference species="Ca_C" stoichiometry="1" constant="true"/>63

</listOfProducts>64

<listOfModifiers>65

<modifierSpeciesReference species="CaCh_PM"/>66

</listOfModifiers>67

<kineticLaw>68

<notes>69

126

<p xmlns="http://www.w3.org/1999/xhtml">1

(J0 * Kc * (Ca_EC - Ca_C) / (Kc + Ca_C) * CaCh_PM)2

</p>3

</notes>4

<math xmlns="http://www.w3.org/1998/Math/MathML">5

<apply>6

<times/>7

<ci> PlasmaMembrane </ci>8

<apply>9

<divide/>10

<apply>11

<times/>12

<ci> CaCh_PM </ci>13

<ci> J0 </ci>14

<ci> Kc </ci>15

<apply>16

<minus/>17

<ci> Ca_EC </ci>18

<ci> Ca_C </ci>19

</apply>20

</apply>21

<apply>22

<plus/>23

<ci> Kc </ci>24

<ci> Ca_C </ci>25

</apply>26

</apply>27

</apply>28

</math>29

<listOfLocalParameters>30

<localParameter id="J0" value="0.014" units="litre_per_mole_per_second"/>31

<localParameter id="Kc" value="0.5" units="subs_per_vol"/>32

</listOfLocalParameters>33

</kineticLaw>34

</reaction>35

</listOfReactions>36

</model>37

</sbml>38

7.13 Example of a reaction located at a membrane39

This section describes a model containing one single enzymatic reaction where substrate and product are40

located in the same compartment but the enzyme is localized at the membrane surrounding the compartment.41

R: S
[E]−−→ P42

The model contains two compartments, a three-dimensional one called “cytosol” and a two-dimensional one43

called “membrane” that is assumed to be the boundary of the cell. The reaction R has a substrate S and a44

product P that are both located in the cytosol. The enzyme E that catalyzes the reactions is located at the45

membrane. The kinetic law of reaction R is46

v = A · kcat · [E] · [S]

KM + [S]
47

where A is the area of the membrane (measured in µm2), [E] is the density of the enzyme on the membrane48

(in µmol µm−2), [S] is the concentration of the substrate (in µmol l−1), KM the Michaelis-Menten constant49

(also in µmol l−1), and kcat the rate constant (in min−1). The units of the result of the kinetic law are in50

µmol min−1. Since the units for the amounts of all species (S, P , and E) and for the reaction extent are51

the same (µmol) the model does not require unit conversion factors.52

The kinetic law as it is given here scales correctly for changes in cytosol volume, membrane area, or enzyme53

density. This means that if one of these values is changed (even if it varies during a simulation) the rate54

expression remains valid.55

The following is the text of the model’s SBML representation.56

127

<?xml version="1.0" encoding="UTF-8"?>1

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">2

<model id="Model_1" name="Reaction on membrane" substanceUnits="micromole"3

timeUnits="minute" extentUnits="micromole">4

<listOfFunctionDefinitions>5

<functionDefinition id="MM_enzyme" name="MM_enzyme">6

<math xmlns="http://www.w3.org/1998/Math/MathML">7

<lambda>8

<bvar> <ci> size </ci> </bvar>9

<bvar> <ci> k </ci> </bvar>10

<bvar> <ci> enz </ci> </bvar>11

<bvar> <ci> subs </ci> </bvar>12

<bvar> <ci> Km </ci> </bvar>13

<apply>14

<divide/>15

<apply>16

<times/>17

<ci> size </ci>18

<ci> k </ci>19

<ci> enz </ci>20

<ci> subs </ci>21

</apply>22

<apply>23

<plus/>24

<ci> Km </ci>25

<ci> subs </ci>26

</apply>27

</apply>28

</lambda>29

</math>30

</functionDefinition>31

</listOfFunctionDefinitions>32

<listOfUnitDefinitions>33

<unitDefinition id="minute">34

<listOfUnits>35

<unit kind="second" exponent="1" scale="0" multiplier="60"/>36

</listOfUnits>37

</unitDefinition>38

<unitDefinition id="per_minute">39

<listOfUnits>40

<unit kind="second" exponent="-1" scale="0" multiplier="60"/>41

</listOfUnits>42

</unitDefinition>43

<unitDefinition id="micromole">44

<listOfUnits>45

<unit kind="mole" exponent="1" scale="-6" multiplier="1"/>46

</listOfUnits>47

</unitDefinition>48

<unitDefinition id="micromole_per_l">49

<listOfUnits>50

<unit kind="mole" exponent="1" scale="-6" multiplier="1"/>51

<unit kind="litre" exponent="-1" scale="0" multiplier="1"/>52

</listOfUnits>53

</unitDefinition>54

<unitDefinition id="sqrmicrometre">55

<listOfUnits>56

<unit kind="metre" exponent="2" scale="-6" multiplier="1"/>57

</listOfUnits>58

</unitDefinition>59

</listOfUnitDefinitions>60

<listOfCompartments>61

<compartment id="cyt" name="Cytosol"62

spatialDimensions="3" units="litre"63

size="1e-15" constant="true"/>64

<compartment id="mem" name="Membrane"65

spatialDimensions="2" units="sqrmicrometre"66

size="1" constant="true"/>67

</listOfCompartments>68

128

<listOfSpecies>1

<species id="species_1" name="substrate" compartment="cyt"2

hasOnlySubstanceUnits="false" boundaryCondition="false"3

initialConcentration="1" constant="false"/>4

<species id="species_2" name="product" compartment="cyt"5

hasOnlySubstanceUnits="false" boundaryCondition="false"6

initialConcentration="1" constant="false"/>7

<species id="species_3" name="enzyme" compartment="mem"8

hasOnlySubstanceUnits="false" boundaryCondition="false"9

initialConcentration="1" constant="false"/>10

</listOfSpecies>11

<listOfReactions>12

<reaction id="reaction_1" name="Reaction" reversible="false"13

fast="false" compartment="mem">14

<listOfReactants>15

<speciesReference species="species_1" stoichiometry="1" constant="true"/>16

</listOfReactants>17

<listOfProducts>18

<speciesReference species="species_2" stoichiometry="1" constant="true"/>19

</listOfProducts>20

<listOfModifiers>21

<modifierSpeciesReference species="species_3"/>22

</listOfModifiers>23

<kineticLaw>24

<math xmlns="http://www.w3.org/1998/Math/MathML">25

<apply>26

<ci> MM_enzyme </ci>27

<ci> mem </ci>28

<ci> k </ci>29

<ci> species_3 </ci>30

<ci> species_1 </ci>31

<ci> Km </ci>32

</apply>33

</math>34

<listOfLocalParameters>35

<localParameter id="k" value="0.1" units="per_minute"/>36

<localParameter id="Km" value="0.1" units="micromole_per_l"/>37

</listOfLocalParameters>38

</kineticLaw>39

</reaction>40

</listOfReactions>41

</model>42

</sbml>43

7.14 Example using an event with a non-persistent trigger and a delay44

This example illustrates the syntax and use of the Trigger object on Event, particularly the persistent45

attribute, as well as the optional Delay object on Event. In the model below, the event has a trigger expression46

that tests the value of species “a” in the model, and if the value comes within the range 0.999 ≤ a ≤ 1.001,47

the event triggers and reassigns the value of “c” after a delay of 3 seconds.48

<?xml version="1.0" encoding="UTF-8"?>49

<sbml xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">50

<model id="PersistentEvent" timeUnits="second">51

<listOfUnitDefinitions>52

<unitDefinition id="mol_per_l">53

<listOfUnits>54

<unit kind="mole" exponent="1" scale="0" multiplier="1"/>55

<unit kind="litre" exponent="-1" scale="0" multiplier="1"/>56

</listOfUnits>57

</unitDefinition>58

<unitDefinition id="l_per_s">59

<listOfUnits>60

<unit kind="litre" exponent="1" scale="0" multiplier="1"/>61

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>62

</listOfUnits>63

</unitDefinition>64

129

</listOfUnitDefinitions>1

<listOfCompartments>2

<compartment id="compartment" size="1" units="litre"3

spatialDimensions="3" constant="true"/>4

</listOfCompartments>5

<listOfSpecies>6

<species id="d" initialConcentration="0" boundaryCondition="true"7

compartment="compartment" substanceUnits="mole"8

hasOnlySubstanceUnits="false" constant="false"/>9

<species id="a" initialConcentration="2" boundaryCondition="false"10

compartment="compartment" substanceUnits="mole"11

hasOnlySubstanceUnits="false" constant="false"/>12

<species id="b" initialConcentration="0" boundaryCondition="false"13

compartment="compartment" substanceUnits="mole"14

hasOnlySubstanceUnits="false" constant="false"/>15

<species id="c" initialConcentration="0" boundaryCondition="false"16

compartment="compartment" substanceUnits="mole"17

hasOnlySubstanceUnits="false" constant="false"/>18

<species id="e" initialConcentration="0" boundaryCondition="false"19

compartment="compartment" substanceUnits="mole"20

hasOnlySubstanceUnits="false" constant="false"/>21

</listOfSpecies>22

<listOfParameters>23

<parameter id="k1" value="0.2" constant="true" units="l_per_s"/>24

</listOfParameters>25

<listOfRules>26

<assignmentRule variable="e">27

<math xmlns="http://www.w3.org/1998/Math/MathML">28

<cn type="integer" sbml:units="mol_per_l"> 1 </cn>29

</math>30

</assignmentRule>31

</listOfRules>32

<listOfReactions>33

<reaction id="_J0" reversible="false" fast="false">34

<listOfReactants>35

<speciesReference species="a" constant="true" stoichiometry="1"/>36

</listOfReactants>37

<listOfProducts>38

<speciesReference species="d" constant="true" stoichiometry="1"/>39

</listOfProducts>40

<kineticLaw>41

<math xmlns="http://www.w3.org/1998/Math/MathML">42

<apply>43

<times/>44

<ci> k1 </ci>45

<ci> a </ci>46

</apply>47

</math>48

</kineticLaw>49

</reaction>50

</listOfReactions>51

<listOfEvents>52

<event useValuesFromTriggerTime="true">53

<!-- If persistent is ’false’, c won’t be set to ’6’, but if it’s ’true’, it will. -->54

<trigger persistent="false" initialValue="true">55

<math xmlns="http://www.w3.org/1998/Math/MathML">56

<apply>57

<and/>58

<apply>59

<leq/>60

<ci> a </ci>61

<cn> 1.001 </cn>62

</apply>63

<apply>64

<geq/>65

<ci> a </ci>66

<cn> 0.999 </cn>67

</apply>68

</apply>69

130

</math>1

</trigger>2

<delay>3

<math xmlns="http://www.w3.org/1998/Math/MathML">4

<cn type="integer" sbml:units="second"> 3 </cn>5

</math>6

</delay>7

<listOfEventAssignments>8

<eventAssignment variable="c">9

<math xmlns="http://www.w3.org/1998/Math/MathML">10

<cn type="integer" sbml:units="mol_per_l"> 6 </cn>11

</math>12

</eventAssignment>13

</listOfEventAssignments>14

</event>15

</listOfEvents>16

</model>17

</sbml>18

131

8 Recommended practices1

In this section, we recommend a number of practices for using and interpreting various SBML constructs.2

These recommendations are non-normative, but we advocate them strongly; ignoring them will not render a3

model invalid, but may hinder interoperability between different software systems exchanging SBML content.4

8.1 Recommended practices concerning common SBML attributes and objects5

Many SBML components share some or all of the following attributes and objects. We describe recommen-6

dations concerning them here, separately from discussing the specific SBML components. In Section 8.2, we7

turn to the specific SBML components, but the recommendations described here also apply to them.8

8.1.1 Identifiers and names9

The id attribute is available on most (but not all) objects in SBML, and all objects that have id attributes10

also have an optional name attribute. How should models treat identifiers and names?11

The following is the recommended practice for handling name. If a software tool has the capability to display12

the content of name attributes, it should display this content to the user as a component’s label instead of13

the component’s id. If the user interface does not have this capability (e.g., because it cannot display or use14

special characters in symbol names), or if the name attribute is missing on a given component, then the user15

interface should display the value of the id attribute instead.16

As a consequence of the above, authors of software systems that automatically generate values for id at-17

tributes should be aware some other systems may display the id’s to the user. (Script language interpreters18

are especially likely to display id instead of name.) Authors therefore may wish to take some care to have19

their software create id values that are: (a) reasonably easy for humans to type and read, and (b) likely to20

be meaningful (e.g., by making the id attribute is an abbreviated form of the name attribute value).21

8.1.2 Initial Values22

SBML allows for the creation of Compartment, Species, Parameter, LocalParameter and SpeciesReference23

objects without declaring their initial values directly on the object instances. That is, a Compartment object24

can be created without defining a value for its size attribute; a Species object can be created without defining25

a value for either its initialConcentration or initialAmount attribute; Parameter and LocalParameter26

objects can be created without giving a value to their value attributes; and a SpeciesReference object27

can be created without assigning a value to its stoichiometry attribute. A missing value in the case of28

Compartment, Species, Parameter, and SpeciesReference objects implies that the value is either set via an29

InitialAssignment object elsewhere in the model, or is meant to be obtained from an external source (e.g.,30

by querying the user of a software system), or is unknown. In the case of LocalParameter objects, a missing31

value implies that the value is either unknown or meant to be obtained from an external source.32

Where initial values are available and are decimal numbers that can be set using the appropriate attribute33

on an object, the best practice recommendation is to do that in preference to using an InitialAssignment34

construct if there is no particular reason to use InitialAssignment. Setting the relevant attribute directly35

on the Compartment, Species, and Parameter and SpeciesReference object is simpler and may be more36

interoperable with different software systems. This is especially true of stoichiometry on SpeciesReference,37

which in the vast majority of models, is never more than a constant floating-point value anyway.38

An additional point is worth noting in passing. Although the value attributes of various SBML components39

are of type double (e.g., Parameter’s attribute value), this does not mean that component values are limited40

only to decimal numbers. As noted above, other constructs such as InitialAssignment can be used to set41

the value of an object, and since those constructs offer the power of MathML, the results may be rational42

numbers such as fractions. Software developers should be aware of this possibility when planning the type43

of storage variables used to hold SBML objects’ values.44

132

8.1.3 The constant flag1

There is a mandatory boolean attribute called constant on the Compartment, Species, SpeciesReference and2

Parameter components. A value of “true” means that the SBML object in question will not be changed by3

other constructs in SBML except possibly an InitialAssignment. A value of “false” indicates an intention to4

change the element’s value by an AssignmentRule, RateRule, AlgebraicRule, Reaction or Event in the model.5

A constant attribute value of “false” does not require that the object in question is changed; strictly6

speaking, an SBML model is valid even if it sets all constant attributes to “false” but never actually7

modify any of the values. However, the best practice recommendation is to communicate intentions by setting8

constant to “true” unless an entity in a model really is intended to be changed. The exception to this is9

Species, which are usually part of the reaction system and thus usually need to have constant=“false”.10

8.1.4 Annotations11

Appropriate uses of annotations12

In the description of the Annotation object available on every component derived from SBase (Section 3.2.4),13

we already made the point that it is critical not to put data essential to understanding a model into annota-14

tions. This raises a question: what kind of data may be appropriately put into annotations? Here are some15

examples:16

• Identification information for cross-referencing components in a model with items in a data resource17

such as a database. This is the purpose of the annotation scheme described in Section 6.18

• Application-specific processing instructions that do not change the essential meaning of a model, but19

help a particular application with tasks such as managing the model, maintaining state data across20

editing sessions, etc.21

• Evidence codes for annotating a model with controlled vocabulary terms that indicate (e.g.) the quality22

of biological evidence supporting the inclusion of each component in the model. The annotation scheme23

of Section 6 can be used in this capacity.24

• Information about the model that cannot be readily encoded in existing SBML elements, but that does25

not alter the mathematical meaning of the model.26

Specificity of annotations27

The annotation data (Section 3.2.4) attached to a specific SBML object in a model is assumed by other28

applications to be directly associated with that particular object. Therefore, it is important to decompose29

and locate annotation data appropriately in an SBML document. Applications are advised to avoid encoding30

all their annotations in a single top-level attribute on (e.g.) the Model object. The data associated with, for31

example, an individual Species object in a model should be encoded in the <annotation> element enclosed32

within the SBML <species> element representing that species in the SBML file.33

Syntax of annotations34

The annotation scheme described in Section 6 is useful for many, but not all, situations. It is tempting to35

develop new annotation syntaxes for situations that fall outside the scope of the SBML MIRIAM annotation36

scheme. However, a proliferation of proprietary annotation schemes will hinder software interoperability in37

the long run.38

We recommend the following approach when faced with a need to use alternate annotation syntaxes:39

1. The modular nature of SBML Level 3 Version 1 Core means that data that in SBML Level 2 could only40

be stored in annotations may now be supported using a full SBML Level 3 package. Therefore, software41

developers and modelers should first check if there already exists a package that may serve their needs.42

A list of SBML Level 3 packages is always maintained at the SBML website, http://sbml.org.43

133

http://sbml.org

2. If no package exists, developers and modelers may wish to check if someone else has already developed1

a similar annotation syntax for use with another software system. A list of known SBML annotation2

schemes is maintained online at http://sbml.org/Community/Wiki/Known_SBML_annotations.3

3. If none of the above alternatives provide a satisfactory result, developers and modelers should query4

the SBML discussion list (sbml-discuss@caltech.edu) to see if anyone else has been faced with similar5

problems. Other SBML users may have insights or even partial solutions already available.6

8.2 Recommended practices concerning specific SBML components7

In this section, we describe expectations and recommendations concerning specific SBML components. We do8

not reiterate the recommendations presented in Section 8.1, but they apply to many of the SBML components9

discussed here and should be kept in mind. The order of the components discussed here follows the order10

of their presentation in Section 4, but we only include here those components for which we have specific11

recommendations.12

8.2.1 Unit definitions13

We advise modelers and software tools to declare the units of all quantities in a model, insofar as this is14

possible, using the various mechanisms provided for this in SBML. Fully declared units can allow software15

tools to perform dimensional analysis on the units of mathematical expressions, and such analysis can be16

valuable in helping modelers produce correct models. In addition, it can allow model-wide operations such17

as conversion or rescaling of units.18

Recommendations for choices of units19

Table 9 lists the units recommended for different SBML components.20

21 Component attribute Unit recommendations

22 Model substanceUnits mole, item, dimensionless, kilogram, gram, or units derived from these

23 Model timeUnits second, dimensionless, or units derived from these

24 Model volumeUnits litre, metre3, dimensionless, or units derived from these

25 Model areaUnits metre2, dimensionless, or units derived from these

26 Model lengthUnits metre, dimensionless, or units derived from these

27 Model extentUnits mole, item, dimensionless, kilogram, gram, or units derived from these

28 Compartment units

Value of attribute
spatialDimensions Recommended units

“3” litre, metre3, dimensionless, or units derived from these

“2” metre2, dimensionless, or units derived from these

“1” metre, dimensionless, or units derived from these

other no specific recommendations

29

30 Species substanceUnits mole, item, dimensionless, kilogram, gram, or units derived from these

31 Parameter units no specific recommendations

Table 9: Units recommended for use on different SBML model components. Note that avogadro is considered to be
derived from dimensionless as a consequence of its definition; see Section 4.4.2.

134

http://sbml.org/Community/Wiki/Known_SBML_annotations
http://sbml.org/Forums

Handling units requiring the use of offsets1

As already mentioned, unit definitions and conversions that require offsets cannot be done directly using the2

simple UnitDefinition and Unit system in SBML. In fact, SBML does not predefine a unit for Celsius precisely3

because it would require the use of an offset, and so its inclusion would result in an inconsistent system.4

Definitions involving Celsius, Fahrenheit or other units with offsets require a different approach.5

We discuss approaches to handling units with offsets, starting with the case of degrees Celsius:6

• Handling Celsius. A model in which certain quantities are temperatures measured in degrees Celsius7

can be converted straightforwardly to a model in which those temperatures are in kelvin. A software8

tool could do this by performing a substitution using the following relationship:9

Tkelvin = TCelsius + 273.1510

In every mathematical formula of the model where a quantity (call it x) in degrees Celsius appears,11

replace x with xk + 273.15 where xk is now in kelvin. An alternative approach would be to use a12

FunctionDefinition to define a function encapsulating this relationship above and then using that in the13

rest of the model as needed. Since Celsius is a commonly-used unit, software tools could help users by14

providing users with the ability to express temperatures in Celsius in the tools’ interfaces, and making15

substitutions automatically when writing out SBML.16

• Handling other units requiring offsets. The only other units requiring offsets in SBML’s domain of17

common applications are other temperature units such as Fahrenheit. Few modern scientists employ18

Fahrenheit degrees; therefore, this is an unusual situation. The complication inherent in converting19

between degrees Fahrenheit and kelvin is that both a multiplier and an offset are required:20

Tkelvin =
TF + 459.67

1.8
21

One approach to handling this is to use a FunctionDefinition to define a function encapsulating the rela-22

tionship above, then to substitute a call to this function wherever the original temperature in Fahrenheit23

appears in the model’s mathematical formulas. We provide a candidate definition in Figure 29 on the24

next page.25

An alternative approach not requiring the use of function definitions is to use an AssignmentRule for26

each variable in Fahrenheit units. The AssignmentRule could compute the conversion from Fahrenheit27

to (say) kelvin, assign its value to a variable (with units declared to be “kelvin”), and then that28

variable could be used elsewhere in the model. Still another approach is to rewrite the mathematical29

formulas of a model to directly incorporate the conversion above wherever the quantity appears.30

All of these approaches provide general solutions to the problem of supporting any units requiring offsets in31

the unit system of SBML Level 3. It can be used for other temperature units requiring an offset (e.g., degrees32

Rankine or degrees Réaumur), although the likelihood of a real-life model requiring such other temperature33

units seems exceedingly small.34

In summary, the fact that SBML units do not support specifying an offset does not impede the creation of35

models using alternative units. If conversions are needed, then converting between temperature in degrees36

Celsius and thermodynamic temperature can be handled rather easily by the simple substitution described37

above. For the rare case of Fahrenheit and other units requiring combinations of multipliers and offsets, users38

are encouraged to employ the power of FunctionDefinition, AssignmentRule, or other constructs in SBML.39

8.2.2 Compartments40

Setting the size attribute on a compartment41

As mentioned in Section 4.5.3, we highly recommend that every Compartment object in a model has its size42

set. There are three major technical reasons for this. First, if the model contains any species whose initial43

135

<listOfUnitDefinitions>
<unitDefinition id="degree_Fahrenheit">

<notes><p xmlns="http://www.w3.org/1999/xhtml">
This captures the notion that the size of a degree in Fahrenheit is 5/9 the size
of a degree on the kelvin scale.

</notes>
<listOfUnits>

<unit kind="kelvin" multiplier="5" scale="0" exponent="1"/>
<unit kind="dimensionless" multiplier="9" scale="0" exponent="-1"/>

</listOfUnits>
</unitDefinition>

</listOfUnitDefinitions>
...
<listOfFunctionDefinitions>

<functionDefinition id="Fahrenheit_to_kelvin">
<notes><p xmlns="http://www.w3.org/1999/xhtml">

This function takes a number assumed to be in Fahrenheit degrees and returns a number
in kelvin degrees. Callers could use the definition of unit "degree_Fahrenheit" to
attach units to the argument passed to the call to this function.

</notes>
<math xmlns="http://www.w3.org/1998/Math/MathML"

xmlns:sbml="http://www.sbml.org/sbml/level3/version1/core">
<lambda>

<bvar><ci> arg_temp_in_Fahrenheit </ci></bvar>
<apply>

<divide/>
<apply>

<plus/>
<ci> arg_temp_in_fahrenheit </ci>
<cn sbml:units="degree_Fahrenheit"> 459.67</cn>

</apply>
<apply>

<divide/>
<cn sbml:units="degree_Fahrenheit"> 1.8 </cn>
<cn sbml:units="kelvin"> 1 </cn>

</apply>
</apply>

</lambda>
</math>

</functionDefinition>
</listOfFunctionDefinitions>

Figure 29: SBML fragment showing a candidate definition of a function to convert Fahrenheit temperature to kelvin, along
with necessary unit definitions to make the definition complete.

amounts are given in terms of concentrations, and there is at least one reaction in the model referencing such1

a species, then the model will be numerically incomplete if it lacks a value for the size of the compartment2

in which the species is located. The reason is that SBML reactions are expected to be in terms of inten-3

sive properties such as amount/time (or more generally, extent units/time units; see Section 4.11.7), and4

converting from concentration to amount requires knowing the compartment size. Second, models ideally5

should be capable of being instantiated in a variety of simulation frameworks. A commonly-used one is the6

discrete stochastic framework (Gillespie, 1977; Wilkinson, 2006) in which species are represented as item7

counts (e.g., molecule counts). If species’ initial quantities are given in terms of concentrations or densities,8

it is impossible to convert the values to item counts without knowing compartment sizes. Third, if a model9

contains multiple compartments whose sizes are not all identical to each other, it is impossible to quantify10

the reaction rate expressions without knowing the compartment volumes. The reason for the latter is again11

that reaction rates in SBML are defined in terms extent/time, and when species quantities are given in terms12

of concentrations or densities, the compartment sizes usually become factors in the reaction rate expressions.13

Indicating a default compartment14

Some types of models do not use compartments, for example because they factor out volumes completely.15

Since SBML requires at least one compartment to be defined if any species exists in a model, the represen-16

136

tation of models where no compartments are needed sometimes leaves model creators wishing they could1

indicate that a compartment is only a “default” in some sense. The recommended approach to handling2

this situation is to annotate the Compartment object by setting its sboTerm attribute to an appropriate SBO3

term, specifically “SBO:0000410”.4

8.2.3 Rules5

Section 4.9.5 establishes the fact that when AlgebraicRule objects are used, it is possible to produce a model6

that is overdetermined. When a model includes both Event and Reaction objects, it is necessary to analyze7

the set of equations produced from the rules and reactions and the set of equations produces from rules and8

the event assignments of each event. Each set of equations must not be overdetermined. In addition, each9

set of equations must be fully determined if accurate simulation is to be performed.10

The following example illustrates a case where the set of equations is fully determined. First, we present the11

SBML expression of the model:12

<?xml version="1.0" encoding="UTF-8"?>13

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">14

<model id="example" substanceUnits="mole" volumeUnits="litre"15

timeUnits="second" extentUnits="mole">16

<listOfUnitDefinitions>17

<unitDefinition id="conc">18

<listOfUnits>19

<unit kind="mole" multiplier="1" scale="0" exponent="1"/>20

<unit kind="litre" multiplier="1" scale="0" exponent="-1"/>21

</listOfUnits>22

</unitDefinition>23

<unitDefinition id="per_second">24

<listOfUnits>25

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>26

</listOfUnits>27

</unitDefinition>28

</listOfUnitDefinitions>29

<listOfCompartments>30

<compartment id="C" size="1" spatialDimensions="3" constant="true"/>31

</listOfCompartments>32

<listOfSpecies>33

<species id="S1" compartment="C" initialConcentration="1" constant="false"34

boundaryCondition="false" hasOnlySubstanceUnits="false"/>35

<species id="S2" compartment="C" initialConcentration="0" constant="false"36

boundaryCondition="false" hasOnlySubstanceUnits="false"/>37

<species id="S3" compartment="C" initialConcentration="0" constant="false"38

boundaryCondition="false" hasOnlySubstanceUnits="false"/>39

</listOfSpecies>40

<listOfParameters>41

<parameter id="p1" value="1" constant="true" units="conc"/>42

<parameter id="p2" value="1.5" constant="true" units="conc"/>43

</listOfParameters>44

<listOfRules>45

<algebraicRule>46

<math xmlns="http://www.w3.org/1998/Math/MathML">47

<apply> <minus/> <ci> S1 </ci> <ci> S3 </ci> </apply>48

</math>49

</algebraicRule>50

</listOfRules>51

<listOfReactions>52

<reaction id="R" reversible="true" fast="false">53

<listOfReactants>54

<speciesReference species="S1" stoichiometry="1" constant="true"/>55

</listOfReactants>56

<listOfProducts>57

<speciesReference species="S2" stoichiometry="1" constant="true"/>58

</listOfProducts>59

<kineticLaw>60

<math xmlns="http://www.w3.org/1998/Math/MathML">61

<apply> <times/> <ci> C </ci> <ci> k1 </ci> <ci> S1 </ci>62

137

</apply>1

</math>2

<listOfLocalParameters>3

<localParameter id="k1" value="0.1" units="per_second"/>4

</listOfLocalParameters>5

</kineticLaw>6

</reaction>7

</listOfReactions>8

<listOfEvents>9

<event useValuesFromTriggerTime="true">10

<trigger persistent="false" initialValue="true">11

<math xmlns="http://www.w3.org/1998/Math/MathML">12

<apply> <gt/> <ci> S2 </ci> <ci> p1 </ci> </apply>13

</math>14

</trigger>15

<listOfEventAssignments>16

<eventAssignment variable="S1">17

<math xmlns="http://www.w3.org/1998/Math/MathML">18

<ci> p1 </ci>19

</math>20

</eventAssignment>21

<eventAssignment variable="S2">22

<math xmlns="http://www.w3.org/1998/Math/MathML">23

<ci> p2 </ci>24

</math>25

</eventAssignment>26

</listOfEventAssignments>27

</event>28

</listOfEvents>29

</model>30

</sbml>31

There are three species in the model above whose values may vary. The first set of equations to consider is32

the set produced by the Reaction and the AlgebraicRule objects:33

d[S1]

dt
= −C · k1 · [S1]34

d[S2]

dt
= C · k1 · [S1]35

[S1]− [S3] = 036

This set of equations is fully determined, i.e., each of the three variables S1, S2 and S3 are derived from one37

equation. The second set of equations to consider is produced by the Event and the AlgebraicRule objects:38

[S1] = 139

[S2] = 1.540

[S1]− [S3] = 041

Again the set of equations is fully determined, but had the event assignment for species S1 been absent, the42

algebraic rule would produce an ambiguity regarding which variable should be adjusted.43

In this example, as is often the case when an AlgebraicRule has been used, the AlgebraicRule could be replaced44

by an AssignmentRule:45

<assignmentRule variable="S3">46

<math xmlns="http://www.w3.org/1998/Math/MathML">47

<ci> S1 </ci>48

</math>49

</assignmentRule>50

Replacing AlgebraicRule objects with AssignmentRule objects, particularly in models that use events, reduces51

the possibilities for creating either overdetermined or ambiguous models and produces models that can be52

exchanged with greater ease.53

138

8.2.4 Reactions1

Consider a very simple model consisting of a single enzymatic reaction R that converts S1 to S2 for which2

a traditional kinetic law vR is given:3

S1
vR−−→ S24

where5

vR =
vmax · [S1]

KM + [S1]
6

with vR and vmax given in units of concentration per time.7

As mentioned above, when a rate law is presented in the traditional way, it usually embodies (implicitly or8

explicitly) several assumptions: that all species are located in the same compartment, that the compartment9

size does not change, and that the reaction takes place uniformly throughout the volume of the compartment,10

i.e. the enzyme is not localized in any special way. Under these circumstances it is possible to construct rate11

equations for the concentration of the species:12

d[S2]

dt
= −d[S1]

dt
= vR13

In SBML, however, the rate equations are constructed for the rate of change of the amount of the species:14

dnS2

dt
= −dnS1

dt
= v̂R = V · vR15

where v̂R is the modified SBML kinetic law and V is the volume of the compartment. Since the traditional16

kinetic law vR describes how fast the amount of the species changes per volume, the SBML kinetic law v̂R17

simply equals the product of vR and the compartment volume V . This means that the actual rate of change18

of the amounts of the species is proportional to the compartment size, which will only be true if the reaction19

takes place uniformly throughout the compartment. (See Section 7.13 for an example of a reaction that20

is located at the boundary of a compartment.) The concentrations of the species (that are needed in the21

definition of vR) can easily be recovered through the relation [Si] = nSi
/V .22

An important property of the amount rate equation is that it is still valid if the volume V changes during a23

simulation. This is not true for the concentration rate equations.24

8.2.5 Events25

The following recommendations concern Event objects and their subcomponents.26

Undefined ordering27

Section 4.12 describes how to interpret SBML events; however, the explanation explicitly leaves undefined28

how events should be ordered in the absense of priorites attached to the events. This curious omission in29

the specification reflects the state of agreement in biological modeling software today, but at the same time,30

it does not help software developers with the goal of implementing support for SBML events.31

In practice, a variety of simple approaches can satisfy the “undefined ordering” requirement. For example,32

a software system could assign an arbitrary priority value to all events with undefined priorities. Another33

approach is for a simulator to execute the events in whatever order they happen to be stored in the imple-34

mentation of the software. This part of SBML event behavior is left up to developers.35

Regardless of the above, developers should keep in mind that the ordering requirements for events with36

Priority subobjects are defined, including for the case where such events in the model are mixed with events37

having undefined priorities. For example, if a model contains three simultaneously-firing events, one with38

priority 10, one with priority 4, and one with an undefined priority (call it X), there are three valid results39

for an implementation following the combined priority and “undefined ordering” requirements in SBML:40

10-4-X, 10-X-4, and X-10-4. The implementation could always pick the same option among those three (as41

139

would happen if it assigned events with undefined priorities an artificial priority value, as mentioned above),1

or it could pick randomly between the three alternatives on different simulation runs, as it would if it were2

trying to be robustly stochastic. But the simulator should never execute the events in the order 4-10-X, nor3

should it quit unexpectedly. By defining the events in the model in this way, the creator of the model has4

clearly stated that the event with priority 10 should be executed before the event with priority 4, and that5

the event with X must also be executed at some point. Beyond that, nothing more can be said or assumed6

about the modeler’s intention.7

Simultaneous event execution8

Another concern with SBML events is how to implement true “simultaneous” execution of events. A model9

defines the conditions mathematically, but software realizations generally need to use numerical methods;10

the limited precision inherent with numerical methods can result in the system not executing precisely at the11

same time events that are meant to be simultaneous, or conversely, executing simultaneously some events12

that are not meant to be exactly simultaneous. Calculating the time of event execution depends on finding13

the trigger time, because an event’s execution time is the sum (counting from the simulation start time) of14

the trigger time plus any delay in the event. If two events have the same delay but different triggers, they15

should trigger simultaneously if the moment that their trigger expressions transition to “true” is the same.16

In part, the ultimate behavior may depend on how the modeler has written the model, and careful modelers17

will write models that are robust against slight numerical imprecision. For their part, software developers18

can take steps to increase the likelihood that the times at which trigger expressions transition in value19

are all detected equally, by doing such things as caching the calculated times at which embedded boolean20

subexpressions in Trigger formulas switch their truth states. (For example, given two events, one with trigger21

expression [(s1 > 5) and (s2 > 7)] and the other with trigger expression [(s1 > 5) and (s3 > 10)], the time22

at which s1 transitions from less than 5 to greater than 5 can be calculated just once, cached, and reused23

thereafter, thereby helping to mitigate against small timing differences that might occur if the expression24

is reevaluated at different times.) If the trigger times are thus numerically identical, and if they have the25

same delay equation (which should also be cached if need be, for the same reason), they will then execute26

simultaneously, as they were intended to do in the model.27

When creating models containing (e.g.) two events A and B that have different delays, model authors28

should not expect to achieve simultaneous execution simply by arranging for the sum of A’s trigger time29

plus A’s delay to be equal to the sum of B’s trigger time plus B’s delay. It is unlikely that different software30

implementations will resolve the execution times precisely in the same way, so it is unlikely the model will31

behave as the author expected in this scenario.32

140

A Validation and consistency rules for SBML1

This section summarizes all the conditions that must (or in some cases, at least should) be true of a model2

encoded in SBML Level 3 Core format. We use the following conventions in the list of rules that follow:3

• There are different degrees of rule strictness. Formally, the differences are expressed in the statement4

of a rule: either a rule states that a condition must be true, or a rule states that it should be true.5

Rules of the former kind are strict SBML validation rules—a model encoded in SBML must conform6

to all of them in order to be considered valid. Rules of the latter kind are consistency rules. To help7

highlight these differences, we use the following three symbols next to the rule numbers:8

2X A checked box indicates a requirement for SBML conformance. If a model does not follow this9

rule, it does not conform to the SBML specification. (Mnemonic intention behind the choice of10

symbol: “This must be checked.”)11

s A triangle indicates a recommendation for model consistency. If a model does not follow this12

rule, it is not considered strictly invalid as far as the SBML specification is concerned; however,13

it indicates that the model contains a physical or conceptual inconsistency. (Mnemonic intention14

behind the choice of symbol: “This is a cause for warning.”)15

F A star indicates a strong recommendation for good modeling practice. This rule is not strictly16

a matter of SBML encoding, but the recommendation comes from logical reasoning. As in the17

previous case, if a model does not follow this rule, it is not strictly considered an invalid SBML18

encoding. (Mnemonic intention behind the choice of symbol: “You’re a star if you heed this.”)19

• Most rules have existed in previous Levels/Versions of SBML. Note that, because each SBML specifi-20

cation is independent, the precise details of a given rule in this specification may differ slightly from21

its formulation in other Levels/Versions, to reflect changes in SBML Level 3; however, the essential22

purpose of the rule will be the same.23

• Rules that may have been introduced in lower Levels/Versions of SBML sometimes are removed in24

higher Levels/Versions. (This can happen, for example, if they become irrelevant due to changes in the25

language in a higher Level or Version of SBML.) Rule numbers, however, remain unique and are never26

reused for a different purpose. Consequently, there exist gaps in the sequence numbers of the rules.27

• New rules introduced by this SBML Level 3 specification are indicated by an underlined rule number28

(e.g., 10104 instead of 10104).29

General rules concerning basic XML requirements30

10101. 2X An SBML XML file must use UTF-8 as the character encoding. More precisely, the encoding31

attribute of the XML declaration at the beginning of the XML data stream cannot have a value32

other than “UTF-8”. An example valid declaration is <?xml version="1.0" encoding="UTF-8"?>.33

(References: SBML L3V1 Section 4.1.)34

10102. 2X An SBML XML document must not contain undefined elements or attributes in the SBML Level 335

Core namespace or in a SBML Level 3 package namespace. Documents containing unknown36

elements or attributes placed in an SBML namespace do not conform to the SBML specification.37

(References: SBML L3V1 Section 4.1.)38

10104. 2X An SBML document must conform to the rules of XML well-formedness defined in the XML 1.039

specification. These rules define the basic structural and syntactic constraints with which all40

XML documents must comply. (References: SBML L3V1 Section 4.1.)41

General rules for MathML content in SBML42

10201. 2X Wherever MathML content appears in an SBML document, the MathML content must be placed43

within a math element, and that math element must be either explicitly or implicitly declared to44

be in the XML namespace “http://www.w3.org/1998/Math/MathML”. (References: SBML L3V145

Section 3.4.)46

141

10202. 2X The following is a list of the only MathML 2.0 elements permitted in SBML Level 3: abs,1

and, annotation, annotation-xml, apply, arccosh, arccos, arccoth, arccot, arccsch, arccsc,2

arcsech, arcsec, arcsinh, arcsin, arctanh, arctan, bvar, ceiling, ci, cn, cosh, cos, coth,3

cot, csch, csc, csymbol, degree, divide, eq, exponentiale, exp, factorial, false, floor, geq,4

gt, infinity, lambda, leq, ln, logbase, log, lt, minus, neq, notanumber, not, or, otherwise,5

piecewise, piece, pi, plus, power, root, sech, sec, semantics, sep, sinh, sin, tanh, tan, times,6

true, and xor. (References: SBML L3V1 Section 3.4.1.)7

10203. 2X In the SBML subset of MathML 2.0, the MathML attribute encoding is only permitted on8

csymbol, annotation and annotation-xml. No other MathML elements may have an encoding9

attribute. (References: SBML L3V1 Section 3.4.1.)10

10204. 2X In the SBML subset of MathML 2.0, the MathML attribute definitionURL is only permitted on11

ci, csymbol and semantics. No other MathML elements may have a definitionURL attribute.12

(References: SBML L3V1 Section 3.4.1.)13

10205. 2X In SBML Level 3, the only values permitted for the attribute definitionURL on a csymbol are14

“http://www.sbml.org/sbml/symbols/time”, “http://www.sbml.org/sbml/symbols/delay” and15

“http://www.sbml.org/sbml/symbols/avogadro”. (References: SBML L3V1 Section 3.4.6.)16

10206. 2X In the SBML subset of MathML 2.0, the MathML attribute type is only permitted on the cn17

construct. No other MathML elements may have a type attribute. (References: SBML L3V118

Section 3.4.1.)19

10207. 2X The only permitted values for the attribute type on MathML cn elements are “e-notation”,20

“real”, “integer”, and “rational”. (References: SBML L3V1 Section 3.4.2.)21

10208. 2X MathML lambda elements are only permitted as either the first element inside the math element of22

a FunctionDefinition object, or as the first element of a semantics element immediately inside the23

math element of a FunctionDefinition object. MathML lambda elements may not be used elsewhere24

in an SBML model. (References: SBML L3V1 Sections 3.4.1 and 4.3.2.)25

10209. 2X The arguments of the MathML logical operators and, not, or, and xor must evaluate to boolean26

values. (References: SBML L3V1 Section 3.4.9.)27

10210. 2X The arguments to the following MathML constructs must evaluate to numeric values (more specif-28

ically, they must evaluate to MathML real, integer, rational, or “e-notation” numbers, or the time,29

delay or avogadro csymbol elements): abs, arccosh, arccos, arccoth, arccot, arccsch, arccsc,30

arcsech, arcsec, arcsinh, arcsin, arctanh, arctan, ceiling, cosh, cos, coth, cot, csch, csc,31

divide, exp, factorial, floor, ln, log, minus, plus, power, root, sech, sec, sinh, sin, tanh,32

tan, and times. (References: SBML L3V1 Section 3.4.9.)33

10211. 2X The values of all arguments to MathML eq and neq operators must evaluate to the same type,34

either all boolean or all numeric. (References: SBML L3V1 Section 3.4.9.)35

10212. 2X The types of the values within MathML piecewise operators must all be consistent; i.e., the set36

of expressions that make up the first arguments of the piece and otherwise operators within37

the same piecewise operator must all return values of the same type. (References: SBML L3V138

Section 3.4.9.)39

10213. 2X The second argument of a MathML piece operator must evaluate to a boolean value. (References:40

SBML L3V1 Section 3.4.9.)41

10214. 2X Outside of a FunctionDefinition object, if a MathML ci element is the first element within a42

MathML apply element, then the ci element’s value can only be chosen from the set of identifiers43

of FunctionDefinition objects defined in the enclosing SBML Model object. (References: SBML44

L3V1 Section 4.3.2.)45

142

10215. 2X Outside of a FunctionDefinition object, if a MathML ci element is not the first element within a1

MathML apply, then the ci element’s value may only be chosen from the set of identifiers of the2

Species, Compartment, Parameter, SpeciesReference or Reaction objects defined in the enclosing3

Model object. (References: SBML L3V1 Section 3.4.3.)4

10216. 2X The id attribute value of a LocalParameter object defined within a KineticLaw object may only be5

used in MathML ci elements within the math element of that same KineticLaw; in other words,6

the identifier of the LocalParameter object is not visible to other parts of the model outside of7

that KineticLaw instance. (References: SBML L3V1 Sections 3.3.1, 3.4.3 and 4.11.5.)8

10217. 2X The MathML formulas in the following elements must yield numeric values (that is, MathML real,9

integer or “e-notation” numbers, or the time, delay or avogadro csymbol): math in KineticLaw,10

math in InitialAssignment, math in AssignmentRule, math in RateRule, math in AlgebraicRule, math11

in Event Delay, and math in EventAssignment. (References: SBML L3V1 Sections 4.8, 4.9, 4.1112

and 4.12.)13

10218. 2X A MathML operator must be supplied the number of arguments appropriate for that operator.14

(References: SBML L3V1 Section 3.4.1.)15

10219. 2X The number of arguments used in a call to a function defined by a FunctionDefinition object must16

equal the number of arguments accepted by that function, or in other words, must equal the num-17

ber of MathML bvar elements inside the lambda element of the function definition. (References:18

SBML L3V1 Section 4.3.4.)19

10220. 2X The SBML attribute units may only be added to MathML cn elements; no other MathML20

elements are permitted to have the units attribute. (References: SBML L2V3 Section 3.4.2.)21

10221. 2X The value of the SBML attribute units on a MathML cn element must be chosen from either the22

set of identifiers of UnitDefinition objects in the model, or the set of base units defined by SBML.23

(References: SBML L3V1 Section 3.4.2.)24

General rules for identifiers25

10301. 2X The value of the attribute id on every instance of the following classes of objects must be unique26

across the set of all id attribute values of all such objects in a model: Model, FunctionDefinition,27

Compartment, Species, Reaction, SpeciesReference, ModifierSpeciesReference, Event, and Parameter.28

(References: SBML L3V1 Section 3.3.)29

10302. 2X The value of the attribute id of every UnitDefinition object must be unique across the set of all30

the UnitDefinition objects in the entire model. (References: SBML L3V1 Sections 3.3 and 4.4.)31

10303. 2X The value of the attribute id of every LocalParameter object defined within a KineticLaw object32

must be unique across the set of all such parameter definitions within that particular KineticLaw33

instance. (References: SBML L3V1 Sections 3.3.1 and 4.11.5.)34

10304. 2X The value of the attribute variable of every AssignmentRule and RateRule objects must be unique35

across the set of all AssignmentRule and RateRule objects in a model. In other words, a given36

model component cannot be the subject of both an assignment rule and a rate rule simultaneously.37

(References: SBML L3V1 Section 4.9.3.)38

10305. 2X In every Event object, the value of the attribute variable within each EventAssignment subobject39

must be unique across the set of all such EventAssignment subobjects within that particular Event40

object. In other words, a single Event cannot make more than one assignment to the same model41

component. (References: SBML L3V1 4.12.5.)42

10306. 2X An identifier used as the value of the attribute variable of an EventAssignment object cannot43

also appear as the value of the variable attribute in an AssignmentRule object. In other words,44

a given model component cannot be the subject of both an assignment rule and an assignment45

by an event. (References: SBML L3V1 Section 4.12.5.)46

143

10307. 2X Every metaid attribute value must be unique across the set of all metaid values in a model.1

(References: SBML L3V1 Sections 3.2.1 and 3.1.6.)2

10308. 2X The value of the attribute sboTerm must always conform to the syntax of the SBML data type3

SBOTerm, which is a string consisting of the characters ‘S’, ‘B’, ‘O’, ’:’, followed by exactly seven4

digits. (References: SBML L3V1 Section 3.1.11.)5

10309. 2X The value of a metaid attribute must always conform to the syntax of the XML data type ID.6

(References: SBML L3V1 Sections 3.2.1 and 3.1.6.)7

10310. 2X The value of an id attribute must always conform to the syntax of the SBML data type SId.8

(References: SBML L3V1 Section 3.1.7.)9

10311. 2X Unit identifiers (that is, the values of the id attribute on UnitDefinition, the units attribute10

on Compartment, the units attribute on Parameter, the substanceUnits attribute on Species,11

the SBML units attribute on MathML ci elements, and the substanceUnits, volumeUnits,12

areaUnits, lengthUnits, timeUnits and extentUnits on Model) must always conform to the13

syntax of the SBML data type UnitSId. (References: SBML L3V1 Section 3.1.9.)14

10312. 2X The value of a name attribute must always conform to the syntax of type string. (References:15

SBML L3V1 Section 3.1.1.)16

General rules for annotation elements17

10401. 2X Every top-level XML element within an Annotation object must have an XML namespace declared.18

(References: SBML L3V1 Section 3.2.4.)19

10402. 2X A given XML namespace cannot be the namespace of more than one top-level element within a20

given Annotation object. (References: SBML L3V1 Section 3.2.4.)21

10404. 2X A given SBML element may contain at most one Annotation subobject. (References: SBML L3V122

Section 3.2.)23

General rules for units24

10501. s The units of the expressions used as arguments to a function call should match the units expected25

for the arguments of that function. (References: SBML L3V1 Section 3.4.)26

10503. s The unit of measurement associated with the mathematical formula in the MathML math element27

of every KineticLaw object in a model should be identical to all KineticLaw objects in the model.28

(References: SBML L3V1 Section 3.4.)29

10511. s When the value of the attribute variable in an AssignmentRule object refers to a Compartment ob-30

ject, the unit of measurement associated with the mathematical expression in the rule’s MathML31

math element should be consistent with the unit of that compartment’s size. (References: SBML32

L3V1 Section 4.9.3.)33

10512. s When the value of the attribute variable in an AssignmentRule object refers to a Species object,34

the unit of measurement associated with the mathematical expression in the rule’s MathML math35

element should be consistent with the unit of that species’ quantity. (References: SBML L3V136

Section 4.9.3.)37

10513. s When the value of the attribute variable in an AssignmentRule object refers to a Parameter object,38

the unit of measurement associated with the mathematical expression in the rule’s MathML math39

element should be consistent with the unit declared for that parameter’s value. (References:40

SBML L3V1 Section 4.9.3.)41

10514. s When the value of the attribute variable in an AssignmentRule object refers to a SpeciesReference42

object, the unit of measurement associated with the rule’s right-hand side should be consistent43

with the unit of stoichiometry, that is, dimensionless. (References: SBML L3V1 Section 4.9.3.)44

144

10521. s When the value of the attribute variable in an InitialAssignment object refers to a Compartment1

object, the unit of measurement associated with the InitialAssignment’s math expression should be2

consistent with the unit of that compartment’s size. (References: SBML L3V1 Section 4.8.)3

10522. s When the value of the attribute variable in an InitialAssignment object refers to a Species4

object, the unit of measurement associated with the InitialAssignment’s math expression should be5

consistent with the unit of that species’ quantity. (References: SBML L3V1 Section 4.8.)6

10523. s When the value of the attribute variable in an InitialAssignment object refers to a Parameter7

object, the unit of measurement associated with the InitialAssignment’s math expression should8

be consistent with the unit declared for that parameter’s value. (References: L2V2 SBML L3V19

Section 4.8.)10

10524. s When the value of the attribute variable in an InitialAssignment object refers to a SpeciesRef-11

erence object, the unit of measurement associated with the InitialAssignment’s math expression12

should be consistent with the unit of stoichiometry, that is, dimensionless. (References: SBML13

L3V1 Section 4.8.)14

10531. s When the value of the attribute variable in a RateRule object refers to a Compartment object,15

the unit of measurement associated with the RateRule’s math expression should be consistent16

with {unit of compartment size}/{unit of time}. (References: SBML L3V1 Sections 4.5.4, 4.2.417

and 4.9.4.)18

10532. s When the value of the attribute variable in a RateRule object refers to a Species object, the unit19

of measurement associated with the RateRule’s math expression should be consistent with {unit20

of species quantity}/{unit of time}. (References: SBML L3V1 Sections 4.6.5, 4.2.4 and 4.9.4.)21

10533. s When the value of the attribute variable in a RateRule object refers to a Parameter object, the22

unit of measurement associated with the RateRule’s math expression should be consistent with23

{parameter’s units}/{unit of time}. (References: SBML L3V1 Sections 4.7.3, 4.2.4 and 4.9.4.)24

10534. s When the value of the attribute variable in a RateRule object refers to a SpeciesReference object,25

the unit of measurement associated with the RateRule’s math expression should be consistent with26

{unit derived from dimensionless}/{unit of time}. (References: SBML L3V1 Sections 4.11.3,27

4.2.4 and 4.9.4.)28

10541. s In a KineticLaw object, the unit of measurement associated with the formula in the KineticLaw’s29

math expression should be equal to {unit of reaction extent}/{unit of time}. (References: SBML30

L3V1 Sections 4.11.7, 4.2.4 and 4.9.4.)31

10542. s For every Species object produced or consumed in a reaction (that is, referenced by a SpeciesRef-32

erence object), the unit of measurement of the species’ substance should be consistent with the33

unit of extent for the model times the unit of the conversion factor for that species. More precisely,34

the product of the units indicated by the Model object’s extentUnits and the conversionFactor35

attribute for that particular Species (whether the attribute is set directly on the Species object36

or inherited from the enclosing Model object) should be consistent with the unit specified by that37

Species object’s substanceUnits attribute value. (References: SBML L3V1 Section 4.2.6.)38

10551. s In an Event object, the unit of measurement associated with a Delay object’s math expression object39

should be identical to the unit indicated by the Model object’s timeUnits attribute. (References:40

SBML L3V1 Section 4.12.4.)41

10561. s When the value of the attribute variable of an EventAssignment object is the identifier of a42

Compartment object, the unit of measurement associated with the EventAssignment’s math ex-43

pression should be consistent with the unit of that compartment’s size. (References: SBML L3V144

Section 4.12.5.)45

145

10562. s When the value of the attribute variable of an EventAssignment object is the identifier of a1

Species object, the unit of measurement associated with the EventAssignment’s math expression2

should be consistent with the unit of that species’ size. (References: SBML L3V1 Section 4.12.5.)3

10563. s When the value of the attribute variable of an EventAssignment object is the identifier of a4

Parameter object, the unit of measurement associated with the EventAssignment’s math expression5

should be consistent with the unit declared for that parameter’s value. (References: SBML L3V16

Section 4.12.5.)7

10564. s When the value of the attribute variable of an EventAssignment object is the identifier of a8

SpeciesReference object, the unit of measurement associated with the EventAssignment’s math9

expression should be consistent with the unit of stoichiometry, i.e., dimensionless. (References:10

SBML L3V1 Section 4.12.5.)11

10565. s In an Event object, the unit of measurement associated with a Priority object’s math expression12

object should be dimensionless. (References: SBML L3V1 Section 4.12.3.)13

General rules for model definitions14

10601. 2X A system of equations created from an SBML model must not be overdetermined. (References:15

SBML L3V1 Section 4.9.5.)16

General rules for SBO usage17

10701. s The value of the attribute sboTerm on a Model object should be an SBO identifier referring to18

an interaction framework defined in SBO. That is, the value should be a term derived from19

SBO:0000231, “interaction”. (References: SBML L3V1 Section 5.)20

10702. s The value of the attribute sboTerm on a FunctionDefinition object should be an SBO identifier refer-21

ring to a mathematical expression. That is, the value should be a term derived from SBO:0000064,22

“mathematical expression”. (References: SBML L3V1 Section 5.)23

10703. s The value of the attribute sboTerm on a Parameter object should be an SBO identifier referring24

to a quantitative parameter. That is, the value should be a term derived from SBO:0000002,25

“quantitative parameter”. (References: SBML L3V1 Section 5.)26

10704. s The value of the attribute sboTerm on an InitialAssignment object should be an SBO identi-27

fier referring to a mathematical expression. That is, the value should be a term derived from28

SBO:0000064, “mathematical expression”. (References: SBML L3V1 Section 5.)29

10705. s The value of the attribute sboTerm on a AlgebraicRule, RateRule or AssignmentRule object should30

be an SBO identifier referring to a mathematical expression. That is, the value should be a term31

derived from SBO:0000064, “mathematical expression”. (References: SBML L3V1 Section 5.)32

10706. s The value of the attribute sboTerm on a Constraint object should be an SBO identifier referring33

to a mathematical expression. That is, the value should be a term derived from SBO:0000064,34

“mathematical expression”. (References: SBML L3V1 Section 5.)35

10707. s The value of the attribute sboTerm on a Reaction object should be an SBO identifier referring36

to an interaction framework. That is, the value should be a term derived from SBO:0000231,37

“interaction”. (References: SBML L3V1 Section 5.)38

10708. s The value of the attribute sboTerm on a SpeciesReference or a ModifierSpeciesReference object39

should be an SBO identifier referring to a participant role. That is, the value should be a term40

derived from SBO:0000003, “participant role”. The appropriate term depends on whether the41

entity is a reactant, product or modifier. (References: SBML L3V1 Section 5.)42

10709. s The value of the attribute sboTerm on a KineticLaw object should be an SBO identifier referring to43

a rate law. That is, the value should be a term derived from SBO:0000001, “rate law”. (References:44

SBML L3V1 Section 5.)45

146

10710. s The value of the attribute sboTerm on an Event object should be an SBO identifier referring1

to a mathematical expression. That is, the value should be a term derived from SBO:0000231,2

“interaction”. (References: SBML L3V1 Section 5.)3

10711. s The value of the attribute sboTerm on an EventAssignment object should be an SBO identi-4

fier referring to a mathematical expression. That is, the value should be a term derived from5

SBO:0000064, “mathematical expression”. (References: SBML L3V1 Section 5.)6

10712. s The value of the attribute sboTerm on a Compartment object should be an SBO identifier referring7

to a material entity. That is, the value should be a term derived from SBO:0000240, “material8

entity”. (References: SBML L3V1 Section 5.)9

10713. s The value of the attribute sboTerm on a Species object should be an SBO identifier referring to a10

material entity. That is, the value should be a term derived from SBO:0000240, “material entity”.11

(References: SBML L3V1 Section 5.)12

10716. s The value of the attribute sboTerm on a Trigger object should be an SBO identifier referring13

to a mathematical expression. That is, the value should be a term derived from SBO:0000064,14

“mathematical expression”. (References: SBML L3V1 Section 5.)15

10717. s The value of the attribute sboTerm on a Delay object should be an SBO identifier referring to16

a mathematical expression. That is, the value should be a term derived from SBO:0000064,17

“mathematical expression”. (References: SBML L3V1 Section 5.)18

General rules for notes elements19

10801. 2X The contents of a Notes object must be explicitly placed in the XHTML XML namespace. (Ref-20

erences: SBML L3V1 Section 3.2.3.)21

10802. 2X The contents of a Notes object must not contain an XML declaration, i.e., a string of the22

form “<?xml version="1.0" encoding="UTF-8"?>” or similar. (References: SBML L3V1 Sec-23

tion 3.2.3.)24

10803. 2X The content of a Notes object must not contain an XML DOCTYPE declaration, i.e., a string25

beginning with the characters “<!DOCTYPE”. (References: SBML L3V1 Section 3.2.3.)26

10805. 2X A given SBML object may contain at most one Notes subobject. (References: SBML L3V127

Section 3.2.)28

Rules for the <sbml> container element29

20101. 2X The sbml container element must declare the XML Namespace for SBML, and this declaration30

must be consistent with the values of the level and version attributes on the sbml element.31

(References: SBML L3V1 Section 4.1.)32

20102. 2X The sbml container element must declare the SBML Level using the attribute level, and this dec-33

laration must be consistent with the XML Namespace declared for the sbml element. (References:34

SBML L3V1 Section 4.1.)35

20103. 2X The sbml container element must declare the SBML Version using the attribute version, and36

this declaration must be consistent with the XML Namespace declared for the sbml element.37

(References: SBML L3V1 Section 4.1.)38

20104. 2X The sbml container element must declare the XML Namespace for any SBML Level 3 packages39

used within the SBML document. This declaration must be consistent with the values of the40

level and version attributes on the sbml element. (References: SBML L3V1 Section 4.1.2.)41

20105. 2X The attribute level on the sbml container element must have a value of type positiveInteger.42

(References: SBML L3V1 Section 3.1.4.)43

147

20106. 2X The attribute version on the sbml container element must have a value of type positiveInteger.1

(References: SBML L3V1 Section 3.1.4.)2

20107. 2X The attribute xmlns on the sbml container element must have a value of type string. (References:3

SBML L3V1 Section 3.1.1.)4

20108. 2X The sbml object may have the optional attributes metaid and sboTerm. (References: SBML L3V15

Section 4.2.8.)6

Rules for Model components7

20201. 2X An SBML document must contain a Model object. (References: SBML L3V1 Section 4.1).8

20203. 2X The various listOf container objects in a Model instance are optional, but if present, such con-9

tainer elements must not be empty. Specifically, if any of the following is present in a Model, it must10

not be empty: ListOfFunctionDefinitions, ListOfUnitDefinitions, ListOfCompartments, ListOfSpecies,11

ListOfParameters, ListOfInitialAssignments, ListOfRules, ListOfConstraints, ListOfReactions and12

ListOfEvents. (References: SBML L3V1 Section 4.2.)13

20204. 2X If a model defines any Species object, then the model must also define at least one Compartment14

object. This is an implication of the fact that the compartment attribute on Species is not15

optional. (References: SBML L3V1 Section 4.6.3.)16

20205. 2X There may be at most one instance of each of the following kind of object in a Model object:17

ListOfFunctionDefinitions, ListOfUnitDefinitions, ListOfCompartments, ListOfSpecies, ListOfParameters,18

ListOfInitialAssignments, ListOfRules, ListOfConstraints, ListOfReactions and ListOfEvents. (Refer-19

ences: SBML L3V1 Section 4.2.)20

20206. 2X Apart from the general notes and annotation subobjects permitted on all SBML components,21

a ListOfFunctionDefinitions container object may only contain FunctionDefinition objects. (Refer-22

ences: SBML L3V1 Section 4.2.8.)23

20207. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a24

ListOfUnitDefinitions container object may only contain UnitDefinition objects. (References: SBML25

L3V1 Section 4.2.8.)26

20208. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a27

ListOfCompartments container object may only contain Compartment objects. (References: SBML28

L3V1 Section 4.2.8.)29

20209. 2X Apart from the general notes and annotation subobjects permitted on all SBML components,30

a ListOfSpecies container object may only contain Species objects. (References: SBML L3V131

Section 4.2.8.)32

20210. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a33

ListOfParameters container object may only contain Parameter objects. (References: SBML L3V134

Section 4.2.8.)35

20211. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a36

ListOfInitialAssignments container object may only contain InitialAssignment objects. (References:37

SBML L3V1 Section 4.2.8.)38

20212. 2X Apart from the general notes and annotation subobjects permitted on all SBML components,39

a ListOfRules container object may only contain AssignmentRule, AlgebraicRule and/or RateRule40

objects. (References: SBML L3V1 Section 4.2.8.)41

20213. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a42

ListOfConstraints container object may only contain Constraint objects. (References: SBML L3V143

Section 4.2.8.)44

148

20214. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a1

ListOfReactions container object may only contain Reaction objects. (References: SBML L3V12

Section 4.2.8.)3

20215. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a4

ListOfEvents container object may only contain Event objects. (References: SBML L3V1 Sec-5

tion 4.2.8.)6

20216. 2X The value of the attribute conversionFactor on a Model object must be the identifier of an7

existing Parameter object defined in the Model object’s ListOfParameters. (References: SBML8

L3V1 Section 4.2.)9

20217. F The value of the attribute timeUnits on a Model object should be either the units “second”,10

“dimensionless”, or the identifier of a UnitDefinition object based on these units. (References:11

SBML L3V1 Section 4.2.4.)12

20218. F The value of the attribute volumeUnits on a Model object should be either the units “litre”,13

“dimensionless”, or the identifier of a UnitDefinition object based on these units or a unit derived14

from “metre” (with an exponent of “3”). (References: SBML L3V1 Section 4.2.5.)15

20219. F The value of the attribute areaUnits on a Model object should be either “dimensionless” or16

the identifier of a UnitDefinition object based on “dimensionless” or a unit derived from “metre”17

(with an exponent of “2”). (References: SBML L3V1 Section 4.2.5.)18

20220. F The value of the attribute lengthUnits on a Model object should be either the units “metre”,19

“dimensionless”, or the identifier of a UnitDefinition object based on these units. (References:20

SBML L3V1 Section 4.2.5.)21

20221. F The value of the attribute extentUnits on a Model object should be either the units “mole”,22

“item”, “avogadro”, “dimensionless”, “kilogram”, “gram”, or the identifier of a UnitDefinition23

object based on these units. (References: SBML L3V1 Section 4.2.6.)24

20222. 2X A Model object may only have the following attributes, all of which are optional: metaid, sboTerm,25

id, name, substanceUnits, timeUnits, volumeUnits, areaUnits, lengthUnits, extentUnits and26

conversionFactor. No other attributes from the SBML Level 3 Core namespace are permitted27

on a Model object. (References: SBML L3V1 Section 4.2.)28

20223. 2X A ListOfFunctionDefinitions object may have the optional attributes metaid and sboTerm. No other29

attributes from the SBML Level 3 Core namespace are permitted on a ListOfFunctionDefinitions30

object. (References: SBML L3V1 Section 4.2.8.)31

20224. 2X A ListOfUnitDefinitions object may have the optional attributes metaid and sboTerm. No other32

attributes from the SBML Level 3 Core namespace are permitted on a ListOfUnitDefinitions object.33

(References: SBML L3V1 Section 4.2.8.)34

20225. 2X A ListOfCompartments object may have the optional attributes metaid and sboTerm. No other35

attributes from the SBML Level 3 Core namespace are permitted on a ListOfCompartments object.36

(References: SBML L3V1 Section 4.2.8.)37

20226. 2X A ListOfSpecies object may have the optional attributes metaid and sboTerm. No other attributes38

from the SBML Level 3 Core namespace are permitted on a ListOfSpecies object. (References:39

SBML L3V1 Section 4.2.8.)40

20227. 2X A ListOfParameters object may have the optional attributes metaid and sboTerm. No other at-41

tributes from the SBML Level 3 Core namespace are permitted on a ListOfParameters object.42

(References: SBML L3V1 Section 4.2.8.)43

20228. 2X A ListOfInitialAssignments object may have the optional attributes metaid and sboTerm. No other44

attributes from the SBML Level 3 Core namespace are permitted on a ListOfInitialAssignments45

object. (References: SBML L3V1 Section 4.2.8.)46

149

20229. 2X A ListOfRules object may have the optional attributes metaid and sboTerm. No other attributes1

from the SBML Level 3 Core namespace are permitted on a ListOfRules object. (References:2

SBML L3V1 Section 4.2.8.)3

20230. 2X A ListOfConstraints object may have the optional attributes metaid and sboTerm. No other4

attributes from the SBML Level 3 Core namespace are permitted on a ListOfConstraints object.5

(References: SBML L3V1 Section 4.2.8.)6

20231. 2X A ListOfReactions object may have the optional attributes metaid and sboTerm. No other at-7

tributes from the SBML Level 3 Core namespace are permitted on a ListOfReactions object.8

(References: SBML L3V1 Section 4.2.8.)9

20232. 2X A ListOfEvents object may have the optional attributes metaid and sboTerm. No other attributes10

from the SBML Level 3 Core namespace are permitted on a ListOfEvents object. (References:11

SBML L3V1 Section 4.2.8.)12

Rules for FunctionDefinition components13

20301. 2X The top-level element within the MathML math element in a FunctionDefinition object must be ei-14

ther exactly one MathML lambda element, or exactly one MathML semantics element containing15

exactly one lambda element. (References: SBML L3V1 Section 4.3.2.)16

20303. 2X Inside the lambdaMathML element within a FunctionDefinition object, the identifier of that object17

(i.e., value of the FunctionDefinition’s id attribute) cannot appear as the value of a ci element.18

Such usage would entail a recursive function call, but SBML functions are not permitted to be19

recursive. (References: SBML L3V1 Sections 3.4.3 and 4.3.2.)20

20304. 2X Inside the lambda MathML element within a FunctionDefinition object, if a ci element is not the21

first element within a MathML apply, then the ci element’s value may only be an identifier22

provided as the value of a bvar element declared in that lambda. This restriction also applies to23

the csymbol objects for time and avogadro. In other words, all model quantities and variables24

referenced inside a function definition must be passed as arguments to that function. (References:25

SBML L3V1 Sections 3.4.3 and 4.3.2.)26

20305. 2X The type of value returned by a FunctionDefinition object’s math MathML expression must be27

either boolean or numeric. (References: SBML L3V1 Section 3.4.9.)28

20306. 2X A FunctionDefinition object must contain exactly one MathML math element. (References: SBML29

L3V1 Section 4.3.)30

20307. 2X A FunctionDefinition object must have the required attribute id, and may have the optional31

attributes metaid, sboTerm and name. No other attributes from the SBML Level 3 Core namespace32

are permitted on a FunctionDefinition object. (References: SBML L3V1 Section 4.3.)33

Rules for Unit and UnitDefinition components34

20401. 2X The value of the attribute id in a UnitDefinition object must conform to the syntax of the SBML35

data type UnitSId and not be identical to any unit predefined in SBML. That is, the identifier36

must not be the same as any of the following base units: “ampere”, “avogadro”, “becquerel”,37

“candela”, “coulomb”, “dimensionless”, “farad”, “gram”, “gray”, “henry”, “hertz”, “item”,38

“joule”, “katal”, “kelvin”, “kilogram”, “litre”, “lumen”, “lux”, “metre”, “mole”, “newton”,39

“ohm”, “pascal”, “radian”, “second”, “siemens”, “sievert”, “steradian”, “tesla”, “volt”,40

“watt”, or “weber”. (References: SBML L3V1 Section 4.4.2.)41

20410. 2X The value of the attribute kind of a Unit object must conform to the syntax of the SBML42

data type UnitSId and may only take on the value of a base unit defined in SBML; that is,43

the value must be one of the following units: “ampere”, “avogadro”, “becquerel”, “candela”,44

“coulomb”, “dimensionless”, “farad”, “gram”, “gray”, “henry”, “hertz”, “item”, “joule”,45

150

“katal”, “kelvin”, “kilogram”, “litre”, “lumen”, “lux”, “metre”, “mole”, “newton”, “ohm”,1

“pascal”, “radian”, “second”, “siemens”, “sievert”, “steradian”, “tesla”, “volt”, “watt”,2

or “weber”. The SBML unit system is not hierarchical, and user-defined units cannot be defined3

using other user-defined units. (References: SBML L3V1 Section 4.4.2.)4

20413. 2X The ListOfUnits container object in a UnitDefinition object is optional, but if present, it must not5

be empty. (References: SBML L3V1 Section 4.4.)6

20414. 2X There may be at most one ListOfUnits container objects in a UnitDefinition object. (References:7

SBML L3V1 Section 4.4.)8

20415. 2X Apart from the general notes and annotation subobjects permitted on all SBML components,9

a ListOfUnits container object may only contain Unit objects. (References: SBML L3V1 Sec-10

tion 4.2.8.)11

20416. 2X The attribute exponent on a Unit object must have a value of type double. (References: SBML12

L3V1 Section 3.1.5.)13

20417. 2X The attribute scale on a Unit object must have a value of type int. (References: SBML L3V114

Section 3.1.3.)15

20418. 2X The attribute multiplier on a Unit object must have a value of type double. (References: SBML16

L3V1 Section 3.1.5.)17

20419. 2X A UnitDefinition object must have the required attribute id and may have the optional attributes18

metaid, sboTerm and name. No other attributes from the SBML Level 3 Core namespace are19

permitted on a UnitDefinition object. (References: SBML L3V1 Section 4.4.)20

20420. 2X A ListOfUnits object may have the optional attributes metaid and sboTerm. No other attributes21

from the SBML Level 3 Core namespace are permitted on a ListOfUnits object. (References:22

SBML L3V1 Section 4.2.8.)23

20421. 2X A Unit object must have the required attributes kind, exponent, scale and multiplier, and may24

have the optional attributes metaid and sboTerm. No other attributes from the SBML Level 325

Core namespace are permitted on a Unit object. (References: SBML L3V1 Section 4.4.)26

Rules for Compartment components27

20507. F The value of the attribute units on a Compartment object having spatialDimensions of “1”28

should be either “metre”, “dimensionless”, or the identifier of a UnitDefinition object based29

on either metre (with exponent equal to “1”) or dimensionless. (References: SBML L3V130

Section 4.5.4.)31

20508. F The value of the attribute units on a Compartment object having spatialDimensions of “2”32

should be either “dimensionless”, or the identifier of a UnitDefinition object based on either33

metre (with exponent equal to “2”) or dimensionless. (References: SBML L3V1 Section 4.5.4.)34

20509. F The value of the attribute units on a Compartment object having spatialDimensions of “3”35

should be either “litre”, or the identifier of a UnitDefinition object based on either litre, metre36

(with exponent equal to “3”), or dimensionless. (References: SBML L3V1 Section 4.5.4.)37

20511. F If the attribute units on a Compartment object having a spatialDimensions attribute value of38

“1” has not been set, then the unit of measurement associated with the compartment’s size is39

determined by the value of the enclosing Model object’s lengthUnits attribute. If neither the40

Compartment object’s units nor the enclosing Model object’s lengthUnits attributes are set, the41

unit of compartment size is undefined. (References: SBML L3V1 Section 4.5.4.)42

151

20512. F If the attribute units on a Compartment object having a spatialDimensions attribute value1

of “2” has not been set, then the unit of measurement associated with the compartment’s size2

is determined by the value of the enclosing Model object’s areaUnits attribute. If neither the3

Compartment object’s units nor the enclosing Model object’s areaUnits attributes are set, the4

unit of compartment size is undefined. (References: SBML L3V1 Section 4.5.4.)5

20513. F If the attribute units on a Compartment object having a spatialDimensions attribute value of6

“3” has not been set, then the unit of measurement associated with the compartment’s size is7

determined by the value of the enclosing Model object’s volumeUnits attribute. If neither the8

Compartment object’s units nor the enclosing Model object’s volumeUnits attributes are set, the9

unit of compartment size is undefined. (References: SBML L3V1 Section 4.5.4.)10

20514. 2X The attribute spatialDimensions on a Compartment object must have a value of type double.11

(References: SBML L3V1 Section 3.1.5.)12

20515. 2X The attribute size on a Compartment object must have a value of type double. (References:13

SBML L3V1 Section 3.1.5.)14

20516. 2X The attribute constant on a Compartment object must have a value of type boolean. (References:15

SBML L3V1 Section 3.1.2.)16

20517. 2X A Compartment object must have the required attributes id and constant, and may have the op-17

tional attributes metaid, sboTerm, name, spatialDimensions, size and units. No other attributes18

from the SBML Level 3 Core namespace are permitted on a Compartment object. (References:19

SBML L3V1 Section 4.5.)20

20518. F If neither the attribute units nor the attribute spatialDimensions on a Compartment object is21

set, the unit associated with that compartment’s size is undefined.22

Rules for Species components23

20601. 2X The value of the attribute compartment in a Species object must be the identifier of an ex-24

isting Compartment object defined in the enclosing Model object. (References: SBML L3V125

Section 4.6.3.)26

20608. F The value of a Species object’s substanceUnits attribute should only be one of the following:27

“substance”, “mole”, “item”, “gram”, “kilogram”, “dimensionless”, “avogadro” or the iden-28

tifier of a UnitDefinition object derived from “mole” (with an exponent of “1”), “item” (with an29

exponent of “1”), “gram” (with an exponent of “1”), “kilogram” (with an exponent of “1”),30

“avogadro” (with an exponent of “1”) or “dimensionless”. (References: SBML L3V1 Sec-31

tion 4.6.5.)32

20609. 2X A Species object cannot have values for both its initialConcentration and initialAmount at-33

tributes because these attributes are mutually exclusive. (References: SBML L3V1 Section 4.6.4.)34

20610. 2X The quantity of a Species object in a model cannot be determined simultaneously by both re-35

actions and rules. More formally, if the identifier of a Species object having attribute values36

boundaryCondition=“false” and constant=“false” is referenced by a SpeciesReference object37

anywhere in a model, then this identifier cannot also appear as the value of a variable in an38

AssignmentRule or a RateRule object. (References: SBML L3V1 Section 4.6.6.)39

20611. 2X A Species object having a value of “false” for its attribute boundaryCondition cannot appear40

as a reactant or product in any reaction if that Species also has a value of “true” for its attribute41

constant. (References: SBML L3V1 Section 4.6.6.)42

20614. 2X The attribute compartment in Species is mandatory. A Species object in a model must include a43

value for this attribute. (References: SBML L3V1 Section 4.6.3.)44

152

20616. F If the attribute substanceUnits in a Species object has not been set, then the unit of measurement1

associated with the species’ quantity is determined by the value of the enclosing Model object’s2

substanceUnits attribute. If neither the Species object’s substanceUnits attribute nor the3

enclosing Model object’s substanceUnits attribute are set, then the unit of that species’ quantity4

is undefined. (References: SBML L3V1 Section 4.6.5.)5

20617. 2X The value of the attribute conversionFactor on a Species object must be the identifier of an6

existing Parameter object defined in the enclosing Model object. (References: SBML L3V1 Sec-7

tion 4.6.7.)8

20618. 2X The attribute initialAmount on a Species object must have a value of type double. (References:9

SBML L3V1 Section 3.1.5.)10

20619. 2X The attribute initialConcentration on a Species object must have a value of type double.11

(References: SBML L3V1 Section 3.1.5.)12

20620. 2X The attribute hasOnlySubstanceUnits on a Species object must have a value of type boolean.13

(References: SBML L3V1 Section 3.1.2.)14

20621. 2X The attribute boundaryCondition on a Species object must have a value of type boolean. (Ref-15

erences: SBML L3V1 Section 3.1.2.)16

20622. 2X The attribute constant on a Species object must have a value of type boolean. (References:17

SBML L3V1 Section 3.1.2.)18

20623. 2X A Species object must have the required attributes id, compartment, hasOnlySubstanceUnits,19

boundaryCondition and constant, and may have the optional attributes metaid, sboTerm, name,20

initialAmount, initialConcentration, substanceUnits and conversionFactor. No other at-21

tributes from the SBML Level 3 Core namespace are permitted on a Species object. (References:22

SBML L3V1 Section 4.6.)23

Rules for Parameter components24

20701. 2X The units attribute of a Parameter object must be a value chosen from among the following:25

the identifier of a UnitDefinition object in the enclosing Model object, or one of the base units in26

SBML. (References: SBML L3V1 Section 4.7.3.)27

20702. F If the attribute units on a given Parameter object has not been set, then the unit of measurement28

associated with that parameter’s value is undefined. (References: SBML L3V1 Section 4.7.3.)29

20703. 2X The attribute value on a Parameter object must have a value of type double. (References: SBML30

L3V1 Section 3.1.5.)31

20704. 2X The attribute constant on a Parameter object must have a value of type boolean. (References:32

SBML L3V1 Section 3.1.2.)33

20705. 2X A Parameter object referenced by the attribute conversionFactor on a Species or Model object34

must have a value of “true” for its attribute constant. (References: SBML L3V1 Section 4.6.7.)35

20706. 2X A Parameter object must have the required attributes id and constant, and may have the optional36

attributes metaid, sboTerm, name, value and units. No other attributes from the SBML Level 337

Core namespace are permitted on a Parameter object. (References: SBML L3V1 Section 4.7.)38

Rules for InitialAssignment components39

20801. 2X The value of the attribute symbol in an InitialAssignment object must be the identifier of an existing40

Compartment, Species, Parameter or SpeciesReference object defined in the model. (References:41

SBML L3V1 Section 4.8.)42

153

20802. 2X A given identifier cannot appear as the value of more than one InitialAssignment object’s symbol1

attribute across the set of all InitialAssignment objects in a model. (References: SBML L3V12

Section 4.8.)3

20803. 2X The identifier given as the value of the attribute symbol in any InitialAssignment object cannot4

also appear as the value of the variable attribute in an AssignmentRule object. In other words,5

a model cannot simultaneously define both an initial assignment and an assignment rule for the6

same species, compartment or parameter in a model. (References: SBML L3V1 Section 4.8.)7

20804. 2X An InitialAssignment object must contain exactly one MathML math element. (References: SBML8

L3V1 Section 4.8.)9

20805. 2X An InitialAssignment object must have the required attribute symbol and may have the optional10

attributes metaid and sboTerm. No other attributes from the SBML Level 3 Core namespace are11

permitted on an InitialAssignment object. (References: SBML L3V1 Section 4.8.)12

Rules for AssignmentRule, RateRule and AlgebraicRule components13

20901. 2X The value of an AssignmentRule object’s variable attribute must be the identifier of an existing14

Compartment, Species, Parameter or SpeciesReference object defined in the model. (References:15

SBML L3V1 Section 4.9.3.)16

20902. 2X The value of a RateRule object’s variable attribute must be the identifier of an existing Species,17

Compartment, Parameter or SpeciesReference object defined in the model. (References: SBML18

L3V1 Section 4.9.4.)19

20903. 2X Any Compartment, Species, Parameter or SpeciesReference object whose identifier is the value20

of the attribute variable in an AssignmentRule object, must have a value of “false” for its21

constant attribute. (References: SBML L3V1 Section 4.9.3.)22

20904. 2X Any Compartment, Species, Parameter or SpeciesReference object whose identifier is the value23

of the attribute variable in a RateRule object, must have a value of “false” for its constant24

attribute. (References: SBML L3V1 Section 4.9.4.)25

20906. 2X There must not be circular dependencies in the combined set of InitialAssignment, AssignmentRule26

and KineticLaw objects in a model. Each of these constructs has the effect of assigning a value to27

an identifier (i.e., the identifier given in the attribute symbol in InitialAssignment, the attribute28

variable in AssignmentRule, and the attribute id on the KineticLaw’s enclosing Reaction). Each29

of these constructs computes the value using a mathematical formula. The formula for a given30

identifier cannot make reference to a second identifier whose own definition depends directly or31

indirectly on the first identifier. (References: SBML L3V1 Section 4.9.5.)32

20907. 2X Every AssignmentRule, RateRule and AlgebraicRule object must contain exactly one MathML math33

element. (References: SBML L3V1 Section 4.9.)34

20908. 2X An AssignmentRule object must have the required attribute variable and may have the optional35

attributes metaid and sboTerm. No other attributes from the SBML Level 3 Core namespace are36

permitted on an AssignmentRule object. (References: SBML L3V1 Section 4.9.)37

20909. 2X A RateRule object must have the required attribute variable and may have the optional attributes38

metaid and sboTerm. No other attributes from the SBML Level 3 Core namespace are permitted39

on a RateRule object. (References: SBML L3V1 Section 4.9.)40

20910. 2X An AlgebraicRule object may have the optional attributes metaid and sboTerm. No other at-41

tributes from the SBML Level 3 Core namespace are permitted on an AlgebraicRule object.42

(References: SBML L3V1 Section 4.9.)43

154

Rules for Constraint components1

21001. 2X The MathML math element in a Constraint object must evaluate to a value of type boolean.2

(References: SBML L3V1 Section 4.10.)3

21004. 2X The contents of the Message subobject in a Constraint object must not contain an XML declaration4

(i.e., a string of the form “<?xml version="1.0" encoding="UTF-8"?>” or similar). (References:5

SBML L3V1 Section 4.10.2.)6

21005. 2X The contents of the Message subobject in a Constraint object must not contain an XML DOC-7

TYPE declaration (i.e., a string beginning with the characters “<!DOCTYPE”. (References: SBML8

L3V1 Section 4.10.2.)9

21007. 2X A Constraint object must contain exactly one MathML math element. (References: SBML L3V110

Section 4.10.)11

21008. 2X A Constraint object may contain at most one Message subobject. (References: SBML L3V112

Section 4.10.)13

21009. 2X A Constraint object may have the optional attributes metaid and sboTerm. No other attributes14

from the SBML Level 3 Core namespace are permitted on a Constraint object. (References: SBML15

L3V1 Section 4.10.)16

Rules for Reaction components17

21101. 2X A Reaction object must contain at least one SpeciesReference object, either in its listOfReactants18

or its listOfProducts element. A reaction without any reactant or product species is not per-19

mitted, regardless of whether the reaction has any modifier species. (References: SBML L3V120

Section 4.11.3.)21

21103. 2X The following are all optional in a Reaction object, but if any is present, it must not be empty:22

KineticLaw, the elements listOfReactants and listOfProducts (both ListOfSpeciesReferences23

objects) and the element listOfModifiers (a ListOfModifierSpeciesReferences object). (Refer-24

ences: SBML L3V1 Section 4.11.)25

21104. 2X Apart from the general notes and annotation subobjects permitted on all SBML components,26

the ListOfSpeciesReferences container objects (i.e., the Reaction elements listOfReactants and27

listOfProducts) may only contain SpeciesReference objects. (References: SBML L3V1 Sec-28

tion 4.11.)29

21105. 2X Apart from the general notes and annotation subobjects permitted on all SBML components,30

ListOfModifierSpeciesReferences container objects (i.e., the Reaction element listOfModifiers)31

may only contain ModifierSpeciesReference objects. (References: SBML L3V1 Section 4.11.)32

21106. 2X A Reaction object may contain at most one of each of the following elements: listOfReactants,33

listOfProducts, listOfModifiers, and kineticLaw. (References: SBML L3V1 Section 4.11.)34

21107. 2X The value of the attribute compartment in a Reaction object is optional, but if present, must be35

the identifier of an existing Compartment object defined in the model. (References: SBML L3V136

Section 4.11.1.)37

21108. 2X The attribute reversible on a Reaction object must have a value of type boolean. (References:38

SBML L3V1 Section 3.1.2.)39

21109. 2X The attribute fast on a Reaction object must have a value of type boolean. (References: SBML40

L3V1 Section 3.1.2.)41

21110. 2X A Reaction object must have the required attributes id, reversible and fast, and may have42

the optional attributes metaid, sboTerm, name and compartment. No other attributes from the43

SBML Level 3 Core namespace are permitted on a Reaction object. (References: SBML L3V144

Section 4.11.)45

155

21150. 2X A ListOfSpeciesReferences object may have the optional attributes metaid and sboTerm. No other1

attributes from the SBML Level 3 Core namespace are permitted on a ListOfSpeciesReferences2

object. (References: SBML L3V1 Section 4.11.)3

21151. 2X A ListOfModifierSpeciesReferences object may have the optional attributes metaid and sboTerm.4

No other attributes from the SBML Level 3 Core namespace are permitted on an object of class5

ListOfModifierSpeciesReferences. (References: SBML L3V1 Section 4.11.)6

Rules for SpeciesReference and ModifierSpeciesReference components7

21111. 2X The value of a SpeciesReference object’s species attribute must be the identifier of an existing8

Species object in the model. (References: SBML L3V1 Section 4.11.3.)9

21114. 2X The attribute stoichiometry on a SpeciesReference object must have a value of type double.10

(References: SBML L3V1 Section 3.1.5.)11

21115. 2X The attribute constant on a SpeciesReference object must have a value of type boolean. (Ref-12

erences: SBML L3V1 Section 3.1.2.)13

21116. 2X A SpeciesReference object must have the required attributes species and constant, and may14

have the optional attributes metaid, sboTerm, id, name and stoichiometry. No other attributes15

from the SBML Level 3 Core namespace are permitted on a SpeciesReference object. (References:16

SBML L3V1 Section 4.11.)17

21117. 2X A ModifierSpeciesReference object must have the required attribute species and may have the18

optional attributes metaid, sboTerm, id and name. No other attributes from the SBML Level 319

Core namespace are permitted on a ModifierSpeciesReference object. (References: SBML L3V120

Section 4.11.)21

Rules for KineticLaw components22

21121. 2X All Species objects referenced in the MathML math element of a KineticLaw object within a23

given Reaction object must first be declared using SpeciesReference or ModifierSpeciesReference24

objects. In other words, if a Species object identifier appears in a MathML ci element within25

the Reaction’s KineticLaw math content, that same species’ identifier must also appear in at least26

one object of type SpeciesReference or ModifierSpeciesReference within the listOfReactants,27

listOfProducts and/or listOfModifiers elements of the Reaction object. (References: SBML28

L3V1 Section 4.11.5.)29

21123. 2X The ListOfLocalParameters container object in a KineticLaw object is optional, but if present, it30

must not be empty. (References: SBML L3V1 Section 4.11.)31

21127. 2X A KineticLaw object may contain at most one ListOfLocalParameters container object. (References:32

SBML L3V1 Section 4.11.)33

21128. 2X Apart from the general notes and annotation subobjects permitted on all SBML components,34

a ListOfLocalParameters container object may only contain LocalParameter objects. (References:35

SBML L3V1 Section 4.2.8.)36

21129. 2X A ListOfLocalParameters object may have the optional attributes metaid and sboTerm. No other37

attributes from the SBML Level 3 Core namespace are permitted on a ListOfLocalParameters38

object. (References: SBML L3V1 Section 4.11.)39

21130. 2X A KineticLaw object must contain exactly one MathML math element. (References: SBML L3V140

Section 4.11.)41

21132. 2X A KineticLaw object may have the optional attributes metaid and sboTerm. No other attributes42

from the SBML Level 3 Core namespace are permitted on a KineticLaw. (References: SBML L3V143

Section 4.11.)44

156

Rules for LocalParameter components1

21171. 2X The attribute value on a LocalParameter object must have a value of type double. (References:2

SBML L3V1 Section 3.1.5.)3

21172. 2X A LocalParameter object must have the required attribute id and may have the optional attributes4

metaid, sboTerm, name, value and units. No other attributes from the SBML Level 3 Core5

namespace are permitted on a LocalParameter object. (References: SBML L3V1 Section 4.11.)6

Rules for Event components7

21201. 2X An Event object must contain exactly one Trigger object. (References: SBML L3V1 Section 4.12.2.)8

21202. 2X The MathML math element of a Trigger object must evaluate to a value of type boolean. (Refer-9

ences: SBML L3V1 Section 4.12.2.)10

21203. 2X The ListOfEventAssignments container object in an Event object is optional, but if present, it must11

not be empty. (References: SBML L3V1 Section 4.12.)12

21208. 2X The attribute useValuesFromTriggerTime on an Event object must have a value of type boolean.13

(References: SBML L3V1 Section 3.1.2.)14

21209. 2X A Trigger object must contain exactly one MathML math element. (References: SBML L3V115

Section 4.12.)16

21210. 2X A Delay object must contain exactly one MathML math element. (References: SBML L3V117

Section 4.12.)18

21221. 2X An Event object may contain at most one Delay object. (References: SBML L3V1 Section 4.12.)19

21222. 2X An Event object may contain at most one ListOfEventAssignments object. (References: SBML20

L3V1 Section 4.12.)21

21223. 2X Apart from the general notes and annotation subobjects permitted on all SBML components, a22

ListOfEventAssignments container object may only contain EventAssignment objects. (References:23

SBML L3V1 Section 4.12.5.)24

21224. 2X A ListOfEventAssignments object may have the optional attributes metaid and sboTerm. No other25

attributes from the SBML Level 3 Core namespace are permitted on a ListOfEventAssignments26

object. (References: SBML L3V1 Section 4.12.5.)27

21225. 2X An Event object must have the required attribute useValuesFromTriggerTime, and in addition,28

may have the optional attributes metaid, sboTerm, id, and name. No other attributes from the29

SBML Level 3 Core namespace are permitted on an Event object. (References: SBML L3V130

Section 4.12.)31

21226. 2X A Trigger object must have the required attributes persistent and initialValue, and in addition,32

may have the optional attributes metaid and sboTerm. No other attributes from the SBML Level 333

Core namespace are permitted on a Trigger object. (References: SBML L3V1 Section 4.12.)34

21227. 2X A Delay object may have the optional attributes metaid and sboTerm. No other attributes from35

the SBML Level 3 Core namespace are permitted on a Delay object. (References: SBML L3V136

Section 4.12.)37

21228. 2X The attribute persistent on an Trigger object must have a value of type boolean. (References:38

SBML L3V1 Section 3.1.2.)39

21229. 2X The attribute initialValue on a Trigger object must have a value of type boolean. (References:40

SBML L3V1 Section 3.1.2.)41

21230. 2X An Event object may contain at most one Priority object. (References: SBML L3V1 Section 4.12.)42

157

21231. 2X A Priority object must contain exactly one MathML math element. (References: SBML L3V11

Section 4.12.)2

21232. 2X A Priority object may have the optional attributes metaid and sboTerm. No other attributes from3

the SBML Level 3 Core namespace are permitted on a Priority object. (References: SBML L3V14

Section 4.12.)5

Rules for EventAssignment components6

21211. 2X The value of the attribute variable in an EventAssignment object may only be the identifier of an7

existing Compartment, Species, Parameter or SpeciesReference object in the model. (References:8

SBML L3V1 Section 4.12.5.)9

21212. 2X Any Compartment, Species, Parameter or SpeciesReference object whose identifier is used as the10

value of the attribute variable of an EventAssignment object, must have a value of “false” for11

its constant attribute. (References: SBML L3V1 Section 4.12.5.)12

21213. 2X An EventAssignment object must contain exactly one MathML math element. (References: SBML13

L3V1 Section 4.12.)14

21214. 2X An EventAssignment object must have the required attribute variable and may have the optional15

attributes metaid and sboTerm. No other attributes from the SBML Level 3 Core namespace are16

permitted on an EventAssignment object. (References: SBML L3V1 Section 4.12.)17

158

B A method for assessing whether an SBML model is overdetermined1

As explained in Section 4.9.5, an SBML model must not be overdetermined. It is possible to use purely static2

analysis to assess this condition for the system of equations implied by a model, by constructing a bipartite3

graph of the model’s variables and equations and then searching for a maximal matching (Chartrand, 1977).4

An efficient algorithm for finding a maximal matching is described by Hopcroft and Karp (1973). In this5

appendix, we provide a concrete application to SBML of the general approach described in Section 4.9.5.6

The approach is defined in terms of the ordinary differential equations (ODEs) implied by an SBML model;7

despite our use of a differential equation framework for this explanation, it should be understood that this8

use of ODEs has no implication about the framework actually used to simulate the model.9

Definition of the method10

First, we assume that an ODE is constructed for each species determined by one or more Reaction’s KineticLaw11

math expressions. We also assume that the model has already been determined to be valid in all other12

respects (e.g., there are no undefined variables in the equations), and what remains is to evaluate whether13

it is overdetermined.14

We construct the bipartite graph for a given SBML model as follows:15

1. For each of the following in the model, create one vertex representing an equation:16

(a) Every Species object having boundaryCondition=“false”, constant=“false”, and which is17

referenced as a reactant or product in one or more Reaction objects containing KineticLaw objects18

(b) Every AssignmentRule object19

(c) Every RateRule object20

(d) Every AlgebraicRule object21

(e) Every KineticLaw object22

2. For each of the following in the model, create one vertex representing a variable:23

(a) Every Species object having constant=“false”24

(b) Every Compartment object having constant=“false”25

(c) Every global Parameter having constant=“false”26

(d) Every SpeciesReference object having constant=“false”27

(e) Every Reaction object28

3. For each of the following, create one edge:29

(a) Every vertex created in step 2(a) to that species’ equation vertex created in step 1(a)30

(b) Every vertex created in step 1(b) to the particular vertex created in steps 2(a)–2(e) that represents31

the variable referenced by the variable attribute of the rule32

(c) Every vertex created in step 1(c) to the particular vertex created in steps 2(a)–2(e) that represents33

the variable referenced by the variable attribute of the rule34

(d) Every vertex created in step 1(e) to the particular vertex created in step 2(e) that is the Reaction35

object containing that particular KineticLaw object36

(e) Every vertex created in steps 2(a)–2(e) representing an identifier appearing as the content of a37

MathML ci element within an expression of an AlgebraicRule, to the vertex for that particular38

AlgebraicRule created in step 1(d)39

159

Example application of the method1

What follows is an example of applying the method above to the SBML model shown below:2

<?xml version="1.0" encoding="UTF-8"?>3

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">4

<model id="example" substanceUnits="mole" volumeUnits="litre"5

timeUnits="second" extentUnits="mole">6

<listOfUnitDefinitions>7

<unitDefinition id="per_time">8

<listOfUnits>9

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>10

</listOfUnits>11

</unitDefinition>12

</listOfUnitDefinitions>13

<listOfCompartments>14

<compartment id="C" size="1" spatialDimensions="3" constant="true"/>15

</listOfCompartments>16

<listOfSpecies>17

<species id="S1" compartment="C" initialConcentration="1" constant="false"18

boundaryCondition="false" hasOnlySubstanceUnits="false"/>19

<species id="S2" compartment="C" initialConcentration="0" constant="false"20

boundaryCondition="false" hasOnlySubstanceUnits="false"/>21

</listOfSpecies>22

<listOfRules>23

<algebraicRule>24

<math xmlns="http://www.w3.org/1998/Math/MathML">25

<apply>26

<minus/>27

<apply> <plus/> <ci> S1 </ci> <ci> S2 </ci> </apply>28

<cn> 5 </cn>29

</apply>30

</math>31

</algebraicRule>32

</listOfRules>33

<listOfReactions>34

<reaction id="R" reversible="false" fast="false">35

<listOfReactants>36

<speciesReference species="S1" stoichiometry="1" constant="true"/>37

</listOfReactants>38

<listOfProducts>39

<speciesReference species="S2" stoichiometry="1" constant="true"/>40

</listOfProducts>41

<kineticLaw>42

<math xmlns="http://www.w3.org/1998/Math/MathML">43

<apply> <times/> <ci> C </ci> <ci> k1 </ci> <ci> S1 </ci> </apply>44

</math>45

<listOfLocalParameters>46

<localParameter id="k1" value="0.1" units="per_time"/>47

</listOfLocalParameters>48

</kineticLaw>49

</reaction>50

</listOfReactions>51

</model>52

</sbml>53

For the model above, we create equation vertices as follows:54

1. [Corresponding to step 1(a) in Section B.] Every Species object having boundaryCondition=“ false”,55

constant=“ false”, and which is referenced as a reactant or product in one or more Reaction objects56

containing KineticLaw objects. This generates two vertices, for “S1” and “S2”.57

2. [Corresponding to step 1(b) in Section B.] Every AlgebraicRule object. This generates one vertex, for58

the model’s lone algebraic rule (call it “rule”).59

3. [Corresponding to step 1(e) in Section B.] Every KineticLaw object. This generates one vertex, for the60

lone kinetic law in the model (call it “law”).61

160

We create variable vertices for the following:1

1. [Corresponding to step 2(a) in Section B.] Every Species object having constant=“ false”. This2

generates two vertices, for “S1” and “S2”.3

2. [Corresponding to step 2(e) in Section B.] Every Reaction object. This generates one vertex, for “R”.4

Note that it is not necessary to include parameters declared within KineticLaw objects because they are local5

to a particular reaction and cannot be affected by rules. With the steps above, we have the following set of6

graph nodes:7

Vertices for equations8

S1 S2 rule law

S1 S2 R
9

Vertices for variables10

Next, we create edges following the procedure described above. Doing so results in the following graph:11

Vertices for equations12

S1 S2 rule law

S1 S2 R
13

Vertices for variables14

The algorithm of Hopcroft and Karp (1973) can now be applied to search for a maximal matching of the15

bipartite graph. A maximal matching is a graph in which each vertex is connected to at most one other16

vertex and the maximum possible number of connections have been made. Doing so here results in the17

following:18

Vertices for equations19

S1 S2 rule law

S1 S2 R
20

Vertices for variables21

If the maximal matching of the bipartite graph leaves any equation vertex unconnected, then the model is22

considered overdetermined. That is the case for the example shown here, because the equation vertex for23

“rule” is unconnected in the maximal matching.24

161

C Mathematical consequences of the fast attribute on Reaction1

(Appendix contributed by James C. Schaff, University of Connecticut Health Center, Connecticut, U.S.A.)2

Section 4.11.1 described the fast flag available on Reaction. In this appendix, we discuss the principles3

involved in interpreting this attribute in the context of a simple biochemical reaction model. The derivation4

presented here is not fully rigorous and this section is not considered normative; achieving a higher level of5

rigor would require considerably more background exposition and a much longer appendix. Nevertheless, we6

hope this section is sufficient to answer unambiguously the question “How should a system of reactions be7

treated if some of the reactions have fast=true?”8

Identification of “fast” reactions9

First, it is worth noting that the identification of so-called fast reactions is actually a modeling issue, not an10

SBML representation issue. The notion of fast reactions is the following. A system may be decomposable11

into two sets of reactions, where one set may have characteristic times that are much faster than the other12

time scales in the system. An approximation that is sometimes useful is to assume that the fast reactions13

have kinetics that settle infinitely fast compared to the other reactions in the system. In other words, the14

fast reactions are assumed to be always in equilibrium. This is called a pseudo-steady state approximation15

(PSSA), and is also known as a quasi-steady state approximation (QSSA). Given a case where the time-scale16

separation between fast and other reactions in the system is large, an accurate and efficient approach for17

computing the time-course of the system behavior is to treat the fast reactions as being always in equilibrium.18

The key to successful application of a PSSA is that there should be a significant separation of time scales19

between these fast reactions and other reactions in the system. The determination of which reactions qualify20

as fast is up to the creator of the model, because there is currently no known general algorithm for doing so.21

Simple one-compartment biochemical system model22

To explain how to solve a system containing fast reactions, we use a simple model of a biochemical reaction23

network located in a single compartment. Let x∗ represent a vector of all the species in the system, v∗ a24

vector of the reaction rates, and A∗ the stoichiometry matrix, with the vector dimension being n∗. Then25

the system can be described using the following matrix equation:26

dx∗

dt
= A∗ v∗(x∗)27

This system can be optionally reduced by noting that mass conservation usually implies there are linear28

combinations of species quantities in the system and the value of these combinations do not change over time.29

Identifying these combinations is the topic of structural analysis and is described in the literature (Reder,30

1988; Sauro and Ingalls, 2003). Briefly, let N be defined as the left null space of A∗:31

NA∗ = 032

Now, premultiply the previous equation by N to get33

N
dx∗

dt
= NA∗v∗(x∗) = 034

Thus, N captures the space of solutions to the equation35

mT

(
dx∗

dt

)
= 036

where m is a vector representing the coefficients in a mass conservation relationship, that is, combinations37

of species that are time-invariant. Now, let38

r = rank(A∗)39

n = dim(x∗)40
41

162

Then the system has n− r mass conservation relationships, each of which is a linear equation. We can use1

these n − r linear equations to solve for n − r dependent variables in terms of r independent variables and2

the initial masses of all species. Doing that allows us to decompose x∗ into n − r dependent variables xd3

and r independent variables xi where L is an (n − r) × r matrix that is derived from N and represents xd4

in terms of xi, I is the r × r identity matrix, and T is an n× r matrix:5

x∗ ≡
[
xi

xd

]
=

[
I
L

]
xi = Txi6

Using this equation, we can define a new vector of reaction velocities v in terms of xi only:7

v(xi) ≡ v∗(Txi)8

With this v, we can now write a reduced system by substituting terms. First we define A as the r independent9

rows of A∗corresponding to xi. Then:10

dxi

dt
= Av(xi)11

This is a set of r independent differential equations in r unknowns (i.e., an r-dimensional system). To12

simplify the notation slightly, let13

x ≡ xi14

and, thus,15

dx

dt
= Av(x)16

Application of a PSSA to biochemical systems17

Assume that we have eliminated redundant variables and equations using the mass conservation analysis18

above. Further assume that we have some external means of classifying some reactions in a given system19

as being fast as discussed earlier. We now need to apply this to the system under study. We begin by20

decomposing the vector of reaction velocities v according to fast and slow reactions:21

dx

dt
= A1vf (x) + A2vs(x)22

In the expression above, A1 represents the stoichiometry of the set of reactions operating on the fast time23

scale, and A2 the stoichiometry of the set of reactions operating on a slower time scale. We find the left null24

space of A1 (i.e., the space of solutions to mT [dx/dt] = 0 on a fast time scale), and call this matrix B:25

BA1 = 026

The matrix B represents the linear combination of species that do not change on a fast time scale, i.e., the27

slow species in the system. Now, we premultiply the equation for dx/dt by B:28

B
dx

dt
= BA1vf (x) + BA2vs(x)29

= BA2vs(x)30
31

where the second line follows from the fact that BA1 = 0. The above is an ordinary differential equation in32

terms of only the slow dynamics. The remaining fast dynamics are handled by applying the pseudo-steady33

state approximation, with fast transients assumed to have settled with respect to the slow time scale. This34

produces a system of nonlinear algebraic equations:35

A1vf = 036

The last two equations form the system of equations resulting from the application of the PSSA. If r1 =37

rank(A1) and r = rank(A), then there will be r1 degrees of freedom that will be determined by solving an38

algebraic system (the equation A1vf = 0 above), and there will be r − r1 degrees of freedom that will be39

determined by ordinary differential equations (the equation for B dx/dt).40

163

Acknowledgments1

The development of SBML was originally funded by the Japan Science and Technology Agency (JST) under2

the ERATO Kitano Symbiotic Systems Project during the years 2000–2003. From 2003 to the present,3

funding for development of SBML and associated software such as libSBML and the SBML Test Suite4

has been provided chiefly by the National Institute of General Medical Sciences (USA) via grant numbers5

GM070923 and GM077671. Additional grant funding has in the past been provided by National Human6

Genome Research Institute (USA); the International Joint Research Program of NEDO (Japan); the JST7

ERATO-SORST Program (Japan); the Japanese Ministry of Agriculture; the Japanese Ministry of Educa-8

tion, Culture, Sports, Science and Technology; the BBSRC e-Science Initiative (UK); the DARPA IPTO9

Bio-Computation Program (USA); the Army Research Office’s Institute for Collaborative Biotechnologies10

(USA); and the Air Force Office of Scientific Research (USA).11

Additional support has been or continues to be provided by the following institutions, either directly for12

activities related to SBML or indirectly by supporting the work of present and past SBML Editors: the13

Beckman Institute at the California Institute of Technology (USA), EML Research gGmbH (Germany), the14

University of Heidelberg (Germany), the European Molecular Biology Laboratory’s European Bioinformatics15

Institute (UK), the Molecular Sciences Institute (USA), the University of Hertfordshire (UK), the University16

of Newcastle (UK), the Systems Biology Institute (Japan), and the Virginia Bioinformatics Institute (USA).17

The following individuals served as past SBML Editors and authors of SBML specifications. Their efforts18

helped shape what SBML is today:19

• Hamid Bolouri20

• Andrew M. Finney21

• Nicolas Le Novère22

• Herbert M. Sauro23

SBML was first conceived at the JST/ERATO-sponsored First Workshop on Software Platforms for Systems24

Biology, held in April, 2000, at the California Institute of Technology in Pasadena, California, USA. The25

participants collectively decided to begin developing a common XML-based declarative language for repre-26

senting models. The development and evolution of the Systems Biology Markup Language has continued ever27

since. Many discussions are archived online in the mailing list/forums area of http://sbml.org; many more28

discussions took place during meetings and workshops (a list of which is also available at http://sbml.org).29

SBML Level 3 has benefitted from so many contributions, large and small, by so many people who constitute30

the international SBML Forum, that we regret it has become infeasible to list individuals by name. We thank31

everyone who has participated in SBML’s development throughout the years, and we hope that this latest32

specification before you is a good step forward in SBML’s continued evolution.33

164

http://sbml.org/Forums
http://sbml.org/Events

References1

Abramowitz, M. and Stegun, I. A., editors (1977). Mathematical Functions: With Formulas, Graphs, and2

Mathematical Tables. Dover Publications Inc.3

Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, S., Diaz, A., Froumentin, M., Hunter, R., Ion,4

P., Kohlhase, M., Miner, R., Poppelier, N., Smith, B., Soiffer, N., Sutor, R., and Watt, S. (2003). Math-5

ematical Markup Language (MathML) Version 2.0 (second edition): W3C Recommendation 21 October6

2003. Available via the World Wide Web at http://www.w3.org/TR/2003/REC-MathML2-20031021/.7

Ball, K., Kurtz, T. G., Popovic, L., and Rempala, G. (2006). Asymptotic analysis of multiscale approxima-8

tions to reaction networks. Annals of Applied Probability, 16(4):1925–1961.9

Biron, P. V. and Malhotra, A. (2000). XML Schema part 2: Datatypes (W3C candidate recommendation10

24 October 2000). Available via the World Wide Web at http://www.w3.org/TR/xmlschema-2/.11

Bray, T., D. Hollander, D., and Layman, A. (1999). Namespaces in XML. W3C 14-January-1999. Available12

via the World Wide Web at http://www.w3.org/TR/1999/REC-xml-names-19990114/.13

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. (2004). Extensible markup14

language (XML) 1.0 (third edition), W3C recommendation 4-February-2004. Available via the World15

Wide Web at http://www.w3.org/TR/2004/REC-xml-20040204.16

Bureau International des Poids et Mesures (2006). The International System of Units (SI) 8th edition (2006).17

Available via the World Wide Web at http://www.bipm.org/utils/common/pdf/si_brochure_8.pdf.18

Chartrand, G. (1977). Introductory Graph Theory. Dover Publishing, Inc., New York.19

DCMI Usage Board (2005). DCMI Metadata Terms. Available online via the World Wide Web at the20

address http://www.dublincore.org/documents/dcmi-terms/.21

Dublin Core Metadata Initiative (2005). Dublin Core metadata initiative. Available via the World Wide22

Web at http://dublincore.org/.23

Eriksson, H.-E. and Penker, M. (1998). UML Toolkit. John Wiley & Sons, New York.24

Evans, T. W., Gillespie, C. S., and Wilkinson, D. J. (2008). The SBML discrete stochastic models test suite.25

Bioinformatics, 24:285–286.26

Fallside, D. C. (2000). XML Schema part 0: Primer (W3C candidate recommendation 24 October 2000).27

Available via the World Wide Web at http://www.w3.org/TR/xmlschema-0/.28

Gillespie, D. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81:2340–29

2361.30

Gillespie, D. (1992). A rigorous derivation of the chemical master equation. Physica A, 188:404–425.31

Harold, E. R. and Means, E. S. (2001). XML in a Nutshell. O’Reilly & Associates.32

Hedley, W. J., Nelson, M. R., Bullivant, D., Cuellar, A., Ge, Y., Grehlinger, M., Jim, K., Lett, S., Nickerson,33

D., Nielsen, P., and Yu, H. (2001). CellML specification. Available online via the World Wide Web at34

http://www.cellml.org/specification.35

Hopcroft, J. E. and Karp, R. M. (1973). An n5/2 algorithm for maximum matchings in bipartite graphs.36

SIAM Journal on Computing, 2(4):225–231.37

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2001). Systems Biology Markup Language (SBML)38

Level 1: Structures and facilities for basic model definitions. Available via the World Wide Web at39

http://www.sbml.org/Documents/Specifications.40

165

http://www.w3.org/TR/2003/REC-MathML2-20031021/.
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.bipm.org/utils/common/pdf/si_brochure_8.pdf
http://www.dublincore.org/documents/dcmi-terms/
http://dublincore.org/
http://www.w3.org/TR/xmlschema-0/
http://www.cellml.org/specification
http://www.sbml.org/Documents/Specifications

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J.,1

Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I.,2

Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling, A.,3

Kummer, U., Le Novère, N., Loew, L. M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama,4

Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence,5

H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., and Wang, J. (2003). The Systems Biology6

Markup Language (SBML): A medium for representation and exchange of biochemical network models.7

Bioinformatics, 19(4):524–531.8

Iannella, R. (2001). Representing vCard objects in RDF/XML. Available via the World Wide Web at9

http://www.w3.org/TR/vcard-rdf.10

Jacobs, I. (2004). World Wide Web Consortium process document. Available via the World Wide Web at11

http://www.w3.org/2004/02/Process-20040205/.12

Kokkelink, S. and Schwänzl, R. (2002). Expressing qualified Dublin Core in RDF/XML. Available via the13

World Wide Web at http://dublincore.org/documents/dcq-rdf-xml/index.shtml.14

Lassila, O. and Swick, R. (1999). Resource description framework (RDF) model and syntax specification.15

Available via the World Wide Web at http://www.w3.org/TR/REC-rdf-syntax/.16

Le Novère, N., Finney, A., Hucka, M., Bhalla, U., Campagne, F., Collado-Vides, J., Crampin, E. J., Halstead,17

M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B., Snoep, J. L., Spence, H. D., and Wanner,18

B. L. (2005). Minimum information requested in the annotation of biochemical models (MIRIAM). Nature19

Biotechnology, 23:1509–1515.20

Mohr, P. J., Taylor, B. N., and Newell, D. B. (2008). CODATA Recommended Values of the Fundamental21

Physical Constants: 2006. Reviews of Modern Physics, 80:633–731.22

Oestereich, B. (1999). Developing Software with UML: Object-Oriented Analysis and Design in Practice.23

Addison-Wesley Publishing Company.24

Pemberton, S., Austin, D., Axelsson, J., Celik, T., Dominiak, D., Elenbaas, H., Epperson, B., Ishikawa, M.,25

Matsui, S., McCarron, S., Navarro, Peruvemba, S., Relyea, R., Schnitzenbaumer, S., and Stark, P. (2002).26

XHTML
TM

1.0 the Extensible HyperText Markup Language (second edition): W3C Recommendation 2627

January 2000, revised 1 August 2002. Available via the World Wide Web at http://www.w3.org/TR/28

xhtml1/.29

Powell, A. and Johnston, P. (2003). Guidelines for implementing Dublin Core in XML. Available via the30

World Wide Web at http://dublincore.org/documents/dc-xml-guidelines/index.shtml.31

Reder, C. (1988). Metabolic Control Theory: a structural approach. Journal of Theoretical Biology, 135:175–32

201.33

Sauro, H. M. and Ingalls, B. (2003). Conservation analysis in biochemical networks: Computational issues34

for software writers. Available at http://www.math.uwaterloo.ca/˜bingalls/Pubs/conservation.pdf.35

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2000). XML Schema part 1: Structures36

(W3C candidate recommendation 24 October 2000). Available online via the World Wide Web at the37

address http://www.w3.org/TR/xmlschema-1/.38

Unicode Consortium (1996). The Unicode Standard, Version 2.0. Addison-Wesley Developers Press, Reading,39

Massachusetts.40

W3C (2000a). Naming and addressing: URIs, URLs, Available online via the World Wide Web at41

http://www.w3.org/Addressing/.42

W3C (2000b). W3C’s math home page. Available via the World Wide Web at http://www.w3.org/Math/.43

166

http://www.w3.org/TR/vcard-rdf
http://www.w3.org/2004/02/Process-20040205/
http://dublincore.org/documents/dcq-rdf-xml/index.shtml
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://dublincore.org/documents/dc-xml-guidelines/index.shtml
http://www.math.uwaterloo.ca/~bingalls/Pubs/conservation.pdf
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/Addressing/
http://www.w3.org/Math/

W3C (2004a). RDF/XML syntax specification (revised). Available online via the World Wide Web at1

http://www.w3.org/TR/rdf-syntax-grammar/.2

W3C (2004b). Resource description framework (RDF). Available online via the World Wide Web at the3

address http://www.w3.org/RDF/.4

Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. Chapman & Hall/CRC.5

Wolf, M. and Wicksteed, C. (1998). Date and time formats. Available online via the World Wide Web at6

http://www.w3.org/TR/NOTE-datetime.7

Zwillinger, D., editor (1996). Standard Mathematical Tables and Formulae. CRC Press LLC, 30th edition.8

167

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/RDF/
http://www.w3.org/TR/NOTE-datetime

	1 Introduction
	1.1 Developments, discussions, and notifications of updates
	1.2 SBML Levels, Versions, and Releases
	1.3 SBML Level 3 Packages
	1.4 Document conventions

	2 Overview of SBML
	3 Preliminary definitions and principles
	3.1 Primitive data types
	3.2 Type SBase
	3.3 The id and name attributes on SBML components
	3.4 Mathematical formulas in SBML Level 3

	4 SBML components
	4.1 The SBML container
	4.2 Model
	4.3 Function definitions
	4.4 Unit definitions
	4.5 Compartments
	4.6 Species
	4.7 Parameters
	4.8 Initial assignments
	4.9 Rules
	4.10 Constraints
	4.11 Reactions
	4.12 Events

	5 The Systems Biology Ontology and the sboTerm attribute
	5.1 Principles
	5.2 Using SBO and sboTerm
	5.3 Relationships to the SBML annotation element
	5.4 Discussion

	6 A standard format for the annotation element
	6.1 Motivation
	6.2 XML namespaces in the standard annotation
	6.3 General syntax for the standard annotation
	6.4 Use of URIs
	6.5 Relation elements
	6.6 History
	6.7 Examples

	7 Example models expressed in XML using SBML
	7.1 A simple example application of SBML
	7.2 A simple example using the conversionFactor attribute
	7.3 An alternative formulation of the conversionFactor example
	7.4 Example of a discrete version of a simple dimerization reaction
	7.5 Example involving assignment rules
	7.6 Example involving algebraic rules
	7.7 Example with combinations of boundaryCondition and constant values on Species with RateRule objects
	7.8 Example of translation from a multi-compartmental model to ODEs
	7.9 Example involving function definitions
	7.10 Example involving delay functions
	7.11 Example involving events
	7.12 Example involving two-dimensional compartments
	7.13 Example of a reaction located at a membrane
	7.14 Example using an event with a non-persistent trigger and a delay

	8 Recommended practices
	8.1 Recommended practices concerning common SBML attributes and objects
	8.2 Recommended practices concerning specific SBML components

	A Validation and consistency rules for SBML
	B A method for assessing whether an SBML model is overdetermined
	C Mathematical consequences of the fast attribute on Reaction
	Acknowledgments
	References

