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Summary

Computational modeling in biology requires sophisticated software tools. Precise communication and
effective sharing of the models developed by researchers requires standard formats for storing, annotat-
ing, and exchanging models between software systems. Developing such standards is the driving vision
behind the Systems Biology Markup Language (SBML) and several related efforts that we discuss in
this chapter. At the same time, such standards are only enablers and ideally should be hidden “under the
hood” of modeling environments that provide users with high-level, flexible facilities for working with
computational models. As an example of the modern software systems available today, we discuss the
Virtual Cell and illustrate its support for typical modeling activities in biology.
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I. Introduction

Understanding the dynamic processes that are
the essence of a living cell stands as one of the
most important and most difficult challenges of
twenty-first century biology. Today, it is widely
appreciated that we can only hope to meet that
challenge through the development and applica-
tion of computational methods (Hartwell et al.,
1999; Fraser and Harland, 2000; Arkin, 2001;
Tyson et al., 2001; Noble, 2002; Alm and Arkin,
2003; Zerhouni, 2003), particularly the creation
of mechanistic, explanatory models illuminat-
ing the functional implications of the data upon
which they are built.

Models are not substitutes for experiments and
data; rather, they are faithful teammates in the
process of scientific discovery. A realistic com-
putational model represents a modeler’s dynamic
understanding of the structure and function of
part of a biological system. As the number of
researchers constructing realistic models contin-
ues to grow, and as the models become ever
more sophisticated, they collectively represent
a significant accumulation of knowledge about
the structural and functional organization of the
system. Moreover, using them, the assimilation
of new hypotheses and data can be done in a
more systematic way because the additions must
be fitted into a common, consistent framework.
Once properly constructed, the models become
a dynamic representation of our current state of
understanding of a system in a form that can facil-
itate communication between researchers and
help to direct further experimental investigations
(Bower and Bolouri, 2001).

Today’s models are large (and growing ever
larger) and complex (and getting ever more
complex). We are now long past the point of
being able to communicate and exchange real-
world models effectively by simply summariz-

Abbreviations: DOI – digital object identifier; MIASE –
minimum information about a simulation experiment;
MIRIAM – minimum information requested in the anno-
tation of biochemical models; SBGN – systems biology
graphical notation; SBML – systems biology markup lan-
guage; SBO – systems biology ontology; SSA – stochastic
simulation algorithm; UML – unified modeling language;
URN – uniform resource name; VCell – virtual cell; XML –
eXtensible markup language

ing them in written narratives featuring a few
equations. The precise communication of com-
putational models between humans and between
software is critical to being able to realize mod-
eling’s promise. Achieving this requires standard-
izing the electronic format for representing com-
putational models in a way independent of any
particular software – after all, different research
goals are often best served by different software
tools, yet modelers still need to share their results
with their colleagues. At the same time, today’s
researchers need powerful software environments
that offer a range of capabilities to support the
creation, analysis, storage and communication of
models, all the while hiding the details of the
model representation format and providing bio-
logical modelers with high-level user interfaces
and capabilities matched to the tasks they need
to do.

In this chapter, we discuss both standards and
software for computational modeling in biology.
We summarize the de facto standard format, the
Systems Biology Markup Language (SBML), as
well as ongoing related efforts to standardize
the representation of model annotations through
MIRIAM (the Minimum Information Requested
In the Annotation of biochemical Models) and
SBO (the Systems Biology Ontology). As critical
as they are, however, such standards are in the
end only enablers; they are (hopefully) not what
users interact with directly. We therefore also dis-
cuss software systems, focusing on one in partic-
ular, the Virtual Cell, as a way to present typi-
cal modeling activities in the context of one of
today’s most full-featured, interactive modeling
environments. The advanced capabilities of sys-
tems such as Virtual Cell also help drive further
development of SBML and adjunct efforts, and
so we close with a summary of present work to
extend SBML as well as standardize other areas
of modeling and simulation exchange, such as the
description of simulations.

II. Representing Model Structure
and Mathematics

Until the late 1980s, publication of a compu-
tational model almost universally involved pub-
lishing only the equations and parameter values,
usually with some narrative descriptions of how
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the model was coded in software and how it was
simulated and analyzed. The systems of equa-
tions were, with few exceptions, directly imple-
mented in software: in a very direct sense, the
program was the model. Authors sometimes even
wrote their own numerical integration code. This
general approach was necessary because of the
primitive state of computational platforms and
electronic data exchange, and it was fraught with
problems. The most significant problem is sim-
ply the opportunities for errors that arise when a
model must be recapitulated by humans into and
back out of natural language form. The degree to
which this is a real problem is startling. Cura-
tors for databases of published models such as
BioModels Database (Le Novère et al., 2006) and
JWS Online (Snoep and Olivier, 2003; Olivier
and Snoep, 2004), report by personal commu-
nication that when they first began operation in
the 2000–2004 timeframe, over 95% of published
models they encountered had something wrong
with them, ranging from typographical errors to
missing information (even today, the problem rate
is greater than 60%). A second problem is that,
when a model is inextricably intertwined with its
software implementation, it is difficult to examine
and understand the precise details of the actual
model (rather than artifacts of its particular real-
ization in software). A third problem is that hav-
ing to reconstruct a model from a paper is an
extremely tall hurdle to fast, efficient and error-
free reuse of research results.

Some areas of biological modeling improved
on this situation in the 1990s. The field of compu-
tational neuroscience was particularly advanced
in this regard, having two freely-available sim-
ulation packages, GENESIS (Bower and Bee-
man, 1995; Bower et al., 2002) and NEURON
(Hines and Carnevale, 1997), supported on a
variety of operating systems. These simulation
platforms made it possible for modelers to dis-
tribute abstract definitions of their models and
simulation procedures in the form of scripts that
could be interpreted automatically by the plat-
form software. The approach vastly improved the
reusability of models. However, there remained
the limitation that the formats were specific to
the simulation package in which they were devel-
oped. Whoever wanted to reuse the models had
to run the same software in order to reuse the
model (assuming they were able to get the nec-

essary files from the model’s authors – electronic
publishing of models as supplements to journal
articles was still rare).

With the surge of interest in computational
systems biology at the beginning of this cen-
tury, software tools evolved one step further with
the creation of application-independent model
description formats such as CellML (Hedley
et al., 2001) and SBML (Hucka et al., 2003,
2004). This form of representation is not an algo-
rithm or a simulation script; it is a declarative
description of the model structure that is then
interpreted and translated by each individual soft-
ware system into whatever internal format it actu-
ally uses. No longer tied to a particular software
system, such software-independent formats per-
mit a wider variety of experimentation in algo-
rithms, user interfaces, services, and many other
aspects of software tool development, by virtue of
allowing multiple software authors to explore dif-
ferent facilities that all use the same input/output
representation. In addition, and even more signif-
icantly, it enables practical publication of models
in public databases.

The Systems Biology Markup Language
(SBML; http://sbml.org) has become the de facto
standard for this purpose, supported by over
120 software systems at the time of this writ-
ing. SBML is a machine-readable lingua franca
defined neutrally with respect to software tools
and programming languages. It is a model def-
inition language intended for use by software –
humans are not intended to read and write SBML
directly. By supporting SBML as an input and
output format, different software tools can all
operate on the identical representation of a model,
removing opportunities for errors in translation
and assuring a common starting point for anal-
yses and simulations. SBML is defined using a
subset of UML, the Unified Modeling Language
(Booch et al., 2000), and in turn, this is used
to define how SBML is expressed in XML, the
eXtensible Markup Language (Bray et al., 1998).
Software developers can make use of a number
of resources for incorporating SBML support in
their applications (Bornstein et al., 2008).

SBML can encode models consisting of bio-
chemical entities (species) linked by reactions to
form biochemical networks. An important prin-
ciple in SBML is that models are decomposed
into explicitly-labeled constituent elements, the
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set of which resembles a verbose rendition of
chemical reaction equations; the representation
deliberately does not cast the model directly into a
set of differential equations or other specific inter-
pretation of the model. This explicit, modeling-
framework-agnostic decomposition makes it eas-
ier for a software tool to interpret the model and
translate the SBML form into whatever internal
form the tool actually uses. The main constructs
provided in SBML include the following:

Compartment and compartment type: a com-
partment is a container for well-stirred substances
where reactions take place, while a compartment
type is an SBML construct allowing compart-
ments with similar characteristics to be classified
together.

Species and species type: a species in SBML
is a pool of a chemical substance located in a
specific compartment, while species types allow
pools of identical kinds of species located in sep-
arate compartments to be classified together.

Reaction: a statement describing some trans-
formation, transport or binding process that can
change one or more species (each reaction is
characterized by the stoichiometry of its products
and reactants and optionally by a rate equation).

Parameter: a quantity that has a symbolic
name.

Unit definition: a name for a unit used in the
expression of quantities in a model.

Rule: a mathematical expression that is added
to the model equations constructed from the set
of reactions (rules can be used to set parame-
ter values, establish constraints between quanti-
ties, etc.).

Function: a named mathematical function that
can be used in place of repeated expressions in
rate equations and other formulae.

Event: a set of mathematical formulae evalu-
ated at a specified moment in the time evolution
of the system.

The simple formalisms in SBML allow a wide
range of biological phenomena to be modeled,
including cell signaling, metabolism, gene regu-
lation, and more. Significant flexibility and power
comes from the ability to define arbitrary formu-
lae for the rates of change of variables as well as
the ability to express other constraints mathemat-
ically.

SBML is being developed in “levels”. Each
higher level adds richness to the model defini-

tions that can be represented by the language. By
delimiting sets of features at incremental stages,
the SBML development process provides soft-
ware authors with stable standards and the com-
munity can gain experience with the language
definitions before new features are introduced.
Two levels have been defined so far, named
(appropriately enough) Level 1 and Level 2. The
former is simpler (but less powerful) than Level
2. The separate levels are intended to coexist;
SBML Level 2 does not render Level 1 obsolete.
Software tools that do not need or cannot support
higher levels can go on using lower levels; tools
that can read higher levels are assured of also
being able to interpret models defined in the lower
levels. Open-source libraries such as libSBML
(Bornstein et al., 2008) allow developers to sup-
port both Levels 1 and 2 in their software with a
minimum amount of effort.

III. Augmenting Models with Semantic
Annotations

The ability to have meaningful exchange of
complex mathematical models of biological phe-
nomena turns out to require a deeper level
of semantic encoding and knowledge manage-
ment than is embodied by a format such as
SBML, which encompasses only syntax and
a limited level of semantics. This realization
came early in the context of CellML, whose
developers added a standard scheme for meta-
data annotations soon after CellML was devel-
oped (Lloyd et al., 2004). CellML’s metadata
scheme was adopted by SBML at the begin-
ning of the development of SBML Level 2,
but limitations with the scheme later led the
SBML community to seek alternatives. These
were found in the form of the Systems Biology
Ontology (SBO; http://www.ebi.ac.uk/SBO; Le
Novère et al., 2006), and the Minimum Informa-
tion Requested in the Annotation of Biochemical
Models (MIRIAM; Le Novère et al., 2005).

A. Systems Biology Ontology (SBO)

The rationale for SBO is to provide controlled
vocabularies for terms that can be used to anno-
tate components of a model in SBML (or indeed,
any other formal model representation format).
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It requires no change to the form of the basic
model in SBML; rather, it provides the option to
augment the basic model with machine-readable
labels that can be used by software systems to rec-
ognize more of the semantics of the model. SBO
provides terms for identifying common reaction
rate expressions, common participant types and
roles in reactions, common parameter types and
their roles in rate expressions, common model-
ing frameworks (e.g., “continuous”, “discrete”,
etc.), and common types of species and reactions.
Recent versions of SBML Level 2 provide an
optional attribute on every element where an SBO
term may be attached. Table 1.1 lists the corre-
spondences between major components of SBML
and SBO vocabularies.

The relationship implied by the attribute value
on an SBML model component is “is a”: the
thing defined by that SBML component “is an”
instance of the thing defined in SBO by indi-
cated SBO term. By adding SBO term references
on the components of a model, a software tool
can provide additional details using independent,
shared vocabularies that can enable other soft-
ware tools to recognize precisely what the compo-
nent is meant to be. Those tools can then act on
that information. For example, if the SBO iden-
tifier SBO:0000049 is assigned to the concept
of “first-order irreversible mass-action kinetics,
continuous framework”, and a given reaction in
a model has an SBO attribute with this value,
then regardless of the identifier and name given to

Table 1.1. Correspondence between major SBML compo-
nents and controlled vocabulary branches in the Systems
Biology Ontology (SBO)
SBML component SBO vocabulary
Model Interaction
Function definition Mathematical expression
Compartment type Material entity
Species type Material entity
Compartment Material entity
Species Material entity
Reaction Interaction
Reaction’s kinetic law Mathematical expression

→ Rate law
Parameter Quantitative parameter
Initial assignment Mathematical expression
Rule Mathematical expression
Event Interaction

the reaction itself, a software tool could use this
to inform users that the reaction is a first-order
irreversible mass-action reaction.

As a consequence of the structure of SBO, not
only children are versions of the parents, but the
mathematical expression associated with a child
is a version of the mathematical expressions of
the parents. This enables a software application
to walk up and down the hierarchy and infer
relationships that can be used to better interpret
a model annotated with SBO terms. Simulation
tools can check the consistency of a rate law
in an SBML model, convert reactions from one
modeling framework to another (e.g., continuous
to discrete), or distinguish between identical
mathematical expressions based on different
assumptions (e.g., Henri-Michaelis-Menten vs.
Briggs-Haldane). Other tools like SBMLmerge
(Schulz et al., 2006) can use SBO annotations to
integrate individual models into a larger one.

SBO adds a semantic layer to the formal
representation of models, resulting in a more
complete definition of the structure and mean-
ing of a model. The presence of an SBO
label on a compartment, species, or reaction,
can also help map SBML elements to equiva-
lents in other standards, such as (but not lim-
ited to) BioPAX (http://www.biopax.org) or the
Systems Biology Graphical Notation (SBGN,
http://www.sbgn.org). Such mappings can be
used in conversion procedures, or to build inter-
faces, with SBO becoming a kind of “glue”
between standards of representation.

B. Minimum Information Requested
in the Annotation of Biochemical
Models (MIRIAM)

While SBO annotations help add semantics, there
remains a different kind of impediment to effec-
tive sharing and interpretation of computational
models. Figure 1.1 illustrates the issue.

When a researcher develops a model, they
often use simple identifiers for chemical sub-
stances, or at best, only one of a multitude of pos-
sible synonyms for the substance. The situation is
even worse when it comes to the chemical reac-
tion and other processes: these are often given
names such as “R1”, “R2”, etc., or at best, generic
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Fig. 1.1. An example fragment of an SBML file. The id fields in the lines above establish the identifiers of entities used in the
model. This particular model contains a compartment identified only as “cell”; three biochemical species identified as “MTX5”,
“MTX1b” and “MTX2b”; and a global parameter (constant) identified as “Keq”. These labels presumably have meaning to the
creator of the model, but rarely to its readers, and even less so to software tools. Yet, such short identifiers are really what
modelers often use in real-life models. It is not in the scope of SBML to regulate or restrict what the identifiers can or should
be – a different approach is needed. The solution in use today is to provide a mechanism for augmenting (not replacing) the
identifiers with annotations referring to regulated terms in “dictionaries”, controlled vocabularies, or entries in databases that
provide detailed information about the biological entities to which the identifiers are meant to refer.

terms such as “mass-action” that do not reflect
the role of the reaction as a process in the broader
model. Searching for models based on useful cri-
teria is next to impossible under these conditions.
One could blame modelers for not being more
thorough in naming and identifying the elements
in their models; one could also blame software
tools for not assisting modelers in this process.
However, such criticisms would be both futile and
misplaced. First, this situation is the reality for
thousands of existing models and it is likely to
persist into the foreseeable future. Second, differ-
ent research subfields often have different names
for the same chemical species, processes, and
other concepts. Who would decide which is most
appropriate to use?

The most practical solution found so far by
the computational systems biology community is
to augment models with annotations that provide
links between the elements of a model and other
(external) data resources and models. However,
the potential and power of annotations is largely
lost if the format of the annotations is not stan-
dardized to the point where different software
systems can interpret them in the same way. This
was one of the motivations for the development
of MIRIAM, a set of guidelines for the Mini-
mum Information Requested In the Annotation

of biochemical Models (Le Novère et al., 2005)
encoded in a structured representation format
such as SBML.

MIRIAM defines both (1) minimum consis-
tency requirements for a model, and (2) a regu-
lar and simple annotation scheme for linking a
model to its sources and linking model compo-
nents to external data resources. The goal of the
first aspect of MIRIAM is to ensure that a model
is reliably attributed to a reference description
(which is a document describing or referencing
a description of the model, the model’s struc-
ture, numerical values necessary to instantiate a
simulation, and the results to be expected from
such a simulation) and is consistent with that
description. The requirements apply to the model
as a whole and are irrespective of any annotations
placed in it. Table 1.2 summarizes these minimal
requirements for reference correspondence.

The second broad aspect of the MIRIAM
guidelines concerns the annotation content. The
requirements for minimum attribution informa-
tion are summarized in Table 1.3. They sim-
ply represent a basic level of information that is
deemed to be necessary in order for a model’s
readers to be able to associate the model with
a reference description and a process used to
encode the model in the structured format.
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Table 1.2. MIRIAM guidelines for minimum consistency
of a model! The model must be encoded in a public, machine-

readable format, either standardized (e.g., SBML) or
supported by specific applications (e.g., MATLAB).! The encoded model must comply with the standard in
which it is encoded, meaning that the syntax must be
correct and the model must pass validation.! The model must be related to a single description that
describes or references results that one can expect to
reproduce using the model. If the model is derived from
several sources (e.g., several publications), there must
exist a single reference description associated with the
combined model. Note that MIRIAM does not require
the reference description to be published; it must merely
be made available to consumers of the model.! The model’s structure must reflect the biological pro-
cesses listed in the reference description.! The encoded model must be instantiated in simulation,
which implies that quantitative attributes, initial condi-
tions, parameters, etc., must all be defined. (The actual
values may be provided as a separate file from the model
itself.)! When instantiated in a suitable environment, the model
must be able to reproduce relevant and readily-simulated
results given in the reference description, and the results
must be quantitatively similar (with any differences
being attributable to differences in algorithm roundup
errors).

Table 1.3. MIRIAM guidelines for the minimum attribu-
tion information to be provided with a model! A (preferred) name for the model.! A citation for the reference description. This can be bib-

liographic information, or a unique identifier (e.g., DOI),
or even a URL pointing directly at the description –
something to locate and identify the reference descrip-
tion and its authors.! Name and contact information for the model creator(s).! Date and time of creation.! Date and time of last modification.! A precise statement of the encoded model’s terms of
distribution. MIRIAM does not require freedom of distri-
bution nor no-cost distribution, only a statement of what
the distribution terms are.

As for the manner in which annotations are to
be represented, the MIRIAM scheme is simple
and does not require a particular format struc-
tured – in fact, the annotations can be recorded
in something as simple as a separate text file,

though whatever method is used, the annotations
must always be transferred with the model. Each
annotation is a triplet consisting of a data type,
an identifier, and an optional qualifier. The data
type is a unique controlled description of the
type of the data in annotation and should be
recorded as a Uniform Resource Name (Jacobs
and Walsh, 2004). The identifier refers/points to
a specific datum in whatever source is identified
by the data type. The qualifier serves to refine
the nature of the relationship between the model
component being annotated and the referred-to
datum. Examples of common qualifiers include
“is version of”, “has part”, etc. If the qualifier is
absent, the assumed relationship is “is”.

IV. Connecting Models to Results

SBML, MIRIAM, and related technologies are all
meant to be under the hood, so to speak, with
software systems reading and writing models in
SBML form (annotated in MIRIAM-compliant
fashion), but ideally without exposing this level
of detail to users. In this section, we examine how
one particular modeling environment, the Virtual
Cell, provides a wide range of modeling facilities
while effectively hiding the details of interacting
with models in SBML form. The Virtual Cell
is an example of the modern trend towards pro-
viding powerful, general-purpose modeling envi-
ronments supporting the whole gamut of tasks
that biologist-modelers must do, from importing
experimental data, to deriving a family of models
from the data, to simulating and analyzing the
models, and relating the results of the analyses
back to the experimental data.

A. Common Experimental and Modeling
Activities

To compare experimental results with the quan-
titative predictions generated from a biologi-
cal model, the model must be exercised in a
manner consistent with experimental protocols
and apparatus. Experimental protocols are stan-
dardized procedures for experimental measure-
ments and manipulations. Some protocols can be
described simply as ideal processes that directly
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perturb only the desired target or are perfect
observers of some physiological states or anatom-
ical structures. More realistic notions are rou-
tinely considered by the experimentalist who
must parse unwanted behaviors and distortions
to gain insight into a biological process. They
design experiments to reduce the sensitivity of
their results to those unwanted artifacts.

Before associating raw experimental data with
model predictions, both the raw experimental data
and the model predictions are often post-processed
into quantities that can be more easily compared.
This post-processing can suffice if we assume
that measurements and manipulations are ideal
and that the experimental intervention is separable
fromthebiologicalprocesses. If theseassumptions
do not hold (e.g., when a fluorescent indicator
functionally modifies or sequesters its ligand),
changes to the model structure are required to
properly represent the interaction of the protocols
with the underlying biological system.

Validation of a quantitative model against mul-
tiple experiments typically requires the creation
of a number of experiment-specific models that
must retain a consistent core representing the
physiological mechanisms and hypotheses. As
new experimental evidence is considered, addi-
tional experiment specific models are created.
The underlying mechanistic model evolves in a
way that corresponds to the entire set of exper-
imental data. During this process it is important
to continually reassess the compatibility between
the context of each experiment and the cur-
rent model structure, parameters, and modeling
assumptions.

A list of accumulated model assumptions
should be maintained explicitly to identify con-
tradictions and track applicability of experimental
data. There are explicit modeling assumptions
introduced by the physical approximations used
within the model (e.g., preconditions for use of a
particular kinetic law) as well as those imposed by
the modeling framework (e.g., well-mixed com-
partments ignore spatial variation, deterministic
population dynamics ignores stochasticvariation).
There are also implicit modeling assumptions
when deciding which elements can be safely omit-
ted from a model and when introducing functional
dependencies. This growing list of assumptions
and the collection of experimental data constrain
the feasible space of consistent model structures
and parameters.

This process of using new experimental data to
refine models is important, but the reverse pro-
cess is even more useful. Experimentalists and
modelers working together can use interesting
model predictions to suggest new experiments
that can help discriminate between alternative
model structures (alternative hypotheses) or help
to define the boundaries of the model’s domain of
applicability.

B. Supporting Modeling Activities Through
Software Environments

The Virtual Cell Modeling and Simulation frame-
work (VCell; Slepchenko et al., 2003; Moraru
et al.; 2008) will be used as an example archi-
tecture to describe how modeling tools can sup-
port these capabilities. VCell was developed by
an interdisciplinary team of engineers, physi-
cists, biologists and mathematicians who were
also doing modeling in close collaboration with
experimental biologists. Over time, interactions
with the growing user community, especially at
an intensive annual short course, have helped
to keep VCell relevant and usable for modeling
experimental biology.

The Virtual Cell supports modeling and sim-
ulating reaction networks, diffusive and advec-
tive transport, and electrophysiology. The system
provides clear conceptual boundaries designed to
maximize the reusability of a single mechanis-
tic physiological model in multiple experimental
contexts. A VCell “BioModel” is a biological
model (as opposed to VCell’s equation-based
models) containing a single physiological model
and multiple “Applications”, each of which
corresponds to or “applies” the model to an
experimental context. Each VCell Application
defines its modeling framework (i.e., spatial-
deterministic, compartmental-deterministic, and
compartmental-stochastic) and captures experi-
mental data, cellular geometry, initial conditions,
boundary conditions, knockouts, pseudo steady
state approximations, and electrophysiological
protocols sufficient for automatically generating
an experiment-specific mathematical model.

VCell was developed with an emphasis on spa-
tial modeling where reaction mechanisms have
traditionally been described locally, that is, affect-
ing local concentrations at a rate influenced only
by local concentrations. When mapped spatially,
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these local interactions are defined at each point
in the appropriate domain; for example, mem-
brane reactions are defined at each point on the
membrane, and membrane/volumetric transport
results in a spatially resolved flux density that
is coupled to diffusive flux in the volume. When
mapped non-spatially, these local interactions are
integrated over the domains in which they are
defined; for example, flux densities produced
from membrane reactions are integrated over the
membrane to produce a total flux. Support for
spatial models is one of the areas of development
for SBML Level 3.

VCell encourages modelers to represent a
hypothesized indirect interaction between distant
molecular species not as a single reaction, but
as a series of local reactions and transport steps.
In this way, each of these individual mechanisms
must be physically realizable (e.g., reasonable
kinetic parameters, concentrations, and transport
rates) while combining to produce the desired
behavior. While the absolute values of interme-
diate parameters may be underdetermined, the
bounds on these parameters can introduce abso-
lute physical limits on the time scale or sensitivity
of an indirect functional relationship.

Modeling an indirect interaction between dis-
tant molecular species as a single reaction nec-
essarily omits transport mechanisms or second
messengers that act on an appropriately fast time
scale. The advantage of these approximations
is their simplicity and direct correspondence to
some measured quantity without adding addi-
tional degrees of freedom; the disadvantage is
that it introduces a phenomenological process
that will not generalize well and will be insen-
sitive to other parts of your model. Despite this,
models containing indirect interactions are quite
popular in many research domains. VCell has
recently been extended to allow both local and
non-local reaction mechanisms, where non-local
reactions can only be mapped non-spatially or
to molecular species that are constrained to be
well-mixed.

For deterministic spatial modeling (partial dif-
ferential equations), a spatial “Application” maps
a user’s core physiological model to a three-
dimensional cellular geometry (often derived
from microscopy images) that supports hetero-
geneous distributions of processes and molecu-
lar species and allows definition of diffusive and

advective transport. In addition, all model param-
eters, initial conditions, boundary conditions and
mechanisms can be explicit functions of time
and space or derived from user supplied spa-
tiotemporal data (e.g., experimental time series
images). The experimental time series can be
compared and visualized together with the spa-
tiotemporal simulation results. For deterministic
compartmental modeling (differential algebraic
equations), the same core physiological model
can be mapped to well-stirred compartments and
associated with user defined time series datasets
for parameter estimation. For stochastic compart-
mental modeling (Poisson processes) the core
physiological model is mapped to jump processes
with Poisson distributions and simulated with
direct and hybrid solvers, but there is no corre-
sponding experimental data handling at this time.

Electrophysiological modeling protocols are
seamlessly integrated into the VCell “Applica-
tion” as a Protocol Module. To simulate an
electrophysiological experiment, the user selects
where to place the patch-clamp electrodes and
specifies a waveform for either a current-clamp
or voltage-clamp protocol. Then, whenever the
mathematical model for that Application is gen-
erated (preceding simulation or analysis), the
appropriate electrical device (either a current
source for current clamp or a voltage source for
voltage clamp) is temporarily inserted across the
appropriate membrane. This alters the “equiva-
lent circuit” of the model so that the proper set of
equations is generated. For either protocol, both
the voltage and applied current (sum of capacitive
and transmembrane currents) between the elec-
trodes is computed so that the user can directly
compare the simulated currents with an experi-
mental recording.

A VCell “Application” adds crucial contextual
information, such as initial conditions, reactions,
boundary conditions, spatial domain (cellular
geometry), the concentrations to hold fixed, and
other characteristics, to a mechanistic model. The
result completely specifies a mathematical model
used to generate simulations. This approach allows
several experiment-centric derived models – the
Virtual Cell Applications – to be maintained as a
single document. The original intent in VCell was
to validate a single underlying biological model
under several independent experimental condi-
tions. However, some experimental measurements
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and manipulations must be modeled by explic-
itly coupling the experimental processes and the
biological processes (e.g., fluorescent calcium
indicators also function as significant calcium
buffers and so competes for free calcium and
changes effective diffusion). Rather than require a
modeler to manually incorporate the experimental
process directly into a physiological model and
thus destroy the model’s reusability, it is more
flexible to automatically generate the augmented
experimentally-focused model as needed. The
modeler can define which protocols to include
and specify the required parameters (e.g. total
fluorescent indicator added, affinity/kinetics with
respect to each existing molecule, diffusion rate,
bleaching characteristics). A “virtual experiment”
will then be a comprehensive, experimentally-
focused extension of a modeling application that
will provide explicit representations for input data,
protocols, measurement processes, and experi-
mental reference data.

Note how this kind of separation between a
modelanditsmanipulations inavirtualexperiment
implies a need for a representation that is separate
from SBML – which is precisely the reason why
the MIASE project (Minimum Information About
a Simulation Experiment; http://www.ebi.ac.uk/
compneur-srv/miase/) was initiated. MIASE aims
to represent in an application-independent way the
common set of information that any modeler needs
to provide in order to repeat a numerical simulation
experimentderivedfromagivenquantitativemodel.

Quantitative models should embody mecha-
nistic hypotheses within a consistent theoretical

framework. A physics-based framework within
a modeling tool provides a scaffold consisting
of implicit conservation laws (e.g., mass conser-
vation) that couple physical quantities and pro-
cesses (e.g. biochemical reactions, patch-clamp
electrodes, and measurement processes) to gen-
erate a mathematical model. In contrast, an
equation-based framework (e.g. model explic-
itly defines entire system of differential-algebraic
equations) requires that all relationships between
data and model must be considered explicitly in
the form of the model. However, the experimen-
tal conditions and apparatus often significantly
change the mathematical form of the system
(e.g. voltage-clamp electrodes, buffering effects
of a fluorescent indicator, over-expression of a
fluorescently labeled protein). SBML requires a
physics-based framework for reactions with all
other processes defined using ancillary equa-
tions added directly to the model. VCell extends
the supported physical processes that can be
described in models to include diffusive and
advective transport in space and electrophysiol-
ogy (e.g. Kirchhoff’s Voltage and Current Laws
are considered when constructing the equations
for electric potential), and “Virtual Microscopy”
extensions. These extensions support protocols
incorporating fluorescent indicators, fluorescent
labels, FRAP, photoactivation, focal stimuli while
considering experimental optics.

Table 1.4 provides a summary of how many
of the concepts in SBML map to concepts in
VCell. Some of the areas of current development
in SBML are discussed in the next section.

Table 1.4. SBML components versus their VCell counterparts
SBML component Location in VCell component
Reactions Reactions in model
Fast attribute for reaction Fast reactions in application
Reaction kinetics Lumped or local kinetics (in model)
Species Species in model
Species initial conditions Initial conditions in application
Compartment Compartment in model
Compartment size Spatial characteristics in application
Rate rules, algebraic rules, events Expressions in application (future version)
Rate rules for membrane potential Expressions in application
Spatial package (in development) Diffusion/advection + geometry (Application)
SBML model Model + 1 application
Multiple SBML models BioModel (multiple applications)
MIASE Simulation
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V. Future Directions for Systems Biology
Markup Language (SBML)

The needs of advanced modeling environments
such as VCell are pushing forward the evolution
of SBML and associated standards. The next gen-
eration of SBML, called SBML Level 3, will be
a modular language based on a core and exten-
sion “packages” layered on top of the core. The
core will be a minimally-modified Level 2 Ver-
sion 4. One of the modifications will be a pack-
age mechanism that allows a model to declare
which additional feature sets (packages) are used
by the model. Software tools will be able to use
this information to judge whether they can fully
interpret a model that they encounter. Advanced
software such as VCell will gain the ability to
more fully represent classes of models that cur-
rently are not supported in SBML Level 2; on
the other hand, software tools that do not support
certain features used in a given model can inform
users that only limited functionality can be pro-
vided – yet still be able to make some use of the
SBML model by virtue of its use of core features.
There are several SBML Level 3 packages in
development today, but here we describe briefly
just two, spatial geometry and hierarchical model
composition. More information about these and
other activities can be found online at the SBML
website, http://sbml.org/.

The goal of supporting spatial characteristics
in SBML Level 3 is to allow the representation of
the geometric features of compartments and the
spatial distribution of model quantities and pro-
cesses. SBML models today are nonspatial: com-
partments are topological structures only, with
dimensionality, size and containment being their
only physical attributes. This was partly a con-
scious design decision, because even today, there
are far more nonspatial modeling tools available,
and so the SBML development priority reflected
that. However, it is clearly insufficient for many
potential modeling uses, including the problems
described above. The focus for the spatial aspects
of SBML will be on supporting at least the fol-
lowing characteristics: (1) the size and shape of
physical entities whether compartments or react-
ing species; (2) the absolute or relative spatial
location of reacting species in compartments, for
instance in a volume, on membrane surfaces,
or along microtubules; (3) the rates of diffusion

of species through compartments; and (4) the
definition of rate equations and algebraic con-
straints describing phenomena either at specific
locations, or distributed across compartments.

Model composition refers to the ability to
include models as submodels inside other mod-
els. This requires defining the interfaces between
the models and rules for connecting parts of mod-
els together. The motivation is to help contain
model complexity by allowing decomposition.
With this facility in place, users will be able to
create reusable models, create libraries of compo-
nents, etc., and combine them into larger models,
much as is done in software development, elec-
tronics design, and other engineering fields.

VI. Conclusions

The use of computational modeling is clearly
increasing in all areas of biology, from analyz-
ing and extracting understanding from the vast
quantities of data saturating researchers today,
to designing biological circuits (Church, 2005).
One of the most valuable features of compu-
tational models is their support of quantita-
tive calculations, allowing researchers not only
to test their understanding, but also to explore
“what-if” scenarios and make testable predictions
about the behavior of the system being stud-
ied. This is an essential requirement for being
able to understand complicated systems that are
replete with feedback mechanisms (the hall-
mark of biological systems), where the resulting
behaviors are rarely predictable through intuitive
reasoning alone. Even for the simplest compo-
nents and systems, it can be impossible to pre-
dict such characteristics as sensitivity to exact
parameter values without constructing and ana-
lyzing a model. Such analyses have shown that
some systems are insensitive (e.g. Yi et al.,
2000) whereas others are exquisitely sensitive
(e.g. McAdams and Arkin, 1999). Computational
modeling is thus an extension of the scientific
method (Phair and Misteli, 2001; Fall et al.,
2002; Slepchenko et al., 2002), providing the
means to create precise, unambiguous, quanti-
tative descriptions of biological phenomena that
can be used to evaluate hypotheses systemat-
ically and to explore non-obvious dynamical
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behavior of a biological system (Hartwell et al.,
1999; Endy and Brent, 2001; Csete and Doyle,
2002).

The inescapable reality in systems biology is
that models (that is to say, hypotheses cast in
a computational form) will continue to grow in
size, complexity and scope. New tools for gaining
greater biological information ensure future rev-
elations will continue to be uncovered at an ever
increasing pace. Standardizing on common for-
mats is essential for being able to move forward
with increasingly larger-scale research endeavors.
As discussed in this chapter, SBML in combi-
nation with other standards today permits rep-
resenting computational models in a way that is
independent of any particular software package,
operating system, or simulation algorithms. Stan-
dardization of this kind removes an impediment
to sharing results and permits other researchers
to start with an unambiguous representation of
their hypotheses and assumptions, thus able to
examine it carefully, propose precise corrections
and extensions, and apply new techniques and
approaches – in short, to do better science.

In part because this standardization has encour-
aged attempts at collaboration and exchange like
never before, limitations in the existing stan-
dards such as SBML are being recognized and
being addressed. Modern software environments
for modeling, such as the Virtual Cell described
in this chapter, offer capabilities that exceed what
can be represented in SBML Level 2 today.
As a result of this and other inspirations, the
SBML community is working on SBML Level
3, promising new capabilities for representing
such things as spatial geometries and diffusion
processes in models. This is one of the benefi-
cial effects of increased collaboration enabled by
standardized formats such as SBML: researchers
and developers push the standards and encour-
age their continued evolution and expansion,
which in turn encourages more collaboration and
development. This feedback loop ensures that
the future of computational modeling in biology
looks brighter than ever.
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