
BIOINFORMATICS Vol. 19 no. 4 2003, pages 524–531
DOI: 10.1093/bioinformatics/btg015

The systems biology markup language (SBML): a
medium for representation and exchange of
biochemical network models
M. Hucka 1, 2,∗, A. Finney 1, 2, H. M. Sauro 1, 2, H. Bolouri 1, 2, 3,
J. C. Doyle 1, H. Kitano 1, 2, 4, 16, 18, and the rest of the SBML
Forum: A. P. Arkin 5, B. J. Bornstein 6, D. Bray 7,
A. Cornish-Bowden 8, A. A. Cuellar 9, S. Dronov 10, E. D. Gilles 11,
M. Ginkel 11, V. Gor 6, I. I. Goryanin 10, W. J. Hedley 9,
T. C. Hodgman 10, J.-H. Hofmeyr 12, P. J. Hunter 9, N. S. Juty 10,
J. L. Kasberger 5, A. Kremling 11, U. Kummer 13, N. Le Novère 7,
L. M. Loew 14, D. Lucio 14, P. Mendes 15, E. Minch 19,
E. D. Mjolsness 20, Y. Nakayama 16, M. R. Nelson 17, P. F. Nielsen 9,
T. Sakurada 16, J. C. Schaff 14, B. E. Shapiro 6, T. S. Shimizu 7,
H. D. Spence 10, J. Stelling 11, K. Takahashi 16, M. Tomita 16,
J. Wagner 14 and J. Wang 17

1Control and Dynamical Systems, MC 107-81, California Institute of Technology,
Pasadena, CA 91125, USA, 2ERATO Kitano Symbiotic Systems Project, Tokyo,
Japan, 3University of Hertfordshire, Hertfordshire, UK, 4The Systems Biology
Institute, Tokyo, Japan, 5University of California, Berkeley, CA, USA, 6NASA JPL,
Pasadena, CA, USA, 7University of Cambridge, Cambridge, UK, 8CNRS-BIP,
Marseille, France, 9University of Auckland, Auckland, New Zealand,
10GlaxoSmithKline, Stevenage, UK, 11Max-Planck-Institute for Complex Technical
Systems, Magdeburg, Germany, 12University of Stellenbosch, Stellenbosch, South
Africa, 13EML, Heidelberg, Germany, 14University of Connecticut Health Center,
Farmington, CT, USA, 15Virginia Bioinformatics Institute, Blacksburg, VA, USA,
16Keio University, Tokyo, Japan, 17Physiome Sciences Inc., Princeton, NJ, USA,
18Sony Computer Science Laboratories, Inc., Tokyo, Japan, 19LION bioscience AG,
Heidelberg, Germany and 20School of Information and Computer Science, University
of California, Irvine, CA, USA

Received on May 17, 2002; revised on October 15, 2002; accepted on October 25, 2002

ABSTRACT
Motivation: Molecular biotechnology now makes it pos-
sible to build elaborate systems models, but the systems
biology community needs information standards if models
are to be shared, evaluated and developed cooperatively.
Results: We summarize the Systems Biology Markup
Language (SBML) Level 1, a free, open, XML-based
format for representing biochemical reaction networks.
SBML is a software-independent language for describing
models common to research in many areas of computa-
tional biology, including cell signaling pathways, metabolic
pathways, gene regulation, and others.

∗To whom correspondence should be addressed.

Availability: The specification of SBML Level 1 is freely
available from http://www.sbml.org/.
Contact: sysbio-team@caltech.edu.

1 INTRODUCTION
Systems biology is characterized by synergistic integration
of theory, computational modeling, and experiment (Ki-
tano, 2002). Many contemporary research initiatives
demonstrate the growing popularity of this kind of multi-
disciplinary work (e.g. Abbott, 1999). There now exists
a variety of computational tools for the budding systems
biologist (see below); however, the diversity of software
has been accompanied by a variety of incompatibilities,
and this has lead to numerous problems. For example:

524 Bioinformatics 19(4) c© Oxford University Press 2003; all rights reserved.



The Systems Biology Markup Language (SBML)

• Users often need to work with complementary re-
sources from multiple simulation/analysis tools in the
course of a project. Currently this involves manually
re-encoding the model in each tool, a time-consuming
and error-prone process.

• When simulators are no longer supported, models
developed in the old systems can become stranded and
unusable. This has already happened on a number of
occasions, with the resulting loss of usable models to
the community. Continued innovation and develop-
ment of new software tools will only aggravate this
problem unless the issue is addressed.

• Models published in peer-reviewed journals are often
accompanied by instructions for obtaining the model
definitions. However, because each author may use a
different modeling environment (and model represen-
tation language), such model definitions are often not
straightforward to examine, test and reuse.

1.1 Approach
The current inability to exchange models between differ-
ent simulation and analysis tools has its roots in the lack
of a common format for describing models. To address
this, we formed a Software Platforms for Systems Biology
forum under the auspices of the ERATO Kitano Systems
Biology Project (funded by the Japan Science and Tech-
nology Corporation and hosted in part at the California
Institute of Technology). The forum initially included
representatives from the teams developing the software
packages BioSpice (Arkin, 2001), Cellerator (Shapiro
and Mjolsness, 2001), DBsolve (Goryanin et al., 1999),
E-CELL (Tomita et al., 2001), Gepasi (Mendes, 1997),
Jarnac (Sauro, 2000), StochSim (Morton-Firth and Bray,
1998), and Virtual Cell (Schaff et al., 2001), and later
grew to include the developers of ProMoT/DIVA (Ginkel
et al., 2000) and the CellML language at the University of
Auckland and Physiome Sciences (Hedley et al., 2001).

The forum decided at the first meeting in April 2000 to
develop a simple, XML-based language for representing
and exchanging models between simulation/analysis
tools: the Systems Biology Markup Language (SBML).
We chose XML, the eXtensible Markup Language (Bray
et al., 1998), because of its portability and increasingly
widespread acceptance as a standard data language for
bioinformatics (Achard et al., 2001). SBML is formally
defined using UML, the Unified Modeling Language (Ob-
ject Management Group, 2002), and this in turn is used
to define a representation in XML. The base definition,
SBML Level 1, is the result of analyzing common features
in representation languages used by several ODE-, DAE-
and stochastic-based simulators, and encompasses the
minimal information required to support non-spatial
biochemical models. Subsequent releases of SBML

(termed levels) will add additional structures and facilities
to Level 1 based on features requested and prioritized
by the SBML community. By freezing sets of features
in SBML definitions at incremental levels, we hope to
provide software authors with stable standards and allow
the simulation community to gain experience with the
language definitions before introducing new elements.

1.2 Benefits to Biologists
Widespread use of SBML in software packages would
benefit users as well as developers, by helping to address
the problems of interoperability listed earlier in this
introduction. With greater interaction between tools, and
a common format for publications and databases, users
would be better able to spend more time on actual research
rather than on struggling with data format issues. (Note
that biologists and other software users are not intended to
write their models in SBML by hand—it is the software
tools that read and write the format.)

2 OVERVIEW OF SBML LEVEL 1
A chemical reaction can be broken down into a number
of conceptual elements: reactant species, product species,
reactions, stoichiometries, rate laws, and parameters in
the rate laws. To analyze or simulate a network of
reactions, additional components must be made explicit,
including compartments for the species, and units on the
various quantities. A definition of a model in SBML
simply consists of lists of one or more of these various
components:
Compartment: A container of finite volume for well-

stirred substances where reactions take place.

Species: A chemical substance or entity that takes part in
a reaction. Some example species are ions such as
calcium ions and molecules such as ATP.

Reaction: A statement describing some transformation,
transport or binding process that can change one or
more species. Reactions have associated rate laws
describing the manner in which they take place.

Parameter: A quantity that has a symbolic name. SBML
provides the ability to define parameters that are
global to a model, as well as parameters that are
local to a single reaction.

Unit definition: A name for a unit used in the expression
of quantities in a model. This is a facility for both
setting default units and for allowing combinations
of units to be given abbreviated names.

Rule: A mathematical expression that is added to the
model equations constructed from the set of reac-
tions. Rules can be used to set parameter values,
establish constraints between quantities, etc.

525



M. Hucka et al.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <sbml xmlns="http://www.sbml.org/sbml/level1"
3 level="1" version="2">
4 <model name="gene_network_model">
5 <listOfUnitDefinitions>
6 ...
7 </listOfUnitDefinitions>
8 <listOfCompartments>
9 ...

10 </listOfCompartments>
11 <listOfSpecies>
12 ...
13 </listOfSpecies>
14 <listOfParameters>
15 ...
16 </listOfParameters>
17 <listOfRules>
18 ...
19 </listOfRules>
20 <listOfReactions>
21 ...
22 </listOfReactions>
23 </model>
24 </sbml>

Fig. 1. The skeleton of a model definition expressed in SBML,
showing all possible top-level elements.

A software package can read in a model expressed in
SBML and translate it into its own internal format for
model analysis. For instance, a package might provide
the ability to simulate a model by constructing a set
of differential equations representing the network and
then performing numerical integration on the equations to
explore the model’s dynamic behavior.

Figure 1 shows the skeleton of an SBML model descrip-
tion. It exhibits the standard characteristics of an XML
data stream (Bray et al., 1998): it is plain text, each ele-
ment consists of a matched pair of start/end tags enclosed
by ‘<’ and ‘>’ characters, some elements can contain at-
tributes of the form attribute =‘value ’, and the first
line contains a particular sequence of characters (begin-
ning with ‘<?xml’) declaring the rest of the data stream as
conforming to the XML encoding standard.

The element sbml, beginning on line 2 of Figure 1, en-
capsulates an SBML model definition. The first attribute,
xmlns, is required for tools that read XML to be able to
verify the syntax of a given definition against the XML
Schema for SBML. (This is an aspect of XML parsing
that is beyond the scope of this article; interested read-
ers may find more information in books such as that by
Skonnard and Gudgin 2001.) The level attribute on el-
ement sbml identifies the SBML level in use; currently
the only level defined is Level 1, but Level 2 is already
under development. The attribute version is provided to

nu
cle

us
RNAP

RNA nuc mRNA nuc

AAP

cyt
op

las
m

mRNA cytRNA cyt

U

src waste

gene G
++

+

Fig. 2. Schematic diagram of the example model.

enable updated versions of a given SBML level to be dis-
tinguished.

Inside sbml, there must be exactly one subelement:
model, which itself can have a single optional attribute
whose value specifies the name of the model (as shown on
line 4). The model element can contain several different
subelements; each acts as a container for a different kind
of component in a model definition. The contents of these
listOf containers are the topic of Section 4.

3 AN EXAMPLE MODEL
In the following sections, we describe the various com-
ponents of SBML with the help of a concrete example. It
illustrates one application of SBML, but it is by no means
the only type of model that can be represented.

Our example is a two-compartment model of a hypo-
thetical single-gene oscillatory circuit in a eukaryotic cell.
The model is shown diagrammatically in Figure 2 and the
reaction equations for the model are given in Table 1. In
this highly simplified model, the nucleus of the cell is rep-
resented as one compartment and the surrounding cell cy-
toplasm as another compartment. Let us suppose that there
is a gene G which encodes its own repressor and is tran-
scriptionally activated at a constant rate, Vi , by a ubiqui-
tous transcription factor U. Transcriptional activation in-
volves several enzymatic reactions summarized here as
the production of active RNAP (from source material, src)
and its degradation (to waste). The transcribed mRNA is
then transported out of the nucleus and into the cytoplasm,
where it is translated into the product (P) of the gene G
from constituent amino acids (AA) and where it is also
subject to degradation. P travels from the cytoplasm back
into the nucleus to repress further transcription of G, but is
itself also subject to degradation. Eventually, the concen-
tration of P becomes so low that G can be reactivated by
U, and the cycle repeats itself.

526



The Systems Biology Markup Language (SBML)

Table 1. Reactions in the example model. mRNAnuc: mRNA in nucleus.
mRNAcyt : mRNA in cytoplasm. RNAcyt , RNAnuc: RNA constituents. The
terms beginning with the letters ‘K’ and ‘V’ are parameters given values in
Section 4.4.

Reaction Rate

src → RNAP Vi /(1 + P/Ki )

RNAP → waste Vkd · RNAP

RNAnuc → mRNAnuc
Vm1 · RNAP · RNAnuc

Km1 + RNAnuc

mRNAnuc → mRNAcyt k1 · mRNAnuc

mRNAcyt → RNAcyt
Vm2 · mRNAcyt

mRNAcyt + Km2

RNAcyt → RNAnuc k2 · RNAcyt

AA → P
Vm3 · mRNAcyt · AA

AA + Km3

P → AA (Vm4 · P)/(P + Km4)

4 THE COMPONENTS OF SBML
Our goal in this section is to describe SBML in enough
detail that readers can gain a general sense for its
capabilities. This description summarizes SBML’s major
elements but omits many details; a detailed definition is
presented in the SBML specification (Hucka et al., 2003).

At the outset, we need to elaborate on two data type
issues. The first concerns the definitions of basic data
types such as double, integer, etc. Whenever these
are used in SBML, they simply refer to the definitions of
these data types in XML Schema (Biron and Malhotra,
2000; Thompson et al., 2000). The second issue concerns
the allowable syntax of names in name attributes. Names
are used throughout SBML to allow different components
of a model to have meaningful labels. When an SBML
model definition is converted by a simulation/analysis
software tool into the tool’s native internal form, these
names are typically turned into symbols in the software’s
representation of the model. However, some simulation
and analysis tools place restrictions on the characters
allowed in symbolic names. To support these packages,
names in SBML Level 1 are restricted to character strings
having the following syntax: a name is case-sensitive and
must begin with either a letter or an underscore (‘ ’)
character, followed by any number of letters, digits or
underscore characters in any combination. The minimum
length for a name is one letter, or one underscore followed
by one letter if the first character of the name is an
underscore. A ‘letter’ can be either upper or lower
case. Also, though XML permits the use of Unicode
characters (Unicode Consortium, 1996), SBML limits
the set of characters allowed in names to plain ASCII

text characters for compatibility with existing simulation
software.

4.1 Compartments
A compartment in SBML represents a bounded volume
in which species are located. Compartments do not
necessarily have to correspond to actual structures inside
or outside of a cell, although models are often designed
that way. The following fragment of SBML defines the
compartments for our example model:

<listOfCompartments>
<compartment name="Cyt" volume="1.5" />
<compartment name="Nuc" outside="Cyt" />

</listOfCompartments>

There is one required attribute for a compartment
element, name, to give it a unique name by which other
parts of an SBML model definition can refer to it. A
compartment can also have an optional volume attribute
giving the total volume of the compartment. This enables
concentrations of species to be calculated in the absence
of spatial geometry information. The volume attribute
defaults to a value of ‘1’ (one). The units of volume may
be explicitly set using the optional attribute units. The
value of this attribute must be one of the following: a
predefined unit name from Table 2, the term ‘volume’
(which, if used, signifies that the default units of volume
should be used—see Section 4.5), or the name of a unit
defined by a unit definition in the enclosing model. If
absent, as in the example above, the units default to the
value set by the built-in ‘volume’.

The optional attribute outside can be used to express
containment relationships between compartments. If
present, the value of outside for a given compartment
must be the name of another compartment enclosing it,
or in other words, the compartment that is ‘outside’ of
it. This enables the representation of simple topological
relationships between compartments, for those simulation
systems that can make use of the information (e.g. for
drawing simple diagrams of compartments). Although
containment relationships are partly taken into account by
the compartmental localization of reactants and products,
it is not always possible to determine purely from the
reaction equations whether one compartment is meant to
be located within another. In the absence of a value for
outside, compartment definitions in SBML Level 1 do
not have any implied spatial relationships between each
other. (We hope to introduce support for additional spatial
characteristics in a future level of SBML.)

As with the other top-level components, compartments
are optional in an SBML model definition. If no compart-
ment is defined, the model is assumed to be located within
a single compartment of unit volume.

527



M. Hucka et al.

4.2 Species
The species element in SBML is used to represent
entities such as ions and molecules that participate in
reactions. The following is the list of species for our
example:

<listOfSpecies>
<species name="mRNA_nuc" compartment="Nuc"

initialAmount="0.0032834" />
<species name="RNA_nuc" compartment="Nuc"

initialAmount="96.117" />
<species name="RNAP" compartment="Nuc"

initialAmount="0.66349" />
<species name="mRNA_cyt" compartment="Cyt"

initialAmount="3.8742"/>
<species name="P" compartment="Cyt"

initialAmount="22.035" />
<species name="RNA_cyt" compartment="Cyt"

initialAmount="0.0054068" />
<species name="AA" compartment="Cyt"

initialAmount="90.465" />
<species name="src" compartment="Nuc"

initialAmount="1"
boundaryCondition="true" />

<species name="waste" compartment="Nuc"
initialAmount="1"
boundaryCondition="true" />

</listOfSpecies>

The species element has two required attributes: name
and initialAmount. The attribute name is required
to give each species a unique name in a model. The
attribute initialAmount, of type double, is used to
define the initial quantity (as a total molar amount, not
concentration) of the species in the compartment where it
is located. The units of this quantity may be set explicitly
using the optional attribute units. The value of units
must be one of the following: a predefined unit name
from Table 2, the term ‘substance’ (which, if present,
signifies that the default units of quantity should be used—
see Section 4.5), or a new unit name defined by a unit
definition in the enclosing model. If absent, the units
default to the value set by the built-in ‘substance’.

The attribute compartment is a string that names the
compartment within which the species is located. The
attribute can be omitted only if the model does not define
any compartments (and thus assumes the default; see
Section 4.1); otherwise, each species must have a value
for compartment.

The optional attribute boundaryCondition takes on
a boolean value to indicate whether the amount of the
species is fixed or variable over the course of a simulation.
The value of boundaryCondition defaults to a value
of ‘false’, indicating that by default, the amount is not
fixed. If the amount of a species is defined as being
fixed, it implies that some external mechanism maintains

a constant quantity in the compartment throughout the
course of a reaction. (The term boundary condition alludes
to the role of this constraint in a simulation.)

A final optional attribute of species is charge, an
integer indicating a charge value (in terms of electrons,
not the SI unit Coulombs). This may be useful when the
species is a charged ion such as calcium (Ca2+).

4.3 Reactions
A reaction represents some transformation, transport or
binding process, typically a chemical reaction, that can
change one or more chemical species. In SBML, reactions
are defined using lists of reactant species and products,
their stoichiometric coefficients, and kinetic rate laws.
Space limitations permit us to give only one SBML
reaction definition as an example:

<listOfReactions>
<reaction name="R1" reversible="false">
<listOfReactants>
<species Reference species="src" />

</listOfReactants>
<listOfProducts>
<species Reference species="RNAP"/>

</listOfProducts>
<kineticLaw formula="Vi/(1+P/Ki)" />

</reaction>
...

</listOfReactions>

The required name attribute gives the reaction a unique
name to identify it in the model. The optional attribute
reversible takes a boolean value indicating whether the
reaction is reversible. If unspecified, the default value is
‘true’. An explicit flag is necessary because the kinetic
law expression for a reaction is optional. Information
about reversibility is useful in certain kinds of analyses
such as elementary mode analysis (Schuster et al., 2000).

The optional attribute fast is another boolean attribute
in the reaction element; a value of ‘true’ signifies that
the given reaction is a ‘fast’ one. This may be relevant
when computing equilibrium concentrations of rapidly
equilibrating reactions. Simulation/analysis packages may
choose to use this information to reduce the number of
ODEs required and thereby optimize such computations.
The default value of fast is ‘false’.

The reactants and products of a reaction are identified by
references to species using speciesRef elements inside
listOfReactants and listOfProducts containers.
A speciesRef has one required attribute, species,
whose value must be the name of a species defined in
the model’s listOfSpecies. Stoichiometric numbers
for the products and reactants can be specified using
two optional attributes on the speciesRef element:
stoichiometry and denominator. Both attributes take

528



The Systems Biology Markup Language (SBML)

positive integers as values, and both have default values
of ‘1’ (one). The absolute value of the stoichiometric
number is the value of stoichiometry divided by
denominator, and the sign is implicit from the role of
the species (i.e. positive for reactants and negative for
products). The use of separate numerator and denominator
terms allows a simulator to employ rational arithmetic
if it is capable of it, potentially reducing round-off
errors and other problems during computations. In our
example model above, we only needed to use the default
values.

Finally, the optional kineticLaw element is used to
provide a mathematical formula describing the rate at
which the reactants combine to form the products. (In
general there is no useful default value that can be
substituted in place of a missing kinetic law, but the
element is optional because certain kinds of network
analysis are still possible in the absence of information
on reaction kinetics.) The kineticLaw element has
one required attribute, formula, of type string, that
expresses the rate of the reaction in substance/time
units. The allowable syntax of formula strings is described
in the SBML Level 1 specification; it consists of basic
operators such as multiplication, addition, exponentiation,
etc., as well as a number of predefined functions for
common kinetic rate laws.

A kineticLaw element can optionally have attributes
substanceUnits and timeUnits to specify the units
of substance and time. If these attributes are not used in
a given reaction, the units are taken from the defaults
defined by the built-in terms ‘substance’ and ‘time’
of Table 3 in Section 4.5. Although not used in our two-
compartment example model, a kineticLaw element
can also contain zero or more optional parameter
elements that define new terms used only in the formula
string.

Readers may wonder why formulas in SBML are
not expressed using MathML (W3C, 2000). Although
using MathML would be more in the spirit of XML,
it would introduce new complexity for software tools.
Most contemporary simulation software tools for systems
biology represent mathematical formulas simply using
text strings. To keep SBML Level 1 simple and maximally
compatible with known software, we chose to represent
formulas as strings as well. This does not preclude a
later level of SBML from introducing the ability to use
MathML.

4.4 Parameters
The parameter element in SBML is used to associate
a name with a floating-point value, so that the name can
be used in formulas in place of the value. Here are the
parameter definitions for our example:

<listOfParameters>
<parameter name="Vi" value="10" />
<parameter name="Ki" value="0.6"/>
<parameter name="Vkd" value="1" />
<parameter name="Vm1" value="50" />
<parameter name="Km1" value="1" />
<parameter name="k1" value="10000" />
<parameter name="Vm2" value="50" />
<parameter name="Km2" value="1" />
<parameter name="k2" value="10000" />
<parameter name="Vm3" value="50" />
<parameter name="Km3" value="80" />
<parameter name="Vm4" value="50" />
<parameter name="Km4" value="1" />

</listOfParameters>

The parameter element has one required attribute,
name, representing the parameter’s name in the model.
The optional attribute value is of type double and
determines the numerical value assigned to the parameter.
The units on the value may be specified by the optional
attribute units. The string used for units must be
chosen from one of the following: a predefined unit
name from Table 2; one of the three terms ‘substance’,
‘time’, or ‘volume’ (see Section 4.5); or the name of
a new unit defined in the list of unit definitions in the
enclosing model.

Parameters can be defined in two places in SBML: in
lists of parameters defined at the top level in a model-
type structure (in the listOfParameters described in
Section 2), and within individual reaction definitions (as
described in Section 4.3). Parameters defined at the top
level are global to the whole model; parameters that are
defined within a reaction are local to the particular reaction
and (within that reaction) override any global parameters
having the same names.

4.5 Unit Definitions
Although we did not need to define any special units in our
example model, SBML does provide a way to define new
units and redefine default units.

A unit definition consists of a name attribute and an
optional listOfUnits subelement that in turn contains
one or more unit elements. For example, the following
definition illustrates how an abbreviation named ‘mmls’
can be defined for the units mmol l−1 s−1:

<listOfUnitDefinitions>
<unitDefinition name="mmls">
<listOfUnits>
<unit kind="mole" scale="-3"/>
<unit kind="liter" exponent="-1"/>
<unit kind="second" exponent="-1"/>

</listOfUnits>
</unitDefinition>
...

</listOfUnitDefinitions>

529



M. Hucka et al.

Table 2. The possible values of kind in a unit element. All are names
of base or derived SI units, except for ‘dimensionless’ and ‘item’, which
are SBML additions. ‘Dimensionless’ is needed for cases where a quantity
does not have units, and ‘item’ is needed to express such things as ‘N items’
(e.g. ‘100 molecules’). Although ‘Celsius’ is capitalized, for simplicity,
SBML requires that these names be treated in a case-insensitive manner.
Also, note that the gram and liter/litre are not strictly part of International
System of Units (BIPM, 2000); however, they are so commonly used in
SBML’s areas of application that they are included as predefined unit names.

ampere henry lumen second
becquerel hertz lux siemens
candela item meter sievert
Celsius joule metre steradian
coulomb katal mole tesla
dimensionless kelvin newton volt
farad kilogram ohm watt
gram liter pascal weber
gray litre radian

As this illustrates, SBML uses a compositional approach
to defining units. The definition of mmol l−1 s−1 is
constructed by combining a unit element representing
millimoles with a unit element representing liter −1 and
another unit element representing second −1.

The unit element has one required attribute, kind,
whose value must be a name taken from the list of units
in Table 2. The optional exponent attribute has a default
value of ‘1’ (one). A unit such as liter −1 is obtained by
using attributes kind="liter" and exponent="-1".
Finally, a unit element also accepts an optional scale
field; its value must be an integer used to set the scale
of the unit. For example, a unit that has a kind value of
‘gram’ and a scale value of ‘-3’ signifies 10−3 ∗ gram,
or milligrams. The default value of scale is zero.

There are three special unit names in SBML, listed in
Table 3, corresponding to the three types of quantities that
play roles in biochemical reactions: amount of substance,
volume and time. SBML defines default units for these
quantities, all with a default scale value of 0. The
various components of a model, such as parameters, can
use only the predefined units from Table 2, new units
defined in unit definitions, or the three predefined names
‘substance’, ‘time’, and ‘volume’ from Table 3. The
latter usage signifies that the units to be used should be
the designated defaults. A model may change the default
scales by reassigning the keywords ‘substance’, ‘time’,
and ‘volume’ in a unit definition.

4.6 Rules
Rules in SBML provide a way to create constraints on vari-
ables and parameters for cases in which the constraints
cannot be expressed using the reaction components de-
scribed in Section 4.3. There are two orthogonal dimen-
sions by which rules can be described. First, there are three
different possible functional forms, corresponding to the

Table 3. SBML’s built-in quantities.

Name Allowable Units Default Units

substance moles or no. of molecules moles
volume liters liters
time seconds seconds

following three general cases (where x is a variable, f is
some arbitrary function, and W is a vector of parameters
and variables that may include x):

1. left-hand side is zero: 0 = f (W )

2. left-hand side is a scalar: x = f (W )

3. left-hand side is a rate-of-change: dx/dt = f (W )

The second dimension concerns the role of variable x in
the equations above: x can be the name of a compartment
(to set its volume), the name of a species (to set its
concentration), or the name of a parameter (to set its
value).

The approach taken to covering these cases in SBML
is to define separate kinds of elements for each of the
cases, and to allow these within a single listOfRules
container within a model definition (see Table 1). Each
contains a name attribute that specifies the quantity being
referenced, and a formula attribute that holds the right-
hand side expression of the rule. For the actual details, we
refer readers to the SBML Level 1 specification.

5 STATUS AND FUTURE PLANS
As mentioned above, SBML Level 1 is intended to pro-
vide only a basic representation of biochemical reaction
networks. Space constraints prevent us from giving a
detailed description of SBML here; the full definition is
available in a separate document (Hucka et al., 2003).
A number of simulation and analysis packages already
support SBML Level 1 or are in the process of being
extended to support it. At the time of this writing, the
tools include: Cellerator (Shapiro and Mjolsness, 2001),
DBsolve (Goryanin et al., 1999), E-CELL (Tomita et al.,
2001), Gepasi (Mendes, 1997), Jarnac (Sauro, 2000),
NetBuilder (Brown et al., 2002), ProMoT/DIVA (Ginkel
et al., 2000), StochSim (Morton-Firth and Bray, 1998),
and Virtual Cell (Schaff et al., 2001).

Future levels of SBML will add more features requested
by the modeling community. The process for feature se-
lection involves a request for proposals from the Software
Platforms for Systems Biology forum, followed by discus-
sions and votes during subsequent meetings, and finally
the drafting of a specification by selected members. Some
of the features under discussion for SBML Level 2 are the

530



The Systems Biology Markup Language (SBML)

introduction of MathML and metadata support. The latter
will add a systematic mechanism for recording such infor-
mation as author and publication references; it will also
provide a way to annotate a model with information such
as cross-references to biological data sources.

Finally, the project is moving from a primarily
Caltech/ERATO-led effort toward a community-led and
-maintained model for the future of SBML. We invite all
interested parties to join us.

ACKNOWLEDGEMENTS
This work has been supported by: the Japan Science
and Technology Corporation’s ERATO Kitano Symbiotic
Systems Project; an International Joint Research Grant
from the NEDO/Japanese Ministry of Economy, Trade and
Industry; and the Rice Genome and Simulation Project
from the Japanese Ministry of Agriculture.

REFERENCES
Abbott,A. (1999) Alliance of US labs plans to build map of cell

signaling pathways. Nature, 402, 219–220.
Achard,F., Vaysseix,G. and Barillot,E. (2001) XML, bioinformatics

and data integration. Bioinformatics, 17, 115–125.
Arkin,A.P. (2001) Simulac & Deduce. Available via the World Wide

Web at http://gobi.lbl.gov/∼aparkin.
Biron,P.V. and Malhotra,A. (2000) XML Schema part 2: Datatypes,

Available via the World Wide Web at http://www.w3.org/TR/
xmlschema-2/.

Bray,T., Paoli,J. and Sperberg-McQueen,C.M. (1998) Extensible
markup language (XML) 1.0, Available via the World Wide Web
at http://www.w3.org/TR/1998/REC-xml-19980210.

Brown,C.T., Rust,A.G., Clarke,P.J.C., Pan,Z., Schilstra,M.J., De
Buysshcher,T., Griffin,G., Wold,B.J., Cameron,R.A., David-
son,E.H. and Bolouri,H. (2002) New computational approaches
for analysis of cis-regulatory networks. Developmental Biology,
246, 86–102.

Bureau International des Poids et Mesures (2000) The International
System of Units (SI) supplement 2000. Available via the World
Wide Web at http://www.bipm.fr/pdf/si-supplement2000.pdf.

Ginkel,M., Kremling,A., Tränkle,F., Gilles,E.D. and Zeitz,M.
(2000) Application of the process modeling tool ProMoT to
the modeling of metabolic networks. In Troch,I. and Breite-
necker,F. (eds), Proc. of the 3rd MATHMOD.

Goryanin,I., Hodgman,T.C. and Selkov,E. (1999) Mathematical

simulation and analysis of cellular metabolism and regulation.
Bioinformatics, 15, 749–758.

Hedley,W.J., Nelson,M.R., Bullivant,D.P. and Nielson,P.F. (2001) A
short introduction to CellML. Phil. Trans. Roy. Soc. London A,
359, 1073–1089.

Hucka,M., Finney,A., Sauro,H.M. and Bolouri,H. (2003) Systems
Biology Markup Language (SBML) Level 1: Structures and
facilities for basic model definitions, Available via the World
Wide Web at http://www.sbml.org/.

Kitano,H. (2002) Systems biology: a brief overview. Science, 295,
1662–1664.

Mendes,P. (1997) Biochemistry by numbers: simulation of bio-
chemical pathways with Gepasi 3. Trends Biochem. Sci., 22,
361–363.

Morton-Firth,C.J. and Bray,D. (1998) Predicting temporal fluctua-
tions in an intracellular signalling pathway. J. Theor. Biol., 192,
117–128.

Object Management Group (2002) UML Specification documents
available via the World Wide Web at http://www.omg.org/uml/ .

Sauro,H.M. (2000) Jarnac: a system for interactive metabolic anal-
ysis. In Hofmeyr,J.-H., Rohwer,J. and Snoep,J. (eds), Animating
the Cellular Map. Stellenbosch Univ. Press.

Schaff,J., Slepchenko,B., Morgan,F., Wagner,J., Resasco,D.,
Shin,D., Choi,Y.S., Loew,L., Carson,J., Cowan,A. et al.
(2001) Virtual Cell. Available via the World Wide Web at
http://www.nrcam.uchc.edu.

Schuster,S., Fell,D.A. and Dandekar,T. (2000) A general definition
of metabolic pathways useful for systematic organization and
analysis of complex metabolic networks. Nat. Biotechnol., 18,
326–332.

Shapiro,B.E. and Mjolsness,E.D. (2001) Developmental simula-
tions with Cellerator. In Yi,T.-M., Hucka,M., Morohashi,M. and
Kitano,H. (eds), Proceedings of the Second International Con-
ference on Systems Biology (ICSB2001). Omnipress.

Skonnard,A. and Gudgin,M. (2001) Essential XML Quick Refer-
ence, Addison-Wesley.

Thompson,H.S., Beech,D., Maloney,M. and Mendelsohn,N. (2000)
XML Schema part 1: Structures. Available via the World Wide
Web at http://www.w3.org/TR/xmlschema-1/.

Tomita,M., Nakayama,Y., Naito,Y., Shimizu,T., Hashimoto,K.,
Takahashi,K., Matsuzaki,Y., Yugi,K., Miyoshi,F., Saito,Y. et al.
(2001) E-Cell. Available via the World Wide Web at http://www.
e-cell.org/.

Unicode Consortium, (1996) The Unicode Standard, Version 2.0.
Addison-Wesley Developers Press.

W3C, (2000) W3C’s math home page. Available via the World Wide
Web at http://www.w3.org/Math/.

531


