Volume Title

ASP Conference Series, Vol. **Volume Number**
Author

© **Copyright Year** Astronomical Society of the Pacific

Organizing community-based data standards: lessons from
developing a successful open standard in systems biology

Michael Hucka

Department of Computing and Mathematical Sciences, California Institute of
Technology, Pasadena, CA 91125, USA

Abstract. In common with many fields, including astronomy, a vast number of soft-
ware tools for computational modeling and simulation are available today in systems
biology. This wealth of resources is a boon to researchers, but it also presents interoper-
ability problems. Despite working with different software tools, researchers want to dis-
seminate their work widely as well as reuse and extend the models of other researchers.
This situation led in the year 2000 to an effort to create a tool-independent, machine-
readable format for representing models: SBML, the Systems Biology Markup Lan-
guage. SBML has since become the de facto standard for its purpose. Its success and
general approach has inspired and influenced other community-based standardization
efforts in systems biology.

Open standards are essential for the progress of science in all fields, but it is often
difficult for academic researchers to organize successful community-oriented standards.
I draw on personal experiences from the development of SBML and summarize some
of the lessons learned, in the hope that this may be useful to other groups who seek to
develop open standards in a community-oriented fashion.

1. Introduction

Interpreting the staggering amount of biological data produced in recent years is a
daunting challenge. To study biological entities and the properties that arise from their
interactions in the context of an overall system, systems biologists build and test formal
models of cellular components and processes. The results from these activities are used
to refine the models and suggest the next course of action. (See Figure 1).

Experiments and data Predictions
* genomics « cell signaling » numerical simulation
* proteomics * gene regulation * parameter scanning
* metabolomics O * metabolism O « steady-state analysis
* phenotype data

* flux constraints * network analysis

* biochemical data -
* kinetics data (Encoded in SBML)

A m@ to data? Revise models.
> Compare <
mwh to data? Go on to new experiments.

Figure 1. Where SBML is situated in the biological modeling enterprise.
1

2 Michael Hucka

To be useful embodiments of our understanding of biological systems, models
must be put into a consistent and widely-supported format that can be communicated di-
rectly between software tools. The Systems Biology Markup Language (SBML) serves
this purpose; it is an open, machine-readable, XML-based format for representing com-
putational models (Hucka et al. 2003). By supporting SBML as an input/output format,
different tools can all operate on the same representation of a model, removing oppor-
tunities for errors and assuring a common starting point for analyses and simulations.

Standards are essential for the progress of science, but taking a proposed standard
from inception to adoption is not straightforward. SBML has been the most successful
format in its domain, a de facto standard supported by over 260 software tools (SBML
Team 2014), used in prominent multi-group modeling efforts, supported by the most
significant public databases today (Le Novere et al. 2006), and more. This is uncommon
success for an academic effort. This paper provides a summary some of the lessons and
ideas from the SBML experience, in the hope that it can benefit others who also want
to engage in the development of standards.

2. Positive lessons

The following are eleven positive lessons (based on SBML’s success) about what were
good decisions and actions, especially in SBML’s formative years. Most, if not all, are
general enough that they should be transferrable to other efforts.

1. Address a significant problem faced by many people. 1t is easy to find situa-
tions where a lack of standards or infrastructure creates hurdles or friction. Motivated
individuals often respond with “this can be done better!” and embark on develop-
ing a solution. However, not all problems affect other people in the same way—you
may think you have a great solution, but others may not feel the problem is significant
enough. An essential ingredient for a successful standardization effort is addressing a
problem that many other groups face. SBML was originally a by-product of an effort to
develop a software interoperability framework: the framework needed a data exchange
format. It was not until later that it became clear SBML addressed a real need for many
people, and that it should be the focus of a standardization effort in its own right.

2. Time it well. A standardization effort needs to come at a time when people are
receptive to a new proposal. If it comes too early, there will not be enough interested
people to sustain the effort. If it comes too late, another standard or approach will have
been adopted by then and people and institutions will be too entrenched in the existing
approach. Dislodging incumbent standards is difficult. SBML was introduced at just
the right time, when many people became interested in developing new software tools.

3. Gather a small subset of actual stakeholders. By bringing together a small
number of members of your target audience, representing a reasonable gamut of use-
cases, the design of a standard can be focused and proceed faster. At this stage, it is
better to limit involvement to a small number of groups (say, 8—10); too many leads
to an attempt to satisfy too many requirements at once. Design by a small group of
domain experts stands a better chance of succeeding in creating a coherent workable
solution. This runs against the goal of eventually having a democratic, open process,
but it is a temporary bootstrapping phase.

4. Aim to support what people are actually doing. People trained as computer
scientists (e.g., the author) have a tendency to design elegant, clever solutions—which
then never get used in practice because they are too far removed from what users work

Lessons from developing a successful community-based standard 3

with on a day-to-day basis. It is important to focus instead on what people are actually
using and doing. The resulting standard is frequently messy and inelegant, but worth it
if it matches more closely what people use or do in practice because it will require less
effort for people to adopt. (Many data standards are hidden “under the hood” behind
software interfaces anyway—elegance often matters little in the end.)

5. Have a dedicated, small development team. A lone developer or a group of
part-time developers can of course develop standards too, but progress is faster and the
quality is often higher when a dedicated full-time team undertakes the effort. Devel-
oping a standard requires more than simply designing the standard itself: it requires
writing careful and clear specification documents, creating online resources, communi-
cation, creating software frameworks, and much more.

6. Use a staged development approach. Attempting to support the kitchen sink in
a standard right from the start is a recipe for failure, but so is producing an incomplete
standard. Instead, borrow a tactic from product development: create the equivalent of
a “minimal viable product” at each stage. A simple standard that is fully usable for a
subset of possible use-cases will allow people to start using it in practice, which in turn
produces feedback for the next stage and simultaneous begins creating a user base.

7. Create open source libraries. For information standards of any meaningful
complexity, it is easier for software developers to start with an API library rather than
create their own. Providing good-quality libraries promotes faster adoption of a stan-
dard. Open-source software is attractive because it gives users a greater sense of se-
curity: even if the original project loses funding, they won’t be left stranded without
access to the software infrastructure they have come to rely on.

8. Get adoption by respected efforts in the field. Sometimes you build it, but
nobody comes. To jump-start a network effect, you need to gain a few significant,
highly visible adopters. Their mere use of a standard is likely to be noticed by others,
which will increase adoption, which in turn will promote still more users to adopt the
standard. (Ideally, these groups are part of the initial small subset of lesson #3.)

9. Switch gears when the standard gains traction. Once adoption increases, it is
no longer in the best interests of the user community to have the standard be controlled
by a group of self-appointed authorities. This is the time to introduce a democratic
process, with an editorial board elected from the community, a system for proposing
changes to the standard, and other community-oriented processes. This helps spread the
intellectual work load in continuing to evolve the standard, and it lets the community
take ownership, which encourages increased involvement and adoption.

10. Have a shepherd. Volunteer contributions are essential for a community-
oriented process, but a successful long-running project often needs more. Many stan-
dardization projects are successful due in part to having someone who devotes a major-
ity of their time to the effort as a whole: mediating disputes in the community, leading a
development team, seeking funding, etc. Unfortunately, that time is spent on activities
that do not produce publications—the primary metric for academic success. Conse-
quently, these are not tasks suitable for postdocs or faculty. They require paid staff.

11. Be creative about seeking funding. Funding standardization efforts is often
difficult. Before a standard is established, a grant proposal to develop the new standard
is likely to score poorly because reviewers naturally tend to err on a conservative side
(e.g., questioning why existing standards are inadequate, or arguing that the proposed
approach is unproven). Finding nontraditional sources of funding may be the only way
to support the necessary development for a successful effort.

4 Michael Hucka

3. Negative lessons

What follows is a list of three negative lessons: wrong decisions and actions.

1. Not waiting for implementations before freezing specifications. Early spec-
ifications were often finalized prospectively, based on general community agreement
and before any software had tested the features. Some features were later discovered to
be poorly thought-out. Waiting for software implementations to debug a specification
before finalizing it is an important development principle.

2. Not producing simple enough designs. The goal of producing a specification
that meets actual, practical needs sometimes conflicts with the goal of producing simple
designs. Some features in SBML are complex, and should have been made simpler.

3. Not formalizing the process sufficiently. Before the creation and implementa-
tion of SBML’s formal development process, decisions were in the hands of the original
development and later, the SBML Editors. Without explicit procedures for change pro-
posals, voting on issues, and so on, decisions can seem opaque or arbitrary to the rest
of the community. An explicit process helps.

4. Conclusions

Many efforts to develop standards for many fields have been undertaken by academics
in the past, and more will undoubtedly be created in the future. Here I summarized
some of lessons learned from my participation in the development of SBML as well as
several other successful efforts in systems biology. It is my hope that this can help other
budding standardization efforts, including some in astronomy.

Acknowledgments. The original SBML development team consisted of Hamid
Bolouri, Andrew M. Finney, Herbert M. Sauro and the author; John C. Doyle (Caltech)
and Hiroaki Kitano (Systems Biology Institute, Japan) were the principal investigators.
Development of SBML has been continued by many people, notably the SBML Ed-
itors: Frank Bergmann, Stefan Hoops, Nicolas Le Novere, Chris J. Myers, Brett G.
Olivier, James C. Schaff, Sven Sahle, Lucian Smith, Dagmar Waltemath, and Darren J.
Wilkinson. Core SBML development is currently funded by NIH grant ROIGM070923.

References

Hucka, M., et al. 2003, Bioinformatics, 19, 524
Le Novere, N., et al. 2006, Nucleic Acids Research, 34, D689
SBML Team 2014, The SBML Software Guide, http://sbml.org/SBML_Software_Guide

